

Functional description of MINTO, a mixed integer optimizer

Citation for published version (APA):
Savelsbergh, M. W. P., Sigismondi, G. C., & Nemhauser, G. L. (1991). Functional description of MINTO, a mixed
integer optimizer. (1st version ed.) (Memorandum COSOR; Vol. 9117). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/d15e6d41-9ca2-400a-805e-396ea8916cfe

TECHNISCHE UNIVERSITEIT EINDHOVEN
Faculteit Wiskunde en Informatica

Memorandum COSOR 91-17

Functional description of MINTO,
a Mixed INTeger Optimizer

M.W.P. Savelsbergh
G.C. Sigismondi
G.L. Nemhauser

Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB Eindhoven
The Netherlands

ISSN: 0926-4493

Eindhoven, August 1991
The Netherlands

Functional description of MINTO,
a Mixed INTeger Optin'lizer

Martin W.P. Savelsbergh 1,3

Eindhoven University of Technology
P.O. Box 513

5600 MB Eindhoven
The Netherlands

Gabriele C. Sigismondi 2,3

George L. Nemhauser 2,3

Georgia Institute of Technology
School of Industrial and Systems Engineering

Atlanta, GA 30332-0205
USA

mwps@bs.win.tue.nl
gsisgism@gtriOl.bitnet

gnemhaus@gtriOl.bitnet

(August 1, 1991)

1 Supported by NATO Science Fellowship No. N 62-316.89
2 Supported by the National Science Foundation Research Grant No. ISI-8761183
3 Supported by NATO Collaborative Research Grant No. CRG 901057

Functional description of MINTO,
a Mixed INTeger Optimizer

Martin W.P. Savelsbergh
Eindhoven University of Technology

Gabriele C. Sigismondi
George 1. Nemhauser

Georgia Institute of Technology, Atlanta

Abstract

MINTO is a software system that solves mixed-integer linear programs by a branch-and­
bound algorithm with linear programming relaxations. It also provides automatic constraint
classification, preprocessing, primal heuristics and constraint generation. Moreover, the user
can enrich the basic algorithm by providing a variety of specialized application routines that
can customize MINTO to achieve maximum efficiency for a problem class. This paper
documents MINTO by specifying what it is capable of doing and how to use it.

1 Introduction

MINTO (Mixed INTeger Optimizer) is a tool for solving mixed integer linear programming (MIP)
problems of the form:

maxLCjXj + LCjXj + LCjXj

jEB jEI jEC

L aijXj + L aijXj + L aijXj bi
jEB jEI jEC

o~ Xj ~ I

LXi ~ Xi ~ Uxj

Xi E E

Xi E lR

i= l, ... ,m

j E B

jEIUC
j E BUI

j E C

where B is the set of binary variables, I is the set of integer variables, C is the set of continuous
variables, the sense'" of a constraint can be ~, ~, or =, and the lower and upper bounds may
be negative or positive infinity or any rational number.

A great variety of problems of resource allocation, location, distribution, production, schedul­
ing, reliability and design can be represented by MIP models. One r~ason for this rich modeling
capability is that various nonlinear and nonconvex optimization problems can be posed as MIP
problems.

I

Unfortunately this robust modeling capability is not supported by a comparable algorithmic
capability. Existing branch-and-bound codes for solving MIP problems are far too limited in the
size of problems that can be solved reliably relative to the size of problems that need to be solved,
especially with respect to the number of integer variables; and they perform too slowly for many
real-time applications. To remedy this situation, special purpose codes have been developed for
particular applications, and in some cases experts have been able to stretch the capabilities of
the general codes with ad hoc approaches. But neither of these remedies is satisfactory. The
first is very expensive and time-consuming and the second should be necessary only for a very
limited number of instances.

Our idea of what is needed to solve large mixed-integer programs efficiently, without having
to develop a full-blown special purpose code in each case, is an effective general purpose mixed
integer optimizer that can be customized through the incorporation of application functions.
MINTO is such a system. Its strength is that it allows users to concentrate on problem specific
aspects rather than data structures and implementation details such as linear programming and
branch-and-bound.

The heart of MINTO is a linear programming based branch-and-bound algorithm. It can
be implemented on top of any LP-solver that provides capabilities to solve and modify linear
programs and interpret their solutions. The current version is build on top of the CPLEX (TM)
callable library, version 1.2.

To be as effective and efficient as possible when used as a general purpose mixed-integer
optimizer, MINTO attempts to:

• improve the formulation by preprocessing;

• construct feasible solutions;

• generate strong valid inequalities;

• perform variable fixing based on reduced prices;

• control the size of the linear programs by managing active constraints.

To be as flexible and powerful as possible when used to build a special purpose mixed-integer
optimizer, MINTO provides various mechanisms for incorporating problem specific knowledge.
Finally, to make future algorithmic developments easy to incorporate, MINTO's design is highly
modular.

This document focuses on the mechanisms for incorporating problem structure and only
contains a minimal description of the general purpose techniques mentioned above.

The mechanism for incorporating problem structure are discussed in Sections 4 and 5 under
inquiry and application functions. Section 2 presents the overall system design and Section
3 contains a brief description of the system functions. Sections 6, 7, and 8, explain how to run
MINTO, present programming considerations, and give some computational results. Finally,
Section 9 contains some remarks on availability and future releases..

2

2 System design

It is well known that problem specific knowledge can be used advantageously to increase the
performance of the basic linear programmming branch-and-bound algorithm for mixed integer
programming. MINTO attempts to use problem specific knowledge on two levels to strenghten
the LP-relaxation, to obtain better feasible solutions and to improve branching.

At the first level, system functions use general structures, and at the second level application
functions use problem specific structures. A call to an application function temporarily transfers
control to the application program, which can either accept control or decline control. If control
is accepted, the application program performs the associated task. If control is declined, MINTO
performs a default action, which in many cases will be "do nothing". The user can also exercise
control at the first level by selectively deactivating system functions.

Figure 1 gives a flow chart of the underlying algorithm. To differentiate between actions
carried out by the system and those carried out by the application program, there are different
"boxes". System actions are in solid line boxes and application program actions are in dotted
line boxes. A solid line box with a dotted line box enclosed is used whenever an action can be
performed by both the system and the application program. Finally, to indicate that an action
has to be performed by either the system or the application program, but not both, a box with
one half in solid lines and the other half in dotted lines is used. If an application program does not
carry out an action, but one is required, the system falls back to a default action. For instance,
if an application program does not provide a division scheme for the branching task, the system
will apply the default branching scheme.

Formulations
The concept of a formulation is fundamental in describing and understanding MINTO. MINTO is
constantly manipulating formulations: storing a formulation, retrieving a formulation, modifying
a formulation, duplicating a formulation, handing a formulation to the LP-solver, providing
information about the formulation to the application program, etc. We will always use the
following terms to refer to elements of a formulation: objective function, constraint, coefficient,
sense, right-hand side, variable, lower bound, and upper bound.

It is beneficial to distinguish four types of formulations. The original formulation is the for­
mulation specified in the < problemname > .mps file. The initial formulation is the formulation
associated with the root node of the branch-and-bound tree. It may differ from the original
formulation as MINTO automatically tries to improve the initial formulation using various pre­
processing techniques, such as detection of redundant constraints and coefficient reduction. The
current formulation is an extension of the original formulation and contains all the variables and
all the global and local constraints associated with the node that is currently being evaluated.
The active formulation is the formulation currently loaded in the LP-solver. It may be smaller
that the current formulation due to management of inactive constraints.

It is very important that an application programmer realizes that the active formulation
does not necessarily coincide with his mental picture of the formwlation, since MINTO may
have generated additional constraints, temporarily deactivated constraints, or fixed one or more
variables.

MINTO always works with a maximization problem. Therefore, if the original formulation

3

BEST?

~ Add nodes I+-- Branch
_____....JI • --. -- -- -- ------'

- ... - .. _- _------

Preprocess
------_ .. _---------

cl

'+'
Nodes left? --1 DONE

I

........:J
Select node

"·'·"'-1
Preprocess

J
',j.

Solve LP
I

..........:t- !

Price implicit i
variables ~··········1········· !

I

I Add variables

!

I~
I

Success? ,
I

1 i
I
I

I

i
f+-- ZLP > ZBEST? Add constraints

I

I
Y~

c.... .1...... i
Satisfy y

, y ! Update 1-t~'F~t';:j Ii, Feasible? ~
integrality ?

'._-- ------ 'I primal ~ .~~?es i
1 I

'I

Primal heuristic : I !

:1 I

~
(ZPRIMAL > ZBEST? '>-1 Update I-+:'F~thom 'I~/ZLP > ZSuccess?

,

I
' I " primal ~.~?(~ , :

...
,I.'

,.- ... _--------

Tighten bounds
-- .. --.- ... _._------

1
Generate
constraints

1
Add constraints ~/ Success?

"
__ ..._... .1

I

Figure 1: The underlying algorithm

4

describes a minimization problem, MINTO will change the signs of all the objective function
coefficients. This is also reflected in the remainder of this functional description; everything is
written with maximization in mind.

Constraints
MINTO distinguishes various constraint classes as defined in Table 1. These constraint classes are
motivated by the constraint generation done by MINTO and the branching scheme adopted by
MINTO. To present these constraint classes, it is convenient to distinguish the binary variables.
We do this by using the symbol y to indicate integer and continuous variables. Each class is an
equivalence class with respect to complementing binary variables, i.e., if a constraint with term
ajxj is in a given class then the constraint with ajxj replaced by aj(l- Xj) is also in the class.
For example EjEB+ Xj - EjEB- Xj :5 1- IB-I is in the class BINSUM1UB, where we think of
B- as the set of complemented variables.

class constraint
MIXEDUB EjEB ajxj + EjEIUC ajYj :5 ao
MIXEDEQ EjEB ajxj + EjEIUC ajYj =ao

NOBINARYUB LjEluC ajYj :5 ao
NOBINARYEQ LjEIUC ajYj =ao

ALLBINARYUB LjEB ajxj :5 ao
ALLBINARYEQ L;~B ajxj =ao

SUMVARUB LjEl+uc+ ajYj - akxk :5 0
SUMVAREQ LjEI+UC+ ajYj - akXk =0

VARUB ajYj - akXk :5 0
VAREQ ajYj - akxk =0
VARLB ajYi - akXk > 0

BINSUMVARUB LjEB\{k} ajxj - akXk :5 0
BINSUMVAREQ LiEB\Hl ajxj - akxk =0
BINSUM1VARUB LjEB\{k} Xj - akXk :5 0
BINSUM1VAREQ LjEB\{k} Xj - akXk =0

BINSUMlUB LjEB x j:5 1

BINSUM1EQ Lif'B Xj =1

Table 1: Constraint classes

Besides constraint classes, MINTO also distinguishes two constraint types: global and local.
Global constraint are valid at any node of the branch-and-bound tree, whereas local constraints
are only valid in the subtree rooted at the node where the constraints are generated.

Constraints can be in one of three states: active, inactive, or deleted. Active constraints are
part of the active formulation. Inactive constraints have been deactivated but may be reactivated
at a later time. Deleted constraints have been removed altogether.

5

Variables
When solving a linear program MINTO allows for column generation. In other words, after
a linear program has been optimized, MINTO asks for the pricing out of variables not in the
current formulation. If any such variables exists and price out favorably they are included in the
formulation and the linear program is reoptimized.

Branching
The unevaluated nodes of the branch-and-bound tree are kept in a list and MINTO always
selects the node at the head of the list for processing. However, there is great flexibility here,
since MINTO provides a mechanism that allows an application program to order the nodes in
the list in any way. As a default MINTO always adds new nodes at the head of the list, i.e., a
last-in first-out strategy which corresponds to a depth-first search of the branch-and-bound tree.

3 System Functions

MINTO's system functions are used to perform preprocessing, constraint generation and reduced
price variable fixing, to enhance branching, and to produce primal feasible solutions. They are
employed at every node of the branch-and-bound tree. However, their use, except for reduced
price variable fixing, is optional.

In preprocessing, MINTO attempts to identify redundant constraints, detect infeasibilities,
tighten bounds on variables and to fix variables using optimality and feasibility considerations.
For constraints with only 0-1 variables, it also improves the LP-relaxation by coefficient reduction.
For example a constraint of the form a1x1 + a2x2 + a3x3 :$ ao may be replaced by a1x1 + a2x2 +
(a3 - 6)x3 :$ ao - 6 for some 6 > 0 that preserves the set offeasible solutions. MINTO also builds
a 'clique' table for 0-1 variables by identifying relations of the form Xi + Xi :$ 1, Xi :$ Xj, xi ~ Xj

and Xi + Xj ~ 1 between pairs of variables and then extending them to larger sets of variables.
After a linear program is solved and a fractional solution is obtained, MINTO tries to exclude

these solutions by searching for violated lifted knapsack covers and violated generalized flow
covers. Lifted knapsack covers are derived from pure 0-1 constraints and are of the form

I: Xj + I: "'fjXj + I: (fjXj :$IC11-1 + I: "'fj,
jEC1 jEC2 jEB\C jEC2

where C = C1 U C2 with C1 :/; 0 is a minimal set such that L:jEc ajxj > ao. Generalized flow
covers are derived from

I: Yj - L Yj :$ ao
jEN+ jEN-

< J. E N+ uN-Yj _ ajxj;

and are of the form

L [Yj + (A - aj)+(1- Xj)]:$ ao + L aj + L min{Yj,Axj},

jEC+ iEC- jEN-\C

6

where C = (C+, C-) ~ (N+, N-) is a minimal set such that EjEc+ aj - EjEc- aj = A > O.
After solving a linear program MINTO searches for nonbasic 0-1 variables whose values may

be fixed according to the magnitude of their reduced price, and trys to find feasible solutions
using recursive rounding of the optimal LP-solution.

MINTO uses a hybrid branching scheme. Under certain conditions it will branch on a clique
constraint. If not, it chooses a variable to branch on based on a priority order it creates.

For the sequel, it is assumed that the reader has a working knowledge of the C programming
language.

4 Inquiry Functions

Information about the current formulation can be obtained through the inquiry functions: inq...form,
inq-<>bj, inq_constr, and inq_var, and their associated variables info_form, info_obj, info_constr,
and info_var.

Each of these inquiry functions updates its associated variable so that the information stored
in that variable reflects the current formulation. The application program can then access the
information by inspecting the fields of the variable.

The rationale behind this approach is that we want to keep memory management fully within
MINTO. (Note that since only nonzero coefficients are stored, the memory required to hold the
objective function and constraints varies.)

One more inquiry function is available to retrieve the name of the problem that is being
solved, i.e., the name found in the NAME section of the < problem> .mps file.

As it is impossible for the application program to keep track of the indices of the active
constraints, due to constraint generation and constraint management done by MINTO, the only
fail-safe method for accessing constraint related information is to refer to constraints through
names rather than indices. However, in some cases, for instance when an application program
only wants to inspect constraints of the original formulation (which are not affected by constraint
generation and constraint management), using names would be rather cumbersome.

To overcome these difficulties, the following scheme has been adopted for MINTO. All in­
formation access for variables and constraints is done through indices. For variables the valid
indices are in the range 0 up to the number of variables, and for constraints the valid indices are
in the range 0 up to the number of constraints. However, to provide a fail-safe access mechanism,
MINTO will have in future releases, besides the default no-names operating mode, a names
operating mode, in which names are associated with each variable and each constraint.

This function retrieves the name of the problem that is being solved, i.e., the name found in the
NAME section of the < problemname > .mps file that was read when MINTO was invoked.

The following example shows how inq_prob can be used to print the' name of the problem being
solved.

7

#include <stdio.h>
#include "minto.h"

1*
* WriteName
*1

void
WriteName ()
{

printf ("Problem name: %s\n". inq_prob 0);
}

This function retrieves the number of variables and the number of constraints of the current
formulation.

A call to inq...formO initializes the variable info_form that has the following structure:

typedef struct info_form
int form_vent;
int form_ccnt;

} INFO_FORM;

{

1* number of variables in the formulation *1
1* number of constraints in the formulation *1

The following example shows how inq...form can be used to print the size of the current formu­
lation.

#include <stdio.h>
#inelude "minto.h"

1*
* WriteSize
*1

void
WriteSize 0
{

8

printf ("Number of variables: r.d\n" , info_form.form_vcnt);
printf ("Number of constraints: %d\n" , info_form.form_ccnt);

}

4.3

This function retrieves the variable class, the objective function coefficient, the number of con­
straints in which the variable appears with a nonzero coefficient, and for each of these constraints
the index of the constraint and the nonzero coefficient, the status of the variable, the lower and
upper bound associated with the variable, additional information on the bounds of the variable,
and, if the variable type is continuous and the variable appears in a variable lower or upper
bound constraint, the index of the associated binary variable and the associated bound.

Variable class is one of: CONTINUOUS, INTEGER, and BINARY. Variable status is one
of ACTIVE, INACTIVE, or DELETED. Variable information is one of: ORIGINAL, MODI­
FIED..BY..BRANCHING, MODIFIED_BY_MINTO, and MODIFIED_BY...APPL.

PARAMETERS

index: An integer containing the index of the variable.

A call to inq_varO initializes the variable info_var that has the following structure:

typedef struct info_var {

int var_class; 1*
double var_obj; 1*
int var_nz; 1*
int *var_ind; 1*
double *var_coef; 1*
int var_status; 1*
double var_lb; 1*
double var_ub; 1*
VLB *var_vlb; 1*
VUB *var_vub; 1*
int var_lb_info; 1*

int var_ub_info; 1*

} INFO_VAR;

class: CONTINUOUS, INTEGER, or BINARY *1
objective function coefficient *1
number of constraints vith nonzero coefficients *1
indices of constraints vith nonzero coefficients *1
actual coefficients *1
ACTIVE, INACTIVE, or DELETED *1
lover bound *1
upper bound *1
associated variable lower bound *1
associated variable upper bound *1
ORIGINAL, MODIFIED_BY_MINTO,
MODIFIED_BY_BRANCHING, or MODIFIED_BY_APPL *1
ORIGINAL, MODIFIED_BY_MINTO,
MODIFIED_BY_BRANCHING, or MODIFIED_BY_APPL *1

typedef struct {
int vlb_var;
double vlb_val;

} VLB;

typedef struct {

1* index of associated 0-1 variable *1
1* value of associated bound *1.

9

int vub_var;
double vub_val;

} VUB;

1* index of associated 0-1 variable *1
1* value of associated bound *1

The following example shows how inqsar can be used to print the variables that are fixed in
the current formulation.

#include <stdio.h>
#include "minto.h"

1*
* WriteFixed
*1

void
WriteFixed ()
{

int j;

for (inq_form (), j = 0; j < info_form.form_vcnt; j++) {
inq_var (j);
if (info_var.var_lb > info_var.var_ub - EPS) {

printf ("Variable %d is fixed at %f\n". j, info_var.var_lb);
}

}

}

This function retrieves the number of variables that appear in the objective function with a
nonzero coefficient, and for each of these variables the index of the variable and the nonzero
coefficient.

The same information can be obtained by successive calls to inq_var, however using inq..obj
is much more efficient.

A call to inq_objO initializes the variable info_obj that has the following structure:

typedef struct {
int obj_nz; 1*
int *obj_ind; 1*
double *obj_coef; 1*

} INFO_OBJ;

number of variables with nonzero coefficients *1
indices of variables with nonzero coefficients *1
actual coefficients *1

10

The following example shows how illq_obj can be used to print the variables with a nonzero
objective coefficient.

#include <stdio.h>
#include "minto.h"

1*
* WriteObj
*1

void
WriteObj ()
{

int j;

inq_obj ();
tor (j = 0; j < into_obj.obj_nz; j++) {

printf ("Variable %d has objective coefficient %f\n",
info_obj.obj_ind[j], info_obj.obj_coef[j]);

}
}

4.5 inq_constr

This function retrieves the constraint class, the number of variables that appear in the constraint
with a nonzero coefficient, and for each of these variables the index of the variable and the
nonzero coefficient, the sense of the constraint, the right hand side of the constraint, the status
of the constraint, the type of the constraint, and additional information on the constraint.

Constraint class is one of: MIXEDUB, MIXEDEQ, NOBINARYUB, NOBINARYEQ, ALL­
BINARYUB, ALLBINARYEQ, SUMVARUB, SUMVAREQ, VARUB, VAREQ, VARLB, BIN­
SUMVARUB, BINSUMVAREQ, BINSUl\llVARUB, BINSUl\I1VAREQ, BINSUMlUB, or BIN­
SUMIEQ. Constraint status is one of: ACTIVE, INACTIVE, or DELETED. Constraint type is
one of: LOCAL or GLOBAL. Constraint information is one of ORIGINAL, GENERATED_BY_­
BRANCHING, GENERATED_BY-.l\UNTO, and GENERATED-BY-APPL.

PARAMETERS

index: An integer containing the index of the constraint.

A call to inq_constrO initializes the variable info_constr that has the following structure:

typedet struct info_constr {

11

int
int
int
double
char
double
int
int
int

constr_class;
constr_nz;
*constr_ind;
*constr_coef;
constr_sense;
constr_rhs;
constr_status;
constr_type;
constr_info;

1* classification: ... *1
1* number of variables with nonzero coefficients *1
1* indices of variables with nonzero coefficients *1
1* actual coefficients *1
1* sense *1
1* right hand side *1
1* ACTIVE, INACTIVE, or DELETED *1
1* LOCAL or GLOBAL *1
1* ORIGINAL, GENERATED_BY_MINTO,

GENERATED_BY_BRANCHING, or GENERATED_BY_APPL *1
} INFO_CONSTR;

The following example shows how inq_constr can be used to print the types of the constraints
in the current formulation.

#include <stdio.h>
#include "minto.h"

1*
* WriteType
*1

void
WriteType ()
{

int i;

for (inq_form (), i =0; i < info_form.form_ccnt; i++) {
inq_constr (i);
printf ("Constraint %d is of type %s\n",

i, info_constr.constr_type == GLOBAL? "GLOBAL" "LOCAL");
}

}

A more elaborate example showing how the inquiry functions can be used to print everything
there is to know about the current formulation can be found in Appendix A.

Basic information about the LP-solution to the active formulation and information about the best
primal solution are available to the application, whenever appropriate, through the parameters
passed to the application functions.

Additional information about this LP-solution can be obtained through the inquiry functions
Ip...slack, Ip_pi, Ip-rc, and Ip_base.

12

4.6 lp-slack

This function returns the slack or surplus of the constraint. If the index is invalid or the associ­
ated constraint is inactive, the return value will be INF.

PARAMETERS

index: An integer containing the index of the constraint.

This function returns the dual value of the constraint. If the index is invalid or the associated
constraint is inactive, the return value will be INF.

PARAMETERS

index: An integer containing the index of the constraint.

This function returns the reduced cost of the variable. If the index is invalid, the return value
will be INF.

PARAMETERS

index: An integer containing the index of the variable.

4.9 lp_base

This function returns the status of a variable, i.e., BASIC, ATLOWER, ATUPPER, or NON­
BASIC. If the index is invalid, the return value will be UNDEFINED.

PARAMETERS

index: An integer containing the index of the variable.

5 Application Functions

A set of application functions (either the default or any other) has to be compiled and linked with
the MINTO library in order to produce an executable version of MINTO. These functions give
the application program the opportunity to incorporate problem specific knowledge and thereby
increase the overall performance. A default set of application functions is part of the distribution
of MINTO. The incorporation of these default functions turns MINTO into a general purpose
mixed integer optimizer.

Since only the nonzero coefficients of a constraint are stored, a set of constraints can and
will always be specified by three arrays: cfirst, cind, ccoef. Cind and ccoef contain the indices

13

and values of nonzero coefficients respectively. Cfirst[i] indicates the position of the first nonzero
coefficient of the ith constraint in the arrays cind, and ccoef; cfirst[i + 1]-1 indicates the position
of the last nonzero coefficient of the ith constraint in the arrays cind and ecoef. Note that this
implies that if a set of k constraints is specified cfirst[k] has to be defined.

5.1 appLinit

This function provides the application with an entry point in the program to perform some initial
actions. It has to return either STOP, in which case MINTO aborts, or CONTINUE, in which
case MINTO continues.

The following example shows how appLinit can be used to open a log file.

#include <stdio.h>
#include "minto.h"

1*
* appl_init
*1

unsigned
appl_init ()
{

it «tp_log = topen ("EXAMPLE.LOG", "'I"» == NULL) {
tprintt (stderr, "Unable to open EXAMPLE.LOG\n");
return (STOP);

}

tprintt (tp_log, "Solving problem %s with MINTO\n", inq_prob 0);

return (CONTINUE);
}

5.2 appLprep

This function provides the application with an entry in the program to perform some prepro­
cessing based on the original formulation. It has to return either STOP, in which case MINTO
aborts, or CONTINUE, in which case MINTO continues.

14

In general, MINTO only stores data in the information variables associated with the inquiry
functions and never looks at them again, i.e., communication between MINTO and the applica­
tion program is one-way only. However, in appLprep a set of modification functions can be used
by the application program to turn this one-way communication into a two-way communication.
A call to a modification function signals that the associated variable has been changed by the
application and that MINTO should retrieve the data and update its internal administration.

seLval'
This function signals that the application program has changed the contents of the info_var vari­
able and that MINTO should get the data of the variable and update its internal administration.
MINTO only accepts changes of the bounds of a variable.

PARAMETERS

index: An integer containing the index of the variable.

seLobj
This function signals that the application program has changed the contents of the info_obj vari­
able and that MINTO should get the data of the variable and update its internal administration.

seLconstr
This function signals that the application program has changed the contents of the info_constr
variable and that MINTO should get the data of the variable and update its internal adminis­
tration. MINTO only accepts changes of the coefficients and the status. If the status is changed
to DELETE, the constraint will be removed from the original formulation.

PARAMETERS

index: An integer containing the index of the constraint.

The following example shows how appLprep can be used to identify and delete redundant rows
from the original formulation.

1*
* E_PREP.C
*1

#include <stdio.h>
#include "minto.h"

unsigned
appl_prep ()
{

15

int i, j;
double minlhs, maxlhs, coef;

1*
* Delete redundant rows
*1

inq_form ();
for (i = 0; i < info_form.form_ccnt; i++) {

minlhs = maxlhs = (double) 0;
inq_constr (i);
for (j = 0; j < info_constr.constr_nz; j++) {

inq_var (info_constr.constr_ind[j]);
if «coef = info_constr.constr_coef[j]) > EPS) {

minlhs += coef * info_var.var_lb;
maxlhs += coef * info_var.var_ub;

}

else {
minlhs += coef * info_var.var_ub;
maxlhs += coef * info_var.var_lb;

}
}

if (info_constr.constr_sense == 'G' tt
minlhs > info_constr.constr_rhs - EPS) {

info_constr.constr_status = DELETE;
set_constr (i);

}

if (info_constr.constr_sense == 'L' tt
maxlhs < info_constr.constr_rhs + EPS) {

info_constr.constr_status = DELETE;
set_constr (i);

}
}

}

5.3 appLnode

This function provides the application with an entry point in the program after MINTO has
selected a node from the set of unevaluated nodes of the branch-and-bound tree and before
MINTO starts processing the node. It has to return either STOP, in which case MINTO aborts,
or CONTINUE, in which case l\UNTO continues.

PARAMETERS

depth: A long containing the depth in the branch-and-bound tree of the node that has been
selected for evaluation.

16

creation:

zprimal:
xprimal:

ecnt:
gap:

A long containing the creation number of the node that has been selected for eval­
uation.
A double containing the value of the primal solution.
An array of doubles containing the values of the variables associated with the primal
solution.
A long containing the number of evaluated nodes.
A double containing the gap between the value of the primal solution and the value
of the LP-solution associated with the node that has been selected for evaluation.

The following example shows how appl...node can be used to implement simple stopping rules.

1*
* E_IODE.C
*1

#include <stdio.h>
#include "minto.h"

#define MAXIODES
#define GAPSIZE

1000
0.5

extern FILE *fp_log;

unsigned
appl_node (depth,
int depth;
int creation;
double zprimal;
double *xprimal;
int ecnt;
double gap;
{

creation, zprimal, xprimal, ecnt. gap)
1* identification: depth *1
1* identification: creation *1
1* value of primal solution *1
1* value of the variables *1
1* number of evaluated nodes *1
1* gap between primal and LP solution value *1

if (ecnt > MAXNODES) {
fprintf (fp_log. "Terminated after evaluating Ytd ~odes\n". MAXIODES);
return (STOP);

}
else {

if (gap < GAPSIZE) {

17

fprintf (fp_log, "Terminated since the gap is smaller than %f\n", GAPSIZE);
return (STOP);

}

else {
fprintf (fp_log, "Evaluating node (%ld,%ld)\n", depth, creation);
return (CONTINUE);

}
}

}

5.4 appLexit

This function provides the application with an entry point in the program to perform some final
actions. MINTO ignores the return value.

PARAMETERS

zopt: A double containing the value of the final solution.
xopt: An array of doubles containing the values of the variables associated with the final

solution.

The following example shows how the function appLexit can be used to write the optimal
solution to a log file and afterwards close the log file.

/*
* E_EXIT.C
*/

#include <stdio.h>
#include "minto.h"

extern FILE *fp_log;

unsigned
appl_exit (zopt, xopt)
double zopt; /* value of the final solution */
double *xopt; /* values of the variables */
{

int j;

fprintf (fp_log, "OPTIMAL SOLUTION: \n") ;

18

zpnew:
xpnew:

tor (inq_torm (), j = 0; j < info_form.torm_vcnt; j++) {
tprintf (fp_log, "x[y'd) = Y.f\n", j, xopt[j);

}

fprintf (fp_log, "OPTIMAL SOLUTION VALUE: Y.f\n", zopt);

fclose (fp_log);

return (CONTINUE);
}

5.5 appLquit

This function provides the application with an entry point in the program to perform some final
actions if execution is terminated by a <ctrl>-C signal. MINTO ignores the return value.

PARAMETERS

zopt: A double containing the value of the final solution.
xopt: An array of doubles containing the values of the variables associated with the final

solution.

5.6 appLprimal

This function allows the application to provide MINTO with a lower bound and an associated
primal solution. It has to return either FAILURE, in which case MINTO assumes that no primal
solution was found by the application or no attempt was made to construct one and it therefore
ignores the parameters zprimal and xprimal, or SUCCESS, in which case MINTO assumes that a
primal solution has been found by the application and that it is available through the parameters
zprimal and xprimal.

PARAMETERS

zIp: A double containing the value of the LP solution.
xlp: An array of doubles containing the values of the variables.
zprimal: A double containing the value of the current primal solution.
xprimal: An array of doubles containing the values of the variables associated with the current

primal solution.

A double to hold the value of the new primal solution.
An array of doubles to hold the values of the variables associated with the new
primal solution.

The following example shows how appLprhnal can be used to provide feasible solutions for a
node packing problem.

19

#include <stdio.h>
#include "minto.h"

#ifdef PROTOTYPING
int max_xlp (int *, int *, int):
void get_adj (int, int *, int *);
#else
int max_xlp ():
void get_adj ():
#endif

1*
* appl_primal
*1

(zlp, xlp, zprimal, xprimal, zpnew, xpnew)
1* value of the LP solution *1
1* values of the variables *1
1* value of the primal solution *1
1* values of the variables *1
1* variable for new value of primal solution *1
1* array for new values of the variables *1

unsigned
appLprimal
double zlp:
double *xlp:
double zprimal:
double *xprimal:
double *zpnew:
double *xpnew:
{

int *mark:
int *adj:
int i, j, degree:
double obj_value:

mark = (int *) calloc (info_form.form_vcnt. sizeof (int»:
adj = (int *) calloc (info_form.form_vcnt, sizeof (int»:

while ((i = max_xlp (xlp, mark, info_form.form_vcnt» >= 0) {
xpnew [i] = 1. 0 :
mark[i] = -1:
get_adj (i, adj, tdegree):
for (j = 0; j < degree; j++) {

xpnew[adj[j]] = 0.0:
mark[adj[j]] = -1:

20

}
}

inq_obj ();
for (obj_value =0.0. j =0; j < info_obj.obj_nz; j++) {

obj_value += info_obj.obj_coef[j] * xpnew[info_obj.obj_ind[j]];
}

*xpnew =obj_value;

return (SUCCESS);
}

int
max_xlp (xlp. mark. nvars)
double *xlp;
int *mark;
int nvars;
{

1*
* This routine computes parses all the elements i in array xlp
* such that mark[i] != -1 and return the index of element with
* maximum value. If all elements are marked the function returns -1
*1

}

void
get_adj (i. adj. degree)
int i;
int *adj;
int *degree;
{

1*
* This routine initializes adj[O ... *degree-1] with the adjacency
* list for node i
*1

}

5.7 appLfathom

This function allows the application to provide an optimality tolerance to terminate or prevent
the processing of a node of the branch-and-bound tree even when the upper bound value asso­
ciated with the node is greater than the value of the primal solution. It has to return either
FAILURE, in which case MINTO assumes that (further) processing of the node is still required,

21

or SUCCESS, in which case MINTO assumes that (further) processing of the node is no longer
required. For an active node, processing is terminated; for an unevaluated node, MINTO deletes
it from the list of nodes to be processed.

PARAMETERS

zIp: A double containing the value of the LP solution.
zprimal: A double containing the value of the primal solution.

The following two examples show how the function appLfathom can be used to implement opti­
mality tolerances. The first example shows how to incorporate the fact that objective coefficients
are all integer. The second example shows how to build a truncated branch-and-bound algorithm
that generates a solution that is within a certain percentage of optimality.

/*
* E_FATHOM.C
*/

#include <stdio.h>
#include "minto.h"

1*
* appl3athom
*/

(zIp, zprimal)
/* value ot the LP solution */
/* value ot the primal solution */

unsigned
appl_tathom
double zIp;
double zprimal;
{

it (zIp - zprimal < 1 - EPS) {
return (SUCCESS);

}

else {
return (FAILURE);

}
}

#include <stdio.h>
#include "minto.h"

22

#define TOLERANCE 1.05

1*
* appl_fathom
*1

(zlp. zprimal)
1* value of the LP solution *1
1* value of the primal solution *1

unsigned
appl_fathom
double zlp;
double zprimal;
{

if (zlp < TOLERANCE * zprimal - EPS) {
return (SUCCESS);

}

else {
return (FAILURE);

}
}

5.8 appLfeasible

This function allows the application to force MINTO to continue even if the solution to the active
formulation satisfies the integrality conditions. It has to return either SUCCESS, in which case
MINTO assumes that a feasible solution has been found and terminates processing of this node,
or FAILURE, in which case MINTO assumes that violated constraints have been found by the
application and that they are available through the parameters nzcnt, cent, cfirst, cind, ccoef,
and ctype.

PARAMETERS

zIp:
xlp:
nzcnt:

cent:
cfirst:

cind:

ccoef:

csense:
crhs:
ctype:

A double containing the value of the LP solution.
An array of doubles containing the values of the variables.
An integer to hold the number of nonzero coefficients to be added to the current
formulation.
An integer to hold the number of constraints to be added to the current formulation.
An array of integers to hold the positions of the first nonzero coefficients of the
constraints to be added.
An array of integers to hold the indices of the nonzero coefficients of the constraints
to be added.
An array of doubles to hold the values of the nonzero coefficients of the constraints
to be added.
An array of characters to hold the senses of the constraints to be added.
An array of doubles to hold the right hand sides of the constraints to be added.
An array of integers to hold the types of the constraints to be added, i.e., GLOBAL
or LOCAL.

23

sdim:
ldim:

An integer containing the length of the arrays cfirst, csense, crhs, and ctype.
An integer containing the length of the arrays cind and ccoef.

The following example shows how appl...feasible can be used to accommodate partial formula­
tions. In the linear ordering problem one usually deals with the 3-cycle inequalities Oi; +0;k+Oki ::;
2 implicitly, i.e, they may be generated only when they violate an LP-solution. The following
code assumes the set of variables is Oi; for i,j = 1, ... , n, i ::f j and either establishes feasibility
or generates a single violated 3-cycle inequality.

1*
* E_FEAS.C
*1

#include <stdio.h>
#include "minto.h"

#define 1NDEX(1,J) \
«I) * (n-1) + «(J) < (I» ? (J) (J)-1))

unsigned
appl_feasible (zIp, xlp, nzcnt, ccnt, cfirst, cind, ccoef,

csense, crhs, ctype, sdim, Idim)
double zIp; 1* value of the LP solution *1
double *xlp; 1* values of the variables *1
int *nzcnt; 1* variable for number of nonzero coefficients *1
int *ccnt; 1* variable for number of constraints *1
int *cfirst; 1* array for positions of first nonzero coefficients *1
int *cind; 1* array for indices of nonzero coefficients *1
double *ccoef; 1* array for values of nonzero coefficients *1
char *csense; 1* array for senses *1
double *crhs; 1* array for right hand sides *1
int *ctype; 1* array for the constraint types: LOCAL or GLOBAL *1
int sdim; 1* length of small arrays *1
int ldim; 1* length of large arrays *1
{

int i, j, k, n;
double diff;

24

vent:
vind:

for (i = 0; i < n; i++) {
for (j =0; j < n; j++) {

for (k =0; k < n; k++) {
if (i != j it i != k tt j != k) {

diff =xlp[IHDEX(i,j)] + xlp[IHDEX(j,k)] + xlp[IIDEX(k,i)] - 2;
if (diff > EPS) {

cfirst [0] = 0;
cfirst[1] =3;
cind[O] = IHDEX(i,j);
ccoef[O] = (double) 1;
cind[1] = IHDEX(j,k);
ccoef[1] = (double) 1;
cind[2] = INDEX(k,i);
ccoef[2] = (double) 1;
csense[O] = 'L';
crhs[O] = (double) 2;
ctype[O] = GLOBAL;
*nzcnt = 3;
*ccnt = 1;
return (FAILURE);

}

}
}

}
}

return (SUCCESS);
}

5.9 appLbounds

This function allows the application to modify the bounds of one or more variables. It has to
return either FAILURE, in which case MINTO assumes that no bounds have to be changed and
it therefore ignores the parameters vent, vind, vtype, and vvalue, or SUCCESS, in which case
MINTO assumes that there are variables for which the bounds have to be changed and that the
relevant information is available through the parameters vent, vind, vtype, and vvalue.

PARAMETERS

zIp: A double containing the value of the LP solution.
xlp: An array of doubles containing the values of the variables.
zprimal: A double containing the value of the primal solution.
xprimal: An array of doubles containing the values of the variabl~sassociated with the primal

solution.
An integer to hold the number of variables for which bounds have to be modified.
An array of integers to hold the indices of the variables for which bounds have to
be modified.

25

vtype:

vvalue:
bdim:

An array of characters to hold the types of modification to be performed, i.e., lower
bound 'L' or upper bound 'U'.

An array of doubles to hold the new values for the bounds.
An integer containing the length of the arrays vind, vtype, and vvalue.

The following example shows how appLbnds can be used to implement reduced cost fixing.

#include <stdio.h>
#include "minto.h"

unsigned
appl_bnds (zIp, xlp,
double zIp;
double *xlp;
double zprimal;
double *xprimal;
int *vcnt;
int *vind;
char *vtype;
double *vvalue;
int bdim;
{

int j, k = 0;
double lb, ubi

zprimal, xprimal, vcnt, vind, vtype, vvalue, bdim)
1* value of the LP solution *1
1* values of the variables *1
1* value of the primal solution *1
1* values of the variables *1
1* variable for number of variables *1
1* array for indices of variables *1
1* array for type of bounds *1
1* array for value of bounds *1
1* size of arrays *1

inq_form ();
for (j = 0; j < info_form.form_ccnt; j++) {

inq_var (j);
if (lp_base (j) != BASIC tt info_var.var_class != CONTINUOUS) {

lb = info_var.var_lb;
ub = info_var.var_ub;

if (lb > ub - EPS) {

26

continue;
}

if (xlp[j] < lb + EPS tt zlp + lp_rc (j) < zprimal + EPS) {
vind[k] = j; vtype[k] = 'U'; vvalue[k] = (double) lb;
k++;

}

if (xlp[j] > ub - EPS tt zlp - lp_rc (j) < zprimal + EPS) {
vind[k] = j; vtype[k] = 'L'; vvalue[k] = (double) ub;
k++;

}
}

}

*vcnt = k;

return (SUCCESS);
}

5.10 appLvariables

This function allows the application to generate one or more additional variables. It has to return
either FAILURE, in which case MINTO assumes that no additional variables were found, or no
attempt was made to generate any and it therefore ignores the parameters nzcnt, vcnt, vobj,
vlb, vub, vfirst, vind, and vcoef, or SUCCESS, in which case MINTO a.<;l'umes that additional
variables have been found by the application and that they are available tlll'ough the parameters
nzcnt, vcnt, vobj, vlb, vub, vfirst, vind, and vcoef.

PARAMETERS

zIp:
xlp:
zprimal:
xprimal:

nzcnt:

vcnt:
vobj:

vlb:

vub:

A double containing the value of the LP solution.
An array of doubles containing the values of the variables.
A double containing the value of the primal solution.
An array of doubles containing the values of the variables associated with the primal
solution.
An integer to hold the number of nonzero coefficients to be added to the current
formulation.
An integer to hold the number of variables to be added to the current formulation.
An array of doubles to hold the objective function coefficients of the variables to be
added.
An array of doubles to hold the lower bounds on the values of the variables to be
added.
An array of doubles to hold the upper bounds on the ~alues of the variables to be
added.

27

vfirst:

vind:

vcoef:

sdim:
ldim:

An array of integers to hold the positions of the first nonzero coefficients of the
variables to be added.
An array of integers to hold the row indices of the nonzero coefficients of the variables
to be added.
An array of doubles to hold the values of the nonzero coefficients of the variables to
be added.
An integer to hold the length of the arrays vobj, varlb, varub, and vfirst.
An integer to hold the length of the arrays vind and vcoef.

The following example shows how appLvars can be used to implement a column generation
scheme for the solution of the linear program.

1*
* E_VARS.C
*1

#include <stdio.h>
#include "minto.h"

#ifdef PROTOTYPING
int get_column (int *, int *. double *, double *, double *, double *);
#else
int get_column ();
#endif

#define FOUND 1

extern FILE *fp_log;

1*
* appl_variables
*1

unsigned
appl_variables (zlp, xlp, zprimal, xprimal, nzcnt, vcnt, vobj, varlb,

varub, vfirst, vind, vcoef, sdim, ldim)
double zlPi 1* value of the LP solution *1
double *xlp; 1* values of the variables *1
double zprimali 1* value of the primal solution *1
double *xprimal; 1* values of the variables *1
int *nzcnt; 1* variable for number of nonzero coefficients *1
int *vcnt; 1* variable for number of variables *1
double *vobj; 1* array for objective coefficients of vars added *1
double *varlb; 1* array for lower bounds of vars added *1

28

double *varub;
int *vfirst;
int *vind;
double *vcoef;
int sdim;
int ldim;
{

1* array for upper bounds of vars added *1
1* array for positions of first nonzero coefficients *1
1* array for indices of nonzero coefficients *1
1* array for values of nonzero coefficients *1
1* length of small arrays *1
1* length of large arrays *1

int j;
int col_nz;
int *col_ind;
double *col_coeff;
double col_obj;
double col_lb;
double col_ub;

col_ind = (int *) calloc (info_form.form_ccnt, sizeof (int»;
col_coeff = (double *) calloc (info_form.form_ccnt, sizeof (double»;

*nzcnt =0;
*vcnt = 0;
vfirst[O] =0;

if (get_column (tcol_nz, col_ind, col_coeff, tcol_obj, tcol_lb, tcol_ub) -- FOUND) {
if (col_nz > ldim) {
fprintf (fp_log, "Memory allocated by MINTO exceeded\n");
return (FAILURE);
}

*nzcnt = col_nz;
*vcnt = 1;
vobj[O] =col_obj;
varlb[O] = col_lb;
varub[O] = col_ub;
vfirst[1] = col_nz;
for (j =0; j < col_nz; j++) {

vind[j] =col_ind[j];
vcoef[j] =col_coeff[j];

}
}

return (SUCCESS);
}

29

int
get_column (col_nz, col_ind, col_coeff, col_obj, col_lb, col_ub)
int *col_nz;
int *col_ind;
double *col_coeff;
double *col_obj;
double *col_lb;
double *col_ub;
{

1*
* This function tries to generate a column. It returns FOUND if it
* vas successful
*1

}

5.11 appLconstraints

This function allows the application to generate one or more violated constraints. It has to return
either FAILURE, in which case MINTO assumes that no violated constraints were found, or no
attempt was made to generate any and it therefore ignores the parameters nzcnt, cent, cfirst,
cind, ccoef, and ctype, or SUCCESS, in which case MINTO assumes that additional constraints
have been found by the application and that they are available through the parameters nzcnt,
ccnt, cfirst, cind, ccoef, and ctype.

PARAMETERS

zIp:
xlp:
zprimal:
xprimal:

nzcnt:

ccnt:
cfirst:

cind:

ccoef:

csense:
crhs:
ctype:

sdim:

A double containing the value of the LP solution.
An array of doubles containing the values of the variables.
A double containing the value of the primal solution.
An array of doubles containing the values of the variables associated with the primal
solution.
An integer to hold the number of nonzero coefficients to be added to the current
formulation.
An integer to hold the number of constraints to be added to the current formulation.
An array of integers to hold the positions of the first nonzero coefficients of the
constraints to be added.
An array of integers to hold the indices of the nonzero coefficients of the constraints
to be added.
An array of doubles to hold the values of the nonzero coefficients of the constraints
to be added.
An array of characters to hold the senses of the constraints to be added.
An array of doubles to hold the right hand sides of the'constraints to be added.
An array of integers to hold the types of the constraints to be added, i.e., GLOBAL
or LOCAL.
An integer containing the length of the arrays cfirst, csense, crhs, and ctype.

30

ldim: An integer containing the length of the arrays cind and ccoef.

The following example shows how appLconstraints can be used to develop a cutting plane
algorithm based on minimal covers for knapsack constraints.

#include <stdio.h>
#include "minto.h"

#ifdef PROTOTYPING
int get_cover (double *. into int *. int *. double *. double *. into int *.

double *. double *);
#else
int get_cover ();
#endif

#define FOUND 1

extern FILE *fp_log;

1*
* appl_constraints
*1

unsigned
appl_constraints

double zIp;
double *xlp;
double zprimal;
double *xprimal;
int *nzcnt;
int *ccnt;
int *cfirst;
int *cind;
double *ccoefj
char *csense;
double *crhs;
int *ctype;
int sdim;
int Idim;

(zIp. xlp. zprimal. xprimal. nzcnt. cent. cfirst.
cind. ccoef. csense. crhs. ctype. sdim. Idim)

1* value of the LP solution *1
1* values of the variables *1
1* value of the primal solution *1
1* values of the variables *1
1* variable for number of nonzero coefficients *1
1* variable for number of constraints *1
1* array for positions of first nonzero coefficients *1
1* array for indices of nonzero coefficients *1
1* array for values of nonzero coefficients *1
1* array for senses *1
1* array for right hand sides *1
1* array for the constraint types: LOCAL or GLOBAL *1
1* length of small arrays *1
1* length of large arrays *1

31

{

int i, j;
int cv_nz;
int *cv_ind;
double *cv_coeff;
double cv_rhs;

cV_ind = (int *) calloc (info_form.form_vcnt, sizeof (int»;
cv_coeff = (double *) calloc (info_form.form_vcnt, sizeof (double»;

*ccnt = 0;
*nzcnt = 0;
cfirst [0] = 0;

for (i = 0; i < info_form.form_ccnt; i++) {
inq_constr (i);
if (info_constr.constr_class == ALLBINUB) {

if (get_cover (xlp, info_form. form_vcnt ,
cv_nz, cV_ind, cv_coeff,cv_rhs,
info_constr.constr_nz, info_constr.constr_ind,
info_constr.constr_coef, info_constr.constr_rhs) == FOUND) {

if (cfirst[*ccnt] + CV_n2 > ldim I I *ccnt > sdim) {
fprintf (fp_log, "Memory allocated by MINTO exceeded\n");
return (FAILURE);

}

*nzcnt += cv_nz;
csense[*ccnt] = 'L';
crhs[*ccnt] = cv_rhs;
ctype[*ccnt] = GLOBAL;
for (i = 0, j = cfirst[*ccnt];

j < cfirst[*ccnt] + cv_nz;
i++, j++) {
cind[j] = cv_ind[i];
ccoef[j] = cv_coeff[i];

}

cfirst[*ccnt+1] = cfirst[*ccnt] + cv_nz;
(*ccnt)++;

}
}

}

cfirst[*ccnt] = *nzcnt;

32

creation:

zIp:
xlp:
zprimal:

return (SUCCESS);
}

int
get_cover (xlp. nvars. cv_nz. cv_ind. cv_coeff. cv_rhs,

orig_nz, orig_ind, orig_coeff, orig_rhs)
double *xlp;
int nvars;
int *cv_nz;
int *cv_ind;
double *cv_coeff;
double *cv_rhs;
int orig_nz;
int *orig_ind;
double *orig_coeff;
double *orig_rhs;
{

1*
* This function returns FOUND if we are able to find a violated cover
* inequality using constraint i of the original formulation
*1

}

5.12 appLdivide

This function allows the application to provide a partition of the set of solutions by either
specifying bounds for one or more variables, or generating one or more constraints, or both. It
has to return either FAILURE, in which case MINTO assumes that the application wants to
use the default division scheme and it therefore ignores the parameters, or SUCCESS, in which
case MINTO assumes that the application constructed a partition which is available through the
parameters, or INSUFFICIENT, signaling that more memory, i.e., larger arrays, is required to
store the partition, in which case MINTO increases the available memory and calls the function
again.

PARAMETERS

depth: A long containing the depth in the tree of the node that has been selected for
evaluation.
A long containing the creation number of the node that has been selected for eval-
uation.
A double containing the value of the LP solution. .
An array of doubles containing the values of the variables.
A double containing the value of the primal solution.

33

xprimal:

ncnt:
vent:

vind:
vtype:

vvalue:
nzcnt:

cent:
cfirst:

cind:

ccoef:

csense:
crhs:
bdim:
sdim:
ldim:

An array of doubles containing the values of the variables associated with the primal
solution.
An integer to hold the number of nodes in the division.
An array of integers to hold the number of variables for which a bound is specified
for each node.
An array of integers to hold the indices of the variables for which a bound is specified.
An array of characters to hold the types of bounds, i.e., lower bound 'L' or upper
bound 'U'.
An array of doubles to hold the values of the bounds.
An integer to hold the total number of nonzero coefficients in the constraints gen­
erated for each node.
An array of integers to hold the number of constraints generated for each node.
An array of integers to hold the positions of the first nonzero coefficients of the
constraints generated.

An array of integers to hold the indices of the nonzero coefficients of the constraints
generated.

An array of doubles to hold the values of the nonzero coefficients of the constraints
generated.

An array of characters to hold the senses of the constraints generated.
An array of doubles to hold the right hand sides of the constraints generated.
An integer containing the length of the arrays vind, vtype, and vvalue.
An integer containing the length of the arrays cent, cfirst, csense, and crhs.
An integer containing the length of the arrays cind and ccoef.

The default division scheme partitions the set of solutions into two sets by specifying bounds for
the integer variable with fractional part closest to 0.5. In the first set of the partition, the selected
variable is bounded from above by the round down of its value in the current LP-solution. In
the second set of the partition the selected variable is bounded from below by the round up of
its value in the current LP solution. Note that if the integer variable is binary, this corresponds
to fixing the variable to zero and one respectively.

Each node of the branch-and-bound tree also receives a (unique) identification. This identifi­
cation consists of two numbers: depth and creation. Depth refers to the level of the node in the
branch-and-bound tree. Creation refers to the total number of nodes that have been created in
the branch-and-bound process. The root node receives identification (0,1).

The two following examples show how appLdivide can be used to implement the default branch­
ing scheme. In the first example, the variable is fixed by specifying new bounds. In the second
example, the variable is fixed by specifying new constraints.

34

#include <stdio.h>
#include <math.h>
#include "minto.h"

1*
* appl_divide
*1

unsigned
appl_divide (depth, creation, zlp, xlp, zprimal, xprimal,

ncnt, vcnt, vind, vtype, vvalue,
nzcnt, ccnt,

long depth;
long creation;
double zlp;
double *xlp;
double zprimal;
double *xprimal;
int *ncnt;
int *vcnt;
int *vind;
char *vtype;
double *vvalue;
int *nzcnt;
int *ccnt;
int *cfirst;
int *cind;
double *ccoef;
char *csense;
double *crhs;
int bdim;
int sdim;
int ldim;
{

cfirst, cind, ccoef, csense, crhs, bdim, sdim, ldim)
1* identification: depth *1
1* identification: creation *1
1* value of the LP solution *1
1* values of the variables *1
1* value of the primal solution *1
1* values of the variables *1
1* variable for number of nodes *1
1* variable for number of variables *1
1* array for indices of variables *1
1* array for type of bounds *1
1* array for value of bounds *1
1* variable for number of nonzero coefficients *1
1* variable for number of constraints *l
1* array for positions of first nonzero coefficients *1
1* array for indices of nonzero coefficients *1
1* array for values of nonzero coefficients *1
1* array for senses *1
1* array for right hand sides *1
1* size of bounds arrays *1
1* size of small arrays *1
1* size of large arrays *1

register int i;
register double frac, diff;
int index = -1;
double mindiff = (double) 1;

for (inq_form (), i =0; i < info_form.form_vcnt; i++) {
if (inq_var (i), info_var.var_class != CONTINUOUS) {

frac =xlp[i] - (int) xlp[i];
if (frac > EPS ii frac < 1 - EPS) {

diff =fabs (frac - 0.5);

35

if (diff < mindiff) {
mindiff = diU;
index = i;

}
}

}
}

*ncnt = 2;

vcnt[oJ = 1;
vent [1J = 1;

vind[OJ = index;
vtype[OJ = 'U';
vvalue[OJ = (double) 0;

vind[1J = index;
vtype[1J = 'L';
vvalue[1J = (double) 1;

ccnt[OJ = 0;
cent [1J = 0;

return (SUCCESS);
}

#include <stdio.h>
#include <math.h>
#include "minto.h"

1*
* appl_divide
*1

unsigned
appl_divide (depth, creation, zlp, xlp, zprimal, xprimal,

ncnt, vent, vind, vtype, vvalue,
nzcnt, cent, cfirst, cind, ccoef, csense, crhs, bdim, sdim, ldim)

36

long depth;
long creation;
double zlp;
double *xlp;
double zprimal;
double *xprimal;
int *ncnt;
int *vcnt;
int *vind;
char *vtype;
double *vvalue;
int *nzcnt;
int *ccnt;
int *cfirst;
int *cind;
double *ccoef;
char *csense;
double *crhs;
int bdim;
int sdim;
int ldim;
{

/* identification: depth */
/* identification: creation */
/* value of the LP solution */
/* values of the variables */
/* value of the primal solution */
/* values of the variables */
/* variable for number of nodes */
/* variable for number of variables */
/* array for indices of variables */
/* array for type of bounds */
/* array for value of bounds */
/* variable for number of nonzero coefficients */
/* variable for number of constraints */
/* array for positions of first nonzero coefficients */
/* array for indices of nonzero coefficients */
/* array for values of nonzero coefficients */
/* array for senses */
/* array for right hand sides */
/* size of bounds arrays */
/* size of small arrays */
/* size of large arrays */

register int i;
register double frac, diff;
int index = -1;
double mindiff = (double) 1;

for (inq_form (), i = 0; i < info_form.form_vcnt; i++) {
if (inq_var (i), info_var.var_class != CONTINUOUS) {

frac =xlp[i] - (int) xlp[i];
if (frac > EPS it frac < 1 - EPS) {

diff = fabs (frac - 0.5);
if (diff < mindiff) {

mindiff =dif:f;
index = i;

}
}

}
}

*ncnt = 2;

vcnt [0] =0;
vcnt [1] = O·,

37

creation:

zIp:
zprimal:
rank:

*nzcnt = 2;

ccnt[O] = 1;
cent [1] = 1;

efirst[O] = 0;

cind[O] = index;
ecoef[O] = (double) 1;
esense[O] = 'L';
erhs[O] = (double) 0;

cfirst [l] = 1;

cind[l] = index;
ccoef[l] = (double) 1;
csense[l] = 'G';
crhs[l] = (double) 1;

efirst [2] = 2;

return (SUCCESS);
}

5.13 appLrank

This function allows the application to specify the order in which the nodes of the branch­
and-bound tree are evaluated. It has to return either FAILURE, in which case MINTO assumes
that the application wants to use the default rank function and it therefore ignores the parameter
rank, or SUCCESS, in which case MINTO assumes that the rank for the current node is available
through the parameter rank, or REORDER, in which case MINTO assumes that the application
has switched to a different rank function. In this case, MINTO reorders the list of unevaluated
nodes. Before reordering, each node receives a new rank by successive calls to appl...rank.

PARAMETERS

depth: A long containing the depth in the branch-and-bound tree of the node that has been
selected for evaluation.
A long containing the creation number of the node that has been selected for eval-
uation.
A double containing the value of the LP solution.
A double containing the value of the primal solution.
A double to hold the rank to be associated with the current node.

38

The unevaluated nodes of the branch-and-bound tree are kept in a list. The nodes in the list are
in order of increasing rank values. When new nodes are generated either by the default division
scheme or the division scheme specified by the appLdivide function, each of them receives
a rank value provided either by the default rank function or by the function provided by the
appLrank function. The rank value of the node is used to insert it at the proper place in the
list of unevaluated nodes. When a new node has to be selected, MINTO will always take the
node at the head of the list.

The default rank function takes the node creation number as rank, which results in a depth­
first search of the branch-and-bound tree.

The following example shows how appLrank can be used to implement the strategy that starts
with depth-first and switches to best-bound as soon as a primal feasible solution has been found.

1*
* E_RAllK.C
*1

#include <stdio.h>
#include "minto.h"

static unsigned switched =FALSE;

unsigned
appl_rank (depth,
long depth;
long creation;
double zlp;
double zprimal;
double *rank;
{

creation, zlp, zprimal, rank)
1* identitication: depth */
1* identitication: creation */
1* value of the LP solution *1
/* value of the primal solution *1
1* rank value *1

if (switched == TRUE) {
*rank = -zlp;
return (SUCCESS);

}

else {
if (zprimal < -IllF + EPS) {

*rank = (double) creation;
return (SUCCESS);

}

else {
*rank =-zlp;

39

switched = TRUE;
return (REORDER);

}
}

}

6 Invoking MINTO

The run-time behavior of MINTO depends on the command line options. The following command
should be used to invoke MINTO

minto [-zbghpckfso < value >] < problem name> .

The meanings of the various command line options are given in Table 2. The command line
options allow the user to deactive selectively one or more system functions and to specify the
amount of output desired. MINTO assumes that the original formulation represents a minimiza-

option effect
x assume maximization problem
b deactivate branching
e deactivate enhanced branching
h deactivate primal heuristic
p deactivate preprocessing
c deactivate clique generation
k deactivate knapsack cover generation
f deactivate flow cover generation
s deactivate system functions ghpckf

0<0,1,2> level of output

Table 2: Command line options

tion problem unless the z command line option is specified. There are three levels of output;
level 0 (the default) generates the least and level 2 generates the most.

MINTO requires the mixed integer programming formulation to be specified in MPS format
in a file < problem name> .mps in the current working directory. Since MINTO uses the
LP-solver to read the initial formulation, the < problem name> .mps file must conform to the
rules specified in the documentation of the LP-solver.

7 Programming considerations

The include file minto.h is, and should always be, included in all sources of application functions,
since it contains constant definitions, type definitions, external variable declarations, and function
prototypes.

40

The variables and arrays containing information about the LP-solution associated with the
active formulation and information about the best primal solution, which are passed as param­
eters to the application functions, are the ones maintained by MINTO for its own use. They
should never be modified; they should only be examined.

MINTO allocates memory dynamically for the arrays that are passed as parameters to an
application function. However, from an application program point of view they are fixed length
arrays. When appropriate, the current lengths of the arrays are also passed as parameters. It
is the responsibility of the application program to ensure that memory is not overrun. MINTO
will abort immediately if it detects a memory violation.

8 Test problems

The distribution of MINTO contains a set of 10 test problems. The main purpose of the test
problems is to verify whether the installation of MINTO has been succesful. However, MINTO's
performance on this set of test problems also demonstrates its power as a general purpose mixed
integer optimizer. Table 3 shows the problem characteristics. Table 4 shows the LP value, the
IP value, and the number of evaluated nodes and total cpu time when MINTO is run as a plain
branch-and-bound code with all system functions deactivated, and when MINTO is run in its
default setting. These runs have been made on a SUN SPARCstation 1+. We have observed sub­
stantial variation in performance when running the system under different architectures because
different branch-and-bound trees are generated.

9 Availability and Future Releases

Our current policy with respect to the distribution and use of MINTO is to make it available
for academic research purposes only. Commercial and educational use of MINTO is not allowed
without prior and explicit permission from the authors.

We regard MINTO 1.0 to be the beginning of an evolutionary process towards a robust and
flexible mixed integer programming solver. It's modular structure makes it easy to modify and
expand, especially with regard to the addition of new inquiry and application functions. Therefore
we encourage the users of this first release to provide us with comments and suggestions for future
releases.

We envision that future releases will incorporate other simplex LP-solvers such as IBM's
Optimization Subroutine Library (OSL) and possibly interior point LP-solvers such as OBI. A
names operating mode will be available to provide a fail-safe mechanism for keeping track of
variables and constraints that are added during the solution process.

Other developments in future releases may include more efficient cut generation routines, ad­
ditional classes of cuts, explicit column generation routines, better primal heuristics and different
strategies for getting upper bounds, such as Lagrangian relaxation.

We welcome suggestions for improving MINTO as well as other comments.

41

NAME #cons #vars #nonzeros #cont #bin #int
DIAMOND 4 2 8 0 2 0
P0033 15 33 98 0 33 0
P0040 23 40 110 0 40 0
P0201 133 201 1923 0 201 0
BM23 20 27 478 0 27 0
LSEU 28 89 309 0 89 0
IN 29 100 200 0 100 0
GRAY2 34 48 96 24 24 0
GRAY9 62 96 192 48 48 0
EGOUT 98 141 282 86 55 0

Table 3: Characteristics of the test problems

NAME LP value IP value #l1odes (-s) cpu secs (-s) #nodes cpu secs
DIAMOND 0.0 7 0 1 0
P0033 -2520.6 -3089.0 8291 126 5 1
P0040 -61796.545052 -62027.0 139 3 1 0
P0201 -6875.0 -7615.0 4900 1148 691 617
BM23 -20.570922 -34.0 1978 86 241 94
LSEU -834.68 -1120.0 63403 2080 193 98
IN -7253.49351 -7457.0 858 28 5 1
GRAY2 -185.55 -202.35 231 6 7 1
GRAY9 -256.016667 -280.95 891 37 84 33
EGOUT -149.588766 -568.1007 70220 2313 13 1

Table 4: Results for the test problems

42

Appendix A. Inquiry functions

#include "minto.h"

#ifdef PROTOTYPING
void WriteFormulation (void);
char * ConvertCClass (int);
char * ConvertCType (int);
char * ConvertCInfo (int);
char * ConvertVClass (int);
char * ConvertVInfo (int);
char * ConvertStatus (int);
#else
void WriteFormulation ();
char * ConvertCClass ();
char * ConvertCType ();
char * ConvertCInfo ();
char * ConvertVClass ();
char * ConvertVInfo ();
char * ConvertStatus ();
#endif

1*
* WriteFormulation --

** WriteFormulation is an example of the use of the inquiry functions
* provided by MINTO to access the formulation in the current node
* of the branch-and-bound tree.
*1

void
WriteFormulation ()
{

int i, j;

print! (II\n\nCURRENT FORMULATION:\n");
printf ("OBJECTIVE\n");
for (inq_obj (), j = 0; j < info_obj.obj_nz; j++) {

printf (" Yef Yed\n", info_obj .obj_coef [j], info_obj .obj_ind[j]);

43

}

printf ("CONSTRAINTS\n");
for (inq_form (). i = 0; i < info_form.form_ccnt; i++) {

printf ("%d:\n". i);
for (inq_constr (i). j =0; j < info_constr.constr_nz; j++) {

printf (II %f %d\n". info_constr.constr_coef[j], info_constr.constr_ind[j]);
}

printf (II
printf (II
printf (II
printf (II
printf (II
printf (II

SENSE
RHS
CLASS
TYPE
STATUS
INFO

%c\n". info_constr.constr_sense);
%f\n". info_constr.constr_rhs);
%s\n". ConvertCClass (info_constr.constr_class»;
%s\n". ConvertCType (info_constr.constr_type»;
%s\n". ConvertStatus (info_constr.constr_status»;
%s\n". ConvertClnfo (info_constr.constr_info»;

}

printf ("VARIABLES\n");
for (i = 0; i < info_form.form_vcnt; i++) {

printf ("%d:\n". i);
for (inq_var (i). j = 0; j < info_var.var_nz; j++) {

printf (II %f %d\n". info_var.var_coef[j], info_var.var_ind[j]);
}
printf (II OBl %f\n". info_var.var_obj);
printf (II CLASS %s\n". ConvertVClass (info_var.var_class»;
printf (II STATUS %s\n". ConvertStatus (info_var.var_status»;
printf (II LB %f\n". info_var.var_lb);
printf (II UB %f\n". info_var.var_ub);
printf (II INFO LB %s\n". ConvertVlnfo (info_var.var_lb_info»;
printf (II INFO UB %s\n". ConvertVInfo (info_var.var_ub_info»;
if (info_var.var_vlb) {

printf (II VLB [%f. %d]\n".
info_var.var_vlb->vlb_val.
info_var.var_vlb->vlb_var);

}

else {
printf (II NO VLB\n");

}

if (info_var.var_vub) {
printf (II VUB [%f. %d]\n".

info_var.var_vub->vub_val.
info_var.var_vub->vub_var);

}

}

else {
printf (II

}
NO VUB\n");

44

printf ("\n");
}

static char *bs1u = "BIllSUM1UB";
static char *bs1e = "BIllSUM1EQ";
static char *bs1vu = "BIISUM1VARUB";
static char *bs1ve ="BIISUM1VAREQ";
static char *bsvu = "BIllSUMVARUB";
static char *bsve = "BIllSUMVAREQ";
static char *svu = "SUMVARUB";
static char *sve ="SUMVAREQ" ;
static char *vu = "VARUB";
static char *ve = "VAREQ";
static char *vl = "VARLB";
static char *mixu ="MIXUB";
static char *mixe = "MIXEQ";
static char *nbu = "llOBIllUB";
static char *nbe = "NOBINEQ";
static char *abu = "ALLBINUB" ;
static char *abe = "ALLBINEQ";

1*
* ConvertCClass --
*
* Convert the constraint class into a printable string.
*1

char *
ConvertCClass (class)
int class;
{

switch (class) {
case BINSUM1UB:

return (bs1u);
case BINSUM1EQ:

return (bs1e);
case BINSUM1VARUB:

return (bs1vu);
case BIllSUM1VAREQ:

return (bs1ve);
case BIllSUMVARUB:

return (bsvu);
case BINSUMVAREQ:

45

return (bsve);
case SUMVARUB:

return (svu);
case SUMVAREQ:

return (sve);
case VARUB:

return (vu);
case VAREQ:

return (ve);
case VARLB:

return (vl);
case MIXUB:

return (mixu);
case MIXEQ:

return (mixe);
case NOBINUB:

return (nbu);
case NOBINEQ:

return (nbe);
case ALLBINUB:

return (abu);
case ALLBINEQ:

return (abe);
}

}

static char *local = "LOCAL";
static char *global = "GLOBAL";

1*
* ConvertCType

** Convert the constraint type into a printable string.
*1

char *
ConvertCType (type)
int type;
{

switch (type) {
case LOCAL:

return (local);
case GLOBAL:

return (global);

46

}
}

static char *original = "ORIGINAL":
static char *genminto = "GENERATED_BY_MIliTO";
static char *genbranch = "GENERATED_BY_BRANCHING";
static char *genappl = "GENERATED_BY_APPL":

1*
* ConvertCInfo

*
* Convert the constraint status into a printable string.
*1

char *
ConvertCInfo (info)
int info;
{

switch (info) {
case ORIGINAL:

return (original):
case GENERATED_BY_MINTO:

return (genminto);
case GENERATED_BY_BRANCHING:

return (genbranch):
case GENERATED_BY_APPL:

return (genappl);
}

}

static char *cont = "CONTINUOUS";
static char *bin = "BINARY";
static char *integ = "INTEGER";

1*
* ConvertVClass --

*
* Convert the variable class into a printable string.
*1

char *
ConvertVClass (class)
int class:
{

47

..

switch (class) {
case CONTINUOUS:

return (cont);
case BINARY:

return (bin);
case I1TEGER:

return (integ);
}

}

static char *modminto = "MODIFIED_BY_MINTO";
static char *modbranch = "MODIFIED_BY_BRANCHING";
static char *modappl = "MODIFIED_BY_APPL";

1*
* ConvertVInto

*
* Convert the constraint status into a printable string.
*1

char *
ConvertVInfo (info)
int into;
{

switch (info) {
case ORIGINAL:

return (original);
case MODIFIED_BY_MINTO:

return (modminto);
case MODIFIED_BY_BRANCHING:

return (modbranch);
case MODIFIED_BY_APPL:

return (modappl);
}

}

= "ACTIVE";
"INACTIVE";

= "DELETED";

static char *act
static char *inact =
static char *del

1*
* ConvertStatus --

*
* Convert the constraint status into a printable string.

48

char *
ConvertStatus (status)
int status;
{

switch (status) {
case ACTIVE:

return (act);
case IXACTIVE:

return (inact);
case DELETED:

return (del);
}

}

49

Appendix B. Installation guide for MINTO with CPLEX as LP-solver

This distribution diskette of MINTO contains three files: readme, minto.a the MINTO library,
and minto.shr which contains all the other files in shar format. To install MINTO on your system
perform the following steps:

• Create a directory MINTO and switch to that directory.

• Copy the contents of the distribution diskette to this directory.

• execute '/bin/sh minto.shr'.

By this time the directory structure shown in Figure 2 has been created. The directory MINTO
now contains the readme file, a copyright notice, the documentation, and the MINTO library. The
directory APPL contains the sources of the default application functions plus all the examples
given in the documentation. The directory PROBLEMS contains the set of test problems. To
create an executable version of MINTO switch to the directory APPL and perform the following
steps.

Figure 2: The directory structure

• Modify the 'LIES= .. .' entry in makefile to reflect the situation on your machine, i.e., define
the full pathname of both the MINTO and CPLEX library.

• execute 'make'.

By this time an executable file minto should have been created. To test whether installation and
compilation has been succesful switch to the directory Problems and perform the following steps.

• Run the shell script 'bench'. (If necessary change the file type to execlltahle by 'chmod +x
bench'). The shell script invokes MINTO to solve the set of test problelH~ discussed in the
documentation. The output will be written to the file 'bench.out'. This will take about
ten minutes.

• Execute 'grep zopt BENCH.DOC' and 'grep zopt bench.out'. The optimal values for the
ten problems should be the same.

If installation has been unsuccesful, we suggest trying the above procedure again.

.50

t·

