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Abstract— When logic upsets affect machine words repre-
senting variables in programs, it is possible to consider their
effect in terms of the numeric magnitude of the value deviation
they induce. This is a result of the semantic interpretation
that the bit-level layout of different language data types
imposes.

When some distribution of value deviations in variables
may be acceptable, it is possible to consider techniques for
encoding the representation of program variables, to limit
the deviations of values in the presence of logic upsets, to
acceptable distributions thereof. To quantify the best-case
performance of encoding techniques for minimizing such
value deviations, we investigate bounds for their encoding
efficiency.

I. INTRODUCTION

Disruptions of machine state due to phenomena ex-
ternal to the computing process, is of increased inter-
est in contemporary computing systems. Advances in
semiconductor processes, while yielding ever greater
availability of computing resources, have been accompa-
nied by increased susceptibility of circuits to undesirable
disruptive phenomena. These phenomena include on-
chip power supply fluctuations, system-level electrical
noise, and energetic species such as alpha particles and
high-energy neutrons, in both terrestrial and space ap-
plications. In the ever-more-complex systems being built
today, there is also increased concern for the integrity of
data being communicated between multiple subsystems
of an integrated circuit (IC), as well as between multiple
ICs in a system.

In digital systems, the effects of these varied disruptive
mechanisms may be abstracted by logic upsets or faults
— undesirable changes in bit-level state. These faults
may be seen as forcing a logic value in a circuit to a
high (1 ) or low (0 ) value (possibly leading to 0→1 or
1→0 inversion-upsets). The upset phenomena may also
lead to ostensibly invalid values, i.e., to logic states that
are neither 0nor 1 : erasure-upsets. For inversion-upsets,
if the pre-existing value within the circuit is the same as
the value induced, the fault is said to be masked.

It is typically the goal of forward error correction
mechanisms to reduce the probability of logic upsets

going undetected or uncorrected. For a given error de-
tection and correction mechanism, there is an associated
number of detectable or correctable logic upsets; for
example, a single error correction, double error detection
(SECDED) system will correct single faults and detect
up to two faults. In systems employing error correction
mechanisms of this form, no differentiation is made
between the different cases of undetected or uncorrected
faults, even though they might have differing effects on
system behavior.

When faults affect digital representations of numbers,
the errors induced may be considered from the view-
point of the deviations in numeric value induced. In the
case of microprocessors, the faults occurring in machine
words (e.g., in registers, buses, memory cells) may be
considered in terms of the deviations they introduce into
program variables. Given a fault in a machine word,
the numeric magnitude of deviation is dependent on the
machine-level representation of values, e.g., unsigned or
two’s complement representation for integers, and IEEE-
754 floating-point representation for approximate real
numbers [4].

Variables of arithmetic types in programs (e.g., types
int or float in the C programming language) can
however often tolerate some amount of deviation in their
values. For example, variables representing components
of pixel values in an image-processing application might
be tolerant of small variations resulting from faults. For
such situations, it is possible to view the problem of
forward error correction, from the perspective of the
guaranteed maximum value deviation, rather than in terms
of the guaranteed maximum number of correctable faults. For
example, rather than attempting to find an encoding that
will correct k faults, the problem might instead be to
find an encoding that ensures that the value deviation
is less than a constant C. This is essentially encoding
under a fidelity criterion [7], based on the semantics
of digital arithmetic representations of programming
language variables of different data types.

In this paper, we investigate the bounds on attainable
efficiency of encoding as a function of a constraint
on value deviation, for encoding techniques that satisfy
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Fig. 1. Example: logic upsets and value deviations.

value deviation constraints on variables in programs. These
bounds are analogous to the Shannon efficiency bound
for encoding techniques for correcting a fixed number of
faults. Relevant related research is reviewed in Section II.
The bound derivations are presented in Section III, and
the paper concludes in Section IV with a summary of
contributions and directions for future research.

II. RELATED RESEARCH

Considering the numeric / semantic value of the effect
of upsets during encoding is related to the idea of encod-
ing with a fidelity criterion (rate distortion theory) [7],
[3] and to unequal error protection (UEP), joint source-
channel coding with a fidelity criterion, which uses
knowledge about how errors induced by the channel in
the data (source representation) affect the quality of the
reconstructed data on the other end of the channel [2].
The value deviations considered in this paper may be
viewed as a distortion function defined for the values of
integer and floating point approximate real numbers rep-
resented as bit vectors in programs. Source coding while
taking into consideration the semantic interpretation of
values is the basic principle behind perceptual encoding
techniques, e.g. [5].

In a detailed gate-level simulation of an entire embed-
ded microprocessor, Saggese et al. [6] show that upsets in
the register file, load-store unit and bus interface account
for more than 50% of the upsets that are not masked.
Rather than attempting to eliminate the effects of logic
upsets in these structures, it is possible to take advantage
of the fact that the values they contain may represent
variables in programs, to enable tradeoffs between the
overhead of encoding and the effects of errors.

III. BOUNDS ON ENCODING OVERHEAD

Digital representations of numbers define the contri-
bution of individual binary digits of a bit vector, to its
numeric value. When logic upsets occur within these
digital representations, the value deviation they induce
is a function of the location of the logic upset and the
representation format. Figure 1 illustrates examples of
value deviations caused by logic upsets in unsigned 8-
bit integer representations.

Reduction of the error rate of a noisy channel (or
equivalently, an encoded machine word in the presence
of a source of logic upsets) to an arbitrarily small value,
can be achieved by increasing the message redundancy.
For this, Shannon’s channel coding theorem [8] gives the

upper bound on the efficiency, in the presence of upsets
with a given bit upset probability. If however, the goal is
not to reduce the overall error (i.e., non-masked upset)
rate, but rather to reduce the magnitude of resulting
value deviation, we can obtain similar bounds on en-
coding efficiency. Obtaining those bounds, for the digital
arithmetic representations of program variable values,
are the subject of the following sections.

A. Preliminary definitions

When k upsets in L-bit variables are possible, the
value deviations, m, are in the range

m ∈

[

0
L−1∑

i=L−k

2i

]

. (1)

For each possible value deviation m, there are multiple
counts, locations, and types (i.e., 0→1 versus 1→0 ) of
upsets (up to k upsets in all), a total of z configurations,
that may lead to the particular deviation. In other words,
z is the number of ordered pairs of values between 0 and 2L−1
which differ in value by m, and differ in at most k bits in
their digital arithmetic representation1. If one ignores the
upset-free word values and upset types, then there is
a smaller number of unique upset locations to consider
for a given word length L, value deviation m and
maximum number of simultaneous upsets k. We denote
this number of unique upset locations with y.

For example, for L = 3 and k = 2 (i.e., 3-bit variables
with a maximum of two faults occurring simultaneously
in a variable), there are seven possible values of value
deviation m, i.e., m ∈ [0, . . . , 6] (Equation 1). The details
of the cases for m ∈ {1, 2, 3} are shown in Figure 2.
For a value deviation of m = 1, there are z = 12
unique combinations of upset locations, upset types, and
original upset-free word values leading to this value
deviation. On the other hand, there are only y = 2
unique locations in which upsets can occur — in the
least-significant bit alone, or in the two least-significant
bits together.

If the underlying fault mechanism is that of inversion
upsets, then all the error correcting code needs is the
location of the upsets, and reversing the extant bit val-
ues provides the correction mechanism. The number of
unique upset locations, y, gives a measure of the best
case syndrome size for correcting inversion upsets, and
hence a bound on the encoding efficiency; this is the
subject of Section III-D. If however the fault mechanism
leads to erasures, then the error-correcting code needs
more information (it cannot simply “reverse” the bits as
it would in the case of inversions). The total number of
possible upset vectors, z, is thus of interest, as it contains
information regarding the original and corrupted bit

1In this work, we only consider unsigned values. The extension to
other number representations, such as two’s-complement integer and
floating-point representations is straightforward.
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Fig. 2. Enumeration of all possible cases of value deviation, m = {1, 2, 3}, for L = 3-bit words and a maximum of k = 2 simultaneous upsets,
for pairs of error-free values v and error-containing values w. Pairs of values that are not possible with a maximum of k = 2 upsets are shown
in a lighter color. Bit positions which are in error are shown with a “•” above them. Note that, for L = 3 and k = 2, there is no combination
of three upsets that would lead to a value deviation of m = 2.

values, necessary for correcting erasures. The encoding
efficiency bounds in this case are the subject of Sec-
tion III-E. An ideal encoding scheme will only employ
as many bits as are necessary to identify these possible
cases of value deviation, and the syndrome for the error-
correcting code will need ⌈log2(z)⌉ bits in the case of
erasures, and ⌈log2(y)⌉ in the case of inversion upsets.

B. Efficiency bounds for singly-occurring logic upsets

For the special case when only a single upset may
occur within an L-bit word (i.e., k = 1), there are
L−⌊log2(m)+1⌋ bit positions that can cause a constraint
on value deviation m to be violated. The intuition is
that, for a constraint m, there are ⌊log2(m) + 1⌋ bit
positions at which a single logic upset occurring would
yield a deviation less than m. The syndrome of the error
correcting code must contain at least as many bits as
required to locate upsets in these bit positions, thus,

2LC−L ≥ number of locations in which upsets can

cause value deviation to exceed m, +1 (for

the case when no bits are in error),

= L − ⌊log2(m) + 1⌋ + 1.

Thus,

LC ≥ L + ⌈log2(L − ⌊log2(m) + 1⌋ + 1)⌉. (2)

0 0 1 1 1 1 1 1

0 1 0 0 0 0 0 0

error-free value, v = 63

error-containing value, w =  64

Value Deviation, m = 1 

Fig. 4. When multi-bit upsets occur, ⌊log
2
(m) + 1⌋ no longer

characterizes the bit positions that must be protected to prevent value
deviations of m.

In the above, L−LC is the number of syndrome bits, and
2L−LC is the number of bit positions in which upsets can
be identified by the syndrome. Thus, for example, for
L = 8-bit values in which the constraint is m ≤ 64, only
8 − ⌊log2(64) + 1⌋ = 1 bit is critical, and the syndrome
must be ⌈log2(2)⌉ = 1 bit. This single syndrome bit will
be used to differentiate between no upset, and the critical
bit being incorrect. Figure 3 plots the limiting efficiency
of encoding (L/LC ,) as a function of L (number of bits
in data value) and m (upper bound on tolerable value
deviation).

When more than one upset may occur however, the
above analysis is insufficient. To observe why this is
so, consider an 8-bit value that has incurred a value
deviation of m = 1. The foregoing analysis would imply
that the upset must have occurred in the least significant
⌊log2(m)+1⌋ bits. Consider however the value 63, which
as a result of a multi-bit upset, is now the value 64. This
would require a 7-bit upset vector as shown in Figure 4.
The construction of appropriate bounds for the more
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Fig. 3. Limiting efficiency of encoding length for single-bit upsets, L/LC , as a function of number of bits of data value, L, for different values
of tolerable value deviation, m.

general case of multi-bit upsets is described next.

C. Efficiency bounds for multiple logic upsets — general case

From the example of Figure 2, it can be easily deter-
mined that an upper bound on the number of logic upset
cases leading to a value deviation of m (albeit a loose
one) is given by

z ≤ 2L − m
︸ ︷︷ ︸

(1)

+2L − m
︸ ︷︷ ︸

(2)

= 2L+1 − 2m, (3)

where term (1) accounts for all the cases where the error-
free value v is increased to the error-containing value of
at most 2L − 1, and likewise the term (2) for when the
error-free value of at least m is decreased by m to yield
the error-containing value. The above is an inequality,
since, for a given L, k and m, it does not consider the
restriction on number of bit positions (fewer or equal to
k) which must have associated upsets.

The problem of finding the number of cases that may
exist for a given word length L, number of upsets k and
value deviation m can be re-stated as the problem of
finding the number of pairs of values of length L, that
differ by m and have Hamming distance k. For unsigned
L-bit values, this is given by the number of solutions to
the simultaneous Diophantine equations:

∣
∣
∣
∣
∣

L−1∑

i=0

ai2
i −

L−1∑

i=0

bi2
i

∣
∣
∣
∣
∣
= m, (4a)

L−1∑

i=0

(ai(1 − bi) + bi(1 − ai)) = k. (4b)

The intuition behind Equations 4a and 4b is that two L-
bit unsigned values differ in k bit positions, and differ in
value by m, when their arithmetic representations differ
in value by m, and their bit-wise XOR (i.e., ai(1 − bi) +
bi(1 − ai)) sums to k. For other number representations
(e.g., two’s complement, or floating-point approximate
real-number representations like the IEEE-754 floating
point format), the first of the above two equations will be
replaced with an equation capturing the (different) role
bit-positions play in the said number representation.
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Fig. 5. Number of solutions to Equation 4, for L = 8, with varying
k and m. The plots are overlaid on the loose bound to the number
of solutions of Equation 4, given by Equation 3, shown as the shaded
grey inequality region.

The general solution of Diophantine equations is un-
decidable. Equations 3 provided a loose upper bound on
the number of solutions satisfying the above equations.
More insight can be attained by the use of exhaustive
enumeration to study the behavior of the number of
solutions for Equation 4, as a function of L, k and m.
The results for L = 8 are shown in Figure 5 (number
of solutions, z) and Figure 6 (number of unique upset
locations, y). Several observations may be made from
Figure 5:

1) The number of possible solutions is always a mul-
tiple of 2L−k+1.

2) For each value of m, there are 2k possible numbers
for the count of possible cases.

3) For a given value of k, the coefficients — the ratio
of the number of possible solutions to 2L−k+1 —
across the possible values of m always begin with
the Mersenne numbers (2k − 1) for m = 1, and end
in 1, for largest m =

∑L−1

L−k
2i.

4) For all L, at k = 1, the coefficients are 1 when m is
a power of two.

5) For all L, at k = L − 1, the coefficients are mono-
tonically decreasing after each second value of m.

6) For all L, at k = L, the coefficients monotonically
decrease for each increase in m.

The of values of y for a given L and k as a function of m
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Fig. 7. Differing role of the syndrome for bit-reversals versus bit-
erasures.

can however be shown to belong to the integer sequence
defined by a(2n + 1) = a(n), a(2n) = a(n) + a(n − 1)
(Sloane’s integer sequence number A020951 [1]).

D. Efficiency bounds for multiple logic inversion upsets

For a value deviation m, there are y bit positions
that must be protected by the error-correcting code. The
number, y of bit positions that must be protected in order
to ensure a value deviation less than m, for a given L and
k were enumerated in Figure 6. The number of syndrome
bits, LC −L, needed to protect against a value deviation
m, for a given L and k is thus ⌈log2(y)⌉. The limiting
efficiency, L/LC , attainable in the ideal case is shown in
Figure 8 (points, upper curve).

E. Efficiency bounds for multiple erasures

When considering erasures, the syndrome of an error-
correcting code must distinguish between the different
cases of possible underlying bit-values prior to the era-
sure, in addition to identifying the location of the upsets.

For example, for an 8-bit word, and assuming singly-
occurring upsets, four bits can be used to identify which
bit position (if any) has incurred a bit-reversal — there
are nine cases, eight of which correspond to a particular
one of the bits being incorrect, and the last corresponding
to the case of all bits correct. For erasures, the syndrome
must not only denote which bit position is incorrect, but
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Fig. 8. Limits on encoding efficiency for erasures in L = 8-bit words
with at most k = 8 simultaneous distinct inversion upsets (points,
upper curve) and erasures (stem plots, lower curve).

must also be able, based on information in the syndrome
(which is constructed from the original source word)
to determine the correct bit value. There are sixteen
possible single-erasures, e.g., bit 4 should have value
0 but has suffered an erasure, bit 4 should have value
1 but has suffered an erasure, and so forth, plus the
additional case of no incurred erasures. The syndrome
thus needs five bits; this is illustrated in Figure 7.

For a word length L = 8 and up to k = 8 distinct
erasures, the lower curve (stem plots) in Figure 8 shows
the limiting efficiency of a deviation-bounded k-erasure
correcting code. The lower limiting encoding efficiency
for erasures, as compared to bit inversions, follows di-
rectly from the preceding arguments — intuitively, more
information must be maintained to enable correction
of erasures in contrast to bit inversions. As the toler-
able deviation, m, resulting from non-corrected upsets
increases, inversion-upset- and erasure-correcting codes
need fewer bits in their syndromes to locate and correct
upsets.

IV. SUMMARY

When bit-level value reversals (inversions) and era-
sures occur within machine state representing arithmetic
program variables, it is possible to consider their effect
in terms of the value deviation incurred. This permits the
use of forward error correction schemes that limit the
amount of such value deviation, by taking into account
the role individual bits play in the digital arithmetic
representation of numbers. This paper presented an
investigation of the bounds on achievable efficiency for
such deviation-tolerant encoding.
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