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can be calculated. s,,,, = exp(-jgl) is the forward transmission 
coefficient of the connecting line of length l and propagation coef- 
ficient g. Losses are neglected. 
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Fig. 3 Measurement structures consisting of two different double trun- 
sistions 

Results: The operating frequency of our radio module is 38GHz 
and the transition is matched to 5 0 9 .  A substrate thickness of 
1 7 0 p  was chosen which needs a line width of 3 6 3 ~  for the 
microstrip and coplanar line. The slot width is 3 1 ~ .  The via 
holes are processed with a CO, laser and have diameters of 2 6 0 ~  
on the top side and 1 8 0 - 2 3 0 ~  on the back side. These via holes 
have to be filled either in a soldering process or by means of an 
organic material (glop top filling). 

The resulting excellent return loss of -20dB is shown in Fig. 4. 
Although we performed the measurement only from 36 to 40GHz 
we mention here that this structure can be used as a broadband 
transition because no frequency selective elements are incorpo- 
rated. 
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Fig. 4 Measured magnitude of reflection coefficients s i l  and s2> of 
transition shown in Fig. 2 

Conclusions: A novel microstrip-to-microstrip transition with side 
changed metallisation patterns has been experimentally demon- 
strated. A measurement procedure has been presented which 
extracts the transition properties by two different double transi- 
tion measurements with electrical separation in the frequency 
domain. Although only measured around 38GHz the structure is 
suitable for a larger operating bandwidth. 
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Functional testing for cellular neural 
networks 

J. Willis and J.  Pineda de Gyvez 

Indexing terms: Cellular neural nerworks, Testing 

A novel approach to test the functional behaviour of cellular 
neural networks (CNNs) is proposed. The method attains 100% 
stuck-at fault coverage regardless of the array size without any 
extra hardware for its implementation. The Letter discusses the 
new fault model, presents the algorithnnc procedures and shows 
simulated testing results. 

Introduction: The testing of CNNs has been scarcely addressed [I]. 
The approach described in this Letter overcomes the testing con- 
straints of [l] and achieves 100% fault detection without any extra 
hardware. Our testing method is based on the concept of C-testa- 
bility [2]. Using this approach it is possible to determine the func- 
tionality of a processing array by applying a constant number of 
predetermined vectors independent of the array size and then com- 
paring the actual output values to the predicted output values. 

CfO.0) . .  

0 b m  
Fig. 1 Cellular neural network 

a 4 x 4 processing array with border cell inputs shown 
b Individual processing cell 

A CNN is an analogue cellular nonlinear dynamic processor 
array (see Fig. la). The hasic circuit unit is called the ‘cell’ [3,4] 
(see Fig. Ib) . The first order nonlinear differential equation defin- 
ing the dynamics of a cellular neural network can be written as 
follows: 

1 
Y i ? ( t )  = +J(t) + 11 - I%j(t) - 11) 

I ,  \ 

A and B are called ‘templates’ and are used to control the interac- 
tion between the cells C(k,l) in the neighbourhood N(i,j)  of a ref- 
erence cell C(i, j) .  The variable ~ ( t )  represents the state of the cell, 
uij represents the input image to the cell and yo represents the out- 
put equation. 

A set of inputs is necessary to simulate interaction with 
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imaginary cells outside the processing array to ensure that the cells 
on the perimeter of the processing array achieve proper 
convergence. These imagbary cells are called border cells and 
form a ring around the processing array. The border cells are 
treated as members of the array for initialisation purposes and 
template implementation, but are not considered in the final state 
analysis. 

Fault models: A CNN processor has only two output states. Com- 
monly, in image processing applications these states appear as 
white or black pixels. A white pixel is associated to a cell whose 
output voltage is normalised to -1 V. A black pixel is associated to 
a cell whose normalised output voltage is +1 V. If a cell is unable 
to change from one state to the other, it is defined to be ‘stuck-at- 
white’ or ‘stuck-at-black’, depending on its current value. With the 
proposed test method it is possible to detect 100% of the stuck-at 
faults in the processor. 

Test methods: The test procedure has two separate methods to 
detect faulty cells, a local method using the B template and a 
propagation method using the A template. The entire array can be 
tested using either of these methods regardless of its size. The 
advantage of the A template method is that it verifies that each 
cell is responding correctly to its neighbour’s output. 

The local method uses the input image and the B template to 
predict the final output state y,, of each cell in the array. The algo- 
rithm for the local test procedure is shown below. 

(i) let 

-1 -1 -1 

(ii) set the input image and border cells to white 

V; ju i j=- l  i = O , l ,  . . .  n + l  j = O , l ,  ... m + l  

(iii) set the initial conditions to white 

V,, xt,(0) = -1 i = I , & . .  .n  = 1,2, .  . .m 

(iv) allow the CNN to converge 

(v) all cells, C, remaining at white are considered faulty, e.g. 
‘stuck-at-white’ cells 

V,, yij 1 -1 -i C,j is faulty i = 1 , 2 , .  . . n j = 1,2, .  . .m 

In step 2 the normalised value corresponding to a white input is 
-1. Notice that the B template values are also -1. The positive 
product of these two values results in current being injected into 
cell C(i,j) from each of its eight neighbours. As the current is 
injected into the cell, the integrator voltage rises and the cell out- 
put reaches the normalised value of 1, which corresponds to black. 
If cell C(i,j) fails to change under such overwhelming circum- 
stances the conclusion that must be drawn is that the cell is ‘stuck- 
at-white’. The same algorithm can be applied to find ‘stuck-at- 
black’ cells by changing all instances of white to black and -1 to 1 
in steps 2 - 5 of the local test algorithm. 

The test of the CNN array using the A template uses the idea of 
propagation of information across the network. The propagation 
ability of CNNs has been described before 151. Here we use the 
same concept although the templates are different because we only 
want propagation and not ‘full dragging’ as described in [5]. In 
this case the input image does not matter and the border cells and 
initial conditions of the network are black. The A template causes 
each cell, C(ij), to look at the cell behind it, C(i-l , j) ,  and change 
to the colour of that cell. The algorithm for the propagation test is 
as follows: 

(i) let 

(ii) set the border cells to black 

V , j u , , = l  i = O , l ,  ... n + l  j = O , l ,  . . .  m + l  
V , , U , ~ = ~  i=O,1 ,2  , . . .  n + l  j = O , m + l  

(iii) set the initial conditions to black 

V;,z,(O)=l i = 1 , 2  ,... n j = 1 , 2  ,... m 

(iv) allow the CNN to converge and save the results of rotation k 

~ , , x , ( t ) + ~ j : )  t = 1 , 2  ,.,. n j = 1 , 2  ,... m 

(v) add 1 to k and rotate A template clockwise 45” 

(vi) if k > 8 continue to step 7, otherwise go to step 2 

(vii) perform the logical OR of the results 

(viii) all cells C, remaining at white are considered faulty, e.g. 
‘stuck-at-white’ cells 

V,, yv I -1 -i C,, is faulty i = 1,2 , .  . .n j = 1,2,. . .m 

The process starts at the left edge of the array and propagates 
across the network to the right side. Because the border cells, 
C(i,O), are black, the predicted result should be an all black image. 
If a ‘stuck-at-white’ fault is detected, then all properly functioning 
cells to the right of the stuck cell should also remain white. The 
faulty cell in effect casts its ‘shadow’ across the array. The situa- 
tion where two or more faulty cells lie on the same row can be 
detected by rotating the A template clockwise 45” and repeating 
the test. The template should be rotated in this manner 360” to 
ensure complete coverage of the array. The ‘stuck-at-white’ cells 
can be determined by performing the logical OR of the resulting 
eight output images. The same procedure can be used to detect 
‘stuck-at-black’ cells by changing all occurrences of white to black 
and -1 to 1 in steps 2 - 8 in the propagation test algorithm and 
performing a logical AND in step 7. 

a E b 

Fig. 2 Local test method 

a Input image 
b Final result 

Simulated results: Using a CNN simulation program the above 
tests were applied to a 5 x 5 CNN network. In both the local and 
propagation tests, cells C(3,2)  and C(2,3) were intentionally forced 
into the ‘stuck-at-white’ state. Fig. 20 shows the input image used 
for both tests. Fig. 26 shows the resulting final image after the 
simulation of the local test. 

Fig. 3 shows the results of the simulation after the propagation 
test. Fig. 3a shows the ‘shadow’ effect discussed earlier. It is safe 
to assume by viewing Fig. 30 that cells C ( 3 , 2 )  and C ( 2 , 3 )  are 
faulty. Fig. 36-h show the result after each rotation of the tem- 
plate by 45” and the new direction of propagation. The final 
results of the test are shown in Fig. 3i. 

Conclusion: A testing method for CNNs has been presented which 
provides 1Wh fault detection with no additional hardware 
required. Any size array can be tested using a constant size set of 
input vectors. The local testing method provides 100% fault isola- 
tion. There are some fault location configurations that could 
impede fault isolation using the propagation test, i.e. if the faults 
form a complete rectangle, the status of the cells inside the rectan- 
gle would be unknown due to the shadow effect. This fact lowers 
the fault isolation capabilities of the propagation method but does 
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Fig. 3 Propagation test clockwise template rotation 

a - h :  0 - 3 W ,  45" steps 
i :  Final result 

not change the tault detection percentage. 
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Relation between template spectrum and 
convergence of discrete-time cellular neural 
networks 

R. Perfetti 

Indpxing terms: Neural networks, Cellular arrays 

A convergence criterion is proposed for reciprocal, discrete-time 
cellular neural networks, that exploits the peculiar interconnection 
structure of such networks. It is based on the Fourier spectrum of 
the discrete sequence representing the cloning template, and can 
be applied in the usual case where the neighbourhood is much 
smaller than the network. The corresponding design constraint, 
involving the template values, results in being less restrictive than 
those existing in the literature. 

Introduction: Discrete-time cellular neural networks (CNNs) have 
been recently introduced as promising architectures for nonlinear 
and real-time image processing [I]. The stability analysis of CNNs 
is a main topic that has been investigated in recent contributions 
(see [2] for a survey). In [3] the convergence is proven for recipro- 
cal discrete-time CNNS with continuous, monotonically increasing 
nonlinearities, and feedback operator which comply with 

A ( Z , j ; G j )  2 cc I A ( i , j ; k U I  (1) 
k # i  6#j 

for every i and j .  
This dominance constraint on the feedback operator is overly 

restrictive. Indeed, the convergence proof outlined in [3], that 
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applies to every discrete-time feedback neural network, requires 
only that the interconnection matrix he symmetrical and positive 
semidefmite (PSD). It is therefore possible to exploit the peculiar 
interconnecting structure of CNNs to derive a design constraint 
which is less restrictive than that in eqn. 1. To simplify the nota- 
tion, this improved constraint will be derived in the case of one- 
dimensional CNNs. However, the generalisation to twodmen- 
sional networks is straightforward. 

Assumptions and defuritions: Assume a onedimensional reciprocal 
discrete-time CNN described by the following state equation: 

In eqn. 2 x = [x l  . _ _  xN]', where x, is the state of the ith cell. y = b, 
_ _ _  yJr ,  where y ,  = 11x3 denotes the output of ith cell. N is the 
number of cells. A(N x N )  represents the symmetrical connection 
matrix. B is the matrix of control parameters. is the input vector 
and d is a threshold vector. The nonlinear function11 ) is a contin- 
uous, monotonically increasing function satisfying the following 
conditions:flx) = +I ,  if x L +I;@) = -1, if x s - 1; dJdx > 0, if 
- 1 < x < +I; dJdx = Oifx  = el .  

Let (a(0) a(1) __. a@)} denote the symmetrical cloning template, 
where r is the dimension of the cell neighbourhood; then, the con- 
nection matrix is given by 

x ( n  + 1) = Ay(n) + B u + d  n = O , l , Z , .  . . (2) 

A ( i , j )  = a(li - j l )  

A ( i , j )  = 0 otherwise 

if li - j l  5 T 
i , j = l ,  . . . ,  N (3) 

We define the template spectrum S(h) as follows: 

S(A) = ~ ( I c )  exp(j IC A) d~ ( 4 4  
k=--r 

so that 

Taking into account the symmetry of the template we can rewrite: 

S(A) =a(O) + 2 C a ( k ) c o s ( k A )  ( 4 4  
k=l 

Improved convergence criterion: As shown in [3], convergence of 
the model eqn. 2 can be proven under the assumption that matrix 
A is PSD. This condition can be formulated in terms of the (real) 
eigenvalues of A namely it is required that all the eigenvalues of A 
be non-negative. Matrix A is a fmite-order Toeplitz matrix, having 
the form 

a(0)  a(1) . . .  a(r) 

a(1) a(0) a(1) " '  U(.) 0 1  
: a(1) a(0) ... 

A =  a(r) I 
1 a(r)  ' . '  a(1) a(0)l 

No analytic expression is known for the eigenvalues of matrix eqn. 
5.  However, in the case of CNNs we are interested in networks 
where the number of cells is far larger than the template dimen- 
sion, i.e. N>>r. It is therefore possible to exploit an asymptotic 
property of finiteorder Toeplitz matrices, to derive a design con- 
straint which is satisfied by a broader class of cloning templates, 
with respect to that complying with eqn. 1. To this end, we intro- 
duce matrix C ( N  x N) defmed by 

C ( i , j )  = a(li - j l )  

C ( i , j ) = a ( N - l Z - j l )  if J i - j l > N - r  

C(Z,j) = 0 otherwise 

if li - j l  5 T 

(6) 

i 3 j  = 1 , .  . . 1  N 
where it is assumed N z 2r + 1. Matrix C is a circulant matrix, 
whose circulant elements are 

a(O)a( l ) .  . . a(r) 0.. . Oa(r) .  . . a(1) 

It is well known that the eigenvalues of a circulant matrix can be 
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