

Performance analysis of networks on chips

Citation for published version (APA):
Beekhuizen, P. (2010). Performance analysis of networks on chips. [Phd Thesis 1 (Research TU/e / Graduation
TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR657033

DOI:
10.6100/IR657033

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR657033
https://doi.org/10.6100/IR657033
https://research.tue.nl/en/publications/8c131a36-a0d2-4a14-871e-7a44b5ef6788

Performance Analysis of

Networks on Chips

THOMAS STIELTJES INSTITUTE

FOR MATHEMATICS

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Beekhuizen, Paul

Performance analysis of networks on chips / by Paul Beekhuizen
– Eindhoven : Technische Universiteit Eindhoven, 2009.
Proefschrift. – ISBN 978-90-386-2144-9
NUR 919
Subject headings : Queueing Theory / Networks on Chips
2010 Mathematics Subject Classification : 60K25, 68M20, 90B18

Printed by Eindhoven University of Technology Printservice.
Cover design by Paul Verspaget.

Performance Analysis of Networks on Chips

proefschrift

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

rector magnificus, prof.dr.ir. C.J. van Duijn, voor een
commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op donderdag 4 februari 2010 om 16.00 uur

door

Paul Beekhuizen

geboren te Rotterdam

Dit proefschrift is goedgekeurd door de promotor:

prof.dr.ir. O.J. Boxma

Copromotor:
dr. J.A.C. Resing

Acknowledgements

There are many people who, in one way or another, made it possible for me to
complete this thesis, and I would like to thank a few of them in particular.

First of all, I would like to thank my daily supervisor and co-promotor Jacques
Resing. We worked together on most of the research in this thesis, and I enjoyed our
cooperation very much. I have especially benefitted a lot from Jacques’ continuous
search for the simplest non-trivial model, which proved insightful many times.

Next, I would like to thank Dee Denteneer from Philips Research for his guidance
and supervision during my period as a PhD and an MSc student. Dee has had a
prominent influence on my research over the last five years and I doubt that, without
his efforts, I would have pursued a PhD.

I also wish to thank Onno Boxma for his supervision. Onno somehow manages
to find time for anyone who can benefit from his help and he provided me with
valuable feedback on multiple occasions, for which I am very grateful.

I am very grateful as well for the funding I received from Philips Research and
for the freedom that was given to me. Thanks go out to my fellow PhD students at
Philips for making my stay there a pleasant one.

During my period as a PhD student, I had an additional affiliation with Eu-

random, and I would like to thank everyone at Eurandom for the great time
I had there. Eurandom has been a very lively and socially active environment,
and working in such an environment seems almost indispensable for the successful
completion of a PhD thesis. I will greatly miss the countless diners, poker nights,
football and foosball matches, coffee breaks, social excursions, Eurandom lunches,
and all other events which I cannot think of at the moment.

As there cannot be a PhD defense without a defense committee a word of thanks
is due to its president and its members: Ivo Adan, Harm Dorren, Rob van der Mei,
Sindo Núñez Queija, and my three supervisors. Ivo is also one of the co-authors
of [13] and I wish to thank him for our cooperation on that paper as well.

On a more personal note, I owe thanks to (all) my parents, the rest of my family,
and my friends for their support and interest. Finally, I thank my wife Ivonne for
her unconditional trust in my abilities and for supporting me in whatever I choose
to do.

v

Contents

1 Introduction 1

1.1 Networks on chips . 2
1.1.1 Quality of service . 3
1.1.2 Flow control . 4
1.1.3 Network topologies . 5

1.2 Switches . 6
1.2.1 Buffering strategies . 7
1.2.2 Throughput . 9
1.2.3 Switches in networks on chips 11

1.3 Queueing theory . 11
1.3.1 General queueing systems . 11
1.3.2 Arrival models in discrete-time queueing systems 13

1.4 Models . 16
1.4.1 Single-switch models . 16
1.4.2 Concentrating tree networks of polling stations 19

1.5 Key results and organisation of the thesis 22

2 Uniform switches 25

2.1 Model . 26
2.2 Approximations for K = 1 . 27

2.2.1 The KHM approximation . 28
2.2.2 The KKL approximation . 29
2.2.3 Geometric approximation . 29

2.3 Service time approximation for K > 1 31
2.4 Network analysis . 32

2.4.1 Arrivals at the switch . 33
2.4.2 Arrivals at the NI . 33

2.5 Approximation comparison . 34
2.6 Validation of the geometric distribution 38
2.7 Conclusion . 40

3 Non-uniform switches 41

3.1 Model . 42

vii

viii Table of contents

3.2 Saturated switch . 42
3.3 Stability conditions . 43
3.4 Throughput . 47
3.5 Waiting time and service rate . 50

3.5.1 Waiting time . 51
3.5.2 Service rate . 51

3.6 Analysis of the running example . 55
3.6.1 Throughput and stability conditions 56
3.6.2 Service rate and mean waiting time 57

3.7 Correlated traffic . 60
3.7.1 Correlated arrivals . 60
3.7.2 Correlated destinations . 61

3.8 Numerical analysis . 62
3.9 Conclusion . 67

4 Reduction of polling tree networks 69

4.1 Introduction . 70
4.2 Formalisation . 72

4.2.1 The original system . 72
4.2.2 The reduced system . 75

4.3 Proof of the main results . 76
4.3.1 The coupled system . 76
4.3.2 The original and the coupled system 77
4.3.3 The reduced and the coupled system 80
4.3.4 Waiting times . 82

4.4 Discussion . 83
4.5 Conclusion . 84

5 End-to-end delays in polling tree networks 85

5.1 Model . 86
5.2 Analysis of the tree . 88

5.2.1 Overall end-to-end delay . 88
5.2.2 End-to-end delay per type . 89

5.3 Accuracy of Approximation 5.2.2 . 91
5.4 Application to networks on chips . 93

5.4.1 Description . 93
5.4.2 Analysis . 94
5.4.3 Numerical results . 96

5.5 Exact results . 98
5.5.1 Symmetric stations . 98
5.5.2 Symmetric trees . 99

5.6 Conclusion . 100

6 Polling systems with Bernoulli service and Markovian routing 103

6.1 Background . 104

Table of contents ix

6.2 Model description . 105
6.3 Relevant literature . 106
6.4 The approximation . 107
6.5 Numerical results . 112
6.6 Large-scale numerical study . 115
6.7 Implementation with Kronecker products 118
6.8 Conclusion . 121

7 Polling tree networks with flow control 123

7.1 Model . 124
7.2 Markov chain analysis . 125
7.3 Throughput computation . 129
7.4 Bernoulli service and Markovian routing 130
7.5 Numerical analysis . 134
7.6 Conclusion . 136

References 139

Summary 151

About the author 153

x Table of contents

Chapter 1

Introduction

Modules on a chip, such as processors and memories, are traditionally connected
via a single shared link (a bus). As chips become more and more complex, and the
number of modules on a chip increases, this bus architecture becomes less efficient
because a bus cannot be used by multiple modules simultaneously. Networks on
chips are an emerging paradigm for the connection of on-chip modules.

In networks on chips, data is transmitted by packet switches, so that multiple
links can be used at the same time and communication becomes more efficient.
These switches have buffers, which leads to many performance-analytic questions
that are interesting from both a theoretical and practical point of view. For example,
one is typically interested in how much data can be transmitted by the network
(throughput), how long it takes data to be transmitted (delay), how large buffers
have to be to deliver a certain quality of service, and so on.

Due to the complex and unpredictable nature of data traffic, stochastic modelling
and queueing theory play a key role in answering questions of this sort. In this thesis,
stochastic models are developed and analysed in order to answer such questions and
better predict and understand the performance of networks on chips.

In this introductory chapter, the characteristics of networks on chips are de-
scribed in more detail. Furthermore, the key mathematical models are discussed, as
well as relevant literature.

1

2 Introduction

1.1 Networks on chips

Networks on chips have been proposed as a solution for the inefficiency caused
by traditional bus connections in chips [20, 49]. In networks on chips, intellectual
property blocks (IP-blocks, a general term for on-chip modules) are not connected to
a single shared link, but to network interfaces. These network interfaces implement
communication protocols, including tasks related to flow and congestion control,
scheduling, routing, and so on.

Networks on chips use switches to transmit data across the network. A switch
consists of input and output ports. Data packets arrive to the input ports of the
switch, and leave from the output ports. If multiple input ports have data for the
same output port, only one input port can transmit its data, and the switch selects
which one. Data that is not transmitted immediately is stored in buffers and will
be transmitted later.

Network interfaces are connected to IP blocks and switches by bidirectional links.
Data transmissions over multiple links occur simultaneously because networks on
chips are usually synchronised using a clock. This clock divides time into equal parts
(slots), which entails that networks on chips operate in slotted, or discrete time. A
schematic representation of a traditional chip and a network on chip can be found
in Figures 1.1 and 1.2 respectively.

Besides higher efficiency, there are other practical advantages to networks on
chips. One of them is a phenomenon called ‘decoupling of computation and commu-
nication’ [63,71,120]. Because communication protocols are implemented by network
interfaces rather than IP-blocks, the computation and communication parts of the
chip are separated: The IP-blocks take care of computations while the network takes
care of communication. This decoupling entails that IP-blocks and network inter-
faces can be designed separately [114] and reused in multiple networks [93]. Another
practical advantage is that networks on chips are reliable and energy efficient [19,20].

Queueing theory deals with the analysis of congestion phenomena caused by
competition for service facilities with scarce resources. Such congestion phenomena

IP IP IP

IP IP IP

Figure 1.1: A bus architecture

IP

IP

IP

IP

IP

IP

NI

NI

NI

NI

NI

NI

Figure 1.2: A network on chip

1.1 Networks on chips 3

occur, for example, in computer networks, manufacturing systems, traffic intersec-
tions, and so on. These phenomena are typically analysed using stochastic models,
which capture the unpredictable and uncertain nature of the processes giving rise
to congestion (such as irregular arrival patterns of cars to an intersection).

In this thesis, we develop and analyse (stochastic) queueing models aimed at
networks on chips. Due to the complexity and unpredictability of data traffic,
stochastic models are useful tools for the performance analysis of these networks.
For example, at present, performance validation of networks on chips is typically
done using time-consuming simulation, which is not desirable in an optimisation
loop. Using analytic models instead of or in addition to simulation can significantly
speed up the design process [90, 108,141].

There is a large amount of freedom in the actual implementation of networks
on chips. As a result, many different implementations have been proposed, such
as SPIN [5], Xpipes [21], Nostrum [102], and Hermes [103], and each proposed
implementation has its own characteristics (see, e.g., [103] for a more comprehensive
overview). This work is primarily motivated by Aethereal [64], the network on chip
of NXP (formerly part of Philips).

In the remainder of this section, we describe the key features of networks on
chips in general and Aethereal in particular. In Section 1.2, we discuss which types
of packet switches exist, we describe their advantages and disadvantages, and we
explain which type is used in networks on chips. We give a brief introduction to
queueing theory in Section 1.3. Because networks on chips operate in discrete time,
we consider discrete-time queueing models in this thesis. In such models, arrivals
and departures occur at slot boundaries and the order in which they occur has
important consequences. This is discussed in Section 1.3 as well. In Section 1.4 we
describe the key models of this thesis. We review the structure of the thesis and
mention the most important results in Section 1.5.

1.1.1 Quality of service

Two classes of traffic with a different quality of service are considered for net-
works on chips, namely Guaranteed Services (GS) and Best Effort (BE). With GS-
traffic, a minimal throughput and a maximal delay are guaranteed and GS-traffic is
therefore suitable for real-time communication. With BE-traffic such guarantees are
not given. When data enters the network, the network simply gives its ‘best effort’
to transmit that data to its destination, without any guarantees as to when that
data will arrive. BE-traffic is therefore more suitable if real-time communication is
not required.

GS- and BE-traffic have different ways of resolving contention. Contention occurs
when multiple data packets are trying to use one link simultaneously. As each link
can only be used by one packet at the same time, the contention has to be resolved,
i.e., one of the packets has to be selected for transmission.

Guaranteed services are naturally obtained using circuit switching, where con-
tention is resolved by setting up connections in advance. For example, in Aethereal,
every switch has a scheduling matrix S that determines which output port is re-

4 Introduction

served for which input port over a period of T time slots, i.e., if S(t, o) = i then
output port o is reserved for input port i in time slot t (modulo T). If slot t is
reserved for some data on a certain switch, then slot t + 1 (modulo T) must be
reserved for that data on the next switch on its path, and so on [120].

Data transmission over a connection is deterministic because data from two dif-
ferent connections never interfere. In particular, this means that every connection
receives a fixed throughput depending on how many reservations have been allo-
cated to that connection. Furthermore, because data is transmitted over a reserved
connection, no delay is incurred in the network, which explains why GS-traffic is
suitable for high priority real-time communication.

The disadvantage of GS-traffic is that links have to be reserved for worst-case
scenarios. After all, to guarantee sufficient resources for a connection, the allocation
of links has to be based on the maximal required throughput of that connection.
However, if the actual required throughput is (temporarily) lower, part of the re-
served links remain unused, which results in poor link utilisation [63, 120].

BE-traffic uses packet switching to transmit data across the network. With
packet switching, contention is resolved by the switches: Data is divided into packets
by the network interfaces, and a header with routing information is added. The
packets are then transmitted to the switch without any a priori scheduling. When
the packet arrives to a switch, that switch decides which packets to transmit, based
also on other packets present.

The behaviour of BE-traffic thus depends on other packets, which makes it more
stochastic in nature than GS-traffic, and BE-traffic is therefore typically lower prior-
ity traffic for which real-time communication is not required. Although the average
performance of BE-traffic is better than that of GS-traffic because unused reserved
links are not lost, the downside of BE-traffic is that it is unpredictable due to its
stochastic nature [120].

GS-traffic is easy to analyse and predict using deterministic models. For the
analysis of BE-traffic, however, stochastic models play a key role. In this thesis, we
therefore focus on queueing models specifically aimed at BE-traffic.

1.1.2 Flow control

Due to the stochastic nature of BE-traffic, it is in principle possible that packets
arrive at a full buffer, resulting in packet loss. Networks on chips therefore implement
two types of flow control regulating traffic across the network: Link-to-link flow
control, which regulates traffic between switches, and end-to-end flow control, which
regulates traffic between network interfaces.

There are three forms of link-to-link flow control [103]: store-and-forward, virtual
cut-through, and wormhole routing. With store-and-forward, an entire packet is
stored in a queue of the switch before it is sent to the next switch. This requires
enough buffer space for the entire packet at each switch, and the packet is delayed
at each switch until the packet has arrived entirely. This type of flow control hence
requires large buffers and has a large delay.

With virtual cut-through, a packet is forwarded as soon as the next switch has

1.1 Networks on chips 5

enough buffer space available to store the entire packet. It is thus faster than store-
and-forward, but it still requires large buffers.

With wormhole routing, packets are divided into flits, where a flit is the amount of
data that can be transmitted over a link in one time slot. With wormhole routing, a
flit is forwarded to the next switch if it has space to store one flit. Once the first flit of
the packet has been sent via a certain output port, that output port remains reserved
for all flits of that packet. One packet may thus be spread over multiple switches.
Because flits are stored instead of entire packets, wormhole routing requires the least
buffer space. Since buffer space is expensive, most networks on chips, including
Aethereal, use wormhole routing [103].

In addition to link-to-link flow control, networks on chips also implement end-
to-end flow control, which regulates traffic between source and destination network
interfaces. In Aethereal, for example, credit-based flow control is implemented [114].
With this form of flow control, the number of flits from one network interface to
another is restricted to a maximum. When the destination network interface for-
wards data to the IP-block connected to it, an acknowledgement is sent back in the
form of credits indicating how much additional data the source network interface
may send. These credits are either included in data from the destination back to
the source (piggybacked) or sent by themselves.

Throughout this thesis, a key assumption is that switches indeed use wormhole
routing. Furthermore, we study a specific class of networks operating under end-to-
end flow control (see Section 1.4 and Chapter 7).

1.1.3 Network topologies

The physical positioning of switches in a network is called the topology. Many
different topologies are considered for networks on chips, such as a mesh, a torus, a
tree, or a ring-based topology, or mixtures of such topologies (see also Figure 1.3).
Every topology has its own advantages and disadvantages and different network on
chip proposals use different topologies. For an overview of topologies used, we refer
to [25] and [103].

Although different topologies are considered, most networks on chips, including

(a) Torus (b) Mesh (c) Ring

Figure 1.3: Three different topologies for switches in networks on chips [25]: Torus, mesh,
and ring.

6 Introduction

Aethereal, use the mesh topology [103]. With this topology, switches are placed on
a lattice with connections in four directions (up, down, left, right). Bjerregaard and
Mahadevan [25] further distinguish indirect and direct networks. With direct mesh
networks, every switch is connected to a network interface. The number of input
and output ports per switch thus ranges from 3 (in the corners) to 5 (in the center).
With indirect mesh networks, some switches are connected to network interfaces
but others are not. An example of the latter is a network where network interfaces
are only connected to the switches on the edges, in which case all switches have 4
input and output ports. The difference between direct and indirect mesh networks
is illustrated in Figure 1.4.

(a) Direct (b) Indirect

Figure 1.4: Direct and indirect mesh networks.

Closely related to the concept of topologies is the concept of a routing discipline.
A routing discipline dictates which route traffic from one IP-block to another takes.
Routing disciplines can be either deterministic or adaptive. With deterministic
routing disciplines, the route of traffic from one IP-block to another is always the
same. With adaptive routing, the routes may differ based on the amount of traffic
in the network.

A popular routing discipline for mesh topologies in networks on chips is the
XY-routing discipline. With this deterministic routing discipline, traffic always first
traverses the network horizontally, as far as it has to go, and then vertically, towards
its destination. XY-routing is used in many networks on chips due to its simplicity.

Motivated by mesh networks, we consider switches with only a small number of
ports, say 4 or 5. Furthermore, we assume that XY-routing is used. In particular,
this ensures that specific mesh networks fall into the class of concentrating tree
networks, which is one of the key models studied in this thesis (see Section 1.4.2).

1.2 Switches

A switch is a device that transmits data packets from one link to another. Pack-
ets arrive over links connected to input ports of the switch, and leave over links
connected to output ports of the switch. If multiple packets have the same destina-

1.2 Switches 7

tion, only one of them can be transmitted and the switch has to select which one.
Packets that cannot be transmitted have to be buffered and they will try to reach
their destination again in the next time slot. A schematic representation of a switch
can be found in Figure 1.5.

Inputs Outputs

Figure 1.5: An abstract representation of a switch.

Packet switches have been studied extensively as part of communication networks
such as the internet, local area networks, and ATM networks, and there is a variety
of different switch architectures with different methods to provide buffering. In this
section, we discuss which buffering strategies exist, we give an overview of their
performance, and we explain which type is used in networks on chips.

In the remainder of this thesis, we say that N is the number of input ports of
a switch and M the number of output ports. A switch with N input ports and M
output ports is called an N ×M switch. Furthermore, to simplify the description of
the different switches, we assume in this section that all packets consist of one flit,
which means that a packet requires precisely one time slot to be transmitted.

1.2.1 Buffering strategies

In this subsection, we discuss four different buffering strategies for switches,
namely combined input output queueing, output queueing, input queueing, and
virtual output queueing.

Combined input output queueing

The most general switch architecture considered in this section is a combined input
output queueing (cioq) switch. Cioq-switches have a speedup s; each time slot is
divided into s phases, with s between 1 and N . In each phase packets are switched
from inputs to outputs, with the restriction that in each phase only one packet may
be switched from an input port, and only one packet may be switched to an output
port, i.e., each input and output port may be used only once per phase. Up to s
packets are thus switched per port per time slot, whereas each time slot only one
packet can be transmitted over a link, so the switch operates s times as fast as the
links connected to it.

In each phase, the switch uses a scheduling algorithm to decide which input may
transmit to which output. A common way to do so is by finding a maximum weight
matching in a bipartite graph. One vertex set of this graph is given by the inputs,
and the other by the outputs. There is an edge between the input i vertex and the
output j vertex if the first packet (the Head-of-Line packet, or HoL-packet) in input

8 Introduction

queue i has destination j. The weights given to an edge between the input i and
output j vertices can, for instance, be equal to the length of input queue i, which
leads to the longest queue first discipline, or to the waiting time of the HoL-packet
of queue i, which leads to the oldest packet first discipline, etc.

As a result of the speedup, cioq-switches must have queues on the inputs and
outputs to prevent packet loss: Even though up to s packets can be switched to
their output ports, the links connected to the output port may transmit only one
packet per time slot. The switch must thus have buffers at the outputs. Likewise,
up to N packets with the same destination may arrive at all input ports together
per time slot, but only s of them can be actually switched to their destination. The
switch must thus have buffers at the inputs as well.

Figure 1.6: Combined input output queueing

Output queueing

A notable special case of a cioq-switch is a cioq-switch with a speedup of N . In
this case, up to N packets may be switched to the same output port per time slot.
Because at most N packets with the same destination arrive per time slot at all
input ports combined, all arriving packets can be switched. This implies that only
queues on the outputs are needed, hence the name output queueing.

Another variant of an output queued switch is a switch where each output port
is equipped with N separate queues; one for each input, i.e., packets from input i
to output j are stored in queue i of output j. With this strategy, a speedup is not
needed; the switch operates at speed 1.

Figure 1.7: Output queueing

Input queueing

Another special case of a cioq-switch is a switch with a speedup of 1. In this case,
at most one packet is switched to each output per time slot. Output buffers are
thus not needed, and the switch is called an input queued switch.

As will be explained in Section 1.2.3, input-queued switches are commonly used
in networks on chips. Input-queued switches are therefore the most important
switches of this thesis.

1.2 Switches 9

Figure 1.8: Input queueing

Virtual output queueing

Cioq-switches can be combined with a strategy called virtual output queueing (voq).
With virtual output queueing, all N input queues are subdivided into M separate
queues such that every queue only stores packets with the same origin and destina-
tion, as displayed in Figure 1.9.

Figure 1.9: Virtual output queueing

In practice it is not always necessary to actually use M physically separate
queues; it is also possible to still use one buffer per input. In this case, however, the
order in which packets depart is no longer First-In-First-Out (FIFO), but one that
depends on the destinations of packets in the other queues. Virtual output queueing
is thus mainly a change in the order in which packets depart from a queue; instead
of FIFO, a more dynamic and complicated order is used.

In most applications, input-queued switches are combined with virtual output
queueing. In fact, in literature the term input-queued switch often refers to a switch
with queues at the inputs, regardless of whether it is combined with virtual out-
put queueing or not. To emphasise the difference between input-queued switches
with a single FIFO queue per input and input-queued switches with virtual output
queueing, we will refer to the former as single input queueing (siq).

1.2.2 Throughput

Perhaps the most important performance characteristic of a packet switch is
its throughput. The throughput of an input port is defined as the mean number of
packets transmitted from that port per time slot. Because at most one packet arrives
per time slot at each input port, an important property of a switch is whether it has
a throughput of 1, which is the case if all its input ports can sustain a throughput
of 1. If the switch indeed has a throughput of 1, it has enough capacity to transmit
all incoming traffic. If it cannot, packet loss may occur if the load is too high.

In this section, we briefly overview relevant throughput results. For a more
elaborate literature review on switches the reader is referred to [151].

Karol et al. [77] studied uniform N × N single input queued switches. Uniform
means that the arrival rates to all input ports are the same, packet destinations

10 Introduction

are given by i.i.d. random variables, and every destination has probability 1/N
of occurring. Karol et al. showed that these switches suffer from Head of Line
blocking, or HoL-blocking. HoL-blocking occurs when the packet in the first position
of a queue cannot be transmitted because another packet has the same destination,
while the destination of the packet in the second position is available. As a result of
HoL-blocking, the throughput of a uniform siq-switch is limited to 2 −

√
2 ≈ 0.586

if the number of ports tends to infinity and all buffers are infinitely large.
Karol et al. also studied uniform N × N output-queued switches (without the

assumption that N tends to infinity), and argued that such switches have a through-
put of 1. The disadvantage of output-queued switches, however, is that they cannot
always be used in practice due to the speedup of N .

Due to the poor performance of single input queued switches, most research
aimed at improving that performance. For instance, Karol et al. [76] considered a
switch where, instead of only packets in HoL-positions, the first few packets may
be transmitted, which improves throughput. Kolias and Kleinrock [85] suggested
dividing each input queue into 2 separate queues such that all packets with an even
destination arriving at a particular input are stored in the even queue of that input,
and all packets with an odd destination in the odd queue of that input. They
later extended this to m queues per input [86] and coined the term virtual output
queueing for m = M , although the principle itself had already been introduced
before in [136].

The performance of switches with virtual output queueing depends on the precise
scheduling algorithm used, so scheduling algorithms are an important research topic,
see e.g. [98–100, 125]. In particular, it has been shown that a throughput of 1 can
be achieved with the longest queue first and oldest packet first disciplines [46, 101].

Besides improving the performance of a single input queued switch, it is also
possible to reduce the speedup of output queued switches (which are essentially cioq-
switches with a speedup of N) to make them more practically feasible. As discussed,
this comes at the cost of having to introduce buffers at the inputs. Combined input
output queued switches with a speedup lower than N have been studied extensively,
for example in [39, 70, 73, 79, 109,111].

It has been shown that cioq-switches do not need a speedup of N to achieve a
throughput of 1. In fact, for cioq-switches with virtual output queueing, any non-
idling scheduling algorithm obtains a throughput of 1 if the speedup is equal to
two [46]. Non-idling means that no packet has to wait unnecessarily, i.e., if a packet
at input i has destination j and it is not scheduled, another packet from input i
must have been scheduled, or a packet from another input must have been scheduled
to output j. Moreover, a cioq-switch with a speedup lower than N can mimic a
cioq-switch with a speedup of N (i.e., an output-queued switch) exactly [89, 113],
even without virtual output queueing [40]. Mimicking means that two switches
with sample-path wise identical arrival processes have sample-path wise identical
departure processes.

1.3 Queueing theory 11

1.2.3 Switches in networks on chips

In networks on chips, the physical area of switches is the dominant factor in
the costs of the network [62]. Output queued and combined input output queued
switches require many buffers and are therefore too expensive [69, 120]. Virtual
output queueing can be implemented with a single buffer but then it requires the
use of RAM (Random Access Memory) instead of FIFO queues [120]. For our
purposes, the main difference between RAM and FIFO is that in RAM, packets can
be removed from any position in the memory, whereas in a FIFO queue only the
first packet can be removed. RAMs generally occupy a large area [64,66,146], which
makes them expensive as well.

Siq-switches have only few queues, and the queues they do have are cheap FIFO
queues [146]. Siq-switches are thus much cheaper than the more advanced types
of switches. Although some networks use the more advanced switches, siq-switches
are used in most networks on chips proposed in literature [103], despite their poorer
performance.

In Aethereal, scheduling in siq-switches is performed using a round robin sched-
uler [120]. With such a scheduler, every output port j has an index cj referring to
an input queue. The input queues are considered for transmission in cyclic order
starting at input queue cj , and the first input queue that has a HoL-packet with
destination j can transmit that packet: First, input queue cj is considered, and if it
has a HoL-packet with destination j that packet is transmitted. Second, input queue
cj + 1 mod N is considered and if its HoL-packet has destination j that packet is
transmitted, and so on.

After switching a packet from an input port, the value of cj changes; if a packet
from queue i was transmitted to output j, cj is set to the value i + 1 mod N . If no
packets were transmitted through output j the value of cj remains the same.

We focus on the performance analysis of siq-switches in this thesis. Furthermore,
because siq-switches are the only switches we consider, we will simply refer to them
as ‘switches’ from now on.

1.3 Queueing theory

In this section, we give a brief introduction to queueing theory. In Section 1.3.1,
we discuss queueing models in general. Because networks on chips are synchronised
using a clock, packet transmissions over multiple links occur simultaneously, which
gives rise to discrete-time queueing models. In such models, arrivals and departures
occur at slot boundaries and the order in which they occur is important. This is
discussed in Section 1.3.2.

1.3.1 General queueing systems

The most elementary queueing model deals with the situation where jobs arrive
to a single service facility called the server. Jobs are served by the server and leave

12 Introduction

the system when their service has been completed. If a job arrives when another job
is in service, the arriving job is placed in a queue, also called a ‘buffer’. When the
server completes service of a job, it starts service of one of the jobs from the queue,
and so on. A schematic representation of this situation can be found in Figure 1.10.

The model described above is an abstraction of many real-life situations that
involve queueing. One example is that of a supermarket, where customers with
shopping carts have to pass the checkout; the jobs are the customers with shopping
items and the server is the cashier. Another example is that of a call centre, where
the jobs are phone calls by customers, and the server is an operator handling these
calls. In communication networks, the jobs are data packets and the server can be
a switch or a link.

Using this queueing model, the performance and effectiveness of systems can be
assessed. For example, in communication networks, one is typically interested in the
time spent by packets in the buffer (the waiting time), the number of packets served
per time unit (the throughput) and the number of packets waiting in the buffer (the
queue length).

Job arrivals to a queueing system are typically unpredictable. To model this
unpredictability, it is commonly assumed that jobs arrive according to a stochastic
process, such as a Poisson process. Likewise, the service time (the time a job spends
in service) is often unpredictable, and therefore assumed to be stochastic as well.
Besides the arrival process and service time distribution, the number of available
buffer positions and the number of servers can also be varied.

Kendall introduced a four-symbol notation A/B/C/D that is used to describe
queueing systems. For the first symbol, A, a letter is substituted that describes
the distribution of the interarrival time, the time between two consecutive arrivals.
Examples are M for the exponential (memoryless) distribution leading to a Poisson
arrival process, D for deterministic interarrival times leading to a periodic arrival
process, and G for generally distributed interarrival times. For the second symbol,
a letter describing the distribution of the service times is substituted. Again, M
stands for exponential, D for deterministic, G for general, and so on. For the third
symbol, C, the number of servers in the queueing system is substituted. Finally, for
the fourth symbol, D, the number of available buffer positions is substituted. If the
buffer is infinitely large, the last symbol is usually left out. For example, an M/G/1
queue is a queue with a Poisson arrival process, generally distributed service times,
a single server, and infinitely many buffer positions.

One of the most elementary results from queueing theory is Little’s law (see,
e.g., [130, 145]). Little’s law relates the mean queue length to the mean sojourn
time (defined as the mean waiting time plus the mean service time): E[Y] = λ E[S],

Figure 1.10: A basic queueing model: Jobs arrive to a server and are placed in a queue if
they cannot be served immediately.

1.3 Queueing theory 13

where Y is the queue length, including one job in service if there is one, λ is the
arrival rate, i.e., the expected number of jobs arriving per time unit, and S is the
sojourn time. Another important tool in the analysis of queueing systems is PASTA
(Poisson Arrivals See Time Averages, see [148]). The PASTA property states that,
with a Poisson arrival process, the number of jobs in the buffer at an arbitrary point
in time is in distribution equal to the number of jobs in the buffer immediately before
the arrival of another job. The PASTA-property is, for example, very useful for the
analysis of waiting times in the M/G/1 queue.

Many variants of this basic model have been studied. For example, most queue-
ing systems employ the FIFO service order, but other orders, such as LIFO (Last-In-
First-Out), SIRO (Service-In-Random-Order), and processor sharing, where all jobs
receive a fraction of the capacity of the server, have also been considered. A more
complex variant is a model where multiple queues share a single server. Finally, we
mention the possibility that jobs leaving a server are sent to another server, leading
to networks of queueing systems.

For a more elaborate introduction to queueing theory, the reader is referred
to the introductory books by Kleinrock [82, 83] or the lecture notes by Adan and
Resing [3]. Due to our focus on queueing models for networks on chips we consider
packets rather than jobs arriving to a server in the sequel.

1.3.2 Arrival models in discrete-time queueing systems

In networks on chips, packet transmissions over all links are synchronised using a
clock, which effectively means that networks on chips operate in discrete, or ‘slotted’
time. It is therefore natural to consider discrete-time queueing models for networks
on chips. Continuous-time queueing models, however, are much more popular in
queueing theory literature. The main difference between continuous- and discrete-
time models is that in discrete time, arrivals and service completions (departures)
occur simultaneously at slot boundaries; something which happens on a continuous
time scale with probability 0.

Although arrivals and departures occur simultaneously, one has to specify an
order between them for the sake of analysis. The choice of this order (called arrival
model) has consequences for the applicability of Little’s law and BASTA (Bernoulli
Arrivals See Time Averages, see [32]), the discrete-time equivalent of PASTA. Other
than such fundamental issues, the choice of the right arrival model turns out to be
important when networks of queues are considered. In this section, we therefore
discuss the effects of different arrival models.

We consider three arrival models studied by Desert and Daduna [50]: The early
arrival (ea) model, the late arrival - arrivals first (la-af) model, and the late arrival
- departures first (la-df) model. Desert and Daduna describe the different arrival
models by introducing time epochs t−− < t− < t < t+, for any slot boundary t ∈ N,
where the difference between each is infinitesimal. In the ea-model, arrivals take
place at the beginning of time slots, i.e., at t+, and departures at the end, i.e.,
at t−. A packet arriving at time t+ may be served in time slot [t, t + 1). In the late
arrival models, arrivals and departures occur at the end of time slots, with either

14 Introduction

t+t−

t

Departures Arrivals

(a) Early arrival

t−− t−

t

Arrivals Departures

(b) Late arrival - arrivals first

t−− t−

t

ArrivalsDepartures

(c) Late arrival - departures first

Figure 1.11: Three different arrival models, early arrival, late arrival - arrivals first, and
late arrival - departures first.

arrivals before departures (la-af), i.e., arrivals at t−− and departures at t−, or the
other way around (la-df). The three arrival models are depicted in Figure 1.11.

We denote the number of packets seen by an arbitrary arriving packet by L,
and the number of packets at an arbitrary slot boundary t by Q. The arrival
model is added as a subscript: Le, La, and Ld are the number of packets seen
in the ea-model, the la-af-model, and the la-df-model respectively, and likewise
for Q. We furthermore denote the number of packets at an arbitrary point in the
continuous time domain by Y . Because the arrival models only change the behaviour
at infinitely small time intervals, Y is the same for all arrival models (unless arrivals
or service completions are state-dependent, see [50]).†

Bernoulli Arrivals See Time Averages

We consider the most general single-server queue with a Bernoulli arrival process,
namely a Geo/G/1 queue. In this queue, packet arrivals take place every time slot
with a fixed probability (so the interarrival times are geometrically distributed),
and every packet has a generally distributed service time. The BASTA property
states that the queue length seen by an arriving packet is equal to the queue length
at arbitrary times. There are, however, two different interpretations of the queue
length at arbitrary times, namely that at an arbitrary point in the continuous-time
domain (see, e.g., [67]) and the discrete-time domain (see, e.g., [50]).

Gravey and Hébuterne [67] show that BASTA holds with respect to continuous-
time queue lengths if and only if arrivals occur before departures at slot boundaries.

Since this is only the case for the la-af-model, we have, in our notation, La
d
= Y ,

†The quantity Y can also be viewed as the number of packets at times t + 1/2, with t ∈ N. It
is also sometimes called the number of packets seen by an outside observer.

1.3 Queueing theory 15

Ld 6 d= Y , and Le 6 d= Y . Here,
d
= denotes equality in distribution. Note that we used

that, in the ea-model, departures indeed occur before arrivals at slot boundaries,
even though arrivals occur before departures within a time slot.

For BASTA with respect to discrete-time queue lengths, it is easily shown by
a sample-path argument that the queue length at slot boundaries is in distribution
equal to the queue length at an arbitrary point in continuous time for the late arrival

models: Qa
d
= Y and Qd

d
= Y . It thus follows that La

d
= Qa and Ld 6 d= Qd. For the

early arrival model, we refer to Takagi [134], where it is shown that Le
d
= Qe.

Little’s law

Care is thus in order with the BASTA property. Care is also in order with the
application of another fundamental result in queueing theory: Little’s law. For any
arrival model, Little’s law relates the mean sojourn time to the mean queue length
in the continuous-time domain [130], rather than that at discrete times. In other
words, Little’s law states E Y = λ E S, where λ is the arrival rate and S the sojourn
time. It follows that Little’s law only relates the mean sojourn time to the mean
queue length at discrete times if the mean queue length at discrete and continuous
times are the same. In general, this only holds for the late arrival models, because

Qa
d
= Qd

d
= Y and Qe 6 d= Y .

That Little’s law cannot be applied thoughtlessly to discrete-time queue lengths
is especially apparent in the D/D/1 queue with unit interarrival and service times:
With the early arrival model, every time slot a packet arrives and departs in that
same time slot, i.e., for any time t ∈ N a packet arrives at time t+ that leaves at
(t + 1)−. The system is thus always empty at discrete times, but always non-empty
in the continuous time domain; Qe = 0 and Y = 1. Applying Little’s law to Qe

instead of Y would lead to the rather odd conclusion that the sojourn time is equal
to 0, even though the load is 1 and every packet spends precisely one time slot in
the system.

Networks of queues

Desert and Daduna [50] also analyse the effects of different arrival models when
queues are put in a tandem network. For the la-af-model, a packet served at time
t− arrives at the next queue at time (t + 1)−−, which means the packet disappears
from the network for one time slot. To prevent such irregularities, one could, with
2 queues in an ordinary tandem, introduce additional time epochs t−−−− and t−−−

such that arrivals at queue 1 occur at t−−−−, packet departures from queue 1 at
t−−−, packet arrivals at queue 2 at t−− and packet departures from queue 2 at time
t−. With J queues in tandem a similar solution with 2J time epochs is possible but
for more general topologies, a similar solution may become very cumbersome. The
la-af-model is thus not a natural choice for networks of queues.

For the la-df model, any packet served at t−− arrives at the next queue at time
t−. Likewise, for the ea-model any packet that is served at time t− arrives at the

16 Introduction

Model Relations E Q = λ E S? Networks?

Early arrival Le
d
= Qe 6 d= Y No Yes

Late arrival - arrivals first La
d
= Qa

d
= Y Yes No

Late arrival - departures first Ld 6 d= Qd
d
= Y Yes Yes

Table 1.1: The differences between various arrival models. Here L is the queue length seen
by an arriving packet, Q that at discrete-time epochs t ∈ N, and Y that at an arbitrary point
in the continuous-time domain.

next queue at time t+. The ea- and la-df-models are thus more natural models for
networks, because peculiarities like in the la-af case do not occur.

Summary

The differences between the various arrival models are summarised in Table 1.1. All
three arrival models have their peculiarities: For the la-df-model, BASTA does not
hold, for the ea-model, Little’s law only holds for the continuous-time queue length,
and the la-af model is not very suitable for networks.

In this thesis, suitability for networks is important, so we do not consider the la-
af-model. The ea-model and the la-df-model differ only in the point at which queue
lengths are observed; either between or after departures and arrivals. Apart from
this difference the queue lengths in both models are sample-path wise the same. We
can therefore assume an arrival model based on the properties we want the queueing
system to have. Applicability of Little’s law will turn out to be useful, so we assume
the la-df arrival model throughout this thesis.

1.4 Models

The research of this thesis is centred around two key models: The first one is a
model of only one switch, a so-called single-switch model. The second is a network
of polling stations, which is motivated by a network on chip where all traffic has the
same destination. Both models are described in more detail in this section.

1.4.1 Single-switch models

Consider a model of an N × M switch as depicted in Figure 1.12. We assume
that packets arrive at queue i of the switch according to a Bernoulli process with
parameter λi (i.e., every time slot an arrival takes place with probability λi, inde-
pendently of all previous time slots). A packet arriving to queue i has output j
as destination with probability pij , independently of everything else. Recall that if
λi = λ and pij = 1/M , the switch is called uniform.

The switch constitutes a discrete-time process (D(t), Q(t)), where the vector
D(t) = (D1(t), . . . , DN (t)), and Q(t) = (Q1(t), . . . , QN(t)). Here, Di(t) denotes the
destination of the HoL-packet in queue i at time t, and Qi(t) denotes the length of

1.4 Models 17

λN

λ1

pij

Figure 1.12: A schematic representation of the model of a switch. Packets arrive at rate λi

to queue i of the switch, and have destination j with probability pij .

queue i at time t. If queue i is empty, we say Di(t) = 0.
If the switch uses the random order discipline (i.e., if there are k HoL-packets

with the same destination, each of them is selected with probability 1/k), the process
(D(t), Q(t)) is a Markov chain: The arrivals and destinations of packets are given
by independent random variables and departure probabilities can be derived from
D(t) due to the random order discipline. In the remainder of this subsection, we
discuss possibilities to analyse this Markov chain.

Saturated switches

Switches are sometimes studied in a state known as saturation. Saturation is an
overload situation where all queues always have packets, i.e., Qi(t) ≥ 1 for all i and
t. Every transmitted HoL-packet is thus immediately replaced by a new packet and
the process D(t) itself constitutes a Markov chain.

The state space of this Markov chain is {1, . . . , M}N , and the Markov chain is
in state x = (x1, . . . , xN) if the HoL-packet at queue i has destination xi. The
transitions of this Markov chain are caused only by departures of old packets and
arrivals of new HoL-packets with new destinations. The number of packets with the
same destination, and hence the departure probability, can be derived from x. The
new HoL-packets have destinations that are independent of everything else.

Because the process D(t) is a Markov chain on a finite state space, its equilibrium
distribution can be found numerically using straightforward techniques. Moreover,
using this equilibrium distribution, important throughput results can be derived.

Remark 1.4.1. For general switches in saturation, the process D(t) is indeed a
Markov chain on the state space {1, . . . , M}N . For specific switches such as a
uniform switch, simplifications of the state space are possible. Using these simplifi-
cations the size of the state space and the computational burden can sometimes be
reduced significantly. See, e.g., [12, 30] for details.

Non-saturated switches with finitely many input queues

We consider again a non-saturated switch described by the discrete-time process
(D(t), Q(t)). With infinite buffers, the state space of the process (D(t), Q(t)) consists
of a finite number of parallel N -dimensional planes {0, 1, . . .}N ; for every possible
destination vector D(t) (of which there are finitely many), all N queue lengths take
a value in {0, 1, . . . , }.

18 Introduction

The process (D(t), Q(t)) is a spatially homogeneous Markov chain. Spatially
homogeneous means that transitions in the interior of a plane happen with the
same probability, regardless of the precise position on that plane, and likewise for
the boundaries. In other words, packet arrivals and departures may only depend on
whether or not queues are empty, and not on the number of packets in the queues.

Spatially homogeneous Markov chains on single planes in two dimensions have
been studied extensively (for a textbook see [54]), for example in the context of
cable networks [118, 138, 139], coupled processors [53], and so on. Nevertheless,
exact analysis of spatially homogenous 2-dimensional Markov chains is very hard
in general. In [2], three approaches for particular classes of such Markov chains
are discussed: The compensation approach [1, 4], translation to a 2-dimensional
boundary value problem from mathematical physics [44], and the uniformisation
technique (see e.g. [56, 81]). These approaches have also been applied to 2 × 2
output-queued switches: The compensation approach was applied by Boxma and
Van Houtum [35], the uniformisation approach by Jaffe [75], and the boundary
value approach by Jaffe [74] and Cohen [41, 42].

If a 2 × 2 single input-queued switch has uniform destinations (pij = 1/2 for all
i and j), it also gives rise to a Markov chain on a single 2-dimensional plane. Due
to the uniformity of destinations, contention (both HoL-packets having the same
destination) occurs with probability 1/2 if both queues are non-empty, regardless
of the destinations in previous time slots. Additional parallel planes are thus not
needed; the process Q(t) = (Q1(t), Q2(t)) itself is already Markovian.

With general values of pij , however, a 2 × 2 siq-switch already constitutes a
Markov chain on a number of parallel 2-dimensional planes. After all, the probability
of contention in a certain time slot depends on the destinations of HoL-packets in
the previous time slot: If both HoL-packets have the same popular destination, only
one new packet will move to the HoL-position and contention is very likely, but if
there is contention for a less popular destination, contention is less likely in the next
time slot. The destinations of packets must thus be taken into account to make the
process Markovian, i.e., the process Q(t) is not Markovian, but (D(t), Q(t)) is.

For a general N × M siq-switch, determining the queue length distribution re-
quires solving a Markov chain on a finite number of parallel planes in N dimensions.
Yet, even Markov chains on a single N -dimensional plane with N > 2 have eluded
researchers so far; a general approach to solve such Markov chains has not yet been
discovered. Moreover, obtaining results for 2-dimensional models requires advanced
techniques from complex function analysis, and the derivations of these results do
not offer much hope for extensions to higher dimensions. Although the equilibrium
distribution of a 2×2 siq-switch with uniform destinations can probably be obtained
in exact form using one of the techniques discussed in [2], we focus on approxima-
tions for more general cases in this thesis, rather than pursuing an exact analysis
for this one special case.

1.4 Models 19

Non-saturated switches with infinitely many input queues

Karol et al. [77] analysed the mean queue length of a uniform N × N -switch with
Bernoulli arrivals under the assumption that N tends to infinity. Their analysis was
based on two observations: First, if N tends to infinity, the lengths of the input
queues become independent. Second, if N tends to infinity, the number of packets
with the same destination arriving at HoL-positions follows a Poisson distribution.
These two observations together imply that the time a packet spends in the HoL-
position is equal to the sojourn time in a discrete-time M/D/1 queue with random
order of service. In particular, this allows for analysis of the mean queue length.

Li [95] analysed the mean queue length and throughput of a non-uniform N ×
N switch under the assumption that N → ∞, using the same two observations.
Furthermore, he studied a switch with geometric packet sizes in [96]. For uniform
switches the analysis of Li corresponds to that of Karol et al. [77].

If these asymptotic results are applied to switches with a finite number of queues,
they only yield approximations. These approximations are generally accurate for
large N . In mesh topologies, however, the size of switches is usually 4 or 5 (see Sec-
tion 1.1.3) and the asymptotic analysis of uniform switches leads to quite inaccurate
approximations for small N , as is shown in Chapter 2.

1.4.2 Concentrating tree networks of polling stations

The second key model considered in this thesis is a network of polling stations.
A polling station is a queueing system where multiple queues are served by a single
server. In the remainder of this subsection, we describe the network model in more
detail, and we give a brief introduction to polling systems.

Network model

Consider a concentrating tree network of polling stations, as displayed in Figure 1.13.
Packets arrive to the network from external sources and are served by the polling
station to which they arrive. After a packet completes service at this station, it
moves to another polling station, where it is served again, and so on. All packets in
the network move towards a single node, called the sink. After service at the sink,
the packets leave the network.

The concentrating tree network model is motivated by networks on chips where
all traffic has the same destination, which happens for example if multiple masters
(e.g., processors) share a single slave (e.g., memory). As described in Section 1.1.3,
switches in networks on chips are typically organised in a mesh topology, and the
predominant routing discipline is XY-routing. With this routing discipline, packets
first travel across the network horizontally, and then vertically. An example of a
mesh network with XY-routing where all traffic has the same destination is displayed
in Figure 1.14.

As can be seen from Figure 1.14, the mesh network topology combined with
XY-routing is a special case of a concentrating tree network. Furthermore, because

20 Introduction

Figure 1.13: A concentrating tree network of polling stations.

all traffic has the same destination, every switch has several queues sharing a single
link connecting that switch to the next. Every switch can thus be seen as a server
attending multiple queues, i.e., as a polling station, and a network of switches as a
network of polling stations.

In addition to open concentrating tree networks of polling stations, where packets
arrive from the exterior, we also study a closed model for a concentrating tree
network operating under flow control. In closed models, packets immediately reenter
the network after service at the sink. Effectively, packets thus remain the network
forever and number of packets in the network is fixed at all times. An alternative
way of looking at this network is that the network starts with a certain number of
packets, and a new packet enters the network if and only if another packet from the
same source leaves the network at the same time.

Closed queueing networks resemble networks with flow control operating under
heavy loads (see, e.g., Reiser [116]); flow control limits the number of packets from

Figure 1.14: A mesh network where all traffic has the same destination.

1.4 Models 21

the same source to a maximum, and heavy loads imply that served packets are
quickly replaced by new packets from the same source, which is modelled by keeping
the number of packets from the same source fixed. As networks on chips implement
flow control as well, a closed network of polling stations can be used as a model
for a network on chip where all traffic has the same destination, operating under a
heavy load.

Polling systems

Polling systems have been the subject of numerous studies (for surveys, see [133,135,
142]) and have many applications, for example in telecommunications, transporta-
tion, and healthcare. Although single-station polling systems have been studied
extensively, few attempts have been made to analyse networks of polling stations;
one of the rare examples is a heavy-traffic study [115]. Below, we therefore give a
brief introduction to single-station polling systems.

In polling literature it is common to speak of a server ‘visiting’ the various queues
and serving the packets there. There are many different service disciplines that
determine how many packets are served during a visit, such as exhaustive service,
gated service, mi-limited service, and Bernoulli service. With exhaustive service,
the server serves a queue until it becomes empty. With gated service, each time the
server visits a queue an imaginary gate is placed behind the last packet in the queue
and the server only serves packets in front of that gate. With mi-limited service, the
server serves queue i until mi packets have been served or queue i becomes empty,
whichever happens first. With Bernoulli service, the server serves queue i again
with probability qi after a service completion there, and otherwise moves to another
queue.

If the server moves to another queue, it might do so, for example, according to
Markovian routing or cyclic routing. With Markovian routing, the server moves to
queue j after service of queue i with probability rij . With cyclic routing, the server
visits the queues in the natural order, i.e., after service of queue i the server moves
to queue i + 1 mod N . Cyclic routing is a special case of Markovian routing.

There is a remarkable distinction between service disciplines that so far have
defied exact analysis of even the mean waiting time per queue (except for special
cases like symmetric and 2-queue stations), such as 1-limited, and service disciplines
for which various methods exist to obtain exact results, such as exhaustive and gated
service. Resing [117] showed that service disciplines satisfying a so-called ‘branching
property’ can be exactly analysed. This branching property states the following:

Property 1.4.2. If the server arrives to queue i and finds ki packets there, then
during the course of the server’s visit, all of these ki packets are effectively replaced
in an i.i.d. manner by an N -dimensional random population.

For instance, with the gated service discipline, the packets left at the end of the
visit of the server to queue i are the packets in queue j 6= i that were present at
the beginning of the visit to queue i plus the packets that arrived during the service
of queue i. All packets present in queue i at the beginning of the visit to queue i

22 Introduction

will have been removed when the server ends its visit. This can also be viewed as
a replacement of every packet in queue i by the packets arriving during its service,
i.e., by an i.i.d. N -dimensional random population.

In contrast, with the 1-limited service discipline one packet in queue i is replaced
by packets arriving during its service. All other type i packets are left unchanged
(i.e., replaced by one type i packet), so the 1-limited service discipline does not
satisfy the branching property.

For service disciplines satisfying the branching property, it is shown in [117]
that the number of packets in different queues, embedded at time points where
the server visits queue 1, constitutes a multi-type branching process (MTBP) with
immigration. Furthermore, it is mentioned that the class of MTBPs is one of the
exceptional classes of multi-dimensional Markov chains for which the equilibrium
distribution can be determined.

This at least partially explains why methods exist to obtain mean queue lengths
(and thus mean waiting times) for exhaustive and gated service disciplines (for an
overview of such methods, see, e.g., [147]). Nevertheless, even for these service
disciplines, the mean waiting time per queue is, apart from special cases such as
symmetric systems, not given explicitly but in terms of a matrix inverse, infinite
product, or a solution to a set of equations.

The round robin scheduler of switches in networks on chips corresponds to the
cyclic 1-limited service discipline, which implies that no exact results are known
for siq-switches. There are, however, many approximations for 1-limited polling
systems, such as that of Boxma and Meister [34], Levy and Groenendijk [68], and
many others. This will be discussed in more detail in Chapter 6.

1.5 Key results and organisation of the thesis

In this section, we describe the key results of the thesis and we give an overview
of how they are organised. Throughout this thesis, our focus is on the analysis
of throughput and mean end-to-end delays. The throughput is a measure for how
much data can be transmitted across the network and the delay is a measure for how
long it takes to transmit data. Both are important measures for the performance of
networks on chips and they need to be well understood.

In the first part of the thesis (Chapters 2 and 3), we focus on the analysis of
the single-switch model. In Chapter 2, we first study a uniform packet switch with
packets of size 1. Such switches have been analysed in literature under the assump-
tion that N tends to infinity. However, in networks on chips, and in particular those
with the mesh topology, switches often have only a few queues and we show that
the known asymptotic analyses lead to inaccurate results for small switches. We
approximate the mean waiting time in a switch by that in a Geo/Geo/1 queue and
we show that this approximation is more accurate for small switches than the known
asymptotic ones.

In Chapter 2 we furthermore study a small network of a uniform switch and

1.5 Key results and organisation of the thesis 23

network interfaces modelled by single server queues. Packets of fixed size K arrive
to these single server queues and are then transmitted to the switch flit-by-flit. We
extend the Geo/Geo/1 approximation to this case. The key argument in this exten-
sion is that the beginnings of packet transmissions become approximately periodic
as the load increases, which reduces K to a time-scaling factor. This observation is
the main motivation to consider single-flit packets from then on, and to disregard
network interfaces. The analysis of Chapter 2 illustrates that this assumption has
a high reward in terms of simplicity at only a small cost in terms of accuracy.

In Chapter 3, we consider a non-uniform switch with unit packet sizes and we
extend our Geo/Geo/1 approximation to this case. The main difficulty in extend-
ing the approximation is that for given arrival rates, some queues might be stable
while others are not. By further developing a heuristic approach proposed by Ibe
and Cheng [72], we obtain a very accurate approximation of the throughput and
saturation loads (the loads for which queues become unstable). Using the satu-
ration load and throughput approximation, we can indeed extend our Geo/Geo/1
approximation to the non-uniform case. We also apply the approximation to two
models with correlated traffic: The first one has correlation between arrivals (i.e., if
an arrival occurs this time slot, it is more likely that an arrival will occur in the next
time slot as well), and the second one has correlation between destinations (i.e., two
consecutive packets are more likely to have the same destination).

In the second part of the thesis (Chapters 4, 5, 6, and 7), we consider networks
of polling stations. Although these models are primarily motivated by networks
on chips, the range of applications for which they are suitable extends far beyond
networks on chips. This is reflected by the fact that we use the term ‘node’ rather
than switch, and by the fact that we consider other service disciplines than 1-limited
as well.

One of the main results of this part of the thesis is that we show that concen-
trating tree networks of polling stations can be reduced to single-station polling
systems, while preserving information on queue lengths and waiting times. Most
importantly, this reduction theorem makes it possible to analyse networks of polling
systems through the use of single-station results.

The condition under which this reduction theorem holds is that the last node of
the network (the sink) must use a so-called HoL-based service discipline. For the
precise definition of HoL-based we refer to Chapter 4, but the definition entails that
the server decides which packet it is going to serve at time t only based on whether
queues are empty or non-empty at times t, t − 1, . . . , t − M for an arbitrary finite
M . It may not, for instance, take queue lengths into account. Service disciplines
such as longest/shortest queue first are thus not HoL-based.

The class of HoL-based service disciplines includes - but is not limited to - the
Bernoulli and mi-limited service disciplines. Furthermore, if the server decides to
select one of the other non-empty queues, it may do so according to some fixed
order (e.g., a cyclic order) or according to Markovian routing. Exhaustive service
is a special case of Bernoulli service, and a limiting case of mi-limited, namely
mi → ∞. The cyclic 1-limited service discipline used in switches is a special case of

24 Introduction

both.
The reduction theorem is proved in Chapter 4. In Chapter 5, we apply the reduc-

tion theorem of Chapter 4 to all nodes in a network. By making an additional ap-
proximation assumption, we obtain an approximation of the mean end-to-end delay
per source. This approximation is derived for general HoL-based service disciplines,
and its accuracy is studied for the cyclic 1-limited service discipline. We furthermore
apply the approximation to a network on chip consisting of four switches in a mesh
topology and we show that the reduction theorem can be used to obtain the mean
end-to-end delay per source exactly in trees with a certain symmetry property.

The approximation of Chapter 5 requires the calculation of mean waiting times
in single-station polling systems. In Chapter 5, we use a known approximation to
compute these, namely the approximation of Boxma and Meister [34]. In Chapter 6
we derive a new approximation of the queue length distribution (from which mean
waiting times follow) in single station polling systems. We do so for a large subclass
of HoL-based service disciplines, namely that of Bernoulli service combined with
Markovian routing, which contains the cyclic 1-limited service discipline as a special
case. The approximation is found to be very accurate in general, and in particular
for the cyclic 1-limited service discipline.

We study closed networks of polling stations in Chapter 7. Our study focuses
on the effects of flow control on fairness in the network, i.e., on the division of
throughput over packets from different sources. We model the network as a Markov
chain and derive the exact throughput division for polling systems with the random
polling service discipline (with random polling, the server serves every queue with
a fixed probability, independently of what happened in previous time slots). In
addition to this, we obtain the exact throughput division for polling systems with
two queues and Bernoulli service and Markovian routing, of which random polling
and 1-limited are a special case. The results from our analysis reveal that the division
of throughput is steered by an interaction between service disciplines, buffer sizes,
and the flow control mechanism. An additional numerical study sheds more light
on the specifics of this interaction.

Chapters 2 until 6 are based on published papers: Chapter 2 is based on [13],
Chapter 3 on [18], Chapter 4 on [15], Chapter 5 on [14], and Chapter 6 on [17]. The
material of Chapter 7 has not yet been published, but a paper has been submit-
ted [16].

Chapter 2

Uniform switches

In this chapter we analyse a network consisting of an N ×N switch and N network
interfaces modelled by single-server queues. Packets of fixed size K arrive to the
network interfaces according to Bernoulli arrival processes and are transmitted to
the switch flit-by-flit. We assume traffic in the network is uniform, i.e., all arrival
rates are the same and all destinations are equally likely.

An important special case arises if K = 1; in this case, the network reduces to
only a uniform N ×N switch with Bernoulli arrivals. As discussed in Section 1.4.1,
such switches have been analysed under the assumption that N tends to infinity.
We show that these asymptotic models yield inaccurate results if they are applied
to small switches. Furthermore, we propose a new approximation of the mean
waiting time of packets that is specifically geared towards small switches. The key
assumption in this approximation is that the time spent by a packet in the first
position of a queue is geometrically distributed. As a result, the mean sojourn time
of a packet in the switch is approximated by that in a Geo/Geo/1 queue. This
approximation is compared to known asymptotic approximations, and shown to be
more accurate for small N .

For the case where K > 1, we have batch arrivals at the single server queues
representing the network interfaces. These batches arrive to the switch flit-by-flit,
which is an arrival process of a kind that is sometimes known as ‘train arrivals’.
We analyse this network with train arrivals and extend our mean sojourn time
approximation to the situation with K > 1. Using this approximation, we can also
approximate the mean total sojourn time in the network.

25

26 Uniform switches

2.1 Model

We consider a network on chip consisting of N network interfaces (NIs) and an
N × N switch, where each NI is connected to a unique input port of the switch,
as depicted in Figure 2.1. We assume that packets of fixed size K arrive at the
NIs according to i.i.d. Bernoulli processes with parameter λ. Recall that the size of
packets is measured in flits, where a flit is precisely the amount of data that can
be transmitted in one time slot. The switch uses wormhole routing, which entails
that packets are transmitted completely before the switch transmits another packet
through the same output port.

Packets arriving to the network are stored in the NIs and the flits are sent to the
switch one-by-one. An NI can thus be seen as a queue with unit service times and
batch arrivals; a GeoX/D/1 queue. In a system with batch arrivals, multiple entities
requiring service (i.e., flits) arrive simultaneously. The superscript X denotes the
size of the batch that arrives every time slot (with P(X = 0) > 0). The interarrival
times of non-zero batches are geometrically distributed with parameter P(X > 0).

Because the switch transmits flits, it can be seen as a server as well. The service
time of a flit in the switch is defined as the time the flit spends in the HoL-position.
The input process of the switch is the output process of the GeoX/D/1 queue, which
is an on-off process, whose on-period is equal to the busy period of the GeoX/D/1
queue. Arrival processes of this form are sometimes called ‘train arrivals’ [149].

The path of an arbitrary packet across the network can thus be modelled as
a discrete-time tandem network with two nodes. The first node represents the NI
and is a GeoX/D/1 queue with unit service times. The second node represents the
switch and is a discrete-time ./G/1 with an unknown service time distribution.

If the packet size K = 1, the arrival process at the switch simplifies to a Bernoulli
process. Uniform packet switches with Bernoulli arrivals have been studied ex-
tensively under the assumption that N tends to infinity. We introduce a new
Geo/Geo/1 approximation and show that it is more accurate than the asymptoti-
cally exact analysis of Karol et al. [77] and the asymptotic approximation of Kim
et al. [80]. The latter approximation is also based on the assumption that N → ∞,
but Kim et al. make an additional approximation assumption that the number of
consecutive output conflicts follows a geometric distribution.

For the case K > 1, we observe a certain periodicity in service times. This

︸ ︷︷ ︸
NI

︸ ︷︷ ︸
Switch

1
N

Figure 2.1: The network model of this chapter with N = 4 NIs.

2.2 Approximations for K = 1 27

periodicity is explained by the fact that service beginnings at multiple queues tend
to occur simultaneously as the arrival rate increases. We extend our approximation
to the case K > 1 by regarding K as a time-scaling factor. We furthermore analyse
the network and approximate the mean total sojourn time in this network using the
extension of our Geo/Geo/1 approximation.

The mean sojourn time E[S] of the GeoX/G/1 is an important quantity in this
chapter. It can be found using E[S] = E[W] + E[B], where E[B] is the mean
service time and E[W] the mean waiting time, which is given by Equation (1.52a)
of Takagi [134]:

E[S] =
ρ

1 − ρ

(
E[B2]

2 E[B]
− 1

2

)
+

1

1 − ρ

(
E[X2]

2 E[X]
− 1

2

)
E[B] + E[B], (2.1.1)

where ρ = E[X] E[B] is the load.
The organisation of the remainder of this chapter is as follows: Section 2.2 is

devoted to approximations for the case K = 1. In Section 2.2.1 and 2.2.2 we describe
the approximations of Karol et al. and Kim et al. respectively. In Section 2.2.3
we introduce our new Geo/Geo/1 approximation. In Section 2.3 we extend this
approximation to the case K > 1. The tandem network is analysed in Section 2.4.

The second part of this chapter contains more empirical results. First, we anal-
yse the performance of our approximation in Section 2.5 and we compare our ap-
proximation to the asymptotic models. The assumption that the service time is
geometrically distributed is investigated in more depth in Section 2.6. Finally, we
present the conclusions of our research in Section 2.7.

2.2 Approximations for K = 1

If K = 1, the network interfaces delay all packets for precisely one time slot, so
the arrival process to the switch is a Bernoulli process. The network is thus reduced
to only the uniform switch with Bernoulli arrivals, as displayed in Figure 2.2.

In Sections 2.2.1 and 2.2.2, we briefly review the asymptotic approximations of
Karol, Hluchyj, and Morgan [77] and Kim, Kim, and Lee [80], referred to as the
KHM and KKL model respectively. The main difference between these two models
is that in the KHM model the first two moments of the service time are determined
exactly, whereas in the KKL model, a geometric service time distribution is assumed

Bern(λ)

Bern(λ)

Bern(λ)

Bern(λ)

1
N

Figure 2.2: A switch in isolation with N = 4. Packets of size 1 arrive at the input queues
of the switch according to i.i.d. Bernoulli arrival processes with parameter λ.

28 Uniform switches

and fitted to the mean of the KHM model. In Section 2.2.3 we devise our Geo/Geo/1
approximation.

2.2.1 The KHM approximation

The crucial observation of Karol et al. [77] is that if N → ∞ the number of
packets with the same destination arriving each time slot at the HoL-positions of
the input queues follows a Poisson(λ) distribution. Because packets are selected
for transmission at random, the time spent by a packet in the HoL-position of an
input queue (i.e., the service time) is in distribution equal to the sojourn time in a
discrete-time queue with Poisson arrivals, service in random order, and unit service
times. If we let X̃ ∼ Poisson(λ) be the batch size and S̃ the sojourn time in the

latter GeoX̃/D/1 queue, we thus have

B
d
= S̃, (2.2.1)

where
d
= denotes equality in distribution.

To calculate the mean sojourn time in the switch, we need to determine the
first and second moment of the service time B. Karol et al. provide a numerical
procedure to find the distribution of S̃, which in particular allows us to determine
E[B2] = E[S̃2]. Furthermore, the mean sojourn times with service in random order
and FIFO are equal, so it follows from Equation (2.1.1) that

E[B] = E[S̃] =
ρ̃

1 − ρ̃

(
E[B̃2]

2 E[B̃]
− 1

2

)
+

1

1 − ρ̃

(
E[X̃2]

2 E[X̃]
− 1

2

)
E[B̃] + E[B̃], (2.2.2)

where ρ̃ = E[X̃] E[B̃] and B̃ ∼ Det(1). Furthermore, X̃ ∼ Poisson(λ), which implies

E[X̃] = λ and E[X̃2] = λ(1 + λ). Hence, (2.2.2) simplifies to

E[B] =
λ

2(1 − λ)
+ 1. (2.2.3)

Finally, we observe that, due to the Bernoulli arrival processes, the switch is a
Geo/G/1 queue, which is a special case of the GeoX/G/1 queue with

X =

{
0, w.p. 1 − λ, and

1, w.p. λ,

and therefore E[X2] = λ. We infer from Equation (2.1.1) that the mean sojourn
time in the switch is thus given by:

E[S] =
ρ

1 − ρ

(
E[B2]

2 E[B]
− 1

2

)
+ E[B], (2.2.4)

where ρ = λ E[B], E[B] is as in (2.2.3) and E[B2] can be determined using the
numerical procedure of Karol et al. [77].

2.2 Approximations for K = 1 29

2.2.2 The KKL approximation

Kim et al. [80] also model the switch as a Geo/G/1 queue for N → ∞, but they
assume a geometric service time distribution with the same mean service time as
found by Karol et al. [77]. That is, they assume that any queue of the switch is a
Geo/Geo/1 queue with service rate µ = 1/ E[B], with E[B] as in Equation (2.2.3).

Due to the geometric service time distribution, we have:

E[B2] =
2 − µ

µ2
.

The mean sojourn time in the switch now follows from Equation (2.1.1):

E[S] =
ρ

1 − ρ

(
1

µ
− 1

)
+

1

µ
=

(1 − λ)(2 − λ)

λ2 − 4λ + 2
.

Note that the model is based on a non-saturated switch, which means that the
results are only valid for λ < 2 −

√
2. This is reflected in the denominator of E[S],

because λ = 2 −
√

2 is one of its zeros.

2.2.3 Geometric approximation

In this subsection, we introduce our new Geo/Geo/1 approximation. The key
step in this approximation is that, like in the approximation of Kim, Kim, and
Lee [80], we assume that the service time is geometrically distributed. However,
instead of fitting the parameter of this geometric distribution to the mean found by
Karol, Hluchyj, Morgan [77], we use a quadratic approximation of the service rate
based on a light traffic limit and the saturation throughput. Because our model is
not based on the limit of N → ∞ we find a different mean service time and obtain
better results for small switches.

The throughput of a switch is defined as the expected number of served flits
per time slot, divided by N . The saturation throughput λsat is defined as the
throughput in saturation, which is an overload situation where all queues are always
non-empty. If the loads are high enough, i.e., if λ ≥ λsat, the service rate is equal
to the saturation throughput.

For small N , the saturation throughput can be determined using a Markov chain
approach, as was briefly discussed in Section 1.4.1. For more details on how to
compute the saturation throughput in uniform switches, the reader is referred to [12,
30], and to Chapter 3, where we describe a more general Markov chain primarily
aimed at non-uniform switches. Table 2.1 shows the saturation throughput for some
values of N . For large N , the Markov chain approach becomes intractable and we
have to resort to simulation approximations or to its limiting value 2−

√
2 ≈ 0.586.

It remains to determine the service rate in light traffic; we consider λ > 0 small
and we neglect O(λ2) terms. By doing so, we can determine the entire light traffic
service time distribution, which also gives us the light traffic service rate.

Consider an arbitrary time slot t and an arbitrary packet which we tag. Suppose
that the tagged packet arrives at a non-empty switch. Because there is at least one

30 Uniform switches

N λsat N λsat

1 1 7 0.6238
2 0.75 8 0.6184
3 0.6825 9 0.6146
4 0.6552 10 0.6116
5 0.6399 11 0.6091
6 0.6302 ∞ 0.586

Table 2.1: Saturation throughputs for several values of N .

packet present from slot t − 1, there must have been at least two packets present
in that time slot. This implies that at some point in time there must have been
two simultaneous arrivals. Since this happens with a probability of O(λ2), we may
ignore the situation in which a packet arrives at a non-empty switch.

So consider a tagged packet arriving at an empty system. The tagged packet
is almost always switched except if another packet arrives simultaneously with the
same destination and wins contention. Note that the probability of two or more
other arrivals is O(λ2), which we neglect. The probability that one other packet
arrives is (N − 1)λ +O(λ2) because there are N − 1 remaining input queues and at
each queue an arrival happens with probability λ. The two packets have the same
destination with probability 1

N
, in which case the tagged packet is not switched

with probability 1
2 . Multiplying these probabilities gives us that the tagged packet

is switched with probability 1 − 1
2

N−1
N

λ + O(λ2). Since another arrival in the next
time slot would induce another factor λ, the probability that the tagged packet is
not switched in the next time slot is of O(λ2). Altogether we thus obtain

B =






1 w.p. 1 − 1
2

N−1
N

λ + O(λ2),

2 w.p. 1
2

N−1
N

λ + O(λ2),

k ≥ 3 w.p. O(λ2),

(2.2.5)

which implies that
1

E[B]
= 1 − 1

2

N − 1

N
λ + O(λ2). (2.2.6)

The service rate approximation we propose is exact in light traffic and if λ ≥
λsat, and continuous at λsat. These requirements result in the following quadratic
approximation:

µ(λ) =

{
1 − 1

2
N−1

N
λ +

((
1 + 1

2
N−1

N

)
1

λsat
− 1

λ2
sat

)
λ2, for 0 ≤ λ < λsat,

λsat, for λ ≥ λsat.
(2.2.7)

The sojourn time in the switch is approximated by that in a Geo/Geo/1 queue
with arrival rate λ and service rate µ(λ) (and hence ρ = λ/µ(λ)):

E[S] =
ρ

1 − ρ

(
1

µ(λ)
− 1

)
+

1

µ(λ)
=

1 − λ

µ(λ) − λ
. (2.2.8)

2.3 Service time approximation for K > 1 31

Remark 2.2.1. Perhaps the accuracy of µ(λ) can be improved by taking higher
order terms into account. Most importantly, however, this would prevent us from
considering only flits that arrive at an empty system, which complicates the analy-
sis. Although incorporating higher order terms constitutes an interesting research
option, the present approximation is sufficiently accurate for our purposes, as is
shown in Section 2.5.

2.3 Service time approximation for K > 1

In this section we extend our approximation to the case K > 1. From the analysis
of simulation results, we infer that there is a certain periodicity in the service time
distribution. This periodicity is perhaps best explained in Figure 2.3 where the
service time distribution is plotted for N = 4, K = 6 and λ = 0.01, 0.06, 0.10.
Especially for λ = 0.1, there are large peaks for i = 1, 7, 13, 19, . . ., while for i =
2, . . . , 6, i = 8, . . . , 12, i = 14, . . . , 18, and i = 20, . . . , 24, the service probabilities
seem to be uniform. Note that on average λK flits arrive at the switch per time
slot, so λ = 0.1 implies that the arrival rate is already close to the saturation value
of 0.655 (see Table 2.1).

1 7 13 19 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

i

P
(B

H
=

i)

Service time distribution
N=4, K=6

λ = 0.01
λ = 0.06
λ = 0.10

Figure 2.3: The distribution of the header service time BH .

Visual simulation output provided a very good explanation for this periodicity.
Because the packet sizes are the same for all inputs, the service beginnings at mul-
tiple input queues occur at the same time, in a periodic manner with period K. We
call this phenomenon ‘alignment’ of packets. Once alignment occurs, it can only be
broken if one of the queues gets empty, which explains why the phenomenon is more
apparent for large λ. The alignment phenomenon is also described by Figure 2.4.

The alignment principle also implies that the throughput does not depend on K.
If the load exceeds the saturation load the packets always remain aligned because
the queues never become empty, so K is only a time-scaling factor.

We extend the geometric approximation by ignoring the possibility that pack-

32 Uniform switches

(a) Time slot t. One packet is being
switched, one was already waiting and one
new packet is arriving.

(b) Slot t + 1. The packet at port 4 has
been served, a new packet attains the HOL-
position.

(c) Slot t+4. Two new arrivals. All packets
are now ‘aligned’.

(d) Slot t + 7. The packets remain aligned
until one of the input queues gets empty.

Figure 2.4: Alignment of packets. In the pictures the packets arrive at the switch in their
entirety but this does not fundamentally change the alignment concept.

ets are not aligned. We assume that the number of successive output conflicts is
geometrically distributed with parameter µK(λ), i.e., a header is transmitted with
probability µK(λ) and it is not transmitted with probability 1−µK(λ). If a header
is not transmitted, it has to wait for an additional K time units, until the other
packet has fully completed its service. After this, the header is again switched with
probability µK(λ) and so on.

Recall that wormhole routing is used, so non-header flits are always immediately
switched. The distribution of BH , the service time of a header, is approximated as
follows:

P(BH = mK + 1) = µK(λ)(1 − µK(λ))m for m = 0, 1, 2, (2.3.1)

Furthermore, we set µK(λ) = µ(λK), with µ as in Eq. (2.2.7). This choice is also
motivated by the observation that if λ is large, K is only a time-scaling factor.

2.4 Network analysis

In this section we analyse the network under the assumption that K > 1. In
this case, the input process of the switch is no longer Bernoulli and the switch can
therefore no longer be seen as a GeoX/G/1 queue. Instead, there are train arrivals
where each train has a length equal to the busy period in a GeoX/D/1 queue. The
number of empty slots between two successive trains follows a geometric distribution
with parameter λ.

This particular output process clearly complicates the analysis of the network.
This complication, however, can be circumvented by first regarding an artificial
model in which packets arrive in their entirety at the switch. This model is studied
in Section 2.4.1. In Section 2.4.2, the results of Section 2.4.1 are combined with the

2.4 Network analysis 33

service time approximation of Section 2.3 in order to approximate the total mean
sojourn time in the network.

2.4.1 Arrivals at the switch

In this section we consider the artificial situation in which packets arrive at the
switch in their entirety. In other words, each time slot a packet of size K > 1 arrives
at each input queue according to a Bernoulli process with parameter λ, so a single
queue of the switch can be seen as a GeoX/G/1 queue. All performance measures
of this artificial network are denoted by tildes above the normal letters.

In Section 2.3 we derived an approximation for the service time distribution of a
header. We cannot, however, directly substitute this distribution in the formula for
the mean sojourn time of a Geo/G/1 queue, because service times of headers and
non-headers differ. Service times of non-headers are always 1, whereas the header
has to win contention; the header is thus a special first customer in a batch.

This difficulty can be resolved by viewing every packet as a single entity requiring
service. The service time B̃ of a packet is equal to the time it takes the header to
win the output conflict and an additional K−1 time slots for the non-header flits to
be transmitted, i.e. B̃ = BH +(K −1). From the approximation of the distribution
of BH (Eq. (2.3.1)), we obtain:

P(B̃ = mK) = P(BH = (m−1)K+1) = µK(λ)(1−µK(λ))m−1 for m = 1, 2, . . .,
(2.4.1)

which implies E B̃ = K/µK(λ), and

E[B̃2] =
2 − µK(λ)

(µK(λ))2
K2.

The mean sojourn time E S̃ of a super-customer can now be found by applying
Equation (2.1.1):

E[S̃] =
λK

µK(λ) − λK

(
K

µK(λ)
− 1

2
(K + 1)

)
+

K

µK(λ)
. (2.4.2)

2.4.2 Arrivals at the NI

We now study the network with arrivals at the NI. We obtain the total mean
sojourn time of packets in the network, and the mean sojourn time of packets in the
switch. The sojourn time of a packet in the network, denoted by T , is defined as
the time between the arrival of a packet at the NI and the departure of its last flit
from the switch. Likewise, the sojourn time of a packet in the switch, S, is defined
as the time between the arrival of the first flit and the departure of the last.

With sample-path wise identical arrivals, services of packets at the switch always
start and end precisely one time slot later in the network with arrivals at the NI
than in the artificial network with arirvals at the switch (see Friedman [57] for more
details). In particular, this implies that the sojourn time in the network is equal to

34 Uniform switches

the sojourn time in the switch in the artificial situation, plus one, i.e., T = S̃ + 1
with S̃ as in Section 2.4.1 . It thus follows that

E[T] = E[S̃] + 1 =
λK

µK(λ) − λK

(
K

µK(λ)
− 1

2
(K + 1)

)
+

K

µK(λ)
+ 1. (2.4.3)

To obtain the mean sojourn time of packets in the switch, we observe that its
sojourn time in the network consists of the sojourn time of the header in the NI,
and the sojourn time in the switch. We thus obtain

T = SH,NI + S, (2.4.4)

where SH,NI is the sojourn time of a header in the NI.
The mean sojourn time of a header in the NI is equal to the mean sojourn time of

the entire packet in the NI (i.e., the time between the packet arrival and departure
of the last flit), minus K−1. In order to determine the mean sojourn time of packets
in the NI, we view the NI itself as a Geo/D/1 queue with service times equal to K.
Note that this queue is a special case of the GeoX/G/1 queue with

X =

{
0, w.p. 1 − λ,

1, w.p. λ,

and P(B = K) = 1. By subtracting K − 1 from Equation (2.1.1), we thus obtain:

E[SH,NI] =
ρ

1 − ρ

(
E[B2]

2 E[B]
− 1

2

)
+

1

1 − ρ

(
E[X2]

2 E[X]
− 1

2

)
E[B] + E[B] − (K − 1)

=
λK(K − 1)

2(1 − λK)
+ 1.

Finally, we apply Equation (2.4.4) to obtain

E[S] = E[T]− E[SH,NI]

=
λK

µK(λ) − λK

(
K

µK(λ)
− 1

2
(K + 1)

)
+

K

µK(λ)
− λK(K − 1)

2(1 − λK)
. (2.4.5)

2.5 Approximation comparison

In this section, we analyse the accuracy of the approximations of the previous
sections. First, we analyse the mean service time approximation, then the mean
sojourn time approximation for K = 1, and finally the mean sojourn time approxi-
mation for K > 1.

In Figure 2.5 we display the approximation of the mean service time of the KHM
approximation and our Geo/Geo/1 approximation versus simulation results. Recall
that the KHM and KKL approximations of the mean service time are the same.
Clearly, our mean service time approximation performs much better than the other

2.5 Approximation comparison 35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Service time approximations
N=4

λ

T
im

e

Simulated
Geo
KHM

(a) N = 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Service time approximations
N=128

λ

T
im

e

Simulated
Geo
KHM

(b) N = 128

Figure 2.5: Mean service time approximations for N = 4 and N = 128, both with K = 1.

approximations if N is small. This result is not very surprising, as our approach is
based on small N rather than the limit of N → ∞. Furthermore, for N = 128 our
approximation is equally accurate as the asymptotic approximation.

The approximations of the mean sojourn time are compared with simulation
results in Figure 2.6a. From this figure it is again clear that our Geo/Geo/1 approx-
imation outperforms the other approximations if N = 4. In Figure 2.6b, the relative
error of our approximation is plotted. Until the system approaches saturation, there
is a maximum relative error of roughly 1%.

We also see that the asymptotic approximations can have large errors for loads
close to the saturation throughput. After all, the asymptotic saturation throughput

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

4

5

6

7

8

9

10

Sojourn time approximations
N=4

λ

T
im

e

Simulated
Geo
KKL
KHM

(a) Approximations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Relative error
N=4

λ

R
el

at
iv

e
er

ro
r

Geo

(b) Relative error

Figure 2.6: Mean sojourn time approximations and the relative error of our approximation
for N = 4.

36 Uniform switches

0 20 40 60 80 100 120 140
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

Sojourn time approximations
λ=0.5

N

T
im

e

Simulated
Geo
KKL
KHM

Figure 2.7: Mean sojourn time approximations with λ fixed. Note that both the KKL and
the KHM model are based on N −→ ∞, which explains the horizontal line.

is 2 −
√

2 ≈ 0.586, whereas for N = 4 the saturation throughput is 0.655 (see
Table 2.1). This difference leads to very large errors if λ is close to saturation. For
instance, for λ = 0.5 the mean sojourn time approximation of Karol et al. has a
relative error of roughly 70%. By choosing λ even higher, the error can be made
arbitrarily large.

In order to get some insight in the role of N , we show the sojourn time approx-
imations as a function of N with λ = 0.5 in Figure 2.7. Most importantly, we can
conclude that our model is a considerable improvement over the other models for
small N . For large N , say N > 60, the asymptotic analysis of Karol et al. is the
most accurate.

Remarkably, our approximation of the mean service time is quite accurate for
N = 128, whereas our mean sojourn time approximation gives a significant error.
Apparently the error we make in assuming that the service time distribution is
geometric becomes more important for larger N . This conclusion is also backed
by the fact that the KKL approximation still deviates from simulation outcomes
as N grows large, whereas the KHM approximation is asymptotically exact. In
Section 2.6 we analyse the consequences of our assumption that the service time
distribution is geometric in more detail.

Finally, we study the accuracy of our mean header service time and mean sojourn
time approximation for the case K > 1. Our approximation still gives very good
results: Figure 2.8a illustrates that the relative error of the mean header service time
approximation compared to simulation outcomes is maximally 3.5%, and Figure 2.8b
illustrates that the mean sojourn time approximation has a relative error of at most
4.5%.

2.5 Approximation comparison 37

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Header service time approximation
N=4, K=6

λ

R
el

at
iv

e
er

ro
r

(a) The relative error of the approxima-
tion of E BH .

0 0.02 0.04 0.06 0.08 0.1 0.12
−0.01

0

0.01

0.02

0.03

0.04

0.05

Sojourn time approximation
N=4, K=6

λ

R
el

at
iv

e
er

ro
r

(b) The relative error of the mean so-
journ time approximation.

Figure 2.8: The relative error of the mean header service time and mean sojourn time
approximations.

38 Uniform switches

2.6 Validation of the geometric distribution

In this section we validate the assumption that the service time is geometrically
distributed. It can rather easily be argued that the actual service time distribution is
not geometric; the geometric distribution is memoryless, but the switching probabil-
ity is not. For instance, if all HoL-positions are occupied with packets with the same
destination, each packet has probability 1

N
of being switched. If the newly arriving

packet has a different destination, then the remaining packets are all switched in
the next time slot with probability 1

N−1 , and so on. This implies that there is some
dependency on the history of the process, yet the precise effect of this dependency
is unclear.

In order to study to what extent the service time distribution deviates from a
geometric distribution, we introduce the ‘best geometric’ approximation. In this
approximation, we still approximate the sojourn time in the switch by that in a
Geo/Geo/1 queue, but the service rate is chosen equal to 1/E[B], where E[B] is
determined using simulation. This way, there are no additional errors from the
quadratic interpolation, which provides insight in how well the service time distri-
bution is approximated by a geometric distribution.

Figure 2.9 shows the service time distribution obtained by simulation, the service
time distribution of our Geo/Geo/1 approximation (i.e., a Geo(µ(λ)) distribution),
and a geometric distribution with a rate equal to the service rate obtained by simu-
latio (i.e., the service time distribution of the ‘best geometric’ approximation). From
this figure we may conclude that the service time distribution indeed seems roughly
geometric.

To confirm this conjecture, we look at the first and second moments in Table 2.2.
In addition to this, Table 2.2 shows the value of E[B2]/2 E[B] which has a prominent
influence on the mean sojourn time approximation. We conclude that the simulated
values of these quantities lie closer to those of the Geo/Geo/1 approximation than

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

i

P
(B

=
i)

Service time distribution
N = 4, λ = 0.30

Sim
Geo(µ(λ))
Best geo

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

i

P
(B

=
i)

Service time distribution
N = 4, λ = 0.55

Sim
Geo(µ(λ))
Best geo

Figure 2.9: The service time distribution, a Geo(µ(λ)) distribution, and the ‘best geometric’
approximation.

2.6 Validation of the geometric distribution 39

those of the ‘best geometric’ approximation. In other words, the approximation
is more accurate if the quadratic interpolation is used than if the service rate is
determined using simulation.

Sim. Geo(µ(λ)) B.g.

E[B] 1.365 1.381 1.365
E[B2] 2.471 2.435 2.361
E[B2]
2 E[B]

0.905 0.881 0.865

(a) N = 4

Sim. Geo(µ(λ)) B.g.

E[B] 1.493 1.505 1.493
E[B2] 3.336 3.024 2.964
E[B2]
2 E[B]

1.117 1.005 0.993

(b) N = 128

Table 2.2: The first and second moments of the service time, and
E[B2]
2 E[B]

with λ = 0.55.

‘B.g’ stands for ‘best geometric’.

Finally, we compare the mean sojourn time approximations in Figure 2.10. In
this figure, we clearly see that for a large range of λ (say λ ≥ 0.35), the Geo/Geo/1
approximation is more accurate than the ‘best geometric’ approximation. Appar-
ently the error made in the service rate approximation compensates to some extent
for the error in the geometric distribution assumption. The second moment of the
service time distribution is larger than the second moment of a geometric distribu-
tion with the same mean. The mean service time is overestimated by 1/µ(λ), re-
sulting in a higher approximation of the second moment as well, which compensates
for the underestimation caused by assuming a geometric service time distribution.

0 0.1 0.2 0.3 0.4 0.5 0.6
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Sojourn time approximations
N=4

λ

R
el

at
iv

e
er

ro
r

Geo(µ(λ))
Best geo

Figure 2.10: Relative errors of the ‘best geometric’ mean sojourn time approximation and
the Geo/Geo/1 mean sojourn time approximation.

40 Uniform switches

2.7 Conclusion

The mean sojourn time in a uniform N×N switch with Bernoulli arrival processes
can be accurately approximated by that in a Geo/Geo/1 queue. The service rate
of this queue can be approximated by µ(λ), a quadratic interpolation between the
service rate in light traffic and saturation. For small switches, such as those in
networks on chips, the Geo/Geo/1 approximation is a significant improvement over
the approximations of Karol et al. [77] and Kim et al. [80] that are based on the
assumption that N → ∞.

The service rate approximation µ(λ) is very accurate in general, even for large
N . Nevertheless, the error of the mean sojourn time approximation becomes larger
if N increases.

If K > 1, we have train arrivals at the switch. This can be overcome by analysing
an artificial model in which packets arrive in their entirety at the switch. In this
artificial model we can determine the mean sojourn time and using that we can
determine the mean sojourn time in our original network. Furthermore, if K > 1
we observe an alignment phenomenon, by which we mean that service beginnings
of packets become periodic and simultaneous among queues. We can extend our
Geo/Geo/1 approximation by regarding K as a time-scaling factor, and the resulting
approximation has a small relative error.

The technique of regarding the packet size as a time-scaling factor can be applied
similarly in the other models of this thesis, which is our main motivation for consid-
ering packets of unit size in the sequel. As the analysis of this chapter illustrated,
such an assumption offers a great improvement in simplicity at only a small cost in
accuracy.

Chapter 3

Non-uniform switches

In this chapter, we extend the Geo/Geo/1 approximation of Chapter 2 to non-
uniform switches. The light traffic analysis of Chapter 2 can be extended in a quite
straightforward manner. The key difficulty, however, is that for heavy loads, queues
in non-uniform switches become unstable for different loads.

By adapting an idea of Ibe and Cheng [72], we obtain a very accurate approxi-
mation for the saturation loads (the loads for which queues become unstable). This
approach also allows us to approximate the throughput of a queue given that it is
unstable. Together with the light traffic analysis, we obtain an accurate approxima-
tion of the mean waiting time in switches. Our approximations are initially derived
under the assumption of Bernoulli arrival processes, but they are also extended
to models with correlated traffic. Their accuracy is extensively verified through
comparison with simulation results.

41

42 Non-uniform switches

3.1 Model

We consider a single input-queued switch with N input ports and M output
ports operating in discrete-time. Each packet in queue i has destination j with
probability pij , independently of all other packets. All buffers are infinitely large
and each packet consists of one flit. The arrival rate to queue i is denoted by λi. A
more schematic representation of the model can be found in Fig. 3.1.

We assume the switch uses the random order discipline, which means that if
there are k packets with the same destination, one is selected for transmission, and
all packets have probability 1/k of being selected, independently of what happened
in previous time slots. We define the service time Bi of a packet in queue i as the
time spent in the HOL-position of the queue. The service time is thus equal to the
number of successive attempts to reach its destination, including the successful one.

This chapter is organised as follows: Section 3.2 is devoted to the analysis of
a saturated switch as a Markov chain. This analysis is used in an approximation
of the stability conditions in Section 3.3 and an approximation of the throughput
of unstable queues in Section 3.4. The derivation of the mean waiting time ap-
proximation is given in Section 3.5. We perform an in-depth numerical analysis of
one example with Bernoulli arrival processes in Section 3.6, and with more general
(correlated) arrival processes in Section 3.7. We perform a large-scale numerical
analysis of 100 examples with Bernoulli arrival processes in Section 3.8. Finally, we
draw conclusions and discuss our results in Section 3.9.

λN

λ1

pij

Figure 3.1: A schematic representation of the model of a switch. Packets arrive at rate λi

to queue i of the switch, and have destination j with probability pij .

3.2 Saturated switch

A saturated switch is a switch of which all queues are always non-empty. As
described in Section 1.4.1, saturated switches can be modelled by a Markov chain
D(t) = (D1(t), . . . , DN(t)), where Di(t) is the destination of the HoL-packet of
queue i in time slot [t, t+1). The state space is given by Ω := {1, . . . , M}N and the
switch is said to be in state x = (x1, . . . , xN) if the packet at queue i has destination
xi. In this section we descibe how the throughput of a saturated switch can be
calculated using this Markov chain approach.

The transition probabilities P(x, y) of the Markov chain D(t) can be determined
straightforwardly by dividing the transitions into two steps: service completions and

3.3 Stability conditions 43

replacements of served packets by new packets. The state of the switch after the
first step is described by ‘intermediate’ states, with zeros indicating empty input
ports (i.e., a packet at that port has just been served). The second step consists of
replacing zeros; a 0 at position i is replaced by a j with probability pij .

In a more formal setting, we define A(x) to be the set of intermediate states
reachable from x. Because each service possibility is equally likely, we get that:

P(x, y) =
1

|A(x)|
∑

a∈A(x)

N∏

i=1

(
1(ai = 0)pi,yi

+ 1(ai = yi)
)
,

where 1(·) is the indicator function. From P(x, y) we can determine the steady-
state distribution π(·) of the Markov chain by using the fact that π(·) is the unique
normalised solution of the system of equations

π(y) =
∑

x∈Ω

π(x)P(x, y), y ∈ Ω.

For our purposes, the most important performance measure of the Markov chain
is the steady-state throughput. The instantaneous throughput of queue i in state x
is given by

γi(x) =

(
N∑

k=1

1(xk = xi)

)−1

.

Here,
N∑

k=1

1(xk = xi) is the number of packets that have the same destination as

the packet in queue i. The probability that the packet in queue i is selected for
transmission is given by γi(x) due to the random order of service. The steady-state
throughput of queue i is given by

γi =
∑

x∈Ω

π(x)γi(x). (3.2.1)

Because in a saturated switch queues are always non-empty, γi can also be inter-
preted as the service rate at queue i (i.e., γi = 1/ E[Bi]).

At various points in this chapter, we will be interested in the throughput of a
switch consisting of only a subset I ⊆ {1, . . . , N} of the queues. This |I|×M switch
is constructed by removing all input queues j with j 6∈ I from the original switch.
The throughput of queue i in this reduced switch will be denoted by γI

i , with i ∈ I.
If i 6∈ I, we define γI

i = 0.

3.3 Stability conditions

In this section we devise a heuristic that approximates the stability conditions
for each queue in a non-saturated switch. Here, we define a queue to be stable if its

44 Non-uniform switches

throughput is equal to its arrival rate and unstable if its throughput is less than its
arrival rate.

We use an idea of Ibe and Cheng [72] who devise a heuristic approach to de-
termine the stability conditions of k-limited polling systems. The idea behind the
heuristic is the following: Suppose that during a period [−T, 0), work arrives to a
server. After time 0, new arrivals are blocked and the work present is processed. Ibe
and Cheng then state that a queue is stable if and only if on average its contents are
processed in a period that is shorter than T time units, i.e., the queue is empty be-
fore time T . Chang and Lam [38] later proved rigorously that, for k-limited polling
systems, this condition is indeed the true stability condition.

We apply the idea of Ibe and Cheng to an arbitrary N ×M switch, but instead
of letting packets arrive, we consider a deterministic fluid approximation where fluid
enters (leaves) the buffer at the same rate at which packets would arrive (depart).
At time 0 all queues of the switch will be occupied, leading to a saturated N × M
switch of which the service rates can be computed. All queues are then drained
at these rates until the first queue becomes empty. Since we block new arrivals,
this queue remains empty from that moment on. The other queues still have work
present, so they constitute a saturated (N − 1) × M switch. We determine the
service rates in this switch, drain the queues at these rates and compute the time
at which the next queue becomes empty. We repeat this process until all queues are
empty.

We approximate the stability condition of a queue by the condition that it is
empty at time T . While Chang and Lam [38] proved that the heuristic indeed gives
the right stability conditions for k-limited polling systems, we have to conclude
(see Sections 3.6, 3.7, and 3.8) that the heuristic only yields an approximation for
switches, albeit a very accurate one.

For clarity, we introduce notation before we describe the heuristic more precisely.
The time period during which all queues are non-empty is called the first step, the
time period during which all but one queues are non-empty the second step, and so

on. We define t(n) as the time at which the nth step ends. We let q
(n)
i denote the

fluid level of queue i at the beginning of step n of the procedure, i.e., at time t(n−1).

We further denote the service rate of queue i in step n by γ
(n)
i and en as the index

of the queue that is the nth to become empty. The set of non-empty queues in step
n is denoted by V (n).

Algorithm 3.3.1.

Initialise q
(1)
i = λiT , V (1) = {1, . . . , N}, and let t(0) = 0. For n = 1, . . . , N :

• Calculate service rates γ
(n)
i := γV (n)

i using (3.2.1), where γV (n)

i is the steady-
state throughput of the saturated |V (n)| × M switch that is constructed by
removing all queues j 6∈ V (n) from the original switch.

3.3 Stability conditions 45

• The index of the nth queue to become empty is given by

en = arg min
i∈V (n)

{
q
(n)
i

γ
(n)
i

}
, (3.3.1a)

since q
(n)
i /γ

(n)
i is the time it would take to empty queue i if it was allowed to

serve packets at rate γ
(n)
i indefinitely. The time at which queue en becomes

empty is given by

t(n) = t(n−1) +
q
(n)
en

γ
(n)
en

= t(n−1) + min
i∈V (n)

{
q
(n)
i

γ
(n)
i

}
. (3.3.1b)

• Queue en is empty from now on, so

V (n+1) = V (n) \ {en}. (3.3.1c)

The remaining fluid in the other queues is given by

q
(n+1)
i = q

(n)
i − (t(n) − t(n−1))γ

(n)
i , for i ∈ V (n+1). (3.3.1d)

Remark 3.3.2. If there are multiple i (say i = i1, . . . , ik) for which q
(n)
i /γ

(n)
i is

minimal, we can arbitrarily choose one (say i1). For i = i2, . . . , ik, q
(n+1)
i = 0, so

that t(n+k−1) = t(n+k−2) = . . . = t(n).

γ
{1,2,3}
2

γ
{1,2,3}
3

γ
{1,2,3}
1

λ2T

λ3T

λ1T

t(1)

γ
{1,3}
3

γ
{1,3}
1

t(2)

γ
{1}
1

t(3) time

Queue
contents

0

Figure 3.2: A schematic representation of the queue contents during Algorithm 3.3.1. All

queues start with a fluid level of λiT and are served at rate γ
(1)
i = γ

{1,2,3}
i until the first

queue becomes empty at time t(1). The first queue to become empty is queue 2 (so e1 = 2),
which is subsequently removed from the switch. The two remaining queues are served at

rates γ
(2)
i = γ

{1,3}
i for i = 1, 3, until t(2), which is when queue 3 becomes empty (so e2 = 3).

Finally, the last queue is served at rate γ
(3)
1 = γ

{1}
1 = 1 until time t(3).

46 Non-uniform switches

Lemma 3.3.3. Define ∆t(n) = t(n) − t(n−1) for n ≥ 1 (recall that t(0) = 0). We
can write ∆t(n) as

∆t(n) = T
n∑

m=1

dm,nλem
, (3.3.2)

where the constants dm,n are recursively determined by

dm,n =






−
n−1∑
k=m

γ(k)
en

γ
(n)
en

dm,k, for m = 1, . . . , n − 1,

1/γ
(n)
en , for m = n.

Proof. We prove this statement by induction on n. From Eqs. (3.3.1a) and (3.3.1b)

with n = 1 it follows that indeed ∆t(1) = Tλe1/γ
(1)
e1 . Suppose that the statement is

true for 1, . . . , n − 1. By recursively applying (3.3.1d) it follows that

q(n)
en

= λen
T −

n−1∑

k=1

γ(k)
en

∆t(k).

We get

∆t(n) =
q
(n)
en

γ
(n)
en

=
λen

T

γ
(n)
en

−
n−1∑

k=1

γ
(k)
en

γ
(n)
en

∆t(k)

= T
λen

γ
(n)
en

− T

n−1∑

k=1

k∑

m=1

γ
(k)
en

γ
(n)
en

dm,kλem
(induction hypothesis)

= T
λen

γ
(n)
en

− T
n−1∑

m=1

λem

n−1∑

k=m

γ
(k)
en

γ
(n)
en

dm,k = T
n∑

m=1

dm,nλem
.

Corollary 3.3.4. The time at which queue en becomes empty is given by:

t(n) =

n∑

k=1

∆t(k) = T

n∑

k=1

k∑

m=1

dm,kλem
. (3.3.3)

Approximation 3.3.5. We approximate the stability condition of queue en by
t(n) < T , or equivalently:

n∑

k=1

k∑

m=1

dm,kλem
< 1. (3.3.4)

If (3.3.4) is satisfied, we say that queue en is approximately stable, otherwise we
say queue en is approximately unstable.

The stability condition derived in this section is an approximation due to three
reasons: First, we look at a process in which we block the arrivals after time 0, while

3.4 Throughput 47

in reality new packets keep on arriving (and interfere with packets that arrived before
time 0). Second, we look at a deterministic fluid process instead of a stochastic
process in which packets arrive and depart. And third, we assume that if one of
the queues becomes empty, the service rate of the other queues instantaneously
becomes the steady-state service rate of a saturated switch with one input port
less. A numerical evaluation of the accuracy of the Approximation 3.3.5 can be
found in Sections 3.6, 3.7, and 3.8, where we compare the stability condition with
results obtained from a simulation. It will be shown that the relative error of the
approximation is generally less than 2%.

In the sequel, we assume that the arrival rates, or loads, are distributed over the
queues according to a fixed weight vector (ν1, . . . , νN), with

∑
i νi = 1, such that

λi = νiλ, where λ is the total load. It will be convenient to have a labelling of the
queues such that queue 1 is the first to become approximately unstable as λ increases,
queue 2 the second, and so on. We therefore make the following assumption:

Assumption 3.3.6. As λ increases, the queues become approximately unstable in
increasing order, i.e.,

ei = N + 1 − i. (3.3.5)

The rationale behind Equation (3.3.5) is that the queue that needs the most
time to process the fluid (i.e., queue eN , the last queue to become empty) is the
first queue to become unstable if the load λ is increased. Likewise, the second-last
queue to become empty (i.e., queue eN−1) is the second to become unstable, and so
on. Assumption 3.3.6 is not restrictive in any way; it can be trivially obtained by a
simple reordering of the queues.

Because λen
= νen

λ and i = eN−i+1, the approximate stability condition of
queue i (see (3.3.4)) reduces to

λ

N−i+1∑

k=1

k∑

m=1

dm,kνN−m+1 < 1. (3.3.6)

We define λsat,i such that queue i is approximately stable if λ < λsat,i and approx-
imately unstable otherwise. It follows from (3.3.6) that

λsat,i =

(
N−i+1∑

k=1

k∑

m=1

dm,kνN−m+1

)−1

. (3.3.7)

3.4 Throughput

In this section, we study the throughput of each queue of the switch as a function
of a single load parameter λ. To illustrate how the throughput depends on λ, we
show the simulation throughput per queue in Figure 3.3 for an example. This
example will be used as a running example throughout this and the next section,
as the characteristics displayed in this plot are typical for non-uniform switches. In

48 Non-uniform switches

the example

P = (pij) =




0.1 0.3 0.4 0.2
0.2 0.2 0.2 0.4
0.2 0.3 0.4 0.1
0.3 0.3 0.2 0.2


 ,

and ν is given by
ν =

(
0.35 0.3 0.2 0.15

)
.

The arrivals in this example are governed by Bernoulli processes with parameter
min{1, λνi}, i.e., each time slot an arrival takes place at queue i with probability
min{1, λνi}. Because Bernoulli processes are not defined for parameters greater
than 1, we have to limit the parameter to 1 if λ grows large. This does not have any
influence since at most one packet per queue may be served each time slot anyway.
The queue is thus saturated and the steady state behaviour of saturated queues
does not change if the load is further increased.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

λ

T
hr

ou
gh

pu
t

Queue 1
Queue 2
Queue 3
Queue 4

Figure 3.3: A typical plot of the throughput of the queues.

For each queue the throughput initially increases linearly in λ because the
throughput is equal to the arrival rate λi = λνi. The throughput of each queue
reaches its peak at the load for which that queue becomes unstable. Beyond this
load the throughput decreases, roughly linearly, due to the fact that the load at
other, still stable, queues increases (and as a consequence also the throughput of
these queues increases). It does so until the next queue becomes unstable, after
which it keeps decreasing roughly linearly, but with a different slope. Finally, for
loads that are high enough, the throughput is constant. In this case, the load is so
high that the switch has become saturated.

We are particularly interested in the region where the throughput is decreasing,
which corresponds to the situation where some queues are stable while others are
not. It turns out that the throughput in this region can be approximated by the
average amount of fluid that has disappeared during [0, T) in the process described
in Algorithm 3.3.1. We will describe this approximation in more detail now.

We define lλ as the number of approximately stable queues:

lλ := |{i : λ < λsat,i}| = |{n : t(n) < T }|. (3.4.1)

3.4 Throughput 49

The total amount of fluid that is drained from queue i in [0, T) during the process
described in Algorithm 3.3.1 is now given by

lλ∑

n=1

γ
(n)
i ∆t(n) + (T − t(lλ))γ

(lλ+1)
i . (3.4.2)

After all, queue i is drained at rate γ
(n)
i in [t(n−1), t(n)), as long as t(n) < T . After

time t(lλ), the queue is drained at rate γ
(lλ+1)
i until time T .

We use the average rate at which fluid is drained as an approximation of the
throughput of queue i, φi(λ). Dividing (3.4.2) by T yields:

φi(λ) =
1

T

[
lλ∑

n=1

γ
(n)
i ∆t(n) + (T − t(lλ))γ

(lλ+1)
i

]

=
1

T

[
lλ∑

n=1

γ
(n)
i ∆t(n) − γ

(lλ+1)
i

lλ∑

n=1

∆t(n)

]
+ γ

(lλ+1)
i

= λ

lλ∑

n=1

(γ
(n)
i − γ

(lλ+1)
i)

n∑

m=1

dm,nνN−m+1 + γ
(lλ+1)
i

by Eq. (3.3.2). Furthermore, for all i and k, γ
(k)
i = γV (k)

i , where V (k) = {1, . . . , N}\
{e1, . . . , ek−1} = {1, . . . , N − k + 1}. As a result:

φi(λ) = λ

lλ∑

n=1

(
γ
{1,...,N−n+1}
i − γ

{1,...,N−lλ+1}
i

) n∑

m=1

dm,nνm + γ
{1,...,N−lλ}
i . (3.4.4)

Note that φi(λ) is a piecewise linear function. Its slope changes at λ = λsat,k,
k = 1, . . . , N , since those are the values for which lλ changes.

A number of interesting observations can be made about φi(λ). First, because
stable queues are empty at time T , the total amount of fluid processed in [0, T) from
a stable queue i is equal to λνiT . It thus follows that

φi(λ) = λνi, for λ ≤ λsat,i,

i.e., the throughput approximation of a stable queue is its arrival rate. Second, if
λ ≥ λsat,N then all queues are approximately unstable and hence lλ = 0. In this
case Eq. (3.4.4) directly implies that

φi(λ) = γ
{1,...,N}
i , for λ ≥ λsat,N ,

i.e., the throughput approximation is equal to the throughput under saturation.
Third, with a load λ there are lλ stable queues, so queues 1, . . . , N − lλ are unsta-
ble. For unstable queues i, i.e., for i ≤ N − lλ, the constant term in Eq. (3.4.4),

γ
{1,...,N−lλ}
i , is the service rate of queue i in a saturated switch consisting of only

50 Non-uniform switches

queues 1, . . . , N − lλ. In other words, given a certain load, the constant term in
the throughput approximation of an unstable queue is given by its service rate in a
saturated switch consisting of only the unstable queues.

The following lemma is stated for future reference:

Lemma 3.4.1. Suppose that i is such that λsat,i ≤ λ < λsat,i+1, with λsat,N+1 :=
∞. The throughput approximation of queue i can now be rewritten in the following
form:

φi(λ) = γ
{1,...,i}
i + λ

(
νi −

γ
{1,...,i}
i

λsat,i

)
. (3.4.5)

Proof. From (3.4.1) we obtain i = N − lλ. From (3.4.4) it thus follows that

φi(λ) = ciλ + γ
{1,...,i}
i for some constant ci and λsat,i ≤ λ < λsat,i+1. In particular

this expression holds for λ = λsat,i, which implies φi(λsat,i) = ciλsat,i + γ
{1,...,i}
i .

Furthermore, φi(λsat,i) = νiλsat,i. Equating the latter two expressions, solving with
respect to ci, and rewriting yields (3.4.5).

A schematic plot of φi for a 3 × 3 switch can be found in Figure 3.4. Clearly, it
has roughly the same characteristics as Figure 3.3. A more detailed analysis of the
accuracy of φi is conducted in Sections 3.6, 3.7, and 3.8.

λ

T
h
ro

u
g
h
p
u
t

Q
ue

ue
1

Que
ue

2

Queue 3

γ
{1}
1

γ
{1,2}
2

λsat,1 λsat,2 λsat,3

Figure 3.4: A schematic representation of the throughput approximation φi(λ) in a 3 × 3
switch. If queue i is approximately stable, the throughput approximation is given by the
arrival rate. If queue i is approximately unstable the throughput approximation has a y-
intercept given by the service rate of queue i in a saturated switch consisting of only the

unstable queues. It can easily be argued that γ
{1}
1 = 1 and γ

{1,2}
1 = γ

{1,2}
2 (in a saturated

2×M switch, the throughput is 1−p/2 for both queues, where p is the probability that there
is contention in an arbitrary time slot).

3.5 Waiting time and service rate

The main goal of this section is to present an approximation of the mean waiting
time of packets in queue i (Section 3.5.1). A key ingredient in this mean waiting time

3.5 Waiting time and service rate 51

approximation is an approximation of the service rate of queue i, which is derived in
Section 3.5.2. Recall that the service time of an arbitrary packet in queue i, denoted
by Bi, is defined as the time spent by that packet in the head position of queue i.
The service rate of queue i is defined as 1/ E[Bi].

3.5.1 Waiting time

The key assumption of our mean waiting time approximation is that Bi follows a
geometric distribution, similar to the mean waiting time approximation for uniform
switches in Chapter 2. The rationale behind this approximation is as follows: If there
are k packets with the same destination, each one is selected with probability 1/k,
without taking previous time slots into account. The service time is equal to the
number of attempts to be served (including the successful one), where each attempt
is successful with a different probability, as the number of packets with the same
destination varies over time. We approximate the service times by neglecting this
difference; the geometric distribution describes the number of attempts where each
attempt is successful with the same probability.

We will derive a service rate approximation µi(λ) ≈ 1/ E[Bi], which is used
as the success probability of the approximating geometric distribution. We then
approximate the waiting time of a packet in queue i by the waiting time in a ./Geo/1
queue. The arrival process to the ./Geo/1 queue is the same as the arrival process to
the switch, i.e., for a switch with Bernoulli arrivals (and hence geometric interarrival
times), the approximating queue is a Geo/Geo/1 queue, with a Markovian Arrival
Process (MAP), it is a MAP/Geo/1 queue, and so on. For most arrival processes,
the mean waiting time approximation follows from known results. For instance,
with Bernoulli arrivals, the mean waiting time approximation is the following (see,
e.g., Equation (1.19a) of Takagi [134], or Equation (2.1.1) of this manuscript):

E[Wi] ≈
λνi(1 − µi(λ))

µi(λ)(µi(λ) − λνi)
, for λνi < µi(λ), (3.5.1)

where Wi is the waiting time of a packet in queue i. For a MAP/Geo/1 queue, the
mean waiting time can be determined numerically using the theory of quasi birth
death processes (see, e.g., Neuts [107]).

3.5.2 Service rate

In this subsection, we derive our service rate approximation µi(λ). Before giving
the approximation, we first show some simulation results of 1/ E[Bi] in Figure 3.5
in order to understand the behaviour of the service rate better. Here, E[Bi] was
obtained by taking the average of measurements of the service times of individual
packets. The input of this figure is again the ‘running example’ (see p. 48).

First, up to the first saturation load, the service rate shows a certain curvature.
As in Chapter 2, we propose a quadratic interpolation for this part. Second, the
service rates appear to be piecewise linear between the various saturation loads. We
propose a linear approximation for these parts. Finally, we observe that if all queues

52 Non-uniform switches

0 1 2 3 4 5
0.6

0.7

0.8

0.9

1

λ

Queue 1

S
er

vi
ce

 r
at

e

0 1 2 3 4 5
0.6

0.7

0.8

0.9

1

λ

Queue 2

S
er

vi
ce

 r
at

e

0 1 2 3 4 5
0.6

0.7

0.8

0.9

1

λ

Queue 3

S
er

vi
ce

 r
at

e

0 1 2 3 4 5
0.6

0.7

0.8

0.9

1

λ

Queue 4

S
er

vi
ce

 r
at

e

Figure 3.5: The service rates of all queues of the ‘running example’. The vertical lines
correspond to the saturation loads. In the figure of queue i, the saturation load of queue i
itself is indicated by the solid line, while the saturation loads of the other queues are indicated
by dashed lines.

are saturated, the service rates are equal to the service rates in a saturated switch.
It remains to approximate the service rates at saturation loads and the param-

eters of the quadratic interpolation; once we have approximated the service rates
at saturation loads, the linear interpolations follow. The proposed service rate ap-
proximation can thus be summarised as follows:

µi(λ) =






ai + biλ + ciλ
2, for λ < λsat,1,

µi(λsat,k) +
µi(λsat,k+1)−µi(λsat,k)

λsat,k+1−λsat,k
(λ − λsat,k), for λsat,k ≤ λ < λsat,k+1,

γi, for λ ≥ λsat,N ,

where the µi(λsat,k), i, k = 1, . . . , N are the approximations of the service rates at
saturation loads, and ai, bi, and ci the parameters of the quadratic interpolation.

The service rates at saturation loads will be expressed in terms of the throughput
in saturated switches, the saturation load, and the throughput of an unstable queue
given that other queues are stable. The values of the parameters ai, bi, and ci will
be expressed in terms of elements from the P -matrix and the ν-vector.

Derivation of µi(λsat,k)

We propose an algorithm that can be used to find the service rate approximation
at saturation loads, µi(λsat,k), for i = 1, . . . , N , k = 1, . . . , N . We first present the
approximation in a concise form, and then we explain the underlying equations.

Approximation 3.5.1. For all k:

If i ≤ k,
µi(λsat,k) = φi(λsat,k). (3.5.2)

3.5 Waiting time and service rate 53

If i = k + 1,

µi(λsat,k) = µi(λsat,i−1) = γ
{1,...,i}
i + λsat,i−1

(
νi −

γ
{1,...,i}
i

λsat,i

)
. (3.5.3)

If i ≥ k + 2, µi(λsat,k) = 1/bi, with bi the solution of the following set of equations:

bi =
∑

J:i∈J

1

γJ
i

∏

j∈J
j 6=i

ρj

∏

j 6∈J

(1 − ρj), i ≥ k + 2, (3.5.4)

where

ρj =





1 for j ≤ k,
νjλsat,k/µj(λsat,k), for j = k + 1,
νjλsat,kbj , for j ≥ k + 2,

with µj(λsat,k) for j = k + 1 as in (3.5.3).

Remark 3.5.2. Equation (3.5.4) expresses bi in terms of bj, j 6= i, and i, j ≥ k +2,
which indeed yields a set of equations in bk+2, . . . , bN . The solution to this set of
equations is the mean service time approximation; the service rate approximation
follows by setting µj(λsat,k) = 1/bj. For general N we cannot guarantee that a
unique solution in [1, N] of (3.5.4) exists. However, in all our numerical examples
we found precisely one solution in [1, N]. Here, the maximal value is N since in
the worst case N packets have the same destination and one of them is selected for
service at random.

Explanation of Equation (3.5.2)
The rationale behind Equation (3.5.2) is that the service rate of an unstable queue
is given by its throughput. Because the queues become approximately unstable in
increasing order (see Assumption 3.3.6) we know that, when λ = λsat,k, queue i is
unstable if i ≤ k, so µi(λsat,k) = φi(λsat,k) if i ≤ k.

Explanation of Equation (3.5.3)
For i = k + 1, we use an interesting observation from Figure 3.5: When a queue
reaches its saturation load, the slope of the service rate does not change, i.e., the
service rate keeps changing in the same way at any of the solid vertical lines.

This phenomenon can be explained intuitively by the following reasoning: We
are interested in the service rate of queue i, which means that we look at the switch
conditioned on the event that queue i is non-empty. By increasing the load, the
other stable queues take away capacity from queue i which leads to a lower service
rate of queue i. Since the load of the queues is increased linearly, the capacity taken
away from queue i by the other queues also grows linearly. Because we look at the
switch conditioned on the event that queue i is non-empty, the rate at which the
service rate of queue i decreases does not change when queue i saturates; it only
changes when one of the other queues becomes unstable.

54 Non-uniform switches

The service rate approximation we propose takes this phenomenon into account.
By Equation (3.5.2), the slope of µi(λ) for λ ∈ [λsat,i, λsat,i+1) is known. Equa-
tion (3.5.3) now follows from taking the slope of µi(λ) for λ ∈ [λsat,i−1, λsat,i)
the same as that of µi(λ) for λ ∈ [λsat,i, λsat,i+1) (see also Lemma 3.4.1 and use
µi(λ) = φi(λ) for all λ ≥ λsat,i).

Explanation of Equation (3.5.4)
In (3.5.4), ρj is an approximation for the probability that queue j is non-empty.
Unstable queues are always non-empty, so ρj = 1 for j ≤ k. Stable queues are non-
empty with a probability equal to the arrival rate multiplied by the mean service
time. For queue j = k + 1, we approximate the mean service time by 1/µj(λsat,k)
(with µj(λsat,k) as in Equation (3.5.3)), so ρj = νjλsat,k/µj(λsat,k). For queues j ≥
k + 2 we use the unknown bj as the mean service time approximation, so ρj =
νjλsat,kbj.

Next, assuming independence,
∏

j∈J
j 6=i

ρj

∏
j 6∈J

(1 − ρj) is an approximation for the

probability that, given that queue i is non-empty, all queues j ∈ J are non-empty
and all queues j 6∈ J are empty. Finally, given that the queues in J are the only
non-empty ones, we approximate the mean service time of queue i by 1/γJ

i .

Derivation of ai, bi, and ci

As in Chapter 2, we study the behaviour of the switch in light traffic, i.e., we
assume λ is small and neglect O(λ2) terms, in order to obtain the parameters ai, bi,
and ci. The light traffic approximation typically depends on the specific arrival
process assumed. Here we assume that arrivals are governed by Bernoulli processes
with parameter min{1, λνi}. The analysis outlined below shows the typical line of
reasoning and can be extended to other arrival processes.

In light traffic, the service time of an arbitrary (tagged) packet in queue i is
given by

Bi =






1 w.p. 1 − 1
2βiλ + O(λ2),

2 w.p. 1
2βiλ + O(λ2),

k > 2 w.p. O(λ2),

(3.5.5)

and consequently
1

E[Bi]
= 1 − 1

2
βiλ + O(λ2),

where

βi =
∑

k 6=i

νk

N∑

j=1

pi,jpk,j .

This follows from the fact that βiλ + O(λ2) is the probability that another packet
arrives in the same time slot with the same destination as our tagged packet, and

3.6 Analysis of the running example 55

with probability 1/2 the tagged packet loses the contention. Furthermore, events in
which, next to our tagged packet, two or more other packets are involved all occur
with probability O(λ2) because they require the simultaneous arrival of two or more
other packets at some point in time.

We choose the parameters ai and bi such that the service rate approximation
captures this light traffic behaviour. Furthermore, the parameter ci is chosen such
that the service rate approximation is continuous at λsat,1. For λ < λsat,1, we thus
have the following quadratic approximation:

µi(λ) = 1 − 1

2
βiλ +

−1 + 1
2βiλsat,1 + µi(λsat,1)

λ2
sat,1

λ2. (3.5.6)

Remark 3.5.3. The waiting time approximation depends in two ways on the arrival
process to the switch: First, the waiting time in, for instance, a Geo/Geo/1 queue
is different from that in a MAP/Geo/1 queue. Even with the same service rate, the
mean waiting time approximations are thus still different. Second, the service rate
approximation depends on the specific arrival process via the light traffic analysis.

Remark 3.5.4. Computing the service rate approximation requires the computa-
tion of the saturation throughput of all 2N possible subswitches (see Eq. (3.5.4)).
Clearly, this can be problematic if N is large, but for switches in networks on chips
N is typically small.

3.6 Analysis of the running example

In this and the next two sections we illustrate the accuracy of the approximations
devised in Section 3.3, 3.4, and 3.5, by a comparison with simulation. The example
we study in detail in this section is the running example, combined with Bernoulli
arrivals. In Section 3.7, we analyse this example combined with correlated traffic
models. In Section 3.8, we conduct a larger numerical study of 100 examples with
Bernoulli arrivals, where we draw more general conclusions.

Recall that the arrivals are governed by independent Bernoulli processes with
parameter min{νiλ, 1} and that for the running example, P is as follows:

P = (pij) =




0.1 0.3 0.4 0.2
0.2 0.2 0.2 0.4
0.2 0.3 0.4 0.1
0.3 0.3 0.2 0.2


 .

Furthermore, the vector ν is given by

ν =
(

0.35 0.3 0.2 0.15
)
.

This section is divided into two parts: In 3.6.1 we study the accuracy of the
throughput and the stability condition approximations, and in 3.6.2 that of the
service rate and mean waiting time approximations.

56 Non-uniform switches

3.6.1 Throughput and stability conditions

Recall that we defined a queue to be stable if its throughput is equal to its arrival
rate. Because of this definition, we can look at the simulation throughput and if
it deviates from the arrival rate, the queue is unstable. Recall furthermore that
the value of λ for which a queue becomes unstable is called the ‘saturation load’ of
that queue. During the entire numerical analysis, we make a distinction between
the approximated saturation load of Approximation 3.3.5 and the saturation load
observed via simulation (called the observed saturation load).

Each simulation run consists of 107 time slots, and measurements of the first 105

time slots were discarded. Each run was repeated for n = 10 times, after which λ
was increased by 0.01. In Table 3.1 we give the simulation throughput of queue 1,
for loads close to its saturation load. The fourth column of this table shows the
standard deviation s of the throughput and the fifth shows the deviation of the
throughput from the arrival rate in terms of the standard deviation.

Arr. rate Avg.

λ (ν1λ) throughput(φ) St.dev.(s)
√

n(ν1λ − φ)/s

2.13 0.7455 0.7455 1.4 · 10−4 −0.28
2.14 0.7490 0.7489 1.1 · 10−4 1.49
2.15 0.7525 0.7525 0.8 · 10−4 1.58
2.16 0.7560 0.7560 1.8 · 10−4 −0.73
2.17 0.7595 0.7574 2.0 · 10−4 32.73
2.18 0.7630 0.7560 1.6 · 10−4 140.88
2.19 0.7665 0.7548 0.9 · 10−4 406.29

Table 3.1: Simulation throughput

In the last column it can be seen that up to a load of 2.16 the simulated through-
put is within 1.6s/

√
n of the arrival rate. For a load of 2.17 the deviation of the

throughput from the arrival rate is clearly significant (32.73s/
√

n), which means
that the queue is unstable. We call λ = 2.17 the saturation load, even though the
queue is already unstable for this load, which implies that the true saturation load
lies somewhere between 2.16 and 2.17.

An overview of the observed saturation loads can be found in Table 3.2. The
approximation is more accurate for queues that become unstable for higher loads.
Nevertheless, in all cases, the relative error is limited to 1%. So although the stability
condition found is a little off in some cases, it gives a very accurate approximation
of the true stability condition, especially for queues 3 and 4. We will come back to
this issue in Section 3.8.

Now that we have investigated the accuracy of the stability condition approxima-
tion, we move on to the analysis of the throughput approximation. In Section 3.4
we saw that the throughput approximation is piecewise linear in λ between the
approximate saturation loads. It thus makes sense to look at the throughput ap-
proximation in these points, and compare them with simulation values. In order to
achieve a fair comparison, we compare the values of the throughput approximation

3.6 Analysis of the running example 57

Saturation load
Simulation Alg. 3.3.1

Queue 1 2.17 2.1470
Queue 2 2.48 2.4669
Queue 3 3.33 3.3199
Queue 4 4.39 4.3869

Table 3.2: An overview of the stability conditions found.

in the approximated saturation loads to the simulation throughput in the observed
saturation loads, even though these loads are not the same. For example, we com-
pare the throughput approximation of queue 1 with load 2.1470 to the simulated
throughput with load 2.17 rather than 2.1470.

The comparison of the throughput approximation and the simulated throughput
can be found in Table 3.3. The diagonal of the table corresponds to the throughput
of the queues at their saturation loads. The lower left triangle corresponds to the
throughput of the queues if they are already unstable and another queue becomes
so too. The upper right triangle of the table would correspond to the throughput
of stable queues. However, in Section 3.4 it was mentioned that the throughput
approximation is exact for stable queues. As a result, it would make no sense
to compare the throughput approximation to simulation for different loads. The
simulations for stable queues have therefore been omitted from the table.

Again we conclude from the table that the throughput approximation is in gen-
eral very accurate, especially if more queues are unstable. In all cases the relative
error is limited to 1%. The standard deviation of the throughput values is roughly
between 1 · 10−4 and 2 · 10−4.

Throughput
λ Queue 1 Queue 2 Queue 3 Queue 4

Appr. 2.1470 0.7515
Sim. 2.17 0.7571

Appr. 2.4669 0.7144 0.7401
Sim. 2.48 0.7170 0.7419

Appr. 3.3199 0.6588 0.6933 0.6640
Sim. 3.33 0.6586 0.6931 0.6638

Appr. 4.3869 0.6532 0.6700 0.6395 0.6580
Sim. 4.39 0.6354 0.6700 0.6394 0.6580

Table 3.3: The accuracy of the throughput approximation.

3.6.2 Service rate and mean waiting time

In this subsection we study the accuracy of the service rate and mean waiting
time approximations. In Figure 3.6 the service rate approximation is plotted to-
gether with simulation values. It is clear that our service rate approximation is

58 Non-uniform switches

0 1 2 3 4 5

0.65

0.7

0.75

0.8

0.85

0.9

0.95

λ

Queue 1

S
er

vi
ce

 r
at

e

0 1 2 3 4 5

0.65

0.7

0.75

0.8

0.85

0.9

0.95

λ

Queue 2

S
er

vi
ce

 r
at

e

0 1 2 3 4 5

0.65

0.7

0.75

0.8

0.85

0.9

0.95

λ

Queue 3

S
er

vi
ce

 r
at

e

0 1 2 3 4 5

0.65

0.7

0.75

0.8

0.85

0.9

0.95

λ

Queue 4

S
er

vi
ce

 r
at

e

Approx
Sim

Figure 3.6: The service rate approximation.

indeed very accurate.
Even though the service rate approximation is accurate, our mean waiting time

approximation is not necessarily accurate too. After all, an additional error might
be induced by the assumption that the service time is geometrically distributed. A
plot of the mean waiting time, together with its approximation, can be found in
Figure 3.7. The figure shows that our approximation is quite accurate in this case,
especially for queues 1 and 2.

We have plotted the relative error of our mean waiting time approximation in
Figure 3.8. This figure reveals that the relative errors of queue 1 are generally within
5%, those of queue 2 and 3 generally within 10%, and the relative error of queue 4
takes values up to roughly 15%. Note that if λ is close to 0, the relative error varies
greatly. This is caused by the fact that we divide two numbers close to 0.

3.6 Analysis of the running example 59

0 0.5 1 1.5 2
0

2

4

6

8

10

λ

Queue 1

M
ea

n
w

ai
tin

g
tim

e

0 0.5 1 1.5 2
0

2

4

6

8

10

λ

Queue 2

M
ea

n
w

ai
tin

g
tim

e

0 1 2 3
0

2

4

6

8

10

λ

Queue 3

M
ea

n
w

ai
tin

g
tim

e

0 1 2 3 4
0

2

4

6

8

10

λ

Queue 4

M
ea

n
w

ai
tin

g
tim

e

Approx
Sim

Figure 3.7: The mean waiting time approximation.

0 0.5 1 1.5 2
−0.2

−0.1

0

0.1

0.2

λ

Queue 1

R
el

at
iv

e
er

ro
r

0 0.5 1 1.5 2
−0.2

−0.1

0

0.1

0.2

λ

Queue 2

R
el

at
iv

e
er

ro
r

0 1 2 3
−0.2

−0.1

0

0.1

0.2

λ

Queue 3

R
el

at
iv

e
er

ro
r

0 1 2 3 4
−0.2

−0.1

0

0.1

0.2

λ

Queue 4

R
el

at
iv

e
er

ro
r

Figure 3.8: The relative error of the mean waiting time approximation

60 Non-uniform switches

3.7 Correlated traffic

In this section we describe how our approximations can be applied to models
with correlated traffic. We distinguish two types of correlated traffic: Correlation
between arrivals (if an arrival takes place, it is more likely that the next time slot
another arrival takes place as well), and correlation between destinations (if a packet
has destination j, the next packet is more likely to have destination j as well).

3.7.1 Correlated arrivals

In this subsection, we analyse the running example where the arrival process
to queue i is given by a 2-state MMBP (Markov Modulated Bernoulli Process, a
special case of a MAP). The Markov chain Xi(t) underlying the MMBP of queue i
has state space {0, 1}, and an arrival takes place at time t if and only if Xi(t) = 1.
The transition probability matrix of Xi(t) is given by

(
1 − αi αi

1 − 2αi 2αi

)
.

In order to reduce the number of parameters, we assumed here that if an arrival
takes place at time t, it is twice as likely that another arrival takes place at time t+1
than it would have been if no arrival had taken place at time t.

The arrival rate of queue i is given by

λi = P(Xi(t) = 1) =
αi

1 − αi

. (3.7.1)

Given λi = νiλ, the parameter αi can thus be calculated.
Because the throughput in saturation is independent of the specific arrival pro-

cess, the throughput and stability condition approximation of this example are the
same as that of a switch with Bernoulli arrivals. The observed saturation load and
throughput are also the same as that for a switch with Bernoulli arrivals (except
for statistically insignificant deviations). We thus have good approximations for the
saturation loads and throughput.

Since in an arbitrary time slot an arrival occurs at queue i with probability
λi = νiλ, the light traffic analysis for the MMBP is the same as that for Bernoulli
arrivals, and hence the service rate approximation is the same too. The mean waiting
time can now be approximated by that in an MMBP/Geo/1 queue. The mean
waiting time can be determined numerically since the process (Xi(t), Yi(t)), where
Yi(t) is the length of the MMBP/Geo/1 queue, is a Markov chain on {0, 1}×N. The
equilibrium distribution of this Markov chain can be determined using the theory
of quasi birth death (QBD) processes [91, 107].

Figure 3.9 displays the mean waiting time in the switch with an MMBP, its
approximation, the mean waiting time in the switch with Bernoulli arrivals, and its
approximation. The MMBP/Geo/1 approximation accurately predicts the higher
waiting time induced by the correlation in the arrival process. The curves belonging

3.7 Correlated traffic 61

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

8

9

10

λ

M
ea

n
w

ai
tin

g
tim

e

MMBP approx
MMBP sim
Bern. approx
Bern. sim

Figure 3.9: A comparison of the MMBP/Geo/1 and Geo/Geo/1 approximations.

to the Bernoulli arrival process are clearly different from those belonging to the
MMBP.

3.7.2 Correlated destinations

In this subsection we consider a traffic model where packets consist of multiple
flits, where a flit is precisely the amount of data that can be transmitted in one
time slot. Instead of assuming that all flits arrive simultaneously, we assume that
all flits in the packet arrive in consecutive time slots (train arrivals). The first flit
of a packet is called a header.

During a geometrically distributed number of time slots (with expectation a),
flits belonging to the same packet arrive to the switch. All flits in the packet have the
same destination. After the complete arrival of the packet, there is an ‘idle period’
of a length that is geometrically distributed with parameter qi. The length of this
idle period may be equal to 0, i.e., two independent packets may arrive immediately
after each other.

The expected length of an idle period is given by 1/qi − 1. The arrival rate of
flits to input i is equal to the fraction of time slots in which an arrival takes place,
i.e.,

λi =
a

a + 1
qi

− 1
.

Rewriting this yields

qi =
1

1 + a 1−λi

λi

.

Given λ, ν and a, the parameter qi can thus be calculated.
We assume that our switch uses wormhole routing, which entails that once the

header has been transmitted to its output port, that output port is reserved for all
flits in the packet. Only after the entire packet has been transmitted, other flits
again contend for that output port.

62 Non-uniform switches

The saturation throughput of the switch with train arrivals and wormhole routing
is different from that of switches with Bernoulli arrivals. Nevertheless, the Markov
chain approach used to determine the saturation throughputs can be extended in
a straightforward manner by changing the transition probabilities to take train ar-
rivals into account, and by enlarging the state space to take wormhole routing into
account. Given the new values for these throughputs, the stability and through-
put approximations follow in exactly the same way as before. The results can be
found in Table 3.4 for various values of a. The accuracy of the approximation is
comparable to that for a switch with Bernoulli arrivals (a = 1).

a = 1 a = 2 a = 3 a = 5 a = 10

Queue 1
Sim. 2.17 2.05 2.02 2.00 1.98

Approx. 2.147 2.034 2.003 1.980 1.963

Queue 2
Sim. 2.48 2.33 2.29 2.26 2.23

Approx. 2.467 2.315 2.273 2.242 2.221

Queue 3
Sim. 3.33 3.11 3.06 3.02 2.99

Approx. 3.320 3.108 3.051 3.009 2.979

Queue 4
Sim. 4.39 4.08 4.00 3.93 3.90

Approx. 4.387 4.071 3.986 3.923 3.878

Table 3.4: Saturation loads.

For the mean waiting time approximation, we need to translate the switch to
a suitable approximating queue. This, however, is not straightforward because the
service times of headers and non-headers differ; only headers of a train have to
contend, while non-header packets always have a service time equal to 1. The
extension of the mean waiting time approximation to train arrivals is beyond the
scope of this thesis. The main point of this subsection is to show that the stability
and throughput approximations can be applied to more sophisticated arrival models,
such as train arrivals, without much effort and without significant loss of accuracy.

3.8 Numerical analysis

In this section, we study the performance of our approximation for Bernoulli
arrivals on a much larger scale. We introduce ten matrices P = (pij) and ten
vectors ν, and study the performance of the approximation of the 100 possible
combinations. Out of these ten matrices and vectors, five of each have been chosen
and five have been generated randomly.

The following five matrices have been chosen: First,

P =




0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25


 ,

3.8 Numerical analysis 63

which is the matrix corresponding to a uniform switch. Second,

P =




1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0


 ,

since it corresponds to the situation in which all traffic has the same destination.
This could, for instance, occur if a single memory is shared among multiple proces-
sors. Third,

P =




0.5 0.5 0 0
0.5 0.5 0 0
0.5 0.5 0 0
0.5 0.5 0 0


 ,

which corresponds to the situation where two outputs are equally likely. Fourth,
the matrix of the running example is included,

P =




0.1 0.3 0.4 0.2
0.2 0.2 0.2 0.4
0.2 0.3 0.4 0.1
0.3 0.3 0.2 0.2


 ,

and fifth,

P =




0.1 0.7 0.1 0.1
0.7 0.1 0.1 0.1
0.1 0.1 0.1 0.7
0.1 0.1 0.7 0.1


 ,

where most traffic (i.e., a 0.7 fraction) has its own destination, and occasionally it
deviates from this destination.

The following five ν vectors were chosen manually:

ν =(0.25, 0.25, 0.25, 0.25),

ν =(0.4, 0.3, 0.2, 0.1),

ν =(0.6, 0.2, 0.1, 0.1),

ν =(0.7, 0.1, 0.1, 0.1),

ν =(0.8, 0.1, 0.05, 0.05).

The first vector is that of a uniform switch. The other vectors were chosen such
that the first queue receives an increasingly higher load.

64 Non-uniform switches

The following matrices were generated randomly:

P =




0.15 0.32 0.24 0.29
0.27 0.24 0.13 0.36
0.05 0.38 0.42 0.15
0.40 0.14 0.31 0.15


 ,

P =




0.28 0.29 0.15 0.28
0.34 0.03 0.15 0.48
0.15 0.21 0.30 0.34
0.40 0.04 0.01 0.55


 ,

P =




0.20 0.15 0.34 0.31
0.25 0.50 0.14 0.11
0.09 0.33 0.20 0.38
0.24 0.16 0.36 0.24


 ,

P =




0.11 0.31 0.02 0.56
0.18 0.48 0.26 0.08
0.55 0.41 0.01 0.03
0.37 0.03 0.23 0.37


 ,

P =




0.26 0.25 0.30 0.19
0.01 0.05 0.62 0.32
0.02 0.59 0.14 0.25
0.10 0.32 0.23 0.35


 ,

and the following five vectors were generated randomly:

ν =(0.37, 0.30, 0.25, 0.08),

ν =(0.34, 0.24, 0.23, 0.19),

ν =(0.38, 0.32, 0.20, 0.10),

ν =(0.40, 0.28, 0.17, 0.15),

ν =(0.31, 0.29, 0.27, 0.13).

Each simulation of these 100 possible combinations ran for 107 time slots, and
measurements of the first 105 time slots were discarded. The load λ was increased in
steps of 0.01, until all queues became unstable. After the simulation, we renumbered
the queues such that queue 1 is the first queue to become unstable, queue 2 the
second, etc. We will give an overview of the errors of the saturation load and mean
waiting time approximation.

An overview of the absolute value of the relative errors made in the saturation
load approximation can be found in Table 3.5, and a graph of the empirical cumu-
lative distribution in Figure 3.10. The absolute value of the relative error is the
largest for queue 1, which we also saw in the previous section. On average, the error
made for this queue is 1%, while for queues 2, 3, and 4 the error is even smaller. For
queue 1, 95% of our simulations gave results within 2.2% error, and for the other
queues within 0.87%.

3.8 Numerical analysis 65

Queue 1 Queue 2 Queue 3 Queue 4

Avg. |rel. error| 0.010 0.0037 0.0024 0.0022
90% error quantile 0.020 0.0068 0.0047 0.0040
95% error quantile 0.022 0.0087 0.0063 0.0046

Table 3.5: The saturation load approximation.

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

P
ro

b(
er

ro
r

<
 x

)

Queue 1
Queue 2
Queue 3
Queue 4

Figure 3.10: The empirical cumulative distribution of the errors of the saturation load
approximation.

Note that even in cases where the approximation is exact, errors of up to 0.01
occur since this is the difference between consecutive simulation loads. For example,
if the exact saturation load is 1.001, the observed saturation load would be either
1.00 or 1.01, depending on the precise values of pij and νi.

The approximation is more accurate for the queues that become unstable at
higher loads. This can be understood if we recall that queue 4 is the first to be-
come empty in Algorithm 3.3.1, queue 3 the second, and so on. It appears that we
slightly underestimate the time at which the first queue becomes empty, the differ-
ence between this time and the time at which the second queue becomes empty, etc.
All these errors combined entail that the saturation load approximation becomes
less accurate for the queues that become unstable early on. In addition to this, we
suspect that the algorithm becomes less accurate if N becomes larger.

We will now focus on the relative error (not its absolute value) of the mean
waiting time approximation. Since each combination of a P -matrix and a ν-vector
has its own set of saturation loads, we scale the loads in order to compare the
various relative errors with each other. We do so by looking at ρi := λ/λsat,i, where
λsat,i is the observed saturation load. We then compare the relative error of the
approximation for each value of ρi between 0 and 1. The mean of this error and the
5% and 95% quantile as functions of ρi are plotted in Figure 3.11.

Generally, the mean of the relative errors is reasonably close to 0, which indicates
that our approximation is accurate on average. Furthermore, for ρi roughly up to
0.8, the error quantiles are well within -20% and 20%, except for queue 1. If ρi

66 Non-uniform switches

0.2 0.4 0.6 0.8

−0.2

−0.1

0

0.1

0.2

0.3
Queue 1

ρ
i

0.2 0.4 0.6 0.8

−0.2

−0.1

0

0.1

0.2

0.3
Queue 2

ρ
i

0.2 0.4 0.6 0.8

−0.2

−0.1

0

0.1

0.2

0.3
Queue 3

ρ
i

0.2 0.4 0.6 0.8

−0.2

−0.1

0

0.1

0.2

0.3
Queue 4

ρ
i

95% quantile
Mean
5% quantile

Figure 3.11: The relative error of the mean waiting time approximation. Note that the
horizontal axis starts at ρi = 0.1. This has been done because for small ρi we have to divide
two values close to 0, which is essentially meaningless.

approaches 1, our approximation clearly becomes less accurate and the difference
between the error quantiles increases.

From the data we inferred that for the matrix

(pij) =




1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0




the mean waiting approximation is the least accurate. An explanation for this
phenomenon is that our service rate approximation is based on an independence
assumption for the queues. With the matrix mentioned above, there is only one
output port that is shared by all queues, which means that we have strong depen-
dence between all queues. Of the ten ν vectors this matrix is combined with, the
approximation is the least accurate for ν = (0.25, 0.25, 0.25, 0.25). If one queue
receives a greater part of the total load, the approximation becomes better. Appar-
ently the dependence between the queues is the strongest if the loads are uniformly
distributed.

In contrast to the fact that the mean waiting time approximation with this pij

and ν is the least accurate, it is striking that the approximation of the saturation
loads is exact. This is easily seen if we observe that the sum of queue lengths is
equal to the queue length in a GeoX/D/1 queue with load λ and unit service times.

3.9 Conclusion 67

All queues are stable if and only if the GeoX/D/1 queue is stable, which it is if
λ < 1. Algorithm 3.3.1 gives precisely this value.

A second example for which the approximation is less accurate is the example
with

(pij) =




0.28 0.29 0.15 0.28
0.34 0.03 0.15 0.48
0.15 0.21 0.30 0.34
0.40 0.04 0.01 0.55


 ,

and ν = (0.7, 0.1, 0.1, 0.1). We found that this example had the largest error in the
saturation load approximation (∼ 3%). While we cannot explain this error in par-
ticular, it seems very likely that a larger error in the saturation load approximation
generally also induces a larger error in the mean waiting time approximation.

3.9 Conclusion

In this chapter we have devised approximations of throughput and stability con-
ditions of small non-uniform switches. Furthermore, we approximated the mean
waiting time in a switch by that in a ./Geo/1 queue, with an arrival process equal
to that of the switch; for a switch with Bernoulli arrivals, a Geo/Geo/1 queue is
used, for a switch with Markovian Arrival Processes (MAPs), a MAP/Geo/1 queue
is used, etc. The throughput and stability approximations only depend on the ar-
rival rates, not on the specific arrival process. The mean waiting time approximation
does depend on the specific arrival process.

We performed numerical experiments on a single example switch with Bernoulli
arrivals, correlated arrivals (i.e., an arrival makes it more likely that there will be
another arrival in the next time slot), and correlated destinations (i.e., consecutive
packets are more likely to have the same destination). In addition to this, we
performed numerical experiments on a much larger scale for switches with Bernoulli
arrivals. These numerical investigations suggest that the approximations are very
accurate in general.

Chapter 4

Reduction of polling tree networks

In the remaining chapters, we consider concentrating tree networks of polling sta-
tions. Although this model is primarily motivated by networks on chips where all
traffic has the same destination (e.g., multiple masters sharing a single slave), the
range of applications for which this model is suitable is much broader; for instance
a number of workstations connected to a single server via a number of routers, a
manufacturing environment where all jobs require the same final operation after a
number of intermediate operations, etc.

We assume all packets in the network have unit size and arrive from the exterior
according to independent batch Bernoulli arrival processes. All packets are eventu-
ally routed to the same node (called node 0), from which they leave the network.
The service disciplines of all nodes are work-conserving and the service discipline
of node 0 has to be HoL-based as well, which is an assumption that is satisfied by,
a.o., mi-limited service, exhaustive service, and priority disciplines.

Let a type i packet be a packet that eventually visits queue i of node 0. In this
chapter, we establish a distributional relation between the number of type i packets
in the network and in a single station system, and we show equality of the mean
end-to-end delay of type i packets in the two systems. Essentially this reduces an
arbitrary tree network to a much simpler system of one node, while preserving the
mean end-to-end delay of type i packets.

69

70 Reduction of polling tree networks

4.1 Introduction

We consider a concentrating tree network with an arbitrary number of nodes, as
depicted in Figure 4.1a. Every node is a polling system with an arbitrary number of
queues. Packets of fixed size 1 arrive from the exterior of the network to each node,
where they are stored and eventually transmitted to the next node. All packets
leave the network via the same node (the sink), which we call node 0.

Node 0 is a single server polling system with N queues. For the other nodes
the number of queues is unspecified. Queue i of node 0 may store packets arriving
from some node upstream or from the exterior directly. In the first case, we say
that node i is the node connected to queue i of node 0. In the second case, node i
does not exist. For the other nodes in the network it is unimportant which number
identifies them. We refer to packets that pass through queue i of node 0 as ‘type i’
packets, for i = 1, . . . , N .

All nodes have work-conserving service disciplines (i.e., the server has to serve
precisely one packet if there is at least one and it may not create or remove additional
packets). Except for node 0, the service disciplines are otherwise arbitrary.

The service discipline of node 0 is not only work-conserving, but also HoL-based.
This means that the decision which queue is served may only depend on whether
or not queues are occupied, and not on the number of packets present in each
queue. Examples of HoL-based service disciplines are 1-limited service (serve one

Node 0

Node 1 Node N

1 N

(a) The original system

1 N

(b) The reduced system

Figure 4.1: A schematic representation of the reduction. We consider an arbitrary tree
network for which Assumption 4.2.1 is satisfied and reduce it to a single node while preserving
the mean end-to-end delay of type i packets. In the figure all queues of node 0 store packets
coming from nodes upstream, but it is also possible that they store packets directly arriving
from the exterior (but not both).

4.1 Introduction 71

packet per queue), exhaustive service (keep serving a queue until it is empty), and
priority disciplines (serve a packet from the queue with the highest priority if it is
non-empty, otherwise consider the queue with second highest priority, and so on).
Service disciplines that are not HoL-based are disciplines such as gated service and
longest or shortest queue first.

We construct a system consisting of one node (see Figure 4.1b), called the re-
duced system. The reduced system uses the same service discipline as node 0 and
its arrival processes are given by superpositions of the arrivals to nodes upstream
of node i. We establish a distributional relation between the contents of the net-
work and the reduced system and we show that the mean end-to-end delay of type
i packets in the network and the reduced system are equal.

The reason why the service discipline of node 0 has to be HoL-based for our
results to be applicable is the following: As the arrival processes to the reduced
system are given by the superposition of arrival processes in the network, the number
of packets in queue i of node 0 in the original system is typically smaller than the
number of packets in queue i of the reduced system. If the server is allowed to
make decisions based on the number of packets in the queues, the behaviour in
both systems might be entirely different, which would hence lead to different mean
end-to-end delays.

Since HoL-based service disciplines may not use any information other than
whether or not queues are empty, we can show that the behaviour in the reduced
and original system is stochastically identical if a HoL-based service discipline is
used. We do so by introducing a coupled system with one node, of which queue i is
empty if and only if queue i of node 0 of the original system is empty. In Section 4.4
we give an example without a HoL-based service discipline for which the reduction
fails.

There is a large amount of literature available on reductions of networks. The ear-
liest results are those of Avi-Itzhak [9] and Friedman [57], where a tandem network
of deterministic multi-server queues with an arbitrary arrival process is considered
and reduced to a single node. Rubin [121, 122] studies a tandem network that is
based on packet-switched communication networks. Mandjes and Van Uitert [97]
apply the results of Avi-Itzhak and Friedman to obtain results for the overflow
probability in a two-queue tandem network.

These papers concern tandem networks without cross-traffic (i.e., with a single
source of arrivals). Rubin [123] devises an approximation for a tandem network with
deterministic service times and cross traffic. Shalmon and Kaplan [127] perform an
exact analysis of a tandem network with Poisson arrivals and deterministic packet
sizes with FIFO service order. Shalmon [126] extends this exact analysis to a system
with fixed priority or exhaustive service disciplines. Furthermore, Shalmon [126]
establishes a reduction result, related to ours, for a system with general arrival
processes and fixed priority or exhaustive service disciplines. Neely, Rohrs and
Modiano [105] analyse a continuous-time concentrating tree network with general
arrival processes at each of the sources and reduce this to a two-stage equivalent
network.

72 Reduction of polling tree networks

Finally, Morrison [104] considers a tree network where all packets pass through
at most two nodes before leaving the network. He constructs a reduced system
consisting of one node and establishes a sample path relation between the queue
contents in both systems. Morrison argues that this reduction can be applied re-
peatedly to arbitrary tree networks but restricts his analysis to arbitrary tandem
queues.

At the heart of our reduction result is a deterministic relation on sample paths
as well. This relation is an extension of Morrison’s since the latter is a relation
between the total contents of the reduced system and the network, while we es-
tablish a relation between the number of type i packets in the reduced system and
the network. For HoL-based service disciplines, Morrison’s result follows from our
sample path relation by summing over all i. In addition to this, we address the
precise implications of this relation for a network with stochastic arrivals.

This chapter is organised as follows: In Section 4.2 we describe the model and
the reduced system in more detail and we state our main results. These results
are then proved in Section 4.3. In Section 4.4 we give an example that shows why
HoL-based service disciplines are required. A conclusion is drawn in Section 4.5.

4.2 Formalisation

In Section 4.2.1, we formalise the network model and the condition the service
discipline of node 0 has to satisfy. In Section 4.2.2 we define the reduced system
and present a more precise formulation of the main result.

4.2.1 The original system

We define N (m) as the set of nodes whose output reaches node m at some point
in time, combined with node m itself. Recall that if queue i = 1, . . . , N of node 0
stores packets directly arriving from the exterior, node i does not exist. In this case,
we define N (i) = ∅.

We denote the total number of packets (i.e., summed over all queues) arriving

from the exterior to node m at time t by X
(m)
t . For all queues i of node 0 that store

packets directly arriving from the exterior, we denote the number of arriving packets

by X
(0)
i,t . We assume that the external arrivals are governed by independent batch

Bernoulli processes, i.e., X
(m)
t and X

(0)
i,t are both i.i.d. with respect to t, with generic

random variables X(m) and X
(0)
i , and expectation λ(m) and λ

(0)
i . The notation used

here is indicative of the notation used throughout the chapter: We add the node as
a superscript and the queue (if applicable) as subscript.

The total arrival rate at node m, γ(m), comprises both external arrivals and
arrivals from nodes upstream. Observe that every packet arriving at node m must
have arrived from the exterior at some node upstream or at m itself:

γ(m) =
∑

l∈N (m)

λ(l) for all m. (4.2.1)

4.2 Formalisation 73

We assume γ(0) < 1 so all queues are stable.

We denote the number of packets in all queues of node m 6= 0 at time t by Q
(m)
t .

Arrivals take place at the end of time with departures before arrivals (according to
the la-df model). A packet arriving at the end of time slot [t − 1, t) is not in the
queue before time t. A packet that arrives at time t may be served in time slot
[t, t+1) and leave at time t+1. For convenience we assume that the network starts

operating at time 0: If t ≤ 0 then X
(m)
t = 0. Consequently, Q

(m)
t = 0 for all t ≤ 0.

We denote the steady state queue lengths by dropping the subscript t: Q
(0)
i and

Q(m).
We denote the queue the server of node 0 serves in [t, t + 1) (or the position the

server moves to at time t) by P
(0)
t ∈ {0, . . . , N}, where P

(0)
t = 0 if the server is idle

in [t, t + 1). Precisely one packet departs from queue i at time t + 1 if and only if

P
(0)
t = i, so

Q
(0)
i,t+1 =





Q
(0)
i,t + ε(Q

(i)
t) − 1(P

(0)
t = i) if N (i) 6= ∅

Q
(0)
i,t + X

(0)
i,t+1 − 1(P

(0)
t = i) if N (i) = ∅

(4.2.2)

where Q
(0)
i,t is the length of queue i at time t, 1(·) is the indicator function, ε(x) = 1

if x > 0, and ε(0) = 0.

We define a vector Q
(0)
t = (Q

(0)
1,t , . . . , Q

(0)
N,t) containing all the queue lengths, and

ε(Q
(0)
t) = (ε(Q

(0)
1,t), . . . , ε(Q

(0)
N,t)).

Assumption 4.2.1. Node 0 uses a HoL-based service discipline, which means that
it satisfies

P

(
P

(0)
t = j

∣∣∣P (0)
t−1, . . . , P

(0)
1 , Q

(0)
t , . . . , Q

(0)
1

)

= P

(
P

(0)
t = j

∣∣∣P (0)
t−1, . . . , P

(0)
t−M , ε(Q

(0)
t), . . . , ε(Q

(0)
t−M)

)
,

for some finite M . In other words, the server makes a (random) decision which
queue it starts serving at time t based on whether there were packets in the queues
and the queues it served during a history of M time slots.

Two main classes of service disciplines are HoL-based: The first is Bernoulli
scheduling, where after a service completion at queue i, the server decides to serve
queue i again with probability qi and moves to one of the other queues with proba-
bility 1− qi. This class also contains the 1-limited and exhaustive service disciplines
as extreme cases (qi = 0 and qi = 1 respectively). The second main class is the class
of mi-limited service disciplines, where the server serves at most mi packets from a
queue before moving to one of the other queues. The history parameter M ensures
that this is allowed; provided mi ≤ M , the number of packets served consecutively

is contained in P
(0)
t−1, . . . , P

(0)
t−M .

If the server moves to one of the other queues it may choose among the non-
empty queues according to some fixed order, such as round robin, a polling table,

74 Reduction of polling tree networks

or a priority index, or according to a random order that is independent of the queue
lengths.

Service disciplines that are not HoL-based for instance take arrival times or
deadlines into account (e.g., earliest arrival time first, earliest deadline first), or
queue lengths (e.g., gated service and shortest/longest queue first). In Section 4.4 we
give an example that shows why our reduction fails if Assumption 4.2.1 is violated.

Remark 4.2.2. The history parameter M has to be finite due to a technicality.
We will come back to this issue in Remark 4.3.6.

Remark 4.2.3. Assumption 4.2.1 also prevents the server of node 0 to take into
account the size of the batch in which a packet arrived, since this information is not

contained in ε(Q
(0)
t−M), . . . , ε(Q

(0)
t).

Remark 4.2.4. We have not specified in which order packets are served within
each queue (for instance FIFO, LIFO, etc.). We only specify that a packet has to
be served from a queue that is selected according to Assumption 4.2.1. The specific
order in which packets are served within a queue is irrelevant for our results.

The mean sojourn time of packets in node m is denoted by E[S(m)], for all

m. We also define E[S
(0)
i] as the mean sojourn time of a packet in queue i of

node 0. The corresponding mean waiting times (or delays) are denoted by a W :

E[W (m)] = E[S(m)] − 1 and E[W
(0)
i] = E[S

(0)
i] − 1.

In order to describe the end-to-end delay of type i packets, we introduce the set
P (m, l) containing every node on the path from m to l, including m and l themselves.
That is,

P (m, l) = {k : k ∈ N (l) and m ∈ N (k)} for all l and m ∈ N (l). (4.2.3)

The distance from node m to l, with m ∈ N (l), is given by

d(m, l) = |P (m, l)| − 1,

so that d(m, m) = 0, d(m, l) = 1 if the output of m goes to l directly, d(m, l) = 2 if
there is one intermediate node, and so on.

The mean end-to-end delay of type i packets is now given by

E[Zi] =
∑

m∈N (i)

λ(m)

γ(i)

∑

l∈P (m,i)

E[W (l)] + E[W
(0)
i].

The reasoning behind this equation is the following: A fraction λ(m)/γ(i) of the
packets that arrive at queue i of node 0, arrived from the exterior at node m. The
mean end-to-end delay of these packets is the sum of waiting times at nodes from m

to i. Note that if N (i) = ∅, E[Zi] = E[W
(0)
i], i.e., if packets arrive from the exterior

to queue i of node 0 directly, their mean end-to-end delay is given only by their
mean waiting time in queue i of node 0.

4.2 Formalisation 75

4.2.2 The reduced system

In this section we describe the construction of the reduced system and state our
main result. All quantities related to the reduced system are denoted by primes
next to the normal letters. We will refer to the network formalised in Section 4.2.1
as the original system.

The arrivals to the reduced system are constructed by aggregating all arrivals to
the node i subtree of the original system (i = 1, . . . , N) into a single stream. We let
X ′

i,t denote the number of arrivals to queue i of the reduced system at time t. The
random variables X ′

i,t are i.i.d. with respect to t, with generic random variable X ′
i

given by

X ′
i

d
=





∑
m∈N (i)

X(m), if N (i) 6= ∅,

X
(0)
i , if N (i) = ∅.

The evolution of the queues can now be described as follows:

Q′
i,t+1 = Q′

i,t + X ′
i,t+1 − 1(P ′

t = i),

where P ′
t is the position of the server of the reduced system at time t, and Q′

i,t is
the length of queue i at time t. We denote the vector of all queue lengths at time t
by Q′

t = (Q′
1,t, . . . , Q

′
N,t). The steady state length of queue i is denoted by Q′

i.
The service discipline of the reduced system is the same HoL-based discipline as

that of node 0 in the original system. In practice, this means that if node 0 uses
mi-limited, then so must the reduced system, if node 0 uses exhaustive service, then
so must the reduced system, etc. In a more general setting, we mean the following:
Given identical server positions and identical empty and non-empty queues during
the last M time slots, the probability that a certain queue is served is the same
under both service disciplines:

P

(
P ′

t = pt| ε(Q′
s) = ε(qs), for all t − M ≤ s ≤ t, P ′

s = ps, for all t − M ≤ s < t
)

=

P

(
P

(0)
t = pt| ε(Q(0)

s) = ε(qs), for all t − M ≤ s ≤ t, P (0)
s = ps, for all t − M ≤ s < t

)
.

(4.2.4)

The mean waiting time of a type i packet in the reduced system is denoted by
E[W ′

i]. Our two main results are the following:

Theorem 4.2.5. In steady-state, the length of queue i of the reduced system is in
distribution equal to the number of type i packets in the network, minus external
arrivals to node m in the last d(m, 0) time slots, summed over all m:

Q′
i

d
= lim

t→∞




∑

m∈N (i)

Q
(m)
t + Q

(0)
i,t −

∑

m∈N (i)

d(m,0)∑

d=1

X
(m)
t+1−d


 . (4.2.5)

Theorem 4.2.6 (Reduction theorem). The mean end-to-end delay (total waiting
time) of type i packets is the same in the original and the reduced system:

E[Zi] = E[W ′
i].

76 Reduction of polling tree networks

Remark 4.2.7. Theorem 4.2.5 also implies that the number of type i packets in
the single-node system is stochastically smaller than that in the network: Q′

i ≤d∑
m∈N (i) Q(m) + Q

(0)
i . We expect that this bound is tight in heavy traffic.

4.3 Proof of the main results

In this section, we prove Theorem 4.2.5 and 4.2.6. In order to do so, we use
a coupling argument: In Section 4.3.1, we introduce another single station system,
called the coupled system. The arrivals to this system are constructed in a determin-
istic way from the arrivals to the original system. This deterministic construction
allows us to prove a sample path relation between the original system and the cou-
pled system in Section 4.3.2. In Section 4.3.3 we show that the queue lengths of the
coupled system and the reduced system are equal in distribution. These two rela-
tions combined provide us with a relation between the original and reduced system,
namely Theorem 4.2.5. In Section 4.3.4 we prove Theorem 4.2.6 by applying Little’s
law to Theorem 4.2.5.

4.3.1 The coupled system

In this section, we describe the coupled system. All quantities related to this
system are denoted by tildes above the normal letters. We define

X̃i,t =





∑
m∈N (i)

X
(m)
t−d(m,0), if N (i) 6= ∅,

X
(0)
i,t , if N (i) = ∅.

(4.3.1)

The evolution of the queues can now be described as follows:

Q̃i,t+1 = Q̃i,t + X̃i,t+1 − 1(P̃t = i), (4.3.2)

where P̃t is the position of the server. We denote the vector of all queue lengths at
time t by Q̃t = (Q1,t, . . . , QN,t).

We couple the service discipline to that of node 0 in the original system in the
following way: If both servers have the same history, their next position will also

be the same, i.e., if ε(Q̃s) = ε(Q
(0)
s), for all t − M ≤ s ≤ t, and P̃s = P

(0)
s , for

all t − M ≤ s < t, then P̃t = P
(0)
t . In Section 4.3.2 we prove that P̃t = P

(0)
t and

ε(Q̃t) = ε(Q
(0)
t) for all t.

The intuition behind this coupling is that a packet reaches node 0 in the original
system after or at the same time it arrives to the coupled system; a packet requires at
least d(m, 0) time slots to reach node 0 from node m, which is precisely the number
of time slots by which an arrival to the coupled system is delayed. Using induction
we can show that queue i of the coupled system and node 0 of the original system
are empty at precisely the same times. Together with the (inductive) definition of

P̃t this implies a sample path relation between the original system and the coupled
system for all t.

4.3 Proof of the main results 77

Furthermore, the steady state queue lengths of the coupled and reduced systems
are stochastically the same due to the following argument: By the nature of batch
Bernoulli arrival processes, imposing a time-delay does not stochastically change
them. In addition to this, the service disciplines of the coupled and the reduced
system are shown to be stochastically equal. As the arrival processes and service
disciplines of the coupled and reduced system are stochastically identical, their queue
lengths must be so too.

4.3.2 The original and the coupled system

We establish a sample path relation between the original and the coupled system
for all t, which leads to a similar steady state relation. We first give Lemma 4.3.1
for further reference. Next, we obtain our sample path relation in Proposition 4.3.2.
Taking limits then yields the steady state relation (Corollary 4.3.3).

We first describe the evolution of the total contents of the nodes. In order to do
so, we define N (m)

1 as the set of nodes whose output enters node m directly, i.e.,

N (m)
1 = {l ∈ N (m) : d(l, m) = 1}, for all m.

The total number of packets arriving to node m is given by the number of external
arrivals plus the arrivals from nodes upstream of m, and one packet is served if there
is at least one packet present, so for all m,

Q
(m)
t+1 = Q

(m)
t + X

(m)
t+1 +

∑

l∈N
(m)
1

ε(Q
(l)
t) − ε(Q

(m)
t). (4.3.3)

The following lemma is presented for further reference:

Lemma 4.3.1. For all t and i = 1, . . . , N ,

∑

m∈N (i)

Q
(m)
t =

∑

m∈N (i)

Q
(m)
t−d(m,0) +

∑

m∈N (i)

d(m,0)∑

d=1

X
(m)
t+1−d −

∑

m∈N (i)

ε(Q
(m)
t−d(m,0)).

(4.3.4)

Proof. We first observe that, by (4.3.3),

Q
(m)
t − Q

(m)
t−1 = X

(m)
t − ε(Q

(m)
t−1) +

∑

l∈N
(m)
1

ε(Q
(l)
t−1).

If we apply this argument d(m, 0) times, we obtain

Q
(m)
t − Q

(m)
t−d(m,0) =

d(m,0)∑

d=1


X

(m)
t+1−d − ε(Q

(m)
t−d) +

∑

l∈N
(m)
1

ε(Q
(l)
t−d)


 ,

78 Reduction of polling tree networks

for all m. Summing over all m ∈ N (i) yields

∑

m∈N (i)

Q
(m)
t =

∑

m∈N (i)

Q
(m)
t−d(m,0) +

∑

m∈N (i)

d(m,0)∑

d=1

X
(m)
t+1−d −

∑

m∈N (i)

d(m,0)∑

d=1

ε(Q
(m)
t−d)+

∑

m∈N (i)

∑

l∈N
(m)
1

d(m,0)∑

d=1

ε(Q
(l)
t−d). (4.3.5)

Observe that in the double summation over the nodes in the last term of (4.3.5),
we include for each m ∈ N (i) all l immediately upstream of m. We thus sum over
all l ∈ N (i), except l = i. As d(m, 0) = d(l, 0) − 1 for such m and l, we get

∑

m∈N (i)

∑

l∈N
(m)
1

d(m,0)∑

d=1

ε(Q
(l)
t−d) =

∑

l∈N (i)

l 6=i

d(l,0)−1∑

d=1

ε(Q
(l)
t−d) =

∑

l∈N (i)

d(l,0)−1∑

d=1

ε(Q
(l)
t−d),

(4.3.6)

since d(i, 0) = 1. Substitution of the latter expression in (4.3.5) indeed yields (4.3.4).

Proposition 4.3.2. For all t and i = 1, . . . , N ,

Q̃i,t =
∑

m∈N (i)

Q
(m)
t + Q

(0)
i,t −

∑

m∈N (i)

d(m,0)∑

d=1

X
(m)
t+1−d, (4.3.7)

ε(Q̃i,t) = ε(Q
(0)
i,t), (4.3.8)

P̃t = P
(0)
t . (4.3.9)

Proof. We prove this lemma by induction. Note that (4.3.7)-(4.3.9) trivially hold for
t ≤ 0 due to the assumption that the systems are initially empty. We hypothesise
that the proposition is true for . . . , t − 1, t and prove it for t + 1. First, assume
N (i) 6= ∅. By (4.3.1), (4.3.2), and the induction hypothesis,

Q̃i,t+1 = Q̃i,t + X̃i,t+1 − 1(P̃t = i)

=
∑

m∈N (i)

Q
(m)
t + Q

(0)
i,t −

∑

m∈N (i)

d(m,0)∑

d=1

X
(m)
t+1−d +

∑

m∈N (i)

X
(m)
t+1−d(m,0) − 1(P

(0)
t = i)

=
∑

m∈N (i)

Q
(m)
t + Q

(0)
i,t −

∑

m∈N (i)

d(m,0)−1∑

d=1

X
(m)
t+1−d − 1(P

(0)
t = i).

4.3 Proof of the main results 79

By applying (4.2.2) and (4.3.3) we obtain

Q̃i,t+1 =
∑

m∈N (i)

(
Q

(m)
t+1 + ε(Q

(m)
t) − X

(m)
t+1 −

∑

l∈N
(m)
1

ε(Q
(l)
t)
)

+ Q
(0)
i,t+1 − ε(Q

(i)
t)

−
∑

m∈N (i)

d(m,0)−1∑

d=1

X
(m)
t+1−d

=
∑

m∈N (i)

Q
(m)
t+1 +

∑

m∈N (i)

ε(Q
(m)
t) −

∑

m∈N (i)

∑

l∈N
(m)
1

ε(Q
(l)
t) + Q

(0)
i,t+1 − ε(Q

(i)
t)

−
∑

m∈N (i)

d(m,0)−1∑

d=0

X
(m)
t+1−d.

We proceed by interchanging the order of summation in the first double sum. Similar
to the proof of Lemma 4.3.1, we include for all m ∈ N (i) all l immediately upstream
of m. This implies that we sum over all l ∈ N (i), except l = i. We thus get
(cf. (4.3.6))

∑

m∈N (i)

∑

l∈N
(m)
1

ε(Q
(l)
t) =

∑

l∈N (i)

l 6=i

ε(Q
(l)
t) =

∑

l∈N (i)

ε(Q
(l)
t) − ε(Q

(i)
t),

which yields (4.3.7).
Now assume N (i) = ∅. Then,

Q̃i,t+1 = Q̃i,t + X̃i,t+1 − 1(P̃t = i), by (4.3.2),

= Q̃i,t + X
(0)
i,t+1 − 1(P̃t = i), by (4.3.1),

= Q
(0)
i,t + X

(0)
i,t+1 − 1(P

(0)
t = i), by the induction hypothesis,

= Q
(0)
i,t+1, by (4.2.2).

To prove (4.3.8), we first prove that Q̃i,t+1 = 0 implies Q
(0)
i,t+1 = 0 and then

that Q
(0)
i,t+1 = 0 implies Q̃i,t+1 = 0. Note that if N (i) = ∅, (4.3.8) immediately

follows from (4.3.7), so we restrict our proof to i for which N (i) 6= ∅. From (4.3.4)
and (4.3.7) with t + 1 substituted for t, it follows that

Q̃i,t+1 = Q
(0)
i,t+1 +

∑

m∈N (i)

(
Q

(m)
t+1−d(m,0) − ε(Q

(m)
t+1−d(m,0))

)
. (4.3.10)

Hence Q̃i,t+1 = 0 implies that Q
(m)
t+1−d(m,i) = ε(Q

(m)
t+1−d(m,i)) for all m ∈ N (i) and

Q
(0)
i,t+1 = 0.

Suppose now that Q
(0)
i,t+1 = 0. This means that 0 = Q

(0)
i,t+1 = Q

(0)
i,t + ε(Q

(i)
t) −

1(P
(0)
t = i), which entails that Q

(i)
t = 0. We can then apply this argument to Q

(i)
t =

80 Reduction of polling tree networks

Q
(i)
t−1 − ε(Q

(i)
t−1) + X

(i)
t +

∑
m∈N

(i)
1

ε(Q
(m)
t−1) to obtain Q

(m)
t−1 = 0 for m ∈ N (i)

1 , and so

on. This eventually results in Q
(m)
t+1−d(m,0) = 0 for all m. Together with (4.3.10) we

conclude Q̃i,t+1 = 0.

In Section 4.3.1 we defined P̃t such that if P̃s = P
(0)
s for all s = t−M, . . . , t− 1,

and ε(Q̃s) = ε(Q
(0)
s) for all s = t−M, . . . , t, then P̃t = P

(0)
t . This definition implies

that P̃t+1 = P
(0)
t+1, which completes the proof.

Corollary 4.3.3. The following relation holds:

Q̃i
d
= lim

t→∞




∑

m∈N (i)

Q
(m)
t + Q

(0)
i,t −

∑

m∈N (i)

d(m,0)∑

d=1

X
(m)
t+1−d



 . (4.3.11)

Remark 4.3.4. Proposition 4.3.2 is actually much stronger than Corollary 4.3.3;

Proposition 4.3.2 holds for all t, for any realisation of X
(m)
t , and hence regardless of

the underlying arrival process. Proposition 4.3.2 thus gives a deterministic relation
on sample paths. We use it here primarily to obtain Corollary 4.3.3, but in itself it
is an extension of the reduction result of Morrison [104].

4.3.3 The reduced and the coupled system

In this section, we show that the steady state queue lengths of the coupled
and the reduced system are the same (Proposition 4.3.5). By combining this with
Corollary 4.3.3, we prove Theorem 4.2.5 at the end of the subsection.

Proposition 4.3.5. The steady state queue lengths of the coupled and the reduced
system are the same in distribution:

Q′
i

d
= Q̃i. (4.3.12)

Proof. We introduce the discrete time process

Y ′
t = (Q′

t, ε(Q
′
t−1), . . . , ε(Q

′
t−M), P ′

t−1, . . . , P
′
t−M),

and Ỹt, defined similarly.
The processes Y ′

t and Ỹt are aperiodic, irreducible, and positive recurrent Markov

chains, and therefore have a unique stationary distribution. This implies that Q̃i,t,
and Q′

i,t, being components of these Markov chains, have unique stationary distri-

butions too. To prove Q′
i

d
= Q̃i we show that the transition probabilities of Y ′

t and

Ỹt are the same for t > maxm d(m, 0). After all, if these Markov chains have the
same transition probabilities, they have the same equilibrium distribution and hence
so do Q′

i,t and Q̃i,t.
Due to the time-delay of arrivals to the coupled system, and the assumption

that X
(m)
t = 0 for t ≤ 0, it can easily be checked that the transition probabilities

4.3 Proof of the main results 81

of Ỹt depend on t if t ≤ maxm d(m, 0). Nevertheless, this does not affect the equi-

librium distribution of Ỹt since it only affects a finite initial period of time. For
t > maxm d(m, 0) the transition probabilities of Ỹt are time-homogeneous.

Let ωt = {qt, ε(qt−1), . . . , ε(qt−M), pt−1, . . . , pt−M}. Assume furthermore t >
maxm d(m, 0). We will show

P(Y ′
t+1 = ωt+1|Y ′

t = ωt) = P(Ỹt+1 = ωt+1|Ỹt = ωt).

Let qj,t+1 = qj,t − 1(pt = j) + xj,t+1 for all j and t. Then, since the transition
probabilities are only determined by the arrival probabilities and the HoL-based
service discipline,

P(Y ′
t+1 = ωt+1|Y ′

t = ωt)

= P

(
P ′

t = pt

∣∣∣ ε(Q′
s) = ε(qs), P ′

s = ps, ε(Q′
t) = ε(qt)

)

N∏

j=1

P(X ′
j,t+1 = xj,t+1),

where s = t − 1, . . . , t − M . Using X ′
j,t+1

d
= X̃j,t+1 (see Section 4.3.1) and the fact

that the service discipline is equal to that of node 0 (see (4.2.4)), we obtain

P(Y ′
t+1 = ωt+1|Y ′

t = ωt)

= P

(
P

(0)
t = pt

∣∣∣ ε(Q(0)
s) = ε(qs), P (0)

s = ps, ε(Q
(0)
t) = ε(qt)

)

N∏

j=1

P(X̃j,t+1 = xj,t+1).

Finally, by ε(Q̃t) = ε(Q
(0)
t) and P̃t = P

(0)
t for all t, we have

P(Y ′
t+1 = ωt+1|Y ′

t = ωt)

= P

(
P̃t = pt

∣∣∣ ε(Q̃s) = ε(qs), P̃s = ps, ε(Q̃t) = ε(qt)
) N∏

j=1

P(X̃j,t+1 = xj,t+1)

= P(Ỹt+1 = ωt+1|Ỹt = ωt).

Remark 4.3.6. In Section 4.2.1 we stated that M < ∞. This is necessary for the
processes Y ′

t and Ỹt to have unique stationary distributions. If M = ∞ the queue
that is served at time t might depend on the queue that was served at time 1 for all
t. The transition probabilities of Ỹt might thus depend on Ỹ1 and the equilibrium
distribution does not have to be unique.

The proof of Theorem 4.2.5 is now elementary:

Proof of Theorem 4.2.5. Theorem 4.2.5 follows immediately from Corollary 4.3.3
and Proposition 4.3.5.

82 Reduction of polling tree networks

4.3.4 Waiting times

In this section we establish equality of the mean waiting times in the original
and reduced system. The mean end-to-end sojourn time of type i packets passing
through queue i of node 0 is given by

E[Ti] =
∑

m∈N (i)

λ(m)

γ(i)

∑

l∈P (m,i)

E[S(l)] + E[S
(0)
i].

The mean distance a type i packet must traverse before it reaches queue i of node 0
is given by

E[Di] =
∑

m∈N (i)

λ(m)

γ(i)
d(m, 0).

Note that E[Di] + 1 gives the mean total service time of type i packets.
We can now prove Theorem 4.2.6:

Proof of Theorem 4.2.6. First assume N (i) 6= ∅. In this case the total arrival rate
to queue i of node 0 is given by γ(i). Using (4.2.5) and Little’s law yields

E[S′
i] =

1

γ(i)
E[Q′

i] =
∑

m∈N (i)

1

γ(i)
E[Q(m)] +

1

γ(i)
E[Q

(0)
i] − 1

γ(i)

∑

m∈N (i)

d(m,0)∑

d=1

E[X
(m)
d]

=
1

γ(i)

∑

m∈N (i)

γ(m)
E[S(m)] + E[S

(0)
i] − 1

γ(i)

∑

m∈N (i)

d(m, 0)λ(m)

=
1

γ(i)

∑

m∈N (i)

∑

l∈N (m)

λ(l)
E[S(m)] + E[S

(0)
i] − E[Di],

where the last equation is a consequence of the fact that any arrival to node m must
be an external arrival to some node l ∈ N (m) (see (4.2.1)).

We continue by interchanging the order of summation. First, observe that for
every m ∈ N (i) we include all nodes l upstream of m, so that every l ∈ N (i) is
eventually included in the summation at least once. Second, for every l ∈ N (i),
we include all nodes m downstream of l and upstream of i, i.e., all m for which
m ∈ N (i) and l ∈ N (m). This, however, corresponds precisely to the definition of
the path from l to i (see (4.2.3)), so that

E[S′
i] =

∑

l∈N (i)

λ(l)

γ(i)

∑

m∈P (l,i)

E[S(m)] + E[S
(0)
i] − E[Di] = E[Ti] − E[Di].

The equality of E[W ′
i] and E[Zi], the mean end-to-end delay of type i packets, follows

from the observation that E[Di]+1 is the mean total service time so E[Zi]+E[Di]+
1 = E[Ti], combined with E[S′

i] = E[W ′
i] + 1.

For N (i) = ∅ the proof is similar, except that now the arrival rate to queue i of

node 0 is given by λ
(0)
i . Taking expectations of (4.2.5), dividing by λ

(0)
i , and applying

Little’s law immediately yields E[S′
i] = E[Ti], which implies E[W ′

i] = E[Zi].

4.4 Discussion 83

4.4 Discussion

In this section, we illustrate why a HoL-based service discipline is needed by
means of an example. We consider a tree network consisting of two nodes (node 0
and 1), as depicted in Figure 4.2. Node 0 consists of two queues and node 1 of one.
We assume that node 0 serves packets according to the shortest queue first policy
(so the service discipline is not HoL-based). In case of equal queue lengths, it serves
queue 1. The service policy of node 1 is arbitrary. We will show that the mean
end-to-end delays of type 1 packets are different in the original and the reduced
system.

We assume that batches of size K > 1 arrive to node 1, whereas batches of size 1
arrive to queue 2 of node 0:

X(1) =

{
0, w.p. 1 − p1,

K, w.p. p1,

X
(0)
2 =

{
0, w.p. 1 − p2,
1, w.p. p2.

In the original system type 1 batches arrive to node 1 and are sent to node 0
packet-by-packet. Because node 0 serves queue 1 in case of equal queue lengths,
type 1 packets never have to wait at node 0. The mean end-to-end delay of a type 1
packet is thus given by the mean waiting time in node 1, which is an ordinary

GeoX(1)

/D/1 queue.
In the reduced system type 1 batches arrive to the queues in their entirety. The

length of queue 1 is therefore typically larger than that of queue 2 and queue 2 is
usually served first (except if both queues have one packet). The mean waiting time

of type 1 packets is thus equal to that in a GeoX(1)

/D/1 queue plus some additional
delay due to services of type 2 packets.

This example illustrates why a HoL-based service discipline is required; the num-
ber of packets in queue 1 of the reduced system is typically different from that of
queue 1 of node 0, because batches arrive to the reduced system in their entirety,
whereas they arrive to node 0 packet-by-packet. Even though the service discipline
is shortest queue first in both systems, the server of the original system essentially

1 2

Node 1

Node 0

Figure 4.2: The network we consider in order to show that Assumption 4.2.1 is needed.

84 Reduction of polling tree networks

gives priority to type 1 and the server of the reduced system to type 2.

4.5 Conclusion

We have proved a distributional relation between queue lengths in a tree network
and a reduced system consisting of one node, and equality of the mean end-to-end
delay in both systems. Our results extend earlier work of Morrison [104], in the
sense that our results hold conditioned on the type of the packet. By this we
mean that where we prove a relation between the number of type i packets in both
systems, [104] relates the total number of packets in both systems, i.e., summed over
all i. This extension comes at the price that the class of allowed service disciplines
is slightly more restrictive; the service discipline of node 0 has to be HoL-based.

A HoL-based service discipline is required because the number of packets in
queue i of the reduced system is typically different from that in queue i of node 0.
If the server is allowed to choose a queue based on the number of packets in a
queue rather than whether or not it is empty, the behaviour of the systems might
be entirely different, which could in turn lead to different mean waiting times.

The reduction theorem facilitates the analysis of a polling network through a
simpler analysis of a single node. Even if the mean waiting time per queue in
the single station polling system is unknown (such as for mi-limited systems) the
reduction result entails that single-station approximations can also be applied to
networks without additional loss of accuracy in order to compute the mean end-to-
end delay of type i packets.

Chapter 5

End-to-end delays in polling tree

networks

In this chapter, we analyse mean end-to-end delays in concentrating tree networks
of polling stations. The model we consider is the same as that of Chapter 4, except
that all nodes use a HoL-based service discipline rather than only node 0.

We obtain an exact expression for the mean end-to-end delay averaged over
all sources and an approximation of the mean end-to-end delay per source. The
essential steps in this approximation are (i) the assumption that all streams passing
through a certain queue at a node have the same mean waiting time in that node,
and (ii) the reduction theorem of Chapter 4 (Thm. 4.2.6).

In the approximation, we express the mean end-to-end delay per source in terms
of the mean waiting time (per queue) in single-station polling systems. Depending
on the service disciplines used, the mean waiting time in these single-station polling
systems can either be determined exactly or has to be approximated. In Chapter 6,
we derive a new approximation that can also be used to obtain single-station results.
This approximation is derived for a large subclass of HoL-based service disciplines,
namely Bernoulli service combined with Markovian routing.

Although our approximation is derived for the entire class of HoL-based service
disciplines, we are especially interested in polling stations with 1-limited service
discipline used in switches in networks on chips. We furthermore show how our
approximation can be applied to a model of a network on chip with four switches.
Finally, we show that, for trees satisfying certain symmetry conditions, the mean
end-to-end delay per type can be obtained exactly.

85

86 End-to-end delays in polling tree networks

5.1 Model

We consider a concentrating tree network operating in discrete time as displayed
in Figure 5.1. All packets have size 1 and arrive from external sources in batches
according to independent batch Bernoulli arrival processes. The network operates
under the late arrival - departures first model (see Section 1.3.2). A packet arriving
at a node at the end of time slot [t− 1, t), i.e., at time t, may be served in time slot
[t, t + 1). In this case it reaches the next node at time t + 1 where it may be served
in time slot [t + 1, t + 2), and so on.

Node 0

i,1 i,2

i,3 i,4

type i

Figure 5.1: A polling tree network.

All nodes in the network are polling nodes without switch-over times. Node 0 is
a node with N queues and is the last node of the network (the sink). All packets
in the network must eventually pass through it and leave the network after that.
Every node n in the tree network is itself the last node in a smaller tree network
consisting of all nodes above node n and node n itself. We call the latter network
the node n subtree.

We call a packet that eventually passes through queue i of node 0 a ‘type i’
packet. There are Ni external sources from which type i packets arrive. We subdi-
vide type i packets into ’type i,j’ packets, j = 1, . . . , Ni, such that the type denotes
the source from which packets arrive (see Fig. 5.1). The set of type i packets is thus
the union of the sets of type i,j packets.

The size of the batches of type i,j packets arriving each time slot is given by
an arbitrary discrete non-negative random variable, denoted by Xi,j . We further

define Xi =
∑Ni

j=1 Xi,j , and X =
∑

i Xi. We denote the expected batch sizes by
ρi,j , ρi, and ρ, respectively. We assume ρ < 1, which implies that all nodes are
stable because all packets have size 1.

The reduction theorem (Theorem 4.2.6) states that, if node 0 uses a HoL-based
service discipline, the tree network can be reduced to a single-station polling system,

5.1 Model 87

i,1
i,2

i,3
i,4

type i

Figure 5.2: The reduced system.

called the reduced system (see Fig. 5.2). The reduced system is a system with arrival
processes that are given by superpositions of the original arrival processes, i.e., it is
a system with arrivals Xi =

∑
j Xi,j to queue i, i = 1, . . . , N . The service discipline

of the reduced system is the same as that of node 0 in the original system. If we
denote the end-to-end delay of type i packets by Zi, and the waiting time in queue i
of the reduced system by W ′

i , we thus have:

E[Zi] = E[W ′
i]. (5.1.1)

The reduction theorem only yields an expression for the mean end-to-end delay
of type i packets (called the mean type i end-to-end delay), while we are in particular
interested in the mean end-to-end delay of type i,j packets (called the mean type i,j
end-to-end delay). Even so, the reduction theorem will prove vital for the analysis
of the mean type i,j end-to-end delay. In order to apply the reduction to all possible
subtrees, we assume that all nodes use HoL-based service disciplines.

Remark 5.1.1. The latter assumption can be slightly weakened. We apply the
reduction theorem to all node n subtrees, except for nodes n of which all queues
store packets arriving directly from the exterior. If one or more queues of node n
store packets coming from another node, the service discipline of node n has to be
HoL-based. If all queues store packets arriving directly from the exterior, the service
discipline can be an arbitrary work-conserving one.

This chapter is organised as follows: In Section 5.2, we derive the mean overall
(i.e., averaged over all types) end-to-end delay exactly and obtain the approximation
of the mean type i,j delay. One of the key steps in this approximation is the
assumption that all streams passing through a certain queue at a node have the same
mean waiting time in that node. The accuracy of this approximation is numerically
analysed using simulation in Section 5.3.

We express the mean type i,j end-to-end delay in terms of the mean waiting
time per queue in single-station polling systems. In Section 5.4 we apply the mean
end-to-end delay approximation to a model of a network on chip with four switches,
where the necessary single-station results are obtained using a known approximation,
namely that of Boxma and Meister [34]. For trees satisfying certain symmetry
conditions, the mean end-to-end delay approximation becomes exact, as is discussed
in Section 5.5. Finally, we present our conclusions in Section 5.6.

88 End-to-end delays in polling tree networks

5.2 Analysis of the tree

In this section we describe how the reduction theorem can be applied to obtain
expressions for the mean end-to-end delay. First, we obtain an exact expression for
the mean end-to-end delay of packets of any type, called the mean overall end-to-
end delay. Second, we approximate the mean type i,j end-to-end delay using the
results for the mean overall end-to-end delay.

5.2.1 Overall end-to-end delay

We recall that the reduction theorem states that

E[Zi] = E[W ′
i],

where E[Zi] is the mean type i end-to-end delay, and E[W ′
i] is the mean waiting

time in queue i of the reduced system, which is a polling system with arrivals Xi

to queue i, i = 1, . . . , N . Because an arbitrary packet is of type i with probability
ρi/ρ, it follows that E[Z], the mean overall end-to-end delay, is given by

E[Z] =

N∑

i=1

ρi

ρ
E[Zi] =

N∑

i=1

ρi

ρ
E[W ′

i]. (5.2.1)

The right hand side of (5.2.1) can be recognised as part of the conservation law
for polling systems [24,32,37]. This law states that for any work-conserving service
discipline,

N∑

i=1

ρi

ρ
E[W ′

i] = C. (5.2.2)

The constant C is given by Expression (14) in [24] after division by ρ. For unit
packet sizes,

C =
1

2ρ(1 − ρ)



∑

i

E[Xi(Xi − 1)] +
∑

i

∑

j 6=i

ρiρj




= −1

2
+

1

2ρ(1 − ρ)

∑

i

Var(Xi). (5.2.3)

By combining this with (5.2.1) and (5.2.2), and using that Xi =
∑

j Xi,j , with
Xi,j mutually independent, we obtain

E[Z] = −1

2
+

1

2ρ(1 − ρ)

∑

i

Var(Xi)

= −1

2
+

1

2ρ(1 − ρ)

∑

i

∑

j

Var(Xi,j) (5.2.4)

as the mean overall end-to-end delay.

5.2 Analysis of the tree 89

Remark 5.2.1. Equation (5.2.4) gives the mean overall end-to-end delay, regardless
of the precise HoL-based service discipline. The work of Morrison [104] and Shal-
mon [126] entails that Equation (5.2.4) holds without the assumption of HoL-based
service disciplines; any work-conserving service discipline suffices. The assumption
of HoL-based service disciplines will, however, become crucial in the next subsec-
tion. Shalmon [126] also gives an expression for the mean overall end-to-end delay
in a concentrating tree network with Poisson arrivals, which is valid in discrete as
well as continuous time (Eq. (5.2.4) with Var(Xi,j) = ρi,j).

5.2.2 End-to-end delay per type

In this subsection, we derive an approximation of the mean type i,j end-to-end
delay. We express the mean type i,j end-to-end delay in the network in the mean
waiting time per queue of single-station polling systems. For many single-station
polling systems, the mean waiting time per queue has been analysed, either in exact
form or through an approximation (see [133, 135, 142] for overviews). Moreover, in
Chapter 6, we derive a new approximation that can be used to obtain single-station
results for a large subclass of HoL-based service disciplines, namely that of Bernoulli
service combined with Markovian routing.

The first observation is that the type i,j end-to-end delay consists of the sum of
the waiting times of type i,j packets at all nodes along their path from the source
to node 0. In other words, if we approximate the mean waiting time of type i,j
packets at an arbitrary node, an approximation of the mean type i,j end-to-end
delay automatically follows by summing the mean waiting time approximations at
the individual nodes.

A second observation is the following: Consider Figure 5.3 and suppose for a
moment that we want to determine the mean waiting time of type i,j packets in
node i. Everything that happens outside the node i subtree (marked by the dashes)
has no influence on the mean waiting time in node i, so it suffices to consider only
the node i subtree. Node i, however, is itself the sink of the node i subtree. In order
to approximate the mean waiting time of type i,j packets in an arbitrary node, it
hence suffices to determine the mean waiting time in the last node of an arbitrary
network.

In the sequel, we approximate the mean waiting time of type i,j packets in
node 0, which leads to an approximation of the mean type i,j end-to-end delay
as described by the two observations above. We denote the mean waiting time of

type i,j packets in node 0 by E[W
(0)
i,j].

It is not immediately clear, however, how E[W
(0)
i,j] can be determined: First, it

is unclear which of the type i packets in node 0 are actually type i,j packets. The
type i,j packets are mixed with packets of type i,j1, i,j2, etc. Packets are stored in
node 0 in an intricate unknown order that is determined by the service disciplines of

the nodes upstream. Second, E[W
(0)
i,j] represents the mean waiting time in a polling

model where the arrivals are given by the output of the node upstream.
The first difficulty is circumvented by the following approximation:

90 End-to-end delays in polling tree networks

Node 0

i,1 i,2

i,3 i,4

type i

Node i
Yi

Figure 5.3: The example network.

Approximation 5.2.2. For every node, the mean waiting time of type i,j packets
is equated to the mean waiting time of all packets passing through the same queue
in that node.

Applying Approximation 5.2.2 to node 0 entails that we approximate the mean
waiting time in node 0 of type i,j packets by the mean waiting time of type i packets
in node 0, i.e.,

E[W
(0)
i,j] ≈ E[W

(0)
i]. (5.2.5)

The quantity E[W
(0)
i], however, still represents the mean waiting time in a polling

model where arrivals are given by the output of the node upstream.
We can now circumvent the second difficulty with the reduction theorem: The

mean waiting time of type i packets at node 0, E[W
(0)
i], is equal to the mean type i

end-to-end delay in the entire tree, E[Zi], minus the mean type i end-to-end delay in
the node i subtree, denoted by E[Yi]. Using the reduction theorem (Equation (5.1.1))
we thus obtain

E[W
(0)
i] = E[Zi] − E[Yi] = E[W ′

i] − E[Yi].

Because all packets in the node i subtree are type i packets, E[Yi] is the mean
overall end-to-end delay in the node i subtree. It follows from the analysis of
Section 5.2.1 (i.e., Equation (5.2.4) applied to the node i subtree) that

E[Yi] = −1

2
+

1

2ρi(1 − ρi)

∑

j

Var(Xi,j). (5.2.6)

In summary,

E[W
(0)
i,j] ≈ E[W

(0)
i] = E[W ′

i] − E[Yi] (5.2.7)

where E[Yi] is given by (5.2.6), and E[W ′
i] is the mean waiting time in queue i of

the reduced system. The two key steps in the derivation of (5.2.7) are Approxima-
tion 5.2.2 and application of the reduction theorem.

5.3 Accuracy of Approximation 5.2.2 91

Remark 5.2.3. If type i,j packets arrive to node 0 directly, there is of course no

suitable subtree. In this case, we can replace E[Yi] by 0, and E[W
(0)
i,j] ≈ E[W

(0)
i] =

E[W ′
i].

5.3 Accuracy of Approximation 5.2.2

In this section, we analyse the accuracy of Approximation 5.2.2 by means of a
simulation study over a large parameter space. We consider the smallest non-trivial
polling tree network, which consists of two nodes, node 0 and 1, both with two
queues (see Fig. 5.4). Queue 1 of node 0 stores packets arriving from node 1 while
queue 2 of node 0 stores packets arriving from the exterior directly. There are three
different types of packets, namely type 1,1, type 1,2, and type 2,1. All arrivals occur
according to ordinary (non-batch) Bernoulli arrival processes, i.e., each time slot an
arrival of type i,j takes place with probability ρi,j . We introduce a unit sum weight
vector ν = (ν1,1, ν1,2, ν2,1) such that ρi,j = νi,jρ for a single load parameter ρ. We
assume each node uses the 1-limited service discipline.

Type 1 Type 2

Node 1

Node 0

1,1 1,2

2,1

Figure 5.4: The network of Section 5.3.

Without loss of generality, we assume ν1,1 ≤ ν1,2. We cover all possible cases of
νi,j with a stepsize of 0.05 between consecutive values of νi,j . This leads to a total
of 90 possible cases (see Table 5.1). For each case, we run simulations for ρ from
0.01 to 0.99, in steps of 0.01.

We analyse the error made in the approximation of the mean waiting time at
node 0 (Eq. (5.2.5)), i.e., we analyse the value of

εj =
E[W

(0)
1]

E[W
(0)
1,j]

− 1, j = 1, 2,

where both E[W
(0)
1] and E[W

(0)
1,j] are determined by simulation.

Figure 5.5 displays the average and extreme values of εj over all cases for j = 1, 2.
It clearly shows that the average error is within a few percent for all loads above
0.1. For loads close to 0, εj is the ratio of two numbers close to zero, which leads to

92 End-to-end delays in polling tree networks

Case ν1,1 ν1,2 ν2,1 Case ν1,1 ν1,2 ν2,1
1 0.05 0.05 0.90 35 0.15 0.15 0.70
2 0.05 0.10 0.85 36 0.15 0.20 0.65
...

...
...

...
...

...
...

...
18 0.05 0.90 0.05 48 0.15 0.80 0.05
19 0.10 0.10 0.80 49 0.20 0.20 0.60
...

...
...

...
...

...
...

...
34 0.10 0.85 0.05 89 0.45 0.45 0.10

90 0.45 0.50 0.05

Table 5.1: The 90 cases considered.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

λ

maximum
average
minimum

(a) j = 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

λ

maximum
average
minimum

(b) j = 2

Figure 5.5: Average and extreme values of εj over all cases.

some irrelevant variability in the graph. The results for ρ < 0.1 have therefore been
omitted from the graph.

Apart from average and extreme values of εj , it is interesting to see which cases
typically induce large errors. Table 5.2 shows the five cases that most frequently
have large errors; clearly, cases with large errors are typically quite asymmetric.
Additional simulations have furthermore shown that the error is typically largest if
such an asymmetric case is combined with a load of around 0.7, 0.8.

There are, however, even more asymmetric cases, which are not in Table 5.2.
Apparently, the error is again smaller for very asymmetric cases. To study this effect
in more detail, we perform the following experiment: We fix ρ = 0.8 and ν2,1 = 0.1
(these settings generally lead to larger errors, so that the effect of asymmetry is
clearly visible). We vary ν1,1 and ν1,2 subject to the constraints that ν1,1+ν1,2 = 0.9
and ν1,1 ≤ ν1,2.

Figure 5.6 shows the values of εj, j = 1, 2, in this experiment. On the horizontal
axis we have ν1,2 − ν1,1, which is a measure for how asymmetric node 1 is: The left

5.4 Application to networks on chips 93

ν1,1 ν1,2 ν2,1
0.15 0.80 0.05
0.15 0.75 0.10
0.20 0.70 0.10
0.20 0.75 0.05
0.25 0.70 0.05

(a) Type 1,1

ν1,1 ν1,2 ν2,1
0.25 0.65 0.10
0.25 0.70 0.05
0.30 0.60 0.10
0.30 0.65 0.05
0.35 0.60 0.05

(b) Type 1,2

Table 5.2: Cases that frequently have larger errors.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.02

−0.01

0

0.01

0.02

0.03

0.04

ν1,2 − ν1,1

ε1
ε2

Figure 5.6: The influence of asymmetry.

side corresponds to a symmetric system (ν1,1 = ν1,2), and the right side corresponds
to a completely asymmetric system (ν1,2 − ν1,1 = 0.9, i.e., ν1,1 = 0 and ν1,2 = 0.9).

Clearly, the absolute values of the errors increase if node 1 becomes more asym-
metric, but only up to a certain point. After this point, the absolute values of the
errors decrease again.

5.4 Application to networks on chips

In this section, we show how the approximation of the end-to-end delay can be
applied to networks on chips. The required single-station results are obtained using
a known approximation for 1-limited polling stations, namely the Boxma-Meister
approximation [34]. In Section 5.4.1, we describe the network in more detail, and
we analyse the network in Section 5.4.2. In Section 5.4.3 we perform a numerical
study of the accuracy of the combination of the mean delay approximation and the
Boxma-Meister approximation.

5.4.1 Description

We consider a model of a network on chip with multiple switches (nodes), where
all traffic has the same destination (see Figure 5.7). The switches in this network
are organised in a mesh topology; all switches have four queues and are placed on

94 End-to-end delays in polling tree networks

a lattice with connections in four directions (up, down, right, left). The routing
mechanism of this network is XY-routing, which means that packets first traverse
the X-direction, as far as they have to go, and then move in the Y -direction to their
destination. There is for example a link between node 3 and node 1, but it is never
used because all traffic is headed to node 0. It is thus the particular routing strategy
that ensures the mesh topology is a tree network corresponding to the setting of this
chapter.

ρ2,3 ρ2,2

ρ2,4 ρ2,1

ρ1,1 ρ3,1

ρ1,2

Node 3 Nd. 2

Nd. 1 Nd. 0

Figure 5.7: A mesh network with 4 switches and 7 input streams

We assume that packets consist of K flits, with K fixed. Recall that a flit is
the amount of data that can be transmitted in one time slot. We assume packets
arrive according to ordinary (non-batch) Bernoulli arrival processes. Essentially, this
amounts to assuming that K units of data arrive according to a Bernoulli process,
so we have:

Xi,j =

{
0, w.p. 1 − λi,j ,
K, w.p. λi,j ,

so that E[Xi,j] = Kλi,j and Var(Xi,j) = K2λi,j(1 − λi,j). From ρi,j = E[Xi,j], it
follows that λi,j = ρi,j/K.

Inside the switches, packets are served according to round-robin scheduling,
which corresponds to the cyclic K-limited service discipline. Furthermore, we as-
sume the switches employ wormhole routing, which has two implications: First,
once the first flit of a packet starts transmission at a certain node, the entire packet
has to complete transmission before another packet may start transmission. Sec-
ond, multiple flits of a single packet might be spread out over several nodes. As a
result, a size K packet that never has to wait completes transmission over L nodes
in L + K − 1 time slots, rather than LK in networks without wormhole routing.

5.4.2 Analysis

In this subsection, we derive the end-to-end delays of an arbitrary flit, as well as
a header (the first flit in a packet). The reduced system, like node 0, uses K-limited
service. Because K is fixed, the mean waiting time of a header in this K-limited

5.4 Application to networks on chips 95

system is equal to the mean waiting time in a 1-limited system with service times
K and non-batch Bernoulli arrival processes with parameter λi,j .

We use the Boxma-Meister approximation for the mean waiting time in the latter
1-limited polling system. This approximation states that

E[W ′
i,h] ≈ 1 − ρ + ρi

1 − ρ + 1
ρ

∑
j ρ2

j

CK , (5.4.1)

where W ′
i,h is the waiting time of a header in queue i of the reduced system, and CK

is the conservation law constant (cf. (5.2.3)). After dividing Equation (14) in [24]
by ρ and some rewriting, we have:

CK =
ρ

2(1 − ρ)


K −

∑

i

∑

j

(
ρi,j

ρ

)2

 . (5.4.2)

The mean waiting time of an arbitrary flit in the reduced system, E[W ′
i], is equal

to that of a header plus (K − 1)/2, i.e.,

E[W ′
i] = E[W ′

i,h] +
K − 1

2
. (5.4.3)

Suppose now that i = 1, 2 (the case i = 3 is slightly different and will be dealt
with later). Type i,j packets arrive to node i from the exterior directly and are
transmitted towards node 0 flit-by-flit, due to the wormhole routing. The header
thus always arrives at node 0 one time slot earlier than the second flit, and always
leaves one time slot earlier. The mean waiting time of a header is therefore equal

to the mean waiting time of an arbitrary flit, i.e., E[W
(0)
i,j,h] = E[W

(0)
i,j]. We obtain

(cf. Eq. (5.2.7)):

E[W
(0)
i,j,h] = E[W

(0)
i,j] ≈ E[W

(0)
i] = E[W ′

i] − E[Yi],

where E[Yi] is given by (5.2.6), and E[W ′
i] by (5.4.3).

As in Section 5.2, the mean waiting times of type 1 and 2 packets in the other
nodes can be obtained similarly, resulting in an approximation of the mean end-to-
end delay.

Type 3 packets arrive at node 0 directly, so E[Yi] = 0 (see Remark 5.2.3). Fur-
thermore, all type 3 packets are type 3,1 packets and the delay of these packets
consists of only the waiting time at node 0. The mean end-to-end delay of an
arbitrary type 3,1 flit is thus given by:

E[W
(0)
3,1] = E[W ′

3].

Type 3 headers, however, spend on average (K − 1)/2 time slots less in node 0 than
an arbitrary flit. The mean end-to-end delay of type 3 headers is hence equal to

E[W
(0)
3,1,h] = E[W ′

3] −
K − 1

2
= E[W ′

3,h].

96 End-to-end delays in polling tree networks

5.4.3 Numerical results

In this subsection we study the accuracy of the mean end-to-end delay approx-
imation for the following two cases: Balanced load division and homogeneous load
division. We again assume there is a unit sum weight vector ν describing the division
of the total load ρ over the various input streams, i.e., ρi,j = νi,jρ.

Case I: Balanced load division

By balanced load division we mean that the loads are divided in such a way
that at each node all queues receive the same load. That is, we assume ν3,1 = 1/3,
ν1,1 = ν1,2 = 1/6, ν2,1 = ν2,2 = 1/9, and ν2,3 = ν2,4 = 1/18. In Figure 5.8, we show
the most and least accurate of the approximations, i.e., the approximations of the
mean end-to-end delay of type 1,1 packets and type 3,1 packets.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

ρ

Sim
Approx

(a) i = 1, j = 1 (most accurate)

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

ρ

Sim
Approx

(b) i = 3, j = 1 (least accurate)

Figure 5.8: The most and least accurate approximations of the mean type i,j end-to-end
delay for the balanced load division.

It is clear that the approximation of the mean end-to-end delay is very accurate
in this case. This is not very surprising, as all nodes are almost symmetric. For
instance, if we apply the reduction theorem, we obtain a polling system with three
queues, each with load ρ/3. One of these queues has an arrival process that is the
superposition of four arrival processes (namely

∑
j X2,j), one arrival process is a

superposition of two (
∑

j X1,j), and one is not a superposition (or a superposition
of one). In other words, the loads to all queues are identical, but the arrival processes
are superpositions of different Bernoulli arrival processes.

Other than this difference, the system is symmetric, in which case the Boxma-
Meister approximation is exact [34]. It is indeed unlikely that such a small asym-
metry leads to large errors. Furthermore, we already saw in Section 5.3 that Ap-
proximation 5.2.2 is very accurate if the individual nodes are nearly symmetric.

Case II: Homogeneous load division

With the homogeneous load division, all input streams receive a fraction 1/7
of the total load, i.e., νi,j = 1/7. Again, we show the most and least accurate

5.4 Application to networks on chips 97

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

ρ

Sim
Approx

(a) i = 2, j = 1 (most accurate)

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

ρ

Sim
Approx

(b) i = 3, j = 1 (least accurate)

Figure 5.9: The most and least accurate approximations of the mean type i,j end-to-end
delay for the homogeneous load division.

approximation (see Figure 5.9).
The approximations are very accurate up to a load of roughly 0.7. Beyond this

load, the approximation is only accurate for the input stream with the highest load.
This can be explained by the fact that node 0 is rather asymmetric. After all, one
queue receives a fraction of 4/7 of the total load, while the other queues get fractions
2/7 and 1/7.

The accuracy of the Boxma-Meister approximation degrades for heavily loaded
very asymmetric systems [34]. If the 1-limited service discipline is used, all queues
receive a positive fraction of the capacity of the server, even if the load is larger
than 1. Some queues may thus remain stable even though others become unstable.
The conservation law constant CK , however, tends to infinity. As a result, the mean
waiting time approximations tend to infinity for all queues, including those that are
still stable and have a finite waiting time for ρ = 1. We observe this phenomenon in
Figure 5.9 too: The mean end-to-end delay approximation is unbounded, whereas
the simulated mean delay is still finite if the load is 1.

Other approximations have been suggested, that might perform better in some
cases (for instance, Blanc [28], Groenendijk and Levy [68], Srinivasan [128], and
Van Vuuren and Winands [140]). Depending on the desired properties of the ap-
proximation (e.g., closed-form or numerical procedure) and the characteristics of
the tree (e.g., heavily or not heavily loaded, very asymmetric or roughly symmet-
ric) one has to choose which single-station approximation to use in order to obtain
the best results. For example, the Boxma-Meister approximation is a closed-form
expression, but its accuracy degrades for heavily loaded asymmetric systems. The
new approximation of Chapter 6 is generally better in this case, but it is numerically
intensive.

Remark 5.4.1. Boxma and Meister propose a refinement to their procedure in [34].
This refinement significantly improves the accuracy of the approximation for heavy
loads, but also destroys the closed-form property. Furthermore, Boxma and Meister

98 End-to-end delays in polling tree networks

suggest in [33] that a group of heavily loaded queues can be replaced by a suitable
switch-over time, which also improves the accuracy of the approximation for heavily
loaded asymmetric systems.

5.5 Exact results

In this section, we consider networks for which the mean type i,j end-to-end
delay approximation is, in fact, exact rather than an approximation. The mean
type i,j end-to-end delay approximation is exact if the following two requirements
are met: First, in the approximation of the end-to-end delay we reduce several sub-
trees to single-station polling systems. For all these systems, the mean waiting time
per queue must be known exactly. Second, Approximation 5.2.2 has to be exact;
all streams passing through the same queue of any node must have the same mean
waiting time in that node.

In Section 1.4.2, we mentioned that single-station polling systems with a service
discipline satisfying the branching property, such as gated service and exhaustive
service, can be analysed exactly. Gated service, however, is not HoL-based, which
means that the network cannot be reduced to a single-station polling system using
the reduction theorem. Exhaustive service, on the other hand, is HoL-based. The
mean queue lengths in a polling station with exhaustive service can be found in [124]
and [132], where they are given in terms of a solution to a system of equations.
Although these expressions are still implicit, the necessary single-station results can
be determined numerically from them.

Besides polling stations with a branching-type service discipline, the mean wait-
ing time per queue can also be obtained for special cases such as 2-queue systems
and symmetric systems. We introduce symmetry conditions for single stations with
a HoL-based service discipline, and obtain the mean waiting time per queue in such
systems in Section 5.5.1.

The second requirement for an exact analysis of the mean type i,j delay, namely
that Approximation 5.2.2 has to be exact, is also closely related to symmetry; Ap-
proximation 5.2.2 indeed becomes an exact statement if the entire network satisfies
certain symmetry conditions. This is explored in Section 5.5.2.

5.5.1 Symmetric stations

We introduce the concept of symmetric service disciplines. A service discipline is
symmetric if it satisfies the following three properties: First, at each queue the server
serves a number of packets according to a fixed rule such as 1-limited, exhaustive, or
Bernoulli service. This rule is the same for all queues. Second, Markovian routing
is used, which means that after service of queue j, the server moves to queue k 6= j

5.5 Exact results 99

with probability pjk. Third, the routing matrix P = (pjk) is circulant, i.e.,

P =




0 p2 p3 . . . pN

pN 0 p2 . . . pN−1

pN−1 pN 0 . . . pN−2

...
...

. . .
...

p2 p3 p4 . . . 0




, (5.5.1)

or can be written in circulant form after a permutation of the queues. Note that
cyclic routing has a circulant P -matrix with p2 = 1.

If a polling system uses a symmetric service discipline and has stochastically
identical arrival processes, we call it symmetric. In a symmetric polling system, the
mean waiting time is the same for all queues. After all, with a circulant P -matrix,
all rows of P are identical, apart from being shifted. In addition, all arrival processes
are stochastically identical, so there is no difference between the various queues. In
other words, the mean waiting times per queue are invariant under permutation of
the queues.

Because the mean waiting times at all queues are the same, the mean waiting
times can be obtained using the conservation law (5.2.2). For example, if the reduced
system is symmetric, E[W ′

i] is exactly given by

E[W ′
i] = C = −1

2
+

1

2ρ(1 − ρ)
NVar(X1),

for all i. This expression holds regardless of the precise service discipline, as long as
it is symmetric.

5.5.2 Symmetric trees

Approximation 5.2.2 states that all packets passing through the same queue at
a node are assumed to have the same mean waiting time at that node. In this
section, we introduce a class of trees for which Approximation 5.2.2 is in fact not
an approximation but an exact statement.

We say that a polling tree is symmetric if it satisfies all of the following four
properties:

1. All external arrival processes are stochastically identical.

2. All external arrivals occur at the same level. Here, the level of a node is defined
as the distance to the sink (see Fig. 5.10).

3. All nodes within a particular level have the same number of queues.

4. All nodes within a particular level use the same symmetric service discipline.

Consider an arbitrary polling tree network, let node i be the node directly above
queue i of node 0, and suppose that the node i subtree is symmetric. An example
of such a tree is displayed in Figure 5.10.

100 End-to-end delays in polling tree networks

. . . type i,j . . .

Node 0

Node i

Level 2

Level 1

Queue i

Figure 5.10: A tree with a symmetric node i subtree

Since the node i subtree is symmetric, there is no distinction between the type i,j
packets, j = 1, . . . , Ni. In particular, the mean waiting time of type i,j packets at
node 0 is invariant under permutation of j:

E[W
(0)
i,j] = E[W

(0)
i].

Approximation 5.2.2 is thus an exact statement for node 0. Moreover, because all
subtrees within the node i subtree are again symmetric, Approximation 5.2.2 is
exact for all nodes in the node i subtree. Note that there are no conditions on
nodes outside the node i subtree; all conditions apply to the node i subtree, and all
other nodes (including node 0) are arbitrary.

Moreover, because the mean waiting time of type i,j packets is invariant under
permutation of j for all nodes, the mean end-to-end delay of type i,j packets is
invariant under permutation of j as well. We thus obtain:

E[Zi,j] = E[Zi] = E[W ′
i].

If exact results are available for E[W ′
i] (for instance if the reduced system is sym-

metric or if it uses exhaustive service), the mean type i,j end-to-end delay can thus
be obtained exactly using a single invocation of the reduction theorem.

5.6 Conclusion

If all nodes in a concentrating tree network use a HoL-based service discipline,
the mean type i,j end-to-end delay can be analysed by repeated application of the
reduction theorem (Theorem 4.2.6) in combination with the approximation assump-
tion that packets from different sources passing through the same queue of any node

5.6 Conclusion 101

have the same mean waiting time at that node (Approximation 5.2.2). Through this
analysis, the mean type i,j end-to-end delay is expressed in the mean waiting time
per queue in single-station polling systems.

For the 1-limited service discipline, Approximation 5.2.2 is very accurate over
the entire parameter space of the smallest non-trivial tree. It is especially accurate
for nearly symmetric systems and extremely asymmetric systems, and somewhat
less accurate for moderately asymmetric systems.

We applied the mean end-to-end delay approximation to a model of a network on
chip with four switches. The necessary single-station results were obtained using the
Boxma-Meister approximation. Although the Boxma-Meister approximation is less
accurate for asymmetric systems, it can still be used to accurately approximate the
mean type i,j end-to-end delay up to moderately high loads (around 0.7), even in
rather asymmetric networks. If the mean end-to-end delay approximation is applied
to specific trees, one has to choose which single-station approximation to use based
on the characteristics of the tree (e.g., nearly symmetric, very asymmetric, etc.) in
order to obtain the most accurate results.

In the special case that the subtree directly above queue i is symmetric, Ap-
proximation 5.2.2 becomes an exact statement rather than an approximation. If,
in addition, exact results are available for the reduced system (for example if that
station is symmetric too, or if it uses the exhaustive service discipline), the mean
end-to-end delay per source can be determined exactly.

Chapter 6

Polling systems with Bernoulli

service and Markovian routing

In Chapter 4, we established the reduction theorem, which states that concentrating
tree networks of polling systems can be reduced to single-station polling systems,
under the assumption that node 0 uses a HoL-based service discipline. In Chapter 5,
we used the reduction theorem to derive an approximation of end-to-end delays in
such networks, provided all nodes use a HoL-based service discipline.

In the approximation of Chapter 5, we expressed the mean end-to-end delay
per source in terms of single-station results. Single-station results for general HoL-
based service disciplines, however, are not known. In this chapter, we derive a new
single-station approximation for a large subclass of HoL-based service disciplines:
Bernoulli scheduling combined with Markovian routing.

Rather than only approximating mean waiting times, we approximate the mar-
ginal queue length distribution in polling systems with Bernoulli service and Marko-
vian routing. The key step of our approximation is the translation of the polling
system to a structured Markov chain, while truncating all but one queue. Numerical
experiments show that the approximation is very accurate in general.

103

104 Polling systems with Bernoulli service and Markovian routing

6.1 Background

We devise an approximation of the queue length distribution of a discrete-time
polling system with batch arrivals, fixed packet sizes, Bernoulli service, and Marko-
vian routing. Bernoulli service means that after service of a packet from queue i,
the server serves queue i again with probability q(i) and moves to another queue
with probability 1 − q(i). Markovian routing means that if the server moves to
another queue, it moves to queue j with probability P (i, j) for j 6= i, independently
of everything else.

The essential part of our approximation is the translation of the polling system
to a Structured Markov Chain (SMC) of the M/G/1 type (see [106]). An SMC
of M/G/1 type is a Markov chain of which the states can be described as tuples
(l, φ), where l, called the level, is an element from {0, 1, . . .} and φ, called the
phase, an element from some finite set (the phase space). The Markov chain has
a transition probability matrix of the following block-partitioned form (hence the
name structured):




B0 B1 B2 B3 . . .
C0 A1 A2 A3 . . .
0 A0 A1 A2 . . .
0 0 A0 A1 . . .
...

. . .
. . .

. . .
. . .




. (6.1.1)

The matrix A0 describes transitions where the level decreases by one, A1 describes
transitions within a level, and so on. The behaviour of the Markov chain at the
boundary l = 0 may be different from that in the interior l > 0, which is reflected
by the matrices Bk, k = 0, 1, . . ., and C0.

The idea behind our approximation is simple yet very effective: Instead of
analysing the queue contents of all queues at the same time, we focus on the precise
contents of one queue. For the other queues we only keep track of whether there
are 0, 1, . . . , B − 1, or ‘B or more’ packets in the queues. By also keeping track of
the index of the queue that is being served, we obtain an SMC of the M/G/1 type.

The truncation of queue lengths implies that we have to introduce additional
parameters representing the probability that the contents of a queue go from ‘B
or more’ to B − 1. The values of these unknown parameters are determined itera-
tively. In each iteration the equilibrium distribution of the SMCs is used to update
the values of these parameters, until the values have converged. As B → ∞, our
approximation becomes exact, but it turns out that setting B = 2 already leads to
an accurate approximation.

This chapter is organised as follows: In Section 6.2 we describe the model in
more detail and in Section 6.3 we give an overview of the relevant literature. We
describe our approximation in Section 6.4. The accuracy of the approximation is
studied in Sections 6.5 and 6.6: In Section 6.5 we perform a detailed analysis of a
single case, and in Section 6.6 a global analysis of multiple cases.

In the implementation of our approximation, we used Kronecker products to

6.2 Model description 105

determine the transition probability matrix, which makes the computations sig-
nificantly faster. Nevertheless, we describe our approximation without the use of
Kronecker products in Section 6.4 for the sake of readability. In Section 6.7, we
give an alternative expression for the transition probability matrix of the structured
Markov chains using Kronecker products. Lastly, we present our conclusions in
Section 6.8.

6.2 Model description

We assume that all packets have unit size and that packets arrive to the queues
according to independent batch Bernoulli arrival processes. The model for which
we derive our approximation is thus a discrete-time polling model with N infinite
queues and the following characteristics:

1. Batch Bernoulli arrival processes, i.e., every time slot l arrivals occur to
queue k with probability xk(l).

2. Deterministic service times, equal to 1.

3. Bernoulli service discipline, i.e., after service of queue i the server serves queue i
again with probability q(i) and moves to another queue with probability 1 −
q(i).

4. Markovian routing, i.e., if the server moves, it moves from queue i to queue j 6=
i with probability P (i, j). We assume P (i, i) = 0.

5. Zero switch-over times.

The Bernoulli service discipline and Markovian routing dictate that, after a
service completion at queue i, the server moves to queue j 6= i with probability
(1 − q(i))P (i, j) and stays at queue i (i.e., j = i) with probability q(i). If queue j
is empty, but not all queues are empty, the server immediately moves to another
queue according to the routing matrix P , and again if this queue is empty too, and
so on, until it finds a non-empty queue. If all queues are empty the server remains
at queue j. When new packets arrive to any of the queues, the server again moves
according to the routing matrix P , until it moves to one of the non-empty queues.
All of these movements happen instantaneously.

Remark 6.2.1. The model described above is not equivalent to a model where
the server always moves according to a matrix R, with R(i, i) = q(i) and R(i, j) =
(1 − q(i))P (i, j), until it finds a non-empty queue. With the exhaustive service
discipline, R(i, i) = 1, which means that the server stays at queue i indefinitely,
even after it has become empty. Such behaviour cannot occur in our model because
P (i, i) = 0.

To prevent a situation where the server cannot reach some non-empty queues, we
assume P is irreducible. Furthermore, we assume the polling station operates under

106 Polling systems with Bernoulli service and Markovian routing

the late arrival - departures first arrival model (see Section 1.3.2). Arrivals and
service completions thus happen at the end of time slots with service completions
before arrivals. Packets arriving to an empty queue at the end of time slot [t− 1, t)
may be served in time slot [t, t+1). Finally, we assume the polling system is stable.
Because the switch-over times are zero, the polling system is work-conserving and
therefore stable if the total load is less than 1. We thus assume that

∑
k,l lxk(l) < 1.

6.3 Relevant literature

In this section, we review the literature relevant to our study of polling sys-
tems with Bernoulli service and Markovian routing. The Bernoulli service discipline
was introduced by Keilson and Servi [78] in a single-queue vacation system where
after each service completion the server takes a vacation with probability p. Tedi-
janto [137] later analysed a multi-queue polling system with the Bernoulli service
discipline.

Markovian routing was analysed by Boxma and Weststrate in [36]. They derive
the pseudo-conservation law for Markovian routing combined with the traditional
service disciplines (exhaustive, gated, and 1-limited), see also Weststrate [143]. In-
dependently of Boxma and Weststrate, Srinivasan [129] considers a similar system,
but in a slightly more general setting.

More important to our work, however, are results on queue lengths. Resing [117]
established that polling systems satisfying a certain ‘branching property’ can be
viewed as branching processes and exact results can be obtained. For polling systems
that do not satisfy the branching property, such as systems with the Bernoulli
service discipline, even mean queue lengths are unknown, except for special cases
such as 2-queue and symmetric systems. The 2-queue system with Bernoulli service
was analysed by Feng et al. [55], the 2-queue system with 1-limited service without
switch-over times by Boxma and Cohen [43] and Eisenberg [52], and with switch-over
times by Boxma and Groenendijk [31]. Furthermore, a 2-queue system with switch-
over times and a combination of Bernoulli and exhaustive service was studied by
Weststrate and Van der Mei [144]. Finally, a symmetric polling system with random
polling was analysed by Kleinrock and Levy [84]. Random polling is a special case
of Bernoulli service and Markovian routing where, after every service completion,
queue j is served with probability P (j).

Since exact results are known only for special cases, and their derivation gives
little hope for extensions to more general cases, we focus on approximations in-
stead. In research of polling systems, the continuous-time domain received far more
attention than the discrete-time domain. One of the few examples of discrete-time
approximations is the approximation by Frigui and Alfa [58], where a polling model
with time-limited service is studied.

In the continuous-time domain, the queue length distribution in a polling sys-
tem with the Bernoulli service discipline and cyclic routing was analysed using the
power series approximation of Blanc [26–29]. For the cyclic 1-limited system, the

6.4 The approximation 107

most important special case of our model, other approximations of the queue length
distributions exist: First, Van Vuuren and Winands [140] use structured Markov
chains to approximate queue lengths in a ki-limited polling system with cyclic rout-
ing. Their approach, however, is very different from ours since they use structured
Markov chains to approximate visit and intervisit periods. Second, Leung obtains
an approximation for a polling system with the probabilistically limited service dis-
cipline (which includes 1-limited) using discrete Fourier transforms [94]. Third, Lee
and Sengupta approximate queue length distributions in a polling model with a
reservation mechanism using an iterative approximation of visit and intervisit peri-
ods [92].

Other authors, such as Boxma and Meister [34], Fuhrmann and Wang [59], Levy
and Groenendijk [68], and Srinivasan [128], only approximated mean waiting times
in cyclic 1-limited polling systems (and by Little’s law, mean queue lengths). Of
those, we found that the Boxma-Meister [34] and Levy-Groenendijk [68] approxima-
tions could be extended to the discrete-time domain without much additional effort.
We compare our approximation with these two approximations in Section 6.5.

6.4 The approximation

In this section we describe our approximation in more detail. First, we intro-
duce the phase spaces and derive the transition probability matrices. The iterative
determination of the probabilities that the contents of the truncated queues go from
‘B or more’ to B − 1 is discussed at the end of this section.

For every queue, we construct an SMC such that the exact contents of that
queue are stored in the level. The truncated contents of the other queues, as well
as the index of the queue in service (called the service index) are stored in the
phase. The SMC where the contents of queue i are stored in the level, is called the
‘SMC of queue i’. All SMCs describe the state of the system at integral times t,
so immediately before the start of the service of a packet and immediately after
arrivals, departures and server movements.

Every phase of the SMC of queue i is described by an N -dimensional vector
(j, n1, . . . , ni−1, ni+1, . . . , nN), where j is the service index, nk = 0, . . . , B−1 means
there are nk packets in queue k, and nk = B means there are B or more packets in
queue k, k 6= i. The phase space of level ni > 0 consists of all such combinations,
except that the service index cannot be j if queue j is empty. We thus obtain

Φi = {1, . . . , N} × {0, 1, . . . , B}N−1

\ {(j, n1, . . . , ni−1, ni+1, . . . , nN) : nj = 0 (for j 6= i)}

as the phase space for level ni > 0.
The phase space of level ni = 0, is different: First, queue i cannot be served

because it is empty. Second, if all queues are empty, the server waits at queue j
until new packets arrive to any of the queues. Hence, the phase space of level ni = 0

108 Polling systems with Bernoulli service and Markovian routing

is

Φ̃i = {1, . . . , N} × {0, 1, . . . , B}N−1

\ {(j, n1, . . . , ni−1, ni+1, . . . , nN) : j = i or nj = 0 }
∪ {(j, 0, . . . , 0) : j = 1, . . . , N},

where (j, 0, . . . , 0) means that the server is waiting at queue j until new packets
arrive.

Remark 6.4.1. The meaning of phase (i, 0, . . . , 0) depends on whether it is com-
bined with level ni > 0 or ni = 0. If ni > 0, phase (i, 0, . . . , 0) means that a packet
from queue i will be served in the next time slot and that all other queues are empty.
If ni = 0 it means that the entire system, including queue i, is empty and the server
is waiting at queue i.

In order to describe the transition probability matrix of the SMC of queue i,
we divide the movement of the server from one queue to another into two parts:
First, the server chooses a queue it would like to serve, regardless of whether this
queue is empty or not, i.e., the server stays at queue j with probability q(j) and
moves to queue k with probability (1−q(j))P (j, k). Second, the server keeps moving
according to matrix P until it finds a non-empty queue (provided the server was
not already at a non-empty queue, and not all queues are empty).

The transition probability matrix of the SMC of queue i is now given by



Bi,0Ψ̃i Bi,1Ψi Bi,2Ψi Bi,3Ψi . . .

Ai,0Ψ̃i Ai,1Ψi Ai,2Ψi Ai,3Ψi . . .
0 Ai,0Ψi Ai,1Ψi Ai,2Ψi . . .
...

. . .
. . .

. . .
. . .


 . (6.4.1)

Here, the matrices Ai,l and Bi,l describe arrivals, departures, and the first part of

the server movements. The matrices Ψi and Ψ̃i describe the second part of the
server movements. Because queue i is empty if and only if the process is in level
ni = 0, there are different matrices for level ni = 0 and levels ni > 0, denoted by
Ψ̃i and Ψi respectively. These matrices are specified in more detail below.

Remark 6.4.2. The matrices Ai,l give probabilities of transitions from phases
in the phase space Φi to all possible vectors (j, n1, . . . , ni−1, ni+1, . . . , nN) with
j = 1, . . . , N and nk ∈ {0, 1, . . . , B}, especially including those where the server
is positioned at an empty queue. The matrix Ψi describes transitions from such
vectors to phases in Φi, where the server is not allowed to be positioned at empty
queues. The products of these matrices thus indeed give transition probabilities on
the phase space Φi.

Determination of Ψi and Ψ̃i

The matrices Ψi and Ψ̃i can be determined as follows: Suppose that the server
is positioned at an empty queue, but not all queues are empty. Define I and J as

6.4 The approximation 109

the subsets of empty and non-empty queues, respectively. The matrix P constitutes
a Markov chain on {1, . . . , N}. The probability that the server moves from i ∈ I to
j ∈ J is equal to the probability that the first visit of that Markov chain to set J
occurs at state j, given that the Markov chain starts in state i. The matrices Ψi

and Ψ̃i follow from computing that probability for all phases (see, e.g., Section 2.11
of Resnick [119] for details).

Determination of Ai,l and Bi,l

In order to identify the contents of Ai,l and Bi,l, l = 0, 1, . . ., we introduce
matrices R describing changes in the service index, Xk describing changes in the
contents of queue k 6= j, where j is the queue in service, and Yi,j and Ỹi,j describing
changes in the contents of queue j for level ni > 0 and ni = 0 respectively.

We define R(j, j′) as the probability that, after service of queue j, the server
moves to queue j′:

R(j, j′) =

{
(1 − q(j))P (j, j′), if j 6= j′,

q(j), if j = j′.

The matrix Xk is such that Xk(nk, n′
k) is the probability that the contents of

queue k go from nk to n′
k, with nk, n′

k ∈ {0, . . . , B} given queue k is not in service.
We have:

Xk =




xk(0) xk(1) . . . xk(B − 1) 1 −∑
l<B

xk(l)
0 xk(0) . . . xk(B − 2) 1 −∑

l<B−1 xk(l)
...

...
. . .

...
...

0 0 . . . xk(0) 1 − xk(0)
0 0 . . . 0 1




,

where xk(l) is the probability that l packets arrive to queue k.
We define the matrix Yi,j , such that Yi,j(nj , n

′
j) is the probability that, in

level ni > 0, queue j goes from nj to n′
j , with nj ∈ {1, . . . , B} and n′

j ∈ {0, . . . , B}.
Here, nj ≥ 1 because service of queue j implies that queue j is non-empty.

For queue j, we make the approximation assumption that its contents go from

‘B or more’ to B−1 with a fixed probability denoted by ζ̃i,j and ζi,j for level ni = 0
and ni > 0 respectively. The rationale behind this level dependence is that, due
to correlation between queue lengths, if queue i is empty it is more likely that the
contents of queue j are small, and hence it is also more likely that queue j goes from

‘B or more’ to B − 1. The parameters ζi,j and ζ̃i,j , j 6= i, are called the truncation
parameters of queue i. The values of these parameters are determined iteratively,
as will be described in more detail at the end of this section. For now, we simply
assume that they have a certain value. It follows that Yi,j is given by

Yi,j =




xj(0) . . . xj(B − 2) xj(B − 1) 1 −∑
l<B

xj(l)
...

. . .
...

...
...

0 . . . xj(0) xj(1) 1 −∑
l<2 xj(l)

0 . . . 0 ζi,jxj(0) 1 − ζi,jxj(0)


 .

110 Polling systems with Bernoulli service and Markovian routing

Likewise, Ỹi,j(nj , n
′
j) is the probability that the contents of queue j go from

nj to n′
j , for level ni = 0. The matrix Ỹi,j is identical to Yi,j , except that ζ̃i,j is

substituted for ζi,j .
The matrix Ai,l describes changes where queue i goes up by l − 1 levels. This

happens if there are either l − 1 arrivals and no service completion, or l arrivals
and a service completion. It follows that the probability of going from phase
ω = (j, n1, . . . , ni−1, ni+1, . . . , nN) to phase ω′ = (j′, n′

1, . . . , n
′
i−1, n

′
i+1, . . . , n

′
N) and

going up by l − 1 levels is given by

Ai,l(ω, ω′) = xi(l − 1)R(j, j′)Yi,j(nj , n
′
j)
∏

k 6=j
k 6=i

Xk(nk, n′
k),

for j 6= i, with xi(−1) := 0, and

Ai,l(ω, ω′) = xi(l)R(j, j′)
∏

k 6=j

Xk(nk, n′
k),

for j = i. Here, the probability that the service index changes from j to j′ is given
by R(j, j′). The probability that the contents of the queues that are not in service
change from nk to n′

k is given by Xk(nk, n′
k). Finally, the probability that the

contents of the queue in service change from nj to n′
j is Yi,j(nj , n

′
j).

The matrices Bi,l are slightly different. First, if all queues are empty, the server
remains at the same queue. Second, there is never a service completion at queue i,
because queue i is empty. Third, the transitions of the queue in service, queue j,
are not given by Yi,j but by Ỹi,j . We obtain:

Bi,l(ω, ω′) = xi(l)
∏

k 6=i

Xk(0, n′
k),

if ω = (j, 0, . . . , 0), and

Bi,l(ω, ω′) = xi(l)R(j, j′)Ỹi,j(nj , n
′
j)
∏

k 6=j
k 6=i

Xk(nk, n′
k),

otherwise.
We have specified all the matrices needed to determine the equilibrium distri-

bution of the SMC of queue i. To compute the equilibrium distribution, we use
the software tools of Bini et al. [22, 23]. For more details on how to compute the
equilibrium distribution, the reader is referred to [106].

Determination of ζi,j and ζ̃i,j

In the description of the SMCs, we introduced the truncation parameters of
queue i, ζi,j and ζ̃i,j . We use an iterative procedure to compute the values of these

parameters and we denote their value in step m of the iteration by ζ
(m)
i,j and ζ̃

(m)
i,j .

6.4 The approximation 111

In each step of the iterative procedure, we determine new values for the trunca-
tion parameters of one queue by means of the most recently computed equilibrium
distributions of the other queues: We first determine the values of the truncation
parameters of queue 1 and compute the equilibrium distribution of queue 1 with
these values. We determine the truncation parameters of queue 2 using the newly
computed equilibrium distribution of queue 1, as well as the previous equilibrium
distributions of queues 3, 4, . . . , N . We then compute the new equilibrium distribu-
tion of queue 2, and, with that, new values for the truncation parameters of queue 3,
and so on, until the values of all truncation parameters have converged.

The truncation parameters of queue i describe the probability that, without
arrivals to queue j, the contents of queue j 6= i go from ‘B or more’ to B − 1, given
that a service completion occurs at queue j. Without arrivals and with a service
completion, a transition from ‘B or more’ to B− 1 occurs if the contents of queue j
are in fact equal to B. If we denote the length of queue j by Qj , and the service
index by S, the probability of such a transition is thus given by

P(Qj = B|Qj ≥ B, Qi > 0, S = j), j 6= i, (6.4.2a)

for level ni > 0 and

P(Qj = B|Qj ≥ B, Qi = 0, S = j), j 6= i, (6.4.2b)

for level ni = 0.
We denote the equilibrium distribution of the SMC of queue i in step m of

the iteration by π
(m)
i (j, n1, . . . , nN). By evaluating the conditional probabilities

in (6.4.2a) and (6.4.2b) and substituting the corresponding, most recently computed,
equilibrium probabilities of the SMC of queue j, we obtain

ζ
(m)
i,j =





∑
nj=B,ni≥1

π
(m)
j

(j,n1,...,nN)

∑
nj≥B,ni≥1

π
(m)
j

(j,n1,...,nN)
, for j < i,

∑
nj=B,ni≥1

π
(m−1)
j

(j,n1,...,nN)

∑
nj≥B,ni≥1

π
(m−1)
j

(j,n1,...,nN)
, for j > i,

(6.4.3a)

and

ζ̃
(m)
i,j =






∑
nj=B,ni=0

π
(m)
j

(j,n1,...,nN)

∑
nj≥B,ni=0

π
(m)
j

(j,n1,...,nN)
, for j < i,

∑
nj=B,ni=0

π
(m−1)
j

(j,n1,...,nN)

∑
nj≥B,ni=0

π
(m−1)
j (j,n1,...,nN)

, for j > i,

(6.4.3b)

as the values for the truncation parameters of queue i in step m ≥ 1. All sums are
taken over 0 ≤ nk ≤ B, for k 6= i, j.

112 Polling systems with Bernoulli service and Markovian routing

For i < j, Equations (6.4.3a) and (6.4.3b) express ζ
(1)
i,j and ζ̃

(1)
i,j in terms of

π
(0)
j (.), which is not defined. In this case, we choose

ζ
(1)
i,j = ζ̃

(1)
i,j = 1, for j > i. (6.4.3c)

Numerical experiments indicate that setting the initial values of the truncation
parameters to 1 is important. Small values of the truncation parameters indicate
that there are many packets in the other queues requiring service. If the initial
truncation parameters are (much) smaller than 1, the SMC of queue i might even
be transient, though in reality the polling system is recurrent. If the SMC of queue i
is transient, its equilibrium distribution cannot be determined and new values for
the truncation parameters cannot be found.

If the initial values are chosen equal to 1, the value of the truncation parame-
ters converged in all our examples, though we cannot formally prove convergence.
Choosing the initial parameters less than 1 and closer to their limiting values might
speed up convergence, at the risk that no convergence occurs at all if the initial
values are too small.

Finally, after convergence of the truncation parameters, the approximation of
the marginal distribution of the length of queue i follows from the equilibrium
distribution of the SMC of queue i. Namely, P(Qi = l) is approximated by the sum
of the equilibrium probabilities of all phases at level ni = l.

Our algorithm is summarised below:

Algorithm 6.4.3.

0. Fix ε (for instance ε = 10−8) and set m = 1.

1. Determine Ψi and Ψ̃i for i = 1, . . . , N .

2. For i = 1, . . . , N :

(a) Use Equation (6.4.3a), (6.4.3b), or (6.4.3c) to determine ζ
(m)
i,j and ζ̃

(m)
i,j .

(b) Determine Ai,l and Bi,l with ζi,j = ζ
(m)
i,j and ζ̃i,j = ζ̃

(m)
i,j .

(c) Determine the equilibrium distribution of queue i, π
(m)
i (·).

3. Stop if m ≥ 2 and maxi,j{|ζ(m)
i,j − ζ

(m−1)
i,j |, |ζ̃(m)

i,j − ζ̃
(m−1)
i,j |} < ε. Otherwise,

set m = m + 1 and repeat step 2.

6.5 Numerical results

In this section, we study the accuracy of our approximation for a single case with
4 queues, 1-limited service and cyclic routing. The batch sizes are governed by a
Poisson distribution with parameter ρi, where (ρ1, . . . , ρ4) = (0.1, 0.2, 0.3, 0.4)ρ. The
approximated queue length distributions are compared with simulation outcomes in
Tables 6.1 for ρ = 0.5, ρ = 0.7, and ρ = 0.9.

6.5 Numerical results 113

ρ
=

0
.5

P
(Q

i
=

0
)

P
(Q

i
=

1
)

P
(Q

i
=

2
)

P
(Q

i
=

3
)

P
(Q

i
=

4
)

P
(Q

i
=

5
)

P
(Q

i
=

6
)

i
=

1
B

=
2

0
.9

3
6
2

0
.0

6
1
2

0
.0

0
2
4
9

0
.0

0
0
0
9
2

0
.0

0
0
0
0
3

0
.0

0
0
0
0
0

0
.0

0
0
0
0
0

S
im

0
.9

3
6
2

0
.0

6
1
2

0
.0

0
2
4
9

0
.0

0
0
0
9
3

0
.0

0
0
0
0
4

0
.0

0
0
0
0
0

0
.0

0
0
0
0
0

i
=

2
B

=
2

0
.8

7
0
9

0
.1

1
7
9

0
.0

1
0
2
9

0
.0

0
0
8
4

0
.0

0
0
0
7
1

0
.0

0
0
0
0
6

0
.0

0
0
0
0
1

S
im

0
.8

7
0
9

0
.1

1
7
9

0
.0

1
0
2
8

0
.0

0
0
8
4

0
.0

0
0
0
7
1

0
.0

0
0
0
0
6

0
.0

0
0
0
0
1

i
=

3
B

=
2

0
.8

0
5
5

0
.1

6
8
1

0
.0

2
3
0

0
.0

0
2
9
5

0
.0

0
0
4
0

0
.0

0
0
0
6

0
.0

0
0
0
0
8

S
im

0
.8

0
5
4

0
.1

6
8
1

0
.0

2
3
0

0
.0

0
2
9
7

0
.0

0
0
4
0

0
.0

0
0
0
6

0
.0

0
0
0
0
8

i
=

4
B

=
2

0
.7

4
1
2

0
.2

1
0
9

0
.0

3
9
5

0
.0

0
6
9

0
.0

0
1
2
6

0
.0

0
0
2
4

0
.0

0
0
0
4
7

S
im

0
.7

4
1
1

0
.2

1
0
9

0
.0

3
9
5

0
.0

0
6
9

0
.0

0
1
2
7

0
.0

0
0
2
4

0
.0

0
0
0
4
9

ρ
=

0
.7

P
(Q

i
=

0
)

P
(Q

i
=

1
)

P
(Q

i
=

2
)

P
(Q

i
=

3
)

P
(Q

i
=

4
)

P
(Q

i
=

5
)

P
(Q

i
=

6
)

i
=

1
B

=
2

0
.8

9
5
3

0
.0

9
6
9

0
.0

0
7
2
2

0
.0

0
0
5
2

0
.0

0
0
0
3
9

0
.0

0
0
0
0
3

0
.0

0
0
0
0
0

S
im

0
.8

9
5
2

0
.0

9
7
0

0
.0

0
7
2
5

0
.0

0
0
5
2

0
.0

0
0
0
3
9

0
.0

0
0
0
0
3

0
.0

0
0
0
0
0

i
=

2
B

=
2

0
.7

8
4
0

0
.1

7
9
8

0
.0

3
0
0

0
.0

0
5
0
4

0
.0

0
0
9
0

0
.0

0
0
1
7

0
.0

0
0
0
3
2

S
im

0
.7

8
3
8

0
.1

8
0
0

0
.0

3
0
1

0
.0

0
5
0
9

0
.0

0
0
9
1

0
.0

0
0
1
7

0
.0

0
0
0
3
4

i
=

3
B

=
2

0
.6

7
2
4

0
.2

4
0
1

0
.0

6
3
6

0
.0

1
7
1

0
.0

0
4
8
4

0
.0

0
1
4
2

0
.0

0
0
4
3

S
im

0
.6

7
2
0

0
.2

4
0
0

0
.0

6
3
7

0
.0

1
7
2

0
.0

0
4
9
3

0
.0

0
1
4
8

0
.0

0
0
4
6

i
=

4
B

=
2

0
.5

6
6
1

0
.2

7
5
6

0
.0

9
9
4

0
.0

3
6
1

0
.0

1
3
7

0
.0

0
5
4

0
.0

0
2
1
8

S
im

0
.5

6
5
5

0
.2

7
5
4

0
.0

9
9
4

0
.0

3
6
2

0
.0

1
3
9

0
.0

0
5
6

0
.0

0
2
2
8

ρ
=

0
.9

P
(Q

i
=

0
)

P
(Q

i
=

1
)

P
(Q

i
=

2
)

P
(Q

i
=

3
)

P
(Q

i
=

4
)

P
(Q

i
=

5
)

P
(Q

i
=

6
)

i
=

1
B

=
2

0
.8

3
0
2

0
.1

4
7
4

0
.0

1
9
5

0
.0

0
2
5
3

0
.0

0
0
3
4

0
.0

0
0
0
4
7

0
.0

0
0
0
0
7

B
=

3
0
.8

2
9
8

0
.1

4
7
7

0
.0

1
9
6

0
.0

0
2
5
5

0
.0

0
0
3
4

0
.0

0
0
0
4
8

0
.0

0
0
0
0
7

S
im

0
.8

2
9
7

0
.1

4
7
7

0
.0

1
9
6

0
.0

0
2
5
6

0
.0

0
0
3
5

0
.0

0
0
0
4
9

0
.0

0
0
0
0
7

i
=

2
B

=
2

0
.6

3
6
2

0
.2

4
7
9

0
.0

7
7
9

0
.0

2
5
1

0
.0

0
8
4

0
.0

0
2
9

0
.0

0
1
0
0

B
=

3
0
.6

3
5
0

0
.2

4
8
0

0
.0

7
8
3

0
.0

2
5
4

0
.0

0
8
6

0
.0

0
3
0

0
.0

0
1
0
5

S
im

0
.6

3
4
5

0
.2

4
8
1

0
.0

7
8
4

0
.0

2
5
6

0
.0

0
8
7

0
.0

0
3
1

0
.0

0
1
0
9

i
=

3
B

=
2

0
.4

3
9

0
.2

6
6
9

0
.1

3
5
0

0
.0

7
1
0

0
.0

3
8
7

0
.0

2
1
5

0
.0

1
2
1

B
=

3
0
.4

3
7

0
.2

6
5
4

0
.1

3
4
6

0
.0

7
1
3

0
.0

3
9
3

0
.0

2
2
2

0
.0

1
2
7

S
im

0
.4

3
5

0
.2

6
4
4

0
.1

3
4
3

0
.0

7
1
3

0
.0

3
9
7

0
.0

2
2
6

0
.0

1
3
1

i
=

4
B

=
2

0
.2

6
7

0
.2

1
5
9

0
.1

4
3
8

0
.0

9
9
3

0
.0

7
1
2

0
.0

5
2
0

0
.0

3
8
4

B
=

3
0
.2

6
5

0
.2

1
2
9

0
.1

4
1
3

0
.0

9
7
4

0
.0

7
0
1

0
.0

5
1
7

0
.0

3
8
7

S
im

0
.2

6
3

0
.2

1
0
9

0
.1

3
9
4

0
.0

9
5
9

0
.0

6
9
0

0
.0

5
1
0

0
.0

3
8
3

T
a
b
le

6
.1

:
Q

u
eu

e
le

n
g
th

d
is

tr
ib

u
ti
o
n
s

114 Polling systems with Bernoulli service and Markovian routing

Queue 1 Queue 2 Queue 3 Queue 4

ρ = 0.5 0.0000 0.0001 0.0001 0.0002
ρ = 0.7 0.0003 0.0005 0.0009 0.0015
ρ = 0.9 (B = 2) 0.0011 0.0035 0.0138 0.0410
ρ = 0.9 (B = 3) 0.0002 0.0011 0.0055 0.0191

Table 6.2: Total variation distances

For loads 0.5 and 0.7 the approximation is very accurate even with B as small as
2. The differences in individual probabilities occur only in the 4th decimal or later.
For ρ = 0.9 and B = 2, the approximation is less accurate, but still quite good. If
B = 3, the approximation again becomes more accurate.

The probabilities obtained from simulation are the average probabilities of 10
simulation runs of 25 · 106 time slots each. Furthermore, each probability in the
table is rounded according to the value of the standard deviation σ in the simulation
outcomes of that probability. If the first four digits of σ/

√
10 are zero, but the fifth

is nonzero, then 4 digits are shown, etc.
It will be convenient to express the error of the approximation as a single num-

ber for each queue. To this end, we use the total variation distance between the
approximated and simulated queue length distribution, which, for queue i, is defined
as

di =

∞∑

k=0

|qi,k − q̂i,k|, (6.5.1)

where qi,k and q̂i,k denote simulation and approximation values for P(Qi = k). The
values of di can be found in Table 6.2.

Because we can approximate the mean waiting times using Little’s law, we can
also compare our approximation with the existing mean waiting time approximations
of Boxma and Meister [34] and Groenendijk and Levy [68]. We do so in Table 6.3.
In this table, the approximation of Boxma and Meister is indicated by BM and that
of Levy and Groenendijk by LG.

Table 6.3 again illustrates that our approximation is very accurate in general.
In all cases, except queue 4 and ρ = 0.9, our approximation is more accurate than
the Boxma-Meister and Levy-Groenendijk approximations. Both Boxma and Meis-
ter [34, Rem. 5.2] and Groenendijk and Levy [68, Sec. IV] give suggestions to improve
their approximations for high loads. These suggestions were taken into account in
Table 6.3.

Because the state spaces of the SMCs are exponential in N , it is clear that our
approximation can only be applied to polling systems with few queues. For our
application, networks on chips, however, this does not pose a problem since the
switches there typically have only few queues, usually 4 or 5. If N = 4 and B = 2,
the running time of our approximation for one value of ρ and all four queues is only
about 2 or 3 seconds. If B = 3, the running time increases to roughly 50 seconds.
For comparison, the ten simulation runs that give the level of accuracy presented in
this section require about 15 to 20 minutes in total, per value of ρ.

6.6 Large-scale numerical study 115

ρ = 0.5 Queue 1 Queue 2 Queue 3 Queue 4

B = 2 0.329 0.413 0.499 0.586
Sim. 0.329 0.413 0.500 0.587
BM 0.346 0.423 0.500 0.577
LG 0.299 0.396 0.498 0.604

ρ = 0.7 Queue 1 Queue 2 Queue 3 Queue 4

B = 2 0.615 0.854 1.138 1.462
Sim. 0.618 0.858 1.145 1.475
BM 0.709 0.938 1.167 1.395
LG 0.539 0.830 1.152 1.503

ρ = 0.9 Queue 1 Queue 2 Queue 3 Queue 4

B = 2 1.172 1.98 3.50 6.46
B = 3 1.179 2.01 3.59 6.84
Sim. 1.181 2.02 3.66 7.21
BM 1.590 2.71 4.70 5.97
LG 1.168 1.94 3.04 7.71

Table 6.3: Mean waiting times

6.6 Large-scale numerical study

In this section, we perform a numerical experiment on a larger scale to study
the accuracy of our approximation. We vary the following six characteristics of the
polling system over a number of values: The total load ρ, the number of queues N ,
the service discipline, the level of symmetry, the arrival processes, and the routing
matrix. We consider all possible combinations, i.e., every possible load is combined
with every possible value of N , every possible service discipline, and so on. An
overview of the values of these characteristics can be found in Table 6.4. In total,
the experiment comprises 5 · 4 · 4 · 3 · 3 · 2 = 1440 polling systems.

We assume that q(i) = q, i.e., within one polling system considered in the ex-
periment, all queues have the same service discipline. We further assume that
ρi = νiρ, where

∑
i νi = 1. The constants νi are determined by the level of symme-

try, which is either symmetric, asymmetric, or very asymmetric: In the symmetric
case, every queue gets a fraction 1/N of the load; νi = 1/N . In the asymmetric

ρ 0.5 0.6 0.7 0.8 0.9
N 2 3 4 5
q 0 0.3 0.7 1

Symmetry Symmetric Asymmetric Very asymm.
Arrival process Bernoulli Poisson Geometric

Routing Cyclic Uniform

Table 6.4: The numerical experiment.

116 Polling systems with Bernoulli service and Markovian routing

ρ 0.5 0.6 0.7 0.8 0.9
0 0 0 0 100

N 2 3 4 5
26 27 25 22

q 0 0.3 0.7 1
12 13 21 54

Symmetry Symmetric Asymmetric Very asymm.
59 25 16

Arrival process Bernoulli Poisson Geometric
6 40 54

Routing Cyclic Uniform
53 47

Table 6.5: Systems with the highest errors

case, (ν1, . . . , νN) ∼ (1, 2, . . . , N), where ∼ means ‘proportional to’. For example,
if N = 2, (ν1, ν2) = (1/3, 2/3), if N = 3, (ν1, ν2, ν3) = (1/6, 2/6, 3/6), and so on.
In the very asymmetric case each queue receives a fraction 0.1 of the load, except
queue N which gets the rest.

The distribution of the number of packets arriving to queue i is from the same
family for all i, but its mean ρi depends on i. The distribution can be Bernoulli with
parameter ρi, Poisson with parameter ρi, or geometric with parameter 1/(1 + ρi).
Here the parameter is 1/(1 + ρi) so that the mean number of packets arriving each
time slot is ρi. Note that the geometric distribution we use has positive mass at 0.

Finally, the routing discipline used is either cyclic or uniform. With uniform
routing, if the server leaves a certain queue, it selects one of the other queues at
random, each with the same probability, i.e., P (i, j) = 1/(N − 1) for i 6= j.

We compare our approximation with B = 2 with simulation outcomes. For every
queue of a polling system, the error of the approximation is defined as the total vari-
ation distance between the approximated and simulated queue length distributions,
cf. (6.5.1).

Table 6.5 shows the characteristics of the 100 systems with the largest average
error (averaged over the queues). This table should be read as follows: The 100
systems all have ρ = 0.9, 26 have two queues, 27 have three, etc.

Table 6.5 reveals that the first and foremost cause of a high error is a high load.
Related to this observation, Table 6.5 shows that a higher variance of the arrival
process also leads to a higher error. The variances of the Bernoulli, Poisson, and
Geometric arrival processes are given by ρi(1 − ρi), ρi, and ρi(1 + ρi) respectively.
The cause of this error is the truncation of queue lengths. As the load or the variance
of the arrival processes increases, queue lengths increase as well, and hence the error
induced by truncation.

Second, Table 6.5 indicates that the error increases if exhaustive service is used.
The pivotal assumption of our approximation is that the contents of the truncated
queues go from ‘B or more’ to B − 1 with a fixed probability. With exhaustive
service, the time spent serving one queue consecutively is larger than with 1-limited
service. As a result, when the server finally starts serving one of the truncated

6.6 Large-scale numerical study 117

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
ρ
(x

)

ρ = 0.9
ρ = 0.8
ρ = 0.7
ρ = 0.6
ρ = 0.5

(a) The function Fρ(x)

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

G
q
(x

)
q = 1 (exh.)

q = 0.7

q = 0.3
q = 0 (1-lim.)

(b) The function Gq(x)

Figure 6.1: The fraction of queues with an error less than x, conditioned on the load ρ and
the service discipline parameter q.

queues, this queue will have B or more packets with a larger probability. The error
of our approximation is therefore larger if exhaustive service is used.

Third, Table 6.5 suggests that the average error is largest if the system is sym-
metric. Indeed we found that, on the whole, the average error decreases as the
system becomes more asymmetric. Consider, as an extreme example, a polling sys-
tem where one queue receives almost the entire load, and other queues receive only
a very small fraction. In this case, the approximation is indeed very accurate, since
the lightly loaded queues hardly ever have ‘B or more’ packets.

In Fig. 6.1a, we show Fρ(x), which is defined as the fraction of queues in systems
with load ρ, whose error, defined by (6.5.1), is less than x. Fig. 6.1a indeed shows
that the most important cause of a high error is a high load.

Likewise, Fig. 6.1b shows the function Gq(x), which is defined as the frac-
tion of queues in systems with service discipline parameter q, whose error is less
than x. Fig. 6.1b clearly illustrates that the error is the largest for exhaustive
service, whereas there is only a small difference between 1-limited, Bernoulli with
parameter 0.3, and Bernoulli with parameter 0.7.

We conclude that for B = 2 the error is certainly acceptable for loads up to
0.7 or 0.8, depending on for instance the service discipline and the variance in the
arrival process. For higher loads, B should be increased to reduce the error if
computationally feasible.

118 Polling systems with Bernoulli service and Markovian routing

6.7 Implementation with Kronecker products

In this section, we derive alternative expressions for the matrices Ai,l and Bi,l

using Kronecker products. The matrices Ψi and Ψ̃i describing the server movements
from an empty queue to a non-empty queue are easily determined algorithmically
so they will not be dealt with here.

For an nA ×mA matrix A and an nB ×mB matrix B, the Kronecker product is
an nAnB × mAmB matrix defined as

A ⊗ B =




A(1, 1)B A(1, 2)B . . . A(1, mA)B
...

...
. . .

...
A(nA, 1)B A(nA, 2)B . . . A(nA, mA)B


 .

Kronecker products are especially useful in describing Markov chain transitions
on multidimensional sets; if transitions on a set V × W can be decomposed into
independent transitions on V and W , then the transition probability matrix on
V × W is P ⊗ Q, where P and Q are the transition probability matrices on V and
W respectively, provided V × W is ordered lexicographically.

If, more importantly, transitions on W only depend on the current state in V
but do not depend on the destination state in V (i.e., a transition from (v, w) to
(v′, w′) occurs with probability p(v, v′)qv(w, w′), where p(v, v′) is the probability of
going from v to v′, and qv(w, w′) that of going from w to w′ given v), then the
transition probability matrix on V × W is given by




p1 ⊗ Q1

p2 ⊗ Q2

...
...

pm ⊗ Qm


 . (6.7.1)

Here, V = {1, . . . , m}, pv is a vector with elements p(v, v′), and Qv is a matrix with
elements qv(w, w′).

In order to give the alternative expressions for Ai,l and Bi,l, we assume that

Φi and Φ̃i are ordered lexicographically. The matrix Ai,l describes changes where
queue i goes up by l − 1 levels. This happens if there are either l − 1 arrivals and
no service completion, or l arrivals and a service completion:

Ai,l = xi(l − 1)Di,0 + xi(l)Di,1, for l = 0, 1, . . .,

where xi(−1) := 0, and Di,0 and Di,1 are the transition probability matrices within
phases, without and with a service completion at queue i, respectively.

The matrix Di,0 describes phase transitions without a service completion at
queue i. Such transitions are caused by changes in the service index, arrivals and
a service completion at queue j, and arrivals at the other queues. The changes in
the contents of the queues only depend on the service index through the service

6.7 Implementation with Kronecker products 119

completion. In particular, the changes in queue contents do not depend on the
queue the server moves to in the next time slot, so we obtain, by (6.7.1):

Di,0 =




r1 ⊗ Yi,1 ⊗ X2 ⊗ . . . ⊗ Xi−1 ⊗ Xi+1 ⊗ . . . ⊗ XN

r2 ⊗ X1 ⊗ Yi,2 ⊗ . . . ⊗ Xi−1 ⊗ Xi+1 ⊗ . . . ⊗ XN

...
...

. . .
...

...
ri−1 ⊗ X1 ⊗ X2 ⊗ . . . ⊗ Yi,i−1 ⊗ Xi+1 ⊗ . . . ⊗ XN

0 ⊗ X1 ⊗ X2 ⊗ . . . ⊗ Xi−1 ⊗ Xi+1 ⊗ . . . ⊗ XN

ri+1 ⊗ X1 ⊗ X2 ⊗ . . . ⊗ Xi−1 ⊗ Yi,i+1 ⊗ . . . ⊗ XN

...
...

...
...

. . .
...

rN ⊗ X1 ⊗ X2 ⊗ . . . ⊗ Xi−1 ⊗ Xi+1 ⊗ . . . ⊗ Yi,N




,

where 0 is the length N zero vector.
In the first block row queue 1 is currently in service. The changes in the service

index are thus given by r1, the transitions of queue 1 by Yi,1, and the transitions
of the other queues by Xk. In the second block row, queue 2 is in service so a Yi,2

appears, and so on. The zero vector in the ith block row represents the fact that a
transition without a service completion at queue i cannot occur if the service index
is i.

The matrix Di,1 describes phase transitions with a service completion at queue i.
Using similar arguments as in the derivation of Di,0, and observing that a transition
with a service completion at queue i can only occur if the service index is equal to i,
we obtain:

Di,1 =




0 ⊗ Yi,1 ⊗ X2 ⊗ . . . ⊗ Xi−1 ⊗ Xi+1 ⊗ . . . ⊗ XN

0 ⊗ X1 ⊗ Yi,2 ⊗ . . . ⊗ Xi−1 ⊗ Xi+1 ⊗ . . . ⊗ XN

...
...

. . .
...

...
0 ⊗ X1 ⊗ X2 ⊗ . . . ⊗ Yi,i−1 ⊗ Xi+1 ⊗ . . . ⊗ XN

ri ⊗ X1 ⊗ X2 ⊗ . . . ⊗ Xi−1 ⊗ Xi+1 ⊗ . . . ⊗ XN

0 ⊗ X1 ⊗ X2 ⊗ . . . ⊗ Xi−1 ⊗ Yi,i+1 ⊗ . . . ⊗ XN

...
...

...
...

...
0 ⊗ X1 ⊗ X2 ⊗ . . . ⊗ Xi−1 ⊗ Xi+1 ⊗ . . . ⊗ Yi,N




.

The matrices Bi,l can be expressed as

Bi,l = xi(l)D̃i, for l = 0, 1, . . .,

where D̃i is the phase transition probability matrix for level ni = 0. Note that, in
level ni = 0, there is never a service completion at queue i.

120 Polling systems with Bernoulli service and Markovian routing

The matrix D̃i is given by:

D̃i =




e1 ⊗ x1 ⊗ x2 ⊗ . . . ⊗ xi−1 ⊗ xi+1 ⊗ . . . ⊗ xN

r1 ⊗ Ỹi,1 ⊗ X2 ⊗ . . . ⊗ Xi−1 ⊗ Xi+1 ⊗ . . . ⊗ XN

e2 ⊗ x1 ⊗ x2 ⊗ . . . ⊗ xi−1 ⊗ xi+1 ⊗ . . . ⊗ xN

r2 ⊗ X1 ⊗ Ỹi,2 ⊗ . . . ⊗ Xi−1 ⊗ Xi+1 ⊗ . . . ⊗ XN

...
...

...
...

...
ei−1 ⊗ x1 ⊗ x2 ⊗ . . . ⊗ xi−1 ⊗ xi+1 ⊗ . . . ⊗ xN

ri−1 ⊗ X1 ⊗ X2 ⊗ . . . ⊗ Ỹi,i−1 ⊗ Xi+1 ⊗ . . . ⊗ XN

ei ⊗ x1 ⊗ x2 ⊗ . . . ⊗ xi−1 ⊗ xi+1 ⊗ . . . ⊗ xN

ei+1 ⊗ x1 ⊗ x2 ⊗ . . . ⊗ xi−1 ⊗ xi+1 ⊗ . . . ⊗ xN

ri+1 ⊗ X1 ⊗ X2 ⊗ . . . ⊗ Xi−1 ⊗ Ỹi,i+1 ⊗ . . . ⊗ XN

...
...

...
...

...
eN ⊗ x1 ⊗ x2 ⊗ . . . ⊗ xi−1 ⊗ xi+1 ⊗ . . . ⊗ xN

rN ⊗ X1 ⊗ X2 ⊗ . . . ⊗ Xi−1 ⊗ Xi+1 ⊗ . . . ⊗ Ỹi,N




,

where ej is the jth row of the N ×N identity matrix and the vector xk is given by
xk = (xk(0), . . . , xk(B − 1),

∑
l≥B xk(l)).

The first block row (which is a block consisting of one row) represents transitions
from state (1, 0, . . . , 0), which is the state where all queues are empty and the server
is waiting at queue 1. In this state, the position of the server does not change, i.e.,
its changes are given by e1. The changes in the contents of the other queues are
given by the independent arrivals to those queues, i.e., by xk.

The second block row describes transitions from states where queue 1 is non-
empty and in service. Like before, changes in the service index are given by r1, and
changes in all queues except queue 1 by Xk. Changes in queue 1 are given by Ỹi,1

because the process is in level ni = 0. By following similar reasonings for the other
block rows, the expression for D̃i follows.

Remark 6.7.1. For the computation of the equilibrium distribution of an SMC of
M/G/1 type, one has to compute the G-matrix. Several algorithms to do so are
available (see, for instance, [22]). In our numerical studies we found that Functional
Iterations with the default U-based scheme is the fastest. In particular, this iterative
method allows one to start with an initial G-matrix. Starting with the G-matrix as
computed in the previous iteration speeds up the computations.

Remark 6.7.2. If the arrival processes are ordinary (i.e., non-batch) Bernoulli
arrival processes, we have an SMC of the Quasi-Birth-Death (QBD) type instead
of M/G/1 (see, e.g., [91]). In this case, an R-matrix has to be computed, which
considerably simplifies actual implementations.

6.8 Conclusion 121

6.8 Conclusion

We devised an algorithm that approximates the marginal queue length distribu-
tions in a discrete-time polling system with Bernoulli service and Markovian routing.
The key step in this approximation is the translation of the queue length process to
a structured Markov chain, where the contents of one queue are stored in the level
and truncated contents of the other queues in the phase, i.e., we store whether there
are 0, 1, . . . , B − 1, or ‘B or more’ packets in the other queues. We furthermore use
an iterative procedure to determine the probability that the contents of the other
queues go from ‘B or more’ to B − 1.

As B tends to infinity, the approximation becomes exact. However, with B =
2, the approximation is already very accurate in general, as was shown through
numerical experiments. Furthermore, the accuracy of the approximation decreases
if the load increases, and if the variance in the arrival process increases. In addition
to this, the accuracy decreases if q(i) - the probability that after a service completion
at queue i, the server serves queue i again - increases. This, for example, implies that
the approximation is more accurate for the 1-limited service discipline (q(i) = 0)
than for the exhaustive service discipline (q(i) = 1). In cases where the inaccuracy
reaches an unacceptable level, B can be increased further at the cost of a higher
running time.

The memory and computation requirements of the approximation are exponen-
tial in the number of queues. Clearly, this entails that the approximation is only
practical for polling systems with few queues. For networks on chips, however, this
does not pose a problem since switches in these networks typically have only few
queues.

Throughout this chapter, we assumed that all buffers are infinite. For finite
buffers, the same procedure involving queue truncation and iterative determination
of the truncation parameters can still be applied. Another interesting extension of
the approximation described here is an extension to polling systems with Markovian
arrival processes. The extension of our approximation to such systems is straight-
forward, but the computation time and memory requirements would increase.

Chapter 7

Polling tree networks with flow

control

In the previous three chapters, we considered so-called open (networks of) polling
stations, where packets arrive from the exterior. In this chapter, we consider a closed
network of polling stations, which means that the number of packets in the network
from the same source is fixed. Closed queueing networks resemble networks with
flow control operating under heavy loads; flow control limits the number of packets
from the same source to a maximum, and heavy loads imply that served packets
are quickly replaced by new packets from the same source, which is modelled by
keeping the number of packets from the same source fixed.

The network we consider consists of two layers of polling stations. All nodes in
the network use the random polling service discipline. With this service discipline,
every queue is served with a fixed probability every time slot, independently of
what happened in previous time slots. Furthermore, we discuss the extension of our
results to the more general case of Bernoulli service and Markovian routing, which
contains the cyclic 1-limited service discipline as a special case.

The total throughput in our network is always equal to 1 because the last node
of the network (the sink) always transmits one packet per time slot. One of the
functions of flow control, however, is to achieve fairness [61]. In this chapter we
therefore study the division of that throughput over packets from various sources,
which depends on the flow control limits, buffer sizes, and service disciplines.

123

124 Polling tree networks with flow control

7.1 Model

We consider a concentrating tree network consisting of two layers of polling
stations with flow control, as displayed in Figure 7.1. Node 0 is the last node of the
network, and has N queues. Some of those queues are connected to other nodes and
some are not. If queue i of node 0 is connected to another node, then that node is
called node i. Node i, i > 0, has Ni queues.

Packets in node i and packets in queue i of node 0 are called type i packets.
Type i packets are further subdivided into type i,j packets, j = 1, . . . , Ni, such that
the sub-type of the packet denotes the source of the packets (see Fig. 7.1). If queue i
of node 0 is not connected to another node (i.e., if node i does not exist), we define
Ni = 1.

The network we consider is saturated, which means that as soon as a type i,j
packet leaves the network, another type i,j packet immediately arrives. The number
of type i,j packets in the network is thus fixed and we denote the number of type i,j
packets by Li,j . We furthermore define Li = (Li,1, . . . , Li,Ni

).
All packets and time slots are of unit size and packet departures and arrivals

occur at the end of time slots, with departures before arrivals. The queues of node 0
are finite, and the size of queue i of node 0 is denoted by Bi. If queue i of node 0
is full, packets from node i are blocked. When node 0 transmits a type i packet, a
new packet from node i is allowed to enter node 0 at the same time. Queue j of
node i is large enough to store all type i,j packets.

All nodes in the network, including node 0, use the ‘random polling’ service
discipline. With this service discipline, every queue has a fixed probability of being
served, i.e., every time slot the server of node i serves queue j with probability
Pi(j), regardless of what happened in the past, for i = 0, . . . , N . If some of the
queues of node i are empty, the probability that queue j is served is proportional

Node 0

i,1 i,2 i,3

type i

Node i

Figure 7.1: A tree network of polling stations with flow control. Due to saturation, the
number of packets inside the dashed box is fixed.

7.2 Markov chain analysis 125

to Pi(j), i.e., queue j is served with probability Pi(j)/
∑

l∈Vi
Pi(l), where Vi is the

set of non-empty queues at node i. Within queues, packets are always served in
FIFO order. In Section 7.4 we discuss the extension of our work to the more general
case with Bernoulli scheduling and Markovian routing, which includes the 1-limited
service discipline as a special case.

Queueing networks with blocking have been analysed extensively. For overviews
of such models, the reader is referred to Balsamo et al. [11], Dallery and Gersh-
win [48], Perros [112], and Onvural [110]. Closed queueing networks, and in partic-
ular closed queueing networks with blocking, are difficult to analyse exactly. Many
different approximations have therefore been devised, such as the maximum en-
tropy method by Kouvatsos and Xenios [87, 88], the exponentialisation method by
Yao and Buzacott [150], the variable buffer size method by Suri and Diehl [131],
the QNET approximation by Dai and Harrison [45], and approximations by Dallery
and Frein [47], and Akyildiz [6].

Pioneering work on closed queueing networks in the context of networks with
flow control was done by Reiser [116]. He modelled a computer network operating
under window flow control as a closed queueing network and devised an efficient
heuristic to compute throughput figures for large networks. Many other studies
where networks with flow control are modelled as closed queueing networks have
since been performed, see, e.g., Baccelli and Bonald [10], Garetto et al. [60].

As we stated in Section 1.4.2, few attempts have been made to analyse networks
of polling stations, either closed or open. Altman and Yechiali [7], however, studied
a closed single-station polling system. In this system, after a packet has been served,
it moves from queue i to queue j with a probability that depends on both i and j,
regardless of the history. The analysis of Altman and Yechiali was later extended
to a polling system with a combination of a fixed population and external arrivals
by Armony and Yechiali [8] and to a polling system with breakdowns by Dror and
Yechiali [51].

The organisation of this chapter is as follows: In Section 7.2 we describe how
the closed queueing network can be modelled as a Markov chain, and we derive its
equilibrium distribution. This equilibrium distribution is used to obtain throughput
results in Section 7.3. In Section 7.4 we discuss the extension of our results to
Bernoulli service and Markovian routing, and we obtain the equilibrium distribution
for systems with two queues for the extended model. We perform a numerical
analysis of the throughput for systems with random polling in Section 7.5. We draw
conclusions in Section 7.6.

7.2 Markov chain analysis

In this section, we describe how node i and node 0 together can be modelled as
a Markov chain and we obtain the equilibrium distribution of that Markov chain.
This equilibrium distribution is used in Section 7.3 to determine the throughput of
different sub-types of packets.

126 Polling tree networks with flow control

An important observation is that all nodes always try to transmit one packet per
time slot if there is one. In particular, this implies that many packets may arrive
to node 0 every time slot, but only one packet may leave. In stationarity, there will
thus be as many type i packets in queue i of node 0 as possible, restricted by the
buffer size Bi and the sum of the flow control limits

∑
j Li,j .

In the sequel, we consider only those i for which node i exists; if node i does not
exist, all type i packets are type i,1 packets. Moreover, in this case, type i,1 packets
are served by node 0 with probability P0(i) because all queues of node 0 are always
non-empty. The throughput of type i,1 packets is hence also equal to P0(i).

Suppose for a moment that queue i of node 0 is large enough to store at least all
type i packets except one, i.e., Bi ≥

∑
j Li,j − 1. Because all type i packets (except

maybe one) are always in queue i of node, and this queue is served in FIFO order,
all type i packets pass through the network in a cyclic manner; once an ordering of
packets has been chosen, the packets will always be served in that order. The steady-
state behaviour of the network thus depends on the initial configuration of packets
and its equilibrium distribution is not unique. Moreover, in this case, the throughput
can be calculated straightforwardly, as will be demonstrated in Section 7.3. In the
sequel we therefore assume Bi <

∑
j Li,j − 1.

If Bi <
∑

j Li,j−1, the state of queue i of node 0 only changes when the server is
serving that queue; a new type i packet may only enter queue i of node 0 if another
one leaves. For the computation of the throughput, we may thus disregard the times
at which the server is at the other queues. We can determine the throughput in a
network where node 0 is always serving queue i, and multiply that throughput by
the fraction of time node 0 is actually serving queue i.

If node 0 is always serving queue i, node i and node 0 together form a closed
tandem network with two nodes and unit service times, as displayed in Figure 7.2.
The first node uses the random polling service discipline and has buffers large enough
to store all packets, and the second node has a FIFO queue with a buffer of size Bi.

Polling FIFO

i 0

Figure 7.2: The closed tandem network.

We describe the state of this closed tandem network by a finite Markov chain.
A state of this Markov chain is a length Bi + 1 vector x = (x1, . . . , xBi+1). Here,
xk, for k = 1, . . . , Bi, describes the type of the packet at position k of the buffer
of node 0, i.e., x1 = j if the first packet is a type i,j packet, and so on. The last
element xBi+1 describes the type of the packet that is going to be served by node i
and will enter node 0 in the next time slot.

It is easily verified that this process is indeed Markovian: Node 0 always serves
the first packet in the queue and the probability that node i serves queue j depends
only on which queues are empty, which can be derived from x using the fact that

7.2 Markov chain analysis 127

there are Li,j type i,j packets in the network in total.
The state space of the Markov chain is given by:

Ωi =
{
x ∈ {1, . . . , Ni}Bi+1 : kj(x) ≤ Li,j

}
, (7.2.1)

where kj(x) is the number of j’s in x. The condition kj(x) ≤ Li,j reflects that there
are at most Li,j packets in the buffer of node 0, and, moreover, if there are indeed
Li,j packets in that buffer, the next packet served by node i (i.e., element xBi+1)
must be of a different type.

We can now determine the equilibrium distribution of this Markov chain, denoted
by πi(·):
Lemma 7.2.1. Suppose Bi <

∑
j Li,j − 1. Recall that kl(x) is the number of l’s in

x. Then, for all x ∈ Ωi,

πi(x) =
1

Ci(Bi, Li)

Ni∏

l=1

(Pi(l))
kl(x), (7.2.2)

where Ci(Bi, Li) is the normalisation constant, given by

Ci(Bi, Li) =
∑

x∈Ωi

Ni∏

l=1

(Pi(l))
kl(x). (7.2.3)

Proof. The equilibrium distribution is given by the unique normalised solution to
the balance equations of the Markov chain:

πi(x) =
∑

j∈Vi(x)

πi(j, x1, . . . , xBi
)

Pi(xBi+1)∑
k∈Vi(x)

Pi(k)
, x ∈ Ωi, (7.2.4)

where Vi(x) is the set of non-empty queues of node i in state x. The balance
equations can be obtained by observing that every transition of the Markov chain
consists of shifting packets at node 0 one buffer position ahead and by choosing
the queue that will be served by node i in the next time slot. In other words, in
state (j, x1, . . . , xBi

), the vector (x1, . . . , xBi
) is shifted towards positions 1 through

Bi of the buffer. The probability that a type i, xBi+1 packet is served at node i is
given by the rightmost factor of (7.2.4).

Substituting Equation (7.2.2) in the right hand side of (7.2.4) yields

πi(x) =
1

Ci(Bi, Li)

∑

j∈Vi(x)

Ni∏

l=1

(Pi(l))
kl(x) Pi(j)

Pi(xBi+1)

Pi(xBi+1)∑
k∈Vi(x)

Pi(k)

=
1

Ci(Bi, Li)

Ni∏

l=1

(Pi(l))
kl(x)

∑

j∈Vi(x)

Pi(j)∑
k∈Vi(x)

Pi(k)

=
1

Ci(Bi, Li)

Ni∏

l=1

(Pi(l))
kl(x) ,

128 Polling tree networks with flow control

which completes the proof.

Example 7.2.2. Consider the situation with Bi = 2, and Li = (2, 2), and write
Pi(1) = p1 and Pi(2) = p2. In this case, the state space Ωi consists of the following
six states: (1, 1, 2), (1, 2, 1), (2, 1, 1), (2, 2, 1), (2, 1, 2), and (1, 2, 2). In state (1, 1, 2),
two type i,1 packets occupy the two buffer positions and a type i,2 packet will move
to the last buffer position in the next time slot. The first three states all have
probability p2

1p2/Ci(Bi, Li), and the last three all have probability p1p
2
2/Ci(Bi, Li).

Because the sum of all probabilities is 1, it follows that Ci(Bi, Li) = 3p2
1p2+3p1p

2
2 =

3p1p2.

Remark 7.2.3. The network studied in this section can also be seen as a variant
of a classical urn problem: Consider Ni urns such that urn j contains Li,j balls,
for j = 1, . . . , Ni. Suppose that Bi + 1 balls are drawn from different urns, and a
ball from urn j is drawn with probability Pi(j)/

∑
l∈Vi

Pi(l) where Vi is the set of
non-empty urns. After Bi + 1 balls have been drawn, the first ball is placed back
in its original urn and a new ball is drawn. Then the second ball is placed back in
its urn and a new ball is drawn, and so on. The equilibrium probability that, at an
arbitrary point in time, the Bi + 1 most recently drawn balls originate from urns
x1, . . . , xBi+1 is given by πi(x).

The normalisation constant Ci(Bi, Li) can be computed efficiently using the
following recursion:

Ci(b, (Li,1, . . . , Li,n)) =

Li,n∑

k=0

(
b + 1

k

)
(Pi(n))kCi(b − k, (Li,1, . . . , Li,n−1)), (7.2.5)

for any nonnegative integer b ≤ Bi, and any positive integer n ≤ Ni, with
(
b+1
k

)
:= 0

for k > b + 1.
This recursion can be obtained by conditioning on k, the number of type i,n

packets in a system with buffer size b and flow control limits (Li,1, . . . , Li,n). In

that system, there are
(
b+1
k

)
states with k type i,n packets, each of which induces

a factor (Pi(n))k. Furthermore, given that there are k type i,n packets in a certain
state x, the remaining b + 1 − k vector positions of x are filled with remaining
packet types, restricted by their flow control limits. This leads to a factor Ci(b −
k, (Li,1, . . . , Li,n−1)), where

Ci(−1, (Li,1, . . . , Li,n−1)) := 1,

i.e., if k = b + 1, there are no remaining vector positions to be filled, and a factor 1
is required.

It might happen that b − k ≥ Li,1 + . . . + Li,n−1. In this case, the b + 1 − k
remaining vector positions have to be filled with at most Li,1+. . .+Li,n−1 < b+1−k
packets. In other words, there are more positions in the vector than elements to fill
the vector with, so we define:

Ci(b, (Li,1, . . . , Li,n)) = 0, for b ≥ Li,1 + . . . + Li,n, and all n.

7.3 Throughput computation 129

Finally, the behaviour on the boundary n = 1 follows from the definition of Ci(·, ·)
(Eq. (7.2.3)):

Ci(b, (Li,1)) = (Pi(1))b+1, for b < Li,1.

7.3 Throughput computation

In this section, we determine the throughput of type i,j packets. As we argued
in Section 7.2, this throughput is equal to the throughput in a network where node 0
always serves queue i, multiplied by the fraction of time node 0 is actually serving
queue i. Because all queues of node 0 are always non-empty, node 0 serves queue i
with probability P0(i), so we obtain:

γi,j = P0(i)γ̃i,j , (7.3.1)

where γ̃i,j is the throughput of type i,j packets in a network where node 0 is always
serving queue i.

It thus remains to determine γ̃i,j . First, we argued in Section 7.2 that if Bi ≥∑
j Li,j − 1, all packets move cyclically through the network without any change in

their ordering. This implies that the fraction of time a type i,j packet is served is
equal to the fraction of type i packets that are of type i,j, i.e., γ̃i,j = Li,j/

∑
k Li,k.

Hence:

Proposition 7.3.1. If Bi ≥
∑

j Li,j − 1,

γi,j = P0(i)
Li,j∑

k

Li,k

. (7.3.2)

If Bi <
∑

j Li,j − 1, the throughput of type i,j packets can be determined using
the results of Section 7.2:

Proposition 7.3.2. If Bi <
∑

j Li,j − 1,

γi,j = P0(i)Pi(j)
Ci(Bi − 1, Li − ej)

Ci(Bi, Li)
, (7.3.3)

where ej is a vector of which all elements are zero, except the jth, which is 1.

Proof. The throughput of type i,j packets is given by the probability that a type i,j
packet is served by node 0:

γ̃i,j =
∑

x∈Ωi
x1=j

πi(x) =
1

Ci(Bi, Li)

∑

x∈Ωi
x1=j

Ni∏

l=1

(Pi(l))
kl(x). (7.3.4)

For all x over which the sum is taken, the first element is a j. The remaining elements
are restricted by the flow control limits, but are otherwise chosen arbitrarily. We

130 Polling tree networks with flow control

thus obtain:

γ̃i,j =
1

Ci(Bi, Li)
Pi(j)

∑

x∈Ωi

x1=j

Ni∏

l=1

(Pi(l))
kl(x2,...,xBi+1)

=
Ci(Bi − 1, Li − ej)

Ci(Bi, Li)
Pi(j).

Equation (7.3.3) follows by combining the above expression with (7.3.1).

In case the buffer sizes are small enough, we can reduce Equation (7.3.3) to a
much simpler expression:

Proposition 7.3.3. If Bi < Li,j for all j,

γi,j = P0(i)Pi(j). (7.3.5)

Proof. If Bi < Li,j for all j, the number of j’s in (x1, . . . , xBi+1) can never exceed
Li,j. The restriction that kj(x) ≤ Li,j can thus be removed from the definition of
Ωi, the state space of the Markov chain. It then follows from Newton’s binomium
that Ci(Bi, Li) = (

∑
j Pi(j))

Bi+1 = 1, and likewise Ci(Bi − 1, Li − ei) = 1. Equa-
tion (7.3.3) then yields γi,j = P0(i)Pi(j).

A more intuitive explanation is the following: The throughput of type i,j packets,
γ̃i,j , is also given by the probability that node i serves queue j. If Bi < Li,j for all
j, queue i of node 0 is too small to store all type i,j packets, for any j, so all queues
of node i are always non-empty. Queue j is thus served by node i with probability
Pi(j).

Using these throughput results, the mean total sojourn time and the number of
packets in queue i of node 0 can be found easily using Little’s law. As there are Li,j
type i,j packets in the network, the total mean sojourn time is equal to

E[Ti,j] =
Li,j

γi,j
.

Furthermore, every type i packet spends on average Bi/P0(i) time slots in queue i
of node 0, so the mean number of type i,j packets in that queue is given by

E[Q
(0)
i,j] = γi,j

Bi

P0(i)
= Biγ̃i,j . (7.3.6)

7.4 Bernoulli service and Markovian routing

In this section, we discuss the extension of the results from the previous sections
to a network of polling systems with Bernoulli service and Markovian routing. We
assume that, after service of queue j, the server of node i, i = 0, . . . , N , serves

7.4 Bernoulli service and Markovian routing 131

queue j again with probability qi(j), and moves to another queue with probability
1−qi(j). If the server moves to another queue, it moves to queue k with probability
Pi(j, k), where Pi(j, j) = 0. If queue k is empty, the server keeps moving according
to matrix Pi until it finds a non-empty queue. These movements happen instanta-
neously. To prevent a situation where some queues cannot be reached by the server,
we assume Pi is irreducible for all i.

We introduce the matrix Ri, defined as follows:

Ri(j, k) =

{
qi(j), if j = k,

(1 − qi(j))Pi(j, k), if j 6= k.

Conditioned on the event that all queues of node i are always non-empty, the position
of the server of node i constitutes a Markov chain on {1, . . . , Ni}, with transition
probability matrix Ri. Under this condition, the probability that node i is serving
queue j at an arbitrary point in time is thus given by σi(j), where σi(j) is the unique
normalised solution to the following set of equations:

σi(j) =
∑

k

σi(k)Ri(k, j), (7.4.1)

for i = 0, . . . , N .
Like in the case of random polling, we may disregard the times at which the

server of node 0 is not serving queue i for the computation of the throughput. We
may thus again consider a closed tandem network of two nodes with unit service
times (see Figure 7.2). The first node, however, is now a node with a Bernoulli
service discipline and Markovian routing, and the second node still consists of a
FIFO queue with a finite buffer.

The state space and state description of the Markov chain describing this net-
work remain the same, i.e., we consider states x = (x1, . . . , xBi+1) ∈ Ωi. In case
node i has two queues, we can determine the equilibrium distribution of this Markov
chain. Although we cannot determine the equilibrium distribution analytically for
systems with more than 2 queues, the equilibrium distribution can still be obtained
numerically for such systems, provided the buffers and the number of queues are
small.

Lemma 7.4.1. Suppose that Bi <
∑

j Li,j −1 and that node i only has two queues.
Then,

πi(x) =






Ci
σi(1)

Ri(2, 1)
Ri(k, x1)

Bi∏

j=1

Ri(xj , xj+1), if Vi(x) = {k}, for some k, (7.4.2a)

Ciσi(x1)

Bi∏

j=1

Ri(xj, xj+1), if Vi(x) = {1, 2}, (7.4.2b)

where Ci is the normalisation constant. Recall that Vi(x) is the set of non-empty
queues of node i in state x and note that not all queues can be empty at the same
time (i.e., Vi(x) = ∅) due to the assumption that Bi < Li,1 + Li,2 − 1.

132 Polling tree networks with flow control

Proof. We prove the lemma by substituting Equations (7.4.2a) and (7.4.2b) in the
balance equations of the Markov chain. These balance equations are given by

πi(x) =






πi(j, x1, . . . , xBi
) if Vi(x) = {j}, for some j,

2∑
j=1

πi(j, x1, . . . , xBi
)Ri(xBi

, xBi+1) if Vi(x) = {1, 2}. (7.4.3)

This can be argued as follows: If only one queue of node i, say queue j, is non-
empty in state x, a type i,j packet must have been served by node 0 in the previous
time slot. After all, if a packet of another type would have been served by node 0,
that packet would arrive at node i in the next time slot, and its queue could not
be empty. This explains the first line of (7.4.3). If two queues are non-empty, the
server moves from queue xBi

to queue xBi+1 with probability Ri(xBi
, xBi+1). This

explains the second line of (7.4.3).
In order to determine which one of (7.4.2a) and (7.4.2b) we have to substitute on

the right hand side of the balance equations, we need to determine Vi(j, x1, . . . , xBi
).

We have:

Vi(j, x1, . . . , xBi
) =

{
Vi(x) ∪ {xBi

} \ {j}, if j 6= xBi
and j ∈ Wi(x),

Vi(x) ∪ {xBi
}, otherwise,

(7.4.4)

where Wi(x) ⊆ Vi(x) is, for state x, the set of queues of node i with precisely one
packet. We derive this equation for the case where node i has an arbitrary number of
queues: Suppose that the system is in state x at time t and in state (j, x1, . . . , xBi

)
at time t − 1. Because at time t there is only an arrival at queue j and a service
completion at queue xBi

, all other queues are empty at time t if and only if they
are empty at time t − 1. Queue xBi

is served at t − 1 so it must be non-empty at
time t − 1. Queue j of node i sees the arrival of a new packet at time t, so it is
empty at t−1 and non-empty at t if and only if it has precisely one packet at t (i.e.,
j ∈ Wi(x)) and was not served by node 0 at t − 1 (j 6= xBi

).
We now assume Vi(x) = {k}, and derive Equation (7.4.2a). Without loss of

generality, we furthermore assume that k = 1. It follows from the balance equa-
tions (7.4.3) that

πi(x) = πi(1, x1, . . . , xBi
).

Because queue 2 is empty (Vi(x) = {1}), queue 1 has more than one packet in
it (so Wi(x) = ∅). After all, if queue 1 has one packet in it and queue 2 zero,
Bi = Li,1 + Li,2 − 1, which was excluded by assumption. From Equation (7.4.4) it
follows that Vi(1, x1, . . . , xBi

) = {1} if xBi
= 1 and {1, 2} if xBi

= 2. By substituting
Equations (7.4.2a) and (7.4.2b) respectively on the right hand side of the balance
equations, we obtain:

πi(x)






Ci
σi(1)

Ri(2,1)Ri(1, 1)Ri(1, x1)
Bi−1∏
j=1

Ri(xj , xj+1) if xBi
= 1,

Ciσi(1)Ri(1, x1)
Bi−1∏
j=1

Ri(xj , xj+1) if xBi
= 2.

7.4 Bernoulli service and Markovian routing 133

Finally, observe that xBi+1 = 1 because Vi(x) = {1} (i.e., if queue 1 is the only non-
empty queue, it has to be served), so the two expressions above indeed correspond
to (7.4.2a).

We assume now that Vi(x) = {1, 2} and derive Equation (7.4.2b). For Vi(x) =
{1, 2}, the balance equations are given by:

πi(x) =

2∑

j=1

πi(j, x1, . . . , xBi
)Ri(xBi

, xBi+1).

Using (7.4.4), we can determine for each j and xBi
whether we have to substi-

tute (7.4.2a) or (7.4.2b) on the right hand side of the expression above. We obtain:

πi(x) =





Ci

[
σi(1)

Ri(2,1)Ri(2, 1)Ri(1, x1) + σi(2)Ri(2, x1)
] Bi∏

j=1

Ri(xj , xj+1),

if xBi
= 2 and 1 ∈ Wi(x),

Ci

[
σi(1)Ri(1, x1) + σi(1)

Ri(2,1)Ri(1, 2)Ri(2, x1)
] Bi∏

j=1

Ri(xj , xj+1),

if xBi
= 1 and 2 ∈ Wi(x),

Ci [σi(1)Ri(1, x1) + σi(2)Ri(2, x1)]
Bi∏
j=1

Ri(xj , xj+1),

otherwise.

From Equation (7.4.1), we get σi(1)
Ri(2,1)Ri(1, 2) = σi(2), which, for all three cases,

leads to

πi(x) = Ci [σi(1)Ri(1, x1) + σi(2)Ri(2, x1)]

Bi∏

j=1

Ri(xj , xj+1)

= Ciσi(x1)

Bi∏

j=1

Ri(xj , xj+1),

again by Equation (7.4.1).

Remark 7.4.2. Random polling is a special case of Bernoulli service with Marko-
vian routing, where Ri(j, k) = Pi(k) and hence σi(k) = Pi(k). It is easily verified
that Equation (7.2.2) is indeed a special case of Equations (7.4.2a) and (7.4.2b).

The throughput results of Section 7.3 can be straightforwardly extended to sys-
tems with Bernoulli service and Markovian routing. As with random polling, the
packets move cyclically through the network if the buffer of node i is large enough
to store all type i packets except 1. Because node 0 is always non-empty, the prob-
ability that node 0 is serving queue i is σ0(i), and we obtain:

134 Polling tree networks with flow control

Proposition 7.4.3. If Bi ≥
∑

j Li,j − 1,

γi,j = σ0(i)
Li,j∑

k

Li,k

. (7.4.5)

If the buffers are not large enough, the throughput is obtained using the equilib-
rium distribution of the Markov chain, which, although not analytically available,
can be determined numerically for small systems. To be precise, we have:

Proposition 7.4.4. If Bi <
∑

j Li,j − 1,

γi,j = σ0(i)
∑

x∈Ωi
x1=j

πi(x). (7.4.6)

Finally, if the buffer is small a further simplification is possible, similar to Propo-
sition 7.3.3 for random polling. Namely, if the buffer is too small to store all type i,j
packets, for any j, all queues of node i are always non-empty so the probability that
a type i,j packet is served by node i (and hence the probability that x1 = j) is σi(j).
We thus obtain:

Proposition 7.4.5. If Bi < Li,j for all j,

γi,j = σ0(i)σi(j). (7.4.7)

7.5 Numerical analysis

The analysis of the previous sections illustrates that the division of throughput
is determined by an interaction between the flow control mechanism and the service
disciplines: For small buffers, the throughput division is determined by the service
disciplines, for large buffers by the flow control mechanism, and for intermediate
buffers by a mix of the two. For intermediate buffers the throughput division can
be determined using the Markov chain approach. This approach by itself, however,
offers little insight in the precise interaction between the flow control limitations
and the service disciplines. In this section, we therefore study how the throughput
depends on the different parameters through a numerical study.

We consider a network in which node i has four queues and uses random polling.
We focus on the throughput given that node 0 is always serving queue i, i.e., on
γ̃i,j . The actual throughput in the network can easily be found by multiplying that
throughput by the probability that node 0 is serving queue i. The running example
of this section has the following parameters: Bi = 32, Pi = (0.1, 0.2, 0.3, 0.4), and
Li = (20, 16, 12, 8). We vary one of these parameters at a time, and study how this
affects the throughput division.

First, we show the throughput division in Figure 7.3 for Bi ranging from 1 to
64. This figure clearly illustrates that the throughput is determined by the service

7.5 Numerical analysis 135

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5
Type i,1
Type i,2
Type i,3
Type i,4

Bi

γ̃
i
,j

Figure 7.3: The division of throughput for various buffer sizes.

disciplines for small buffers, and by the flow control mechanism for large buffers.
However, the transition from the small buffer regime to the large buffer regime does
not occur monotonously; the throughput of some packet types first increases and
later decreases.

We can explain this phenomenon by looking at the number of packets in queue i
of node 0. As the buffer size grows, the number of type i,j packets in queue i
of node 0 gets closer to the maximal number allowed by flow control. The flow
control restrictions thus cause some queues to remain empty and the throughput
of corresponding packet types to decrease. If some queues are empty, the other
non-empty queues are served with a higher probability and the throughput of the
corresponding packet types will increase. As the buffer size grows even further, the
flow control restrictions on these packet types will become stronger as well, which
can cause their throughput to fall again.

For example, if Bi is equal to twelve, the mean number of type i,4 packets in
queue i of node 0 is roughly five (see Equation (7.3.6)), out of eight allowed by
flow control. On the other hand, the mean number of type i,3 packets in queue i
of node 0 is roughly four, out of twelve allowed. The flow control restrictions on
type i,4 packets are thus more severe than those on type i,3 packets. As the buffer
size Bi increases further, the throughput of type i,4 will hence decrease and that of
type i,3 will grow.

When Bi is twenty-five, there are on average roughly eight type i,3 packets in
queue i of node 0, out of twelve allowed. Flow control restrictions have thus become
more severe for this type, and its throughput will decrease again.

That some packet types benefit from the flow control restrictions on other packet
types is especially clear for type i,1 packets. Queue 1 of node i is served with
a 0.1 probability, and only when the other queues are frequently empty due to
the flow control restrictions, type i,1 packets will receive a more significant part
of the throughput. Figure 7.3 clearly illustrates this: The throughput of type i,1
experiences a sharp increase when the throughputs of all other types decrease.

We consider again the running example, i.e., we set Bi = 32. In Table 7.1,

136 Polling tree networks with flow control

j = 1 j = 2 j = 3 j = 4

Pi(j) 0.1 0.2 0.3 0.4
Li,j 20 16 12 8
γ̃i,j 0.1512 0.3016 0.3198 0.2274

E[Q
(0)
i,j] 4.84 9.65 10.23 7.28

E[Q
(0)
i,j]/Li,j 0.24 0.60 0.85 0.91

Table 7.1: Parameters and performance measures of the running example.

we show E[Q
(0)
i,j], the expected number of type i,j packets in node 0, as well as

E[Q
(0)
i,j]/Li,j , the expected number of type i,j packets in node 0 relative to its max-

imum. Based on the discussion above, the latter can be seen as a (rough) measure
for how strong the flow control restrictions are; the closer to 1, the stronger the
flow control restrictions. Table 7.1 reveals that type i,1 packets are not strongly re-
stricted by flow control, but type i,4 packets are; the expected number of packets in
node 0 relative to its maximum is 0.24 and 0.91 for type i,1 and type i,4 respectively.

We proceed by investigating the sensitivity of the throughput of these packet
types on changes in the flow control limits and service disciplines for the running
example, i.e., we vary one of the values of Li,j and Pi(j) for j = 1, 4. Here, the
value of Pi(j) is varied for one specific j, while maintaining the ratios between the
other values of Pi(k), for k 6= j, and maintaining a total sum of 1.

Figures 7.4a and 7.4b show the throughput of type i,1 packets as a function of
Pi(1) and Li,1, respectively. For both figures, a vertical line marks the value on the
x-axis corresponding to the running example. Clearly, the throughput of type i,1
packets is not sensitive to a change in its flow control limit but it is sensitive to a
change in the service discipline; the throughput hardly changes if the flow control
limit is changed but it does change if the service discipline is changed.

In contrast, Figures 7.5a and 7.5b show the sensitivity of type i,4 throughput
on changes in its flow control limit and the service discipline, where the running
example is again marked by a vertical line. The throughput of type i,4 is not
sensitive to a change in the service discipline, but it is sensitive to a change in the
flow control limit.

These observations can be used to decide whether flow control limits or service
disciplines have to be adjusted when the throughput division over various packet
types has to be changed. If a packet type is strongly restricted by the flow control
mechanism, the flow control limits should be changed, and otherwise the service
discipline of node i should be changed.

7.6 Conclusion

We modelled a saturated concentrating tree network with flow control as a closed
network. The equilibrium distribution of the Markov chain describing this network
can be derived in closed form for the random polling discipline and for polling

7.6 Conclusion 137

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Type i,1

Li,1

γ̃
i
,
1

(a) Throughput as a function of Li,1.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Type i,1

Pi(1)

γ̃
i
,
1

(b) Throughput as a function of Pi(1).

Figure 7.4: The type i,1 throughput as a function of Li,1 and Pi(1). The vertical line
corresponds to the ‘running example’.

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Type i,4

Li,4

γ̃
i
,
4

(a) Throughput as a function of Li,4.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Type i,4

Pi(4)

γ̃
i
,
4

(b) Throughput as a function of Pi(4).

Figure 7.5: The type i,4 throughput as a function of Li,4 and Pi(4). The vertical line
corresponds to the ‘running example’.

138 Polling tree networks with flow control

stations with two queues and Bernoulli service combined with Markovian routing.
Although we could not determine the equilibrium distribution analytically for polling
stations with more than two queues and Bernoulli service combined with Markovian
routing, the latter can be obtained numerically for small systems.

The division of throughput over various packet types can be determined using
the results of the Markov chain approach. For small buffers, this throughput divi-
sion is fully determined by the service disciplines, and for large buffers by the flow
control mechanism. For intermediate buffers the throughput division is steered by
an interaction between the two. We performed a numerical study that provides
more insight in the specifics of this interaction.

The numerical study showed that the transition from the small buffer regime to
the large buffer regime does not necessarily occur monotonously. If there are many
packets of the same type in node 0, flow control restrictions become stronger, which
limits the throughput of that type. The throughput that becomes available as a
result is divided over the other packet types for which the flow control restrictions
are less severe, which causes their throughput to rise. If the buffer size is increased
even further, the number of packets of those types in node 0 also increases, which
causes flow control limitations to become stronger and their throughput to decrease
again.

The expected number of packets of different types in node 0 provides insight
in the extent to which packet types are restricted by flow control, which in turn
determines which parameters should be changed if the throughput division has to
be adjusted: If almost all packets of the same type are in node 0, flow control plays
a key role. Changing flow control limits will thus affect the throughput of that
type, but changing the service discipline parameters will not. On the other hand, if
not many packets are in node 0, service disciplines play a key role. Changing flow
control limits thus has little effect, but changing service discipline parameters has a
large effect.

The phenomena described above were only analysed for the network with two
layers of polling stations and random polling. These phenomena, however, occur in
more complex tree networks as well; additional simulations have revealed that they
also occur in networks of three layers and networks with the cyclic 1-limited service
discipline.

References

[1] I.J.B.F. Adan, A Compensation Approach for Queueing Problems, Ph.D. the-
sis, Eindhoven University of Technology, 1991.

[2] I.J.B.F. Adan, O.J. Boxma, and J.A.C. Resing, Queueing models with multiple
waiting lines, Queueing Systems 37 (2001), no. 1–3, pp. 65–98.

[3] I.J.B.F. Adan and J.A.C. Resing, Queueing Theory, Lecture notes, Eindhoven
University of Technology, www.win.tue.nl/~iadan/queueing.pdf.

[4] I.J.B.F. Adan, J. Wessels, and W.H.M. Zijm, A compensation approach
for two-dimensional Markov processes, Advances in Applied Probability 25

(1993), no. 4, pp. 783–817.

[5] A. Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez, and C.A. Zeferino,
SPIN: A scalable, packet switched, on-chip micro-network, Proc. of DATE,
2003, pp. 70–73.

[6] I.F. Akyildiz, On the exact and approximate throughput analysis of closed
queuing networks with blocking, IEEE Transactions on Software Engineering
14 (1988), no. 1, pp. 62–70.

[7] E. Altman and U. Yechiali, Polling in a closed network, Probability in the
Engineering and Informational Sciences 8 (1994), pp. 327–343.

[8] R. Armony and U. Yechiali, Polling systems with permanent and transient
jobs, Stochastic Models 15 (1999), no. 3, pp. 395–427.

[9] B. Avi-Itzhak, A sequence of service stations with arbitrary input and regular
service times, Management Science 11 (1965), no. 5, pp. 565–571.

[10] F. Baccelli and T. Bonald, Window flow control in FIFO networks with cross
traffic, Queueing Systems 32 (1999), no. 1, pp. 195–231.

[11] S. Balsamo, V. De Nitto Personé, and R.O. Onvural, Analysis of Queueing
Networks with Blocking, Kluwer Academic Publishers, Dordrecht, 2001.

[12] P. Beekhuizen, Mathematical modelling of networks-on-chips with best effort
traffic, Master’s thesis, Eindhoven University of Technology, November 2005.

139

www.win.tue.nl/~iadan/queueing.pdf

140 References

[13] P. Beekhuizen, T.J.J. Denteneer, and I.J.B.F. Adan, Analysis of a tandem net-
work model of a single-router network-on-chip, Annals of Operations Research
162 (2008), no. 1, pp. 19–34.

[14] P. Beekhuizen, T.J.J. Denteneer, and J.A.C. Resing, End-to-end delays in
polling tree networks, Proc. of ValueTools, 2008.

[15] P. Beekhuizen, T.J.J. Denteneer, and J.A.C. Resing, Reduction of a polling
network to a single node, Queueing Systems 58 (2008), no. 4, pp. 303–319.

[16] P. Beekhuizen and J.A.C. Resing, A saturated tree network of polling stations
with flow control, Submitted for publication.

[17] P. Beekhuizen and J.A.C. Resing, Approximation of discrete-time polling sys-
tems via structured Markov chains, Proc. of SMCTools, 2009.

[18] P. Beekhuizen and J.A.C. Resing, Performance analysis of small non-uniform
packet switches, Performance Evaluation 66 (2009), no. 11, pp. 640–659.

[19] L. Benini and G. de Micheli, Powering networks on chips, Proc. of ISSS, 2001,
pp. 33–38.

[20] L. Benini and G. De Micheli, Networks on chips: A new SoC paradigm, Com-
puter 35 (2002), pp. 70–78.

[21] D. Bertozzi and L. Benini, Xpipes: A network-on-chip architecture for giga-
scale systems-on-chip, IEEE Circuits and Systems Magazine 4 (2004), no. 2,
pp. 18–31.

[22] D.A. Bini, B. Meini, S. Steffé, and B. Van Houdt, Structured Markov chains
solver: Algorithms, Proc. of SMCTools, 2006.

[23] D.A. Bini, B. Meini, S. Steffé, and B. Van Houdt, Structured Markov chains
solver: Software tools, Proc. of SMCTools, 2006.

[24] C. Bisdikian, A note on the conservation law for queues with batch arrivals,
IEEE Transactions on Communications 41 (1993), no. 6, pp. 832–835.

[25] T. Bjerregaard and S. Mahadevan, A survey of research and practices of
Network-on-chip, ACM Computing Surveys 38 (2006), no. 1, pp. 1–51.

[26] J.P.C. Blanc, A numerical approach to cyclic-service queueing models, Queue-
ing Systems 6 (1990), no. 1, pp. 173–188.

[27] J.P.C. Blanc, The power-series algorithm applied to cyclic polling systems,
Stochastic Models 7 (1991), no. 4, pp. 527–545.

[28] J.P.C. Blanc, An algorithmic solution of polling models with limited service
disciplines, IEEE Transactions on Communications 40 (1992), no. 7, pp. 1152–
1155.

References 141

[29] J.P.C. Blanc, Performance evaluation of polling systems by means of the
power-series algorithm, Annals of Operations Research 35 (1992), no. 3,
pp. 155–186.

[30] N. Boot, Throughput and delay analysis for a single router in networks on
chip, Master’s thesis, Eindhoven University of Technology, June 2005.

[31] O.J. Boxma and W.P. Groenendijk, Two queues with alternating service and
switching times, Queueing Theory and its Applications: Liber Amicorum for
J.W. Cohen (O.J. Boxma and R. Syski, eds.), North-Holland, Amsterdam,
1988, pp. 261–282.

[32] O.J. Boxma and W.P. Groenendijk, Waiting times in discrete-time cyclic-
service systems, IEEE Transactions on Communications 36 (1988), no. 2,
pp. 164–170.

[33] O.J. Boxma and B.W. Meister, Waiting-time approximations for cyclic-service
systems with switch-over times, ACM SIGMETRICS Performance Evaluation
Review 14 (1986), no. 1, pp. 254–262.

[34] O.J. Boxma and B.W. Meister, Waiting-time approximations in multi-queue
systems with cyclic service, Performance Evaluation 7 (1987), no. 1, pp. 59–70.

[35] O.J. Boxma and G.J. van Houtum, The compensation approach applied to
a 2x2 switch, Probability in the Engineering and Informational Sciences 7

(1993), pp. 171—193.

[36] O.J. Boxma and J.A. Weststrate, Waiting times in polling systems with
Markovian server routing, Messung, Modellierung und Bewertung von Rechen-
systemen und Netzen (G. Stiege and J.S. Lie, eds.), Springer-Verlag, Berlin,
1989, pp. 89–105.

[37] H. Bruneel and B.G. Kim, Discrete Time Models for Communication Systems
including ATM, Kluwer Academic Publishers, Norwell, 1993.

[38] R.K.C. Chang and S. Lam, A novel approach to queue stability analysis of
polling models, Performance Evaluation 40 (2000), no. 1, pp. 27–46.

[39] J.S. Chen and T.E. Stern, Throughput analysis, optimal buffer allocation, and
traffic imbalance study of a generic nonblocking packet switch, IEEE Journal
on Selected Areas in Communications 9 (1991), no. 3, pp. 439–449.

[40] S.-T. Chuang, A. Goel, N.W. McKeown, and B. Prabhakar, Matching out-
put queueing with a combined input/output-queued switch, IEEE Journal on
Selected Areas in Communications 17 (1999), no. 6, pp. 1030–1039.

[41] J.W. Cohen, On the determination of the stationary distribution of a symmet-
ric clocked buffered switch, CWI report BS-R9427, 1994.

142 References

[42] J.W. Cohen, On the asymmetric clocked buffered switch, Queueing Systems
30 (1998), no. 3, pp. 385–404.

[43] J.W. Cohen and O.J. Boxma, The M/G/1 queue with alternating servic for-
mulated as a Riemann-Hilbert problem, Performance ’81 (F.J. Kylstra, ed.),
North-Holland, Amsterdam, 1981, pp. 181–199.

[44] J.W. Cohen and O.J. Boxma, Boundary Value Problems in Queueing System
Analysis, North-Holland, Amsterdam, 1983.

[45] J.G. Dai and J.M. Harrison, The QNET method for two-moment analysis of
closed manufacturing systems, The Annals of Applied Probability 3 (1993),
no. 4, pp. 968–1012.

[46] J.G. Dai and B. Prabhakar, The throughput of data switches with and without
speedup, Proc. of IEEE INFOCOM, 2000, pp. 556–564.

[47] Y. Dallery and Y. Frein, On decomposition methods for tandem queueing net-
works with blocking, Operations Research 41 (1993), no. 2, pp. 386–399.

[48] Y. Dallery and S.B. Gershwin, Manufacturing flow line systems: A review of
models and analytical results, Queueing Systems 12 (1992), no. 1, pp. 3–94.

[49] W.J. Dally and B. Towles, Route packets, not wires: On-chip interconnection
networks, Proc. of the Design Automation Conference, 2001, pp. 684–689.

[50] B. Desert and H. Daduna, Discrete time tandem networks of queues: Effects of
different regulation schemes for simultaneous events, Performance Evaluation
47 (2002), no. 2, pp. 73–104.

[51] H. Dror and U. Yechiali, Closed polling models with failing nodes, Queueing
Systems 35 (2000), no. 1, pp. 55–81.

[52] M. Eisenberg, Two queues with alternating service, SIAM Journal of Applied
Mathematics 36 (1979), no. 2, pp. 287–303.

[53] G. Fayolle and R. Iasnogorodski, Two coupled processors: The reduction to a
Riemann-Hilbert problem, Probability Theory and Related Fields 47 (1979),
no. 3, pp. 325–351.

[54] G. Fayolle, V.A. Malyshev, and M.V. Menshikov, Topics in the Constructive
Theory of Countable Markov Chains, Cambridge University Press, 1995.

[55] W. Feng, M. Kowada, and K. Adachi, A two-queue model with Bernoulli
service schedule and switching times, Queueing Systems 30 (1998), no. 3–4,
pp. 405–434.

[56] L. Flatto and H.P. McKean, Two queues in parallel, Communications on Pure
and Applied Mathematics 30 (1977), no. 2, pp. 255–263.

References 143

[57] H.D. Friedman, Reduction methods for tandem queueing systems, Operations
Research 13 (1965), no. 1, pp. 121–131.

[58] I. Frigui and A.S. Alfa, Analysis of a discrete time table polling system with
MAP input and time-limited service discipline, Telecommunication Systems
12 (1999), no. 1, pp. 51–77.

[59] S.W. Fuhrmann and Y.T. Wang, Analysis of cyclic service systems with limited
service: Bounds and approximations, Performance Evaluation 9 (1988), no. 1,
pp. 35–54.

[60] M. Garetto, R.L. Cigno, M. Meo, and M. Ajmone Marsan, A detailed and
accurate closed queueing network model of many interacting TCP flows, Proc.
of IEEE INFOCOM, 2001, pp. 1706–1715.

[61] M. Gerla and L. Kleinrock, Flow control: A comparative study, IEEE Trans-
actions on Communications 28 (1980), no. 4, pp. 553–574.

[62] S. González Pestana, E. Rijpkema, A. Rădulescu, K. Goossens, and O.P.
Gangwal, Cost-performance trade-offs in networks on chips: A simulation
based approach, Proc. of DATE, 2004, pp. 764–769.

[63] K. Goossens, J. Dielissen, J. Van Meerbergen, P. Poplavko, A. Rădulescu,
E. Rijpkema, E. Waterlander, and P. Wielage, Guaranteeing the quality of
services in networks on chip, Networks on Chips (A. Jantsch and H. Tenhunen,
eds.), Kluwer, Dordrecht, 2003, pp. 61–82.

[64] K. Goossens, J. Dielissen, and A. Rădulescu, Æthereal network on chip: Con-
cepts, architectures, and implementations, IEEE Journal on Design & Test of
Computers 22 (2005), no. 5, pp. 414–421.

[65] K. Goossens, L. Mhamdi, and I.V. Seńın, Internet-router buffered crossbars
based on networks on chip, Proc. of Euromicro Symposium on DSD.

[66] K. Goossens and A. Rădulescu, Communication services for networks on chip,
Domain-Specific Processors: Systems, Architectures, Modeling, and Simula-
tion (S.S. Bhattacharyya, E.F. Deprettere, and J. Teich, eds.), Marcel Dekker,
2004, pp. 193–213.

[67] A. Gravey and G. Hébuterne, Simultaneity in discrete-time single server
queues with Bernoulli inputs, Performance Evaluation 14 (1992), no. 2,
pp. 123–131.

[68] W.P. Groenendijk and H. Levy, Performance analysis of transaction driven
computer systems via queueing analysis of polling models, IEEE Transactions
on Computers 41 (1992), no. 4, pp. 455–466.

[69] P. Guerrier and A. Greiner, A generic architecture for on-chip packet-switched
interconnections, Proc. of DATE, 2000, pp. 250–256.

144 References

[70] A.K. Gupta and N.D. Georganas, Analysis of a packet switch with input and
output buffers and speed constraints, Proc. of IEEE INFOCOM, 1991, pp. 694–
700.

[71] A. Hansson, K. Goossens, and A. Rădulescu, A unified approach to con-
strained mapping and routing on network-on-chip architectures, Proc. of
CODES+ISSS, 2005, pp. 75–80.

[72] O.C. Ibe and X. Cheng, Stability conditions for multiqueue systems with cyclic
service, IEEE Transactions on Automatic Control 33 (1988), no. 1, pp. 102–
103.

[73] I. Iliadis and W.E. Denzel, Analysis of packet switches with input and output
queuing, IEEE Transactions on Communications 41 (1993), no. 5, pp. 731–
740.

[74] S. Jaffe, Equilibrium results for a pair of coupled discrete-time queues, Ul-
tracomputer Note, NYA Ultracomputer Research Lab, Courant Institute of
Mathematical Sciences, New York, 1989.

[75] S. Jaffe, The equilibrium distribution for a clocked buffered switch, Probability
in the Engineering and Informational Sciences 6 (1992), pp. 425–438.

[76] M.J. Karol, K.Y. Eng, and H. Obara, Improving the performance of input-
queued ATM packet switches, Proc. of IEEE INFOCOM, 1992, pp. 110–115.

[77] M.J. Karol, M.G. Hluchyj, and S.P. Morgan, Input versus output queueing
on a space-division packet switch, IEEE Transactions on Communications 35

(1987), no. 12, pp. 1347–1356.

[78] J. Keilson and L.D. Servi, Oscillating random walk models for GI/G/1 va-
cation systems with Bernoulli schedules, Journal of Applied Probability 23

(1986), no. 3, pp. 790–802.

[79] H. Kim and K. Kim, Performance analysis of the multiple input-queued packet
switch with the restricted rule, IEEE/ACM Transactions on Networking 11

(2003), no. 3, pp. 478–487.

[80] H. Kim, K. Kim, and Y. Lee, Derivation of the mean cell delay and cell loss
probability for multiple input-queued switches, IEEE Communications Letters
4 (2000), no. 4, pp. 140–142.

[81] J.F.C. Kingman, Two similar queues in parallel, The Annals of Mathematical
Statistics (1961), no. 4, pp. 1314–1323.

[82] L. Kleinrock, Queueing Systems. Volume I: Theory, John Wiley & sons, New
York, 1975.

References 145

[83] L. Kleinrock, Queueing Systems. Volume II: Computer Applications, John
Wiley & sons, New York, 1976.

[84] L. Kleinrock and H. Levy, The analysis of random polling systems, Operations
Research 36 (1988), no. 5, pp. 716–732.

[85] C. Kolias and L. Kleinrock, The odd-even input-queueing ATM switch: Per-
formance evaluation, Proc. of IEEE ICC, 1996, pp. 1674–1679.

[86] C. Kolias and L. Kleinrock, Throughput analysis of multiple input-queueing
in ATM switches, Proc. of Broadband Communications (L. Mason and
A. Casaca, eds.), Chapman & Hall, London, 1996, pp. 382–393.

[87] D.D. Kouvatsos and N.P. Xenios, Maximum entropy analysis of general queue-
ing networks with blocking, First International Conference on Queueing Net-
works with Blocking (H.G. Perros and T. Altiok, eds.), 1989, pp. 281–309.

[88] D.D. Kouvatsos and N.P. Xenios, MEM for arbitrary queueing networks with
multiple general servers and repetitive-service blocking, Performance Evalua-
tion 10 (1989), no. 3, pp. 169–195.

[89] P. Krishna, N.S. Patel, A. Charny, and R.J. Simcoe, On the speedup required
for work-conserving crossbar switches, IEEE Journal on Selected Areas in
Communications 17 (1999), no. 6, pp. 1057–1066.

[90] K. Lahiri, A. Raghunathan, and S. Dey, Design space exploration for optimiz-
ing on-chip communication architectures, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 23 (2004), no. 6, pp. 952–
961.

[91] G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in
Stochastic Modeling, SIAM, Philadelphia, 1999.

[92] D-S. Lee and B. Sengupta, An approximate analysis of a cyclic server queue
with limited service and reservations, Queueing Systems 11 (1992), no. 1–2,
pp. 153–178.

[93] H.G. Lee, N. Chang, U.Y. Ogras, and R. Marculescu, On-chip communica-
tion architecture exploration: A quantitative evaluation of point-to-point, bus,
and network-on-chip approaches, ACM Transactions on Design Automation
of Electronic Systems 12 (2007), no. 3, pp. 1–20.

[94] K.K. Leung, Cyclic-service systems with probabilistically-limited service, IEEE
Journal on Selected Areas in Communications 9 (1991), no. 2, pp. 185–193.

[95] S.-Q. Li, Nonuniform traffic analysis on a nonblocking space-division packet
switch, IEEE Transactions on Communications 38 (1990), no. 7, pp. 1085–
1096.

146 References

[96] S.-Q. Li, Performance of a nonblocking space-division packet switch with cor-
related input traffic, IEEE Transactions on Communications 40 (1992), no. 1,
pp. 97–108.

[97] M. Mandjes and M. van Uitert, Sample-path large deviations for tandem and
priority queues with Gaussian inputs, Annals of Applied Probability 15 (2005),
no. 2, pp. 1193–1226.

[98] N.W. McKeown, Scheduling Algorithms for Input-Queued Cell Switches, Ph.D.
thesis, Univ. California, Berkeley, 1995.

[99] N.W. McKeown, The iSLIP scheduling algorithm for input-queued switches,
IEEE/ACM Transactions on Networking 7 (1999), no. 2, pp. 188–201.

[100] N.W. McKeown and T.E. Anderson, A quantitative comparison of itera-
tive scheduling algorithms for input-queued switches, Computer Networks and
ISDN Systems 30 (1998), no. 24, pp. 2309–2326.

[101] N.W. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, Achieving
100% throughput in an input-queued switch, IEEE Transactions on Commu-
nications 47 (1999), no. 8, pp. 1260–1267.

[102] M. Millberg, E. Nilsson, R. Thid, S. Kumar, and A. Jantsch, The Nostrum
backbone - a communication protocol stack for networks on chip, Proc. of
VLSID, 2004, pp. 693–696.

[103] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost, HERMES: An infra-
structure for low area overhead packet-switching networks on chip, Integration,
the VLSI Journal 38 (2004), no. 1, pp. 69–93.

[104] J.A. Morrison, A combinatorial lemma and its application to concentrating
trees of discrete-time queues, The Bell Systems Technical Journal 57 (1978),
no. 5, pp. 1645–1652.

[105] M.J. Neely, C.E. Rohrs, and E. Modiano, Equivalent models for queueing
analysis of deterministic service time tree networks, IEEE Transactions on
Information Theory 51 (2005), no. 10, pp. 1–10.

[106] M.F. Neuts, Structured Stochastic Matrices of M/G/1 Type and their Appli-
cations, Probability: Pure and Applied, vol. 5, Marcel Dekker Inc., New York,
1989.

[107] M.F. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorith-
mic Approach, Dover Publications, New York, 1994.

[108] U.Y. Ogras and R. Marculescu, Analytical router modeling for networks-on-
chip performance analysis, Proc. of DATE, 2007, pp. 1096–1101.

References 147

[109] Y. Oie, M. Murata, K. Kubota, and H. Miyahara, Performance analysis of
nonblocking packet switch with input and output buffers, IEEE Transactions
on Communications 40 (1992), no. 8, pp. 1294–1297.

[110] R.O. Onvural, Survey of closed queueing networks with blocking, ACM Com-
puting Surveys 22 (1990), no. 2, pp. 83–121.

[111] A. Pattavina and G. Bruzzi, Analysis of input and output queueing for non-
blocking ATM switches, IEEE/ACM Transactions on Networking 1 (1993),
no. 3, pp. 314–328.

[112] H.G. Perros, Queueing Networks with Blocking, Oxford University Press, New
York, 1994.

[113] B. Prabhakar and N.W. McKeown, On the speedup required for combined
input- and output-queued switching, Automatica 35 (1999), no. 12, pp. 1909–
1920.

[114] A. Rădulescu, J. Dielissen, K. Goossens, E. Rijpkema, and P. Wielage, An ef-
ficient on-chip network interface offering guaranteed services, shared memory
abstraction, and flexible network configuration, Proc. of DATE, 2004, pp. 878–
883.

[115] M.I. Reiman and L.M. Wein, Heavy traffic analysis of polling systems in tan-
dem, Operations Research 47 (1999), no. 4, pp. 524–534.

[116] M. Reiser, A queueing network analysis of computer communication networks
with window flow control, IEEE Transactions on Communications 27 (1979),
no. 8, pp. 1199–1209.

[117] J.A.C. Resing, Polling systems and multitype branching processes, Queueing
Systems 13 (1993), no. 4, pp. 409–426.

[118] J.A.C. Resing and L. Örmeci, A tandem queueing model with coupled proces-
sors, Operations Research Letters 31 (2003), no. 5, pp. 383–389.

[119] S.I. Resnick, Adventures in Stochastic Processes, 2nd ed., Birkhäuser, Boston,
1994.

[120] E. Rijpkema, K. Goossens, A. Rădulescu, J. Dielissen, J. van Meerbergen,
P. Wielage, and E. Waterlander, Trade offs in the design of a router with
both guaranteed and best-effort services for networks on chip, IEE Proceedings
Computers and Digital Techniques 150 (2003), no. 5, pp. 294–302.

[121] I. Rubin, Communication networks: Message path delays, IEEE Transactions
on Information Theory 20 (1974), no. 6, pp. 738–745.

[122] I. Rubin, Message path delays in packet-switching communication networks,
IEEE Transactions on Communications 23 (1975), no. 2, pp. 186–192.

148 References

[123] I. Rubin, An approximate time-delay analysis for packet-switching commu-
nication networks, IEEE Transactions on Communications 24 (1976), no. 2,
pp. 210–222.

[124] I. Rubin and L.F.M. de Moraes, Message delay analysis for polling and token
multiple-access schemes for local communication networks, IEEE Journal on
Selected Areas in Communications 1 (1983), no. 5, pp. 935–947.

[125] D. Shah and D. Wischik, Optimal scheduling algorithms for input-queued
switches, Proc. of IEEE INFOCOM (2006), pp. 1–11.

[126] M.S. Shalmon, Exact delay analysis of packet-switching concentrating net-
works, IEEE Transactions on Communications 35 (1987), no. 12, pp. 1265–
1271.

[127] M.S. Shalmon and M.A. Kaplan, A tandem network of queues with determin-
istic service and intermediate arrivals, Operations Research 32 (1984), no. 4,
pp. 753–773.

[128] M.M. Srinivasan, An approximation for mean waiting times in cyclic server
systems with nonexhaustive service, Performance Evaluation 9 (1988), no. 1,
pp. 17–33.

[129] M.M. Srinivasan, Non-deterministic polling systems, Management Science 37

(1991), no. 6, pp. 667–681.

[130] S. Stidham jr., A last word on L = λW , Operations Research 22 (1974), no. 2,
pp. 417–421.

[131] R. Suri and G.W. Diehl, A variable buffer-size model and its use in analyzing
closed queueing networks with blocking, Management Science 32 (1986), no. 2,
pp. 206–224.

[132] H. Takagi, Analysis of Polling Systems, MIT Press, Cambridge, Mas-
sachusetts, 1986.

[133] H. Takagi, Queueing analysis of polling models: An update, Stochastic Analy-
sis of Computer and Communication Systems (H. Takagi, ed.), North-Holland,
1990, pp. 267–318.

[134] H. Takagi, Queueing Analysis: A Foundation of Performance Evaluation, vol.
3: Discrete-time systems, North-Holland, Amsterdam, 1993.

[135] H. Takagi, Queueing analysis of polling models: Progress in 1990-1994, Fron-
tiers in Queueing: Models and Applications in Science and Engineering (J.H.
Dshalalow, ed.), CRC Press, Boca Raton, 1997, pp. 119–146.

[136] Y. Tamir and G.L. Frazier, High-performance multiqueue buffers for VLSI
communication switches, Computer Architecture News 16 (1988), no. 2,
pp. 343–354.

References 149

[137] T.E. Tedijanto, Exact results for the cyclic-service queue with a Bernoulli
schedule, Performance Evaluation 11 (1990), no. 2, pp. 107–115.

[138] J.S.H. van Leeuwaarden, Queueing Models for Cable Access Networks, Ph.D.
thesis, Eindhoven University of Technology, 2005.

[139] J.S.H. van Leeuwaarden and J.A.C. Resing, A tandem queue with coupled pro-
cessors: Computational issues, Queueing Systems 51 (2005), no. 1–2, pp. 29–
52.

[140] M. van Vuuren and E.M.M. Winands, Iterative approximation of k-limited
polling systems, Queueing Systems 55 (2007), no. 3, pp. 161–178.

[141] G.V. Varatkar and R. Marculescu, On-chip traffic modeling and synthesis for
MPEG-2 video applications, IEEE Transactions on VLSI Systems 12 (2004),
no. 1, pp. 108–119.

[142] V.M. Vishnevskii and O.V. Semenova, Mathematical methods to study the
polling systems, Automation and Remote Control 67 (2006), no. 2, pp. 173–
220.

[143] J.A. Weststrate, Analysis and Optimization of Polling Models, Ph.D. thesis,
Tilburg University, 1992.

[144] J.A. Weststrate and R.D. van der Mei, Waiting times in a two-queue model
with exhaustive and Bernoulli service, Mathematical Methods of Operations
Research 40 (1994), no. 3, pp. 289–303.

[145] W. Whitt, A review of L = λW and extensions, Queueing Systems 9 (1991),
pp. 235–268.

[146] P. Wielage, E.J. Marinissen, M. Altheimer, and C. Wouters, Design and DfT
of a high-speed area-efficient embedded asynchronous FIFO, Proc. of DATE,
2007, pp. 853–858.

[147] E.M.M. Winands, Mean value analysis for polling systems, Queueing Systems
54 (2006), no. 1, pp. 35–44.

[148] R.W. Wolff, Poisson arrivals see time averages, Operations Research 30

(1982), no. 2, pp. 223–231.

[149] Y. Xiong and H. Bruneel, Buffer contents and delay for statistical multiplex-
ers with fixed-length packet-train arrivals, Performance Evaluation 17 (1993),
no. 1, pp. 31–42.

[150] D.D. Yao and J.A. Buzacott, The exponentialization approach to flexible man-
ufacturing system models with general processing times., European Journal of
Operational Research 24 (1986), no. 3, pp. 410–416.

150 References

[151] K. Yoshigoe and K.J. Christensen, An evolution to crossbar switches with
virtual output queuing and buffered cross points, IEEE Network 17 (2003),
no. 5, pp. 48–56.

Summary

Performance Analysis of
Networks on Chips

Modules on a chip (such as processors and memories) are traditionally connected
through a single link, called a bus. As chips become more complex and the number
of modules on a chip increases, this connection method becomes inefficient because
the bus can only be used by one module at a time.

Networks on chips are an emerging technology for the connection of on-chip
modules. In networks on chips, switches are used to transmit data from one module
to another, which entails that multiple links can be used simultaneously so that
communication is more efficient.

Switches consist of a number of input ports to which data arrives and output
ports from which data leaves. If data at multiple input ports has to be transmitted
to the same output port, only one input port may actually transmit its data, which
may lead to congestion.

Queueing theory deals with the analysis of congestion phenomena caused by
competition for service facilities with scarce resources. Such phenomena occur, for
example, in traffic intersections, manufacturing systems, and communication net-
works like networks on chips. These congestion phenomena are typically analysed
using stochastic models, which capture the uncertain and unpredictable nature of
processes leading to congestion (such as irregular car arrivals to a traffic intersec-
tion). Stochastic models are useful tools for the analysis of networks on chips as
well, due to the complexity of data traffic on these networks. In this thesis, we
therefore study queueing models aimed at networks on chips.

The thesis is centred around two key models: A model of a switch in isolation,
the so-called single-switch model, and a model of a network of switches where all
traffic has the same destination, the so-called network of polling stations. For both
models we are interested in the throughput (the amount of data transmitted per
time unit) and the mean delay (the time it takes data to travel across the network).

151

152 Summary

Single-switch models are often studied under the assumption that the number
of ports tends to infinity and that traffic is uniform (i.e., on average equally many
packets arrive to all buffers, and all possible destinations are equally likely). In
networks on chips, however, the number of buffers is typically small. We introduce a
new approximation specifically aimed at small switches with (memoryless) Bernoulli
arrivals. We show that, for such switches, this approximation is more accurate than
currently known approximations.

As traffic in networks on chips is usually non-uniform, we also extend our ap-
proximation to non-uniform switches. The key difference between uniform and non-
uniform switches is that in non-uniform switches, all queues have a different max-
imum throughput. We obtain a very accurate approximation of this throughput,
which allows us to extend the mean delay approximation. The extended approxima-
tion is derived for Bernoulli arrivals and correlated arrival processes. Its accuracy
is verified through a comparison with simulation results.

The second key model is that of concentrating tree networks of polling stations
(polling stations are essentially switches where all traffic has the same output port
as destination). Single polling stations have been studied extensively in literature,
but only few attempts have been made to analyse networks of polling stations. We
establish a reduction theorem that states that networks of polling stations can be
reduced to single polling stations while preserving some information on mean waiting
times. This reduction theorem holds under the assumption that the last node of the
network uses a so-called HoL-based service discipline, which means that the choice
to transmit data from a certain buffer may only depend on which buffers are empty,
but not on the amount of data in the buffers.

The reduction theorem is a key tool for the analysis of networks of polling sta-
tions. In addition to this, mean waiting times in single polling stations have to be
calculated, either exactly or approximately. To this end, known results can be used,
but we also devise a new single-station approximation that can be used for a large
subclass of HoL-based service disciplines.

Finally, networks on chips typically implement flow control, which is a mecha-
nism that limits the amount of data in the network from one source. We analyse the
division of throughput over several sources in a network of polling stations with flow
control. Our results indicate that the throughput in such a network is determined
by an interaction between buffer sizes, flow control limits, and service disciplines.
This interaction is studied in more detail by means of a numerical analysis.

About the author

Paul Beekhuizen was born in Rotterdam on April 15th of 1982. Paul attended high
school at the Jacob-Roelandslyceum in Boxtel, where he graduated in 2000. After
that he studied industrial and applied mathematics at Eindhoven University of Tech-
nology, where he obtained his Bachelor degree in 2003 and his Master degree in 2005
(both cum laude). For the final project of his Master program, Paul did research
on the performance analysis of networks on chips. This research was performed at
Philips Research, under the supervision of Dee Denteneer (Philips Research) and
Bert Zwart (Eindhoven University of Technology).

In December 2005, Paul started as a PhD student at Philips Research. During
his four year period as a PhD student, he had an additional affiliation with Euran-

dom. His supervisors were Dee Denteneer (Philips Research) and Jacques Resing
(Eindhoven University of Technology) and his promotor is Onno Boxma (Eindhoven
University of Technology).

153

	1 Introduction
	1.1 Networks on chips
	1.1.1 Quality of service
	1.1.2 Flow control
	1.1.3 Network topologies

	1.2 Switches
	1.2.1 Buffering strategies
	1.2.2 Throughput
	1.2.3 Switches in networks on chips

	1.3 Queueing theory
	1.3.1 General queueing systems
	1.3.2 Arrival models in discrete-time queueing systems

	1.4 Models
	1.4.1 Single-switch models
	1.4.2 Concentrating tree networks of polling stations

	1.5 Key results and organisation of the thesis

	2 Uniform switches
	2.1 Model
	2.2 Approximations for K=1
	2.2.1 The KHM approximation
	2.2.2 The KKL approximation
	2.2.3 Geometric approximation

	2.3 Service time approximation for K>1
	2.4 Network analysis
	2.4.1 Arrivals at the switch
	2.4.2 Arrivals at the NI

	2.5 Approximation comparison
	2.6 Validation of the geometric distribution
	2.7 Conclusion

	3 Non-uniform switches
	3.1 Model
	3.2 Saturated switch
	3.3 Stability conditions
	3.4 Throughput
	3.5 Waiting time and service rate
	3.5.1 Waiting time
	3.5.2 Service rate

	3.6 Analysis of the running example
	3.6.1 Throughput and stability conditions
	3.6.2 Service rate and mean waiting time

	3.7 Correlated traffic
	3.7.1 Correlated arrivals
	3.7.2 Correlated destinations

	3.8 Numerical analysis
	3.9 Conclusion

	4 Reduction of polling tree networks
	4.1 Introduction
	4.2 Formalisation
	4.2.1 The original system
	4.2.2 The reduced system

	4.3 Proof of the main results
	4.3.1 The coupled system
	4.3.2 The original and the coupled system
	4.3.3 The reduced and the coupled system
	4.3.4 Waiting times

	4.4 Discussion
	4.5 Conclusion

	5 End-to-end delays in polling tree networks
	5.1 Model
	5.2 Analysis of the tree
	5.2.1 Overall end-to-end delay
	5.2.2 End-to-end delay per type

	5.3 Accuracy of Approximation 5.2.2
	5.4 Application to networks on chips
	5.4.1 Description
	5.4.2 Analysis
	5.4.3 Numerical results

	5.5 Exact results
	5.5.1 Symmetric stations
	5.5.2 Symmetric trees

	5.6 Conclusion

	6 Polling systems with Bernoulli service and Markovian routing
	6.1 Background
	6.2 Model description
	6.3 Relevant literature
	6.4 The approximation
	6.5 Numerical results
	6.6 Large-scale numerical study
	6.7 Implementation with Kronecker products
	6.8 Conclusion

	7 Polling tree networks with flow control
	7.1 Model
	7.2 Markov chain analysis
	7.3 Throughput computation
	7.4 Bernoulli service and Markovian routing
	7.5 Numerical analysis
	7.6 Conclusion

	References
	Summary
	About the author

