

BENEVOL 2008 : the 7th Belgian-Netherlands software
eVOLution workshop proceedings, December 11-12, 2008,
Eindhoven : informal pre-proceedings
Citation for published version (APA):
Serebrenik, A. (Ed.) (2008). BENEVOL 2008 : the 7th Belgian-Netherlands software eVOLution workshop
proceedings, December 11-12, 2008, Eindhoven : informal pre-proceedings. (Computer science reports; Vol.
0830). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2008

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/ee92d42a-3f09-44d7-9771-a02053195fae

Sponsors

BENEVOL 2008 has been made possible with the generous help ofthe following insti-
tutions:

The workshop is supported by the ERCIM Working Group on Software Evolution.

Preface

This volume presents informal pre-proceedings of BENEVOL 2008, the7th BElgian-
NEtherlands software eVOLution workshop hold in Eindhovenon December 11-12,
2008. The aim of the workshop is to bring researchers to identify and discuss important
principles, problems, techniques and results related to software evolution research and
practice.

Program of the workshop consisted of an invited talk by Prof.Ralf Lämmel (Uni-
versity of Koblenz) onTracking the evolution of grammar-like knowledge in software
as well as of presentations of nineteen technical papers, gathered and bound in this
volume.

December 2008 Alexander Serebrenik
Program Chair

BENEVOL 2008

Organization

BENEVOL 2008 is organized by the department of Mathematics and Computer Sci-
ence, Eindhoven University of Technology, The Netherlands.

Organizing Committee

Mark van den Brand
Christine van Gils
Erik Scheffers
Alexander Serebrenik

Acknowledgements

The organisers are very grateful to Luc Engelen for designing the BENEVOL poster.

Table of Contents

Relationship between Size, Effort, Duration and Number of Contributors in
Large FLOSS projects. 1

Juan Fernandez-Ramil, Daniel Izquierdo-Cortazar and Tom Mens

Relationship between Orphaning and Productivity in Evolution and GIMP
projects . 6

Daniel Izquierdo-Cortazar

Version Control of Graphs. 10
Marcel van Amstel, Mark van den Brand, and Zvezdan Protić

Towards a general conceptual framework for model inconsistencies. 13
Kim Mens and other members of WP4 work package on ”Consistency
Checking and Co-evolution” of the Belgian interuniversityMoVES project
on ”Fundamental Issues in Modelling, Verification and Evolution of
Software”.

Challenges in Model-Driven Software Evolution. 14
Michael Hoste, Jorge Pinna Puissant, Tom Mens

System Evolution by Migration Coordination. 18
Suzana Andova, Luuk Groenewegen, and Erik de Vink

Exploring Source-Code using Visualized Program Queries. 23
Johan Brichau

Visual Analytics for Understanding the Evolution of Large Software Projects. . . 24
Alexandru Telea and Lucian Voinea

Extraction of State Machines of Legacy C code with Cpp2XMI. 28
Mark van den Brand, Alexander Serebrenik, and Dennie van Zeeland

Using graph transformation to evolve software architectures. 31
Dalila Tamzalit and Tom Mens

Metrics for Analyzing the Quality of Model Transformations— Extended
Abstract. 36

Marcel van Amstel, Mark van den Brand, and Christian Lange

Dynamic Analysis of SQL Statements for Reverse EngineeringData-Intensive
Applications . 38

Anthony Cleve and Jean-Luc Hainaut

Static Estimation of Test Coverage. 39
Tiago L. Alves, Joost Visser

V

A Formal Semantics for Multi-level Staged Configuration. 40
Andreas Classen, Arnaud Hubaux, and Patrick Heymans

On the classification of first-class changes. 42
Peter Ebraert and Theo D’Hondt

Towards an automated tool for correcting design decay. 47
Sergio Castro

Enabling Refactoring with HTN Planning to Improve the Design Smells
Correction Activity . 48

Javier Ṕerez

Locating Features in COBOL Mainframe System: Preliminary Results of a
Financial Case Study. 52

Joris Van Geet

Verifying the design of a Cobol system using Cognac. 53
Andy Kellens, Kris De Schutter, and Theo D´Hondt

Author Index . 57

VI

Relationship between Size, Effort, Duration and
Number of Contributors in Large FLOSS projects

Juan Fernandez-Ramil1,3, Daniel Izquierdo-Cortazar2 and Tom Mens3

1 The Open University, Milton Keynes, U.K.j.f.ramil@open.ac.uk
2 Universidad Rey Juan Carlos, Madrid, Spaindizquierdo@gsyc.urjc.es

3 Université de Mons-Hainaut, Mons, Belgium{j.f.ramil,tom.mens}@umh.ac.be

1 Introduction

This contribution presents initial results in the study of the relationship between size,
effort, duration and number of contributors in eleven evolving Free/Libre Open Source
Software (FLOSS) projects, in the range from approx. 650,000 to 5,300,000 lines of
code. Our initial motivation was to estimate how much effortis involved in achieving
a large FLOSS system. Software cost estimation for proprietary projects has been an
active area of study for many years (e.g. [1][2][3]). However, to our knowledge, no pre-
vious similar research has been conducted in FLOSS effort estimation. This research
can help planning the evolution of future FLOSS projects andin comparing them with
proprietary systems. Companies that are actively developing FLOSS may benefit from
such estimates [4]. Such estimates may also help to identifythe productivity ’base-
line’ for evaluating improvements in process, methods and tools for FLOSS evolution.
Table 1 shows the projects that we have considered, togetherwith the programming
language(s) primarily used for each system and the time fromthe first known commit.

Table 1.FLOSS systems studied and some of their characteristics

name primary description time from
language 1st commit

(years)
Blender C/C++ cross-platform tool suite for 3D animation 6
Eclipse Java IDE and application framework 6.9

FPC Pascal Pascal compiler 3.4
GCC C/Java/Ada GNU Compiler Collection 19.9
GCL C/Lisp/ASM GNU Common Lisp 8.8
GDB C/C++ GNU Debugger 9.5
GIMP C GNU Image Manipulation Program 10.9

GNUBinUtils C/C++ collection of binary tools 9.4
NCBITools C/C++ libraries for biology applications 15.4
WireShark C network traffic analyser 10
XEmacs Lisp/C text editor and application development system12.2

2

The measurements extracted for this study are listed in Table 2. We used the SLOC-
Count4 tool to measure the size of the software in lines of code. In order to measure
size in number of files, duration, effort and team size, we used CVSAnalY5. This tool
stores information extracted from the version control log (CVS, Subversion or Git) in
a MySQL database. Specifically, we indirectly used CVSAnalYby downloading data
from FLOSSMetrics6. For mesuringEFFORT , possibly in a very approximate way,
we added one contributor-month for each contributor makingone commit or more in
a given month. Then, we calculated the number of contributor-years by dividing by 12
the total contributor-month values for each project.

Table 2.Measured attributes for each system

attribute name description extracted using:
KLOC physical lines of source code (in thousands)SLOCCount

netKLOC see explantion in text
FILES total number of files in code repository CVSAnalY

netFILES see explanation in text
EFFORT effort in contributor-years CVSAnalY

DUR time length of ’active’ evolution in years CVSAnalY
DEV number of unique contributors CVSAnalY

2 Data filtering

In most of the projects, when looking at the total number of files (FILES) in the repos-
itory per month, we observed a number of relatively large ‘jumps’. Figure 1 (left hand
side) shows this for project GCL. It is unlikely that the productivity of the team of con-
tributors has increased so suddenly. It is more likely that each ‘jump’ reflects moments
in which the repository receives chunks of externally generated files. It could also be
that non-code files were added. We tried to filter out this phenomenon by subtracting
the size increments in the ‘jumps’. We also subtracted the initial size. We call the re-
sult netFILES. For GCL, the result is presented on the right hand side of Figure 1.
SinceKLOC was measured only at one recent date, we also definednetKLOC as
KLOC ∗

netFILES
FILES

.
When measuring project life span or durationDUR since the first commit up to

Oct 2008 – for Eclipse the cut off month was April 2008 –, we excluded any apparent
periods of no commits or with monthly commits number much lower than during other
periods. We did this for two of the projects, GCC and GCL. Thiscan be seen on Figure 1
for GCL. The left-hand-side plot shows the total duration. The right-hand-side shows
the period of active work, which determined the value ofDUR (4.3 years instead of
8.8). Similarly, for GCC we assumed a value ofDUR of 11.2 instead of 19.9 years.

4 www.dwheeler.com/sloccount/
5 svn.forge.morfeo-project.org/svn/libresoft-tools/cvsanaly
6 data.flossmetrics.org

3

Fig. 1. Trend inFILES (left) andnetFILES (right) per month for GCL.

For DEV we counted the number of people making at least one commit since the
start of the repository. We computed two variants, one measuring all the contributors,
DEV [100], and one measuring the number of developers which provided 80 percent or
more of the effort in contributor-months, orDEV [80], in order to exclude contributors
who may have made only a few commits.

3 Preliminary results

Initially, we studied thenetFILES trends over months. We found a very good fit to
linear, quadratic or exponential models, with coefficient of determination7 (R2) values
ranging between 0.98 to 0.99. Five of the systems had trends that follow linear models,
two follow sublinear (quadratic) and three superlinear (2 quadratic and one exponen-
tial). The high goodness of fit suggests that size increase inthese FLOSS systems take
place at a predictable rate. This mixture of different trends is in agreement with previous
empirical studies of FLOSS growth trends [5].

As it is common practice in effort estimation models (e.g., COCOMO [2]), we
studied the linear correlation between size (measured inKLOC and FILES) and
EFFORT , DUR andDEV . Table 3 shows the parameters of linear models of the
form y = (a ∗ size) + b and the correspondinga, b andR2 values, for the eleven sys-
tems and for ten systems (excluding Eclipse) The exclusion of the data of the largest
system, Eclipse, following its identification as a possibleoutlier in some of the scat-
ter plots that we studied, is indicated by an ‘*’ in the attribute’s name (e.g.KLOC∗).
Parametersa andb are not reported whenR2 is less than 0.1 because they are not mean-
ingful. The best models, indicated in bold, are obtained when Eclipse is excluded from
the dataset.

Contrary to what was expected, the sole removal of unusual ‘jumps’ in the monthly
growth of the studied systems did not lead to visible improvements in the regression
models. It is the exclusion of Eclipse that leads to improvement in the correlation in
13 out of 16 correlations studied. All the best regression results correspond to net

7 This is a measure of goodness of fit, with values from0, for a very poor fit, and1 for a very
good fit.

4

Table 3.Linear regression results - parametersa, b andR2 values

EFFORT DUR DEV [100] DEV [80]
size in: (a, b, R2) (a, b, R2) (a, b, R2) (a, b, R2)

KLOC (0.0858, 29.909, 0.339) (-, - , 0.012) (0.027, 88.538, 0.101) (0.0095, 29.57, 0.1331)
FILES (0.0039, 119.58, 0.390) (-, -, 0.001) (0.0017, 103.97, 0.219)(0.0006, 35.142, 0.2845)

netKLOC (0.076, 110.39, 0.326) (- , - , 0.048) (0.0287, 106.56, 0.139)(0.0105, 35.384, 0.196)
netFILES (0.0035, 156.61, 0.313) (- , - , 8.8E-05) (0.0016, 119.2, 0.185) (0.006, 40.066, 0.258)

KLOC∗ (0.1327, -53.323, 0.387)(0.0015, 6.1233, 0.153) (- , - , 0.088) (- , - , 0.07)
FILES∗ (0.0093, 3123,0.66) (- , - , 0.06) (0.004, 62.831, 0.391)(0.0012, 24.787, 0.367)

netKLOC∗ (0.1699, 14.247, 0.499)(0.0032, 5.4474,0.525) (0.0626, 71.879, 0.196)(0.0183, 27.401, 0.185)
netFILES∗ (0.0139, 51.455,0.797) (- , - , 0.094) (0.0143, -19.009,0.565) (0.002, 25.998,0.506)

size and with Eclipse excluded. The best regression model obtained is the one in-
volving EFFORT as a linear function ofnetFILES′ (R2 value of0.797), that is,
EFFORT = 0.0139 ∗netFILES∗ + 51.455. According to this model, reaching say,
8,000 files would require about(0.0139 ∗ 8000) + 51.455 or 163 contributor-years [6].
The six worst regression models correspond toDUR vs size, indicating that FLOSS
increase in size at different rates across projects.

With regards to external validity (generalisation), eleven arbitrarily chosen FLOSS
constitute a small sample to be able to generalise our conclusions. Regarding threats
to internal validity,EFFORT is likely to be an over-estimation of the actual effort.
This is so because many FLOSS contributors are volunteers who work part-time rather
than full time on the project. One way to improve measuringEFFORT would be to
conduct a survey of FLOSS contributors to know better their work patterns and use this
knowledge to adjust our measurements. Surveys, however, may require considerable re-
search effort and the willingness of FLOSS contributors to participate. OurEFFORT

measurement may be more accurate for FLOSS projects like Eclipse, where a portion
of contributors are full-time employees of a sponsoring company (in this case, IBM).
Despite all our care, the tools used to extract and analyse the data may contain defects
that may affect the results.

4 Conclusion and further work

This paper reports on work in progress in the study of the relationship between size,
effort and other attributes for large FLOSS, an issue that does not seem to have been
empirically studied. The preliminary results are encouraging and better models may
be obtained through refinement and improvement of the measurement methodology.
If this were succesful, the models could provide a baseline to study, for example, the
possible impact of new or improved processes, methods and tools. The models may
also help FLOSS communities in systematic planning of the future evolution of their
systems. The best model excludes data from Eclipse. This suggests that independent
models for very large systems (greater than 5 million LOC) orfor systems based on
different technologies (Eclipse was the only Java based system in the sample) are worth
exploring.

We have started to compare how well existing cost estimationmodels based on pro-
prietary projects (in particular, COCOMO [2]) correspond to our FLOSS data [6]. In

5

order to increase the external validity of the results, we would need to study an ad-
ditional number of FLOSS projects. The regression models weused are simple. Better
results may be achievable by usingrobust regression[7]. Other suitable modelling tech-
niques different than regression [8] could be evaluated against the data. Accuracy may
be improved by including other attributes that may impact productivity and duration.
One of these is the so-called number oforphaned lines of code[9], the portion of the
code left behind by contributors who have left a project. Currently, ourFILES mea-
surement considers all files in the repository (i.e. code, configuration, data, web pages).
It is likely that better results will be achieved by considering code files only. We would
also like to exclude any automatically generated files sincethey will bias the results
(e.g., programming productivity may appear higher than it is). We also plan to exam-
ine different approaches to extract the outliers from monthly growth trends. In Figure 1
(right) one can identify ’jumps’ that were not apparent whenlooking at the unfiltered
data (left). One question is how to define formally what is a ‘jump’. In particular, one
needs to check manually the version repositories to confirm whether the ‘jumps’ are
actually corresponding to the inclusion of externally generated code or libraries.

Acknowledgements
This contribution has been prepared during the research visits of two of the authors (DI and JFR) to UMH. One of the au-

thors (JFR) acknowledges the Belgian F.R.S.-F.N.R.S. for funding through postdoctoral scholarship 2.4519.05. One ofthe

authors (DI) has been funded in part by the European Commission, under the FLOSSMETRICS (FP6-IST-5-033547) and

QUALOSS (FP6-IST-5-033547) projects, and by the Spanish CICyT, project SobreSalto (TIN2007-66172). TM acknowl-

edges partial funding by theActions de Recherche Concertées – Ministère de la Communauté française - Direction générale

de l’Enseignement non obligatoire et de la Recherche scientifique.

References

1. Wolverton, R.W.: The cost of developing large-scale software. IEEE Trans. ComputersC-
23(6) (June 1974) 615 – 636

2. Boehm, B.: Software Engineering Economics. Prentice Hall (1981)
3. Jones, C.: Estimating Software Costs - Bringing Realism to Estimating. McGraw Hill (April

2007)
4. Amor, J.J., Robles, G., Gonzalez-Barahona, J.M.: Effortestimation by characterizing devel-

oper activity. In: EDSER ’06: Proceedings of the 2006 international workshop on economics
driven software engineering research, New York, NY, USA, ACM (2006) 3–6

5. Herraiz, I., Robles, G., Gonzalez-Barahona, J.M., Capiluppi, A., Ramil, J.F.: Comparison
between SLOCs and number of files as size metrics for softwareevolution analysis. In: Proc.
European Conf. Software Maintenance and Reengineering (CSMR), Bari, Italy (March 2006)

6. Fernandez-Ramil, J., Izquierdo-Cortazar, D., Mens, T.:How much does it take to achieve one
megaloc in open source? Submitted for publication (November 2008)

7. Lawrence, K.D., Arthur, J.L.: Robust Regression: Analysis and Applications. CRC Press
(1990)

8. MacDonell, S.G., Gray, A.R.: Alternatives to regressionmodels for estimating software
projects. In: Proceedings of the IFPUG Fall Conference, Dallas TX, IFPUG. (1996)

9. Izquierdo-Cortazar, D., Robles, G., Ortega, F., Gonzalez-Barahona, J.: Using software ar-
chaelogy to measure knowledge loss in software projects dueto developer turnover. In: Pro-
ceedings of the Hawaii International Conference on System Sciences (HICSS-42), Hawaii,
USA, forthcoming (January 2009)

Relationship between Orphaning and Productivity in
Evolution and GIMP projects⋆

Daniel Izquierdo-Cortazar

GSyC/LibreSoft, Universidad Rey Juan Carlos, Móstoles, Spain
dizquierdo@gsyc.es

Abstract. In this paper we try to better understand the metricorphaningcom-
paring with some others like regeneration of developers andproductivity. By def-
inition, if a developer leaves a project, her source lines ofcode (SLOC) become
orphaned. In this study we have focused on two projects with totally different
levels of orphaning, Evolution and GIMP, both from the GNOMEdesktop. We
try to understand if high levels of orphaning can be seen as a risky situation in
terms of productivity for these projects.
Keywords: libre software, data mining, software evolution

1 Introduction

The turnover in companies and FLOSS projects [1] is a fact. Inprevious research [2],
an approach has been proposed to quantify the impact of that turnover. Such impact is
named asknow-how gapand is measured in number of lines. In other words, we assume
this is the knowledge loss when a developer leaves the project.

There are two kinds of knowledge, tacit and explicit. While the first one is not mea-
surable due to its condition of subjective knowledge, the second one remains in the
project data sources [3], like mailing lists, bug tracking systems or source code man-
agement (SCM in the following). Our assumption is that part of the explicit knowledge
is represented in the source code and the unit of knowledge isthe line of code. However
some other granularity can be taken into account, like functions or files.

The concept oforphaningwas introduced as a metric to measure that know-how
gap. In this paper, we continue the work presented before, trying to go a step ahead
and measuring how an abrupt regeneration of developers can affect the orphaning of
a project and trying to understand whether high levels of orphaning could entail risky
situations for the project, for instance measuring productivity.

⋆ The author would like to thank Dr. Tom Mens from University ofMons-Hainaut (Belgium)
and Dr. Juan Fernandez-Ramil from The Open University (United Kingdom) for their com-
ments to improve the current version of the paper and for their invaluable support given during
his research stay at University of Mons-Hainaut. This work has been funded in part by the
European Commission, under the QUALOSS (FP6-IST-5-033547), FLOSSMETRICS (FP6-
IST-5-033547), and by the Spanish CICyT, project SobreSalto (TIN2007-66172).

7

2 Methodology

The methodology is based on the analysis of source code foundin the source SCMs.
CVSAnalY and Carnarvon are the tools used in this paper1. The first one extracts out
of CVS, Subversion or Git repository log and stores it in a MySQL database.

The second one, Carnarvon, extracts the author and the exactdate when a line was
committed in the system and stores it in a MySQL database.

The selected projects are two, Evolution2 and GIMP3. Evolution is a groupware so-
lution that combines e-mail, calendar, address book and task list managements function.
GIMP is a graphics editor.

3 Measurements

The extracted measurements are three. Firstly, orphaning,measured in number of lines.
This metric gives the number oforphanedlines for a period of time. It represents the
number of lines whose committers have not ever committed again after a given date.

It is remarkable that the process of committing in FLOSS projects is irregular. There
are periods of intense work and periods where there is no commit for days or even
weeks. In order to deal with this, we have defined a year as the period where the lines
become orphaned. As an example, if a committer has not made changes since February
(less than one year), we can not confirm that her SLOC are orphaned. However, if there
is no a change, for a given committer, since February 2006 (more than one year), we
can confirm that her SLOC became orphaned after that date.

Secondly, we measure the evolution of the size of the projects in number of SLOC.
And finally, productivity, measured in number of ”handled” files (added, modified

and deleted) per committer and month. Also, the productivity results have been filtered,
ignoring those committers who are under the 80% of the total number of files han-
dled during the given year. The productivity is measured by month, but the results are
presented by year in order to simplify the graphs.

4 Preliminary Results

Figure 1 shows the evolution of SLOC in Evolution and GIMP andalso the evolution
of orphaned lines detected in each project. Focusing on Evolution, it can be divided in
three main parts. One for each big jump in number of orphaned lines. This behaviour
shows an abrupt regeneration of developers, where suddenlythe core developer left the
project, leaving what we named asknow-how gap. We can see how the know-how gap
increases up to 80% of the total SLOC. Regarding the number ofSLOC, it is remarkable
the period of refactoring where the community carried out two big deletions of lines,
even when the number of orphaned lines did not decrease. Thus, the developers just
worked on their code previously added and not in the old code (orphaned lines).

1 http://forge.morfeo-project.org/projects/libresoft-tools/
2 http://www.gnome.org/projects/evolution/
3 http://www.gimp.org/

8

On the opposite, we find GIMP, where a group of main developersleft the project
at the very beginning, and the number of orphaned lines have continuously decreased
during the last years, even when the number of total SLOC is increasing. It is also
remarkable that this project also suffered a refactoring process (around 350,000 lines
were removed).

1998-02-28 2000-02-28 2002-03-28 2004-03-28 2006-03-28

Time

0

200000

400000

600000

800000

1000000

1200000

N
u
m

b
e
r

o
f

L
in

e
s

Ev. Total Lines

Ev. Orph. Lines

GIMP Total Lines

GIMP Orph. Lines

Size and Orphaned Lines Evolution

Fig. 1. Evolution of size and orphaned lines in GIMP and Evolution projects.

Figure 2 shows the evolution of the productivity in Evolution and GIMP projects.
With regards to Evolution, there is a clear increase during the big jumps detected in the
number of orphaned lines. This activity comes from a new set of committers and we
can appreciate how it decreases during next years until a newset of developers take the
control of the project.

However, GIMP shows a more active productivity. We have detected that the regen-
eration of developers in this project is not so abrupt. In fact, the core group of developers
have remained stable since the first big jump of orphaned lines detected in Figure 1

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Time

0

500

1000

1500

2000

M
o
d
ifi

e
d
 F

Il
e
s

Productivity Evolution Project

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Time

0

500

1000

1500

2000

2500

3000

M
o
d
ifi

e
d
 F

il
e
s

Productivity GIMP Project

Fig. 2.Distribution of files handled per developer in Evolution andGIMP Projects

9

5 Conclusions and Further Work

We have not demonstrated a direct relationship between orphaning and productivity,
however we think this study can be used as a good basement for future research. A
strong regeneration of developers means big jumps on the number of orphaned lines.
We have seen how the orphaned code detected in Evolution has not decreased during
the stable periods, at least not as faster as in GIMP. It can beseen as a no maintenance
activity in that code. The productivity measurements do notshow that relationship be-
cause they were measured for the whole system, however orphaned areas should be
measured in more detail.

Some limitations and further work were addressed in previous work [2], but some
extra threats to validity should be added here related to theproductivity metric. For
instance, the data obtained to calculate productivity takeinto account the whole reposi-
tory of code. These repositories contain any kind of file, even no source code file. Thus,
it is necessary to focus more on the results on source code having, in this way, more
accurate results. Also, it is hard even for really active committers to modify source code
in around 3,000 files, this kind of outliers should be measured carefully. For example,
automatic generated files or changes in the license should not be included for future
research.

Also, studying more FLOSS projects will enrich the results.The two studied sys-
tems present a totally different behaviour in the number of orphaned lines. Adding older
projects, like GCC, could provide an interesting study of their orphaned lines because
of their age (around 20 years since the first commit).

The stability of the core group is also an interesting case ofstudy. GIMP presents
a stable core group, but not Evolution. It can be seen as a triumph of the stable core
groups, or we can see it as a risky situation for GIMP project.If one of the main devel-
opers leaves the project, a big amount of lines will become orphaned.

Finally, it is surprising for us to see how the productivity in Evolution is so irregular.
GIMP presents a more active and sometimes regular productivity, at least in number of
handled files. Evolution seems to show a strong increase in the productivity when a
new set of developers start to work on the project. However itdecreases as time goes
by until the next set of developers. One of our hypothesis is that in the Evolution new
functionality was built over old one, but no maintenance activity was carried out, at
least in the orphaned code.

References

1. Robles, G.: Contributor turnover in libre software projects. In: Proceedings of the Second
International Conference on Open Source Systems. (2006)

2. Izquierdo-Cortazar, D., Robles, G., Ortega, F., Gonzalez-Barahona, J.M.: Using software
archaeology to measure knowledge loss in software projectsdue to developer turnover. In:
Proceedings of the Hawaii International Conference on System Sciences (HICSS-42), Big
Island, Hawaii, USA (January 2009)

3. Ward, J., Aurum, A.: Knowledge management in software engineering - describing the pro-
cess. In: Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04),
Melbourne, Australia (April 2004)

Version Control of Graphs

Marcel van Amstel, Mark van den Brand, and Zvezdan Protić

Department of Mathematics and Computer Science
Eindhoven University of Technology

Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{M.F.v.Amstel|M.G.J.v.d.Brand|Z.Protic}@tue.nl

Software versioning is an important part of the software development process. A ver-
sion (of a software artifact) represents a state of an evolving artifact. Versioning of
software artifacts is done by assigning unique identifiers to the artifacts that are being
versioned. These identifiers are in a form that allows a temporal relation between differ-
ent versions of an artifact, e.g. version 1.0 is created before version 2.0 etc. Versioning
is used in conjunction with revision control. Revision control assumes the existence of
a repository and enables efficient storage, manipulation, and retrieval of any version
of an artifact in the repository. Software versioning together with revision control al-
lows teams of developers to work on multiple versions of software at the same time, as
well as for teams of developers to work on the same version at the same time, and to
synchronize (merge) their work when needed.

Data put under version control is usually contained in (text)files [1]. Hence, file
is the unit of versioning (UOV) as described by Murta et al. [2]. Software versioning
systems have several important features. One of the most important features is the way
storage of different versions of a UOV is handled. This is done by storing only the dif-
ferences between the current and the previous version. In this way it suffices to store
only the initial version completely and all other versions as a list of differences with the
previous version. In order to describe the differences between units of versioning there
should be a way for comparing them. In software versioning systems, the units of ver-
sioning (files) are being compared on the level of paragraph (a line of text ending with
carriage return). Hence, the unit of comparison (UOC) in software versioning systems
is paragraph [2].

Versioning approaches with file as unit of versioning and paragraph as unit of com-
parison are generic because they handle all file types in the same way. This is not always
advantageous. This approach is appropriate for textual documents, where the required
UOC is paragraph. It is less appropriate for source code files, where the preferred UOC
is statement, when a line of source code contains more than one statement. It is inap-
propriate for XMI documents representing UML models, wherethe preferred UOC is
a model element, and not a line of text. Figure 1 gives an overview of the unit of ver-
sion and the unit of comparison in classical software versioning systems for several file
types [2].

With the emergence of model driven engineering, there is a shift from developing
code to developing models. Since models are becoming the main design artifacts, the
problem of model versioning is becoming more apparent. Existing software versioning
systems do not provide immediate solutions to this problem.However, in recent years
several authors have proposed solutions to the problem of model versioning. Neverthe-
less, most of the authors focus only on UML models [2] [3] [1] [4]. There are only a

11

Fig. 1. Units of versioning and comparison for different file types

few approaches in specifying a generic method for versioning models. Rho and Wu [5]
present a method for versioning software diagrams. Alanen and Porres [6] present a
metamodel independent approach to model versioning. Neither of the two has achieved
general public acceptation, most likely because of a lack ofa tool that would support
those methods.

Our solution to the problem of versioning models is based on the assumption that
most models can be transformed into graphs. Therefore, we created a method and sys-
tem for graph versioning. Figure 2 illustrates our method.

Fig. 2. Schema of a method for putting graphs under version control

This method is based on a bidirectional transformation fromgraphs to text. The
text resulting from the graph-to-text transformation can be put under version control by
an existing version control system. The graph to text transformation sets the UOV to
a graph, and UOC to a node or an edge. The original graph can be retrieved from the
version control system using the text-to-graph transformation.

Next, we propose to use bidirectional transformations between models and graphs.
A model can then be put under version control by transformingit into a graph and
thereafter into text. Example models include UML models, finite state machine dia-
grams, flowcharts, Petri-nets, etc. We claim that all modelsthat can be transformed into
graphs and back can be versioned using this method.

An example of a class diagram and a possible graph representation of that diagram
are depicted in Figure 3. It is easy to give a graph representation of other elements of
UML class models, like methods or stereotypes. It is also easy to give a graph represen-
tation of features like positioning, color and shape that are not part of the class diagram
meta-model, but are introduced by a tool used to create classdiagram.

12

Fig. 3. An example class and its graph representation

References

1. Bartelt, C.: Consistence preserving model merge in collaborative development processes. In:
Proceedings of the 2008 international workshop on Comparison and versioning of software
models, New York, NY, USA, ACM (2008) 13–18

2. Murta, L., Oliveira, H., Dantas, C., Lopez, L.G., Werner,C.: Odysey-scm: An integrated
software configuration managemet infrastructure for uml models. In: Science of Computer
Programming, Elsevier (2006) 249–274

3. El-khoury, J.: Model data management: towards a common solution for pdm/scm systems.
In: SCM ’05: Proceedings of the 12th international workshopon Software configuration man-
agement, New York, NY, USA, ACM (2005) 17–32

4. Zündorf, A.: Merging graph-like object structures. In:Proceedings of the Tenth International
Workshop on Software Configuration Management. (2001)

5. Rho, J., Wu, C.: An efficient version model of software diagrams. In: APSEC ’98: Proceedings
of the Fifth Asia Pacific Software Engineering Conference, Washington, DC, USA, IEEE
Computer Society (1998) 236

6. Alanen, M., Porres, I.: Difference and union of models. TUCS Technical Report No 527,
TUCS Turku Centre for Computer Science (2003)

Towards a general conceptual framework for model
inconsistencies

Kim Mens and other members of WP4 work package on ”Consistency Checking and
Co-evolution” of the Belgian interuniversity MoVES project on ”Fundamental Issues

in Modelling, Verification and Evolution of Software”.

Département d’Ingénierie Informatique
Université catholique de Louvain

Place Sainte Barbe 2,
B-1348 Louvain-la-Neuve, Belgium
kim.mens@uclouvain.be

The problem of handling inconsistencies in and between models is omnipresent in
software engineering. It appears at every phase of the software life-cycle, ranging from
requirements, analysis, architecture, design and implementation to maintenance and
evolution. It deals with a variety of inconsistencies in andbetween models built with
different languages and of different types like requirements models, feature models, use
cases or UML design models, software architectures, designguidelines and program-
ming conventions, up to, eventually, program code. In spiteof the importance of using
models in software development and the need for dealing withinconsistencies in and
between them, to our knowledge there exists no single unifying conceptual framework
for model inconsistencies that encompasses all these different phases and models and
that allows us to focus on what all these approaches for dealing with inconsistencies
have in common. In fact, it is almost taken from granted by theinconsistency manage-
ment community that it is impossible to come up with such a unifying framework, given
that inconsistencies vary a lot and require vastly different approaches depending on the
software process or language being used and depending on theapplication domain. Our
initial framework circumvents this problem by not focussing on the inconsistency man-
agement approach being used, but by define unambiguously andindependently of any
concrete instantiation to a particular phase or kind of model, the notion of inconsistency.
In addition it allows us to identify the potential causes of such inconsistencies. Such a
framework would allows us to explain more clearly what certain approaches may have
in common and how they vary, and this unique reference frame lets related approaches
dealing with inconsistencies learn from each other. We validate and illustrate the frame-
work by providing a concrete instantiation of it for three different application domains:
(1) checking inconsistencies when co- evolving source codeand structural regularities
on that code, (2) inconsistencies between data models and queries over those models
(in the context of database schema evolution) and (3) detectinter-model inconsisten-
cies between different UML models describing a same software system from different
angles (for example, class and sequence diagrams).

Challenges in Model-Driven Software Evolution

Michael Hoste, Jorge Pinna Puissant, Tom Mens

Université de Mons-Hainaut, Mons, Belgium
{ michael.hoste | jorge.pinnapuissant | tom.mens@umh.ac.be }

Abstract. We report on a research project1 that started in July 2008, with the aim
to scientifically study and advance the state-of-the-art inthe use of lightweight
formal methods to support the software developer during theprocess of evolving
models while preserving consistency and improving quality. In particular, graph-
based and logic-based formalisms will be exploited and combined to provide
more generic and more uniform solutions to the stated problem. In this paper
we present a number of challenges that need to be addressed toachieve this.

1 Introduction

The use of models in software engineering promises to cope with the intrinsic complex-
ity of software-intensive systems by raising the level of abstraction, and by hiding the
accidental complexity of the underlying technology as muchas possible. This opens
up new possibilities for creating, analysing, manipulating and formally reasoning about
systems at a high level of abstraction. Evolution of models can be achieved by relying on
sophisticated mechanisms of model transformation. Model transformation techniques
and languages enable a wide range of different automated activities such as translation
of models (expressed in different modelling languages), generating code from models,
model refinement, model synthesis or model extraction, model restructuring etc.

It is generally acknowledged that software that is employedin a real-world envi-
ronment must be continuously evolved and adapted, else it isdoomed to become obso-
lete due to changes in the operational environment or user requirements (Parnas,1994)
(Lehman et al., 1997). On the other hand, any software systemneeds to satisfy certain
well-defined quality criteria related to performance, correctness, security, safety, reli-
ability, and soundness and completeness w.r.t. the problemspecification. It is a very
challenging task to reconcile these conflicting concerns, in order to develop software
that is easy to maintain and evolve, yet continues to satisfyall required quality charac-
teristics. When we look at contemporary support for software evolution at the level of
models, however, research results and automated tools for this activity are still in their
infancy. There is an urgent need to reconcile the ability to evolve models easily without
compromising their overall consistency, and without degrading their quality.

Therefore, we aim to explore scientifically the interactionbetween model evolu-
tion, model quality and model consistency, and the many scientific challenges asso-
ciated with it. To achieve this, we will resort to formal methods in order to formally

1 Funded by theActions de Recherche Concertées – Ministère de la Communauté française -
Direction générale de l’Enseignement non obligatoire etde la Recherche scientifique.

15

reason about the artefacts we are dealing with. These formalisms will be sufficiently
lightweight and scalable, so as to be applicable into tools that can be applied to large
and complex industrial models.

2 Research challenges

To achieve the aforementioned goals, we will tackle the following fundamental research
challenges:

Model independence.How can we represent and manipulate different types of
models in a uniform way, without needing to change the infrastructure (tools, mech-
anisms and formalisms) for reasoning about them? Such modelindependence is of sci-
entific as well as practical importance, because we want our solutions to be sufficiently
generic, in order to be applicable beyond mere software models. Indeed, we want to be
able to support an as wide range of models as possible.

Language evolution.Not only models evolve, but so do the languages in which
the models are expressed, though at a lower pace. In order to ensure that models do not
become obsolete because their languages have evolved, we need mechanisms to support
the co-evolution between both. In a similar vein, the model transformation languages
may evolve in parallel with the model transformations beingused, so we also need to
support co-evolution at this level.

Model quality. How can we provide a precise definition of model quality? A model
can have many different non-functional properties or quality characteristics that may
be desirable (e.g., usability, readability, performance and adaptability). It remains an
open challenge to identify which qualities are necessary and sufficient for which type
of stakeholder, as well as how to specify these qualities formally, and how to relate them
to one another.

The next logical question concerns how we can objectively measure, predict and
control the quality of models during thier evolution. One possible solution is by resort-
ing to model metrics, the model-level equivalent of software metrics. The challenge
here is to define model metrics in such a way that they correlate well with external
model quality characteristics.

A more pragmatic way of assessing model quality is by resorting to what we call
model smells, being the model-level equivalent of bad smells. Typical model smells
have to do with redundancies, ambiguities, inconsistencies, incompleteness, non-adherence
to design conventions or standards, abuse of the modelling notation, and so on. The
challenge is to come up with a comprehensive and commonly accepted list of model
smells, as well as tool support to detect such smells in an automated way.

Model improvement. In order to improve model quality, we will resort to the tech-
nique of model refactoring, the model-level equivalent of program refactoring. An im-
portant point of attention is the study of the relation between model metrics and model
refactoring. In particular, we need to assess to which extent model refactorings affect
metric values. A formal specification of model refactoring is required to address these
issues.

In a similar vein, we also require a precise understanding ofthe relation between
model smells and model refactoring, in order to be able to suggest, for any given model

16

smell, appropriate model refactorings that can remove thissmell. The other way around,
we need to ensure that model refactorings effectively reduce the number of smells.

An important point of attention is the need for a compositionmechanism that allows
us to reason about composite refactorings in a scaleable way. We also need to study to
which extent the formalisms allow us to verify that a given transformation preserves
certain properties (e.g. structure-preserving, behaviour-preserving, quality-preserving).

Model inconsistency.In a model-driven development approach, inconsistencies in-
evitably arise, because a system description is composed ofa wide variety of diverse
models, some of which are maintained in parallel, and most ofwhich are subject to
continuous evolution. Therefore, there is a need to formally define the various types
of model inconsistencies in a uniform framework, and to resort to formally founded
techniques to detect and resolve these model inconsistencies. A prerequisite for doing
so is to provide traceability mechanisms, by making explicit the dependencies between
models.

Conflict analysis.Another important challenge has to do with the ability to cope
with conflicting goals. During model evolution, trade-offsneed to be made all the time:

– When trying to improve model quality, different quality goals may be in contradic-
tion with each other. For example, optimising the understandability of a model may
go at the expense of its maintainability.

– In the context of inconsistency management, inconsistencyresolution strategies
may be in mutual conflict.

– In the context of model refactoring, a given model smell may be resolved in various
ways, by applying different model refactorings. Vice versa, a given model refactor-
ing may simultaneously remove multiple model smells, but may also introduce new
smells.

It should be clear from the discussion above that uniform formal support for analysing
and resolving conflicts during model transformation is needed.

Collaborative modelling. Another important challenge in model-driven software
evolution is how to cope with models that evolve in a distributed collaborative setting?
This naturally leads to a whole range of problems that need tobe addressed, such as
the need for model differencing, model versioning, model merging or model integra-
tion, model synchronisation, and so on. In our research project, we will not study the
problem of collaborative modelling in detail. The solutions that we will provide for the
other challenges, however, should be sufficiently easy to combine with solutions to this
problem of collaborative modelling.

Choice of formalism. Various formalisms may be suited to specify and reason
about model quality and model consistency in presence of continually evolving mod-
els. Each type of formalism has its own advantages (in terms of the formal properties
they can express), but it is often very difficult to combine them into a uniform for-
mal framework. Graph-transformation and logic-based approaches seem to be the most
likely candidates.

Graphs are an obvious choice for representing models, sincemost types of models
have an intrinsic graph-based structure. As a direct consequence, it makes sense to
express model evolution by resorting to graph transformation approaches. Many useful
theoretical properties exist, such as results about parallellism, confluence, termination

17

and critical pair analysis. Model independence (i.e., the ability to apply it to a wide
range models) can be achieved by resorting to a technique similar to metamodelling in
model-driven engineering: each graph and graph transformation needs to conform to
the constraints imposed by a type graph, used to describe thesyntax of the language.

If we want to reason about the behaviour of software, logic-based formalisms seem
to be the most interesting choice. Their declarative or descriptive semantics allow for a
more or less direct representation of the behaviour of software artefacts.

Scaleability and incrementality.An important practical aspect of our research will
be the ability to provide tool support that is scalable to large and complex models. This
scalability is essential in order to allow us, on a medium to long term, to transfer our
research results to industrial practice by integrating them into commercial modelling
environnements and by validating them on industrial models. Obviously, this require-
ment imposes important restrictions on the underlying formalisms to be used. As an
example, consider existing approaches to formal verification and model checking, typ-
ically based on some variant of temporal logics. Their main problem is that they only
allow to verify properties on a model in its entirety. Even a smal incremental change
to this model typically requires reverification of the proven properties for the entire
model. With an incremental approach, the effort needed to reverify a given property
would become proportional to the change made to the model. Itis therefore essential to
find truly incremental techniques, in order to close the gap between formal techniques
and pragmatic software development approaches, which are inherently evolutionary in
nature.

3 Conclusions

Clearly, most of the challenges identified above interact and overlap. Therefore, they
cannot be addressed in isolation. For example, formal solutions that allow us to specify
and perform model refactorings, will have to be directly linked to solutions addressing
model quality and model consistency, since the main goal of applying a model refac-
toring is to improve model quality in a well-defined way, while preserving the overall
model consistency. Hence, whatever technique and formalism that we come up with
needs to guarantee that this is actually the case.

The expected benefits of our research for software-producingand software-consuming
companies are obvious. In order to face the increasing complexity of software intensive
systems, model-driven engineering technology is rapidly gaining momentum in indus-
try. Without integrated support for evolution of software models, this technology will
not be able to deliver its promises. Our formally-founded research aims to advance the
state-of-the-art in industrial practice, and to enable thedevelopment of tools for im-
proving the quality of models.

System Evolution by Migration Coordination

Suzana Andova2, Luuk Groenewegen1, and Erik de Vink2 ⋆

1 FaST Group, LIACS, Leiden University
2 Formal Methods Group, Department of Mathematics and Computer Science

Eindhoven University of Technology

1 Introduction

Collaborations between components can be modeled in the coordination language Paradigm [3].
A collaboration solution is specified by loosely coupling component dynamics to a pro-
tocol via their roles. Not only regular, foreseen collaboration can be specified, originally
unforeseen collaboration can be modeled too [4]. To explainhow, we first look very
briefly at Paradigm’s regular coordination specification.

BA

C

D

E

BA

C

D

E

Clock
triv

B

C

D

Inter

A

E

stayAnti toSmall
BA

C

D

E

triv

B

C

D

E

toClock

Anti Small

Clock

Inter

MU(R)
MU (b) (c)(a)

triv

toSmall

Anti

Small

stayAnti trivtoClock

Fig. 1. Example component dynamics, role dynamics by constraints.

Component dynamics are expressed by state-transition diagrams (STDs), see Fig-
ure 1(a) for a mock-up STDMU in UML style. MU contributes to a collaboration via
a roleMU(R). Figure 1(b) specifiesMU(R) through a different STD, whose states are
so-called phases ofMU: temporarily valid, dynamic constraints imposed onMU. The
figure mentions four such phases,Clock, Anti, InterandSmall. Figure 1(c) couplesMU
andMU(R). It specifies each phase as part ofMU, additionally decorated with one or
more polygons grouping some states of a phase. Polygons visualize so-called traps: a
trap, once entered, cannot be left as long as the phase remains the valid constraint. A
trap having been entered, serves as a guard for a phase change. Therefore, traps label
transitions in a role STD, cf. Figure 1(b).

Single steps from different roles, are synchronized into one protocol step. A proto-
col step can be coupled to one detailed step of a so-called manager component, driving
the protocol. Meanwhile, local variables can be updated. Itis through a consistency
rule, Paradigm specifies a protocol step: (i) at the left-hand side of a∗ the one, driving
manager step is given, if relevant; (ii) the right-hand sidelists the role steps being syn-
chronized; (iii) optionally, a change clause [2] can be given updating variables, e.g. one
containing the current set of consistency rules. For example, a consistency rule without
change clause,

MU2: A→ B ∗ MU1(R): Clock
triv
→ Anti, MU3(R): Inter

toSmall
→ Small

⋆ Corresponding author, e-mailevink@win.tue.nl.

19

where a manager step ofMU2 is coupled to the swapping ofMU1 from circling clock-
wise to anti-clock-wise and swappingMU3 from intermediate inspection into circling
on a smaller scale.

2 Migration by constraint manipulation

For modeling unforeseen change, the special componentMcPal is added to a Paradigm
model.McPalcoordinates the migration towards the new way of working, byexplicitly
driving an unforeseen protocol. During the original, stable collaboration stage of the
running Paradigm model,McPal is stand-by only, not influencing the rest of the model
at all. This isMcPal’s hibernated form. But, by being there,McPalprovides the means
for preparing the migration as well as for guiding the execution accordingly. To that
aim, connections betweenMcPaland the rest of the model are in place, realizing rudi-
mentary interfacing for later purposes: in Paradigm terms,anEvol role per component.
As soon as, viaMcPal, the new way of working together with migration towards it, have
been developed and have been installed as an extension of theoriginal model,McPal
starts coordinating the migration. Its own migration begins, the migration of the others
is started thereafter. Finishing migration is done in reversed order. The others are ex-
plicitly left to their new stable collaboration phase beforeMcPalceases to influence the
others. As a last step,McPalshrinks the recently extended model, by removing model
fragments no longer needed, keeping the new model only.

It is stressed, migration is on-the-fly. New behaviour per component just emerges
in the ongoing execution. Note that no quiescence of components is needed. Addition-
ally, McPal’s way of working is pattern-like, asMcPalcan be reused afterward for yet
another unforeseen migration.

NewRuleSet

StartMigr

giveOut

. . .

McPal,
in hibernation

Content

Observing

phaseAuto

(b)

wantChange
JITting

knowChange
McPal, slightly more of it

(a)

Fig. 2. McPal, its hibernated form.

Figure 2(a) visualizesMcPal’s detailed dynamics in its hibernated form only. In
starting stateObserving, McPal is doing nothing in particular, but it can observe, that
something should change. StateJITting is where just-in-time foreseeing and model-
ing of such a concrete change occurs. The extended model thenis available in state
NewRuleSet. Thus, upon leavingNewRuleSetfor stateStartMigr, McPalextends its hi-
bernated form with originally unknown dynamics for coordinating the migration. Such
an extension is suggested in Figure 2(b).

Figure 3(a) visualizes the ingredients forMcPal’s role Evol. McPal’s hibernated
form returns here as the phaseStat. The other phaseMigr representsMcPal’s coor-
dinating a once-only migration. Figure 3(b) visualizes therole STDMcPal(Evol). It
says,McPal’s hibernation constraint is replaced by the migration constraint, after en-
tering trapready(i.e. once stateNewRuleSethas been reached). Note, the originally

20

unforeseen migration dynamics are known by then indeed. Similarly, the hibernation
constraint is being re-installed after trapmigrDonehas been entered. So, by returning
to starting stateObservingall model fragments obsolete by then, can be safely removed,
including the phaseMigr of McPal. Then, the new stable model is in execution, with
McPalpresent in its original, hibernated form.

phases for
role Evol migrDone

ready
MigrStatready

. . .

migrDone

Migr McPal(Evol)(b)(a)

McPal’s

Stat

Fig. 3. McPal, its phases and global process.

In the style of a horizontal UML activity diagram, Figure 4(a) gives a small part of
the coupling betweenMcPalandMcPal(Evol). RegardingMcPal, the Paradigm model
has initially the following two consistency rules, specifying McPal’s first two steps
only, the first one without any further coupling.

McPal: Observing
wantChange

→ JITting

McPal: JITting
knowChange

→ NewRuleSet∗ McPal[Crs: = Crs+ Crsmigr + CrstoBe]

In the second step fromJITting to NewRuleSet, via a so-called change clause, the set
of consistency rulesCrs for the original stable collaboration is extended with the rules
Crsmigr for the migration and with the rulesCrstoBe for the new, stable collaboration
to migrate to. In particular, apart from all other migrationcoordination details,McPal
obtains two new consistency rules:

McPal: NewRuleSet
giveOut
→ StartMigr ∗ McPal(Evol): Stat

ready
→ Migr

McPal: Content
phaseAuto

→ Observing∗

McPal(Evol): Migr
migrDone

→ Stat, McPal[Crs: = CrstoBe]

The first rule says, on the basis of having entered trapready, the phase change from
Stat to Migr can be made, coupled toMcPal’s transition from stateNewRuleSetto
StartMigr. Figure 4(a) expresses this through the left ‘lightning’ step. As the last migra-
tion step, after having phased out dynamics no longer neededfor the other components
and eventually having entered trapmigrDoneof its phaseMigr, McPalmakes its role
McPal(Evol) return fromMigr to Statby making the (coupled) step from stateContent
to Observing. Then, also the rule setCrs is reduced toCrstoBe, by means of a change
clause. See the right ‘lightning’ in Figure 4(a). Once returned in stateObserving, McPal
is in hibernation again, ready for a next migration.

Figure 4(b) suggests howMcPal, by doing steps between stateStartMigrandContent,
may guide other components. Here, oneMU component migrates from its complete,
old dynamicsPh1 to originally unforeseen dynamicsPh2, via two intermediate phases
Migr1 andMigr2. First, old dynamics is interrupted at traptriv. Second, the dynamics

21

Migr2

JITting StartMigr Content Observing

want
Change

want
Change

. . .

StartMigr

on
ItsWay

Choose
First

Content...WhoNext
Choose
Second

phaseOut
...

Ph2

Observing
Change
know

NewRuleSetMcPal
giveOut ... Auto

phase

...
ready migr

Done
McPal(Evol)

Migr

(a)

Stat Stat

(b)

...
kickOffMcPal WhoFirst

triv
MU(Evol)

Ph1 Migr1

ready

Fig. 4. Migration coordination as constraint manipulation.

is extended after traponItsWayhas been entered. Third, finally, the extended dynam-
ics is restricted to that ofPh2, after trapreadyhas been entered. All this occurs during
McPal’s migration phaseMigr.

3 Conclusion

We have sketched how system evolution can be modeled in Paradigm using the mi-
gration pattern ofMcPal. New intermediate migration behaviour as well as new target
behaviour is added to the relevant components. By restricting the original way of work-
ing, components are steered byMcPal towards a final, stable stage of execution. After
removing obsolete model fragments,McPal returns to its so-called hibernated form,
waiting for a new migration to coordinate.

Paradigm helps structuring software architectures, high-lighting the collaborations
that are relevant for separate issues. A prototype environment is reported in [6]. Re-
cently, in [1], a translation of Paradigm into the process algebra ACP is described. This
paves the way to state-of-the-art modelchecking using the mCRL2 toolkit [7] devel-
oped in Eindhoven, providing support for the verification ofinvariants and progress
properties in Paradigm. Future work is devoted to quantitative analysis of migration,
in particular timeliness and performance, envisioning a novel perspective on system
migration and evolution. In addition, Paradigm’s concept of JIT modeling facilitates
that performance triggersMcPal to update, on-the-fly, the current constraints. Note,
Paradigm’s constraint handling can be expressed in other languages too, e.g., the UML
and ArchiMate.

References

1. S. Andova, L.P.J. Groenewegen, and E.P. de Vink. Dynamic consistency in process algebra:
From Paradigm to ACP. InProc. FOCLASA’08. ENTCS, to appear. 19pp.

2. L. Groenewegen, N. van Kampenhout, and E. de Vink. Delegation modeling with Paradigm.
In Proc. Coordination 2005, pages 94–108. LNCS 3454, 2005.

3. L. Groenewegen and E. de Vink. Operational semantics for coordination in Paradigm. In
Proc. Coordination 2002, pages 191–206. LNCS 2315, 2002.

22

4. L. Groenewegen and E. de Vink. Evolution-on-the-fly with Paradigm. InProc. Coordination
2006, pages 97–112. LNCS 4038, 2006.

5. L.P.J. Groenewegen and E.P. de Vink. Dynamic system adaptation by constraint orchestration.
Technical Report CSR 08/29, TU/e, 2008.CoRR abs/0811.3492.

6. A.W. Stam.ParADE – a Conceptual Framework for Software Component Interaction. PhD
thesis, LIACS, Leiden University, 2009. Forthcoming.

7. http://www.mcrl2.org.

Exploring Source-Code using Visualized Program
Queries

Johan Brichau

Département d’Ingénierie Informatique
Université catholique de Louvain

Place Sainte Barbe 2,
B-1348 Louvain-la-Neuve, Belgium
johan.brichau@uclouvain.be

The growing amount of program query languages - of which ASTLog, SOUL,
JQuery, CodeQuest and PQL are only some examples - is testament to the significant
momentum on the investigation of a program’s structure and/or behaviour by means of
user-defined queries. Such queries serve the identificationof code exhibiting features
of interest which range from application-specific coding conventions over refactoring
opportunities and design patterns to run-time errors. Similarly, software visualisations
such as Codecrawler, Mondrian, Codecity, Chronia, X-Ray, NDepend, Seesoft, etc... are
becoming increasingly popular for exposing features of interest in the implementation
of a software application. This presentation will demonstrate a prototype that combines
program queries and software visualisations to explore features of interest in source
code. In particular, we present a composition of the SOUL program-query language
and the Mondrian scripting visualisations that combines logic-based user-defined pro-
gram queries with the visual feedback of polymetric views. Using this tool, developers
can write expressive logic program queries to detect conventions, design patterns, bad
smells, etc... in Smalltalk or Java source code and present aquery’s results succinctly
using a comprehensive software visualization. The tool is part of the ongoing work in
the context of the IntensiVE tool suite, that focuses on the verification of design struc-
ture in the implementation of evolving software applications. The screenshot below
shows a (simple) query that finds Java classes following a naming convention (prefixed
’AG’) and the interface that they implement. The found classes and their interfaces are
shown using red and green colors respectively in a modular system complexity view,
exposing that these classes and interfaces are organised intwo different hierarchies.

Visual Analytics for Understanding the Evolution of
Large Software Projects

Alexandru Telea1 and Lucian Voinea2

1 Institute for Math. and Computer Science, University of Groningen, the Netherlands
2 SolidSource BV, Eindhoven, the Netherlands

Abstract. We present how a combination of static source code analysis,repos-
itory analysis, and visualization techniques has been usedto effectively get and
communicate insight in the development and project management problems of a
large industrial code base. This study is an example of how visual analytics can
be effectively applied to answer maintenance questions in the software industry.

1 Introduction

Industrial software projects encounter bottlenecks due tomany factors: improper ar-
chitectures, exploding code size, bad coding style, or suboptimal team structure. Un-
derstanding the causes of such problems helps taking corrective measures for ongoing
projects or choosing better development and management strategies for new projects.

We present here a combination of static data analysis and visualization tools used to
explore the causes of development and maintenance problemsin an industrial project.
The uncovered facts helped developers to understand the causes of past problems, vali-
date earlier suspicions, and assisted them in deciding further development. Our solution
fits into the emergingvisual analyticsdiscipline, as it uses information visualization to
support the analytical reasoning about data mined from the project evolution.

2 Software Project Description

The studied software was developed in the embedded industryby three teams located in
Western Europe, Eastern Europe, and India. All code is written in Keil C166, a special
C dialect with constructs that closely supports hardware-related operations [2]. The
development took six years (2002-2008) and yielded 3.5 MLOCof source code (1881
files) and 1 MLOC of headers (2454 files) in 15 releases. In the last 2 years, it was
noticed that the project could not be completed on schedule,within budget, and that
new features were hard to introduce. The team leaders were not sure what went wrong,
so an investigation was performed at the end.

3 Analysis Method

The investigation had two parts: a process analysis and a product (code) analysis. We
describe here only the latter. We analyzed the source code, stored in a Source Control

25

Management (SCM) system, using a C/C++ analyzer able to handle incorrect and in-
complete code by using a flexible GLR grammar [3], and a tool tomine data from SCM
systems. We were able to easily modify this grammar (within two work days) to make
it accept the Kyle C dialect. The analyzer creates a fact database that contains static
constructse.g.functions and dependencies, and several software metrics.

We applied the above process to all files in all 15 releases. Given the high speed of
the analyzer, this took under 10 minutes on a standard Linux PC. After data extraction,
we used several visualizations to make sense of the extracted facts. Each visualization
looks at different aspects of the code, so their combinationaims to correlate these as-
pects in one coherent picture. The visualizations (presented next) were interactively
shown to the developers, who were asked to comment on the findings, their relevance,
and their usefulness for understanding the actual causes ofthe development problems.

3.1 Modification Request Analysis

Figure 1 shows two images of the project structure, depictedas a three-level treemap
(packages, modules and files). Treemaps have been used in many software visualization
applications to show metrics over structure [1]. The smallest rectangles are files, colored
by various metrics, and scaled by file size (LOC)3. The left image shows the number of
modification requests (MRs) per file. Files with more than 30 MRs (red) appear spread
over all packages. The right image shows the same structure,colored by team identity.
We see that most high-MR files (red in the left image) are developed by Team A (red
in the right image), which is located in India. As this team had communication issues
with the other two teams, a better work division may be to reassign Team A to work on
a single, low-MR-rate, package.

Fig. 1. Team assessment: number of MRs (left) and team structure (right)

We further analyzed the MR records. Figure 2 left shows the MRdistribution over
project and time. Files are drawn as gray horizontal pixel lines, stacked in creation
order from bottom to top. Thex axis shows time (years 2002 to 2008). Red dots show
the location (file, time) of the MRs. We see that less than 15% of the files have been
created in the second project half, but most MRs in this half addressolder files, so the
late work mainly tried to fix old requirements. The right image supports this hypothesis:

3 We recommend viewing this paper in full color

26

each horizontal bar indicates the number of file changes related to one MR range (MRs
are functionally grouped per range), thex axis shows again time. We see that older MRs
(at top) have large activity spreads over time. For example,in mid-2008, developers still
try to address MRs introduced in 2005-2006. Clearly, new features are hard to introduce
if most work has to deal with old MRs.

Fig. 2.MR evolution per file (left) and per range of MRs (right)

Figure 3 shows the MRs versus project structure. The left image shows MR criti-
cality (green=low, red=high). We see a correlation with theMR count and team distri-
bution (Fig. 1): many critical MRs are assigned to Team A, which had communication
problems. The right image indicates the average closure time of a MR: critical MRs,
involving Team A, took long to close. This partially explains the encountered delays
and further supports the idea of reassigning critical MRs toother teams.

Fig. 3. MR criticality: MRs vs project structure (left); MR closuretime (right)

3.2 Structural Analysis

We next analyzed the evolution in time of several software metrics (see Fig.??). The
graphs show a relatively low increase of project size (functions and function calls) and,
roughly, and overall stable dependency count (fan-in) and code complexity. The fan-
out and number of function calls increases more visibly. Hence, we do not think that
maintenance problems were caused by an explosion of code size or complexity, as is

27

the case in other projects. Additional analyses such as calland dependency graphs (not
shown here) confirmed, indeed, that the system architecturewas already well-defined
and finalized in the first project half, and that the second half did barely change it.

4 Conclusions

Correlating the MR analysis with the static code analysis, our overall conclusion is that
the most work in this project was spent in finalizing early requirements. Correlating with
the developer interviews, this seems to be mainly caused by asuboptimal allocation of
teams to requirements and packages. The project owners stated that they found this type
of analysis very useful from several perspectives: supporting earlier suspicions, provid-
ing concrete measures for assessing the project evolution,presenting these measures in
a simple and easy way for discussion, and supporting furtherproject management de-
cisions. An attractive element was the short duration of theanalysis: the entire process
lasted three days, including the developer interviews, code analysis, and results discus-
sion. Also, the stakeholders stated that using such types ofanalyses continuously, and
from the beginning of, new projects is of added value in earlydetection and discussion
of problems.

References

1. M. Balzer and O. Deussen. Voronoi treemaps for the visualization of software metrics. In
Proc. ACM Softvis, pages 165–172, 2005.

2. Keil, Inc. The Keil C166 compiler. 2008.http://www.keil.com.
3. A. Telea and L. Voinea. An interactive reverse engineering environment for large-scale C++

code. InProc. ACM SoftVis, pages 67–76, 2008.

Extraction of State Machines of Legacy C code with
Cpp2XMI

Mark van den Brand, Alexander Serebrenik, and Dennie van Zeeland

Technical University Eindhoven, Department of Mathematics and Computer Science,
Den Dolech 2, NL-5612 AZ Eindhoven, The Netherlands

m.g.j.v.d.brand@tue.nl, a.serebrenik@tue.nl,
d.h.a.v.zeeland@student.tue.nl

Introduction Analysis of legacy code is often focussed on extracting either metrics or
relations, e.g. call relations or structure relations. Forobject-oriented programs, e.g.
Java or C++ code, such relations are commonly represented asUML diagrams: e.g.,
such tools as Columbus [1] and Cpp2XMI [2] are capable of extracting from the C++
code UML class, and UML class, sequence and activity diagrams, respectively.

New challenges in UML diagram extraction arise when a) additional UML dia-
grams and b) non-object-oriented programs are considered.In this paper we present
an ongoing work on extracting state machines from the legacyC code, motivated by
the popularity of state machine models in embedded software[3]. To validate the ap-
proach we consider an approximately ten-years old embeddedsystem provided by the
industrial partner. The system lacks up-to-date documentation and is reportedly hard to
maintain.

Approach We start by observing that in their simplest form UML state machines con-
tain nothing but states and transitions connecting states,such that transitions are as-
sociated with events and guards. At each moment of time the system can be in one
and only one of the states. When an event occurs the system should check whether the
guard is satisfied, and, should this be the case, move to the subsequent state. Observe,
that implementing a state machine behaviour involves, therefore, a three-phase decision
making:

– What is the current state of the system?
– What is the most recent event to be handled?
– Is the guard satisfied?

Based on this simple observation, our approach consists in looking fornested-choice
patterns, such as “if within if” or “switch within switch”. As guards can be
omitted we require the nesting to be at least two. As we do not aim to discover all
possible state-machines present in the code, validation ofthe approach will consist in
applying in the case study and comparing the state-machinesdetected with the results
expected by the domain experts.

ImplementationWe have chosen to implement the approach based on the Cpp2XMI
tool set [2]. Since Cpp2XMI was designed for reverse engineering C++, we first had
to adapt the tool for C. Second, we added a number of new filtersto detect the nested-
choice patterns in the abstract syntax trees. Finally, we had to extend the visualisation
component to provide for state machine visualisation.

29

Fig. 1. A state machine discovered.

Case studyAs the case study we consider an approximately ten-year old system, de-
veloped for controlling material handling components, such as conveyer belts, sensors,
sorters, etc. Up-to-date documentation is missing and the code is reportedly hard to
maintain. While a re-implementation of the system is considered by the company, un-
derstanding the current functionality is still a necessity.

It turned out that the original software engineers have quite consistently usedswitch
statements withinswitch statements to model the state machines. Therefore, already
the first version of the implementation based solely on the “switch within switch”
pattern produced a number of relevant state machines.

At the moment more than forty state machines have been extracted from the code.
The size of the extracted state machines varied from 4 statesup to 25 states. One of the
extracted state machines is shown on Figure 1, the transitions are decorated with condi-
tional events. All the machines extracted were presented tothe (software) engineers of
the company and their correctness as well as importance wereconfirmed by them.

Conclusions and future work.In this abstract we presented an ongoing effort on extract-
ing UML state machines from legacy non-object-oriented code. We have observed that
UML state machines are useful for the developers and maintainers, and that they can
be derived automatically even from a non-object-oriented code. The approach proved
to be very successful in the case study and, is in general, promising. As the future work
we consider:

– including the “switch within if” and “if within switch” patterns;
– analysing the extracted state machines for overlap;
– combining the extracted state machines to nested state machines.

30

References

1. Rudolf Ferenc,́Arpád Beszédes, Mikko Tarkiainen, and Tibor Gyimóthy. Columbus - reverse
engineering tool and schema for c++. InICSM, pages 172–181. IEEE Computer Society,
2002.

2. E. Korshunova, M. Petkovic, M. G. J. van den Brand, and M. R.Mousavi. Cpp2XMI: Reverse
Engineering of UML Class, Sequence, and Activity Diagrams from C++ Source Code. In
WCRE, pages 297–298. IEEE Computer Society, 2006.

3. Jürgen Mottok, Frank Schiller, Thomas Völkl, and Thomas Zeitler. A concept for a safe
realization of a state machine in embedded automotive applications. In Francesca Saglietti
and Norbert Oster, editors,SAFECOMP, volume 4680 ofLecture Notes in Computer Science,
pages 283–288. Springer, 2007.

Using graph transformation
to evolve software architectures

Dalila Tamzalit1,2 and Tom Mens1

1 Université de Mons-Hainaut, Mons, Belgium
tom.mens@umh.ac.be

2 Université de Nantes, France
Dalila.Tamzalit@univ-nantes.fr

Abstract. In our research, we explore the problem of how to evolve software
architectures in a disciplined way. The main force of software architectures is
their ability to describe software systems at a high level ofabstraction, ignor-
ing code details. This is typically ensured by specifying them in a formal way
using an Architecture Description Language (ADL). Unfortunately, these ADLs
have not found widespread adoption in industry. UML, on the other hand, is a de
facto industry standard for software modeling, and also includes a way to spec-
ify software architectures. Unfortunately , seen as an ADL,UML is much more
ambiguous and informal than the “traditional” ADLs. In addition, an ADL must
determine not only how the architecture should be specified,but it should also be
used to guide its evolution.
The goal of our research is to provide a solution to the above problem. We for-
malise the ADL UML 2 using the theory of graph transformation. This allows
us to specify the structure and behaviour of an architecture, to impose archi-
tectural styles constraining the architecture, and to specify and execute typical
architectural evolution scenarios. More in particular, wefocus on two types of ar-
chitectural evolutions: structural and behavioural refactorings. The formalism of
graph transformation allows us to verify whether such refactorings preserve the
constraints imposed by the ADL and existing architectural styles. As a proof of
concept, we have performed experiments using the graph transformation engine
AGG.

1 Introduction

Software architectures become inescapable for specifyingvarious and complex soft-
ware systems. They offer a high abstraction level for describing software systems,
by defining their global architecture, thanks to Architecture Description Languages
(ADLs). These ADLs mustcontrol and guide architectural evolutions[1], [2]. Over
the past ten years, formal or less formal Architecture Description Languages (ADLs)
and supporting methods and tools have been proposed. The most important ones are:
Rapide [3], ACME [4] , [5], Wright [6], C2SADEL [7], Darwin [8] and UML 2 [11].

Regarding UML 2, even if the proposed concepts for software architecting remain
awkward, there is a wide acceptance (in both industry and academia) to consider and
use UML 2 as an ADL. We explore how to evolve UML 2.x software architectures
thanks to graph transformations.

32

2 UML 2.x architecture evolutions with graph transformations

2.1 Specifications

We focus on the specifications only of the main concepts of theADL UML 2: a compo-
nenthas one or severalports. Each port can have severalprovided/required interfacesas
interacting points and representingprovided/required operations(or services). In order
to guide and achieve architectural evolutions properly, wealso consider architectural
constraints and the behaviour of components. All constraints that must be fulfilled and
that guide any evolution scenario represent anarchitectural style[14]. We rely on the
graph transformation tool AGG [12] to specify the dedicatedtype graph (figure 1): (i)
concepts: using named and attributed nodes and edges, (ii)constraints: using constraints
and multiplicities, (iii)behaviour of a component: using a visual variant of input-output
automata [13], inspired by [9].

Fig. 1.Type Graph of the main architectural concepts of UML 2

Let us focus on the behavioural automaton. To represent acomponent behaviour,
we use theImpOpnode as the implementation of exactly one operation. The automaton
behaviour is an directed graph ofstates(unlabeled rounded rectangles).Tracesbetween
states are represented by dotted edges.

Fig. 2.The UML 2 Booking component with its provided interfaceBookingand required interface
Bookand its ports:p1, p2 andp3.

33

2.2 Evolution scenarios on an example

Figure 3 represents a flight&hotel booking component (the whole architecture is not
presented here) as a graph that conforms to the type graph of figure 1. Thanks to this
component, we can book a flight or a hotel or both, and cancel existing bookings. The
UML 2 Booking component of this architecture is representedin figure 2.

Fig. 3. Booking architecture represented as a graph conforming thetype graph in figure 1

We consider two evolution scenarios for thisBookingcomponent: refactoring the
Booking component by splitting a required interface and refactoring by creating a sub-
component of the Booking component. The subcomponent provides the complex be-
haviour of booking both hotels and flights, leaving simple bookings to the containing
component. The result of this last refactoring is presentedin figure 4. The graph trans-
formations that formally express this refactoring are leftout, due to space considera-
tions.

3 Conclusions and future work

We have outlined the contributions of graph transformations to: specify an ADL such
as UML 2, attach constraints and express component behaviour, but also to guide some
refactoring situations. Another important contribution is the benefits of analysing for-
mal properties of graph transformations, like causal (sequential) dependencies between
transformations and conflicting (mutually exclusive) transformations [15].

As a future work, we aim to define some interestingbehavioural propertiessuch
as: checking if each node in the automaton is reachable; checking if all possible paths
(corresponding to different scenarios) in the automaton are complete; checking if, for
each implementation of a provided operation: (a) there is always exactly one event

34

Fig. 4. Refactoring the Booking component and its behaviour by creating a subcomponent.

that starts the automaton, (b) there is always exactly one event that ends the automaton.
Another future work is to deal with architectural styles: tospecify different architectural
styles and to check and execute evolutions according to them: each architecture must
always respect, even if it evolves, its architectural style. In addition, if the architectural
style evolves, its architectures must evolve accordingly.We have already applied this
work to the well-knownpipe and filterarchitectural style, and will explore more styles
in the future.

Acknowledgements:this research was partly funded by theActions de Recherche
Concert́ees – Minist̀ere de la Communauté française – Direction ǵeńerale de l’Enseignement
non obligatoire et de la Recherche scientifique.

References

1. M. Jazayeri, On architectural stability and evolution, In Reliable Software Technlogies-Ada-
Europe 2002, 2002, pages 13–23,Springer Verlag

2. D. Tamzalit, N. Sadou, M. Oussalah, Evolution problem within Component-Based Software
Architecture,SEKE 2006, Kang Zhang and George Spanoudakisand Giuseppe Visaggio,
pages 296-301, isbn 1-891706-18-7,

3. D. C. Luckham, J. J. Kenney, Larry M. Augustin, J. Vera, D. Bryan, W. Mann, specification
and analysis of system architecture using Rapide, IEEE Transactions on Software Engineer-
ing, 1995, volume 21, pages 336–355,

4. David Garlan and Robert Monroe and David Wile, ACME: An Architecture Description
Interchange Language, in Proceedings of CASCON1997, 1997,pages 169–183,

35

5. D. Garlan, R. T. Monroe, D. Wile, ACME: Architectural Description of Component-Based
Systems, Foundations of Component-Based Systems, 2000, Gary T. Leavens and Murali
Sitaraman Ed., Cambridge University Press, pages 47-68,

6. R. Allen, D. Garlan,The Wright architectural specification language, Technical report, CMU-
CS-96-TBD, Carnegie Mellon University, School of ComputerScience, 1996.

7. N. Medvidovic, D. S. Rosenblum, R. N. Taylor, A language and environment for
architecture-based software development and evolution, ICSE’99, ISBN 1-58113-074-0,
pages 44-53, Los Angeles, IEEE Computer Society Press, Los Alamitos, CA, USA,

8. J. Magee, N. Dulay, S. Eisenbach, J. Kramer, Specifying distributed software architec-
tures, 5th European Software Engineering Conference, Sitges, Spain, 1995, pages 137-153,
Springer-Verlag,

9. O. Barais, A.F. Le Meur, L. Duchien, J. Lawall, Software architecture evolution, pages 233-
262, in [10]

10. T. Mens, S. Demeyer (editors), ”Software Evolution, ” Springer-Verlag, 2008
11. OMG, UML 2.1.2 infrastructure specification, Technicalreport, formal/2007-11-02, OMG,

2007,
12. G. Taentzer, AGG: A Graph Transformation Environment for Modeling and Validation of

Software, Proc. AGTIVE 2003, Lecture Notes in Computer Science, Vol.3062, pages 446-
453, 2004, Springer-Verlag

13. N.A. Lynch, M.R. Tuttle, An introduction to input, output automata. Technical Report
MIT/LCS/TM-373, MIT Laboratory for Computer Science, November 1988.

14. M. Shaw and D. Garlan, Software Architecture: Perspectives on an Emerging Discipline,
ISBN:0-13-182957-2, Prentice Hall, 1996.

15. T. Mens, G. Taentzer, O. Runge, Analyzing Refactoring Dependencies Using Graph Trans-
formation Software and Systems Modeling Journal, Springer, vol. 6, num. 3, september 2007.

Metrics for Analyzing the Quality of Model
Transformations — Extended Abstract⋆

Marcel van Amstel1, Mark van den Brand1, and Christian Lange2

1 Department of Mathematics and Computer Science
Eindhoven University of Technology

Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{M.F.v.Amstel|M.G.J.v.d.Brand}@tue.nl

2 Federal Office for Information Technology
Barbarastraße 1, 50735 Cologne, Germany

mail@christian-lange.com

Model Driven Engineering [2] is an emerging software engineering discipline in which
models play a central role throughout the entire development process. MDE combines
domain-specific modeling languages for modeling software systems and model trans-
formations for synthesizing them. Similar to other software engineering artifacts, model
transformations have to be used by several developers, haveto be changed according
to changing requirements and should preferably be reused. Because of the prominent
role of model transformations in today’s and future software engineering, there is the
need to define and assess their quality. Quality attributes such as modifiability, under-
standability and reusability need to be understood and defined in the context of MDE,
i.e., for model transformations. The goal of our research isto make the quality of model
transformations measurable. Currently, we focus on model transformations created us-
ing the ASF+SDF [3] term rewriting system, but we expect thatour techniques can be
applied to model transformations created using different transformation engines such
as ATL [4] as well.

We identified seven quality attributes relevant for model transformations, viz. under-
standability, modifiability, reusability, modularity, conciseness, consistency, and com-
pleteness. Most of these quality attributes have already bedefined for other software
artifacts. We describe why they are specifically relevant for model transformations.
We also identified a set of approximately forty metrics and related these to the qual-
ity attributes to define how the quality attributes should beassessed. Furthermore, we
created a tool that can extract (most of) the metrics we defined from model transforma-
tions specified in the ASF+SDF formalism. We used this tool toevaluate a number of
transformations. The same transformations were also manually evaluated by ASF+SDF
experts to validate the relationship between metrics and quality attributes we estab-
lished.

The next step in our ongoing research is to define a set of metrics for ATL and
use these to assess the same quality attributes. We also planto define a quality model
in which we define a relationship between the quality attributes. Once we have iden-
tified quality problems in model transformations, we can propose a methodology for
improving their quality.

⋆ This is an extended abstract of [1]

37

References

1. van Amstel, M.F., Lange, C.F.J., van den Brand, M.G.J.: Metrics for analyzing the quality
of model transformations. In Falcone, G., Guéhéneuc, Y.,Lange, C., Porkoláb, Z., Sahraoui,
H., eds.: Proceedings of the 12th ECOOP Workshop on Quantitative Approaches in Object-
Oriented Software Engineering, Paphos, Cyprus (July 2008)41–51

2. Schmidt, D.C.: Model-driven engineering. Computer39(2) (2006) 25–31
3. van Deursen, A.: An overview of ASF+SDF. In van Deursen, A., Heering, J., Klint, P., eds.:

Language Prototyping: An Algebraic Specification Approach. Volume 5. World Scientific
Publishing (1996) 1–29

4. Jouault, F., Kurtev, I.: Transforming models with ATL. InBruel, J.M., ed.: Satellite Events
at the MoDELS 2005 Conference. Number 3844 in LNCS, Montego Bay, Jamaica, Springer
(October 2005) 128–138

Dynamic Analysis of SQL Statements for Reverse
Engineering Data-Intensive Applications

Anthony Cleve and Jean-Luc Hainaut

Laboratory of Database Applications Engineering
University of Namur, Belgium

21 rue Grandgagnage 5000 Namur
{acl,jlh}@info.fundp.ac.be

SQL statements control the bi-directional data flow betweenapplication programs
and a database through a high-level, declarative and semantically rich data manipula-
tion language. Analyzing these statements brings invaluable information that can be
used in such applications as program understanding, database reverse engineering, in-
trusion detection, program behaviour analysis, program refactoring, traffic monitoring,
performance analysis and tuning, to mention some of them. SQL APIs come in two
variants, namely static and dynamic. While static SQL statements are fairly easy to
process, dynamic SQL statements most often require dynamicanalysis techniques that
may prove more difficult to implement.

In this talk, we will address the problem of dynamic SQL queryanalysis in the con-
text of software and database reverse engineering. We will explore the use of dynamic
analysis techniques for extracting implicit information about both the program behavior
and the database structure.

In the first part of the talk, we will describe and compare several possible techniques
to capture the SQL statements that are executed in a data-intensive application program.
Those techniques include, among others, code instrumentation, static analysis, aspect-
based tracing, API overloading, API substitution, DBMS logs and tracing triggers.

The second part of the talk will elaborate on the analysis of SQL execution traces
and its various applications in the context of reverse engineering. We will show, in
particular, how SQL traces may help in discoveringimplicit schema constructs like
undocumented foreign keys. We will then report on a recent case study in which SQL
trace analysis was used for reverse engineering a data-intensive web application.

Static Estimation of Test Coverage

Tiago L. Alves1,2, and Joost Visser2

1 Universidade do Minho, Portugal
2 Software Improvement Group, The Netherlands

{t.alves,j.visser}@sig.nl

Test coverage is an important indicator for unit test quality. Tools such as Clover
can compute it by first instrumenting the code with logging functionality, and then log
which parts are executed during unit test runs. Since computation of test coverage is a
dynamic analysis, it presupposes a working installation ofthe software.

In the context of software quality assessment by an independent third party, a work-
ing installation is often not available. The evaluator may not have access to the required
software libraries or hardware platform. The installationprocedure may not be auto-
mated or documented.

We investigate the possibility to estimate test coverage atsystem, package and class
levels through static analysis only. We present a method using slicing of static call
graphs to estimate the actual dynamic test coverage and we identify the sources of im-
precision. The method estimates test coverage at method level, by computing all meth-
ods reachable from tests. Coverage at method level is then used as basis for estimating
class and package coverage.

We validate the results of static estimation by comparison to actual values obtained
through dynamic analysis using Clover. The comparison is done using 12 systems both
proprietary and open-source, with sizes ranging from smallto large. Additionally, we
apply our technique to 52 releases of a proprietary system.

We report that static estimation of test coverage at system level is highly correlated
with dynamic coverage, demonstrating that static estimation can be a good predictor for
the actual coverage.

A Formal Semantics for Multi-level
Staged Configuration⋆

Andreas Classen⋆⋆, Arnaud Hubaux, and Patrick Heymans

PReCISE Research Centre,
Faculty of Computer Science,

University of Namur
5000 Namur, Belgium

{acs,ahu,phe}@info.fundp.ac.be

Feature diagrams are a common means to represent, and reasonabout, variability in
Software Product Line Engineering [2]. In this context, they have proved to be useful
for a variety of tasks such as project scoping, requirementsengineering and product
configuration [2]. The core purpose of a feature diagram is todefine concisely the set of
legalconfigurations– generally calledproducts– of some (usually software) artefact.

Given a feature diagram, theconfiguration processis the process of gradually mak-
ing the choices defined in the feature diagram with the purpose of determining the
product that is going to be built. In a realistic development, the configuration process is
a small project itself, involving many stakeholders and taking up to several months [3].
Based on this observation, Czarneckiet al. [4] proposed the concept ofmulti-level
staged configuration(MLSC), which splits the configuration process up into differ-
ent levels that can be assigned to different stakeholders. This makes configuration more
scalable to realistic environments.

However, MLSC never received a formal semantics, the primary indicator for preci-
sion and unambiguity, and an important prerequisite for reliable tool-support. We intend
to fill this gap with a denotational semantics for MLSC that builds on our earlier work
on formal semantics for feature diagrams [5] and extends it with the concepts ofstage,
configuration pathandlevel.

The contribution is a precise and formal account of MLSC thatmakes the original
definition [4] more explicit and reveals some of its subtleties. The semantics makes it
possible to define the model-checking problem for MLSC and allowed us to discover
some important properties that a feature model and its staged configuration process
must possess. Our contribution is primarily of a fundamental nature, clarifying central
concepts and properties related to MLSC. Thereby, we intendto pave the way for safer,
more efficient and more comprehensive automation of configuration tasks.

⋆ Full paper submitted to theThird International Workshop on Variability Modelling of Software-
intensive Systems(VaMoS’09), Sevilla, Spain. An extended version is available as a technical
report [1].

⋆⋆ FNRS Research Fellow.

41

Acknowledgements

This work is sponsored by the Interuniversity Attraction Poles Programme of the Bel-
gian State of Belgian Science Policy under the MoVES projectand the FNRS.

References

1. Classen, A., Hubaux, A., Heymans, P.: A formal semantics for multi-level
staged configuration. Technical Report P-CS-TR SPLBT-00000002, PReCISE Re-
search Center, University of Namur, Namur, Belgium (November 2008) Download at
www.fundp.ac.be/pdf/publications/66426.pdf.

2. Pohl, K., Bockle, G., van der Linden, F.: Software ProductLine Engineering: Foundations,
Principles and Techniques. Springer (July 2005)

3. Rabiser, R., Grunbacher, P., Dhungana, D.: Supporting product derivation by adapting and
augmenting variability models. In: SPLC ’07: Proceedings of the 11th International Software
Product Line Conference, Washington, DC, USA, IEEE Computer Society (2007) 141–150

4. Czarnecki, K., Helsen, S., Eisenecker, U.W.: Staged configuration through specialization and
multi-level configuration of feature models. Software Process: Improvement and Practice
10(2) (2005) 143–169

5. Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps, Y.: Feature Diagrams: A Survey and
A Formal Semantics. In: Proceedings of the 14th IEEE International Requirements Engineer-
ing Conference (RE’06), Minneapolis, Minnesota, USA (September 2006) 139–148

On the classification of first-class changes

Peter Ebraert⋆ and Theo D’Hondt

Computer Science Department
Vrije Universiteit Brussel,

Pleinlaan 2, 1050 Brussel, Belgium
{pebraert,tjdhondt}@vub.ac.be

Abstract. Feature-oriented programming (FOP) is the research domainthat tar-
gets the encapsulation of software building blocks as features, which better match
the specification of requirements. Recently, we proposed change-oriented pro-
gramming, in which features are seen as sets of changes that can be applied to a
base program, as an approach to FOP.
In order to express features as sets of changes, those changes need to be classi-
fied in different sets that each represent a separate feature. Several classification
strategies are conceivable. In this paper we identify threekinds of classification
strategies that can be used to group the change objects. We compare them with
respect to a number of criteria that emerged from our practical experience.

1 Introduction

Feature-oriented programming (FOP) is the study of featuremodularity, where features
are raised to first-class entities [1]. In FOP, features are basic building blocks, which
satisfy intuitive user-formulated requirements on the software system. A software prod-
uct is built by composing features. Recently, we proposed a bottom-up approach to FOP
which consists of three phases [2, 3]. First, the change operations have to be captured
into first-class entities. Second, those entities have to beclassified in features (= sepa-
rate change sets that each implement one functionality). Finally, those feature modules
can be recomposed in order to form software variations that provide different function-
alities.

In previous work, we already elaborated on two techniques tocapture change ob-
jects. A classic way is to take two finished versions of a software system and to exe-
cute a Unixdiff command on their respective abstract syntax trees [4], revealing the
changes. This approach, however, only worksa posteriori, and at a high level of gran-
ularity (the version level). A more subtle alternative is tolog the developer’s actions
as he is performing the changes. The latter approach is basedon change-oriented pro-
gramming (ChOP) and was proven to provide a more complete overview of the history
of development actions [5].

In this paper, we focus on the classification of changes into features. Classifica-
tion has two aspects: the classification model and the classification technique, which is
embodied by the different software classification strategies.

⋆ Research funded by the Varibru research project initiated in the framework of the Brussels
Impulse Programme for ICT supported by the Brussels CapitalRegion

43

2 Classification model

The classification model is a metamodel that consists of two parts: the change model
and the actual classification model. Each part focuses on another level of granular-
ity. The change model describes how the changes are modeled.Figure 1 shows that
the change model separates between four kinds of changes, which can be composed.
Atomic changes have asubject: the program building block affected by the change
and defined by the Famix metamodel [6].

Fig. 1.Change Model

The actual classification model defines and describes the entities of the superstruc-
ture which is a flexible organisational structure based on feature and change objects.
Figure 2 shows that the model contains three relations:D (the structural dependencies
between the change objects),CF4 (which changes are grouped together into which fea-
ture) andSub (which features are contained within another feature). Thecardinality

of CF4 andSub specifies whether or not the sons (changes and/or features) have to
be included in a composition that includes the parent (a feature). This information can
afterwards be used to validate feature compositions (as in Feature Diagrams [7]).

Fig. 2. Classification Model

3 Classification techniques

A classification strategy is a method for setting up classifications. Many classification
strategies can be devised ranging from setting up classifications manually to generating

44

classifications automatically. We present three classification strategies:manualclas-
sification,semi-autmaticclassification through clustering andautomaticclassification
through forward tagging.

3.1 Manual classification

Manual classification is the simplest classification strategy: manually putting change
objects in features. The strategy can be used by the softwareengineer to group changes
according to his wishes. Since our classification model states that a change can only be
classified in one feature, this strategy should be supportedby a tool which enforces that
rule.

The advantages of this strategy are twofold. First, it is a very straightforward tech-
nique which can easily be implemented. Second, it can be applied on change objects
that were obtained both with adiff andloggingstrategy. The main disadvantage is the
tediousness that comes with the manual effort of this strategy.

3.2 Semi-automatic classification

Change objects contain information aboutby whom, when, why andwherethe opera-
tions they reify were carried out. Using clustering techniques [8] based on metrics on
these properties, change objects can be grouped. This classification is basically a man-
ual classification strategy. Based on the the clusters of changes, the developer decides
on how the changes must be classified.

The main advantage of this strategy is that it can be used to assist the developer
doing a manual strategy. The disadvantages of this strategyare threefold. First, it is more
difficult to implement (clustering should be supported). Second, different parameters in
the metrics might give different clustering results. Extraresearch is required to find
adequate parameters. Third, this success of this strategy largely depends on the amount
of information available in the change objects and is consequently not recommended to
be used in combination with adiff strategy.

3.3 Automatic classification

In many cases, a manual classification strategy is not a feasible option. For large soft-
ware systems it would take a long time to classify all classesby hand. Often classifica-
tion of a software system is an activity that cannot be done byone software engineer
alone since one software engineer seldom knows the whole system. When manual clas-
sification is not a valid option for the classification problem at hand automatic classifi-
cation may provide a solution.

The idea behind automatic classification is that when software engineers carry out
a development operation, for example implementing a new or changed specification
or fixing a bug, they usually know the context in which changesare made. Moreover,
the IDE knows the exact time and in what part of the software, the operation is per-
formed. In stead of keeping this knowledge implicit in the heads of the developers, it is
taggedinto the changes partially by the developer and partially bythe IDE. Afterwards,
these tags can be processed automatically to generate tag-based classifications. Since

45

software engineers are usually lazy when source code documentation is concerned, re-
lying on discipline is not realistic. It is up to the IDE to make sure that classification
knowledge about the software is recorded.

Advantages of this approach are that it can be used on the biggest of systems as
it does not require manual labour, and that it is relatively easy to implement. The sole
inconvenience is that it can only be used in combination witha loggingstrategy, which
enforces developers to do forward tagging.

4 Conclusion

We introduced a model and three strategies to classify changes and/or features in sets
that represent features. The model consists of two parts which respectively model the
change objects and the actual classification. The first strategy is straightforward:manual
classification is a strategy to put together classificationsmanually.Semi-automaticclas-
sification is based on clustering changes together based on properties such asby whom,
when, whyandwherethe changes were applied.Automaticclassification is based on for-
ward tagging, and automatically groups changes together. Our findings are summarised
as follows:

Manual Semi-AutoAutomatic
Capturing Changes diff, logging logging logging
Amount of manual labour high average low
Error probability high high low

Only the automatic strategy is usable in a context of large-scale software systems.
As that strategy requires logging as a technique to capture changes, we conclude that
the development environment should support logging and enforce forward tagging, so
that the changes can automatically be classified in recomposable feature modules.

References

1. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement. In: Proceedings
of the 25th International Conference on Software Engineering, Washington, DC, USA, IEEE
Computer Society (2003) 187–197

2. Ebraert, P., Van Paesschen, E., D’Hondt, T.: Change-oriented round-trip engineering. Techni-
cal report, Vrije Universiteit Brussel (2007)

3. Ebraert, P., Vallejos, J., Costanza, P., Van Paesschen, E., D’Hondt, T.: Change-oriented soft-
ware engineering. In: ICDL ’07: Proceedings of the 2007 international conference on Dy-
namic languages, New York, NY, USA, ACM (2007) 3–24

4. Xing, Z., Stroulia, E.: Umldiff: An algorithm for object-oriented design differencing. In:
Proceedings of the 20th International Conference on Automated Software Engineering. (2005)

5. Robbes, R., Lanza, M.: A change-based approach to software evolution. Electronic Notes in
Theoretical Computer Science (2007) 93–109

6. Demeyer, S., Tichelaar, S., Steyaert, P.: FAMIX 2.0 - the FAMOOS information exchange
model. Technical report, University of Berne (1999)

46

7. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-Oriented Domain Analy-
sis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University (1990)

8. Romesburg, C.: Cluster Analysis for Researchers. Number978-1-4116-0617-3. Krieger
(1990)

Towards an automated tool for correcting design decay

Sergio Castro

Département d’Ingénierie Informatique
Université catholique de Louvain

Place Sainte Barbe 2,
B-1348 Louvain-la-Neuve, Belgium
sergio.castro@uclouvain.be

Under the influence of continuous evolution and maintenancetasks, the original
design structure of a software system often rapidly erodes away. This observation has
already led to a good number of techniques and tools for expressing and checking differ-
ent kinds of design constraints over the source-code of a system. However, in addition to
tools and techniques that support the automatic detection of violated design constraints,
tools are needed to support the developers in reconciling the broken implementation
structure with these formulated design constraints.

We propose a technique for the detection and semi-automaticcorrection of user-
defined design constraints over the source code. To detect adherence of design con-
straints in the source code, our technique relies on the use of logic rules that reason
over the implementation. The corrective actions that are needed to fix detected broken
design constraints are deduced using abductive logic reasoning techniques. The result-
ing technique is a uniform framework for the definition of design constraints as well as
their corresponding corrective actions. An early prototype that allows us to experiment
with this technique is currently being developed as an extension to the IntensiVE tool
suite, thereby adding support for correcting the implementation structure, in addition
to the already existing definition and enforcement of structural design constraints over
source code.

Enabling Refactoring with HTN Planning to Improve
the Design Smells Correction Activity

Javier Pérez

University of Valladolid; Department of Computer Science
jperez@infor.uva.es

Abstract. Refactorings are a key technique to software evolution. They can be
used to improve the structure and quality of a software system. This paper intro-
duces a proposal for generating refactoring plans with hierarchical task network
planning, to improve the automation of the bad smells correction activity.

1 Introduction

Over the evolution of a software system, its structure deteriorates because the mainte-
nance efforts concentrate more on the correction of bugs andon the addition of new
functionalities than on the control and improvement of the software’s architecture and
design [1]. Bad design practices, often due to inexperience, insufficient knowledge or
time pressure, are at the origin of design smells. They can arise at different levels of
granularity, ranging from high level design problems, suchas antipatterns [2], to low-
level or local problems, such as code smells [3].

Design smells are problems encountered in the software’s structure, that do not
produce compile or run-time errors, but negatively affect software quality factors. In
fact, this negative effect on quality factors could lead to true compilation errors and run-
time errors in the future. Design Smell management refers tothe set of techniques, tools
and approaches addressed to detect and to correct or, at least, reduce design smells to
improve software quality. Among the activities involved indesign smell management,
correction and detection are the most significant ones.

2 Detection and Correction of Smells

The detection techniques proposed in the literature mainlyconsist on defining and ap-
plying rules for identifying design smells. Meanwhile, correction techniques often con-
sist on suggesting which transformations could be applied to the source code of the
system in order to restructure it, by correcting or, at least, reducing its design problems.
There has been an increasing number of works dealing with smell detection, and the
most successful ones are those based on metrics [4], and on the jointed use of metrics
and structural patterns analysis [5].

The correction activity has not been explored as much as the detection one. Most
approaches focus on suggesting which are the best redesign changes to perform, and
which are the best structures to remedy the smell and reflect the original design intent.

49

Refactoring

conflict
0..*

0..*dependency
0..*

0..*

Simple

Precondition

Composed

AND OR NOT

Definition Transformation

1..*

Parameter

1..*

1..*

Add Delete Replace Entity Relationship

Operation Element

1..* 1..*

Fig. 1.A model for refactoring operations.

The preferred technique for correction is refactoring [3],because the objective is not to
remove bugs or errors. In terms of observable behaviour, we aim at leaving the system
untouched. The automation of the correction strategies, based on refactorings, faces the
problem of precondition fulfillment, as mentioned in [6].

It is rare that the preconditions of the desired refactorings could be fulfilled by the
system’s source code at its current state. For example, to allow moving a method from
one class to another, one should probably, first, have to movethe attributes accessed
from it. In these cases, the developer has to plan ahead how tosolve this problem.
This can be done either by choosing a different refactoring path or by applying other
preparatory refactorings to enable the precondition whichpreviously failed. Moreover,
violation of preconditions is the most common error developers encounter when trying
to apply a refactoring operation [7]. Therefore, suggesting refactorings is not enough to
allow for automated correction of design smells.

3 Anatomy of a Refactoring Operation

A refactoring can be seen as a conditional transformation [8], which is composed of a
precondition and a set of transformations. The precondition establishes the situations
under which the refactoring can be executed, while the transformation part specifies the
changes that are to be applied to the source code. If the precondition of a refactoring
is fulfilled when it is performed, the system’s behaviour is preserved. Figure 1 shows a
simplified model for refactoring operations.

Once a smell has been detected and once the refactorings to correct it have been
given out, they can’t be immediately applied if their preconditions fail. Therefore, refac-
toring suggestions don’t suffice to automate the activity ofbad smell correction, we need
refactoring plans.

We define a refactoring plan as the specification of a refactoring sequence that
matches a system redesign proposal and can actually be executed over the current sys-
tem’s source code. To improve the automation of the smell correction activity, we intend
to support the automated generation of refactoring plans.

A variety of techniques can be used to reason about refactorings and assist the gen-
eration of refactoring plans. Analysis of dependencies andconflicts can be performed to
find out which refactorings can enable or disable other refactoring’s preconditions [9].

50

First-order logic inference can help composing refactoring sequences [8]. Automated
planning [10], can integrate all these techniques.

4 Enabling Refactoring with HTN planning

Automated planning [10] is an artificial intelligence technique to generate sequences of
actions that will achieve a certain goal when they are performed. We think that auto-
mated planning is a technique suitable to be used in the generation of refactoring plans.

For a typical automated planner, the current state of the world is represented as
a set of logical terms which are changed through applicationof operators. Operators
are composed of a precondition which specifies the conditions under which they can
be applied, and two separate sets of actions which specify how the operator modifies
the state of the world. These lists enumerate the terms the operator will add to and
delete from the current state. A goal is a list of terms which represents a certain state
of the world we want to achieve. A planner computes a plan as a sequence of operator
instances that changes the world to achieve the desired goals in the final state.

Among all the existing planning approaches, we think that hierarchical task network
(HTN) planning provides the best balance between search-based and procedural-based
strategies, for the problem of refactoring planning. We have explored other approaches,
such as partial-order backwards planning, only to discoverthat combinatorial explosion
and lack of expressivity disallow their application in the refactoring planning domain.

HTN planning [10], introduces the concept of “task”, which models actions com-
posed by simple operators or by other tasks. Task networks allow to include domain
knowledge describing which subtasks should be performed toaccomplish another one.
HTN planning and forward search allows very expressive domain definitions which lead
to very detailed domains with a lot of domain knowledge whichcan guide the planning
process in a very efficient way.

Starting from a set of refactorings, the refactoring dependencies, and the system’s
source code and a redesign proposal, an HTN planner can obtain a refactoring plan
matching the redesign proposal, while solving the problem of failing preconditions.

To search for refactoring plans we use the representation from [8], which turns the
system’s AST into a set of logical terms. This set builds up the planner’s state of the
world. Refactorings are modeled with tasks and operators. Tasks hierarchies allow to
specify the algorithm of a refactoring along with the dependencies with other refactor-
ings. Thus, using tasks and subtasks dependencies, we modelwhich refactorings should
be executed in order to enable the precondition of another one. An HTN planner can be
tailored to search for plans which achieve a certain design structure, or which enable
application of a desired set of refactorings.

5 Conclusions

This paper introduces a proposal to enable refactoring application through automated
planning, more precisely HTN planning. Automation supportfor refactoring planning
can improve any practice which uses them and many software evolution techniques,

51

particularly the correction of design smells. We are currently preparing experiments to
show the feasibility of this approach.

Acknowledgements

I want to thank Tom Mens, Naouel Moha and Carlos López who have helped me re-
viewing the state of the art in design smells management.

This work has been partially funded by the regional government of Castilla y León
(project VA-018A07).

References

1. Frederick P. Brooks, J.: The Mythical Man-Month: Essays on Software Engineering.
Addison-Wesley Publishing Company, Reading, MA , USA (1975)

2. Brown, W.H., Malveau, R.C., Mowbray, T.J.: AntiPatterns: Refactoring Software, Architec-
tures, and Projects in Crisis. Wiley (March 1998)

3. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving the Design
of Existing Code. Object Technology Series. Addison-Wesley (1999)

4. Lanza, M., Marinescu, R.: Object-Oriented Metrics in Practice - Using Software Metrics
to Characterize, Evaluate, and Improve the Design of Object-Oriented Systems. Springer
(2006)

5. Moha, N.: DECOR : Détection et correction des défauts dans les systèmes orientés objet.
PhD thesis, Université des Sciences et Technologies de Lille; Université de Montréal (August
2008)

6. Trifu, A., Reupke, U.: Towards automated restructuring of object oriented systems. Software
Maintenance and Reengineering, 2007. CSMR ’07. 11th European Conference on (March
2007) 39–48

7. Murphy-Hill, E., Black, A.P.: Breaking the barriers to successful refactoring: observations
and tools for extract method. In: ICSE ’08: Proceedings of the 30th international conference
on Software engineering, New York, NY, USA, ACM (2008) 421–430

8. Kniesel, G.: A logic foundation for conditional program transformations. Technical Report
IAI-TR-2006-1, Computer Science Department III, University of Bonn (January 2006)

9. Mens, T., Taentzer, G., Runge, O.: Analysing refactoringdependencies using graph transfor-
mation. Software and Systems Modeling6(3) (September 2007) 269–285

10. Ghallab, M., Nau, D., Traverso, P.: Automated Planning;Theory and Practice. Morgan
Kaufmann (2004)

Locating Features in COBOL Mainframe System:
Preliminary Results of a Financial Case Study

Joris Van Geet

University of Antwerp
Joris.VanGeet@ua.ac.be

Abstract. As Lehman’s laws indicate, one of the main causes of softwareevolu-
tion is changing business requirements. With the advent of Service Oriented Ar-
chitectures, more effort is being spent on reorganizing software systems to better
match the company and business structures, thereby making the systems more
adaptive to these changing requirements. As a first step in this process we need to
locate the relevant business functionalities (features) in the system. In an ongoing
case study we apply formal concept analysis on execution profiles generated by
carefully chosen execution scenarios, as proposed by Eisenbarth et. al.[2003], on
a COBOL mainframe system of a Belgian bank.

1 Prerequisites

– Investigate or set up tracing facilities on mainframe sufficiently powerful to provide
an execution profile.

– Select features (i.e., functionality provided by the system) that need to be located
within the system.

2 Analysis Steps

– Create executable scenarios that trigger the selected features and create a scenario-
feature mapping as this is usually no one-to-one mapping. This information should
be gathered in close cooperation with domain experts.

– Execute the scenarios while extracting an execution profilefor each scenario. This
results in a list of computational units (at whatever granularity necessary and avail-
able) that were executed during the scenario.

– Construct a concept lattice correlating the computationalunits with the executed
scenarios.

– Combine the concept lattice and the scenario-feature mapping to correlate the com-
putational units with the features.

– Iterate over these steps by either refining/adding/removingscenarios or refining/filtering
dynamic analysis results.

References

[2003] T. Eisenbarth and R. Koschke and D. Simon Locating features in source code IEEE Trans-
actions on Software Engineering, 29 210-224 (2003)

Verifying the design of a Cobol system using Cognac

Andy Kellens, Kris De Schutter, and Theo D´Hondt

Programming Technology Lab
Vrije Universiteit Brussel

Pleinlaan 2
B-1050 Brussels

{akellens | kdeschut | tjdhondt}@vub.ac.be

1 Introduction

A property of large-scale, industrial systems is that they are intended to be used and
maintained over a long period of time. In order to keep such large systems maintain-
able, it is important that developers respect the various rules that underlie the design of
such systems during the subsequent evolutions of the system. These design rules can
range from low-level naming conventions and coding guidelines, over the correct use
of frameworks to the different constraints that are imposedby the architecture of the
system.

Serving as a testimony to this problem is the amount of effortthat has been devoted
— both in academia and industry — to tools and approaches thataid in verifying design
rules with respect to a system’s source code. Examples of such tools are low-level code
checkers such as Lint [3] and CheckStyle [1], tools such as Ptidej [2] that enforce design
patterns, approaches like Reflexion Models [5] that verify ahigh-level specification
(architecture) of a system with the source code and so on.

However, it seems that the vast majority of these tools neglects the Cobol language,
which is still one of the most prevalent languages in industry. In this presentation we
discussCognac, our approach that offers a general framework for documenting design
rules in Cobol code and verifying their validity with respect to the implementation.

2 Context

The context of our work is a fairly large case study (500KLoc)we are conducting to-
gether with the Flemish company inno.com that has recently designed a new Cobol
system for a Belgian bank. Their interest in verifying this design with respect to the
implementation is three-fold:

– The implementation of the system has been out-sourced, resulting in that our in-
dustrial partner is interested in knowing whether the external partner respected the
intended design and the provided coding guidelines/namingconventions;

– The system is expected to be in use for 20 to 25 years, resulting in that keeping the
system maintainable is a valuable asset;

54

– The system is being implemented in various phases spread over multiple years, dur-
ing which novel functionality is added. Our industrial partner wants to assure that
during these phases the design is respected and wants to assess possible violations
of the design.

3 Outline of our approach

Our tool — Cognac — offers developers a common framework to document and verify
design rules in Cobol systems. Cognac is developed as an extension to our IntensiVE
tool suite [4]. In a nutshell, the main idea of IntensiVE is todocument design rules by
grouping source-code entities in so-calledintensional views: sets of source-code entities
that belong conceptually together and that are defined by means of a logic program
query (expressed in the SOUL language [6]). Either by specifying multiple, alternative
definitions for one intensional view, or by imposing constraints over intensional views,
design rules can be expressed using the tool. IntensiVE offers a number of subtools that
allow for the verification of these design rules with respectto the source code and offer
developers detailed feedback concerning possible violations.

Reasoning about Cobol posed a number of interesting challenges. Therefore, Cognac
makes the following extensions to IntensiVE:

– There exist different variants of the Cobol language, each specifying a large amount
of different language constructs. In order to deal with thisproblem, we have imple-
mented a customisable island-based parser. Such an island-based parser allows us
to extract only the information that is necessary for the analyses we wish to express
from Cobol source code;

– We have implemented a set of SOUL predicates that reason about the Cobol parse
tree, such that we can define intensional views (and constraints over these views)
over such programs. This set of predicates consists of basicpredicates that allow
to query the structure of Cobol programs, predicates that retrieve relations between
the various source-code entities, as well as predicates that e.g. extract information
from embedded SQL statements;

– By reasoning purely over parse trees, we were restricted in the number of inter-
esting design rules that can be expressed. Therefore, we complimented the set of
SOUL predicates with two static analyses. One analysis is used to resolvecall state-
ments in the source code and link these statements to the actual Cobol programs
that might get invoked. The second analysis — data field aliasing — conservatively
computes aliases between different data fields in Cobol programs.

4 Design rules in the case study

In this section, we take a brief look at three of the design rules that we have documented
in the case study. During the presentation, a more in-depth look at these design rules
will be given, along with details about how we documented them using Cognac.

55

Section layeringIn the case study under investigation, the designers of the system intro-
duced a clear layered structure in the individual Cobol programs as a means to make the
control flow more explicit. More specifically, the various sections in each program were
divided into separate layers in which sections in one layer are only allowed to invoke
sections in the same, or a lower layer. This design rule is reflected in the source code
by means of a simple naming convention: each section’s name is prefixed with a letter
grouping sections at the same level using the same letter. From within each section,
only sections may be invoked with the same starting letter, or with a letter that comes
later in the alphabet. During the presentation, we show how to document this design
rule by creating an intensional view that groups all callersand callees of sections, and
by imposing a constraint over the elements of this intensional view specifying that for
all pairs of callers and callees, the first letter of the callee should be the same or come
later in the alphabet than the first letter of the caller.

Copybook - linkage correspondenceA Cobol program that can be called from within
another program needs to declare a linkage section that specifies the data definition of
the arguments that it expects as input. In our case study, onedesign rule that needs to
be obeyed is that, if a program calls another program, it usesthe same data definition
for the argument of both caller as well as callee. In order to ease this correspondence,
a copybook is used that contains the data definition and that should be included in the
linkage section of the called program as well as in the calling program. Since this pattern
however is not enforced by the language itself, we have documented it using intensional
views.

Database modularityThe case study we investigated is designed in a component-
oriented fashion. In the system, the various components consist of a top-level program
that serves as the component’s interface, along with a number of programs to which this
top-level program delegates particular requests. Also associated with each component
is a set of database tables that contain the persistent data which the module is responsi-
ble for. In order not to break this modularity, only programsfrom within one particular
module are allowed writing access to the tables associated with that module. All other
programs need to retrieve and manipulate data via the interface program of that module.
Preferably also, the number of programs within a module thatare allowed to write to the
associated tables is limited. As we will show in the presentation, in order to verify this
design rule, we opted to use a more pragmatic approach in which we use a visualisation
as a means to provide the original designers of the system with feedback concerning the
use of database tables in the current implementation.

Acknowledgements

Andy Kellens is funded by a research mandate provided by the “Institute for the Promotion of
Innovation through Science and Technology in Flanders” (IWT Vlaanderen). Kris De Schutter re-
ceived support from the Belgian research project AspectLab, sponsored by the IWT Vlaanderen.

56

References

1. Checkstyle, December 2006.http://checkstyle.sourceforge.net.
2. Y. Guéhéneuc. Three musketeers to the rescue – meta-modeling, logic programming, and

explanation-based constraint programming for pattern description and detection. InWorkshop
on Declarative Meta-Programming at ASE 2002, 2002.

3. S.C. Johnson. Lint, a c program checker. In M.D. McIIroy and B.W. Kemighan, editors,Unix
Programmer’s Manual, volume 2A. AT&T Bell Laboratories, seventh edition, 1979.

4. K. Mens, A. Kellens, F. Pluquet, and R. Wuyts. Co-evolvingcode and design with intensional
views: A case study.Elsevier Journal on Computer Languages, Systems & Structures, 32(2-
3):140–156, 2006.

5. G. Murphy, D. Notkin, and K. Sullivan. Software reflexion models: Bridging the gap between
source and high-level models. InSymposium on the Foundations of Software Engineering
(SIGSOFT), pages 18–28, 1995.

6. R. Wuyts. A Logic Meta-Programming Approach to Support the Co-Evolution of Object-
Oriented Design and Implementation. PhD thesis, Vrije Universiteit Brussel, January 2001.

Author Index

Alves, Tiago L., 39
Amstel, Marcel van, 10, 36
Andova, Suzana, 18

Brand, Mark van den, 10, 28, 36
Brichau, Johan, 23

Castro, Sergio, 47
Classen, Andreas, 40
Cleve, Anthony, 38

D’Hondt, Theo, 42, 53
De Schutter, Kris, 53

Ebraert, Peter, 42

Fernandez-Ramil, Juan, 1

Groenewegen, Luuk, 18

Hainaut, Jean-Luc, 38
Heymans, Patrick, 40
Hoste, Michael, 14
Hubaux, Arnaud, 40

Izquierdo-Cortazar, Daniel, 1, 6

Kellens, Andy, 53

Lange, Christian, 36

Mens, Kim, 13
Mens, Tom, 1, 14, 31

Pérez, Javier, 48
Pinna Puissant, Jorge, 14
Protić, Zvezdan, 10

Serebrenik, Alexander, 28

Tamzalit, Dalila, 31
Telea, Alexandru, 24

Van Geet, Joris, 52
Vink, Erik de, 18
Visser, Joost, 39
Voinea, Lucian, 24

Zeeland, Dennie van, 28

