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A Computational Method for
Segmenting Topological Point-Sets
and Application to Image Analysis

Stiliyan N. Kalitzin, Joes Staal, Bart M. ter Haar Romeny, Senior Member, IEEE, and Max A. Viergever

AbstractÐWe propose a new computational method for segmenting topological subdimensional point-sets in scalar images of

arbitrary spatial dimensions. The technique is based on calculating the homotopy class defined by the gradient vector in a

subdimensional neighborhood around every image point. This neighborhood is defined as the linear envelope spawned over a given

subdimensional vector frame. In the simplest case where the rank of this frame is maximal, we obtain a technique for localizing the

critical points, i.e., extrema and saddle points. We consider, in particular, the important case of frames formed by an arbitrary number

of the first largest by absolute value principal directions of the Hessian. The method then segments positive and and negative ridges as

well as other types of critical surfaces of different dimensionalities. The signs of the eigenvalues associated to the principal directions

provide a natural labeling of the critical subsets. The result, in general, is a constructive definition of a hierarchy of point-sets of different

dimensionalities linked by inclusion relations. Because of its explicit computational nature, the method gives a fast way to segment

height ridges or edges in different applications. The defined topological point-sets are connected manifolds and, therefore, our method

provides a tool for geometrical grouping using only local measurements. We have demonstrated the grouping properties of our

construction by presenting two different cases where an extra image coordinate is introduced. In one of the examples, we considered

the image analysis in the framework of the linear scale-space concept, where the topological properties are gradually simplified

through the scale parameter. This scale parameter can be taken as an additional coordinate. In the second example, a local orientation

parameter was used for grouping and segmenting elongated structures.

Index TermsÐDifferential topology, critical point-sets, ridges, image analysis, scale space.

æ

1 INTRODUCTION AND RELATED WORKS

IN this paper, we introduce a topological quantity that
characterizes the neighborhood of every pixel in scalar

images of arbitrary spatial dimensions. This quantity is an
integer number that can single out critical points such as
extrema and saddle points. It can also be generalized to
define the membership of the point to extended subdimen-
sional structures such as ridges or edges. The topological
homotopy class number was introduced in [7], [8], [9] in
relation to its importance for the deep-structure image
analysis and application to multiscale segmentation. In its
essence, this number reflects the behavior of the gradient
image vector in a close neighborhood around the given test
point. In the simplest one-dimensional case, the topological
class of a point is defined as the difference of the sign of the
signal derivative taken from both sides of the point. Clearly,
this number is zero everywhere except in the local extrema.

The proper generalization to higher dimensions is

provided by the homotopy class �Dÿ1�SDÿ1� that

parameterizes the space of nonequivalent (nondeformable

smoothly into each other) mappings between two
Dÿ 1 dimensional spheres (D is the number of dimen-
sions of the image). The mapping is defined by the
normalized gradient vector taken on a closed surface
(homotopic to a sphere) surrounding the test point. One
can show that the set of nonequivalent mappings for
D > 1 can be labeled with an integer number. This is
particularly evident in the D � 2 example, where the
topological number reduces to the well-known winding
number [10], indicating the number of times the gradient
vector rotates around its origin when a point is
circumventing the test point. Extrema points have wind-
ing number �1, saddle points are with winding
number ÿ1, and, for regular points, the number vanishes.
A detailed discussion on the 2D case is presented in [7]
and, in the next section, we give a concise summary of
the construction as well as of its generalization to
arbitrary image dimensions.

The main advantage of using homotopy classes for
localizing singular points lies in their explicit and con-
structive nature. In finding the zero crossings of a real
function, for example, the only sensible task would be to
find the intervals where the function changes sign. The size
of these intervals is the precision with which we are
searching for the zero crossings. Our topological construc-
tion is, in many aspects, analogous to this generic example.
The size of the neighborhood (the closed surface) around
the test image point is the spatial precision with which we
want to localize the singular point. Therefore, our method is
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a natural generalization of interval calculus to higher
dimensional signals.

Another advantage of the proposed quantity is its
nonperturbative nature. To compute the homotopy class
of a point, we do not need to know the values of any set of
derivatives in the point. We only sum certain quantities
(differential forms) around the given image location. The
quantity is additive, so the total topological number
surrounded by a given surface is the sum of the topological
number of all image points inside. This feature enables the
selection of the neighborhood size as the singularity
resolution parameter and makes the whole construction
well-posed.

In addition to segmentation of critical points, the method
is extended in this paper for localization of points lying on
relative critical sets. To this end, we introduce a relative
homotopy class of a given test image point defined as the
homotopy class calculated on a linear subspace in the
neighborhood of the test point. This subspace can be
defined as a linear envelope spawned over the vectors of
a given vector frame field. A particularly important case is
that of the frame formed by a subset of the eigenvectors of
the Hessian (the matrices of the second image derivatives).
In this case, we obtain a constructive definition for
topological ridges. We can classify such a point-set by the
number of the Hessian eigenvectors forming the subspace
and by the signs of the corresponding eigenvalues. We
show in the paper that our definition is equivalent in some
particular cases to the definitions given in [2], [3], [4], [11],
[15]. In the last works, the point-sets are defined implicitly
and, here, we propose a direct computational technique that
segments the point-sets explicitly. In addition to ridges, we
can define other particular relative critical sets by using any
globally biased frame field where a number of vectors are
chosen independently of the image structures.

Another interesting case is the hyperdimensional critical
set defined relative to the gradient vector itself and
segmented by the zero-crossings of the second derivative
in the direction of the gradient. This point-set can be
interpreted as a topological edge.

Critical points and ridges play an essential role in
uncommitted image analysis, as revealed in [12], [13].
Similar topological structures were studied in the context of
multiscale image analysis [6], [14], [16], [18]. They form a
sort of a topological back-bone on which the image
structures are mounted. One specific feature of our
construction is that it relies on quasi-local image properties.
This distinguishes it from the watershed model [18].

The rest of the paper is organized as follows:
In Section 2, we remind the reader of the basic definitions

and properties of the topological feature introduced in [7],
[8] that enable localizing singular points in gray-scale
images. Section 3 extends the latter definitions to the
concept of critical point-sets of higher subdimension. We
introduce a classification of these critical sets that can be
relevant for image analysis. In particular, we define relative
critical point-sets defined by the local Hessian. These point-
sets can be interpreted as topological ridges of various
signature. Further, we consider another class of critical
point-sets that can be interpreted as topological edges. In

Section 4, we present some examples in various image
dimensions. The technique is applied either to the original
image or to an expanded data-space built over the image.
We consider the case of a scale space image representation
and the case of an orientation space representation. We
show that our method further provides a tool for structural
grouping when applied to expanded image representations.
Section 5 compares our results with those obtained from an
alternative definition for ridges. We summarize in this
section the applicability of the method, possibly in con-
junction with other techniques, to segmentation tasks in
image processing. The main conclusions of this work are
summarized in Section 6. Finally, our discrete implementa-
tion of the method is outlined in the Appendix.

2 HOMOTOPY NUMBERS

We start this section with two simple and intuitive
examplesÐthe set of critical points in one- and two-
dimensional signals (images). The purpose of these exam-
ples is to provide an inductive basis for generalizations in
images of arbitrary dimension.

A critical point of aD-dimensional imageL�x1; . . . ; XD� is a
point where the gradient vector @iL�x1; . . . ; XD�; i � 1; . . . ; D
vanishes. In the one-dimensional case, this is a point where
the first derivative makes a zero crossing. To localize such a
point, it is enough to consider, in the one-dimensional case,
the difference �P � sign�@xL�B ÿ sign�@xL�A for any A;B :
A < P < B in the close vicinity of a test point P . Obviously,
the zero crossings of the signal derivative are the points where
the latter changes its sign and, therefore, can be characterized
with the condition �P 6� 0. Moreover, because in 1D-signals
critical points are either minima or maxima, �P � 2 indicates
that in the neighborhood of P lies a minimum and �P � ÿ2
indicates that in the neighborhood ofP lies a maximum of the
signal. The size of the interval �A;B� defines the precision with
which we want to localize the critical point. If we consider the
above quantity ��x� for all signal pointsx, then we will obtain,
roughly speaking, the distribution of the critical points for the
whole signal.

The same procedure is far less trivial in the case of a two-
dimensional image L�x; y�. To localize the spatial locations
where the image gradient @xL; @yL vanishes, we can
consider the winding number [10]:

�P �
I
C

�LxdLy ÿ LydLx�; �1�

where the integral is taken along a closed curve surround-
ing the test point P . The expression in the integral in (1) is
the infinitesimal angle of rotation of the gradient vector as
the integration goes along the curve C. It is not difficult to
see that, if the contour C encompasses an extrema point
(minimum or maximum), the quantity (7) takes value �2�.
If a saddle point is enclosed by C, then �P � ÿ2�. These two
cases are illustrated in Fig. 1.

In degenerate saddle points, also called ªmonkey
saddles,º the topological number is ÿ2�nÿ 1��, where n
is the number of ridges or valleys converging to the point.

In the same way as in the one-dimensional case, by
computing the quantity (1) for all image points, we can
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obtain another image containing information about the

positions and the type of the critical points in the original

gray-scale image. The spatial precision in this case is

determined by the size of the area surrounded by the

contour C.
Formula (1) is the starting point for higher dimensional

extension of the concept of winding number. In [7], we give

self-contained definitions of our quantities as well as a

detailed proof of their essential properties. Here, we present

the highlights of the construction and introduce some brief

notations from the theory of homotopy groups [17] that

provide the natural basis for the introduction of a

topological number associated to any singular image point.
Suppose P is a point in the image (singular or regular)

and VP is a region around P which does not contain any

singularities except possibly P . Now, we will define a

quantity characterizing the image in the surrounding of the

point P . Let SP be a closed hypersurface, topologically

equivalent to a Dÿ 1-dimensional sphere such that it is

entirely in VP and our test point P is inside the region WP

bounded by SP . In other words,

P 2WP : SP � @WP : �2�
Because, by assumption, there are no singularities in

SP 2 VP , the normalized gradient vector field

�i � @iLP
j �@jL@jL�1=2

; �3�

Li � @iL; �4�
is well-defined on the surface SP .

The space of all unit-length D-dimensional Euclidean

vectors is isomorphic to the Dÿ 1-dimensional sphere of

unit radius S
�Dÿ1�
1 . Therefore, the vector field �i defines a

mapping

SP ! S
�Dÿ1�
1 :

But, recalling that SP is a manifold homotopic to

a Dÿ 1-dimensional sphere, we see that the above mapping

can be classified by an element of the homotopy group

��Dÿ1��S�Dÿ1��. This group comprises all homotopically

nonequivalent mappings between two Dÿ 1-dimensional

spheres. It is known that ��Dÿ1��S�Dÿ1�
1 � � Z, which is the

Abelian group of all integer numbers (where addition is the

group operation). We can characterize the vector field �i on

the surface SP taken around the chosen point P by the

homotopy number (the element of ��Dÿ1��S�Dÿ1��) of the

mapping it defines. This number � is independent of the

surface SP as long as SP 2 VP since then the surface does

not surround singularities other than possibly P . Therefore,

the defined local topological number � characterizes only

the image neighborhood of the point P and not the

hypersurface on which it is measured.
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Fig. 1. (a) Graph of a synthetic 2D image with minimum in �0; 0� described analytically as L�x; y� � x2 � y2. (b) The gradient vector field is
represented as a lattice of small black arrows, the integration contour C is the green circle, and, at the 16 running integration positions (red circles),
the gradient vector is represented as a red arrow. It makes a 2� rotation around the contour. (c) Graph of a synthetic image with a saddle point in
�0; 0� described analytically as L�x; y� � x2 ÿ y2. (d) The same as in (b) but for the saddle point image. The gradient vector returns in its original
position after a ÿ2� turn.



To make the above ideas computationally explicit, we
first give the operational definition of the quantity �:

Definition 1. Let L�x� : RD ! R be a differentiable
D-dimensional scalar image represented by its gray-scale
function with at most isolated singularity points. At a
nonsingular pointA � �x1; . . . ; xD�, we define a �Dÿ 1� form:

��A��
X
i1...iD

Li1dLi2 ^ � � � ^ dLiD�i1i2...iD

�
X
i1...iD

�i1d�i2 ^ � � � ^ d�iD�i1i2...iD
�5�

�i1i2...ik...il...iD � ÿ�i1i2...il...ik...iDfor any l 6� k; �12...D � 1: �6�

Definition 2. With the same conditions as in Definition 1, let S
be a closed �@S � 0�, oriented hypersurface. If there are no
singularities on S, then we define the quantity:

�S �
I
A2S

��A�: �7�

The integral above is the natural integral of a �Dÿ 1� form
over a �Dÿ 1�-dimensional manifold without border.

An important property of the �Dÿ 1� form � is that it is a
closed form or:

Proposition 1.

d��A� � 0: �8�

The above property of the form (5) is essential for the
applications of the topological quantity (7). If W is a region
where the image has no singularities, then the form � is
defined for the entire region W and we can apply the
generalized Stokes theorem [1], [5]:I

@W

��Dÿ1� �
Z
W

d��Dÿ1� � 0; �9�

because of (8). Therefore, we obtain

Corollary 1. If the gray-scale function L�x� has no singularities
in a given region W , then the topological quantity (7) is
identically zero.

Consider now a smooth local deformation of the surface S. If
no singularities are crossed by S in the process of this
deformation, then the region swept by the surface will be free
of singularities and, therefore, the topological number on its
border is zero. But, the border of this region is composed
exactly of the initial surface, with its orientation inverted, and
the deformed surface. It is easy to see that (7) is additive or, in
other words, �S1[S2

� �S1
� �S2

, where S1 and S2 are two
hypersurfaces. The integral defining �S obviously changes its
sign when changing the orientation of the surface of
integration. Therefore, the quantity (7) on the initial and the
deformed surfaces is equal as their difference is zero. This
leads to the property that the topological number (7) is
invariant under smooth deformations of the hypersurface S
as long as no singularities are crossed by the boundary. The
last property justifies the term ªtopologicalº that we assign to

the quantity �S . It depends on the properties of the image in
the region whereS is placed, but, in general, not on the surface
S itself. More precisely, the topological number depends only
on the number and type of singularities surrounded by the
surface S. From an implementation point of view, the
topological nature of the quantity (7) allows the computation
to take place on any surface around the test point.

Topological numbers �P can be associated with every
point of the image if, in (7), S is any closed oriented
hypersurface taken closely around a test point P . The
surface S must be close to P in order to ensure that no other
singularities are surrounded. It is clear from Proposition 1
and the integral Stokes' theorem, however, that the
topological number of a nonsingular point is zero. If we
plot the value of �P in every point of an image, we will
obtain a map of the singularities of the image representing
their topological ªcharge.º We can go one step further and
define a scalar density field, ��x1; x2; . . . ; xD�, that gives the
distribution of the topological singularities in a given image.
The point-set is defined as the set of locations (pixels) where
� 6� 0 will give the set of all singular points in the image.
Examples for this construction in different spatial dimen-
sions were presented in the beginning of this section and
can be found in more detail in [7].

In [8], we present in detail the mechanism of grouping of
the singularities in strings when scale evolution is con-
sidered. Topological numbers defined with (7) play an
essential role in understanding the evolution of singularities
across scale. As a consequence of a ªconservation law,º
singularities preserve their topological numbers while
drifting across scale as long as they do not come infinitely
close to other singularities.

3 CRITICAL SETS RELATIVE TO VECTOR

SUBFRAMES

3.1 General Construction

In what follows, we extend the definition of a local
homotopy number by introducing suitable linear subneigh-
borhoods around every image point. The new idea is to
select, at every image point P , a local linear subspace KP and
to project the gradient vector Li � @iL onto it:

L��x� �
X
i

hi��x�Li�x�: �10�

Here, hi�; � � 1; . . . ; DK are the local frame vectors defining
the linear subspace K with dimension DK < D.

The next step is to compute the relative homotopy number

in point P 2 RD in analogy with (7).

Definition 3. The topological charge in point P relative to the
local subframe h� is

�P �KP � �
I
A2SP ;SP2KP

��A�; �11�

where now the closed surface SP around P is of dimension

DK ÿ 1 and lies in the subspace KP � LE�h��P ��, where

LE�� stands for linear envelope. The �DK ÿ 1� form � is

computed as in (5), but from the vector field (10).
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We assume that the set of vectors h��P �; � � 1; . . . ; DK is of

maximal rank DK and, therefore, the local linear space KP

is of dimension DK .
Now, we define our central construct, the topological

critical set, relative to the subframe h.

Definition 4. Let h�x� be a local nondegenerate subframe of

dimension (rank) DK and let the local linear envelope of this

frame be Kx. The point-set

PS�h� : fx;x 2 RD; �x�Kx� 6� 0g �112�
is the relative critical point-set (RCPS) associated to the local

frame h.

From the property of the topological number given

in Corollary 1, Definition 4 implies L��P � � 0 when

P 2 PS�h�. Therefore, our RCPS are equivalent to those

defined in [2], [3], [4] for the same frame fields.
It is clear that if DK � D, i.e., if the local subframe is

complete, the relative homotopy class (11) is just the full

homotopy class. The manifold defined in Definition 4 will

then be of dimension 0. In fact, this set is the set of all critical

points in the image.
In addition to the feature that the topological number

(11) is nonzero, the RCPS can be characterized by the value

of this number and, eventually, by some characteristic

properties of the subframe h.
Now, we address the question of the local topological

structure of the RCPS associated with an arbitrary subframe

hi�. We show in what follows that:

Proposition 2. If point P belongs to the relative critical point-set

from Definition 4 and if the Hessian in P is nonsingular, then

the point-set is locally isomorphic to a linear space of

dimension DÿDK .

The following proof uses some techniques from differential

geometry that provide adequate covariant formalism.

Proof 1. Let the subframe hi�; � � DÿDK � 1; . . . ; D be

chosen in such a way that the system of vectors h�; h�
represents a complete frame in the D-dimensional space

of the image and
P

I h
i
�h

i
� � 0 for all �; � from the

corresponding ranges. If the point P belongs to the RCPS

defined by the subframe h�, then, obviously,

L� �
P

i h
i
�@iL�P � � 0. If P has coordinates xi, then the

infinitesimally close point with coordinates xi � �xi will

belong to the same RCPS if
P

A �x
ArAL� � 0, where the

index A takes all values of 1; . . . ; D; �xA �PI �hÿ1�Ai �xi
andrA is the covariant derivative induced by the frame hA
(such that rAhB � 0). Applying these notations, we

obtain the following equation for the variation �xi:X
i;j

�xihj�@i@jL�P � � 0: �13�

Using the completeness of the system hA and the

orthogonality between h� and h�, we obtain:X
I

�xi@i@jL�P � �
X
�

C�hj�; �14�

where C� are DÿDK arbitrary constants. If the Hessian
Hij � @i@jL�P � is nonsingular, it can be inverted giving
the following form of the RCPS coordinate variations:

�xi �
X
i;�

�Hÿ1�ijhj�C�: �15�

Clearly, the system gi� �
P

j �Hÿ1�ijhj� has rank DÿDK

as it is obtained by a nonsingular linear transformation
from the subframe h�. Therefore, the variations in (15)
belong to the DÿDK dimensional linear envelope over
the subframe g�. tu

The above proposition motivates the introduction of RCPS
as topological manifolds. It is clear from the proof that
these manifolds are continuous for all points where both
the image Hessian and the subframe are defined and
nonsingular.

In the following section, we give some important
examples of RCPS associated with a subset of the principal
eigenvectors of the local Hessian.

3.2 Definition and Detection of Topological Ridges

Let the local Hessian field Hij � @i@jL�x� have eigenvalues
�1; . . . ; �D with corresponding eigenvectors h1; . . . ; hD. We
can assume that the eigenvalues are labeled in decreasing
order of their absolute values: j�1j > � � � > j�Dj. There are
different ways to select a subset of eigenvectors to form the
subframe h in Definition 4. In what follows, the following
definition is most suitable for the interpretation of the RCPS
as height ridges and their generalizations.

Definition 5. A topological ridge setR�m�;mÿ��L� of co-dimension
m� �mÿ � DK is defined as an RCPS associated with the
Hessian eigenvectors h1; . . . ; hDK

corresponding to the DK

largest by absolute value of the eigenvalues ��; � � 1; . . . ; DK .
Excluded are points where the Hessian is degenerate so that there
is no unique set of ��. In the thus defined point-set, only those
points are included where there are exactly m� positive and
mÿ negative Hessian eigenvalues.

This definition puts a natural label on the topological ridge.
For example, if m� � 0; DK � mÿ, we obtain a classical
height ridge, if mÿ � 0; DK � m�, we have a valley. In the
general cases where m� 6� 0;mÿ 6� 0, we can talk of ªsaddle
ridges.º The definition extends the DK � D case where the
ridge is of dimension zero. Then, we have the possibilities
of maxima, minima, and saddle points of different
signature. Note that the classification implied by
Definition 5 is richer than the one induced from the value
of the topological number alone. For nondegenerate critical
points, the homotopy class is equal to the sign of the
determinant of the Hessian (see detailed proof in [8]).
Obviously, a lot of different signatures discriminated by
Definition 5 will have the same homotopy number.

As a consequence from Proposition 2, the topological
ridges are manifolds of dimension DÿDK . In this case, the
vectors h� are eigenvectors of the Hessian and we can
choose the frame h�; h� from Proof 2 to be the entire system
of eigenvectors of Hij (and, therefore, also of �Hÿ1�ij).

In the case of topological ridges, we have
P

j Hijh
j
� �P

� ��h
i
� for all � � 1; . . . ; DK and, therefore, (13) takes

the form:
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��
X
i

�xihi� � 0: �16�

It is easy to see that if �� 6� 0 for all �, then (15) now takes
the simpler form:

�xi �
X
�

hi�C�: �17�

Therefore, in addition to general RCPS properties, the
topological ridges are locally orthogonal to the vector
system h�.

A different definition may include the eigenvectors
corresponding to the first DK eigenvalues of the Hessian
ordered by their signed value. Such a scheme is extensively
studied in [2]. The corresponding classification in that case
will partially overlap with ours, namely, for the cases of
Rm;0 and R0;m RCPS (strict positive or strict negative ridges).
For the mixed signatures, the two schemes will segment out
different topological manifolds. We note that our general
constructive approach from Definition 4 can be used for
both of the definitions. A comparison of the different vector
frame field choices and their relations will appear in a
forthcoming publication.

3.3 Inclusion Hierarchy of Ridges

A direct consequence of the definition of topological ridges
as relative critical sets is the relation:

m� � m0�;mÿ � m0ÿ ! R�m�;mÿ��L� 2 R�m0�;m0ÿ��L�: �18�
The importance of this inclusion is discussed in the next
section, where it provides a way for detection of both
critical lines and their annihilation points in one-dimen-
sional signals. Another practical application includes
detection of the optimal scale for elongated image struc-
tures and simultaneously establishing a link to the finest
scale.

3.4 Topological Edges

In order to illustrate our geometrical construction, we
modify Definition 5 to localize edges or borders between
gray-scale objects in images. A trivial approach to this issue
would be to define the system of edges as the point-set R0;1

taken on the gradient magnitude jrL�x�j of the image L�x�.

This construction can be useful, but it involves higher order
differentials (the Hessian of the gradient will contain third
order derivatives of the original image), so we can propose
a second order alternative.

Definition 6. A topological edge is the point-set E�L�, where the
quantity

��x� �

sign
X
i;j

�i�jHij�x� ���
 !

ÿ sign
X
i;j

�i�jHij�xÿ ���
 !

�19�
is equal to ÿ2. Here, Hij is the local Hessian tensor, �i is the
normalized gradient vector as in (5), and � is a small constant
defining the precision with which we want to localize the edge.

In fact, (19) is just the difference in sign of the second
derivative in the direction of the gradient. In our notation, we
interpret the topological edge as a RCPS defined by the one-
dimensional vector frame constituted by the gradient field.

4 EXAMPLES OF RCPS IN IMAGES

Here, we present different instances of the point-sets
Rm�;mÿ�L� and E�L�.

The first example, presented in Fig. 2, illustrates both the
concept of the one-dimensional homotopy number and the
scale-space evolution properties of the corresponding point-
sets (the sets of critical points in this case). All possible cases
are summarized in Table 1. The RCPS in this case are
discrete point-sets that consist of all maxima R0;1 and all
minima R1;0.
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Fig. 2. (a) One-dimensional signal of 256 data points. (b) Scale space evolution of the one-dimensional topological number. The vertical axis

represents the scale parameter. Light and dark lines represent evolution of maxima and minima respectively. Both types of singular points annihilate

at catastrophe points.

TABLE 1
The Possible Point-Sets for One-Dimensional Signals

An ªxº stands for an impossible configuration.



The second example uses the same input as in Fig. 2 but,
instead of tracing the scale-space evolution of the critical
points, we regarded the whole scale-space of the original
signal as a two-dimensional signal (the second dimension is
the scale). We can then localize the ridgesR1;0,R0;1 as well as
the 2D critical point-sets R2;0 [R0;2 (this is the set of all
extrema) andR1;1 (the set of all saddle points). For a listing of
all cases, refer to Table 2. We see that the inclusion property
(18) assigns the set of saddle points as the set of annihilation
points for the 1D critical trajectories in Fig. 2, whereas they
appear as 2D positive and negative ridges in Fig. 3.
Noticeably, there are no extrema points (R2;0 or R0;2) in this
figure. The reason is that the linear diffusion that generates
the scale-space of the signal does not create new minima or
maxima beyond the initial scale. This also implies that the
linear diffusion does not allow for scale selection.

An example where all relative point-sets are present can
be obtained by taking the natural derivatives of the
1D signals and their scale evolution. This means that new
maxima and minima can be created beyond the initial scale,
allowing for scale selection. We illustrate this with a
1D signal from which we take the natural second derivative
across scale and look, as in the previous case, at the two-
dimensional critical point-sets of this scaling derivative.
Natural derivatives are dimensionless derivatives, which
allows for comparing derivatives of different orders, since
their dimension is equal. They are defined by multiplying
the normal derivative by the scale

@i � �@i; �20�
with @i the natural derivative and � � ��

t
p

the scale.
Fig. 4 shows the point-sets for the second natural

derivative of the one-dimensional signal of Fig. 2. We see
that the local maxima and minima are subsets of the ridges

and valleys, as was stated in (18). Most of the saddle points
are annihilation points of the ridges and valleys. Saddle-
points on a ridge are local minima in the direction of the
ridge, i.e., the direction of the eigenvector of the smallest
absolute eigenvalue. On a valley, they are local maxima in
that direction.

We see in Fig. 4 that all possible point-sets as classified in
Table 2 occur. The local maxima and minima points, R0;2

and R2;0, serve as scale selectors, the points at which
maximum responseÐin the absolute senseÐof the filter is
found. These points are an indication of the scale at which
structure in the original signal is observed. Via the ridge or
valley to which an extremum belongs, we can trace back to
the finest scale, which restores the location of the local
structure. Since we have taken the second derivative, this
will be a needle-like structure. For large scales, the positive
and negative ridges annihilate each other in saddle points.
These points select the scale up to which structure exists,
i.e., up to which scale it can be observed.

In the last two examples, the 2D technique was used in
the scale-spaces generated by a one-dimensional signal.
The complete relative critical set system of a 2D image is
given in Fig. 5. Note the inclusion relations between the
different RCPS.

Now, we turn to the 3D case. The possible RCPS are
listed in Table 3. Note that, in this case, we have ridges of
two different dimensionalities representing correspond-
ingly surfaces and strings. The saddle points are also of
two possible types: R2;1 and R1;2.

As an example of the topological method in 3D, we
analyze the 3D scale-space built over a two-dimensional
image of an anisotropic Gaussian blob with �x � 5:0 and
�y � 35:0 pixels, see Fig. 6a. We computed the scale space of
this image, i.e., we blurred it with a two-dimensional
Gaussian filter, for 64 scales, running exponentially from 1:0
to 20:0 pixels. The only critical sets we can find from the
scale space are surfaces and strings. Local extrema (R0;3 and
R3;0) cannot be found, as was the case in the two-
dimensional scale space example (Fig. 3), because of the
attenuation of the diffusion equation. In Fig. 6b, we show, in
blue, the positive surface of the scale space of Fig. 6a and, in
green, the string of maxima. These are the only critical
subsets that can be found for this image. Note that, on a
fixed scale, the positive surface is nothing more than the
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TABLE 2
The Possible Point-Sets for Two-Dimensional Signals

An ªxº stands for an impossible configuration.

Fig. 3. For the same 1D signal as in Fig. 2a, we first build the scale-

space and then localize the ridges (white) and valleys (black) and the

singular saddle points (blue).

Fig. 4. The topological point-sets for the second natural derivative of the
1D signal of Fig. 2. White corresponds to positive ridges, black to
negative ridges, blue to saddle points, green to maxima, and purple to
minima.



two-dimensional ridge and that the string of maxima is the

local maximum of the blob at that scale.
In Fig. 6d, we have depicted the sets R0;1, positive

surface, R1;0, negative surface, R0;2, string of maxima, and

R2;0, string of minima of the natural Laplacian of the blob.

The natural Laplacian is the operator �2�. The middle

surface has become a negative surface in comparison to

Fig. 6b because the main lobe of the second derivative of the
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Fig. 5. (a) An MRI 256� 256 sagittal image of a human head. (b) Complete set of 2D positive ridges (red) and negative ridges (blue), edges (green)

and singular points (extrema: yellow, saddle points: purple). The calculations are done for a spatial scale of two pixels. (b) A 64� 64 fragment of the

original image is superimposed with the corresponding RCPS.

TABLE 3
The Possible Point-Sets for Three-Dimensional Signals

An ªxº stands for an impossible configuration.

Fig. 6. (a) A two-dimensional anisotropic Gaussian blob with �x � 5:0 and �y � 35:0 pixels. (b) The positive surface (blue) and the string of maxima
(green) of the blob in scale space. At the bottom of the box, we have shown the blob again. The scale runs exponentially in 64 steps from 1:0 to 20:0
pixels upward in the figure box. The image was 128 pixels square. (c) The natural Laplacian of the blob at a scale of 1:0 pixel. (d) Positive surfaces
(brown) of the natural Laplacian of the blob in scale, negative surface (blue) of the natural Laplacian of the blob in scale, strings of maxima (dark
green, on the positive surface), and strings of minima (light green, on the negative surface). (e) Negative surface (blue) of the natural Laplacian of the
blob in scale, strings of minima (light green), and a local minimum (red).



Gaussian is negative. The positive surfaces are due to the
second derivative. The strings of maxima are subsets of the
positive surface, cf. (18).

For clarity, we have shown, in Fig. 6e again, the negative
surface and the strings of minima and added the set R3;0, a
local minimum, which was invisible in Fig. 6d because of the
positive surfaces. As with the positive strings, the strings of
minima are subsets of the negative surface, whereas the local
minimum is a subset of the negative strings. Going from small
scales to large scales, we see two strings start at the endpoints
of the Laplacian of the blob. For increasing scales, they start to
converge to the middle. In the same scale range, we seea string
at the middle which is oriented in the scale direction. Then, we
have a scale range in which no strings are found because the
scale space structures interfere with each other and it is no
longer possible to define a local coordinate frame based on the
Hessian. For still larger scales, we find a primarily horizontal
string, marking the optimal scale at which the negative part of
the Laplacian of the blob can be detected. On the horizontal
string, we find, in red, a local minimum. For the larger scales,
three strings start to disperse for increasing scale, the middle
one being vertical. If we extrapolate the small scale vertical
string upward, i.e., to larger scales, and the large scale vertical
string downward, theyconnect andcross the horizontal string
in the local minimum, which is the optimal minimum with
respect to scale.

As a final set of examples, we show how we can
introduce model information by choosing a particular local

vector frame instead of the local Hessian frame field from
the general Definition 4. We will concentrate on the
detection of elongated structures in two-dimensional
images.

First, we show an example of a synthetic two-dimen-
sional image of horizontal bars, see Fig. 7. Clearly, this
image has two optimal scales at which elongated structures
can be detected. At small scales, we perceive the horizontal
bars separately, but, at larger scales, they will be grouped
into a vertical line. If we would use the natural Laplacian
for building a scaling representation of the image, we could
compute the one-dimensional RCPS for detecting these two
types of structures, but, in such a construction, we would
also detect vertical strings representing the scale evolution
of the local extrema and saddle points of the two-
dimensional image. To suppress the vertical strings, we
have selected the two-dimensional frame field h�x� from the
general Definition 4 with one of the vectors fixed in the
direction of increasing scale. The other frame vector is
determined by the largest absolute eigenvalue of the
Hessian in the xy-plane. We refer to these strings as scale
space strings. Clamping one of the frame vectors in the
direction of the scale parameter is a natural choice for
detecting elongated structures of two-dimensional images
in scale space. It is dictated by the interpretation of the final
result as elongated structures in the original image lifted to a
certain scale. This scale we can interpret as the optimal scale
of response for the corresponding structure.

Fig. 7a shows the scale space strings of the right image. For
small scales (bottom of the box), we find the horizontal bars
whereas, for larger scales, they are grouped on a vertical line.

The following example is a two-dimensional fundus
reflection image from a scanning laser ophthalmoscope, see
Fig. 8, in which we want to detect the vessels of the retina at
their optimal scale, i.e., we want to detect two-dimensional
elongated structures at their optimal scale. To this end, we
have segmented out the scale space strings of the natural
Laplacian, as discussed in the previous example. Fig. 8a
shows in green the scale space strings which detect the
elongated structures at their optimal scale in scale space.

Another way for detecting elongated structures in two-
dimensional images can be provided by local orientation
analysis. With any gray-scale 2D image, we can associate an
3D orientation bundle given as:
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Fig. 7. (a) An image of 64� 128 pixels with bars of 11� 3 pixels. The
bars are separated by two pixels. (b) The scale space strings of the
natural Laplacian of (a). The scale runs exponentially from 1:0 to
10:0 pixels in 32 steps.

Fig. 8. (a) Vessel structure of the retina. (b) Scale space strings (green) of the natural Laplacian of (a). We fixed one vector of the local frame field in

the direction of increasing scale.



F �x; y; �� �
Z
dx0dy0��xÿ x0; yÿ y0; ��L�x0; y0�; �21�

where ��x; y; �� is any orientation filter. In such a
representation, the bundle can be regarded as a 3D signal
in the space �x; y; ��.

A natural choice for the frame field in this case is a
2D vector subframe in which one of the vectors is always in
the direction of angular changes, i.e., in the vertical
direction, and the second vector points in the direction
perpendicular to the angle at the point �x; y; ��, i.e.,
�ÿ sin �; cos �; 0�, since maximal response for an elongated
structure is to be expected along the direction of the
orientation filter.

In the following examples, we have chosen as the
orientation filter an anisotropic Gaussian kernel with a scale
of 1:0 pixel along the short axis and 8:0 pixels along the long
axis. In Fig. 9, we depict the positive strings relative to the
above-defined two-dimensional vector frame for an image of
two crossing lines. The angle runs from 0 to � in 32 steps.

We clearly see that the two lines ªunsplitº in the
orientation bundle. They cross at the same space position,
but at different angles. We have only computed the bundle
for � 2 �0; �� because of the �! �� � symmetry of the filter.

Finally, in Fig. 10, we present the same analysis as in
Fig. 10 but for another fundus reflection image. In Fig. 10a,
we show all the positive strings that were computed. In
Fig. 10b, we show the 22 longest strings. Both images clearly
show the unsplitting in orientation space of crossing
structures.

5 APPLICABILITY AND VALIDATION OF THE METHOD

The introduced method is based on the constructive
Definition 4 of the RCPS and, therefore, there is no need
for intrinsic validation of the scheme. Any data point that
obeys the definitive condition belongs to the set and vice
versa. Different RCPS definitions can, of course, lead to
different point-sets, but each one of the latter will be
consistent with its own definition.

However, an important validation question arises in
relation to the interpretation of the RCPS of various signature
as specific image properties with perceptual significance.

Such a correspondence will justify (or deny) the application
of these mathematical constructions in real image analysis.

RCPS represent, in general, subdimensional structures in
images such as one-dimensional string-like structures
(catheters, blood vessels, etc.) or two-dimensional surface
types of structures (edges, fault surfaces in seismic data,
etc.). If a given image feature can be modeled or approximated
with such structures, then the RCPS method can applied
successfully.

We show an example in Fig. 11 from a real clinical
application where a dense network of blood-vessels in
optical image of human retina has to be segmented before
laser treatment. We simplify the problem by first modeling
the blood-vessels as one-dimensional structures and ap-
proximate them with their center luminance line. In a later
stage (not reported here), we attach a width to these
elongated structures. It is easy to see from the result in
Fig. 11b that the sensitivity of the system of ridges when
used to represent the center lines of the blood vessels is
nearly 100 percent. At the same time, the specificity of the
method is low because not all of the ridges, in fact, very few
of them, represent actual blood vessels. The system of
ridges serves as a superset from which one has to recognize
and select those ridges corresponding to segments of blood
vessels. The description of the methods used to do this goes
beyond the scope of the present paper. After applying a
neural network classifier, we have obtained the final result
in Fig. 11c.

To generalize, the proposed method of building the RCPS
in a given application can be used successfully only in
combination with preprocessing stages (such as image
regularization) and postprocessing filtering or classification.
Therefore, it is difficult to assess the performance of our
technique as a standalone method. The above external
validation can distinguish between different critical point-
set definitions and their relevance for image processing tasks.
We compare our method to the definition of ridges used by
Eberly et al. [4], [3] and, recently, by Miller [15] and Keller [11].
In the later approaches, when applied to 2D images, positive
ridges are defined as the point-set where the gradient vector is
orthogonal to the principal direction of the Hessian corre-
sponding to the lowest negative eigenvalue. We have
adapted our own computational method to calculate ridges
according to both definitions. The results of the comparison
are shown in Fig. 12. We see that our method produces a
smaller point-set, but, in this application, there is no loss of
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Fig. 9. (a) Simulated 128� 128 pixels image representing two crossing
lines. (b) Orientation space strings obtained as RCPS derived from the
2D frame field, where one vector always points vertically in the
� direction. The other vector is �ÿ sin �; cos �; 0�, i.e., it is perpendicular
to the local orientation of the filter. The local angle (vertical axis) is color-
coded (0 is dark blue, � is red) for better rendering effect.

Fig. 10. Orientation space strings for a retinal image. (a) Depicts all

computed positive strings and (b) the 22 longest. The vector frame is

chosen as in the computation presented in Fig. 9.



sensitivity as all the extra ridges detected by the second
method do not correspond to blood vessels. We conclude,
therefore, that our method has increased the specificity for the
blood vessels detection task without loss of sensitivity.

6 CONCLUSIONS

In this paper, we proposed a constructive definition of
relative critical sets in images of any number of spatial
dimensions. The definition is very flexible because it
associates critical sets to an arbitrary chosen local vector
frame field. Depending on the visual task, different model
structures can be identified with the relative critical sets. As
a consequence, our construction can be purely intrinsic
(defined only by the image structures) or it can involve
externally specified frames. The last situation may be useful
for involving additional model information. In this paper,
we demonstrated the examples of one of the most-popular
intrinsic cases: the set of topological ridges.

The relative critical sets are, in general, connected
submanifolds. Therefore, our technique indeed provides a
method for perceptual grouping achieved with only local
measurements. In a sense, such a technique can be viewed
as a particular extension of the threshold techniques where
the connected entities are the level surfaces (or lines in 2D).

The grouping properties of the system of ridges were
demonstrated in the paper in the application for optimal
scale selection of a multiscale connected object (see Fig. 6).
The method also provides a linkage from the scale-space
structure down to the original image space. We refer to
those applications as to topological deep-structure analysis.

In the above examples, the externally specified vector
frames incorporate model information. One example con-
cerned scale space grouping, see Figs. 7 and 8. Another
example shown is grouping of elongated structures in an
orientation bundle representation of 2D images (see Figs. 9
and 10).

As already discussed in Section 5, the major criteria for
applying this technique is the correspondence of the RCPS
to essential image features. The important features of the
image are those that determine the context content of the
image in large scale. Therefore, further processing is
required to select only those subsets of the RCPS that are
relevant for the larger scale context. For the case of blood
vessels detection, the result in Fig. 11 is obtained by first
decomposing the point-set of positive ridges into smooth,
convex subsets and, subsequently, applying a feedforward
neural network classification on these subsets. In more
complicated situations, large scale grouping techniques
may be needed to select, in a context-dependent way, the
relevant subsets of RCPS.

APPENDIX

NUMERICAL IMPLEMENTATION

In this section, we discuss only the computation
algorithm of formulas (11) and (12). According to the
previous sections, the integral has to be calculated on a
surface lying in a linear subspace and taken close around
a given test point. The computation of the vectors
defining this subspace (when necessary) depends on the
application and will not be presented here. In the case of
ridges, for example, the principle directions of the
Hessian can be obtained by any diagonalization proce-
dure. We assume in what follows that the linear space is
defined in every image point by a given orthonormal
system of vectors hi�, i � 1; . . . ; D, � � 1; . . . ; DK .

To compute (11), we will use its topological property that
it can be defined by integration of (5) on any surface
surrounding the test point P with vector coordinates xP .
Therefore, we can select, for a border, aDK-dimensional cube,
the ribs of which are parallel to hi�. The surface is formed by
2DK , DK ÿ 1-dimensional cubes, parallel in pairs, which we
denote as S�A; S

ÿ
A , A � 1; . . . ; DK . If DK � 2, for example,

S�A;A � 1; 2 are just line segments; if DK � 3, then S�A;A �
1; 2; 3 are the six walls of the cube, etc. Next, we parameterize
the integration points on each of the cubes S�A as:
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Fig. 11. (a) Optical fluorescence image of the fundus of human retina. (b) Full system of positive ridges computed at regularization scale of one pixel.

(c) The point-set of ridges is classified with feedforward neural classifier. The result shows the center lines of the detected blood vessels.

Fig. 12. (a) Full system of positive ridges computed as RCPS, where the
gradient is orthogonal to the lowest negative eigenvector of the Hessian.
The input image and all the parameters are the same as in Fig. 11.
(b) The difference between the ridges of (a) and the system of ridges
computed with our method (cf. Fig. 11b).



x�A�s1; . . . ; sDKÿ1� � xP �R
2
hA �

XDKÿ1

a

sa
R

N
ÿR

2

� �
ht�A;a�;

�22�
where the explicit D-dimensional index i is omitted. The real
constant R measures the size of the neighborhood around
the point P and represents our spatial precision. The integer
constant N represents the number of integration points
along each direction of the cube border. Finally, the function
t�A; a� gives the ath element from the set �1; . . . ; DK � ÿ �A�
or, in other words, t�A; a� � a when a < A and t�A; a� �
a� 1 when a � A. Surface coordinates sa; a � 1; . . . ; DK ÿ 1
in (22) take integer values 1; . . . ; N .

We can compute the projected gradient vector in these
points according to (10):

L��;A�s1; . . . ; sDKÿ1� �
X
i

hi��x�Li�x�jx�x�
A
�s1;...;sDKÿ1�: �23�

For the examples in this paper, we have used a simple
multidimensional interpolation algorithm of first order to
calculate the gradient values with subpixel precision in (23).
Because of the topological nature of the quantity (11) any
interpolation algorithm will give the same result.

Substituting the differentials in (5) with finite differences
on the borders S�A and the integration in (11), with
summation over the indices s1; . . . ; sDKÿ1, we obtain the
following expression for the discrete computation of the
topological number:

�K�xP � �
1

NDKÿ1

XDK

A

X
���1;1

�
X

�1;...;�DK

��1;...;�DK

X
s1;...;sDKÿ1

L��1;A
�s1; . . . ; sDKÿ1�L��2;A

�s1 � 1; . . . ; sDKÿ1�

L��3;A
�s1; s2 � 1; . . . ; sDKÿ1� � � �L��DK ;A�s1; . . . ; sDKÿ1 � 1�:

�24�
In the above formula, the antisymmetry of the tensor � has
been used to exclude components symmetric in the indexes�.
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