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Multichannel Parametric Speech Enhancement
Sriram Srinivasan, Student Member, IEEE, Robert Aichner, Student Member, IEEE, W. Bastiaan Kleijn, Fellow, IEEE,

and Walter Kellermann, Member, IEEE

Abstract—We present a parametric model-based multichannel
approach for speech enhancement. By employing an autoregressive
model for the speech signal and using a trained codebook of speech
linear predictive coefficients, minimum mean square error estima-
tion of the speech signal is performed. By explicitly accounting for
steering errors in the signal model, robust estimates are obtained.
Experiments show that the proposed method results in significant
performance gains.

Index Terms—Acoustic noise, acoustic signal processing, array
signal processing, autoregressive processes, speech enhancement,
speech processing.

I. INTRODUCTION

I N many practical situations that involve the acquisition of
speech, the signal is observed in the presence of acoustic

background noise. Single-channel noise reduction systems
that have only one microphone to record the noisy signal have
been popular, especially in mobile communications due to cost
and size factors. In applications where multiple microphones
provide multiple noisy observations, the spatial diversity can be
exploited to achieve noise reduction. A number of multichannel
approaches have been proposed, e.g., adaptive beamforming
such as the generalized sidelobe canceller [2] and fixed beam-
formers combined with adaptive post-filters for further noise
reduction [3], [4]. While the methods in [3] and [4] assume
uncorrelated noise at the different sensors, modifications to
deal with diffuse noise were proposed in [5] and [6].

In this letter, we describe a parametric multichannel speech
enhancement scheme. By using a trained codebook of clean-
speech linear predictive coefficients to parameterize the speech
spectrum, a minimum mean square error (MMSE) estimate of
the clean speech signal is obtained. A signal model that ac-
counts for microphone array steering errors and diffuse back-
ground noise is developed. The resulting multichannel estimator
is shown to provide superior performance compared to a recent
approach proposed in [6].

II. SIGNAL MODEL

Weassumeafar-fieldmodel so thatwavepropagation isplanar.
The signals arriving at the different sensors differ only in their
phase (they are delayed versions of one another). The different
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sensor signals can be assumed to have identical power spectra,
since, in practice, the delay between the sensors is small com-
pared to the short-time stationarity of the speech signal. We as-
sume that the sensor array has been steered toward the direction
of the speech source. To ensure a practical model, we allow for
steering errors. The additive noise model can then be written as

(1)

where is the clean-speech signal component sampled at
time instant at the th sensor, is the additive noise at the
th sensor, is the noisy speech observed at the th sensor,

and is the number of sensors. Processing is performed on
segments of time-domain samples of length . In the absence of
steering errors, we would have for all . Steering
errors are modeled by allowing the clean speech component to
differ at the different sensors.

Applying the discrete short-time Fourier transform to a seg-
ment of length , we get

(2)

where , and is
the discrete frequency index. and are similarly
obtained from their time-domain counterparts. We define the
vectors

(3)

Let and
be the cross spectral density

matrices corresponding to the speech and noise sig-
nals. The th entry of and are given
by and

, respectively. Based on our signal model, we have
and for all , which

is justified if the sensors are closely spaced in a homogeneous
noise field. Using the definition of the spatial coherence func-
tion, the cross spectral densities can be written as

(4)

where is the coherence function corresponding to the
speech signals at the th and th sensors, and is the co-
herence function corresponding to the noise signals at these
sensors.

1070-9908/$20.00 © 2006 IEEE
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III. MULTICHANNEL PARAMETRIC SPEECH ENHANCEMENT

Speech is commonly modeled as an autoregressive (AR)
process written as

(5)

where are the linear predictive (LP) coefficients of
order , and is the prediction error, also referred to as the
excitation signal. We model as a Gaussian random process.
The LP analysis is typically performed for each short-time frame,
within which speech can be assumed to be stationary. Let

denote a frame of length of the noisy
signal observed at sensor . For each frame, the speech model pa-
rameters are the vector of LP coefficients
and the variance of the excitation signal . Given and ,
the speech power spectrum is obtained as

where (6)

with . We denote the speech model parameters as
.

Let and denote the noise LP coefficients and excitation
variance, respectively, so that the noise power spectrum is given
by , where is defined similarly
to . In this letter, we assume that is known.
In practice, it can be estimated using one of the noise estimation
algorithms, e.g., [7]. We assume that the noise has a zero-mean
Gaussian distribution.

The multichannel Wiener filter, which provides the MMSE
estimate of the clean-speech signal, can be factored into a min-
imum variance distortionless response (MVDR) beamformer
and a single-channel postfilter [8]. To obtain an MMSE estimate
of the clean-speech signal from the noisy observations, it
is sufficient to first perform MVDR beamforming to obtain a
single-channel beamformer output and then estimate the clean
signal from . Let denote the random variable corresponding
to the clean-speech signal. Consider the noisy observations

, where . The MMSE
estimate of can thus be written as

(7)

which reduces to a single-channel estimation from the signal .
In the case of uncorrelated noise, the MVDR beamformer is a
simple delay and sum beamformer, and for diffuse noise, we
have a superdirective beamformer [9]. In the most general case,
allowing for steering errors and diffuse noise, the beamformer
output in the frequency domain can be expressed as

, where are the beamformer weights. The
power spectrum of can be written as

(8)

where we used (2), (4), and the assumption that speech and noise
are uncorrelated1 and omitted the index in the first two lines
for brevity. The term accounts for steering errors; in the
case of ideal steering, we would have for all . We
note that and are specified by the speech and
noise LP parameters according to (6). The expression for the
MMSE estimate can be rewritten as

(9)

where , represents the support-space of the
vectors of speech LP coefficients, and corresponds to the
support-space for the speech excitation variance.

From the Gaussian assumptions on the speech and noise pro-
cesses, has a zero-mean Gaussian pdf with covariance
matrix . The covariance matrix is parameter-
ized by and and is Toeplitz. Assuming that the frame
length is large, can be approximated as a circulant matrix,
which is then diagonalized by the Fourier transform [10]. We
have

(10)

where denotes the discrete Fourier trans-
form matrix whose th entry is given by

, and is an diag-
onal matrix with , given by (8) on the
main diagonal. , given by (8), is specified by and .

For a given and , as the excitation variance deviates
from its true value , the likelihood decays rapidly
from its maximum value [1]. Thus, approximating by

, we can rewrite (9) as

(11)

where . Note that instead of an integral over
the product space , we now have only an integral
over in (11). In practice, since we do not have the true
value of the excitation variance, we use an estimate .
For computational simplicity, using the relation

1While this assumption fails in highly reverberant environments, in moder-
ately reverberant environments such as the one used in the experiments (150
ms), the results indicate that this assumption is satisfied.
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, we approximate subtrac-
tively according to

(12)

Under our Gaussian model assumptions, the expectation
is computed from the Wiener filter (applied to )

estimated in the frequency domain as

(13)

where and .
The estimation of and is addressed in Section IV. In prac-
tice, (11) is computed by a numerical integration performed over
a trained codebook of speech LP coefficients

(14)

where , is the th speech codebook entry,
is the corresponding speech excitation variance, and is

the speech codebook size. The normalizing factor is given
by . Since the speech
excitation variance is completely determined given the noisy ob-
servation and the speech spectral shape , we assume a non-
informative prior (uniform) for the variance. The exact bounds
of the uniform distribution are irrelevant since they cancel out
in the numerator and denominator of (14). From (14), it can be
seen that the MMSE estimator of the clean-speech signal is a
weighted sum of Wiener filters corresponding to each entry of
the speech codebook. The use of prior information results in a
Bayesian MMSE estimate of the speech signal.

IV. ESTIMATION OF AND

The coherence terms and are required to eval-
uate the conditional pdf (10) and the excitation variance (12).
These can be estimated from the observed data using an ap-
proach similar to [11].

From the independence assumption and the additive noise
model, the power spectrum of the th sensor signal satisfies

cf. (8). After the beam-
forming, we have .
Let denote the value of in the absence of
speech and denote its value in the absence of noise.
Let and be defined similarly. Then we have

and .
can be estimated by tracking the minima of

binwise since speech energy is not present in all frequency bins
at all times.

can be estimated by tracking the maxima of
binwise. In high energy speech regions, the influence of the
noise spectrum is negligible in most practical signal-to-noise
ratio (SNR) conditions. For improved accuracy, the estimates
are averaged across the sensors.

For the minimum (maximum) tracking to yield good results,
the window over which the tracking is performed should be suf-
ficiently large so as to include noise-only regions (high speech-
energy regions for maximum tracking).

Fig. 1. Microphone array configurations. (a) Ideal steering. (b) A steering error
of approximately 9 .

Fig. 2. Plot of the magnitude squared coherence of the babble noise at two
sensors, 0.16 m apart. The coherence exhibits characteristics of diffuse noise.

V. EXPERIMENTS

In this section, we describe the experiments performed to
evaluate the proposed multichannel enhancement scheme. A
linear microphone array consisting of five equidistant micro-
phones was used in a broadside configuration with an interele-
ment spacing of 8 cm, as shown in Fig. 1. The position of the
desired speaker was at a distance of 1 m from the center of the
array. The array was placed in a conference room with a re-
verberation time of approximately 150 ms. Impulse responses
from the desired speaker position to each of the five sensors
were obtained using the maximum-length sequence approach
described in [12]. Clean speech data from the TIMIT database
[13] was then convolved with the impulse responses to obtain
the speech signals at the sensors. Such a set-up facilitates ob-
jective quality measurement since the speech and noise files can
be separately processed. Ten seconds each of male and female
speech data (8 kHz) were used in the experiments. Office noise
(mainly fan noise from four computers) was recorded using the
array. We also considered diffuse babble noise, which was arti-
ficially generated at the five sensors by positioning 24 different
speech sources in a uniformly spaced circular array around the
microphones. The coherence function between the noise at sen-
sors spaced 0.16 m apart is shown in Fig. 2.

For the Bayesian approach, a 10-bit codebook of speech LP
coefficients of order ten was trained using the Itakura–Saito dis-
tortion measure. Ten minutes of speech data (different from the
test data) from the TIMIT database were used in the training.
The frame length was 240 samples with a 50% overlap, and the
frames were Hann windowed. The noise power spectral density
was estimated using the minimum statistics technique [7], from
which the LP parameters were obtained.

For comparison, we also provide results using the postfilter
proposed in [6], which is an extension of the Zelinski postfilter
[3] to diffuse noise fields. A fixed superdirective beamformer
was used for both the proposed Bayesian approach and the refer-
ence method. The beamformer weights were computed by using
the theoretical expression for the coherence function for diffuse
noise fields [9, eq. 2.34].

For evaluation of objective quality, the MVDR beamformer
and postfilter computed for the noisy signal were applied to
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TABLE I
IMPROVEMENT IN SSNR VALUES WITH AND WITHOUT STEERING ERRORS

AT 10 dB INPUT SNR. RESULTS ARE AVERAGED OVER ALL SPEAKERS

TABLE II
SD VALUES WITH AND WITHOUT STEERING ERRORS AT 10 dB INPUT SNR.

RESULTS ARE AVERAGED OVER ALL SPEAKERS

the multichannel clean speech and noise signals at the sensors
separately. Using these signals, the segmental SNR (SSNR) at
the output was computed. To evaluate the speech distortion, the
log-spectral distortion (SD) was computed between the original
clean-speech signal (prior to convolving with the impulse re-
sponses) and the clean-speech signal at the microphones pro-
cessed by each of the systems under consideration.

A. Ideal Steering

Table I (columns corresponding to 0 ) shows the improve-
ment in SSNR, computed as the difference between the output
and input SSNR values for the case of ideal steering [see
Fig. 1(a)] for 10-dB input SNR. The reference postfilter per-
forms better than the beamformer, especially for office noise.
The office noise has most of its energy in the low-frequency
regions where the coherence is high, and thus, the beamformer
achieves little improvement. For both babble and office noise,
the proposed method results in a significant improvement in
performance compared to the reference method.

It can be seen from Table II that under ideal steering (columns
corresponding to 0 ), the MVDR beamformer has the lowest
distortion values, due to its distortionless response (the SD value
is different from zero as it is computed with respect to the orig-
inal clean-speech signal, prior to convolving with the impulse
responses). As is to be expected, any postprocessing achieves
improved noise reduction at the expense of additional signal dis-
tortion. From the table, it can be observed that the codebook ap-
proach yields lower distortion values than the reference method,
while it provides greater noise reduction. Informal listening con-
firms these improvements.

B. Steering Error of 9

Both the reference method and the proposed method are robust
to mild steering errors in terms of noise reduction, as seen from
Table I (columns corresponding to 9 ), i.e., the SSNR improve-
ments are similar with and without steering. Again, the proposed
method outperforms the reference method by around 3–5 dB.

The methods behave differently in terms of speech distortion
(see Table II, columns corresponding to 9 ). The beamformer
output shows a 2-dB increase in SD due to a 9 steering error.

The reference postfilter method also suffers from an increase of
almost 2 dB in SD due to the error. In contrast, the proposed
method is relatively robust, with only a 0.4-dB increase in SD.
It is interesting to note that in the presence of steering errors,
using a codebook trained on clean speech compensates for the
distortion introduced by the beamformer.

In experiments performed using a larger steering error of 30 ,
while the overall performance degraded, the proposed method
still provided an improvement in SSNR that was around 3 dB
higher than the reference schemes. The SD increased by a fur-
ther 3 dB for all methods.

VI. CONCLUSION

In this letter, we have proposed a parametric MMSE estima-
tion of the clean-speech signal for microphone array speech en-
hancement. The estimation is performed using an AR model for
the clean-speech signal and using a trained codebook of linear
predictive coefficients. Using a signal model that incorporates
the effect of steering errors, and using a clean-speech codebook,
robust performance is achieved, even in the presence of mild
steering errors. Experimental results under moderately rever-
berant conditions and diffuse noise show good performance for
the proposed scheme.
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