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Abstract

In supervisor synthesis achieving nonblockingness is a major computational challenge
when a target system consists of a large number of local components. To overcome this
difficulty we propose a coordinated distributed supervisor synthesis approach, where spec-
ifications are enforced by local supervisors. To avoid conflicting among local supervisors,
coordinators are created based on automaton abstraction.



1 Introduction

In the Ramadge/Wonham supervisory control paradigm [1] [2] one of the main challenges
of supervisor synthesis is to achieve nonblockingness when a target system has a large
number of states, often resulted from synchronous product of many relatively small local
components. To overcome this difficulty, many approaches have been proposed recently,
e.g. state-feedback control based on state-tree structures [5], hierarchical interface-based
control [4] and modular/distributed control [6] [8] [20] [18] [15] [19].

The modular/distributed approaches are particular interesting for two reasons: poten-
tially low synthesis complexity and high implementation flexibility. The low complexity
is achieved through local synthesis by using appropriate abstraction, and implementa-
tion flexibility refers that, a structural change of the target system may result in only a
small number of relevant local controllers to be updated. Currently there are two major
types of abstraction techniques: language-based abstraction, e.g. [6] [20] [7] [18], and
automaton-based abstraction, e.g. [8] [21] [14] [15] [19] [11]. The language-based abstrac-
tion techniques rely on a special type of natural projections called observers [3], which
is crucial for achieving nonblockingness. The shortcoming of using observers is that, the
codomain of a natural projection needs to be sufficiently large so that the observer prop-
erty can be obtained. The consequence is that, an abstracted model may not be small
enough for subsequent modular/distributed synthesis. The automaton-based abstraction
techniques do not have any special requirement on the codomain of abstraction maps.
But in general they create nondeterministic abstracted models, even when the original
models are deterministic. This forces a user to deal with supervisor synthesis for non-
deterministic systems. Fortunately, when specifications are deterministic, such synthesis
can be easily performed [11]. Among existent automaton abstraction techniques, [8] re-
quires an abstracted model weakly bisimilar to the original model. [21] [19] are aimed for
conflict equivalence, [14] for supervision equivalence and [15] for synthesis equivalence.
All of these approaches require to use heuristic rewriting rules and silent events in order
to preserve appropriate equivalence relations.

In [10] a new automaton abstraction technique is introduced, which is applied in aggrega-
tive synthesis proposed in [11]. The advantage of this new technique is that, no silent
event is required and the construction is much simpler than using heuristic rewriting
rules. An extension is made in [12] to guarantee that abstraction will not create extra
blocking behaviors that may happen by the original technique in [10] [11]. In this paper
our main contribution is to develop a procedure to synthesize nonblocking coordinated
distributed supervisors, based on the abstraction technique proposed in [12]. The coordi-
nation strategy is similar to those mentioned in [21] [18] [19], except that we use a different
abstraction technique. The distributed supervisory control problem setup is close to the
one used in [11], except that the latter one is aimed for aggregative synthesis in the sense
that, a new local supervisor is constructed based on relevant local components and pre-
viously constructed local supervisors. As a contrast, in this paper all local supervisors
are constructed at the same time, then relevant coordinators are bult to solve potential
conflicts among local supervisors. The advantage of this approach is that, when the sys-
tem’s architecture is changed, only a few relevant local supervisors and coordinators are
required to be updated. But in aggregative synthesis proposed in [11], all local compo-
nents are ordered in a list, and a change of a local component, say Gi, will force all local
supervisors associated with local components after Gi in the list to be updated. When Gi

is at the beginning of the list, such a change will be equivalent to recomputing the entire
distributed supervisor. Thus, the coordinated distributed synthesis proposed in this pa-
per enjoys computational and implementation advantages over the aggregative synthesis
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proposed in [11]. Nevertheless, the aggregative synthesis may generate a distributed su-
pervisor more permissive than the one generated by the coordinated distributed synthesis.

This paper is organized as follows. In Section II we first review relevant concepts and au-
tomaton operations. Then in Section III we put forward a distributed supervisory control
problem, and present a coordinated distributed synthesis approach based on abstractions
of nondeterministic automata. As an illustration, the proposed synthesis approach is
applied to a cable TV service network in Section IV. Conclusions are stated in Section
V. All long proofs are presented in the Appendix.

2 Preliminaries on Languages and Nondeterministic

Finite-state Automata

In this section we first review basic concepts of languages and nondeterministic finite-
state automata. Then we present a few results that will be used in synthesis.

Let Σ be a finite alphabet, and Σ∗ denote the Kleene closure of Σ, i.e. the collection
of all finite sequences of events taken from Σ. Given two strings s, t ∈ Σ∗, s is called a
prefix substring of t, written as s ≤ t, if there exists s′ ∈ Σ∗ such that ss′ = t, where
ss′ denotes the concatenation of s and s′. We use ǫ to denote the empty string of Σ∗

such that for any string s ∈ Σ∗, ǫs = sǫ = s. A subset L ⊆ Σ∗ is called a language.
L = {s ∈ Σ∗|(∃t ∈ L) s ≤ t} ⊆ Σ∗ is called the prefix closure of L. L is called prefix
closed if L = L. Given two languages L, L′ ⊆ Σ∗, LL′ := {ss′ ∈ Σ∗|s ∈ L ∧ s′ ∈ L′}.

Let Σ′ ⊆ Σ. A mapping P : Σ∗ → Σ′∗ is called the natural projection with respect to
(Σ, Σ′), if

1. P (ǫ) = ǫ

2. (∀σ ∈ Σ)P (σ) :=

{

σ if σ ∈ Σ′

ǫ otherwise

3. (∀sσ ∈ Σ∗)P (sσ) = P (s)P (σ)

Given a language L ⊆ Σ∗, P (L) := {P (s) ∈ Σ′∗|s ∈ L}. The inverse image mapping of
P is

P−1 : 2Σ′∗

→ 2Σ∗

: L 7→ P−1(L) := {s ∈ Σ∗|P (s) ∈ L}

Given L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2, the synchronous product of L1 and L2 is defined as:

L1||L2 := P−1
1 (L1) ∩ P−1

2 (L2) = {s ∈ (Σ1 ∪ Σ2)
∗|P1(s) ∈ L1 ∧ P2(s) ∈ L2}

where P1 : (Σ1 ∪Σ2)
∗ → Σ∗

1 and P2 : (Σ1 ∪Σ2)
∗ → Σ∗

2 are natural projections. Clearly, ||
is commutative and associative. Next, we introduce automaton product and abstraction.

A nondeterministic finite-state automaton is a 5-tuple G = (X, Σ, ξ, x0, Xm), where X
stands for the state set, Σ for the alphabet, ξ : X × Σ → 2X for the nondeterministic
transition function, x0 for the initial state and Xm for the marker state set. As usual [9],
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we extend the domain of ξ from X × Σ to X × Σ∗. If for any x ∈ X and σ ∈ Σ, ξ(x, σ)
contains no more than one element, then G is called deterministic. Let

B(G) := {s ∈ Σ∗|(∃x ∈ ξ(x0, s))(∀s′ ∈ Σ∗) ξ(x, s′) ∩ Xm = ∅}

Any string s ∈ B(G) can lead to a state x, from which no marker state is reachable, i.e.
for any s′ ∈ Σ∗, ξ(x, s′) ∩ Xm = ∅. Such a state x is called a blocking state of G, and
we call B(G) the blocking set. A state that is not a blocking state is called a nonblocking
state. We say G is nonblocking if B(G) = ∅. For each x ∈ X , we define another set

NG(x) := {s ∈ Σ∗|ξ(x, s) ∩ Xm 6= ∅}

and call NG(x0) the nonblocking set of G, which is simply the set of all strings recognized
by G. For the notation simplicity, we use N(G) to denote NG(x0). It is possible that

B(G) ∩ N(G) 6= ∅, due to nondeterminism. Let φ(Σ) be the collection of all finite-state
automata over Σ.

Given two nondeterministic automata Gi = (Xi, Σi, ξi, x0,i, Xm,i) ∈ φ(Σi) (i = 1, 2), the
product of G1 and G2, written as G1 × G2, is an automaton in φ(Σ1 ∪ Σ2) such that

G1 × G2 = (X1 × X2, Σ1 ∪ Σ2, ξ1 × ξ2, (x0,1, x0,2), Xm,1 × Xm,2)

where ξ1 × ξ2 : X1 × X2 × (Σ1 ∪ Σ2) → 2X1×X2 is defined as follows,

(ξ1 × ξ2)((x1, x2), σ) :=







ξ1(x1, σ) × {x2} if σ ∈ Σ1 − Σ2

{x1} × ξ2(x2, σ) if σ ∈ Σ2 − Σ1

ξ1(x1, σ) × ξ2(x2, σ) if σ ∈ Σ1 ∩ Σ2

Clearly, × is commutative and associative. ξ1×ξ2 is extended to X1×X2× (Σ1∪Σ2)
∗ →

2X1×X2 . By a slight abuse of notations, from now on we use G1 ×G2 to denote its reach-
able part, which contains all states reachable from (x1,0, x2,0) by ξ1 × ξ2 and transitions
among these states. It is clear that N(G1 × G2) = N(G1)||N(G2), due to the marked
states of G1 × G2 being Xm,1 × Xm,2. Next, we introduce automaton abstraction.

Definition 2.1. Given G = (X, Σ, ξ, x0, Xm), let Σ′ ⊆ Σ and P : Σ∗ → Σ′∗ be the
natural projection. A marking weak bisimulation relation on X with respect to Σ′ is an
equivalence relation R ⊆ X×X such that, R ⊆ {(x, x′) ∈ X×X |x ∈ Xm ⇐⇒ x′ ∈ Xm}
and

(∀(x, x′) ∈ R)(∀s ∈ Σ∗)(∀y ∈ ξ(x, s))(∃s′ ∈ Σ∗)P (s) = P (s′)∧ (∃y′ ∈ ξ(x′, s′)) (y, y′) ∈ R

The largest marking weak bisimulation relation on X with respect to Σ′ is called marking
weak bisimilarity on X with respect to Σ′, written as ≈Σ′,G. �

Marking weak bisimulation relation is the same as weak bisimulation relation described
in [16], except for the special treatment on marker states. From now on, when G is clear
from the context, we simply use ≈Σ′ to denote ≈Σ′,G. We now introduce abstraction.

Definition 2.2. Given G = (X, Σ, ξ, x0, Xm), let Σ′ ⊆ Σ. The automaton abstraction
of G with respect to the marking weak bisimulation ≈Σ′ is an automaton G/ ≈Σ′ :=
(Y, Σ′, η, y0, Ym) where
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1. Y := X/ ≈Σ′ := {< x >:= {x′ ∈ X |(x, x′) ∈≈Σ′}|x ∈ X}

2. y0 :=< x0 >

3. Ym := {y ∈ Y |y ∩ Xm 6= ∅}

4. η : Y × Σ′ → 2Y , where for any (y, σ) ∈ Y × Σ′,

η(y, σ) := {y′ ∈ Y |(∃x ∈ y)(∃u, u′ ∈ (Σ − Σ′)∗) ξ(x, uσu′) ∩ y′ 6= ∅}

�

The time complexity of computing G/ ≈Σ′ is mainly resulted from computing X/ ≈Σ′ ,
which can be done by using a state partition algorithm similar to the one presented in
[23]. The complexity has been shown in [10] to be O(1

2n(n − 1) + mn2 log n), where n
is the number of states and m for the number of transitions in G. We now introduce a
binary relation that will be used frequently later.

Definition 2.3. Given Gi = (Xi, Σi, ξi, xi,0, Xi,m) (i = 1, 2), we say G1 is nonblocking
preserving with respect to G2, denoted as G1 ⊑ G2, if (1) B(G1) ⊆ B(G2), (2) N(G1) =

N(G2), and (3) for all s ∈ N(G1), x1 ∈ ξ1(x1,0, s), there exists x2 ∈ ξ2(x2,0, s) such that

NG2
(x2) ⊆ NG1

(x1) ∧ [x1 ∈ X1,m ⇐⇒ x2 ∈ X2,m]

G1 is nonblocking equivalent to G2, denoted as G1
∼= G2, if G1 ⊑ G2 and G2 ⊑ G1. �

Def. 2.3 says that, if G1 is nonblocking preserving with respect to G2 then their nonblock-
ing behaviors are equal, but G2’s blocking behavior may be larger. The third condition
is used to guarantee that nonblocking preserving is preserved under automaton product
and abstraction. If, in addition, G2 is nonblocking preserving with respect to G1, then
they are nonblocking equivalent. Next, we discuss synthesis of a distributed supervisor.

To use the proposed automaton abstraction properly, we need to introduce the concept
of standardized automata, which is defined as follows.

We bring in two new symbols τ, µ /∈ Σ, and call Gτ,µ = (X, Σ ∪ {τ, µ}, ξ, x0, Xm) stan-
dardized if

1. x0 /∈ Xm ∧ (∀x ∈ X) [ξ(x, τ) 6= ∅ ⇐⇒ x = x0] ∧ (∀σ ∈ Σ) ξ(x0, σ) = ∅

2. (∀x ∈ X)(∀σ ∈ Σ ∪ {τ})x0 /∈ ξ(x, σ)

3. (∀x ∈ X)x ∈ Xm ⇒ x ∈ ξ(x, µ)

A standardized automaton is nothing but an automaton, in which x0 is not marked, τ is
only defined at x0, which has only outgoing τ transitions and no incoming transitions, and
µ is selflooped at every marker state. We can consider µ as a marking event, which marks
every marker state. The importance of introducing the notion of standardized automaton
is explain in details in [12]. Briefly speaking, it guarantees that the nonblockingness of
an abstraction implies the nonblockingness of the original automaton, and vice versa.
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If an automaton is not standardized, such a property may not hold when we applied
the proposed automaton abstraction. It has been shown in [12] that, the abstraction of
a standardized automaton is a standardized one, and the product of two standardized
automata is also a standardized one. Although it looks like we are restricting ourselves
to a special type of automata, it has been explained in [11] that, the notion τ does not
put any constraint on supervisor synthesis based on abstractions and we will also explain
later in this paper that the notion µ does not impose any restriction as well. From now
on, unless specified explicitly, we assume that each alphabet Σ contains τ and µ, and
φ(Σ) is the collection of all standardized finite-state automata, whose alphabet is Σ. By
a slight abuse of notation, we use G to denote a standardized automaton Gτ,µ. We have
the following result, which is useful in distributed synthesis.

Proposition 2.4. Suppose we have a collection of alphabets {Σi|i ∈ I} for some index
I, and a collection of components {Gi ∈ φ(Σi)|i ∈ I}. Let Σ′ ⊆ ∪i∈IΣi such that
∪i,j∈I:i6=jΣi ∩ Σj ⊆ Σ′. Then (×i∈IGi)/ ≈Σ′∼= ×i∈I(Gi/ ≈Σi∩Σ′) �

Proof: We use induction on the size of I. When |I| = 2, by Prop. 5 in [12], the result
holds. Suppose it holds for |I| = n. We show that it also holds for |I| = n + 1 as follows:

(×i∈IGi)/ ≈Σ′

= (×i∈I−{j}Gi × Gj)/ ≈Σ′

∼= ((×i∈I−{j}Gi)/ ≈(∪i∈I−{j}Σi)∩Σ′) × (Gj/ ≈Σj∩Σ′)

since Σj ∩ (∪i∈I−{j}Σi) ⊆ Σ′ and by Prop. 5 in [12]
∼= ×i∈I−{j}(Gi/ ≈Σi∩Σ′) × (Gj/ ≈Σj∩Σ′)

because |I − {j}| = n and by the induction hypothesis and Prop. 2 in [12]

= ×i∈I(Gi/ ≈Σi∩Σ′)

Thus, the proposition is true. �

In control engineering examples G usually consists of a large number of small automata,
namely G = G1 × · · · ×Gn for some very large number n ∈ N, where Gi ∈ φ(Σi) for each
i = 1, 2, · · · , n. How to compute G/ ≈Σ′ imposes a great computational difficulty. To
overcome it, we propose the following algorithm. Let I = {1, · · · , n} for some n ∈ N. For
any J ⊆ I, let ΣJ := ∪j∈JΣj .

Sequential Abstraction over Product: (SAP)
(1) Inputs of SAP: a collection {Gi ∈ φ(Σi)|i ∈ I} and an alphabet Σ′ ⊆ ∪i∈IΣi with
τ, µ ∈ Σ′.
(2) For k = 1, 2, · · · , n, we perform the following computation.

• Set Jk := {1, 2, · · · , k}, Tk := ΣJk
∩ (ΣI−Jk

∪ Σ′).

• If k = 1 then W1 := G1/ ≈T1

• If k > 1 then Wk := (Wk−1 × Gk)/ ≈Tk

(3) Output of SAP: Wn �

Proposition 2.5. [12] Suppose Wn is computed by SAP. Then (×i∈IGi)/ ≈Σ′∼= Wn. �
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SAP allows us to obtain an abstraction of G = ×i∈IGi in a sequential way. Thus, we can
avoid computing G explicitly, which may be prohibitively large for systems of industrial
size. Next, we discuss how to perform distributed supervisor synthesis.

3 Synthesis of Coordinated Distributed Supervisors

3.1 A Distributed Supervisor Synthesis Problem

We first provide concepts of state controllability, state observability, state normality, and
nonblocking supervisor, which are introduced in [10]. Then we present a distributed su-
pervisor synthesis problem.

Given G = (X, Σ, ξ, x0, Xm), for each x ∈ X let

EG : X → 2Σ : x 7→ EG(x) := {σ ∈ Σ|ξ(x, σ) 6= ∅}

Thus, EG(x) is simply the set of all events allowable at x in G. We now bring in the
concept of state controllability. Let Σ = Σc ∪Σuc, where the disjoint subsets Σc and Σuc

denote respectively the set of controllable events and the set of uncontrollable events. In
particular, τ ∈ Σuc and µ ∈ Σc. Let L(G) := {s ∈ Σ∗|ξ(x0, s) 6= ∅}.

Definition 3.1. Given G = (X, Σ, ξ, x0, Xm) and Σ′ ⊆ Σ, let A = (Y, Σ′, η, y0, Ym) ∈
φ(Σ′) and P : Σ∗ → Σ′∗ be the natural projection. A is state-controllable with respect to
G and Σuc if

(∀s ∈ L(G × A))(∀x ∈ ξ(x0, s))(∀y ∈ η(y0, P (s)))EG(x) ∩ Σuc ∩ Σ′ ⊆ EA(y)

�

We can check that, A is state controllable implies that L(G×A)Σuc ∩L(G) ⊆ L(G×A).
Thus, it is always true that state controllability implies language controllability of the
product G × A described in the RW paradigm. But the reverse statement is not true
unless both A and G are deterministic. We now introduce the concept of state observ-
ability. Let Σ = Σo ∪Σuo, where the disjoint subsets Σo and Σuo denote respectively the
set of observable events and the set of unobservable events. In particular, τ, µ ∈ Σuo. Let
Po : Σ∗ → Σ∗

o be the natural projection.

Definition 3.2. Given G = (X, Σ, ξ, x0, Xm) ∈ φ(Σ) and Σ′ ⊆ Σ, let A = (Y, Σ′, η, y0, Ym) ∈
φ(Σ′). A is state-observable with respect to G and Po if for any s, s′ ∈ L(G × A) with
Po(s) = Po(s

′), we have

(∀(x, y) ∈ ξ×η((x0, y0), s))(∀(x′, y′) ∈ ξ×η((x0, y0), s
′))EG×A(x, y)∩EG(x′)∩Σ′ ⊆ EA(y′)

�

Def. 3.2 says that, if A is state observable then for any two states (x, y) and (x′, y′) in G×A
reachable by two strings s and s′ having the same projected image (i.e. Po(s) = Po(s

′)),
any event σ allowed at (x, y) and x′ must be allowed at y′ as well. We can check that, if
A is state-observable then

(∀s, s′ ∈ L(G×A))(∀σ ∈ Σ)Po(s) = Po(s
′)∧ sσ ∈ L(G×A)∧ s′σ ∈ L(G) ⇒ s′σ ∈ L(G×A)

7 Synthesis of Coordinated Distributed Supervisors



Thus, state observability implies language observability of the product G × A. But the
reverse statement is not always true unless both A and G are deterministic. Notice that,
if Σo = Σ, namely every event is observable, A may still not be state-observable, owing to
nondeterminism. In many applications we are interested in an even stronger observability
property called state normality which is defined as follows.

Definition 3.3. Given G = (X, Σ, ξ, x0, Xm) ∈ φ(Σ) and Σ′ ⊆ Σ, let A = (Y, Σ′, η, y0, Ym) ∈
φ(Σ′) and P : Σ∗ → Σ′∗ be the natural projection. A is state-normal with respect to G

and Po if for any s ∈ L(G × A) and s′ ∈ P−1
o (Po(s)) ∩ L(G × A), we have

(∀(x, y) ∈ ξ×η((x0, y0), s
′))(∀s′′ ∈ Σ∗)Po(s

′s′′) = Po(s)∧ ξ(x, s′′) 6= ∅ ⇒ η(y, P (s′′)) 6= ∅

�

We can check that, if A is state-normal with respect to G and Po, then

L(G) ∩ P−1
o (Po(L(G × A))) ⊆ L(G × A)

which means L(G × A) is language normal with respect to L(G) and Po. The reverse
statement is not true unless both A and G are deterministic. Furthermore, we can check
that state normality implies state observability. But the reverse statement is not true.
We now introduce the concept of supervisor.

Definition 3.4. Given G ∈ φ(Σ) and H ∈ φ(∆) with ∆ ⊆ Σ′ ⊆ Σ, an automaton
S ∈ φ(Σ′) is a nonblocking supervisor of G under H , if S is deterministic and the following
conditions hold:

1. N(G × S) ⊆ N(G × H)

2. B(G × S) = ∅

3. S is state-controllable with respect to G and Σuc

4. S is state-observable with respect to G and Po �

The first condition of Def. 3.4 says that the closed-loop system G × S complies with the
specification H in terms of language inclusion. Because of this condition we only consider
H to be deterministic. The use of a nondeterministic specification is described in, e.g.
[17]. Later we will use the term ‘nonblocking state-normal supervisor’ (NSN), when we
want to emphasize that S is state-normal with respect to G and Po. From Prop. 4 in
[10] we get that the set

CN (G, H) := {S ∈ φ(Σ′)|S is a NSN supervisor of G w.r.t. H ∧ L(S) ⊆ L(G)}

contains a unique element Ŝ such that for any S ∈ CN (G, H), we have N(S) ⊆ N(Ŝ).

We call Ŝ the supremal nonblocking state-normal supervisor of G under H . In practice
it is of our primary interest to compute such a supremal NSCSN supervisor. A compu-
tational procedure for supremal NSCSN is provided in [11]. We now present the concept
of distributed systems.

Definition 3.5. A distributed system with respect to given alphabets {Σi|i ∈ I} is a
collection of nondeterministic finite-state automata G := {Gi = (Xi, Σi, ξi, xi,0, Xi,m) ∈
φ(Σi)|i ∈ I}. Each Gi (i ∈ I) is called the ith component of G, and Σi = Σi,c ∪ Σi,uc =
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Σi,o ∪ Σi,uo, where disjoint subsets Σi,c and Σi,uc comprise respectively the controllable
events and uncontrollable events, and disjoint subsets Σi,o and Σi,uo comprise respec-
tively the observable events and unobservable events. The compositional behavior of G is
specified by ×i∈IGi. �

The product of local components is the system of interest. Interaction among local
components is modeled by event sharing among local components. We make the following
assumption:

(∀i, j ∈ I) i 6= j ⇒ Σi,c ∩ Σj,uc = ∅ ∧ Σi,o ∩ Σj,uo = ∅ (A1)

namely there is no event, which is controllable in Gi but uncontrollable in Gj (i 6= j); and
there is also no event, which is observable in Gi but unobservable in Gj (i 6= j). For many
applications this is a mild assumption and can be easily satisfied. There may exist cases
in which a single event may have different controllability or observability properties in
different components. Although it is still possible to deal with these cases by distributed
synthesis, we choose not to do that in this paper because it may create extra complications
that are not helpful for conveying our main idea of synthesizing coordinated distributed
supervisors. We now present a statement of a control problem.

Distributed Supervisory Control Problem: Given a distributed system G = {Gi ∈
φ(Σi)|i ∈ I} and a set of specifications H = {Hj ∈ φ(∆j)|∆j ⊆ ∪i∈IΣi ∧ j ∈ J}, where
J is an index set and each Hj is a deterministic automaton, synthesize a collection of
deterministic finite-state automata

S = {Sk ∈ φ(Γk)|Γk ⊆ ∪i∈IΣi ∧ k ∈ K}

where K is an index set, such that the following conditions hold,

1. N((×i∈IGi) × (×k∈KSk)) ⊆ N((×i∈IGi) × (×j∈JHj))

2. B((×i∈IGi) × (×k∈KSk)) = ∅

3. ×k∈KSk is state-controllable w.r.t. ×i∈IGi and ∪i∈IΣi,uc

4. ×k∈KSk is state-normal w.r.t. ×i∈IGi and Po : (∪i∈IΣi)
∗ → (∪i∈IΣi,uo)

∗
�

If such a collection S exists, then it is called a nonblocking distributed supervisor of
G under H, where each Sk is a local supervisor of G under H. There are many ways
to compute a nonblocking distributed supervisor. For example, in [11] an aggregative
synthesis approach is proposed. In this paper we will present a synthesis approach that
computes in parallel a set of local supervisors to take care of local specifications, then
compute one or several coordinators to solve potential conflict among local supervisors.
We call such a supervisor as a coordinated distributed supervisor. Next, we discuss how
to synthesize nonblocking coordinated distributed supervisors.

3.2 Synthesis of Coordinated Distributed Supervisors

Given a distributed system G = {Gi ∈ φ(Σi)|i ∈ I = {1, 2, · · · , n} ∧ n ∈ N}, suppose
each local component Gi (i ∈ I) has its deterministic local specification Hi ∈ φ(∆i),
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where ∆i ⊆ Σi. Furthermore, there is one deterministic specification H ∈ φ(∆), where
∆ ⊆ ∪i∈IΣi. We would like to synthesize a nonblocking distributed supervisor S of G
under {H, Hi|i ∈ I}. To this end, we need the following result.

Proposition 3.6. Let G1, G2 ∈ φ(Σ) and H ∈ φ(∆) with ∆ ⊆ Σ. Suppose G1 ⊑ G2.
Then a nonblocking state-observable (or state-normal) supervisor S ∈ φ(Σ) of G2 under
H is also a nonblocking state-observable (or state-normal) supervisor of G1 under H . �

The proof of Prop. 3.6 is provided in the Appendix. The proposition says that, if a plant
G1 is nonblocking preserving with respect to G2, then a nonblocking supervisor for G2

is also a nonblocking supervisor for G1. In many cases it may be easier to obtain G2

than G1. For example, it is easier to use SAP to compute an abstraction, than simply
compute the product first then perform the abstraction operation on the product. Prop.
3.6 is used in the following main result.

Theorem 3.7. Suppose for each Gi we have a nonblocking state-observable (or state-
normal) supervisor Si ∈ φ(Σi) under Hi. Let Σ′ ⊆ ∪i∈IΣi such that ∪i,j:i6=jΣi ∩Σj ⊆ Σ′

and ∆ ⊆ Σ′. For each i ∈ I suppose we have Wi ∈ φ(Σi∩Σ′) such that (Gi×Si)/ ≈Σi∩Σ′⊑
Wi. Let S = (Y, Σ′, η, y0, Ym) ∈ φ(Σ′) be a nonblocking state-observable (or state-normal)
supervisor of ×i∈IWi under H . Then S×i∈I Si is a nonblocking state-observable (or state-
normal) supervisor of ×i∈IGi under H ×i∈I Hi. �

The proof of Theorem 3.7 is provided in the Appendix. What Theorem 3.7 says is that, we
can synthesize a local supervisor Si for each component Gi so that the local specification
Hi can be enforced. Then we compute an abstraction so that we can synthesize a local
supervisor to take care of H . In practical applications sometimes a specification, say
Hi, may cover several local components, say {Gil ∈ φ(Σil)|l = 1, · · · , r}, in the sense
that, ∆i ⊆ ∪r

l=1Σij . In this case, we can compute Gi := ×r
l=1Gil and treat it as a local

component so that Hi is defined for Gi. Thus, the setup in Theorem 3.7 is general enough.
The reason that we bring in Wi in Theorem 3.7 is because, when Gi actually consists of
many small components, e.g. {Gil ∈ φ(Σil)|l = 1, · · · , r}, computing (Gi × Si)/ ≈Σi∩Σ′

may be feasible only through a sequential procedure, e.g. using the SAP. In that case,
the outcome of that procedure may not be exactly equal to (Gi × Si)/ ≈Σi∩Σ′ . The
theorem says that, as long as (Gi × Si)/ ≈Σi∩Σ′ is nonblocking preserving with respect
to Wi, which is computed by an appropriate procedure, e.g. the SAP, then synthesizing
a local supervisor based on {Wi|i ∈ I} will result in a nonblocking supervisor for the
original local components. In Theorem 3.7 we call each Si a local supervisor of G and S a
coordinator of G, which is mainly used to coordinate local supervisors {Si|i ∈ I} to avoid
conflict. The existence of S gives rise to the term coordinated distributed supervisor. Of
course, S itself is a supervisor, which enforces the specification H . Theorem 3.7 allows us
to synthesize a multiple-level multiple-coordinator distributed supervisor. For example,
the system in Theorem 3.7 may be only a single module of a large system. Thus, after
obtaining {Si|i ∈ I}∪{S}, we can compute an appropriate abstraction of ×i∈I(Gi×Si)×S
(by using the proposed SAP) so that high level local supervisors and/or coordinators can
be synthesized. This will be illustrated in the example of Supervisory Control of Cable
TV Service Network.
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3.3 Coordinated Distributed Supervisors with Nonstandardized automata

So far we have only considered standardized automata. It is of primary interest for
us to know whether it is possible to apply the proposed technique to nonstandardized
automata. The answer is yes and our general strategy is that, we first convert nonstan-
dardized automata into standardized ones, then apply the synthesis approach proposed
in the previous section, and finally we convert the standardized distributed supervisor
into a nonstandardized one. To show that such a strategy works, we need to introduce a
few concepts and results first, which are described as follows.

Given G ∈ φ(Σ) and S = (Y, Σ, η, y0, Ym) ∈ φ(Σ), we propose the following computational
procedure, which is denoted as PODS, standing for Procedure for Observation Driven
Supervisor:

1. Let S′ = (Y ′, Σo ∪ {τ}, η′, y′
0, Y

′
m) ∈ φ(Σo ∪ {τ}) be the deterministic canonical

recognizer of Pτ (N(G × S)) with B(S′) = ∅, where Pτ : Σ∗ → (Σo ∪ {τ})∗ is the
natural projection. For any state y′ ∈ Y ′, an event σ ∈ Σuo −{τ} is called relevant
at y′ with respect to G, denoted as σ yG×S y′, if

(∃s ∈ Σ∗
o) η′(y′

0, s) = y′ ∧ P−1
τ (s)σ ∩ L(G × S) 6= ∅

2. Output S′′ = (Y ′′, Σ, η′′, y′′
0 , Y ′′

m) ∈ φ(Σ), where Y ′′ = Y ′, Y ′′
m = Y ′

m, y′′
0 = y′

0 and
the transition map η′′ is defined as follows:

(∀y′′ ∈ Y ′′)(∀σ ∈ Σ) η′′(y′′, σ) :=

{

η′(y′′, σ) if σ ∈ Σo ∪ {τ}
y′′ if σ ∈ Σuo and σ yG×S y′′

�

What this procedure does is that: first we create a canonical recognizer S′ of Pτ (N(G ×
S)), then at each state y′ of S′ we selfloop all unobservable events (other than τ) that are
relevant at y′ with respect to G. Clearly, S′′ is still standardized. We have the following
result.

Proposition 3.8. Given G ∈ φ(Σ) and H ∈ φ(∆) with ∆ ⊆ Σ, let S ∈ φ(Σ) be a
nonblocking state-observable (or state-normal) supervisor of G under H . Suppose S′′ is
obtained by PODS. Then S′′ is a nonblocking state-observable (or state-normal) super-
visor of G under H . �

The proof of Prop. 3.8 is presented in the Appendix. We call such an S′′ a standardized
implementable nonblocking supervisor of G with respect to H , in the sense that, except
for the τ transition, S′′ moves from one state to a different state only through observable
transitions. For notation simplicity, we will use ρ(S, G) to denote S′′ computed by PODS.
When G is clear from the context or not specified explicitly, we use ρ(S) to denote S′′. The
proof of Prop. 3.8 indicates that, every nonblocking supervisor S can be converted into a
standardized implementable nonblocking supervisor S′′ such that N(G×S) = N(G×S′′)
and L(G × S) = L(G × S′′). We will use this fact to convert a nonblocking supervisor
modeled by a standardized automaton into a nonblocking supervisor modeled by a non-
standardized automaton. To this end, we introduce the concepts of standardization and
destandardization. To avoid unnecessary confusion, here we emphasize that, from now
on in this section we assume that τ and µ are not contained in any alphabet, and ϕ(Σ)

11 Synthesis of Coordinated Distributed Supervisors



denotes the collection of all nonstandardized automata, whose alphabet is Σ.

Definition 3.9. Given G = (X, Σ, ξ, x0, Xm), we say an automaton G↑ = (X↑, Σ ∪

{τ, µ}, ξ↑, x↑
0, X

↑
m) is G-standardized if

1. X↑ = X ∪ {x↑
0}, where x↑

0 /∈ X

2. X↑
m = Xm

3. (∀x ∈ X↑})(∀σ ∈ Σ ∪ {τ, µ}) ξ↑(x, σ) :=















ξ(x, σ) if x ∈ X and σ ∈ Σ

{x0} if x = x↑
0 and σ = τ

{x} if x ∈ Xm and σ = µ
∅ otherwise

�

The only difference between G↑ and G is that, the former contains a new state x↑
0, a

new transition τ from x↑
0 to x0, and selflooping µ at each marker state. From now on we

use θ(G) to denote the G-standardized automaton G↑. Next, we introduce the concept
of destandardization, which is used to convert a standardized automaton into a nonstan-
dardized one.

Definition 3.10. A standardized automaton G↑ = (X↑, Σ ∪ {τ, µ}, ξ↑, x↑
0, X

↑
m) is µ-

selflooping if for any x, x′ ∈ X↑, we have that x′ ∈ ξ↑(x, µ) implies x′ = x. �

Definition 3.11. Let S↑ = (Y ↑, Σ ∪ {τ, µ}, η↑, y↑
0 , Y ↑

m) be a deterministic µ-selflooping
standardized automaton. We say an automaton S = (Y, Σ, η, y0, Ym) is S↑-destandardized
if

1. Y := Y ↑ − {y↑
0}

2. Ym := Y ↑
m

3. y0 ∈ η↑(y↑
0 , τ)

4. η : Y × Σ → 2Y : (y, σ) 7→ η(y, σ) := η↑(y, σ) �

Since S↑ is deterministic, η↑(y↑
0 , τ) contains only one element. Thus, S is well defined. The

only difference between S↑ and its destandardized version S is that, the latter contains
no transitions τ and µ. From now on we use ν(S↑) to denote the S↑-destandardized
automaton S.

We have the following result.

Theorem 3.12. Given a distributed system G = {Gi ∈ ϕ(Σi)|i ∈ I} and a collection of
deterministic specifications H = {Hj ∈ ϕ(∆j)|∆j ⊆ ∪i∈IΣi ∧ j ∈ J}, let G↑ := {θ(Gi)|i ∈
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I} be the standardized distributed system and H↑ := {θ(Hj)|j ∈ J} for the standardized
deterministic specifications. If there exists a nonblocking distributed supervisor

S↑ := {S↑
k ∈ φ(Γ↑

k)|Γ↑
k ⊆ ∪i∈IΣi ∪ {τ, µ} ∧ S↑

k is µ-selflooping ∧ k ∈ K}

of Gτ under Hτ , then S := {ν(S↑
k)|k ∈ K} is a nonblocking distributed supervisor of G

under H. �

Proof: Let G := ×i∈IGi, H := ×j∈JHj and S := ×k∈Kν(S↑
k). By Def. 3.9 we get that

G↑ := ×i∈Iθ(Gi) is a standardized µ-selflooping automaton, and so is H↑ := ×j∈Jθ(Hj).

Since each S↑
k (k ∈ K) is standardized µ-selflooping, we can derive that S↑ := ×k∈KS↑

k

is a standardized µ-selflooping automaton. Thus, G↑×S↑ is a standardized µ-selflooping
automaton. Furthermore, we can show that, ν(G↑ × S↑) is DES-isomorphic to G × S
and ν(G↑ ×H↑) is DES-isomorphic to G×H , where DES-isomorphism is defined in [22],
which simply says that, two automata are essentially identical, except for their state la-
bels, which are mapped bijectively between two state sets. Thus, it is straightforward to
show that, if S↑ is a nonblocking state-observable (or state-normal) distributed supervisor
of G↑ under H↑, then S is a nonblocking state-observable (or state-normal) distributed
supervisor of G under H. �

We now present the following Procedure for Synthesis of Distributed Supervisors with
Coordinators modeled by Nonstandardized Automata (PSDSCNA).

1. Inputs:

G = {Gi ∈ ϕ(Σi)|i ∈ I = {1, 2, · · · , n}}, H = {Hj ∈ ϕ(∆j)|j ∈ J} ∪ {H ∈ φ(∆)}

2. Create G↑ = {θ(Gi)|i ∈ I} and H↑ = {θ(Hj)|j ∈ J} ∪ {θ(H)}

3. Compute the collection Ŝ↑ = {ρ(S↑
j )|j ∈ J} ∪ {ρ(S↑)} as follows:

(a) For each j ∈ J , let Ij ⊆ I and ΣIj
:= ∪i∈Ij

Σi such that ∆j ⊆ ΣIj

(b) Use the procedure PSNSNS in [11] to compute the supremal nonblocking state-

normal supervisor S↑
j ∈ φ(ΣIj

∪ {τ, µ}) of ×i∈Ij
θ(Gi) under θ(Hj)

(c) Choose Σ′ ⊆ ∪i∈IΣi such that ∆ ⊆ Σ′

(d) Compute abstraction G↑ := (×i∈Iθ(Gi) ×j∈J ρ(S↑
j ))/ ≈Σ′∪{τ,µ}

(e) Compute the supremal nonblocking state-normal supervisor S↑ of G↑ under
θ(H)

4. Output S = {ν(ρ(S↑
j ))|j ∈ J} ∪ {ν(ρ(S↑))} �

Corollary 3.13. S computed in PSDSCNA is a nonblocking distributed supervisor of G
under H. �

Proof: By Prop. 3.8 and Theorem 3.7 we can derive that Ŝ↑ := {ρ(S↑
j )|j ∈ J} ∪ {ρ(S↑)}

is a nonblocking distributed supervisor of G↑ under H↑. By the definition of ρ, each
automaton in Ŝ↑ is µ-selflooping. Thus, by Theorem 3.12 we get that S is a nonblocking
distributed supervisor of G under H. �
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At this point we can see that, introducing events τ , µ and the concept of standardized au-
tomata does not impose any significant constraint on synthesis of distributed supervisors.
They are used only for the purpose of applying automaton abstraction in synthesis. Next,
we will use an example to illustrate concepts and computational procedures introduced
in the previous sections.

4 Example - Cable TV Service Network

Suppose a cable TV company wants to build a TV service network in a city. For the
illustration purpose, suppose the city consists of 3 communities C1, C2 and C3, and each
community Ci (i = 1, 2, 3) has 3 families F i

1 , F i
2 and F i

3 . The company wants to sell
cable TV service to each family. They offer two types of packages: the basic package β
and the advanced package α. To offer a package, a certain procedure needs to follow.
Figure 1 depicts the procedure for offering the basic package β to family F i

j in Commu-

nity Ci (i = 1, 2, 3 and j = 1, 2, 3), where the alphabet Σi
β,j is the collection of all events

q0 q1 q2 q3 q4 q5

β − offeri
j β − accepti

j

β − rejecti
j

credit-checki
j credit-goodi

j

credit-badi
j

β − signedi
j

β − canceledi
j

Figure 1: Automaton Model Gi
β,j ∈ φ(Σi

β,j)

appearing in Figure 1. The controllable alphabet is Σi
β,j,c = {β − offeri

j , credit-checki
j ,

β − canceledi
j}, and Σi

β,j,o = Σi
β,j, namely every event is observable for the sake of sim-

plicity. Similarly, Figure 2 depicts the procedure of offering the advanced package α to
family F i

j in Community Ci, where the controllable alphabet is Σi
α,j,c = {α−offeri

j}. The

reason that β − canceledj
i is controllable but α − canceledj

i is uncontrollable is because
a user can cancel the advanced package any time he/she wants, but to cancel the basic
package, he/she needs to clear all existent account balances and cancel α package first if
applicable - in other words, a user cannot cancel the basic package at will. The specifi-
cation HF i

j
∈ φ(∆F i

j
) that describes how package β and package α are offered together

to family F i
j is depicted in Figure 3, which says that, the advanced package α can be

offered only after the basic package β is signed. The alphabet ∆F i
j

is the collection of

all events appearing in Figure 3. Each community has a restriction on the total number
of signed basic packages, owing to the bandwidth limit. For the illustration purpose,
suppose the maximum number of signed β packages for each community is 2. Such a
specification HCi

for community Ci (j = 1, 2, 3) is depicted in Figure 4, where Σi
signed
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q0 q1 q2 q3

α− offeri
j α− accepti

j

α− rejecti
j

α− signedi
j

α− canceledi
j

Figure 2: Automaton Model Gi
α,j ∈ φ(Σi

α,j)

q0 q1 q2

β − signedi
j α− offeri

j

β − canceledi
j α− canceledi

j , α− rejecti
j

Figure 3: Family Specification HF i
j
∈ φ(∆F i

j
)

denotes the collection of events {β − signedi
j |i = 1, 2, 3} and Σi

canceled denotes the collec-

tion of events {β − canceledi
j |i = 1, 2, 3}. The alphabet ∆Ci

is the collection of all events
appearing in Figure 4. Finally, at the city level the total number of advanced packages is
also restricted, owing to the bandwidth limit and city laws. For the illustration purpose,
suppose the maximum total number of signed α packages in communities C1 and C2 is
3. The specification H is depicted in Figure 5. where Σsigned denotes the collection of

events {α − signedi
j |i = 1, 2, 3 ∧ j = 1, 2} and Σcanceled denotes the collection of events

{α − canceledi
j |i = 1, 2, 3 ∧ j = 1, 2}. We now apply the proposed coordinated synthesis

approach to synthesize a nonblocking distributed supervisor.

We first standardize every component model and specification. Then for each family F i
j

we compute the product Gi
j := Gi

α,j × Gi
β,j ∈ φ(ΣF i

j
) with ΣF i

j
:= Σi

α,j ∪ Σi
β,j, which

is treated as the local plant model with the local specification HF i
j
∈ φ(∆F i

j
). By using

a procedure presented in [11] we can compute the supremal nonblocking state-normal
supervisor SF i

j
∈ φ(ΣF i

j
) of Gi

j under HF i
j
. The relevant computational results are listed

below:

q0 q1 q2

Σi
signed Σi

signed

Σi
canceledΣi

canceled

Figure 4: Community Specification HCi
∈ φ(∆Ci

)
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q0 q1 q2 q3

Σsigned Σsigned Σsigned

ΣcanceledΣcanceledΣcanceled

Figure 5: City Specification H

Gi
j (25, 63) ; HF i

j
(4, 7) ; SF i

j
(10, 14)

where each tuple (x, y) denotes x states and y transitions. After we obtain local supervi-
sors {SF i

j
|j = 1, 2, 3}, we compute a coordinator SCi

that enforces the community-level

specification HCi
. To this end, by using SAP we compute an abstraction

GCi
:= (×3

i=1(G
i
j × SF i

j
))/ ≈Σ′i

where Σ′i ⊆ ∪3
j=1Σ

i
j and ∆Ci

⊆ Σ′i. To make sure that the abstracted model GCi

contains sufficient control means, we define Σ′i := ∆Ci
∪ {β − offeri

j |i = 1, 2, 3}. After

that we compute the supremal nonblocking state-normal supervisor SCi
∈ φ(Σ′i) of GCi

under HCi
. The computational results are listed as follows:

GCi
(65, 685) ; HCi

(4, 14) ; SCi
(21, 64)

Finally, we compute one more coordinator to take care of the specification H . To this
end we first compute an abstraction

G := (×3
i=1((×

3
j=1(G

i
j × SF i

j
)) × SCi

))/ ≈Σ′

where Σ′ ⊆ ∪3
i=1∪

3
j=1Σi

j and ∆ ⊆ Σ′. To make sure that the abstracted model G contains

sufficient control means, we define Σ′ := ∆ ∪ {α − offeri
j |i = 1, 2 ∧ j = 1, 2, 3}. After

that, we compute the supremal nonblocking state-normal supervisor S of G under H .
The computational results are listed as follows:

G (1408, 49005) ; H (5, 38) ; S (462, 2995)

By using the nonconflict-checking procedure provided in [12] we confirm that, the coordi-
nated distributed supervisor ×3

i=1((×
3
j=1SF i

j
)×SCi

)×S is nonconflicting with ×3
i=1×

3
j=1

(Gi
α,j × Gi

β,j).

Clearly, the centralized synthesis will not work well for this example because the size of
the product of all local components is 256 = 244140625. The language-based abstraction
is also computationally inefficient for this example because, to make sure each involved
natural projection is an observer, the projected images are not small enough. For example,
to synthesize the coordinator SC1

, if we use natural projections to compute abstractions

and we choose the alphabet Σ′1 = {β−offer1j , β−signed1
j , β−canceled1

j |i = 1, 2, 3}, then in

order to make the relevant natural projections to be observers we need to extend Σ′1 to the
set {β−offer1j , β−signed1

j , β−canceled1
j , β−reject1j , credit-good1

j , credit-bad1
j |i = 1, 2, 3},

which results in an abstraction with 76 states, in contrast to 65 states obtained by our
automaton abstraction approach. The difference becomes significant when more families
in each community are involved - the ratio of the size of GC1

obtained by our abstraction
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approach and that of the language-based approach is roughly (1.25)j, where j is the
number of families in a community. Thus, our proposed approach has clear computational
advantage over centralized synthesis approaches and language-based modular synthesis
approaches.

5 Conclusions

In this paper we introduce a coordinated distributed supervisor synthesis approach based
on abstractions of nondeterministic finite-state automata. The main advantage of this
approach is its simplicity and potentially low computational complexity in contrast to
existant distributed synthesis approaches based on observers. When a module contains
a large number of components, we can apply the proposed SAP procedure to obtain an
abstraction, which may significantly reduce the computational complexity. Because su-
pervisor synthesis is done in a local fashion, high complexity incurred by synchronous
product of a large number of components may be avoided. Besides, a certain degree
of implementation flexibility can be achieved in terms of reusing some local supervisors
when the structure of a target system changes.

Acknowledgement: We would like to thank Dr. Albert T. Hofkamp of the Systems
Engineering Group at Eindhoven University of Technology for coding all algorithms men-
tioned in this paper. We have used his code to generate the solution of the example of
Section IV.

1. Proof of Prop. 3.6: Let Gi = (Xi, Σ, ξi, xi,0, Xi,m) (i = 1, 2) and S = (Y, Σ, η, y0, Ym).
(1) First, we have

N(G1 × S) = N(G1)||N(S)

= N(G2)||N(S) because G1 ⊑ G2

= N(G2 × S)

⊆ N(G2 × H) because S is a nonblocking supervisor of G2 under H

= N(G2)||N(H)

= N(G1)||N(H)

= N(G1 × H)

Therefore, we have N(G1 × S) ⊆ N(G1 × H).
(2) Since G1 ⊑ G2, by Prop. 2 in [12] we have G1×S ⊑ G2×S, which means B(G1×S) ⊆
B(G2 ×S). Since S is a nonblocking supervisor of G2 under H , we have B(G2 ×S) = ∅.
Thus B(G1 × S) = ∅.
(3) We now show S is state-controllable with respect to G1 and Σuc. By Def. 3.1 we
need to show that

(∀s ∈ L(G1 × S))(∀x1 ∈ ξ1(x1,0, s))(∀y ∈ η(y0, P (s)))EG1
(x1) ∩ Σuc ⊆ ES(y)

To this end, let s ∈ L(G1 × S). Since we have shown that B(G1 × S) = ∅, we have

L(G1 × S) = N(G1 × S) = N(G2 × S) = L(G2 × S)

Clearly, EG1
(x1) ⊆ ∪x2∈ξ2(x2,0,s)EG2

(x2) because G1 ⊑ G2 implies that L(G1) ⊆ L(G2).
Since S is deterministic and state-controllable with respect to G2 and Σuc, we have

∪x2∈ξ2(x2,0,s)EG2
(x2) ∩ Σuc ⊆ ES(y)

which means
EG1

(x1) ∩ Σuc ⊆ ES(y)

17 Conclusions



Thus, S is state-controllable with respect to G1 and Σuc.
(4) Suppose S is state-observable with respect to G2 and Po. We need to show that S is
state-observable with respect to G1 and Po. By Def. 3.2 we need to show that, for any
s, s′ ∈ L(G1 × S) with Po(s) = Po(s

′), we have

(∀(x1, y) ∈ ξ1×η((x1,0, y0), s))(∀(x′
1, y

′) ∈ ξ1×η((x1,0, y0), s
′))EG1×S(x1, y)∩EG1

(x′) ⊆ ES(y′)

To this end, let s, s′ ∈ L(G1 ×S) with Po(s) = Po(s
′). Since L(G1 ×S) = L(G2 ×S), we

have s, s′ ∈ L(G2 × S), and

EG1×S(x1, y) ⊆ ∪(x2,y)∈ξ2×η((x2,0,y0),s)EG2×S(x2, y)

Since L(G1) ⊆ L(G2), we have

EG1
(x′

1) ⊆ ∪x′
2
∈ξ2(x2,0,s′)EG2

(x′
2)

Since S is deterministic and state-observable with respect to G2 and Po, we have

(∪(x2,y)∈ξ2×η((x2,0,y0),s)EG2×S(x2, y)) ∩ (∪x′
2
∈ξ2(x2,0,s′)EG2

(x′
2)) ⊆ ES(y′)

Thus,

EG1×S(x1, y) ∩ EG1
(x′) ⊆ ES(y′)

which means S is state-observable with respect to G1 and Po.
(5) Finally, suppose S is state-normal with respect to G2 and Po. We need to show that
S is state-normal with respect to G1 and Po. By Def. 3.3 we need to show that, for any

s ∈ L(G1 × S) and s′ ∈ P−1
o (Po(s)) ∩ L(G1 × S), we have

(∀(x1, y) ∈ ξ1×η((x1,0, y0), s
′))(∀s′′ ∈ Σ∗)Po(s

′s′′) = Po(s) ⇒ [ξ1(x1, s
′′) 6= ∅ ⇒ η(y, s′′) 6= ∅]

To this end, let s ∈ L(G1 × S) and s′ ∈ P−1
o (Po(s)) ∩ L(G1 × S). Since L(G1 × S) =

L(G2 × S), we have s ∈ L(G2 × S) and s′ ∈ P−1
o (Po(s)) ∩ L(G2 × S). For any s′′ ∈ Σ∗,

if Po(s
′s′′) = Po(s) and ξ1(x1, s

′′) 6= ∅, we get that s′s′′ ∈ L(G1) ⊆ L(G2). Thus, there
exists (x2, y) ∈ ξ2 × η((x2,0, y0), s

′) such that

Po(s
′s′′) = Po(s) ∧ ξ2(x2, s

′′) 6= ∅

Since S is deterministic and state-normal with respect to G2 and Po, we have η(y, s′′) 6= ∅.
Thus, S is state-normal with respect to G1 and Po.
From (1)-(5) we get that, S is a nonblocking state-observable (or state-normal) super-
visor of G2 under H implies that S is a nonblocking state-observable (or state-normal)
supervisor of G1 under H . �

2. Proof of Theorem 3.7: Let Gi = (Xi, Σi, ξi, xi,0, Xi,m) and Si = (Yi, Σi, ηi, yi,0, Yi,m)
for each i ∈ I, and S = (Y, Σ′, η, y0, Ym). By Prop. 2.4 we get that (×i∈I(Gi×Si))/ ≈Σ′∼=
×i∈I((Gi × Si)/ ≈Σi∩Σ′). Since (Gi × Si)/ ≈Σi∩Σ′⊑ Wi, by Prop. 2 in [12] we get that

(×i∈I(Gi × Si))/ ≈Σ′⊑ ×i∈I((Gi × Si)/ ≈Σi∩Σ′) ⊑ ×i∈IWi

Since S is a nonblocking state-observable (or state-normal) supervisor of ×i∈IWi under H ,
by Prop. 3.6 we get that, S is a nonblocking state-observable (or state-normal) supervisor
of (×i∈I(Gi × Si))/ ≈Σ′ under H . By Theorem 3 in [10] we get that, S is a nonblocking
state-observable (or state-normal) supervisor of ×i∈I(Gi × Si) under H , which means

N(×i∈IGi × S ×j∈I Sj) = N(×i∈I(Gi × Si) × S) ⊆ N(×i∈I(Gi × Si) × H)

Since Si is a nonblocking supervisor of Gi under Hi, we have N(Gi × Si) ⊆ N(Gi ×Hi).
Thus,

N(×i∈IGi × S ×j∈I Sj) ⊆ N(×i∈I(Gi × Hi) × H) = N(×i∈IGi × H ×j∈I Hj)

Furthermore, we have B(×i∈IGi × S ×j∈I Sj) = B(×i∈I(Gi × Si) × S) = ∅.
Next, we show that S ×i∈I Si is state-controllable with respect to ×i∈IGi and ∪i∈IΣi,uc.
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For notational brevity, let Ŝ = S ×i∈I Si, Ĝ = ×i∈IGi, ξ̂ = ×i∈Iξi, η̂ = η ×i∈I ηi and
Σuc = ∪i∈IΣi,uc. By Def. 3.1 we need to show that

(∀s ∈ L(Ĝ × Ŝ))(∀x̂ ∈ ξ̂(x̂0, s))(∀ŷ ∈ η̂(ŷ0, s))E
Ĝ

(x̂) ∩ Σuc ⊆ E
Ŝ
(ŷ)

To this end, let s ∈ L(Ĝ × Ŝ), x̂ = (x1, x2, · · · , xn) and ŷ = (y, y1, y2, · · · , yn). For each
i ∈ I, let Pi : (∪j∈IΣj)

∗ → Σ∗
i be the natural projection. For each σ ∈ E

Ĝ
(x̂) ∩ Σuc,

if σ ∈ Σi, then by the assumption (A1) we have σ ∈ Σi,uc. Furthermore, we get that
σ ∈ EGi

(xi) ∩ Σi,uc. Since Si is deterministic and state-controllable with respect to Gi

and Σi,uc, we get that ηi(yi, σ) 6= ∅. Thus, σ ∈ E×i∈I (Gi×Si)(x1, y1, · · · , xn, yn). Since
S is state-controllable with respect to ×i∈I(Gi × Si) and Σuc, if σ ∈ Σ′, we get that
η(y, σ) 6= ∅. Thus, η̂(ŷ, σ) 6= ∅, which means σ ∈ E

Ŝ
(ŷ). Therefore, E

Ĝ
(x̂) ∩ Σuc ⊆

E
Ŝ
(ŷ).

Next, assume that Si is state-observable with respect to Gi and Pi,o : Σ∗
i → Σ∗

i,o, and S
is state-observable with respect to ×i∈I(Gi × Si) and Po : (∪i∈IΣi)

∗ → (∪i∈IΣi,o)
∗. We

need to show that Ŝ is state-observable with respect to Ĝ and Po. By Def. 3.2 we need
to show that, for any s, s′ ∈ L(Ĝ × Ŝ) with Po(s) = Po(s

′), we have

(∀(x̂, ŷ) ∈ ξ̂ × η̂((x̂0, ŷ0), s))(∀(x̂′, ŷ′) ∈ ξ̂ × η̂((x̂0, ŷ0), s
′))E

Ĝ×Ŝ
(x̂, ŷ) ∩ E

Ĝ
(x̂′) ⊆ E

Ŝ
(ŷ′)

To this end, let s, s′ ∈ L(Ĝ× Ŝ) with Po(s) = Po(s
′), x̂ = (x1, · · · , xn), x̂′ = (x′

1, · · · , x′
n),

ŷ = (y, y1, · · · , yn) and ŷ′ = (y′, y′
1, · · · , y′

n). For each σ ∈ E
Ĝ×Ŝ(x̂, ŷ)∩E

Ĝ
(x̂′), if σ ∈ Σi,

then we get that σ ∈ EGi×Si
(xi)∩EGi

(x′
i). Since Si is deterministic and state-observable

with respect to Gi and Pi,o, by the assumption (A1) we can derive that ηi(y
′
i, σ) 6= ∅.

Thus, σ ∈ E×i∈I (Gi×Si)(x
′
1, y

′
1, · · · , x′

n, y′
n). Since S is state-observable with respect to

×i∈I(Gi × Si) and Po, if σ ∈ Σ′, we get that η(y′, σ) 6= ∅. Thus, η̂(ŷ′, σ) 6= ∅, which
means σ ∈ E

Ŝ
(ŷ′). Therefore, E

Ĝ×Ŝ(x̂, ŷ) ∩ E
Ĝ

(x̂′) ⊆ E
Ŝ
(ŷ′).

Finally, assume that Si is state-normal with respect to Gi and Pi,o, and S is state-normal

with respect to ×i∈I(Gi × Si) and Po. We need to show that Ŝ is state-normal with

respect to Ĝ and Po. By Def. 3.3 we need to show that, for any s ∈ L(Ĝ × Ŝ) and

s′ ∈ P−1
o (Po(s)) ∩ L(Ĝ × Ŝ), we have

(∀(x̂, ŷ) ∈ ξ̂× η̂((x̂0, ŷ0), s
′))(∀s′′ ∈ Σ∗)Po(s

′s′′) = Po(s) ⇒ [ξ̂(x̂, s′′) 6= ∅ ⇒ η̂(ŷ, s′′) 6= ∅]

To this end, let s ∈ L(Ĝ× Ŝ) and s′ ∈ P−1
o (Po(s))∩L(Ĝ× Ŝ). Suppose Po(s

′s′′) = Po(s)

and ξ̂(x̂, s′′) 6= ∅. We need to show that η̂(ŷ, s′′) 6= ∅. Let x̂ = (x1, · · · , xn), ŷ =
(y, y1, · · · , yn), and Pi : (∪j∈IΣj)

∗ → Σ∗
i , P ′ : (∪j∈IΣj)

∗ → Σ′∗ be the natural projection.

Then we have Pi(s) ∈ L(Gi × Si), Pi(s
′) ∈ P−1

o (Pi,o(Pi(s))) ∩ L(Gi × Si). Furthermore,
by the assumption (A1) we have Pi,o(Pi(s

′s′′)) = Pi,o(Pi(s)) and ξi(xi, Pi(s
′′)) 6= ∅.

Since Si is deterministic and state-normal with respect to Gi and Pi,o, we get that
ηi(yi, Pi(s

′′)) 6= ∅. Thus, ×i∈Iξi×ηi((x1, y1, · · · , xn, yn), s′′) 6= ∅. Since S is state-normal
with respect to ×i∈I(Gi×Si) and Po, we get that η(y, P ′(s′′)) 6= ∅. Thus, η̂(ŷ, s′′) 6= ∅.�

3. Proof of Prop. 3.8: We first show that L(G × S′′) = L(G × S). By the construction
of S′′ we have L(G × S) ⊆ L(G × S′′). So we only need to show L(G× S′′) ⊆ L(G × S).
Suppose it is not true. Then there exists s ∈ L(G × S′′) but s /∈ L(G × S). Since
ǫ ∈ L(G×S)∩L(S×S′′), there must exist s′σ ≤ s with σ ∈ Σ such that s′ ∈ L(G×S)∩
L(S × S′′) and s′σ ∈ L(G × S′′) but s′σ /∈ L(G × S). Clearly, s′σ ∈ L(G). Furthermore,
since s′σ ∈ L(G × S′′), by the construction of S′′, there exists s′′σ ∈ L(G × S) such
that Po(s

′) = Po(s
′′). But this means S is not state-observable with respect to G and

Po, which contradicts the fact that S is a nonblocking supervisor of G under H . Thus,
L(G×S′′) ⊆ L(G×S), which means L(G×S′′) = L(G×S). By using a similar argument
we can show that, N(G × S′′) = N(G × S).
Since N(G × S) ⊆ N(G × H), we have N(G × S′′) ⊆ N(G × H).
We now show that B(G × S′′) = ∅. Let s ∈ L(G × S′′) and (x, y′′) ∈ ξ × η′′((x0, y

′′
0 ), s).
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Since L(G× S′′) = L(G× S), we have s ∈ L(G× S). Thus, there exists y ∈ Y such that
(x, y) ∈ ξ×η((x0, y0), s). Since S is a nonblocking supervisor of G, we have B(G×S) = ∅,
which means there exists s′ ∈ Σ∗ such that ξ × η((x, y), s′) ∩ (Xm × Ym) 6= ∅. Clearly,
ss′ ∈ N(G × S) = N(G × S′′). Since S′′ is deterministic, we get that η′′(y′′, s′) ⊆ Y ′′

m.
Thus, ξ × η′′((x, y′′), s′) ∩ (Xm × Y ′′

m) 6= ∅. Thus, B(G × S′′) = ∅.
To show S′′ is state-controllable with respect to G and Σuc, by Def. 3.1 we need to show
that

(∀s ∈ L(G × S′′))(∀x ∈ ξ(x0, s))(∀y′′ ∈ η′′(y′′
0 , s))EG(x) ∩ Σuc ⊆ ES′′(y′′)

Since L(G × S′′) = L(G × S) and S is state-controllable with respect to G and Σuc, we
have

(∀x ∈ ξ(x0, s))(∀y ∈ η(y0, s))EG(x) ∩ Σuc ⊆ ES(y)

Since S and S′′ are deterministic and by the construction of S′′ we have ES(y) ⊆ ES′′ (y′′).
Thus, we have EG(x)∩Σuc ⊆ ES′′(y′′), which means S′′ is state-controllable with respect
to G and Σuc.
Suppose S is state-observable with respect to G and Po. To show S′′ is state-observable
with respect to G and Po, by Def. 3.2 we need to show that, for any s, s′ ∈ L(G × S′′)
with Po(s) = Po(s

′), we have

(∀(x, y′′) ∈ ξ×η′′((x0, y
′′
0 ), s))(∀(x̂, ŷ′′) ∈ ξ×η′′((x0, y

′′
0 ), s′))EG×S′′(x, y′′)∩EG(x̂) ⊆ ES′′(ŷ′′)

Since L(G×S′′) = L(G×S) and S and S′′ are deterministic, we get that, there exist y ∈
η(y0, s) and ŷ ∈ η(y0, s

′) such that, EG×S(x, y) = EG×S′′(x, y′′) and ES(ŷ) ⊆ ES′′ (ŷ′′).
Since S is state-observable with respect to G and Po, we have EG×S(x, y) ∩ EG(x̂) ⊆
ES(ŷ), from which we get EG×S′′(x, y′′)∩EG(x̂) ⊆ ES′′(ŷ′′). Thus, S′′ is state-observable
with respect to G and Po.
Suppose S is state-normal with respect to G and Po. To show S′′ is state-normal with
respect to G and Po, by Def. 3.3 we need to show that, for any s ∈ L(G × S′′) and

s′ ∈ P−1
o (Po(s)) ∩ L(G × S′′), we have

(∀(x, y′′) ∈ ξ×η′′((x0, y
′′
0 ), s′))(∀s′′ ∈ Σ∗)Po(s

′s′′) = Po(s)∧ ξ(x, s′′) 6= ∅ ⇒ η′′(y′′, s′′) 6= ∅

Since L(G × S′′) = L(G × S), we have s ∈ L(G × S) and s′ ∈ P−1
o (Po(s)) ∩ L(G × S).

Thus, there exists y ∈ η(y0, s
′). Since S is state-normal with respect to G and Po, we

have
Po(s

′s′′) = Po(s) ∧ ξ(x, s′′) 6= ∅ ⇒ η(y, s′′) 6= ∅

Since both ξ(x, s′′) 6= ∅ and η(y, s′′) 6= ∅, we have ξ × η((x, y), s′′) 6= ∅, which means
s′s′′ ∈ L(G × S) = L(G × S′′). Since S′′ is deterministic, we get η′′(y′′, s′′) 6= ∅. Thus,
S′′ is state-normal with respect to G and Po.
Therefore, S′′ is a nonblocking supervisor of G under H . �
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