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Abstract 
Ordinary differential equations (ODE's) are widespread models in 

physics, chemistry and biology. In particular, this mathematical for­
malism is used for describing the sets of interactions and the evolution 
of complex systems and it might consist of high-dimensional sets of 
coupled nonlinear differential equations. In this setting, we propose 
a general method for estimating the parameters indexing ODE's from 
times series. Our method is able to alleviate the computational difficul­
ties encountered by the classical parametric methods. These difficulties 
are due to the implicit definition of the model. We propose the use 
of a nonparametric estimator of regression functions as a first-step in 
the construction of an M-estimator, and we show the consistency of 
the derived estimator under general conditions. In the case of spline 
estimators, we provide asymptotic normality, and we derive the rate of 
convergence, which is not the usual '\!"ii-rate for parametric estimators. 
This rate depends on the smoothness of the differential equation. Some 
perspectives of refinements of this new family of parametric estimators 
are given. 

Key words: Consistency, Ordinary Differential Equation, Splines, Nonpara­
metric regression, Parametric estimation, M-estimator. 

1 Introduction 

Ordinary differential equations are used for the modelling of dynamic pro­
cesses in physics, engineering, chemistry, biology,etc. In particular, such a 
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formalism is used for the description of regulatory networks (for example 
between competing species in biology), or of cell regulatory systems e.g. 
the temporal evolution of the concentrations of some biochemical species 
(mRNA, proteins) involved in biological functions inside the cell [5]. Usu­
ally, the model for the state variables x (Xl, ... , Xd) T consists in an initial 
value problem 

{ 
x(t) = F(x(t), e), "It E [O,IJ, 
x(O) = XQ, 

(1) 

where F is a vector field from Rd to Rd, dEN, and () E e, e being a 
subset of a Euclidean space. When data are available such as a time series, 
we are interested in the problem of estimation of the coefficients parametriz­
ing the ODE. In principle, this may be done by some classical parametric 
estimators, usually the least squares estimator [13] or the Maximum Likeli­
hood estimator (MLE). Different estimators have been derived in order to 
take into account some particular features of the differential equation such 
as special boundary values (there exists a function 9 linking the values at the 
boundary i.e. g(x(O), x(I» = 0 instead of the simple initial value problem), 
or random initial values or random parameters [4]. Otherwise, there may be 
some variations on the observational process such as noisy observation times 
that necessitate the introduction of appropriate minimization criteria [12]. 

Despite their satisfactory theoretical properties, the efficiency of these 
estimators may be dramatically degraded in practice by computational prob­
lems that arise from the implicit and nonlinear definition of the model. In­
deed, these estimators give rise to nonlinear optimization problems that ne­
cessitate the approximation of the solution of the ODE and the exploration 
of the (usually high-dimensional) parameter space. Hence, we have to face 
possibly numerous local optima and a huge computation time. Instead of 
considering the estimation of () straightforwardly as a parametric problem, 
it may be useful to look at it as the estimation of a univariate regression 
function t 1-+ x(t} that belongs to the (finite dimensional) family of functions 
satisfying (1). So we may use tools from functional estimation in order to 
derive a proxy for the solution of the ODE and derive estimates of the pa­
rameters from this. Similar attempts of getting a smooth approximation of 
the solution without solving the ODE were made by Madar et al. [14) or 
Varah [20] with cubic splines (and a well-chosen sequence of knots). Differ­
ent spline estimators were proposed by Ramsay and Silverman [15] based on 
the fact that smoothing splines are obtained by solving the trade-off between 
adequacy to data and smoothness measured by some linear differential op-
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erators. It was extended more recently by Ramsay et al. [16] to the case 
of nonlinear differential operators. Moreover, this functional point of view 
enables one to use prior knowledge on the solutions of the ODE such as posi­
tivity or boundedness whereas it is difficult to exploit the strictly parametric 
form. Indeed, it implies that we have a thorough knowledge of the influence 
of the parameters on the qualitative behavior of the solutions of (1), which 
is rarely the case. In this paper, we exploit this interpretation of estimation 
of ODE's as functional estimation, so that we are able to obtain a general 
estimation procedure, by exploiting numerous results from nonparametric 
regression theory. 

In the next section, we introduce the statistical model and we define 
our so-called two-step estimator of e. We show that under broad conditions 
this estimator is consistent, and we give some straightforward extensions 
of this estimator to different models. In section 3, we review some useful 
definitions and results of spline theory which are useful for understanding 
the properties of the spline estimator derived in section 4. We derive then 
the rate of convergence of the parametric estimator in this particular case. In 
the last section, we give some simulation results obtained with the classical 
Lotka-Volterra's population model coming from biology. In conclusion, we 
give some possible extensions of this work. 

2 Two-step estimator 

2.1 Statistical model 

We want to estimate the parameter e of the ordinary differential equation 
(1) from noisy observations at n points in [0,1], 0 :::; tl < ... < tn ~ 1, 

(2) 

where the fi'S are Li.d centered random variables. The ODE is indexed by a 
parameter e E e c JRP with initial value Xo; the true parameter value is (J* 

and the corresponding solution of (1) is x*. 
The vector field defining the ODE is a function F : X x e -+ JRd 

(X C JRd) of class em w.r.t x for every () and with m ;::: 1. It is a Lipschitz 
function so that we have existence and uniqueness of a solution xe,xo to 
(1) on a neighborhood of 0 for each () and Xoi and we assume that every 
corresponding solution can be defined on [0, 1]. Hence, the solutions xe,xo 
belong to Cm +1 ([O,IJ,JRd). Moreover, we suppose also that F is a smooth 
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function in () so that each solution xO,xo depends smoothly 1 on the parameters 
() and Xo. Then, we suppose that F is of class C l in 0 for every x. Let !r:, 
be the density of the noise 1:, then the log-likelihood in the LLd case is 

n 

leO, Xo, I:) L log !r:,{Yi - xe,xo(ti» (3) 
i=l 

and the model that we want to identify is parametrized by «(), xo, I:) E e x 
X x S+ for instance when the noise is centered Gaussian with covariance 
matrix I: (S+ is the set of symmetric positive matrices). An alternative 
parametrization is «(), xO,xo, I:) E e x :F x S+, with :F the set of functions 
that solve (1) for some () and xo, thanks to the injective mapping between 
initial conditions and a solution. 

In most applications, we are not really interested in the initial conditions 
but rather in the parameter 0, so that Xo or xe,xo can be viewed as a nuisance 
parameter like the covariance matrix I: of the noise. We want to define esti­
mators of the "true" parameters (x*, ()*) (x* = xO',xo) that will be denoted by 
(xn, en). The estimation problem appears as a standard parametric problem 
that can be dealt with by the classical theory in order to provide good es­
timators (with good properties, e.g. fo-consistency) such as the Maximum 
Likelihood Estimator (MLE). Indeed, from the smoothness properties of F, 
the log-likelihood l «(), xo) is at least Cl w.r. t (0, xo) so that we can define the 

score s«(),xo) = (~T It; T)T. IT s(O,xo) is square integrable under the true 
probabilityP(x',lI')' we can claim under weak conditions (e.g. theorem 5.39 
[19]) that the MLE is an asymptotically efficient estimator. The difficulty 
of this approach is then essentially practical because of the implicit depen­
dence of x on the parameter «(),xo), which prohibits proper maximization of 
l(O,xo). Indeed, derivative-based methods like Newton-Raphson are not easy 
to handle then and evaluation of the likelihood necessitates the integration of 
the ODE, which becomes a burden when we have to explore a huge param­
eter space. Moreover, the ODE's proposed for modelling may be expected 
to give a particular qualitative behavior which can be easily interpreted in 
terms of systems theory, e.g. convergence to an equilibrium state or oscilla­
tions. Typically, these qualitative properties of ODE are hard to control and 
involve bifurcation analysis [11] and may necessitate a mathematical knowl­
edge which is not always accessible for huge systems. Moreover, boundedness 
of the solution x* (a ::; x* (t) ::; b, with a, b E JRd) may be difficult to use 

iif F depends smoothly on x and (J then the solution depends on the parameter by the 
same order of smoothness, see Anosov & Arnold, Dynamical systems, p.17. 
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during the estimation via the classical device of a constraint optimization. 
Hence, these remarks motivate us to consider the estimation of an ODE as a 
functional estimation and use flexible methods coming from nonparametric 
regression from which we could derive a likely parameter for the ODE. 

2.2 Principle 

We use consistent nonparametric estimators of the solution x* and its deriva­
tive x* in order to derive a fitting criterion for the ODE and subsequently 
the M-estimator of ()* corresponding to the criterion. We denote by IIfllq = 

( 
1 )l/q 

Jo If(t)lqdt ,0 < q ~ 00, the Lq norm on the space of Lebesgue in-

tegrable functions on [0,1]. By using classical nonparametric regression es­
timators, we can construct consistent estimators xn and ~n of x* and x* 
(actually we will obtain the estimator of the derivative by deriving xn so 
that ~n = i-n) i.e. Ilxn x*lIq = op(l} and lI~n - x*lIq = opel). We may 
choose as criterion function to minimize R~«() = lIi-n - F(xn,()lIq from 
which we derive the two-step estimator 

en = argminR~(O). 
() 

(4) 

Thanks to the previous convergence results and under additional suitable 
conditions to be specified below, we can show that R!«() -+ Rq(O) = 
IIx* - F(x*, 0) Ilq in probability, and that this discrepancy measure enables 
us to construct a consistent estimator On. Note that there are no computa­
tional difficulties now as there are in the straightforward parametric model 
approach. 

We are left with two choices of practical and theoretical importance: the 
choice of q and the choice of the nonparametric estimator. In this paper, 
we focus on the one hand on q = 2 (so that the optimization program (4) 
can be processed as a nonlinear least squares regression) and on the other 
hand we consider splines with a number of knots depending on the number 
of observations n. It is likely that some other families of nonparametric 
estimators such as smoothing splines, kernels or wavelets could be used, 
depending on the performance or the type of constraints we want. 

2.3 Consistency 

We show that the minimization of R!(O) gives a consistent estimator for 
O. We introduce the asymptotic criterion Rq«() = IIF(x*,O*) - F(x*,O)llq 
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derived from R! and we make the additional assumption: 

"Ie> 0, inf W(O) > Rq(O*), 
118-8*112:1: 

which may be viewed as an identifiability criterion for the model. 

(5) 

Proposition 2.1. We suppose there exists a compact set K.. C X such that 
VeE e, V Xo E X, TIt E [0,1], X8,xo(t) is in K... Moreover we Asuppose that uni­
formly in a E e, F(·,O) is K - Lipschitz on K... If xn and xn are consistent, 
and xn(t) E K.. almost surely, then we have 

sup IR~(8) - W(a)1 = opel). 
(JE€J 

Moreover, if the identifiability condition (5) is fulfilled the two-step estimator 
is consistent, i. e. 

On 8* = op(l). 

Proof. In order to show the convergence of 1R!(8)-Rq(O) I = III1:n-F(xn, 8)llq­
IIF(x*,8) - F(x*,9*)llql, we make the following decomposition 

I~(O) Rq(8) I < 1I(1:n -F(Xn ,8»)+(F(x*,O)-F(x*,O*»llq 

< 111:'1'1 - F(x*,8*)llq + IIF(xn,8) - F(x*,8)lIq· (6) 

Since all the solutions XB,xo(t) and xn(t) stay in K.. C X, and x I--t F(x,a) 
are K - Lipschitz uniformly in 0, we obtain for all 8 E e 

IIF(xn,8)-F(x*,O)llq $ K (11IXn(t) - x*(tWdt) l/q = Kllxn -x*llq. (7) 

Together, (6) and (7) imply 

sup 1~(8) - W(O)I < 111:'1'1 - F(x*, e*)lIq + sup IIF(xn, 8) - F(x*, e)lIq 
(JE€J BEe 

$ 111:'1'1 - F(x*, 0*) Ilq + Kllxn x* Ilq· 

and consequently, by the consistency of xn and in, 

sup IR~(a) - Rq(8) I = opel). 
9Ee 
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With the additional identifiability condition (5) for the vector field F, The­
orem 5.7 of [19] implies that the estimator en converges in probability to 
fr. 

o 

In the case q = 2, the Hessian of R2(O) at () = ()* is 

J* = fol (DeF(x*(t),O*}}T DeF(x*(t),O*)dt. 

Nonsingularity of J* enables one to have a local identifiability criterion; 
indeed, the criterion behaves like a positive definite quadratic form on a 
neighborhood V(O*) of 0* so that condition (5) is true on V(8*). 

Remark 2.1. 
The principle of the two-step estimation is the same when the ODE 

is nonautonomous, i.e. the vector field depends also on time. Moreover, 
proposition 2.1 can be adapted to RA«(}) = Ii l:tn(t) - F(xn(t), t; 8}lqdt, and 

en is consistent provided that the asymptotic criterion Rq«(}) Ii Ix*(t) -
F(x*(t), t; 8)lqdt has property (5). 

Remark 2.2. 
The estimator proposed can be easily extended to cases where several vari­

ables are not observed. Indeed, if the differential system (1) is partially linear 
in the following sense 

{ 
u = G(u, v; 1]} 
v = Heu; 1]) + Av 

(8) 

with x = (u T V T) T, u E lRd1 , being observed, v E lRd2 being unobserved, 
and d1 + d2 d (the initial conditions are Xo = (uJ vJ)T), i.e. X(ti) is 
replaced by U(ti} in (2) (the noise €i being then dl-dimensional). We want 
to estimate the parameter () = (1], A) when H is a nonlinear function and A 
is a matrix, so we can take advantage of the linearity in v in order to derive 
an estimator for v. We can derive a nonparametric estimator for v by using 
Un and the fact that t f-7 vet} must be the solution of the non-homogeneous 
linear ODE v Av+ H(Un; 1]), v(O) = Vo. The solution of this ODE is given 
by Duhamel's formula [8} 

"'It E [0,1], vn(t) = exp (tA) Vo + fot exp «t - s)A) H(Un(s); (})ds, (9) 
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which then can be plugged into the criterion R!A(O). This estimator depends 
explicitly on the initial condition Vo which must be estimated at the same 
time 

As previously, if H is uniformly Lipschitz the integral f~ exp «t - s)A) H(un ; O)ds 
converges {uniformly} in probability in the Lq sense to f~ exp «t s)A) H(u*j O)ds 
as soon as Un does, hence R!A(O, A, Vo) converges also uniformly to the asymp­
totic criterion 

wee, vo) iiu* - F(u*, v*; 0) ii q . 

The estimator (e, .00) is consistent as soon as R!I (0, Vo) verifies the identifia­
bility criterion {5}. 

Remark 2.3. 
If the observation times tI, ... , tn are realizations of i.i.d. random vari­

ables (Tl l ••• , Tn) with common c.d.! Q, the nonparametric estimators xn, as 
the one used before, are relevant candidates for the definition of the two-step 
estimator since they are still consistent under some additional assumptions 
onQ. 

As in the setting considered by Lalam and Klaassen {12}, the observation 
times may be observed with some random errors Ti = ti + rli, i 1, ... , n, 
(the 'fJi 's being some white noise) so we have to estimate x from the noisy 
bivariate measurements (Til Vi). Consistent nonparametric estimators have 
been proposed for the so-called "errors-in-variables" regression and some ex­
amples are kernel estimators /6/ and splines estimators /10/ {in the L2 sense}. 
Hence, we can define exactly the same criterion function ~ and derive a 
consistent parametric estimator. 

3 Splines theory 

In order to give a better insight into the properties of the nonparametric 
estimator proposed in section 4, we recall some properties of splines and B­
splines. Indeed, the good statistical behavior of the estimator we propose, is 
based on our ability to approximate the solution x* with a finite number of 
known functions. Moreover, the particular properties of the B-splines basis 
enable us to derive efficient algorithms for practical implementation of the 
related approximation method and give eventually computationally efficient 
statistical procedures. For the sake of completeness, we recall some facts 
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about piecewise polynomial functions and splines, borrowed from De Boor 
[2]. 

We consider a sequence of increasing points (sometimes called break­
points) e = (6, ... ,';£+1) and we denote by lP'E,1e the set of piecewise polyno­
mial functions (pp functions) of degree k - 1 (or of order k), Le., f E lP' E,1e ¢:> 

'Vi = 1, ... ,l, fll~i'~Hl[ is a polynomial of degree at most k - 1. lP'e,1e is a 
vector space of dimension equal to lk. A pp function is in general neither 
continuously differentiable nor continuous. Nevertheless, it is useful to in­
troduce the lh derivative of a pp function f denoted by ])3 f which is the 
piecewise derivative having possibly some jump2 !:l.~J(j) at the breakpoint ';i 
(f(j) is the ;th derivative of f on each open intervalj';s, ';s+d, s = 1, ... ,f). 
A pp function is usually described by the values of its right derivatives 
(D(j-l)f(.;t)) , i = 1, ... ,f,j = 1, ... ,k. Of course, we are particularly 
interested in pp functions with regularities at some knots described by some 
integers v = (Vdi=2, ... ,£ 

This vector space is denoted lPe,le,v. When Vi = V for all i = 2, ... , l, we 
denote lPe,k,v = CV n lP'e,Ie' There exist several representations of pp func­
tions but we will focus on the B-splines decomposition, which uses the finite 
dimensional linear property of spaces of pp functions. The B-splines are a 
nearly orthogonal basis for pp functions which are defined (among others) 
by the following recurrence equation from a nondecreasing sequence of knots 
T = (Ti)iEI (1 is a possibly infinite set of indices, T may contain identical 
knots): 

and 

The B-splines possess the following useful properties: 

Property 3.1. 

1. Compact support: 'Vx rf:. [Ti' THiel, Bi(X) = 0 and'Vx EjTi, THIe[, Bi{X) > 
O. 

2The jump of a function h at point e is A(h = h({+) - h(C). 
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2. Only the k B-splines Bj-k+b"" Bj are nonzero on [Tj, THll. 

3. 'Ix E [Tr, Ts], Ei Bi(X) = E:~+l-k Bi(X) = 1. 

A spline function of order k with knot sequence T is defined as a linear 
combination of B-splines of order k for the knot sequence T. The generated 
vector space is denoted Sk,'r' The link between Sk,'r and lP'(,k,v is given by 
the following theorem from Curry and Schoenberg, see De Boor p. 113. 

Theorem 3.1. 
For a given strictly increasing sequence ~ = (ei)i=I, ... ,l+l and a given 

nonnegative integer sequence v = (vih=2, ... ,l with Vi S k we define 

l t 

K £ k + I)k - Vi) = kf - LVi = dimlP'e,k,v (10) 
i=2 i=2 

and a nondecreasing sequence T = (Ti)i=I, ... ,K+k with 71 S ... S Tk S 6 
and ee+1 S TK+1 S ... S TK+k and for each i = 2, ... ,t , ei appears exactly 
k - Vi times in the sequence T. 

Then the sequence B 1, . .. , B K of B-splines of order k for the knot se­
quence T is a basis for lP'(,k,v considered as functions on [Tk, TK+l]' 

Hence, fewer knots means more continuity and we have the equation: 

number of continuity conditions at e + number of knots at ~ = k. (11) 

In particular, a k-fold knot is a point with no continuity. At the opposite, no 
knot at a point enforces k continuity conditions so that the two polynomial 
pieces that meet at this point are identical. There are E;=2(k-Vi) additional 
interior knots Ti between 6 and ee and there are also k initial and k final 
knots outside the interval [6, el+l]. These 2k knots are usually chosen in the 
following convenient way Tl = ... Tk = 6 and TK+1 = ... = TK+k = ~l+1' 
which means that VI = VHl O. The B-representation of f E lP'(,k,v is given 
by K and k, the vector of knots (Ti)i=l, ... ,K+k and the coefficients (Cti)i=I, ... ,K 

so that 
K 

'Ix E [Tk' TK+1l, f(x) = L CtiBi(X). 
i=1 

Splines are mainly used for their approximation capability, which can be 
measured for instance in the sup norm sense with dist(g, Sk,T) = infsEsk , .... 119-
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81100, 9 being a smooth function. For a given knots sequence T = (TI, ... , 7'K+k) 

(in [0,1]), a usual k-th order spline approximation is defined thanks to a 
sequence of points ti, i = 1, ... , K, by 

K 

Vt E [0,1], Ag(t) = L9(ti)Bi(t). 
i=l 

If 9 is em and m ~ k-1, we have for allT = (7'i)i=l..K+k such as 7'1 = ... = 
7'k = 0 and 7'K+l = ... = 7'K+k = 1 

dist(g, Sk,,,,) ~ Gk,mITlml\gCm) 1100 

with ITI being the mesh size of the partition. 

4 Spline-based estimators 

(12) 

We describe in this section a two-step method based on the scheme given 
in section 2, but in the particular case of splines estimators and using the 
least squares criterion R~. From section 3, it appears that splines possess in­
teresting computational properties and will result in rapid algorithms which 
is the main motivation of the present research. Moreover, this spline-based 
estimator is linear which enables one to derive rather straightforwardly the 
properties of the two-step estimator under broad and intuitive assumptions. 
Finally, splines are used in the collocation method [2] for the numerical inte­
gration of ODE's, so it links the statistical estimation and the approximation 
problems and it may provide a better insight into the statistical problem to 
the numerical analysis community. 

4.1 Definition of the estimator 

We have n observations Yl, ... ,Yn corresponding to noisy observations of the 
solution of the ODE (1) at times tl,"" tn. We introduce Qn the empirical 
distribution of the sampling times and we suppose that this empirical dis­
tribution converges to a distribution function Q (which possesses a density 
q). We construct our estimator xn of x* as a function in the spline space 
Sk,,.. 3. We consider a breakpoint sequence e = (~l'" . , ~Ln + 1) of size Ln, so 
dim(Sk+l,,..) = Kn = (k + 1 - 1/)Ln + 1/ is allowed to depend on the num­
ber of observations (and the knots sequence T is of size Kn + k + 1). The 

31£ /I = 2 for each intern.aJ breakpoint, the estimator is a e 1 function which is a minimal 
requirement for the solution of an ODE if F is continuous. In order to be coherent with 
the smoothness property of our model, we can take /I m + 1, so that the function is em. 
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breakpoint sequence is chosen such that max15i5Ln Ihi+l hil = o(L;:;I), 
lell mini hi ~ M where hi = (ei+1 ';i) and lei SUPi hi is the mesh size 
of e. As a consequence, we have lei o (L;:;1 ). Like in Zhou et al. [22], we 
suppose that we have convergence of Qn towards Q at a rate controlled by 
the mesh size, i.e. 

sup IQn(t) - Q(t)1 o(le!)· 
tEIO,I] 

The estimator xn we consider is written componentwise 

Kn 
'Vi = 1, ... ,d, Xn,i = LCikBk 

k=l 

(13) 

(14) 

or in matrix form xn = CnB with the vector-valued function B = (BI , ... , BKn)T 
and the d x Kn coefficient matrix Cn (cikh5i,k5d,Kn (and column vectors 
Ci,n (Cil,'" , CiK,.)T E ]RKn ). We stress the fact that all the components 
Xn,i are approximated via the same space, although it may be inappropriate 
in some practical situations but it enables to keep simple expressions for the 
estimator. The fact that we look for a function in the vector space spanned 
by B-splines, puts emphasis on the regression interpretation of the first step 
of our estimating procedure. The estimation of the parameter Cn can be 
cast into the classical multivariate regression setting 

(15) 

where Y n = (Y 1 ... Y d) is the n x d matrix of observations, E is the n x 
d matrix of errors, CJ is the Kn x d matrix of coefficients and Bn = 
(Bj(ti)h95n,l5j5K" is the design matrix. We look for a function close 
to the data in the L2 sense, i.e. we estimate the coefficient matrix Cn by 
least-squares 

n 

Ct,n = arg min L(Yij-B(tjfc?,i=I, ... ,d, 
cElRKn . 

)=1 

which gives the least squares estimator en = (BJBn)+BJY where 0+ 
denotes the Moore-Penrose inverse. We have 

'Vi E {I, ... , d}, ¥t E [0,1), Xi,n(t) = B T (t)Ct,n, 

where Ct = (BJBn)+BJYi . Finally, we introduce the projection matrix 
PE,n Bn(BJBn)+BJ. We will use the notation x ;S y to denote that 
there exists a constant M > 0 such that x ~ My. 
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General results given by Huang in [9] ensure that xn ~ x* in probabil­
ity for sequences of suitably chosen approximating spaces §k+l,(,v with an 
increasing number of knots. Indeed, corollary 1 in [9] enables us to claim 
that if the observation times are random with Q(B) ;:::: c>.(B) (0 < c :s: 1 and 
>.(.) is the Lebesgue measure on [0,1]), the function x* is in the Besov space 
B~oo (with k ;:::: a-I) and the dimension grows such that limn K", l~g Kn = 0 
then 

Moreover, the optimal rate Op(n-2o:/(2o:+1)) (given by Stone [17]) is reached 
for Kn '" n1/(2o:+1). For this nonparametric estimator, it is possible to 
construct a consistent two-step estimator On by minimization of R;(O). 

4.2 Asymptotics 

We give in this part the rate of convergence of the estimator On. In order 
to derive the asymptotics, we use linearization techniques based on Taylor'S 
expansion and we use the fact that the estimator depends linearly on the 
observations. We need to have a precise picture of the evolution of the basis 
(Bl, ... , BKn) as Kn -+ 00 and particularly the asymptotic behavior of the 
empirical covariance GKn,n ~(BJBn) and of the (theoretical) covariance 
GKn = J~ B(t)B(t)T dQ(t). So we recall some useful technical properties on 
B-splines (of order k) when the knot sequence T is such that: 

(*) T = (Tl,"" Tn+k) is such that Tl = ... = Tk = 0 and Tn+! = ... =Tn+k = 

1, and Ti < THk, i = 1, ... , n. 

Property 4.1. Under condition (*), for k > 1,3eo(k), "Is E §k,'T' s.t. 

Inequalities (16) were derived by De Boor [2] in order to assess the well­
posedness property of the B-splines basis. Zhou et al. [22] have given some 
refinements of these inequalities for the study of spline estimators for regres­
sion functions. 
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Property 4.2. If T satisfies (*), there exist constants 0 < Cl ::; C2 < 00 

(independent of n or Kn) such that for any s E §k,'T 

(e, + 0.(1))1(1 (t, at) :5 1.' ,'(X)dQn(X) :5 ('" + 0.(1))1(1 (t, at) . 
(17) 

This property gives a bound on the eigenvalues of the covariance matrices: 

Property 4.3. If T satisfies (*), there exist constants 0 < Cl :s: C2 < 00 

(independent of n or Kn) such that for any S E §k,'T 

with AminGKn,n, >'rna,:r;GKn,n being respectively the lowest and the highest 
eigenvalues of the empirical covariance matrix GKn,n afthe basis (B I , ... , BKn)' 

Eventually, we have the following asymptotic behavior if Kn o(n) 

'Vt EjO, 1], BT (t) (BJBn) -1 B(t) ~B(t)T GK~B(t} + O(n~el)' (19) 

We are interested now in the asymptotic behavior of r(xn) where r is 
a linear functional rex) = f~ A(s)T x(s)ds with S 1-+ A(s) a function in 

Cm ([O,lj,Rd). If x = CTB, rex) 2::=1 cJ Ii = Trace(CT
,) with Ii the 

columns of the K x d matrix, = f~ B(s)AT (s)ds. Hence, the asymptotic 
behavior is derived directly from the asymptotics of en and of matrix,. By 
using the results from Andrews [1], we will derive the asymptotic normal­
ity of this functional. For simplicity, we consider only the case d = 1, the 
extension to higher dimensions is cumbersome but straightforward. If the 
variance of the noise is 172 , the variance of Cn is 

(20) 

and the variance of the estimator of the functional is 

(21) 
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Proposition 4.1. 
Let (enk~:1 be a sequence of knot sequences of length Ln and let Kn 

be the dimension of the associated spline spaces Sk,T". We suppose that 
Ln ---+ 00 (equivalently Kn ---+ 00 or lenl ---+ 0) such that nlenl ---+ 00. If 
rex) = fol A(s)x(s)ds with A : [0,1]---+ R. is em and x* is em+! then: 

(i) r(xn) - rex) = Op(n-1/ 2 ) and v'n(r(xn) - rex») is asymptotically nor­
mal, 

(ii) \;It E [0,1J, Xn(t) - xCt) = Op(n-1/ 2 Ienl-1/ 2), 

(iii) V(Xn(t))-l/2(xn(t) - x(t)) is asymptotically normal, t E [0,1]. 

Proof. In order to prove the asymptotic normality of r(xn) - rex), we check 
the assumptions of theorem 2.1 of [1]. Assumption A is satisfied because 
the fi'S are ij.d. with finite variance. For assumption B, since A is em, 
the functional is continuous with respect to the Sobolev norm (or simply the 
sup norm). Moreover, it is possible to construct a spline A = 2:~i CY.iBi = 
o:JB E Sk,T" such that IIA - Alloo = O(lelm ) if k ;::: m (distance to spline 
space is given by (12» and we have the approximation Ir A(X) r .J(x) I = 

1 -I fo (A - A)(s)x(s)dsl ~ lelmllxlloo' Hence, it suffices to look at the case 
A = o:JB because r A(X) - r .J(x) will tend to zero at faster rate than n1/ 2 . 

We introduce the vectors "In = (r ACBl)'" r A(BKn» T , so we have 'YJ "In = 
0: T G-t GKnO: ;::: ~inGKn X 110:11~. From (18), we get 'YJ "In ~ lelllo:ll~. 
Inequality (17) ensures that 'YJ "In is bounded away from 0 because 

hence lim infn 'YJ "In > 0 and assumption B is checked. 
From (19), we get the behavior of the diagonal entries of PB,n: 

'Vi E [LKn], (PB,n)ii = ~B(ei)T Gj(~B(ei) + 0 (enleD-I) (22) 

we see that assumption C(ii) is true because B(ei) T Gj(:B(ei) ~ cII1B(ei)II~lel-l 
and IIB(ei) II~ ~ k (because the B-splines are bounded by 1 and only k of 
them are strictly positive) ensure that m8Xi(PB,n)ii = O«nlel)-l) ---+ O. It 
is clear that Bn is of full rank for n large enough. 

We know from (12) that there exists a sequence (xn) E Sk,T" such that 
Ilxn x* 1100 = Op(lelm+!) hence 

nl/21lxn - x*lloo ---+ O. 
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If we use again the spline approximation of the function A, we derive the 
following expression for 

T (BTB)-l T T -1 
1'n -n- 1'n = a GKGK,nGKa. 

From (18) we have aT G"kG1ZnGKa ~ aT GKa. As for 1'J 1'n, we have 

(
BTB)-l 

limninf 1'J -n- 1'n > 0, 

which remains true when A is any smooth function in em. 
According to Andrews, we can conclude Vn-

1
/

2(r(xn )-r(x*)) "'" N(O, 1). 
We obtain an equivalent of the rate of convergence by the same approxima­
tion as above 

i.e. Vn rv "al~lel by (18) and we obtain finally that Vn I'V n-1. 

The technique used by Andrews for his theorem 2.1 gives also asymp­
totic normality of xn(t) = B(t)TCi,n. We have then Vt E [0,1], V(xn(t)) = 

(72B(t)T(BJBn)+B(t) and from (19) we get V(xn(t)) = ~B(t)TGK~B(t)+ 
oCnfer) ,so that V(xn(t» '" ~ from lemma 6.6 in [22]. 

o 

By linearizing the criterion R~, we show that the two-step estimator is a 
simple functional of the spline estimator. We introduce the differentials of 
F at (x, e) w.r.t. () and x and we denote them DeF(x, ()) and DxF(x, e) 
respectively. For short, we adopt the following notation for the functions: 
DeF(x*, ()*) = DeF* and DxF(x*, e*) = DxF*. 

Theorem 4.1. 
Let F a em vector field w.r.t «(),x) (m ~ 1), such that DeF and DxF are 

Lipschitz w.r.t «(), x). We suppose that the Hessian J* of the asymptotic cri­
terion R2(e) evaluated at ()* is nonsingular. We suppose that the conditions 
of proposition 2.1 are satisfied and that the knots of the spline estimators are 
such that nl~nl ~ 0, then the two-step estimator On = argmin~«()) is: 
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(i) asymptotically normal, 

(ii) (On - ()*) = Op(n-1/ 2Ienl-1/ 2). 

Moreover, the optimal rote of convergence for the Mean Square Error is ob­
tainedfor Kn O(n1/(2m+3» and we have then (On-()*) = Op(n-(m+1)/(2m+3». 

Proof. VoR~(On) = 0 implies that J~ (DeF{xn(t) , On») T (d:n(t)-F(xn(t), On»)dt = 
O. We remove dependence on t and n for notational convenience and intro-
duce F* and F(x, 6*) which gives 

11 (DeF(x, B)) T «d: - ~.) + F* - F(x, 0*) + F(x, 0*) - F(x, 8»)dt = 0 

and 

11 (DeF(x, 0») T (d: - ~.) + DxF(i*,o*)(x* - x) + DoF(x,o*) (6* - 0») dt = 0 

with x* and 0* being random points between x* and x, and 0* and {) re­
spectively. We introduce A = DeF(x, B), and an asymptotic expression for 
(0* - 0) is 

(0* - 0) 11 AT DeF(x, ()*)dt = - 11 AT (d: - ~. )dt 

11 ATDxF(i*,8*)(x* -x)dt. 

It suffices to consider the convergence in law of the random integral Hn 

J~ (De F*) T (d: - ~.) + DxF*(x* x)) dt because the random variable 

Gn = 11 AT (d: - ~.) + DxF(i*, 6*) (x" - x)) dt 

is such that Gn Hn ---T 0 in probability (in the L2 sense), moreover we have 
the convergence in probability of J~ AT DeF(x, 8*)dt to J*. 

Indeed, we consider the map V : (x, () I-t (t I-t DeF(x(t),O) de­
fined on C([O, Il, K) x a (with the product Hilbert metric) with values in 
C([O, IJ, lRnxp) (with the L2 norm IIAI12 J~ Tr(AT (t)A(t»dt). Since DoF 
is Lipschitz in (x,O), the functional map V is a continuous map, and we 
can claim by the continuous mapping theorem that the random functions 
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t I--T DeF(x(t),O) and t I--T DeF(x(t),8*) converge in probability (in the 

L2sense) to DeF*. As a consequence, IIDeF(x, 0) 112 converges in probability 

to IIDeF* 112 so it is also bounded, and IIDeF(x, 0*) - DeF* 112 -+ 0 in proba­
bility. This statement is also true for all entries of these (function) matrices, 
which enables to claim that all entries of the matrix 

r1 
T io (DeF(x, 0») (DoF(x,O*) - DeF*) dt 

tend to zero in probability (by applying the Cauchy-Schwarz inequality com­
ponentwise). Moreover, we have convergence in probability of each entry of 

1 ( A )T 1 T fo DoF(x,O) DeF*dt to the corresponding entry of fo (DeF*) DeF*dt 

(consequence of the convergence of DeF(x,8) to DeF* in the L2 sense), 
which implies finally that 

11 (DeF(x, 0») T DeF(x, O*)dt ~ J* 

By the same arguments and by using the fact that DxF is also Lipschitz in 
(x,O), we have convergence of the matrix Gn - Hn to 0 in probability. The 
asymptotic behavior of (On - 0*) is then given by the random integral 

J*-1 fa! (DeF*) T (i - ~*) + DxF*(x* - x») dt. (23) 

We can write it also as r(x)-r(x*) by introducing the]Rd -valued continuous 
linear functional defined by 

rex) 11 (B(S) - !A(S») x(s)ds + B{l)x(l) - B(O)x(O) 

with S I--T A(s) = DxF(x*(s),O*)T and S I--T B(s) A(s)DeF(x*(s),o*) be­
ing (at least) cm-1functions. From proposition 4.1, we may claim the asymp­
totic normality An(r(xn) - r(x*» ov-t NCO, Id) where An is a properly chosen 
normalizing sequence (normality is extended from scalar functional to mul­
tidimensional functional by the Cramer-Wold device). Moreover, we know 
that r(xn ) r{x*) = Op(n-1/ 2 ) + Op(n-l/2Ienl-l/2) = Op(n-1/ 2Ienl-1/ 2), 
because the estimation of x*(t) is done at a slower rate. 

Now to determine the optimal rate of convergence in the mean square 
sense, we need to use the Bias - Variance decomposition for the evalua­
tion functional liOn - 0*11 2 Op (E(xn(t)) - x(t»2) + Op(Var(xn(t»). 
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Theorem 2.1 of [22] gives E(xn(t» x*(t) = O(lenlm +1) (because x* is 
cm+1) and Var(xn(t» = Op(n-1Ienl-1) so the optimal rate is reached for 
lenl = O(n-1/(2m+3» and is O(n-(2m+2)/(2m+3». 

o 

Remark 4.1. 
The asymptotic result given for the deterministic observational times 

o ::s; tl <... <tn ::s; 1 remains true when they are replaced by realizations 
of some random variables T1, ... ,Tn as long as the assumptions of the two 
previous propositions are true with probability one. Andrews gives some con­
ditions (theorem 2) in order to obtain this. It turns out that in the case of 
TI, ... ,Tn i.i. d. random variables drawn from the distribution Q, it suffices 
to have K~ ;S nr with 0 < r < 1. In particular, as soon as m ~ 1, the 
conclusion of proposition 4.1 holds with probability one for the optimal rate 
Kn = n 1/(2m+3). 

5 Experiments 

The Lotka-Volterra equation is a standard model for the evolution of prey­
predator populations. It is a planar ODE 

(24) 

whose behavior is well-known [8]. Despite its simplicity, it exhibits conver­
gence to limit cycles which is one of the main features of nonlinear dynam­
ical systems, which has usually a meaningful interpretation. Due to this 
simplicity and the interpretability of the solution, it is often used in biology 
(population dynamics or phenomena with competing species), but the statis­
tical estimation of the parameter () = (a, b, c, d) T has not been extensively 
addressed. Nevertheless, Varah (1982) illustrates spline-based method (with 
natural cubic splines and knots chosen by an expert) on the same model 
as (24). Froda et aI. (2005) [7] have considered another original method 
exploiting the fact that the orbit may be a closed curve for some values of 
the parameters. 

For this benchmark example, we study the behavior of the two-step es­
timator corresponding to the criterion R~«(}). A challenging problem in 
the construction of the estimator is the usual problem of the selection of 
the number of knots during the spline estimation (which was left to the 
practitioner in Varah's paper). A similar problem arises also in Ramsay's 
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method based on smoothing splines where one has to choose properly the 
trade-off constant A during the minimization of the penalized fitting criterion 
L:f=lIYi - x(ti)l~ + AII~ - F(x,e)II~. The classical optimal value given by 
cross-validation (chapter 3 [21]) is not directly relevant in this case, so it is 
also a parameter left to the modeler. The nonparametric estimation relies 
on the choice of the sequence of knots, and we take a uniform grid There. 
Nevertheless, the present result (theorem 4.1) is not practical and does not 
enable us to select a correct number of knots. As suggested before, one can 
think of an extension of the celebrated GCV, but in our setting this problem 
of knots selection seems more naturally dealt by the free-knot splines [3, 18]. 
We do not propose here a knots selection procedure for the practioner, but 
an adhoc one, based on the ability to approximate the function of interest by 
splines. In order to do this, we study and choose an arbitrary nondecreas­
ing sequence of number of knots Kn by graphical arguments relying on the 
approximation of x* by its L2 projection on sfn the space of cubic splines 
that are 0 2 with Kn uniformly spaced knots. The projection is denoted by 
PKnX*. 
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Figure 1: Solution of Lotka-Volterra system in the phase plane. 

In our experiment, we consider the system with a 1, b 1.5, c = 1.5, 
d = 2 and x(O) = It y(O) = 2. As shown in Figure 1, the solution is attracted 
by a periodic solution and is observed on the time interval [0, 10] which 
corresponds roughly to 2 periods (and the trace in the phase plane is nearly a 
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n 50 100 200 400 600 800 1000 1200 1400 I 
Kn 9 9 12 13 14 15 16 17 18 I 

R;'(OKn) 12 6.8 5.9 5.4 3.4 2.9 2.9 2.0 2.2 I 
n 1600 1800 2 

Kn 19 20 20 20 
~(OKn) 2.0 1.9 1.7 0.7 

Table 1: Number of knots and minima of the criterion R;' 

closed curve). With a Monte-Carlo study (based on Nmc = 1000 independent 
drawings), we show the asymptotic properties of the two-step estimator in 
the case of a homoscedastic Gaussian noise with (J' = 0.4 (Yi = X*(ti) + €i 

with fi "" N(O, c? 12) by considering different sample size n = 50, 100, 200, 
400,600,800, 1000, 1200, 1400, 1600, 1800,2000 and 5000 (the observation 
times are uniformly drawn in [0,10]). 

The £2 distance between the solution x* and its spline approximation is 
diminishing with the number of the knots Kn but this is not monotone as we 
can see from figure 2 (a), because the spaces Sf, K> 1 are not nested. We 
introduce OKn the minimizer of the criterion ~(O) computed with PKnX* 
and we give the evolution of liOn - 0*11 2 in Figure 2 (b). This is another 
way to evaluate the convergence of the criterion R;' to the asymptotic one 
R2 (and in fact this is a most important characteristic of the convergence 
of an M-estimator). A striking feature is that the dimension of Kn is not 
an indicator of the quality of approximation: for instance, we have a good 
approximation of X* by PKnX* for Kn = 12 (local minimum of the curve 
in Figure 2 (a» which is better than for Kn = 13 and we have OKn ~ (r. 
Despite this peculiar behavior, Figure 2 shows that for Kn :::: 20, we have 
a very good estimate of x* and OK ~ 0*, moreover there is no noticeable n _ 

difference between Kn = 20, ... ,50. Hence, the discrepancy between OK .. 
and 0* will introduce a bias in the estimation, which is finally a by-product 
of the bias in the nonparametric regression. The selected number of knots 
and the mean values of the selected minima m.ino Rn (8) are shown in Table 
1. 

The choice of the knots is done according to the features enhanced in 
equation (2): indeed, we choose the knots according to the approximating 
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n I Number of knots I Mean (a,b,c, d) Standard deviation 

50 9 (0.7, 1.22, 1.35, 1.81) (0.29, 0.31, 0.39, 0.48) i 

100 9 (0.73, 1.28, 1.50, 1.99) (0.20, 0.21, 0.27, 0.35) 
200 12 (0.93, 1.46, 1.41, 1.92) (0.17, 0.18, 0.20, 0.26) 
400 13 (0.88, 1.36, 1.32, 1.77) (0.12, 0.11, 0.13, 0.18) 
600 14 (0.88, 1.39, 1.51, 2.02) (0.10, 0.10, 0.13, 0.18) 
800 15 (0.98, 1.49, 1.42, 1.93) (0.10, 0.10, 0.11, 0.15) 

. 1000 16 (0.91, 1.41, 1.43, 1.91) (0.08, 0.08, 0.10, 0.14) i 
1200 17 (0.98, 1.48, 1.50, 2.03) (0.08, 0.08, 0.09, 0.13) 
1400 18 (0.98, 1.48, 1.44, 1.94) (0.08, 0.07, 0.09, 0.13) 
1600 19 (0.96, 1.46, 1.47, 1.97) (0.08, 0.07, 0.09, 0.13) 
1800 20 (1.00, 1.50, 1.48, 1.98) (0.07, 0.07, 0.08, 0.12) 
2000 20 (1.00, 1.50, 1.48, 1.98) (0.07, 0.06, 0.08, 0.12) 
5000 20 (1.00, 1.49, 1.49, 1.99 ) (0.05, 0.04, 0.05, 0.08) 

Table 2: Mean and standard deviation of the two step estimator On 

power of the corresponding spline space. The leading principle is to avoid 
a small space or a space that behaves worse than a smaller one. Hence we 
do not take Kn :::; 8 because the distance between Sf and x" is too big. 
Moreover, we do not use neither Kn = 10, 11 because the approximation is 
worse than with Kn = 9 (the same for Kn = 13). 

The computation of en is done by a NeIder-Mead algorithm starting from 
the true value ()* = (1,1.5,1.5, 2)T: this enables us to stay in a relevant 
part of the parameter space, hence we can avoid the bias due to the numer­
ical determination of the estimator. Nevertheless, this local algorithm gives 
spurious minima in less than 1% of the simulations because of the spikiness 
of the function R;: in this case the results are discarded from the statistics. 
The performance of the estimator (mean and standard deviation) is gath­
ered in table 2, which illustrates the convergence in quadratic mean of the 
estimator. 

We check the asymptotic normality of the estimator by performing a Kol­
mogorov Smirnov (KS) test on each component of the standardized residuals 
Tn = E;;l(On - (}*). We control also the normality of the biased residuals 

b -1 ~ - - 1 Nmc ~(i) ~(i) • . 
Tn = En (f)n - On) where On = N mc L:i=l On and (}n IS the estlmate of the 
ith Monte Carlo simulation, and we store the p-values of the KS test for the 

23 



I n P(U> ks(rn» P(U > ks(r~)) 
50 (0, 0, 0, 0) (0.22, 0.0009, 0.022, 0.0048) 
100 (0,0,0, 0) (0.13, 0.08, 0.11, 0.35) 
200 (0, 0, 0, 0) (0.54, 0.05, 0.98, 0.87) 

• 400 (0, 0, 0, 0) (0.85, 0.18, 0.99, 0.62) 
600 (0, 0,0,0.74) (0.61, 0.59, 0.65, 0.84) 
800 (0, 0, 0, 0.0001) (0.75,0.26,0.81,0.31) 
1000 (0,0,0, 0) (0.46, 0.01, 0.73, 0.57) 
1200 (0, 0, 0, 0) (0.50, 0.97, 0.95, 0.62) 
1400 (0, 0, 0, 0.0001) (0.74,0.21,0.76,0.86) 
1600 (0, 0, 0, 0.0921) (0.65, 0.87, 0.18, 0.27) 
1800 (0.7, 0.3, 0, 0.33) (0.21, 0.98, 0.71, 0.28) 
~0.97' 0.08, 0,0.74) (0.98, 0.59, 0.35, 0.85) 

000 (0.33, 0, 0, 0.29) (0.97, 0.45, 0.30, 0.12) 

Table 3: P-values of the Kolmogorov-Smirnov (componentwise) test for 
asymptotic normality (U is the Kolmogorov-Smirnov statistic). In this table, ° means lower than 10-4 and values lower than 0.05 implies rejection of the 
normality assumption with 95% confidence. 

two residuals in Table 3 (we denote ks(rn) and ks(~) the values of the KS 
statistic). We may conclude from Table 3 that the convergence to normality 
of the residuals r n is quite slow and is not attained for n as big as 5000 (but 
it is true for 2 components as soon as n 2:: 1800). In fact, this is partly due 
to the KS test we use, because it is clear from table 2 that the bias tends 
to zero; nevertheless, the difference between the Monte Carlo sample and 
the true parameter remains significant (despite it is less than 0.1) because 
we have a huge sample size. Indeed, the rejection of the normality of the 
estimator stems from the bias, and we can verify that we have asymptotic 
normality of the estimator by applying KS test for r!. Moreover, the nor­
mality is rapidly reached, since the normality assumption cannot be rejected 
as soon as n 2:: 100 (most of the p-values are indeed greater than 0.05). 

6 Conclusion 

We have proposed a new family of parametric estimators of ODE's relying 
on nonparametric estimators, which are simpler to compute than straight­
forward parametric estimators such as MLE or LSE. The construction of this 
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parametric estimator puts emphasis on the regression interpretation of the 
ODE's estimation problem, and on the link between a parameter of the ODE 
and an associated function. By using an intermediate functional proxy, we 
expect to gain information and precision on likely value of the parameters. 
We do not have studied the effect of using shape or inequality constraints of 
the estimator xn but it might be valuable information for the inference of 
complex models, either by shortening the computation time (it gives more 
suitable initial conditions) or by accelerating the rate of convergence of the 
estimator thanks to restriction to smaller sets of admissible parameter values. 

We have particularly studied the case R;(O), but other M-estimators 
such as the one obtained from R;(O) may possess interesting theoretical and 
practical properties such as robustness. This could be particularly useful in 
the case of noisy data which can give oscillating estimates of the derivatives 
of the function. 

We have only considered spline-based estimators, we have derived the 
asymptotic normality of the two-step estimator, and we have determined 
the optimal rate as n-(m+l)!(2m+3) which is obtained for an appropriately 
growing sequence of knots. We have touched on the effective selection of 
the number of knots in section 5 and a necessary theoretical and practical 
development is the construction of a data-driven methodology to determine 
the number of knots. A more general problem of knots selection might be 
addressed by the use of a free-knots spline estimator where the number and 
the location of the knots is determined from the data [3, 18]. This type of 
estimator is much more flexible and may help in reducing the observed bias 
in the experiments for small n. Eventually, our two-step estimator can be 
improved to a vn-consistent and even a parametrically efficient estimator 
by additional steps. This will be pursued within a more general framework 
elsewhere. 
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Figure 2: (a) L2 Distance between x* and its spline approximations (w.r.t 
the number of knots) 
(b) Euclidean distance between On and ()* 
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