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The instability properties of isolated monopolar vortices have been investigated experimentally and
the corresponding multipolar quasisteady states have been compared with semianalytical
vorticity-distributed solutions to the Euler equations in two dimensions. A novel experimental
technique was introduced to generate unstable monopolar vortices whose nonlinear evolution
resulted in the formation of multipolar vortices. Dye-visualization and particle imaging techniques
revealed the existence of tripolar, quadrupolar, and pentapolar vortices. Also evidence was found of
the onset of hexapolar and heptapolar vortices. The observed multipolar vortices were found to be
unstable and generally broke up into multipolar vortices of lesser complexity. The characteristic
flow properties of the quadrupolar vortex were in close agreement with the semianalytical model
solutions. Higher-order multipolar vortices were observed to be susceptible to strong inertial
oscillations. © 2010 American Institute of Physics. �doi:10.1063/1.3481797�

I. INTRODUCTION

In the last few decades, a large number of studies has
been devoted to the origin and stability of two-dimensional
multipolar vortex structures with zero total circulation. In the
mid-1980s, Gent and McWilliams1 provided numerical evi-
dence of the existence of tripolar vortices. The tripolar vortex
is characterized by a collinear arrangement of three regions
of alternating vorticity: a core of single-signed vorticity and
two satellites of opposite vorticity where the whole ensemble
rotates steadily about the center of the vortex core. Normal-
mode analyses2–4 confirmed that the tripolar vortex may re-
sult from the growth of a wavenumber-2 perturbation of an
unstable isolated circular monopolar vortex. In this paper the
term “isolated” refers to the zero net circulation of the vor-
tex. The spontaneous formation of a tripolar vortex has been
observed and analyzed in many other numerical studies.5–11

The first experimental evidence of a tripolar vortex was
given by van Heijst and Kloosterziel.12 This study was soon
followed by other observations of tripolar vortices in the
laboratory13–16 and in satellite imagery.17 Higher-order vorti-
ces are less commonly observed. Numerical simulations9,18

and laboratory experiments14,19–22 revealed that quadrupolar
vortex structures may form due to the growth of a
wavenumber-3 instability. Apart from a few numerical cases9

we are not aware of any laboratory examples of higher-order
vortex structures that arise spontaneously from an initially
isolated circular vortex. This fact is consistent with theoreti-
cal studies in which it is argued that isolated multipolar vor-
tex structures with more than three satellites are essentially
unstable.9,19,23–26

The existence of multipolar vortex structures has moti-
vated researchers to derive multipolar steady-state solutions
to the Euler equations. Steady-state solutions for multipolar
patches of uniform vorticity were obtained by Polvani and

Carton6 and Morel and Carton.9 Explicit regular solutions for
tripolar and quadrupolar vortices with distributed vorticity
and zero total circulation were first obtained by Kizner and
Khvoles.27,28 In their work, the geometrical structure and the
solution outside the region of nonzero vorticity were derived
analytically, whereas the problem for the interior region was
solved numerically. It was shown that these semianalytical
solutions reproduce the main features of experimental
tripoles13,14 and numerical quadrupoles29 concerning their
shape, flow pattern, and the form of the vorticity-
streamfunction relationship. This work was later extended by
Kizner et al.30 in order to construct semianalytical solutions
for multipolar vortices with more satellite vortices and to
incorporate the quasigeostrophic equivalent-barotropic
�1 1

2-layer� and �-plane approximations.
The present study aims at finding such multipolar struc-

tures with zero total circulation in the laboratory. The experi-
ments are carried out in a rotating tank in which the flow is
quasi-two-dimensional. In order to generate multipolar vor-
tices, we introduce a novel experimental technique which is
inspired by the normal-mode analysis of Flierl.2 Within a
contour-dynamics31 framework, Flierl derived analytical cri-
teria for instability of barotropic and baroclinic circular
monopoles with piecewise-uniform vorticity. A vortex of this
kind consists of a core of uniform vorticity, an annulus of
uniform but different vorticity, and an outer region of zero
vorticity. The circular boundaries demarcating the different
regions of vorticity were taken to be at the nondimensional
radii r=1 and r=b. Depending on the relative width of the
annulus, the vortex was found to be stable or unstable to
perturbations proportional to exp�im��−�pt��, with m as the
azimuthal mode number and �p as the frequency of the per-
turbation. For barotropic monopoles with zero net circulation
�which are the focus of our study� subjected to perturbations
of their boundary contours, it was found that the monopole is
unstable at b�2, and the smaller the radius b, the higher thea�Electronic mail: r.r.trieling@tue.nl. URL: www.fluid.tue.nl.
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number m of the most unstable azimuthal mode �see Fig. 1�.
We will exploit this result to generate unstable laboratory
vortices whose nonlinear evolution may result in the forma-
tion of a multipolar vortex with the number of satellite vor-
tices being equal to the number of the fastest growing mode.
Besides tripolar and quadrupolar vortices, the formation of a
pentapolar vortex that arises spontaneously from an initially
isolated circular vortex will be demonstrated. Also, evidence
of the onset of hexapolar and heptapolar vortices was found.
The experimentally produced multipoles will be compared
with the semianalytical solutions for multipolar vortices ob-
tained by Kizner et al.,30 with the emphasis put on the form
of the vorticity versus streamfunction relation and the cross-
sectional distribution of vorticity.

The paper is organized as follows. In Sec. II the experi-
mental setup is introduced and the technique for the genera-
tion of multipolar vortices is discussed. The nonlinear evo-
lution of unstable monopolar vortices is presented in Sec. III,
and the comparison of finite-amplitude flow structures with
the semianalytical solutions by Kizner et al.30 is given in
Sec. IV. A summary of the main results and the conclusions
appear in Sec. V.

II. EXPERIMENTAL SETUP

The experimental arrangement is shown schematically in
Fig. 2. The setup consists of a rectangular perspex tank with
dimensions 150�100�30 cm3 which is mounted on top of
a rotating table. The tank was filled with water and the flow
was allowed to adjust to a solid-body rotation for at least half
an hour. In order to obtain a constant fluid layer depth and to
avoid topographic production of vorticity, the tank was
equipped with a parabolic bottom which compensates for the
parabolic free surface. The angular velocity of the rotating
tank � was chosen to be 0.7 rad s−1 �which corresponds to
a rotation period T=9 s� and the fluid depth H was set to
20 cm.

A circular vortex with zero net circulation was generated
by a system of two concentric thin-walled cylinders with
radii R1 and R2 rotating around their vertical axes. Here and

in what follows, indices 1 and 2 refer to the inner and the
outer cylinder, respectively. The cylinders were mounted on
a translation mechanism allowing the cylinders to be moved
in the vertical and the horizontal directions. Each cylinder
has a length of approximately 30 cm and a wall thickness of
0.5 mm. The radius of the outer cylinder was taken constant
at R2=75.0 mm, whereas the radius of the inner cylinder
was varied within the range R1=33.5 mm to R1=70.0 mm.
In this way the ratio of the outer to the inner cylinder radius,
b=R2 /R1, was effectively changed within the range of 1.07–
2.25. In four of the six experiments, the values of b were
chosen at the center of the interval within which the growth
rate of a specific mode-m perturbation should be the largest
compared to other modes �see Fig. 1�.

Both cylinders are allowed to rotate independently with
angular velocities �1 and �2, respectively. As the focus of
this paper is on isolated vortices, only cases for which
�2=0 will be presented. The rotation speed of the inner cyl-
inder was set to �1=0.35 rad s−1, implying a Rossby num-
ber Ro=�1 /2�=0.25, so that the condition of a quasi-two-
dimensional flow is reasonably satisfied. For much lower
values of �1 the linear stage of instability growth could not
be captured owing to the relatively large amplitudes of the
disturbances induced by the lifting of the cylinders �see be-
low�. Important experimental parameters are summarized in
Table I.

In order to obtain a perfect solid-body rotation within the
inner cylinder, the latter was equipped with a detachable bot-
tom disk rotating along with the inner cylinder. The disk had
the same radius as the inner cylinder and was fixed to the
parabolic bottom by a short axle. The thickness of the disk
�0.25 mm� could be regarded as negligible relative to the
depth of the fluid. The rotation of the inner cylinder was
transmitted to the disk by friction when the cylinder was at
its lowest vertical position. Without a corotating bottom disk,
some vorticity anomaly �different from the desired� would

FIG. 1. Growth rates � for barotropic perturbations of an isolated barotropic
monopole as a function of the outer radius b for modes m=2, . . . ,6 �after
Ref. 2�. The dashed lines indicate the values of b used in the experiments
presented below �see Table I�

FIG. 2. �Color online� Side view of the experimental setup.
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have been developing only within the Stewartson boundary
layers32 which reside along the inner and outer walls of the
inner cylinder and along the inner wall of the outer cylinder.
These boundary layers have a thickness of typically HE1/4,
with E=� / ��H2� the Ekman number. With the current pa-
rameter settings the thickness of the Stewartson boundary
layers is only 1–2 cm so that the preferred initial condition
cannot be obtained with the open inner cylinder. The pres-
ence of the corotating bottom disk allows the fluid inside the
inner cylinders to spin up to solid-body rotation by Ekman
suction within a time period of typically TE=H / ����1/2

=240 s �generally referred to as the Ekman spin-up time�.
For practical reasons, no corotating bottom was used for the
annulus region between the two cylinders, but it can be
shown analytically that the vorticity distribution in the annu-
lus region is close to the desired value of opposite-signed
uniform vorticity, the more so for smaller values of b.

Below, the procedure is described that was followed to
generate, visualize, and monitor the vortex. When the fluid in
the rectangular tank was at rest �relative to the rotating frame
of reference� the inner and outer cylinders were gently low-
ered into the fluid until they touched the bottom disk and the
parabolic bottom, respectively. The inner cylinder was set

into motion and after an adaptation period of approximately
half an hour, the flow inside the cylinders was stationary and
both cylinders were lifted within half a rotation period of the
rotating table without lifting the bottom disk. The time at
which the cylinders are lifted out of the fluid will be defined
as t=0. Finally, the cylinders were moved aside so as to be
able to view the motion from above.

In order to obtain qualitative information about the flow
evolution, the fluid was visualized with different colors of
dye before the cylinders were withdrawn. The region inside
the inner cylinder was injected with “terasil brilliant rosa”
�red� whereas the annulus was injected with “fluorescein”
�green�. The flow was illuminated with ordinary strip light-
ing and recorded from above with a color CCD camera with
a resolution of 720�576 pixels and a frame rate of 25 Hz.
In order to obtain quantitative data, the flow was seeded with
passive tracers �polystyrene particles� with a diameter of
50 	m and with a mean density virtually equal to that of
water at room temperature. The tracers were illuminated at
mid depth by a laser sheet �Fig. 2� which originated from a
double pulsed Nd:YAG laser. The tracers were monitored
from above by a 10-bit gray level CCD camera with a reso-
lution of 1008�1019 pixels and a frame rate of 15 Hz. Im-
age pairs were cross-correlated with the technique of particle
image velocimetry �PIV� from PIVTEC GmbH �Göttingen,
Germany� to retrieve the horizontal velocity field. Depending
on average spatial particle density, either interrogation areas
of 16�16 pixels or 24�24 pixels were used. The vorticity
and streamfunction were computed by numerical differentia-
tion and integration of the horizontal velocity field, respec-
tively.

III. NONLINEAR EVOLUTION

Figure 3 shows the measured cross-sectional distribu-
tions of the azimuthal velocity and the �computed� vorticity
for the monopolar vortex just after the lifting of the cylinders
at t=T �solid lines�. The cross-section was taken along an
arbitrary line through the vortex center r=0, where r param-

TABLE I. Overview of different cylinder configurations. Here, m indicates
the theoretically most unstable wave number for the piecewise-uniform
model vortex �Ref. 2�, R1 and R2 are the radii of the inner and outer cylin-
ders, b=R2 /R1 is the ratio of cylinder radii, and �1 and �2 are the corre-
sponding angular velocities.

m
R1

�mm�
R2

�mm�
b

�
�
�1

�rad s−1�
�2

�rad s−1�

1 33.5 75.0 2.25 0.35 0

2 44.0 75.0 1.70 0.35 0

3 56.0 75.0 1.34 0.35 0

4 61.0 75.0 1.23 0.35 0

5 63.5 75.0 1.18 0.35 0

6 70.0 75.0 1.07 0.35 0

FIG. 3. Cross-sectional distributions of �a� the azimuthal velocity and �b� the vorticity of an isolated monopolar vortex generated by a pair of cylinders with
diameter ratio b=1.70. The solid lines correspond to the profiles of the observed monopolar vortex at t=T. The dashed lines correspond to the desired profiles
of a piecewise-uniform monopolar model vortex. The velocity and the vorticity have been normalized with the maximum values associated with the isolated
monopolar model vortex. The scaled radial coordinate r�−� �can be positive and negative� has been scaled with the radius of the inner cylinder.
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etrizes the position at the line �that is, can be both positive
and negative�. Also shown are the corresponding profiles of
the desired “model vortex” �dashed lines� which consists of a
core of uniform vorticity and a ring of uniform but opposite-
signed vorticity and has zero total circulation. Both the azi-
muthal velocity and the vorticity have been scaled with the
maximum velocity and the maximum vorticity associated
with the model vortex. The coordinate r has been scaled with
the radius of the inner cylinder, R1.

Owing to the three-dimensional turbulent mixing in-
duced by the lifting of the cylinders, and also due to the
lateral diffusion of vorticity, the measured vorticity distribu-
tion is not piecewise-uniform. Nevertheless, the peak values
of the measured vorticity are in excellent agreement with the
corresponding vorticity values of the model vortex. More-
over, the locations of zero vorticity are close to the original
positions of the cylinder walls, and the measured profile of
azimuthal velocity reveals that the finite vorticity gradients
cause relatively small deviations from the model profile.
Thus, our technique allows a quite precise control of the
relative width of the annulus.

The profiles shown in Fig. 3 are typical of the initial
stages of monopolar vortices �either stable or unstable� up to
wavenumber-4 perturbations. For monopolar vortices which
were unstable to higher-order modes, the vortex core was
observed to be subject to strong inertial oscillations. This
issue will be discussed later on in Sec. III. In all cases, the
absolute value of the initial ratio of positive and negative
circulations was 1.00�0.05.

In Figs. 4 and 5, examples of the evolution of dye-
visualized monopolar vortices are shown. The linear stage of
the development of perturbations growing on these mono-
poles is expected to be dominated by wavenumber m=2, 3,
4, and 5 perturbations, respectively. Figure 4�a� demonstrates
the evolution of an isolated monopolar vortex that was gen-
erated by a set of cylinders with the diameter ratio b=1.70.
Times are indicated in the lower-right corner of each frame,
with T as the rotation period of the turntable. During the
initial stage of the evolution, both the vortex core and the
annulus are well defined and virtually axisymmetric. After a
few rotation periods T, however, the shape of the vortex core
becomes slightly elliptical which reveals the linear growth of
a wavenumber-2 perturbation. When time progresses, the
asymmetry of the vortex core becomes more conspicuous,
and the annulus eventually rearranges into two pronounced
satellite vortices. In contrast with previous rotating tank
experiments13–16 in which the nonlinear evolution of
wavenumber-2 perturbations resulted in a persistent tripolar
vortex structure, the present experiment reveals a different
evolution scenario. As evident from the arrangement of the
satellite vortices at t=6.0T and subsequent times, the rotation
rate of the elliptically shaped vortex core does not match the
azimuthal propagation speeds of the satellite vortices. As a
result, the vortex core is torn apart and the vortex tends to
break up into two dipolar vortices that move in opposite
directions away from the original vortex center. The ob-
served nonlinear evolution is in close agreement with nu-
merical simulations by Flierl2 and Morel and Carton9 who
showed a similar breakup of monopolar vortices with a

piecewise-uniform vorticity distribution using the technique
of contour dynamics.31 The fact that the current results devi-
ate from those obtained in previous rotating tank experi-
ments is probably related to the different forcing techniques
used. The stirring technique introduced by Van Heijst and
Kloosterziel12 �see also Ref. 14� leads to a smoother vorticity
profile than that obtained in the present study, which may
explain the different nonlinear evolutions scenarios. Indeed,
pseudospectral simulations3,7 revealed the formation of a per-
sistent tripolar structure from an initially axisymmetric un-
stable monopolar vortex with distributed vorticity. In this
respect, we do not exclude the possibility of the production
of stable tripoles for other values of b within the range
1.55�b�2, especially for values of b larger than b=1.70
�i.e., smoother vorticity profiles�, but in the present study this
range of values was not explored in detail.

In Fig. 4�b�, the evolution of a monopolar vortex is
shown with a narrower ring of opposite-signed vorticity,
b=1.34, than in the previous example �b=1.70�. The same
colors of dye were used to mark the core and the annulus of
the initially axisymmetric monopolar vortex. Following the
analytical study by Flierl2 this vortex is expected to be most
unstable to wavenumber-3 perturbations. Indeed, already in
the very early stage of the evolution, at t=2.0T, a
wavenumber-3 instability develops, which is apparent in the
deformation of the core and the mode-3 wave pattern in the
annulus. Soon thereafter, at t=3.0T and onward, the nonlin-
ear phase of the vortex evolution manifests itself by a major
rearrangement of the dye distribution resulting in a quadru-
polar vortex structure which is characterized by a pro-
nounced triangular-shaped core and three distinctive satellite
vortices. Note that a small amount of fluid originating from
the vortex core entrains into the satellite vortices. The motion
in the vortex core is cyclonic, whereas anticyclonic motion
occurs in the satellite vortices. The resulting vortex structure
is persistent for about four rotation periods T and rotates in a
solid-body-like fashion relative to the rotating frame of ref-
erence in cyclonic direction. The quadrupolar vortex turns
out to be unstable, as evident from the onset of the merger of
two of the three satellite vortices, and eventually tends to
degrade into a tripolarlike vortex.

The observed transition of the quadrupolar to a tripolar-
like vortex is supported by the normal-mode analysis of
Flierl2 in which it was shown that axisymmetric vortices with
a narrow ring of opposite-signed vorticity are unstable to
more than one mode. Indeed, besides being unstable to
wavenumber-3 perturbations, it may be inferred from Fig. 1
that the present initial monopolar vortex is also unstable to
wavenumber-2, and to a lesser extent to wavenumber-4 per-
turbations �assuming an initial piecewise-uniform distribu-
tion of vorticity�. The wavenumber-2 instability manifests
itself somewhat later due the corresponding smaller growth
rate. It should be noted, however, that in principle this simple
argument does only hold for the linear stage of the evolution
of the monopolar vortex. More solid support for the degen-
eration of multipolar vortex structures into structures of
lesser complexity was given analytically by Morel and
Carton,9 who performed an instability study for a multipolar
vortex composed of a central core vortex with uniform vor-
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ticity and m satellite point vortices. It was shown that mul-
tipoles with an even number of satellites mostly degenerate
into twice as simple structures, whereas multipoles with an
odd number of satellites undergo an asymmetric transition

like the one shown in Fig. 4�b�. Here it should be kept in
mind, though, that the finite sizes of the satellite vortices
were neglected in the analytical study by Morel and Carton9

so that the effects of merger events were not taken into ac-

1.0 T 2.0 T 1.0 T 2.0 T

3.0 T 4.0 T 3.0 T 4.0 T

5.0 T 6.0 T 5.0 T 6.0 T

7.0 T 8.0 T 7.0 T 8.0 T

9.0 T 10.0 T 9.0 T 10.0 T

(a) (b)

FIG. 4. �Color� Dye-visualized evolution of an isolated monopolar vortex generated by a set of cylinders with diameter ratios �a� b=1.70 and �b� b=1.34,
respectively. The regions inside the inner cylinder and the annulus were injected with red and green dyes, respectively. Times are indicated in the lower-right
corner of each frame, with T as the rotation period of the turntable.
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count. The quadrupole-to-tripole degradation is in agreement
with the inverse energy cascade concept, because in this tran-
sition, three relatively small satellite vortices reorganize into
a pair of bigger satellites �see also Sec. V, where the evolu-
tion of higher-order multipoles is discussed�.

Motivated by the observation of the quadrupolar vortex,
we have searched for even higher-mode multipolar vortices
by further decreasing the width of the initial ring of opposite-
signed vorticity. Figure 5�a� shows the dye-visualized evolu-
tion of an isolated monopolar vortex generated by a set of

1.0 T 2.0 T 1.0 T 1.5 T

3.0 T 4.0 T 2.0 T 2.5 T

5.0 T 6.0 T 3.0 T 3.5 T

7.0 T 8.0 T 4.0 T 4.5 T

9.0 T 10.0 T 5.0 T 5.5 T

(a) (b)

FIG. 5. �Color� Same as Fig. 4, but with diameter ratios �a� b=1.23 and �b� b=1.18, respectively.
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cylinders with diameter ratio b=1.23. According to the
normal-mode calculations of Flierl2 the corresponding mo-
nopolar vortex is most unstable to wavenumber-4 perturba-
tions and may evolve into a pentapolar vortex. Figure 5�a�
demonstrates that the wavenumber-4 instability indeed pre-
vails during the initial stage of the evolution of such a vor-
tex. During the nonlinear phase of the instability, the vortex
core acquires the shape of a square, whereas the annulus
rearranges into four well-defined satellite vortices. As far as
the authors are aware, this is the first laboratory observation
of a pentapolar vortex that arises spontaneously from an ini-
tially isolated circular vortex. The pentapolar vortex has
characteristics similar to those of the quadrupolar vortex
shown in Fig. 4�b�. This similarity applies to the flow direc-
tion both in the core and in the satellite vortices as well as to
the rotation of the entire vortex structure. Note again the
entrainment of core fluid into the satellite vortices. More-
over, the pentapolar vortex also turns out to be unstable,
which is observed from the merger of two of the four satel-
lite vortices. During this stage, the evolution seems to be
dominated by a wavenumber-3 perturbation—consistent with
the analytical results of Flierl,2 see Fig. 1—but in a later
stage the perturbed pentapolar vortex tends to break up into
two dipolar vortices, as predicted by the simple point-vortex
based model of Morel and Carton.9

As a final example, we present the evolution of a mo-
nopolar vortex that was generated by a set of cylinders with
a diameter ratio b of only 1.18. Figure 1 reveals that for this
configuration the normal-mode calculations predict the fast-
est growth rate for wavenumber-5 perturbations. Note, how-
ever, that the growth rate of wavenumber-4 perturbations is
very close to that of wavenumber-5 perturbations. Figure
5�b� shows the evolution of the monopolar vortex with
b=1.18. During the initial stage, one may identify a weak
wavenumber-5 perturbation both in the core and in the annu-
lus, but soon thereafter, the vortex evolves into a highly un-
stable pentapolar vortex which breaks up into two dipolar
vortices. For each dipolar vortex, the cyclonic part originates
from the original vortex core, whereas the anticyclonic
part is the result of the merger of two neighboring satellite
vortices.

In Figs. 6–9 we show the time evolution of the vorticity
and the horizontal velocity fields for the same initial flow
configurations presented in Figs. 4 and 5. The areas of posi-
tive and negative vorticity are indicated by the shading,
where darker shading corresponds to higher magnitudes of
vorticity. In order to emphasize the regions of positive and
negative vorticity, we normalized the vorticity values by the
maximum vorticity value at the corresponding time. In addi-
tion, we used a nonlinear relationship between the shading
intensity and the vorticity magnitude. As a consequence,
dark-shaded regions correspond to a much wider range of
vorticity amplitudes than one would expect from a linear
relationship. The horizontal velocity field is indicated by the
arrows. The circles in the first panel mark the original posi-
tions of the cylinders. Times are indicated below each panel,
scaled with T, the rotation period of the turntable.

It should be stressed that both the vorticity and the hori-
zontal velocity were obtained from a separate set of experi-

ments so that the details of the different flow scenarios as
well as the times of the different stages of the evolution may
differ. Concerning the timing of the PIV experiments, it was
observed that the development of the instabilities and the
subsequent nonlinear evolution was generally faster than in
the dye experiments. The faster growth of instabilities may
be attributed to the presence of external perturbations in-
duced by the pumping system of the corotating laser-cooling
device. We also note that the magnitudes of both the vorticity
and the velocity decrease exponentially in time due to the
presence of Ekman boundary layers at the bottom of the
rotating tank. Since the nonlinear stage in the PIV experi-
ments sets in sooner, the subsequent development is also
faster than in the dye experiments.

Figure 6 shows the development of an unstable monopo-
lar vortex in terms of the vorticity and the horizontal velocity
field for the case b=1.70. As shown before, the monopolar
vortex is subject to a wavenumber-2 instability which leads
to the formation of an elliptically shaped vortex core and two
satellite vortices. Note that the regions of positive and nega-
tive vorticity are well separated: the vortex core is almost
entirely made up of positive vorticity, whereas the fluid in-
side the satellite vortices has only negative vorticity. In the

t = 1.00 T t = 1.25 T t = 1.50 T

t = 1.75 T t = 2.00 T t = 2.25 T

t = 2.50 T t = 2.75 T t = 3.00 T

t = 3.25 T t = 3.50 T t = 3.75 T

FIG. 6. �Color online� Time-evolution of the vorticity and the horizontal
velocity fields for an isolated monopolar vortex generated by a pair of cyl-
inders with diameter ratio b=1.70. The regions of positive and negative
vorticity �located, respectively, in the central and peripheral parts of each
frame� are shaded, whereas the horizontal velocity field is indicated by the
arrows. The circles in the first panel mark the original positions of the
cylinders. Times are indicated below each panel, with T the rotation period
of the turntable.
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final stage of the evolution, the vortex core is torn apart and
the vortex tends to break up into two dipolar vortices that
move in opposite directions away from the original vortex
center, much in the same way as shown in the corresponding
dye experiment presented in Fig. 4�a�.

During the initial stage of the flow evolution, we also
observe rings of alternating positive and negative vorticity,
which are most noticeable in the region exterior to the vor-
tex. Close inspection of the first few panels in Fig. 6 reveals
that these rings move inward toward the vortex center, while
their magnitude gradually decreases in time. �The rings are
seemingly more persistent owing to the normalization of the
vorticity with the decaying maximum vorticity.� Although at
present, the dynamics of these rings is not completely under-
stood, we believe that they are related to inertial oscillations
that are excited by the lifting of the cylinders �note that the
initial value of the Rossby number, Ro=0.25, though small,
still allows some rotating-shallow-water effects at the very
beginning of the experiment�. This point of view is supported
by a spectral analysis which shows that the frequency of
these oscillations is close to 2�.

The development of the vorticity field of a quadrupolar

vortex is presented in Fig. 7 for the case b=1.43. Apart from
the timing, the process is very similar to that shown in Fig.
4�b�. The similarity is apparent in the formation of a
triangular-shaped vortex core, the rearrangement of the an-
nulus into three satellite vortices, and the overall rotation of
the quadrupolar vortex around its center. Also note again the
entrainment of core fluid into the satellite vortices, which is
evident from the vorticity filaments emanating at the corners
of the triangular-shaped vortex core. The quadrupolar vortex
is unstable and finally transforms into a tripolarlike vortex.
Note that the merger of two of the three satellite vortices is
prematurely ended �see t=4.00T–6.00T� and that, in contrast
with the dye-visualized evolution in Fig. 4�b�, the tripolar
vortex results from the shearing out of one of the satellite
vortices �see t=7.00T–9.00T�.

Figure 8 shows the vorticity and velocity fields associ-
ated with the development of the pentapolar vortex for the
case b=1.23. The pentapolar vortex is unstable and tends to
break up into two quite symmetrical vortex pairs �dipoles�
which move away from each other. This scenario is in close
agreement with that observed for dye-visualized vortices
�Fig. 5�a��. In addition, the vorticity distributions reveal a

t = 1.00 T t = 1.25 T t = 1.50 T

t = 1.75 T t = 2.00 T t = 2.25 T

t = 2.50 T t = 3.00 T t = 3.50 T

t = 4.00 T t = 5.00 T t = 6.00 T

t = 7.00 T t = 8.00 T t = 9.00 T

FIG. 7. �Color online� Same as in Fig. 6, but at b=1.34.

t = 1.00 T t = 1.25 T t = 1.50 T

t = 1.75 T t = 2.00 T t = 2.25 T

t = 2.50 T t = 2.75 T t = 3.00 T

t = 3.25 T t = 3.50 T t = 3.75 T

t = 4.00 T t = 4.50 T t = 5.00 T

FIG. 8. �Color online� Same as in Fig. 6, but at b=1.23.
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phenomenon which was not visible in the dye experiments.
We observe that the magnitude of the vorticity in the vortex
core changes significantly in a periodic fashion. Remarkably,
such vigorous oscillations were not observed in the vorticity
distributions related to multipolar vortices of lower order.

In Fig. 9 we show the evolution of the monopolar vortex
for the case b=1.18. During the initial stage, we observe a
weak wavenumber-5 perturbation, which is apparent in the
polygonal shape of the vortex core and the tendency of the
annulus to reorganize itself into five satellite vortices. The
recognition of a possible hexapolar vortex is complicated by
the fact that satellite vortices become progressively smaller
for higher-order multipoles.9 Even so, evidence was found
also of the onset of a heptapolar vortex for the case b
=1.07 �not shown�. Eventually, however, only four satellite
vortices survive, leading to the formation of a highly un-
stable pentapolar vortex whose further development is simi-
lar to that shown previously in Fig. 5�b�. Also in this case,
we observe that the vorticity in the vortex core changes vig-
orously in a periodic fashion. The fact that the frequency of
oscillation is close to 2� suggests that the oscillations may
have the same origin as the vorticity rings of alternating sign.

The origin of the high-amplitude oscillations in the vor-
tex core may be explained by the results of a recent
analytical/numerical study33 in which it was shown that for
the case of a confined cyclonic vortex with background ro-
tation the local frequency of the inertial oscillations ranges
from zero up to the value of the local absolute vorticity �i.e.,
2�+��. In our case, the annulus of opposite-signed �relative�

vorticity � contains relatively low absolute vorticity 2�+�
which may prevent the core oscillations to radiate radially
outward. This “barrier effect” is expected to be more effi-
cient for vortices with a narrower shield of opposite-signed
�relative� vorticity �up to the point where the absolute vortic-
ity in the annulus becomes zero�. The time series of vorticity
profiles for the experimental pentapolar vortex, see Fig. 10,
confirm that the oscillations are generally concentrated in the
core and are virtually absent in the ring of opposite-signed
relative vorticity. Moreover, the above explanation is sup-
ported by the observation that the oscillations in the core are
more dominant for monopolar vortices with a narrower
shield of opposite-signed �relative� vorticity.

One may argue that the initial decrease of vorticity in the
vortex core is due to strong Ekman pumping. However, nu-
merical simulations of the evolution of an axisymmetric vor-
tex with an initially piecewise-uniform vorticity distribution
demonstrated that even for vortices with a very narrow ring
of opposite-signed relative vorticity �b=1.07� Ekman pump-
ing cannot account for a decrease of more than 10% of the
initial vorticity in the vortex center within one rotation pe-
riod. The current experiments, though, show a decrease of
more than 50% during the same time period �see for example
the first panel of Fig. 10�. The discrepancy may be due to
strong perturbations induced by the lifting of the cylinders,
which are not accounted for in the numerical simulations.

t = 1.00 T t = 1.25 T t = 1.50 T

t = 1.75 T t = 2.00 T t = 2.25 T

t = 2.50 T t = 3.00 T t = 3.50 T

t = 4.00 T t = 4.50 T t = 5.00 T

FIG. 9. �Color online� Same as in Fig. 6, but at b=1.18.

t = 1.00 T t = 1.25 T t = 1.50 T

t = 1.75 T t = 2.00 T t = 2.25 T

t = 2.50 T t = 2.75 T t = 3.00 T

t = 3.25 T t = 3.50 T t = 3.75 T

FIG. 10. Cross-sectional vorticity distributions along a straight line passing
through the vortex center and possibly through one of the �developing�
satellite vortices for the vortex shown in Fig. 8. Normalization as in Fig. 3.
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IV. MULTIPOLAR VORTEX CHARACTERISTICS

We now compare the experimental results presented in
the previous section with the semianalytical solutions for
multipolar vortices obtained by Kizner et al.30 Figure 11
shows selected data obtained from the experiments presented
in Figs. 6–9. For each experiment the most symmetrical vor-
ticity distribution was chosen, although for the tripolar vor-
tex a compromise was made between a symmetric vorticity
distribution and a well-developed set of satellite vortices.

The left panels of Fig. 11 show the selected distributions of
vorticity � �shaded regions� along with the streamfunction in
the frame corotating with the satellite vortices,  �contours�.
The streamfunction  will be referred to as the corotating
streamfunction �not to be confused with the streamfunction �
in the frame corotating with the water tank, which vanishes
at the periphery of the multipole�. The middle panels show
the corresponding vorticity versus corotating streamfunction
relationships. The right panels show the corresponding cross-

FIG. 11. �Color online� Comparison of experimental results with the semianalytical solutions for multipolar vortices by Kizner et al. �Ref. 30�. Left panels:
distributions of vorticity �colored regions� and corotating streamfunction �contours�. Middle panels: vorticity vs corotating streamfunction relationships. Right
panels: cross-sectional vorticity distributions along a straight line �dashed lines in the left panels� passing through both the center of the vortex core and the
center of one of the satellite vortices. The solid lines in the middle panels and the dashed lines in the right panels indicate the semianalytical solutions by
Kizner et al. �Ref. 30�. The vorticity in the middle panels has been normalized with the angular velocity of the vortex structure relative to the rotating frame
of reference, �v, whereas the corotating streamfunction has been scaled with the average value of the corotating streamfunction at the separatrix, s. Both the
vorticity and the distance along the cross-section have been normalized as in Fig. 3. The experimental data were selected from the experiments presented in
Figs. 6–9 and correspond to the following times, respectively: t=2.7T, t=1.9T, t=2.8T, t=1.6T, and t=1.3T.
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sectional vorticity distribution along a straight line passing
through both the center of the vortex core and the center of
one or two of the satellite vortices. The cross-sections were
taken along the dashed lines indicated in the left panels. The
solid lines in the middle panels and the dashed lines in the
right panels indicate the semianalytical solutions by Kizner
et al.30 The vorticity has been normalized with the angular
velocity of the vortex structure relative to the rotating frame
of reference, �v, whereas the corotating streamfunction has
been scaled with the value of the corotating streamfunction
at the separatrix, s, which demarcates the region of positive
and negative vorticity. Both the vorticity and the distance
along the cross-section have been normalized as in Fig. 3.
The angular velocity of the vortex structure was obtained
from the average displacement of the satellite vortices during
a small time interval around the time corresponding to the
specific vorticity distribution. Hence, the corotating stream-
function  follows from the relationship =�+ �1 /2��vr2,
where � is the streamfunction in the frame corotating with
the water tank. In order to determine s, we took advantage
of the fact that for a symmetrical vortex structure the stag-
nation points of the corotating flow lie on the separatrix. The
value of s was obtained from the average of the -values
at the stagnation points.

For each case, the corotating streamfunction is closely
related to the vorticity. Indeed, the vortex cores and most of
the satellite vortices are marked by closed streamlines. This
relationship is confirmed by the corresponding vorticity ver-
sus corotating streamfunction relationships. Each data point
� ,�� corresponds to one of the points of the mesh on which
both the vorticity and the corotating streamfunction were
computed. The point scatter suggests that the vortex is not
completely stationary in the corotating frame of reference,
which is evident from the fact that the selected vortices un-
dergo fast inertial oscillations and relatively fast form trans-
formations. Part of the scatter though may be attributed to
measurement errors. The scatter appears to be smaller for
higher-order multipolar vortices, but this is merely a result of
the scaling. Branches of positive vorticity are associated with
the vortex cores, whereas branches of negative vorticity are
related to the satellite vortices. The horizontal branch around
�=0 corresponds to the region outside of the vortex.

The agreement with the analytical solutions of Kizner
et al.30 is fair for the core of the measured tripolarlike vortex,
which is also evident from the cross-sectional distribution of
vorticity �upper right panel of Fig. 11�. For the satellite vor-
tices, however, no good correspondence is obtained. The ob-
served satellites are confined to a smaller areal region and
therefore their vorticity magnitudes are larger than those
computed by Kizner et al.30 Moreover, as noticed earlier, the
rotation rate of the elliptically shaped vortex core does not
match the azimuthal propagation speeds of the satellite vor-
tices, which explains the large amount of scatter in the
branch of negative vorticity and the disagreement with the
steady semianalytical solution. A much better and almost ex-
cellent agreement is obtained between the experimental data
of the quadrupolar vortex and the corresponding semianalyti-
cal solution, which can be verified from the corresponding
�� ,�-relationship and the cross-sectional distribution of

vorticity. For higher-order multipoles the experimental data
and the theoretical solutions reasonably match for intermedi-
ate values of the vorticity, but both the dented structure in the
core and the extremal values in the satellites computed by
Kizner et al.30 are not reproduced by the experimental data.
Recall that the cores of the observed pentapolar and higher-
order multipolar vortex structures are susceptible to strong
inertial oscillations, which was convincingly illustrated in
Fig. 10. For that reason, we have searched for other experi-
mental vorticity distributions that do match the dented vor-
ticity distribution obtained by Kizner et al.30 However, such
distributions were not found in the limited time interval in
which the experimental multipolar vortices exist. We do not
exclude the possibility of alternative semianalytical solutions
similar to the anomalous structures observed in the labora-
tory. In pentapoles and higher-order multipoles the corotating
streamlines and vorticity contours tend to become circles
when approaching the vortex center. Thus both the corotating
streamfunction  and vorticity � tend to become functions of
the radius r only, and we might conjecture that any pair of
functions  and � near the vortex center would satisfy the
Euler equations.

V. SUMMARY AND CONCLUSIONS

The time evolution of unstable isolated vortices was in-
vestigated in the laboratory, and a comparison was made
between the experimentally obtained multipolar states and
the semianalytical solutions for multipolar vortices derived
by Kizner et al.30 The laboratory vortices were generated by
a novel experimental technique which was inspired by the
normal-mode analysis of Flierl.2 The initial vorticity distri-
bution of the laboratory vortex was characterized by a core
of single-signed vorticity and a ring of opposite-signed vor-
ticity. Despite the deviations from a perfect piecewise-
uniform vorticity distribution, the observed linear �this is,
initial� evolution of the unstable monopolar vortices was
close to that expected from the normal-mode analysis. De-
pending on the width of the annular region with respect to
the diameter of the core, the nonlinear evolution of the mo-
nopolar vortices was characterized by the formation of tripo-
lar, quadrupolar, and pentapolar vortices. To the best of the
knowledge of the authors, this is the first laboratory obser-
vation of a pentapolar vortex that arises spontaneously from
an initially isolated circular vortex. Also, evidence was found
of the onset of hexapolar and heptapolar vortices. The ex-
perimental multipolar vortices were found to be unstable and
generally broke up into multipolar vortices of lesser com-
plexity; the latter observation being consistent with the re-
sults by Morel and Carton.9 A hexapole or a heptapole trans-
forms into an asymmetric pentapole, which normally
transforms into a quadrupole and then into a tripole. A pen-
tapole which possesses a high degree of symmetry splits into
a pair of dipoles �likewise, an unstable tripole transforms
into a pair of dipoles�. Although, the core vortex in this pro-
cess breaks up into a pair of smaller vortices, the satellite
vortices always merge to make up bigger vorticity patches.
We believe this structure-simplification cascade to be allied
with the inverse energy cascade. The characteristic flow

094104-11 Laboratory experiments on multipolar vortices Phys. Fluids 22, 094104 �2010�

Downloaded 15 Feb 2011 to 131.155.128.9. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



properties of the multipolar vortices were analyzed by mea-
suring the vorticity versus corotating streamfunction rela-
tionships as well as the cross-sectional distributions of vor-
ticity. The flow properties of the quadrupolar vortex were in
close agreement with the semianalytical model solutions by
Kizner et al.30 Higher-order multipolar vortices were ob-
served to be susceptible to strong inertial oscillations and for
that reason were found to be in lesser agreement with the
theoretical solutions.
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