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The Mathematical Analysis of Games, Focusing on Variance

Dr. ir. Tom Verhoeff, TU Eindhoven

Last November, I gave a lunch talk on game analysis for W.I.S.V.
‘Christiaan Huygens’. If you missed it, you can catch up here.

Games, Mathematics, and Decisions
Games have always been loved by mathematicians. Because of their
(usually) well-defined rules, games admit a formal analysis, sometimes
with surprising results. It is impossible to provide comprehensive
coverage in this article. Instead, I will give an overview and focus on
the role of variance, which is often overlooked.

Jörg Bewersdorff wrote a nice book on applying mathematics to the
analysis of games [2]. I recommend it to the mathematically inclined
reader. It classifies games according to the sources of uncertainty
that confront the players, also see Figure 1.

Combinatorial Games generate uncertainty by the many ways in which
moves can be combined, in spite of the fact that the players have
open access to all information. There are some general bits of math-
ematical theory for combinatorial games, but most of it is rather ad
hoc. A very inspiring reference work for combinatorial games is the
monumental and entertaining book known as Winning Ways [1].

Combining logically (perfect information, lots of it)

Strategic bluffing (secrets) Weighing chances (luck)

Figure 1: Game classification based on source of uncertainty

In Games of Chance, uncertainty comes from stochastic processes,
such as dice rolling and card shuffling. The field of probability theory
was founded in the 17th century while analyzing games of chance.
Probability theory and especially Markov Decision Processes are the
tools of choice to attack these games.

Strategic Games arise when players have secrets for each other. In
Rock, Paper, Scissors (RPS), both players must simultaneously select
an object, not knowing the other’s choice. The mathematical field
of Game Theory addresses such strategic games. There is no Nobel
Prize for Mathematics, but mathematicians have obtained several
Nobel Prizes for Economics through their work on Game Theory.

Many games are not pure but rather a weighted mixture of the three
classes. For instance, poker contains all three elements: cards are
shuffled (luck), players cannot see each other’s cards (secrets), and
choices can be combined in many ways (logic). Poker is hard.

Games involve one or more players making moves with the aim of
achieving the game’s objective. The rules determine when players
may move, what their options are, and what the goal is. The goal
could just be winning (binary outcome) or maximizing some profit
function (discrete or continuous).

Mathematically interesting questions are: Given the game’s state,
how do you decide your best move? Which player can force the best
outcome from the start? What is the (long-term) optimum result?

A Strategic Coin Game
Let us dive into a simple strategic coin game. The two players,
Alice and Bob, simultaneously and secretly each choose 0 (head) or
1 (tail)1. After committing their choices, the payoff is determined by
the matrix in Figure 2. Alice receives e 2 from Bob when the choices

↑ 1 ← 2

← 2 ↑ 3

m0
m1Alice chooses

m0 m1Bob chooses

Figure 2: Payoff matrix for a coin game

differ. When both chose 0, Bob receives e 1 from Alice, and e 3
when both chose 1. This is a zero-sum game, because one player’s
profit is the other’s loss. The goal is to maximize the total profit
under repeated play.

The average profit per move of (−1 + 2 + 2 − 3)/4 = 0 seems
to make this a fair game. However, Alice can outplay Bob. Alice
needs to use a randomized strategy to guarantee that she cannot be
exploited by Bob. She chooses 1 with probability x. For x = 50%,
her expected payoff equals (−1+2)/2 = +0.5 if Bob chooses 0, and
(2 − 3)/2 = −0.5 if he chooses 1. In that case, Bob would always
choose 1 to outplay Alice big time. In general, her expected profit
can easily be determined for both Bob’s choices. It turns out to be a
linear interpolation between the extremes, as shown in Figure 3.
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Figure 3: Expected payoff for Alice if she chooses 1 with probability x
(in %), and Bob chooses 0 (left) or 1 (right)

Of course, Alice does not know what Bob will do. So she assumes the
worst, viz. that Bob knows her x. Bob doesn’t know Alice’ choice,
but he can also inspect the graphs and choose whichever provides
him the best expectation given x. This is shown in Figure 4 on the
left, where Bob maximizes his profit by minimizing Alice’ and opting
for the lower graph. Fortunately for Alice, there is a small window
of opportunity, peeking at x = 3/8 = 37.5% and bringing her an
expected profit of 0.125, or 6.25% of the average stake of e 2 (not
a bad return on investment these days :-).

It is worth noting that Alice’ expected profit is independent of Bob’s
strategy, even if he randomizes as well. The graph on the right
in Figure 4 shows the expected profit when both players indepen-
dently randomize their choices. At Alice’ optimum of x = 0.375,

1The Math & CS department of TU/e issued these binary PR coins.
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Figure 4: Expected payoff for Alice if she chooses 1 with probability x,
and Bob optimizes his choice (lower graph in red, left), or chooses 1
with probability y (right)

the expected profit is constant, and similarly for Bob’s optimum (yel-
low lines). This so called Nash equilibrium is immune to the other
player’s strategy. When players have three or more options, it be-
comes harder to determine optimal strategies, but John Nash showed
that they always exist, even for nonzero-sum games.
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Figure 5: Distribution of ‘profit after a run of N games’, based on
1000 simulated runs; blue line at expected profit, red line at 0 profit

This all looks very nice, and can even be of practical value. But there
is a danger lurking: variance. When playing this game 20 times (both
players using an optimal randomized strategy), the expected average
profit for Alice is indeed µ = 0.125, but with an overwhelming stan-
dard deviation of σ = 0.42. This means that in roughly 38% of the
20-game runs, Alice ends in the negative (Figure 5 left). Playing 200
games reduces the standard deviation by a factor

√
10 to σ = 0.13,

still giving a whopping 17% probability to end in the red (Figure 5
middle). Only by playing 2000 games with σ = 0.04 is the probability
to lose acceptable at 0.1% (Figure 5 right). Bob cannot affect the
expected profit if Alice randomizes optimally, but he can affect the
variance by deviating from optimal play himself (homework)!

Solitaire Yahtzee: A Game of Chance
A pure game of chance is solitaire Yahtzee, played with five dice
and a scorecard with thirteen primary categories (marked with * in
Figure 6). Each turn, the player rolls all dice, and may re-roll any
subset two more times. At the end of the turn, the roll must be
scored in one of the empty primary categories. The actual score is
determined by the rules, depending on the roll and the category (not
explained here, for instance see [3, 4]).

Each game involves 38 decisions: which subset to re-roll (26×), which
category to score (12×). Note that after the final roll, there is only
one empty category left, leaving no choice. A careful analysis reveals
that there are slightly over 109 choice states in the reduced game
graph, whose edges represent roll and choice events.

Since all probabilities are known, it is possible to optimize the deci-
sions for maximizing the expected final score, by modeling Yahtzee
as a Markov Decision Process. In 1999, I wrote a computer program
to carry out the calculations. Later that year, we made available an
on-line advisor [4], who can rate all options in any game state that
you present. On that web site, you can also do a Yahtzee proficiency
test and have your decisions compared against the optimal strategy.
More recently, my programs were applied for [3].

Under optimal play (using official rules), the expected final score is
just over 254 points. Human players have a hard time matching that
with their long term average. Again, however, variance upsets the

picture. I discovered a new method [5] to calculate variances for
Markov chains with rewards, which I applied to the optimal Yahtzee
strategy. It turns out that the standard deviation in the final score
under optimal play is almost 60 points. To guarantee (at 3σ confi-
dence level) an average final score of over 250 points, the optimal
strategy needs to play over 2000 games. Figure 6 shows some char-
acteristics of the optimal strategy. It obtains a Yahtzee almost every
other game!

Category E SD % 0
* Aces 1.88 1.22 10.84
* Twos 5.28 2.00 1.80
* Threes 8.57 2.71 0.95
* Fours 12.16 3.29 0.60
* Fives 15.69 3.85 0.50
* Sixes 19.19 4.64 0.53

U. S. Bonus 23.84 16.31 31.88

* Three of a Kind 21.66 5.62 3.26
* Four of a Kind 13.10 11.07 36.34
* Full House 22.59 7.38 9.63
* Small Straight 29.46 3.99 1.80
* Large Straight 32.71 15.44 18.22
* Yahtzee 16.87 23.64 66.26
* Chance 22.01 2.54 0.00

Extra Y. Bonus 9.58 34.08 91.76

GRAND TOTAL 254.59 59.61 0.00

Yahtzees Rolled 0.46 0.69 63.24
Jokers Applied 0.04 0.19 96.30

Figure 6: Optimal solitaire Yahtzee: expectation (E), standard devi-
ation (SD), and percentage of zeroes (% 0), per category

Conclusion
Many real-life situations resemble game playing, in the sense that
both involve the need for making good decisions in the presence of
constraints and uncertainty. It is not surprising that the same math-
ematical techniques are helpful in both situations.

Combinatorial games have seen much progress recently due to im-
proved algorithms and computer hardware. For instance, computer
go is now making a leap forward through Monte-Carlo methods and
UCT (Upper Confidence bounds applied to Trees).

It may come as a surprise that for repeated strategic decisions, it can
be optimal to toss a (well-chosen) ‘coin’. The so-called Mixed Nash
Strategy employs randomization to prevent predictability and hence
exploitation. Clever randomization can be profitable.

For repeated tests of fortune, it can be optimal to make a (well-
chosen) fixed choice, based on so-called Markov Decision Processes.

Do not, however, underestimate the role of variance. A large stan-
dard deviation requires patience (in the form of a counterintuitively
large repeat count N) to increase your odds, due to the factor 1/

√
N .

Larger variance reduces predictability and hinders planning. In fight-
ing traffic congestion problems, it is much better to aim at reducing
the variance (improving predictability) than at minimizing the ex-
pected travel time (which often increases variance considerably).
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