

Simulated evolution of mass conserving reaction networks

Citation for published version (APA):
Liekens, A. M. L., Eikelder, ten, H. M. M., Steijaert, M. N., & Hilbers, P. A. J. (2008). Simulated evolution of mass
conserving reaction networks. In S. Bullock, J. Noble, R. Watson, & M. A. Bedau (Eds.), Artificial Life XI :
Proceedings of the Eleventh International Conference on Artificial Life (ALIFe XI), 5-8 August 2008, Winchester,
UK (pp. 351-358). MIT Press.

Document status and date:
Published: 01/01/2008

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/bc6983bb-62e0-4a70-92b7-e10e1976fac2

Simulated Evolution of Mass Conserving Reaction Networks

Anthony M.L. Liekens, Huub M.M. ten Eikelder, Marvin N. Steijaert, Peter A.J. Hilbers

Faculty of Biomedical Technology, Technische Universiteit Eindhoven, the Netherlands
anthony@liekens.net

Abstract

With the rise of systems biology, the systematic analysis and
construction of behavioral mechanisms in both natural and
artificial biochemical networks has become a vital part of un-
derstanding and predicting the inner workings of intracellu-
lar signaling networks. As a modeling platform, artificial
chemistries are commonly adopted to study and construct
artificial reaction network motifs that exhibit complex com-
putational behaviors. Here, we present a genetic algorithm
to evolve networks that can compute elementary mathemat-
ical functions by transforming initial input molecules into
the steady state concentrations of output molecules. More
specifically, the proposed algorithm implicitly guarantees
mass conservation through an atom based description of the
molecules and reaction networks. We discuss the adopted ap-
proach for the artificial evolution of these chemical networks,
evolve networks to compute the square root function. Finally,
we provide an extensive deterministic and stochastic analysis
of a core square root network motif present in these result-
ing networks, confirming that the motif is indeed capable of
computing the square root function.

Introduction
In biological organisms, networks of chemical reactions
control the processing of information in a cell. A general ap-
proach to study the behavior of these networks is to analyze
modules that are frequently observed in natural systems.
Numerous network motifs that perform computational tasks
have been discovered in biochemical reaction networks. Re-
action networks are able to compute Boolean operations and
implement simple binary computers (Arkin and Ross, 1994;
Sauro and Kholodenko, 2004; Steijaert et al., 2007). Cell
signaling networks are known to exhibit parallelism, the
integration and amplification of signals, bistable behavior
and hysteresis through feedback and memory (Bray, 1990;
Bhalla and Iyengar, 1999; Bray, 1995; Tyson et al., 2003;
Steijaert et al., 2008). Many engineering metaphors have
been put forward as analogies to signaling networks, such as
neural networks and analog electronic circuits (Bray, 1995;
ten Eikelder et al., 2007). As an example, elementary oper-
ations such as addition, multiplication, integration and am-
plification can be found as modules of the MAPK pathway
(Bhalla, 2003).

A more recent approach to study computations in bio-
chemical networks is to construct artificial networks or ab-
stractions of real life systems to study the available space
of computations that can be performed in cellular reaction
networks. In vitro molecular computations have been per-
formed with gene expression networks (Benenson et al.,
2004). Through the adoption of artificial chemistries (Dit-
trich et al., 2001; Dittrich, 2001) to implement chemical
networks, it has been shown that algebraic functions can
be constructed using a bottom-up approach based on motifs
that implement elementary mathematical operations (Buis-
man et al., 2008). Related research employs in silico evolu-
tionary algorithms for the discovery of conceptual networks
that perform basic computations (Deckard and Sauro, 2004;
Paladugu et al., 2006; Lenser et al., 2007).

In the current study, we have developed a comparable ge-
netic algorithm that allows for the evolutionary design of
reaction networks with a desired function. For given input
molecules and their initial amounts, the desired reaction net-
work needs to process these input molecules and generate
an output pool of products whose concentrations correspond
to a desired function of the amounts of inputs. In contrast
with related work, our approach guarantees networks that
respect the law of conservation of mass explicitly. Molec-
ular species in our reaction networks are considered to be
strings consisting of imaginary atoms and by satisfying the
condition that the total set atoms in reactants and products in
a reaction must be equal for all reactions in the network, we
can guarantee the conservation of mass in our reaction net-
work. By enforcing this condition upon the construction of
reaction networks and within the genetic operators in our ge-
netic algorithm, it is guaranteed that the evolved networks do
not violate the law of mass conservation. Other approaches
either test for mass conservation at each fitness evaluation,
e.g., Lenser et al. or ignore the law of mass conservation
completely, e.g., Paladugu et al.

First, we give an overview of the implementation of the
reaction networks within our artificial chemistries frame-
work and how they are evaluated with respect to a desired
input-output function. Together with a set of genetic oper-

Artificial Life XI 2008 351

Figure 1: A small reaction network with two reactions.

ators that act on the networks, we can implement a genetic
algorithm to artificially evolve such networks. Next, we re-
view some networks that have been evolved with the soft-
ware implementation, where the target function is the square
root, i.e., for an amountX inputmolecules of a specific type,
the reaction network needs to generate an output molecule
with desired amount

√
X at steady state. We review some

evolved networks and discuss small network motifs that act
as kernels in these square root networks. We analytically
study one elementary network motif that computes a square
root-like function and furthermore examine its behavior with
a stochastic approach to model instantiations of the system
with small molecular counts.

Methods
Molecules and reaction networks
In the artificial chemistries deployed by our genetic algo-
rithm, we let an alphabet Σ denote the available atoms and
strings s with variable length over Σ are possible molecular
species. The number and the order of atoms in the string de-
fines the uniqueness of a species. We define the molecular
mass of a species or string s as a vectorm where ml is the
number of characters l ∈ Σ in s.
In order to abstract from natural biochemical networks,

we say that an individual – which represents a reaction net-
work – comprises of a number of reactions that take specific
reactants from a pool of molecules, execute a specific trans-
formation on these reactants at a predefined rate and return
their products to the molecular pool. Each reaction has at
most two reactants and two products. This limitation is in-
spired by nature, where enzymatic reactions with more than
two substrates are rare. In order to guarantee mass conserva-
tion within the chemical networks, it is required that the total
mass of reactants in a reaction equals the mass of the prod-
ucts. All of the reactions in this study are assumed to follow
the law of mass-action kinetics according to a rate k > 0,
i.e., a reaction occurs with a propensity that is proportional
to k and the concentrations of available reactant molecules.
As an example, in a setup with alphabet or atom set Σ =

{A, B}, the reaction network of an individual as depicted in
Figure 1 contains the valid reactions r1 = AB → A + B
and r2 = AB+B → BA+B, with their respective reaction
rates k1 and k2. Clearly the total mass, i.e., the number of
atoms A and B, is conserved in these reaction.

Network evaluation and fitness
An individual or network is evaluated by providing the net-
work with an input pool of reactants and observing the

amounts of participating molecules over time. We let an
ordinary differential equation (ODE) model of the reaction
network compute the transient behavior of the network and
if the system reaches a steady state, we compare the result-
ing pool of products with a desired output of the network,
as a function of the input. As the output concentration of a
molecule in the pool is closer to the desired output, for a set
of inputs, the fitness of the individual is higher.
In a first step to compute the fitness of an individual, an

ODE representation of its reaction network is constructed.
Since we have assumed mass-action kinetics, this step is
fairly straightforward and results in the following ODE sys-
tem for our example network with reactions r1 and r2 as in
Figure 1:

d[AB]/dt = −k1[AB] − k2[AB][B]
d[A]/dt = d[B]/dt = k1[AB]

d[BA]/dt = k2[AB][B]

where [s] denotes the dimensionless amount or concentra-
tion of molecular species s.
In our genetic algorithm, reaction networks are stored as

System Biology Markup Language (SBML) objects (Hucka
et al., 2003). A network in this format is passed on to the
SBML ODE Solver Library (Machne et al., 2006) which
constructs an ODE model of the network and solves it with
numerical integration. The ODE solver reports the steady
state behavior of the network back to the fitness function,
when a steady state is detected. If the ODE solver cannot
find a steady state within a reasonable amount of time – a
network may show, for example, stable oscillatory behavior,
keeping it from reaching a steady state – the individual is
eliminated from the population.
In order to compute the fitness of an individual in rela-

tion to an input-output function that needs to be approxi-
mated by the evolutionary algorithm, we iteratively run the
ODE model for a set of input and output pairs. At time 0 of
the ODE model, we set the initial amount of molecules for
specifically designated input molecules. All other molecules
in the system are initialized with concentration 0. With these
initial values, the steady state of the ODE system is com-
puted with the numerical ODE solver. For each molecule
in the system, we compute the squared difference between
the desired output and the steady state concentration of that
molecule. The molecule with the smallest mean squared er-
ror for varying inputs is considered to be the output molecule
and the fitness of the individual is inversely proportional to
its mean squared error. Consequently, as the steady state
concentration of a molecule is closer to the desired output,
the fitness of the individual is higher. If an individual is de-
tected not to reach its steady state for at least one input set-
ting, its fitness is set to 0. It should be noted that we select
specific molecules to act as input molecules of our system,
but we do not select a specific molecule to act as the output
molecule of the reaction network. As the evolutionary algo-

Artificial Life XI 2008 352

rithm is free to let all molecules act as output molecules, it
is expected that the genetic algorithm is better able to find
approximations of the desired function.

Genetic algorithm
The population of the genetic algorithm is seeded with ran-
domly generated reaction networks, with a fixed number of
reactions in each individual. In a random reaction, a random
set of atoms is distributed over the two reactants and prod-
ucts, such that the total mass of reactants and products is
equal. For all of the experiments in this paper, it sufficed to
initialize the reactions with 2 to 7 random atoms. Mutations
allow for larger molecules in the reaction networks if these
would be required by the evolutionary process, as discussed
later. Finally, a reaction rate is assigned to each reaction,
uniformly chosen between 0 and 10.
To generate a new individual in the next generation’s pop-

ulation, we select two parent individuals from the current
population, proportionally to their fitness as defined above.
We apply a uniform crossover operator and iterate over the
resulting set of reactions with a mutation operator to gener-
ate the offspring individual which is evaluated and appended
to the new population of the next generation.
With uniform crossover, we iterate over the ordered lists

of reactions in both parents, where both reactions have an
equal probability of ending up in the offspring’s reaction net-
work. Consequently, as the population is initialized with re-
action networks with a fixed number of reactions, this num-
ber of reactions is maintained throughout the evolution of
the population. This allows the user to enforce a specific
number of reactions in the evolved reaction network and to
prevent network bloat.
For the mutation operator, we iterate over the reactions in

the offspring reaction network and mutate each reaction with
a mutation parameter µ (usually, µ = 0.1). The mutation
operator for a reaction consists of two steps, one changing
the reactants and products, where the second step mutates
the reaction rate of the reactions. Firstly, in order to change
the constituent products and reactants of a reaction, a ran-
dom atom from alphabet Σ is inserted at a random position
of a random reactant and a random product with probability
µ/2. Similarly, a randomly chosen atom is removed from
both a reactant and a product in the reaction, also with prob-
ability µ/2. Complete reactions are replaced with new, ran-
domly generated reactions with a probability µ. Through
these first mutation operators, the topology of the reaction
network changes. Secondly, we multiply the reaction rate
with a random number from a Gaussian distribution with
mean 1 and standard deviation µ. This latter mutation oper-
ator does not change the topology of the reaction network,
but it is involved in the parameter optimization of the net-
work.
Typical runs of the genetic algorithm have been seeded

with 100 individuals with just a few reactions in each indi-

vidual. Our primary goal here is to find small networks –
with up to 10 reactions – for elementary mathematical oper-
ations. However, with a limited reaction network size, the
evolutionary algorithm may not be able to find exact im-
plementations of the desired function – not all input-output
functions can exactly be represented as a reaction network
with a finite number of reactions – such that an approxima-
tion of the behavior evolves within the available space of
network behaviors.

Parameter optimization
In addition to the above genetic algorithm that evolves both a
network topology and reaction rate parameters, we have also
adopted a limited version of the genetic algorithm for the op-
timization of reaction rates in a fixed network topology. In
this genetic algorithm, the initial set of individuals is popu-
lated with networks of the same topology, but with random
reaction rates (uniformly distributed between 0 and 10). The
mutation operator in this algorithm is only allowed to mutate
the reaction rate parameters of the constituent reactions, ac-
cording to a normal distribution as described above. With
uniform crossover, the reaction rates of the corresponding
reactions are exchanged.
Networks that have been found by the main genetic al-

gorithm are further optimized by this genetic algorithm, to
obtain a network that behaves optimally for a given topol-
ogy. Additionally, we have adopted this parameter optimizer
to optimize user-defined networks and their corresponding
desired behavior. Typical runs of the parameter optimizer
assumed populations of 100 individuals for 100 generations.

Results
We have adopted the genetic algorithm to evolve networks
that compute elementary mathematical operations. Some
of the networks to compute these operations are straightfor-
ward. For example, a network that computes the difference
[A] − [B] of input molecules A and B, with [A] > [B] can
be as simple as the single reaction A + B → AB with rate
k > 0. Each moleculeA binds with a B molecule, such that
[A] can act as the output in the chemical equilibrium of the
system, which is equal to the initial amount of A minus the
initial amount ofB. A network that is not as straightforward
to construct a network that computes the square root of an
amount of input molecule.

Square root networks
We have used our genetic algorithm to construct networks
that compute the square root of the initial amount of input
molecule ABC, with alphabet Σ = {A, B, C}. The ODE
model of a candidate network is evaluated by setting the ini-
tial amount of molecule ABC to X = 1, 4, 9, 16, . . . , 100
in consecutive runs. The molecule whose amount at steady
state is nearest to the desired output

√
X is designated as the

Artificial Life XI 2008 353

Figure 2: Three evolved networks that compute the square
root function. The input molecule is denoted by the dashed
outline, where the output is in bold.

output molecule of the network and its mean squared error
is reported back to the fitness function.
Three networks that have been evolved with our genetic

algorithm are shown in Figure 2. The first network, with
mean squared error 0.119 for the 10 desired outputs, whose
input is molecule ABC outputs a molecule B and consists
of the following 4 reactions

ABC
k1−→ B + AC with k1 = 1.159

AC + B
k2−→ CA + B with k2 = 3.716

ABC + CA
k3−→ BAC + CA with k3 = 5.590

AC
k4−→ A + C with k4 = 7.881.

A second network that outputs an amount of moleculesB
that approximates the square root of moleculesABC (mean
squared error equals 0.226) is given by the reaction network

ABC
k5−→ B + CA with k5 = 7.359

ABC + ABC
k6−→ B + ABCAC with k6 = 1.502

ABC + B
k7−→ CBBA with k7 = 1.468.

The third evolved reaction network with input ABC and
output BB is given by

ABC
k8−→ B + CA with k8 = 5.56937

CA + B
k9−→ CBA with k9 = 6.62825

B + B
k10−−→ BB with k10 = 8.34484

where the mean squared error between the counts of output
molecule BB and the desired output is 0.335.
It should be pointed out that the evolved networks have

been cleaned up manually to only show the reactions that
are essential for the networks’ square root behavior. Dupli-
cate reactions have been merged and reactions that further

Figure 3: Four network motifs act as the kernels of evolved
square root networks.

process waste particles have been removed without affect-
ing the output generating behavior of the network. E.g., in
the second evolved network, waste molecule CBBA is fur-
ther processed into smaller waste molecules BB and CA,
but this reaction does not interfere with the production of
output molecule B from input ABC.
The relatively small errors show that all three networks

provide good approximations of the desired square root be-
havior, within the range of inputs. Because the fitness is
only evaluated within this input range, the networks do not
guarantee a generally good approximation for other inputs.

Square root kernels In these and other networks that have
been evolved to compute the square root of an input, a com-
mon behavioral subnetwork can be observed. In this com-
monmotif, a first set of reactions generates outputmolecules
from the input molecules. The output molecule then takes
part in reactions that remove remaining inputs from the pool.
This behavior is at the core of the first and second evolved
square root networks, as in Figure 2.
Figure 3 shows 4 elementary networkmotifs that are com-

mon to most of our evolved square root networks. All of
these elementary kernels can be implemented such that they
abide to the law of mass conservation. We have constructed
these networks and optimized their parameters to study
whether the behavior of these network motifs can be related
to the square root. Table 1 gives the reaction rates for these
networks such that the error for inputs {1, 4, 9, ..., 100} is
approximately minimal. Networks (3) and (4) behave worst,
showing a steady state amount of output molecules that is
linearly related to the input. Network (1) provides a good
approximation of the square root network, where the perfor-
mance of network (2) is mediocre. It should be pointed out
that network (1) can be further optimized and has a mean
squared error of 0.049 when kout/kwaste = 0.579.

Analysis of a square root kernel
Since network motif (1) in Figure 3 provides the best ap-
proximation of the square root, we study the system analyt-
ically, in order to understand how the elementary network
is capable of computing a good approximation of the square
root function. We let x, y and w denote the amounts of in-
put, output and waste molecules, and k1 and k2 the reaction
rates of the output and waste producing reactions, respec-

Artificial Life XI 2008 354

kernel kout kwaste MSE
(l) 0.931 1.454 0.136
(2) 4.111 0.659 0.608
(3) 0.663 19.157 2.142
(4) 3.039 3.544 2.142

Table 1: Optimized parameters kout and kwaste of the cor-
responding output and waste producing reactions for the
square root kernels and their respective mean squared errors

tively. The network can be modeled by the following system
of differential equations

dx(t)
dt

= −k1x(t) − k2x(t)y(t),

dy(t)
dt

= k1x(t),

dw(t)
dt

= k2x(t)y(t).

For the computation of the square root of a number X ,
the initial concentrations for this system are x(0) = X ,
y(0) = 0 and w(0) = 0. The value of y(t) for large t
then hopefully approaches

√
X . Note that the differential

equations are nonlinear, which makes it difficult to obtain
analytical results.

Limiting values We first compute the behavior of the sys-
tem for t → ∞. Trivially, the limiting value of the input
concentration x(t) is given by limt→∞ x(t) = 0. Define the
limiting values of output and waste by

ŷ = lim
t→∞

y(t), ŵ = lim
t→∞

w(t) .

We try to compute the value of ŷ. For all t ≥ 0 the sum
of the concentrations x(t)+ y(t)+w(t) is constant. In view
of the initial condition this means that

x(t) + y(t) + w(t) = X . (1)

Since y(t) is supposed to approach the square root of X , it
is obvious to consider y2(t). A simple computation gives

dy2(t)
dt

= 2k1y(t)x(t) =
2k1

k2

dw(t)
dt

.

Using the initial conditions this implies that

y2(t) − 2k1

k2
w(t) = 0 . (2)

Since (1) and (2) hold for all values of t, we conclude that

ŷ + ŵ = X, ŷ2 − 2k1

k2
ŵ = 0 .

Elimination of ŵ from these equations leads to the quadratic
equation

ŷ2 − 2k1

k2
(X − ŷ) = 0 .

The non-negative solution of this equation is given by

ŷ = −k1

k2
+

√
2k1
k2

X + k2
1

k2
2

.

By selecting k2 = 2k1 we obtain

ŷ = −1
2

+
√

X + 1
4 .

Hence for X not too small, the chemical reaction network
computes indeed an approximation of

√
X if k2 = 2k1. Al-

though all results can also be obtained for the general case,
we shall assume in the sequel that k2 = 2k1. Note that the
GA does not find this relation, as it attempts to compensate
for the extra−1/2 in the steady state relation of our network.

Analytical solution In fact, in this case it is even possible
to compute the analytical solution of the system. Using the
relations (1) and (2) we can eliminate x(t) and w(t) from
the system of differential equations. The resulting equation
for y(t) is then

dy(t)
dt

= −k1y
2(t) − k1y(t) + k1X

Since a single first order differential equation can be solved
by integration, even if it is nonlinear, we can integrate this
equation. This results in

y(t) = a tanh(k1at + C) − 1
2

.

where a =
√

X + 1
4 and C = arctanh(1

2a). In Figure 4
we give the transient output concentration for the case X =
400 and k1 = 1/2, 1 and 2. All three solutions approach
√

X (more precisely, they approach − 1
2 +

√
X + 1

4), but
the speed of convergence increases with increasing k1.

Stochastic model of a square root kernel
Modelling a chemical reaction system using differential
equations that describe the time evolution of concentrations
is limited to situations where smoothly varying concentra-
tions exist. If the number of molecules is limited, this as-
sumption does not hold anymore. In that case a discrete
stochastic model can be used.

Probability distribution We now describe a simple
Markov-like stochastic approach to the square root network.
Suppose initially there are X input molecules, and no out-
put and waste molecules. In each reaction of the system one
input molecule transforms to either an output molecule or a

Artificial Life XI 2008 355

0 0.05 0.1 0.15 0.2 0.25 0.3
0

2

4

6

8

10

12

14

16

18

20

t

y(t)

k1=1/2
k1=1
k1=2

Figure 4: exact solution forX = 400 and k1 = 1/2, 1 and 2

waste molecule. Since the total number of molecules is al-
ways equal to X , the state of the system can be described
by a tuple (q, r) where q is the number of input molecules
and r is the number of output molecules. The corresponding
number of molecules of the waste compound is then trivially
given byX− q− r. In general, in a state (q, r) there are two
possible state transitions:

1. One of the input molecules transforms into an output
molecule. This step happens with propensity k1q.

2. The other possibility is that an input molecule transforms
into a waste molecule. This transition requires an output
molecule as catalyst and has a propensity k2qr.

Since the probabilities of these two possible reactions are
nothing but normalised propensities, the actual probabilities
of the first and second possible reaction are k1

k1+k2r = 1
1+2r

and k2r
k1+k2r = 2r

1+2r respectively, with k2 = 2k1. Note that
these transition probabilities do not depend on the number
of input molecules q. Hence the transition probabilities de-
pend only on the number of output molecules r. This means
we can describe the system with the transition graph shown
in Figure 5. A step to the right in this transition graph
corresponds with an output producing reaction. In state r,
i.e., with r output molecules, this reaction has probability
pr = 1

1+2r . A step from state r to state r in the transition
graph corresponds with an input to waste reaction. This re-
action has probability 1 − pr = 2r

1+2r .
Initially the system starts with X input molecules and

no output and waste molecules. In terms of the transition
graph the system starts in r = 0. After X steps all input
molecules are used and the system can be in any of the states
r = 1, . . . , X Note that, since p0 = 1, the system cannot
produce waste particles and is forced to move to state 1.
Let fs be the distribution of the number of output

molecules after s steps. So fs(r) is the probability that the

X-1 X
pX−1

1 − pX−11 − pr

r
pr

10

1 − p11 − p0

.p1p0

Figure 5: System described by number of output molecules
r

0 10 20 30 400

0.05

0.1

0.15

0.2

0.25

r

s=64
s=121
s=225
s=400

Figure 6: Distribution fs(r) for s = 64, 121, 225 and 400

system is in state r after s steps. Initially f0(0) = 1 and
f0(r) = 0 for r = 1, . . . , X . The successive distributions
fs can easily be computed recursively. It is easily seen from
Figure 5 that

fs+1(r) =
{

(1 − pr) fs(r) if r = 0
(1 − pr) fs(r) + pr−1 fs(r − 1) if r ≥ 1.

(3)
With this formula the distributions fs can easily be com-

puted. In Figure 6 the results are shown for s = 64, 121, 225
and 400. As can be seen from Figure 6 the various distribu-
tions fs have their maximum value in

√
s. This means that

it is most likely that the stochastic system, started with X
input molecules, ends after s = X steps with

√
X output

molecules. However, as Figure 6 shows, other final numbers
of output molecules are very well possible.

Mean of the probability distribution The results of the
previous subsection suggest that the probability distribution
of the number of output molecules after s steps in centered
around

√
s. We now try to give a mathematical basis for this

observation. Let the mean of probability distribution f s be
given by

Ms =
X∑

r=0

rfs(r) .

Artificial Life XI 2008 356

0 10 20 30 400

0.05

0.1

0.15

0.2

0.25

r

fs(r) for s=225
pr

Figure 7: pr and fs(r) as function of r for s = 225

We try to computeMs. From (3) we obtain for s < X .

Ms+1 =
X∑

r=0

rfs+1(r)

=
X∑

r=0

r(1 − pr) fs(r) +
X∑

r=1

rpr−1 fs(r − 1)

=
X∑

r=0

r(1 − pr) fs(r) +
X∑

r=0

(r + 1)pr fs(r)

=
X∑

r=0

r fs(r) +
X∑

r=0

pr fs(r)

= Ms +
X∑

r=0

pr fs(r) . (4)

The behavior of pr and fs(r) as function of r are shown in
Figure 7 for the case s = 225. This figure shows that the
largest contribution to the summation in (4) comes from the
r values between 10 and 20. Hence we can approximate
the summation in (4) by replacing pr by a constant value
pr0 that gives a good approximation of pr in the interesting
region. In the situation of Figure 7 we could use r0 = 15,
thus approximating pr by the constant p15.
For the general case it is tempting to use r0 =

√
s, since

we conjecture that the maximum of the distribution f s(r)
occurs at r =

√
s. However, since this the goal of this anal-

ysis is to compute the mean Ms, it would not be correct to
use this conjecture at this point. An alternative is to use the
value of Ms for r0. Since Ms is the mean of the “Gaus-
sian like” distribution fs(r), the biggest contribution to the
summation in (7) originate from r values close toM s. Thus,
approximating pr in (7) by pr0 with r0 the (approximate)

0 100 200 300 4000

5

10

15

20

s

sqrt(s)
Ms
M’s

Figure 8:
√

s,Ms and the approximationM ′
s

mean of fs(r), yields the recurrence relation

M ′
s+1 = M ′

s + pr0

X∑

r=0

fs(r) = M ′
s + pr0 = M ′

s + 1
1+2M ′

s
.

(5)
It is easily verified that this recurrence relation converges
to

√
s − 1

2 . In fact, it can be shown analytically that the
differenceM ′

s−(
√

s− 1
2) is of the orderO(log s√

s
). In Figure 8

the exact mean Ms of the distribution, the approximation
M ′

s and the function
√

s are shown. Clearly the exact mean
of the distributionMs is close to the “goal”

√
s. So indeed in

the stochastic model also the square root is computed. The
approximationM ′

s obtained from the recurrence relation (5)
is a good approximation of the exact meanM s.
Finally we mention that it is possible to compute the stan-

dard deviation of the output, leading to

σX = O(X1/4) .

This implies that, although the standard deviation increases
with increasing input, the coefficient of variation, i.e., the
quotient σX/MX , behaves like O(X−1/4) as X → ∞.
Consequently the system becomes more and more determin-
istic as X increases.

Conclusion and Discussion
We have developed a genetic algorithm that allows us
to evolve artificial mass-conserving reaction networks that
compute a function in terms of amounts of input and out-
put molecules. We have evolved networks that compute
an amount of output molecules, approximately equal to the
square root of the initial amount of input molecules. Several
square root kernels have been identified, resulting in one el-
ementary network motif with two reactions that provides a

Artificial Life XI 2008 357

good approximation of the square root function. Determin-
istic and stochastic analyses confirm the desired behavior of
this network motif.
The artificial chemistries adopted in the reaction networks

in this approach provide a rather rudimentary abstraction of
biochemical networks. One limitation of the resulting net-
works is that they are single shot networks. Once the system
has reached its equilibrium state, it has to be reset – waste
and output molecules need to removed from the system – be-
fore a new amount of input molecules can be introduced into
the system. By only allowing the input molecule to serve as
a catalyst in the reactions and by providing sufficient (con-
stant) resourcemolecules as additional inputs of the systems,
this problem can be overcome. In future work, the assump-
tion of mass-action kinetics is to be expanded to Michaelis-
Menten kinetics, which provides more realistic reaction dy-
namics for the enzymatic reactions envisioned by our ap-
proach, but prove harder to grasp analytically. The current
implementation can also be adapted to evolve transient be-
haviors, instead of solely involving the limit behavior of the
model as the target of the output function. As such, the ge-
netic algorithm can be adopted to evolve for example oscilla-
tory networks or networks with specific transient responses
to temporal inputs.

References
Arkin, A. and Ross, J. (1994). Computational Functions in

Biochemical Reaction Networks. Biophysical Journal,
67(2):560–78.

Benenson, Y., Gil, B., Ben-Dor, U., and Adar, R. (2004). An Au-
tonomous Molecular Computer for Logical Control of Gene
Expression. Nature, 429:423–9.

Bhalla, U. (2003). Understanding Complex Signaling Networks
through Models and Metaphors. Progress in Biophysics and
Molecular Biology, 81(1):45–65.

Bhalla, U. and Iyengar, R. (1999). Emergent Properties of Net-
works of Biological Signaling Pathways. Science, 283:381–
387.

Bray, D. (1990). Intracellular Signalling as a Parallel Distributed
Process. Journal of Theoretical Biology, 143(2):215–31.

Bray, D. (1995). Protein Molecules as Computational Elements in
Living Cells. Nature, 376(6538):307–12.

Buisman, H., ten Eikelder, H., Hilbers, P., and Liekens, A. (2008).
Computing Algebraic Functions with Biochemical reaction
Networks. Artificial Life Journal, Special Issue on Artificial
Chemistries.

Deckard, A. and Sauro, H. (2004). Preliminary Studies on the In
Silico Evolution of Biochemical Networks. ChemBioChem,
5(10):1423–31.

Dittrich, P. (2001). On Artificial Chemistries. University of Dort-
mund.

Dittrich, P., Ziegler, J., and Banzhaf, W. (2001). Artificial
Chemistries, A Review. Artificial Life, 7(3):225–275.

Hucka, M., Finney, A., Sauro, H., Bolouri, H., Doyle, J., Kitano,
H., Arkin, A., Bornstein, B., Bray, D., Cornish-Bowden, A.,
et al. (2003). The systems biology markup language (SBML):
a medium for representation and exchange of biochemical
network models.

Lenser, T., Hinze, T., Ibrahim, B., and Dittrich, P. (2007). Towards
Evolutionary Network Reconstruction Tools for Systems Bi-
ology. Proceedings of the Fifth European Conference on Evo-
lutionary Computation, Machine Learning and Data Mining
in Bioinformatics (EvoBIO), LNCS 4447, pages 132–142.

Machne, R., Finney, A., Muller, S., Lu, J., Widder, S., and Flamm,
C. (2006). The SBML ODE Solver Library: a native API for
symbolic and fast numerical analysis of reaction networks.

Paladugu, S., Chickarmane, V., Deckard, A., Frumkin, J., McCor-
mack, M., and Sauro, H. (2006). In silico Evolution of Func-
tional Modules in Biochemical Networks. IEE Proceedings
System Biology, 153:223.

Sauro, H. and Kholodenko, B. (2004). Quantitative Analysis of
Signaling Networks. Progress in Biophysics and Molecular
Biology, 86:5–43.

Steijaert, M., Liekens, A., ten Eikelder, H., and Hilbers, P. (2007).
Multiple Functionalities of Biochemical Reaction Networks.
International Conference on Systems Biology (ICSB 2007).

Steijaert, M., ten Eikelder, H., Liekens, A., Bosnacki, D., and
Hilbers, P. (2008). Stochastic Switching Behavior of a
Bistable Auto-phosphorylation Network. 12th Annual Inter-
national Conference on Research in Computational Molecu-
lar Biology (RECOMB 2008).

ten Eikelder, H., Crijns, S., Steijaert, M., Liekens, A., and Hilbers,
P. (2007). Computing with Feedforward Networks of Arti-
ficial Biochemical Neurons. 2nd International Workshop on
Natural Computation (IWNC 2007).

Tyson, J., Chen, K., and Novak, B. (2003). Sniffers, Buzzers,
Toggles and Blinkers: Dynamics of Regulatory and Signal-
ing Pathways in the Cell. Current Opinion in Cell Biology,
15:221–231.

Artificial Life XI 2008 358

