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Information Leakage in Fuzzy Commitment Schemes

Tanya Ignatenko, Member, IEEE, and Frans M. J. Willems, Fellow, IEEE

Abstract—In 1999, Juels and Wattenberg introduced the fuzzy
commitment scheme. This scheme is a particular realization
of a binary biometric secrecy system with chosen secret keys.
It became a popular technique for designing biometric secrecy
systems, since it is convenient and easy to implement using stan-
dard error-correcting codes. This paper investigates privacy- and
secrecy-leakage in fuzzy commitment schemes. The analysis is car-
ried out for four cases of biometric data statistics, i.e., memoryless
totally symmetric, memoryless input-symmetric, memoryless, and
stationary ergodic. First, the achievable regions are determined
for the cases when data statistics are memoryless totally symmetric
and memoryless input-symmetric. For the general memoryless
and stationary ergodic cases, only outer bounds for the achievable
rate-leakage regions are provided. These bounds, however, are
sharpened for systematic parity-check codes. Given the achievable
regions (bounds), the optimality of fuzzy commitment is assessed.
The analysis shows that fuzzy commitment is only optimal for the
memoryless totally symmetric case if the scheme operates at the
maximum secret-key rate. Moreover, it is demonstrated that for
the general memoryless and stationary ergodic cases, the scheme
leaks information on both the secret and biometric data.

Index Terms—Biometric secrecy systems, privacy, secret key, se-
curity.

1. INTRODUCTION

ITH recent advances of biometric recognition tech-
W nologies, these methods are seen to be elegant and
interesting building blocks that can substitute or reinforce
traditional cryptographic and personal authentication systems.
However, unlike passwords and traditional cryptographic
secret keys, biometric information if compromised cannot
be canceled and easily substituted: people only have limited
resources of biometric data. The latter point combined with
the fact that stolen biometric data result in a stolen identity
rises privacy concerns associated with the use of biometrics.
Indeed, Schneier [1] pointed out that biometric data are not
standard secret keys that can be easily canceled. Also Ratha e?
al. [2] investigated the vulnerability points of biometric secrecy
systems. In Prabhakar et al. [3] security and privacy concerns
were raised. Finally, at the DSP forum [4] secrecy and privacy
problems and the corresponding protecting technologies were
discussed. Thus, deployment of biometrics also requires secure
storage and communication of biometric information.
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One of the methods that appeared as a result of recent devel-
opments in the area of biometric secrecy systems is fuzzy com-
mitment. The fuzzy commitment scheme, introduced by Juels
and Wattenberg [5], is a particular realization of a binary bio-
metric secrecy system with chosen secret keys. In biometric se-
crecy systems with chosen keys, secret keys are bound to bio-
metric data. These secret keys are used to regulate access to, e.g.,
sensitive data, services, and environments in key-based crypto-
graphic applications and, in particular, in biometric authentica-
tion systems. A secret key is chosen during an enrollment pro-
cedure in which biometric data are observed for the first time.
This key is to be reconstructed after these biometric data are
observed again during an attempt to obtain access (authentica-
tion). Since biometric measurements are typically noisy, reli-
able biometric secrecy systems also extract so-called helper data
from the biometric observation at the time of enrollment. These
helper data facilitate reliable reconstruction of the secret key in
the authentication process. The helper data are assumed to be
public, and therefore they should not contain information on the
secret, hence secrecy leakage should be negligible. Important
parameters of a biometric system include the size of the secret
key and the information that the helper data contain (leak) about
the biometric observation. This latter parameter is called pri-
vacy leakage. Ideally, privacy leakage should be small, to avoid
biometric data of an individual to become compromised. More-
over, the secret-key length (also characterized by the secret-key
rate) should be large to minimize the probability that the secret
key is guessed and unauthorized access is granted. In [6], [7],
and [8], the fundamental tradeoffs between secret-key and pri-
vacy-leakage rates in biometric systems with chosen keys were
studied from the information-theoretical point of view. There
the achievable secret-key versus privacy-leakage rate regions
were determined.

In the fuzzy commitment scheme, the helper data are con-
structed as a codeword from a selected error-correcting code,
used to encode a chosen secret, masked with the biometric se-
quence that has been observed during enrollment. The scheme
is primarily designed for biometric data that are represented
by binary uniform memoryless sequences. It is provably secure
for this case. The scheme became a popular technique for de-
signing biometric secrecy systems, since it is convenient and
easy to implement using standard error-correcting codes. The
implementation of fuzzy commitment for different biometric
modalities can be found in Kevenaar er al. [9] (faces), Hao
et al. [10] (irises), Campisi et al. [11] (signatures), Yang and
Verbauwhede [12] (irises), etc. In practice, however, biometric
data are rarely uniform. Biometric data used in fuzzy-commit-
ment-based systems, e.g., in the literature mentioned above, do
not satisfy the criteria of being uniform and memoryless. Never-
theless, it is assumed that these systems are secure. Also privacy
preserving properties of these systems are hardly investigated.

1556-6013/$26.00 © 2010 IEEE
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In Smith [13], though, it was already observed that in fuzzy
commitment the helper data leak information on the secret if
the biometric data are nonuniform, and that they must also leak
some information about the biometric data. The privacy leakage
corresponding to the maximum secret-key rate for the original
uniform memoryless setting was also determined by Tuyls and
Goseling [14].

In this paper, we investigate the properties of the fuzzy com-
mitment scheme when the biometric data statistic is memory-
less and totally symmetric, memoryless and input-symmetric,
memoryless, and stationary ergodic. We use the fundamental se-
cret-key versus privacy-leakage rate tradeoffs found in [6], [7],
and [8] to assess the optimality of fuzzy commitment. We show
that the fuzzy commitment scheme is only optimal for the totally
symmetric memoryless case and only if the scheme operates at
the maximum secret-key rate. Moreover, we show that for both
the general memoryless and stationary ergodic cases the scheme
reveals information on both the secret and biometric data. We
are not able to determine the achievable rate-leakage regions
for these two cases and only provide outer bounds on the cor-
responding achievable rate-leakage regions. These bounds are
sharpened for systematic parity-check codes.

II. Fuzzy COMMITMENT SCHEME

A. Description

We start with the description of the biometric sources.
A fuzzy commitment scheme processes a binary biometric
enrollment sequence #¥ = {z1,79,...,7x} with symbols
zn, € {0,1} for n = 1,2,...,N and a binary biometric
authentication sequence ¥~ = {y1,¥2,.-.,yn} with symbols
yn € {0,1} forn = 1,2,..., N. These sequences are gen-
erated by a biometric source according to some distribution
{Q(xN,yN), zN € {0,1}V,yN € {0,1}V}. We distinguish
between the following four cases, i.e., the totally symmetric
memoryless case, the input-symmetric memoryless case, the
memoryless case, and the stationary ergodic case.

1) The Totally Symmetric Memoryless Case. We assume that

N
PI‘{XN = JZ'N./YN = 'UN} = H Q(ln71/n) (1
n=1

for some joint probability distribution {Q(z,y),z €
{0,1},y € {0,1}}, satisfying

Q(0,0) =Q(1,1) = (1 —q)/2 2)
Q(0,1) = Q(1,0) = ¢/2 3)

O
|

where 0 < ¢ < 1/2. Here the parameter ¢ is called
crossover probability.

2) The Input-Symmetric Memoryless Case. We assume
that (1) holds for some joint probability distribution
{Q(z,y),z € {0,1},y € {0,1}} that satisfies

Q(1,0)+Q(1,1) =1/2. (4)

s cN zZN RN s
encoder @ @ decoder
enrollment ¢ | | y~ authentication
Fig. 1. Fuzzy commitment scheme.

The crossover probability is defined as
A
q = Q(01)+Q(170) &)

3) The Memoryless Case. Now we assume that (1) holds for
an arbitrary joint probability distribution {Q(z,y),z €
{0,1},y € {0,1}}. Again, the crossover probability is de-
fined as

g2 Q(0,1) + Q(1,0). (6)

Now also the probability that X is equal to 1 becomes an
important parameter, and we define

p = Q(1,0) + Q(1,1). @)

4) The Stationary Ergodic Case. We assume that the process

{...,(X_1,Y_1), (Xo,Y0),(X1,Y1),...} is stationary
and ergodic. Then the sequences of random variables
XN = (X17X2.,...7XN) and YN = (Yl.,YQ’....,YN)
correspond to our biometric enrollment and authentication
sequences, respectively.

Now consider the fuzzy commitment scheme (see Fig. 1).
In this scheme, a secret key s from alphabet {1,2,...,|S|} is
chosen uniformly at random independently of biometric data,
hence

Pr{S =35} =1/|S| forall se{1,2,...,|S|}. (8
The chosen secret key s is observed at the enrollment side to-
gether with a biometric enrollment sequence =¥ . The secret key
s is encoded into a binary codeword ¢V = (ci,ca,...,cN)
with ¢, € {0,1} forn = 1,2,...,N. We write ¢V = e(s),
where e( - ) is the encoding function. Then the biometric enroll-
ment sequence is added modulo 2 to this codeword. This results

in the sequence 2V = (21,22,...,2n) with z, € {0,1} for
n =1,2,...,N, hence
N=cNgaN =e(s) . ©)

This sequence is referred to as helper data and is public. The
helper data are released to the authentication side.
During authentication, a biometric authentication sequence

y™ is observed and added modulo 2 to the received helper data

#N, resulting in a binary sum
N =2NayN =e(s)p 2N @yV. (10)
This sum 7V = {ry,rs,..., 75} with 7, € {0,1} for n =

1,2,..., N can be seen as the codeword ¢V to which a noise
sequence 2 @ 5" is added. The received sequence 7 is then



IGNATENKO AND WILLEMS: INFORMATION LEAKAGE IN FUZZY COMMITMENT SCHEMES 339

5
decoder —
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encoder

T

Fig. 2. Model for a biometric system with chosen keys.

decoded, hence the estimate s of the secret key s is determined
as

§:d(TN) = d(e(s)@(xN@yN)) 11

where d( - ) is the decoding function.

B. Fundamental Regions for Biometric Systems With
Chosen Keys

We would like to analyze the fuzzy commitment scheme and
assess its optimality. In order to do this, we first give the fun-
damental tradeoff between secret-key and privacy-leakage rates
for a biometric system with chosen secret keys in the memory-
less case. These results can be found in [6]—[8].

Consider a generic biometric system with chosen keys
(see Fig. 2). This system is based on a biometric source
{Q(z,y),x € X,y € Y} that produces an enrollment bio-
metric sequence vV = (z1,z2,...,zy) with N symbols from
the finite alphabet X" and an authentication biometric sequence
yN = (y1,¥2,...,yn) having N symbols from the finite al-
phabet ). The sequence pair (Y, ™) occurs with probability

Pr{(x™,vN) = (zV,y")} = [[ Qwnsva) (12

hence biometric data statistics is memoryless.

In this system, a secret key S is chosen uniformly and
independently of the biometric sequences from alphabet
{1,2,...,|S|}. The encoder observes the biometric enrollment
source sequence XV and the secret S and produces helper
data M, hence M = ¢(S, XV), where ¢(,-) is the encoder
mapping. The public helper data M are sent to the decoder
that also observes the biometric authentication sequence Y.
This decoder forms an estimate S of the chosen secret, hence
S = d(M,YN), where d(-,-) is the decoder mapping.

In this system, we needed to find out what secret-key rates and
privacy-leakage rates could be jointly realized with negligible
error probability Pr{S # S} and negligible secrecy-leakage
rate. Here secret-key rates have to be as large as possible and
privacy-leakage rates have to be as small as possible.

Definition 1: In a biometric system with chosen keys, a se-
cret-key rate versus privacy-leakage rate pair (R, L,,) with R >
0 is achievable if for all § > 0 for all N large enough there exist
encoders and decoders such that!

Pr{S#8} <6

1
~log S| > R -5

1
—I(S; M) <
%I(XN; M) < L, +6. (13)

IThroughout this paper, we take 2 as base of the log.

Moreover, R¢ is defined to be the region of all achievable se-
cret-key rate versus privacy-leakage rate pairs for a biometric
system with chosen keys.
Using this definition of achievability, in [7], the fundamental
region stated in the following theorem was determined.
Theorem 1:

RY = {(R7Lm) L0<R<I(U;Y)
L, > I(U; X) - I[(U;Y)
for P(u,2,y) = Q(a,y)P(ulz) }. (14)

C. Definition of Achievable Region for Fuzzy Commitment

It should be noted that fuzzy commitment is a particular real-
ization of a biometric system with chosen keys. It might not be
optimal in the information-theoretical sense. Indeed, we will see
in the next sections, that it does not always achieve negligible
secrecy leakage. Therefore, to analyze fuzzy commitment, we
need an extra parameter, secrecy-leakage rate L, in the corre-
sponding achievability definition.

In fuzzy commitments, we are interested in a number of quan-
tities. We require the scheme to be such that the error probability
Pr{S # S} is as small as possible, while the number of secret
keys |S| should be as large as possible. Moreover, we want the
amount of information that the helper data leak about the se-
cret I(S; ZN) and about the biometric data I(X"; ZV) to be
as small as possible. Now we give a formal definition of achiev-
able triples.

Definition 2: For afuzzy commitment scheme, a rate-leakage
triple (R, Ly, L,.) with R > 0 is achievable if for all § > 0 and
for all N large enough, there exist encoders ¢( - ) and decoders
d( ) such that

Pr{S+#S5} <6
R+5Z%log|8|2R—6

1
—I(S; ZN) < L,
N(S, )< Ls+6

1

—I(XN;ZN)Y < L, +6. (15)
N

Moreover, we define Ry. to be the region of all achievable rate-
leakage triples for a fuzzy commitment scheme. Furthermore,
we define the secret-key versus privacy-leakage rate region

Reqr,=0 = {(R,L,) : (R,0,L,) € Re.}  (16)

for the zero secrecy-leakage case.

Remark: Here we define the secret-key rate in a slightly dif-
ferent way. This is a technicality needed for our proofs.

In the next sections, we will investigate the properties of the
regions of achievable rate-leakage triples for each of the four
biometric statistics cases described above. First, however, we
start with some general remarks.

D. Conditional Versus Unconditional Information Leakage

It is our goal to investigate the information-leakage prop-
erties of the fuzzy commitment scheme. Note that in Defini-
tion 2 we define the privacy leakage as unconditional mutual
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information between biometric enrollment sequence and helper
data I(X™; ZN), although a stronger definition of the privacy
leakage is possible, i.e., the conditional one I(X~; ZV|S), asin
[6] and [7]. The conditional definition is stronger, since in bio-
metric systems with chosen keys the helper data provide more
information on the pair of secret key and biometric data than on
each of these entities separately (see [7]). For the conditional
definition of privacy leakage, however, we obtain for fuzzy com-
mitment that

(XN 2N|8) = H(ZM|8) - H(ZV|XY,8)
=HXN o cN|S)
-HXYa VXN, 9)
= H(XM|S) = H(XY) (17)
where the last two equalities follow from the facts that CVV is a
function of S and that X~ and S are independent. This demon-
strates that the helper data Z N leak (contain) the entire bio-
metric sequence X'V if the secret key is known. We conclude
that the fuzzy commitment scheme is not privacy preserving in
the conditional privacy-leakage sense. Therefore, in the rest of
the manuscript, we only concentrate on the unconditional pri-
vacy leakage.
The unconditional mutual information for the secrecy and pri-
vacy leakage can be rewritten as

I1(8;ZN) = H(ZN) — H(ZN)|9)
=H(ZV) - H(CN @ XV|S)
= H(Z") - H(X") (18)
and
(XN, ZzNYy = H(ZN) - H(ZN|xY)
=HZN) - HXN o cV|XN)
=H(ZN)-H(CN). (19)

III. TOTALLY SYMMETRIC MEMORYLESS CASE

A. Statement of Result, Comparison

We have a complete result for the totally symmetric memory-
less case. The result is stated in the following theorem. A special
case of this result, when the secret-key rate is maximal, is also
presented in Smith [13] and in Tuyls and Goseling [14]. The
proof of this theorem will be provided in Section III-B.

Theorem 2: For fuzzy commitment in the totally symmetric
memoryless case with crossover probability ¢, the achievable
region Ry is given by

Ree = {(R,LS,LI) L0< R<1-h(q)
Ly >0

L,>1- R}. (20)

Here h(a) = —alog (a)—(1—a) log(1—a) is the binary entropy
function.

Moreover, if we restrict ourselves to the secrecy leakage Ly =
0 in Theorem 2, then the corresponding secret-key versus pri-
vacy-leakage rate region is given by

RfclLs:[) = {(R, Lm) 0<R<L1 - h(q)

L. >1-R}. @)
This result for the totally symmetric memoryless case can
be compared to the corresponding secret-key versus pri-
vacy-leakage rate region RY in a biometric model with chosen
keys, where we do not restrict ourselves to fuzzy commitment.
Note that although the achievable regions Ry r —o and Ry
are defined slightly differently, the general region RY also pro-
vides the corresponding minimum privacy leakage for a given
secret-key rate. Therefore, we can compare regions Ry.|r,, —o
and RY for given secret-key rates.

Region RY given in Theorem 1 (see also [7]) can be stated
for the totally symmetric memoryless case as

RY = {(R,Lr):OSRS 1 - h(g*p)
Lo > h(q*p) — h(p)

for some 0 < p < 1/2} (22)

where p * q 2 p(1—q)+ (1-p).

Now it follows that for the privacy leakage in fuzzy commit-

ment, we obtain

Ly >1—R2>h(g) > h(qg*p)—h(p) (23)
The last inequality follows from the observation that k(g p) —
hp) = HU|Y) - HUIX) = [(U;X]Y) < H(X|Y) =
h(q), where the Markov condition U — X — Y holds and the
“channel” between X and U is binary symmetric with crossover
probability p. Note that equality in (23) can only be established
if R =1 — h(q) and p = 0. Therefore, for rates strictly smaller
than 1 — h(q), the privacy leakage in the fuzzy commitment
scheme is strictly larger than necessary. The coding methods
proposed in [7] achieve a strictly smaller privacy leakage.

Proposition 1: In the totally symmetric memoryless case
fuzzy commitment is only optimal for secret-key rates 1 — h(q).
For secret-key rates below 1 — h(gq) fuzzy commitment has
privacy leakage strictly larger than necessary.

In Fig. 3, we have depicted (marked with “0”’) the boundary
of the optimal rate-leakage region R, for two values of the
crossover probability, i.e., for ¢ = 0.05 and ¢ = 0.15. More-
over, we have plotted in both figures the boundary of the fuzzy-
commitment region RfclLs:O (marked with “*”). From Fig. 3,
it is clear that the privacy leakage in the fuzzy commitment
scheme, even in the totally symmetric memoryless case, is much
larger than necessary for the secret-key rates smaller than the
maximum rate 1 — h(g). This is the main conclusion of this
section. In Section IV, we will address fuzzy commitment for
the input-symmetric memoryless case. First, however, we will
prove Theorem 2.
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Fig. 3. Secret-key versus privacy-leakage rate regions for two values of the
crossover probability ¢. Marked with “0” is the boundary of the optimal re-
gion R¥; marked with “*” is the boundary of the fuzzy-commitment region
Rec|Ls=0-

B. Proof of Theorem 2: Achievability Part

In the memoryless case, we can write for the transition prob-
abilities of the “channel” from C to RN that

N
Pr{RY = rN|CN = ¢V} = [] Pr{Ry = ra|Ch = cn}
n=1

(24)

where foralln = 1,2,..., N

*

Pr{R, # cn|Crn = ¢cn} =1 =Pr{R, = ¢,|C,, = cn}
= Pr{X, £Y,}

Therefore (see Fig. 4), the channel between C and RY is
a binary symmetric channel (BSC) with crossover probability
Q(1,0) + Q(0,1). By definition, for all memoryless cases, we
have for the crossover probability

(25)

Q(1,0) +Q(0,1) = q. (26)

l —
cN zN RV 0 d 0
(—(—~ =
cN RN
N N
X Y . )
1—gq

Fig. 4. In the memoryless cases, the channel between C~ and RY is a BSC
with crossover probability ¢ = Q(0,1) + Q(1,0).

It is well-known (see, e.g., Gallager [15, p. 146]) that the ca-
pacity of BSC with crossover probability ¢ is 1 — h(q). In other
words, for 0 < R < 1 — h(q), for all ¢ > 0 and all N large
enough, there exist encoders e( - ) and decoders d( - ) such that

27)
(28)

1
R+62N10g|8|2R—5
Pr{S # S} <e.

We may assume, for small € at least, that this code does not con-
tain two identical codewords, since any code with 2M — 1 code-
words and average error probability £ /2 < 1/4 has a subcode of
size M and maximum error probability at most ¢ < 1/2. This
follows from an expurgation argument (see, e.g., Gallager [15, p.
151]). Since the code does not contain two identical codewords,
we can assume that H(C™) = log |S|. Now we concentrate on
such codes and consider the secrecy leakage first. From (18), we
obtain that

I(S;ZM)y=H(CN o XM) - HXN)=0<e. (29

Next, for the privacy leakage, we write

(XN 2N 2 geN ¢ xN) - H(CN)

()
DN _loglS| < N1-R+e)  (30)

where step (a) follows from (19), step (b) holds, since the code
does not contain identical codewords, and (c) follows from (27).

Then, dividing both sides of (30) by IV, and letting N — oo
and ¢ | 0, we conclude from (27)—(30), that the triple (R, 0,1 —
R) is achievable for 0 < R < 1 — h(q).

C. Proof of Theorem 2: Converse Part

Assume that for the fuzzy commitment scheme the triple
(R, Ls, L;) is achievable. Consider first the entropy of the
secret

log|S| = H(S) = I(S; RN) + H(S|R")
® 15,0 @ XN o vN) + H(S|RV, §)
<HCYN e XN avh)
—H(CN @ XN @ YN|S) + H(S|S)

(b)
< N-—HXYoYN) +6log|S|+1

()

< N — Nh(q) + 6log |S| + 1 31)

where step (a) follows from the fact that S is a function of RN ,
step (b) holds, since C™V is a function of S, (X~ ,Y") is in-
dependent of S, for achievable triples (R, L, L..) we have that
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Pr{S # S } < 6, and due to Fano’s inequality, and (c) follows
from the fact that XV @ YV is a sequence of i.i.d. pairs with
crossover probability g.

Dividing both parts of the above expression by N and rear-
ranging the terms, we obtain for achievable triples (R, L, L,,)
that

1

1 1
— < < — — — ).
R-6< N10g|S| <13 <1 h(q) + N) (32)

Next we consider the secrecy leakage. Using (18), we get

Lo+6> %I(S; 25) = Z(H(ON & XV) = H(XM))

N
1
(V=) (33)
For the privacy leakage we obtain, using (19), that
1
Ly+6>—I1(xN;zN
202 IXTZ7)
1
= G(H(CY & XV) - H(CY))
@ 1 (®)
> (N —log|S]) 2 1-R-5 (34

N
where step (a) follows from the fact that H(C”) < log |S|, and
(b) holds, since for achievable triples (R, L, L..) we have that
log|S| < N(R + 96).

Now, letting 6 | 0 and N — oo, and we obtain the converse
from (32)—(34).

IV. INPUT-SYMMETRIC MEMORYLESS CASE

A. Statement of Result, Comparison

We start this section with the result that we have obtained for
the input-symmetric memoryless case. The proof of this result
is identical to the proof of Theorem 2 and therefore is omitted.

Theorem 3: For fuzzy commitment in the input-symmetric
memoryless case with crossover probability ¢ the achievable
region Ry is given by

Ree = {(R,LS,LI) L0< R<1-h(q)
Ly >0
szl—R}. (35)

Now if we again restrict the secrecy leakage to be Ly = 0 in
Theorem 3, then the corresponding secret-key versus privacy-
leakage rate region is given by

Ree|,=0 = {(R7 L.):0< R<1-h(q)

Lo>1— R} (36)
As before, we can compare the resulting zero secrecy-leakage
region R 1, —o to the region R for the input-symmetric mem-
oryless case when we do not restrict ourselves to fuzzy commit-
ment. This region RY is given in Theorem 1 (see also [7]).

The maximum secret-key rate that is achievable in the optimal
caseis I(X;Y), if we take U = X (see also Ahlswede-Csiszar
[16]). Note that

I(X;Y)=H(X)— H(X|Y)
=1-H(Xa&Y|Y)
>1-H(XaY)
=1-h(q)

where 1 — h(g) is the maximum secret-key rate achievable with
fuzzy commitment. Therefore, we can conclude that fuzzy com-
mitment is suboptimal if X @ Y is not independent of Y.

A simple derivation (see Appendix A) shows that indepen-
dence can only occur for I(X;Y') > 0 if, in addition to being
input-symmetric, the source is totally symmetric. The conclu-
sion is that in the input-symmetric case, when the source is not
totally symmetric, with fuzzy commitment we cannot achieve a
positive maximum rate I(X;Y).

Looking at the privacy leakage of fuzzy commitment we can
say that

(37)

L.,>1-R>h(qg)=HXa®Y)>H(X[|Y)

> I(X;U|Y) = I(U; X) — I(U;Y) (38)

forallU — X — Y. Again, for I(X;Y) > 0, equality in the
above expression is only possible if the biometric source is to-
tally symmetric and if, in addition, R = 1 — h(g). Thus we may
conclude that in the input-symmetric case, when I(X;Y) > 0
and the source is not totally symmetric, with fuzzy commitment
we cannot achieve the privacy leakage, which is optimal in the
sense of results presented in [7].

Proposition 2: In the input-symmetric memoryless case,
when the source is not totally symmetric, fuzzy commitment is
suboptimal with respect to both the achievable secret-key rate
and privacy-leakage rate.

V. MEMORYLESS CASE

A. Statement of Result, Comparison

We do not have a complete result for the memoryless case in
general. What we do have is an outer bound on the achievable
region.

Before stating our results, we define the inverse of the binary
entropy function h(-) for0 < a < 1 as

A

hil(a) =a (39)

if0 < a<1/2and h(a) = .

Theorem 4: For fuzzy commitment in the memoryless case
with crossover probability ¢ and probability Pr{X = 1} = p,
we obtain for the achievable region Ry,

Ree C {(R, Lo, L) :0< R<1—h(q)
Ls > hlp+ h™"(R)] = h(p)
Ly > h[p* h™Y(R)] - R} (40)

Moreover, there exist codes with rates up to 1 — h(q).
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Note that the maximum achievable rate 1 — h(g) for
fuzzy commitment can be either smaller, equal, or larger
than I(X;Y). In Section IV, where we investigated the
input-symmetric case, we have observed that for the general
input-symmetric case I(X;Y) > 1 — h(q) [see (37)]. On the
other hand, for the general memoryless case for which X & Y
is independent of Y, we obtain

I(X;Y)=H(X) - HX[Y)
= H(X)- HXa@Y][Y)

<1-H(Xa®Y)=1-h(q) 1)

and, therefore, also I(X;Y) < 1 — h(q) is possible. Thus the
rates achievable with fuzzy commitment can also be larger than
I(X;Y). However, the Ahlswede-Csiszar result [16] implies
that for rates larger than 1(X;Y) it is not possible to achieve
nonzero secrecy leakage. More precisely, using the fact that for
achievable rates Pr{S # S} < ¢ and Fano’s inequality, we
obtain

log |S| = H(S) = I(S; RN) + H(S|RY)
< I(8;ZN,RN) + H(S|S)
< I(S;ZN) 4+ I(S; RN|ZN) + §log |S| + 1
=I1(S;ZN)+ HRN,YN|zZV)
— HRN,YN|ZN,S,CN) + §log|S|+ 1
=I(S;ZN)+ HYN|ZY)
—~HYN|ZN, 8, XN) + 6log S| + 1
<I(8;ZMy+ H(YN) — HYN|xY)
+dlog|S|+1

=I(S;ZN)+ NI(X;Y) + 6log|S| +1  (42)
hence
R—6< ~log|s]
< o8
< 1J(S-ZN)+I(X~Y)+ ! (43)
“1-6\ N ’ N)°

This demonstrates that a secret-key rate, which is A larger than
I(X;Y), results in a secrecy leakage of at least A.

Moreover, observe that Theorem 4 implies that zero secrecy
leakage is only possible if R = 0 or p = 1/2, and zero privacy
leakage is only possible if p = 0 or R = 1. The only case of
interest, viz. p = 1/2, though, corresponds to one of the cases
considered before.

Observe also that for nontrivial cases for which I(X;Y) >
1—~h(q) or, in other words, for which the rate is smaller or equal
to I(X;Y), the privacy leakage in fuzzy commitment is larger
than necessary. Indeed, if R > 0, then

hlp* h™' (R)] = R > h(p) = R > h(p) — (1 = h(q))
> H(X) - I(X:Y)
— H(X|Y) > I(U; X|Y)

=I1(U; X) - I(U;Y) (44)

where I(U; X)—I(U;Y) is the privacy leakage achieved in the
optimal setting. Note that for the general memoryless case, we
have strict inequality here.

Proposition 3: In the memoryless case, when the source is
not totally symmetric, fuzzy commitment results in both secrecy
and privacy leakage larger than necessary if 0 < R < 1 and

p # 0.

B. Proof of Theorem 4

We will use Gerber’s lemma of Wyner and Ziv [17] to investi-
gate the properties of fuzzy commitment. Therefore, we restate
it here for convenience.

Lemma 1 (Gerber’s Lemma, [17]): Let CN be a binary
random sequence with entropy H(C™) > Nv > 0,and X* be
a binary i.i.d. sequence with entropy H(X"~) = Nh(p), then

H(CN @ XN) > Nh[p+h L(v)]. (45)
The statement that there exist codes with rates up to 1 — h(q)
follows directly from the capacity theorem for the BSC. There-
fore, we continue with the converse part.
Assume that the rate-leakage triple (R, Ly, L) is achievable.
Then in the same way as (32), we obtain for achievable triples
(R, Ls, L) that

(40)

1 1 1
—5< —log|S| < — [1-— — .
R 5_N10g|5|_1_5<1 h(q)+N>

Next, we consider the secrecy and privacy leakage. As an inter-
mediate step, we first show that

I(S; RN) + H(S|RN, S)
)

log 5] = H(S)

—~
o

I(CN; RN + §log|S| + 1
H(CN) + §log S| + 1

INIA

(47

where step (a) follows from the data-processing inequality
(see, e.g., Cover and Thomas [18, p. 32]), from th/g fact that for
achievable triples (R, L, L,) we have that Pr{S # S} < ¢
and from Fano’s inequality.

Now, using (47), we may conclude that for achievable triples
(R, Ls, L), it holds that

1

1
NH(CN)

(1= 0)log || = 1)

v

v

(1—5)R—6—%. (48)

For the secrecy leakage we can write, using Gerber’s lemma and
(18), that

1
N

Li+6>
>h |:p>kh1 <(1 —§R—-6— %)} — h(p). (49)

I(S; Z2N) = %(H(CN ® XV - H(XN))
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In a similar manner, we find for the privacy leakage that

(@ 1 )
> LH(CY & XY) ~ log|s])

1 1
>h [p*h_l ((1 —6)R—-6— Nﬂ - Nlog|8|

®) i 1
>h|pxh™ ((L=8)R-6- % )| -R-8

(50)

1
Ly+6>—I(XN;zN
+8 2> (X727

where step (a) follows from (19) and the fact that H(CV) <
log |S|, and (b) follows from the definition of achievable rates,
since then log |S| < N(R + §).

Now Theorem 4 follows from (46), (49), and (50), if we let
6 | 0and N — oo. Note that the continuity of the binary
entropy function is essential in this proof.

VI. STATIONARY ERGODIC CASE

A. Statement of Result, Comparison

Let XV and Y” be stationary ergodic sequences. Now we
define Hoo (X @ Y) to be

Ho(X®Y)
1
2 lim FHX 8V, X2 8 Vs, Xy & V).

— 00

(D

As in the general memoryless case, we only have an outer bound
on the achievable region for the stationary ergodic case. This
result is stated in the following theorem.

Theorem 5: For fuzzy commitment in the stationary ergodic
case, we obtain for the achievable region Ry, that

R C {(R,LS,L,T):
0<R<1-Ho(XaY)
Ly > h[h™ (Hoo(X)) * h™H(R)] = Hoo(X)

Ly > h[h™ (Hao( X))+ b7 (R) = R} (52)
Moreover, reliable codes with rates up to 1 — Ho (X @Y) exist.

The result of Theorem 5 demonstrates that zero secrecy
leakage is only possible if Ho(X) = 1, which implies that the
X -process is independent and uniformly distributed, or if the
secret-key rate R = (. Moreover, we may conclude that zero
privacy leakage implies that H..(X) = 0 or that the secret-key
rate R = 1. These cases are again of no interest here.

Note that for the stationary ergodic case we do not have an
analog of results presented in [7]. Nevertheless, we can compare
the fuzzy commitment scheme to the two-layer scheme, which
is built as a biometric secret generation system (see Ahlswede-
Csiszar [16]) with a masking layer on top of it. In this layer,
chosen secret key S is masked with generated key S, in a one-
time pad way (see Vernam [19]).

It is easy to see that the Ahlswede-Csiszar result [16] for the
secret generation model also holds in the stationary ergodic case
if we use the proof of [20] and the definitions of typical sets as

in Cover [21]. Then it can be shown that if the masking layer
is used on top of the secret generation model, then for the two-
layer scheme, the largest achievable secret-key rate R is equal
to Io(X;Y), and, moreover, that this rate is achievable with
privacy leakage Ho.(X|Y).

Now, as in the memoryless case, the maximum achievable
rate 1 — Ho (X ®Y) for fuzzy commitment can be smaller than,
equal to, or larger than I, (X ; Y'). However, for rates larger than
I (X;Y), it is not possible to achieve zero secrecy leakage.
Indeed, we can write for all small € > 0 and all N large enough,
using a similar series of steps as those used to derive (43), that

1
_§< —H
R—06< H(S)
1 1
< —(=I(8; ZM)+ I (XY
<1 (N (8:27) + Io(X3Y)
++i (53)
€ N .

Hence, if the secret-key rate in fuzzy commitment is A larger
than I.(X;Y), then the secrecy leakage of the scheme is at
least A.

Now consider nontrivial cases when 1 — H (X & Y) <
1o(X;Y) and thus R < I.(X;Y'). We obtain for the privacy
leakage in the fuzzy commitment scheme when R > 0 that

(54)

which demonstrates that with the two-layer scheme we can ob-
tain smaller privacy leakage than with fuzzy commitment.

Proposition 4: In the stationary ergodic case, fuzzy commit-
ment is not optimal with respect to both secrecy and privacy
leakage if 0 < Hoo(X) < 1and 0 < R < 1.

B. Proof of Theorem 5

1) Binary Analog to the Entropy-Power Inequality: Before
proving the results for fuzzy commitment in the stationary er-
godic case, we need an auxiliary result. The entropy-power in-
equality (see Shannon [22]) is a useful lower bound for the dif-
ferential entropy of a sum of two independent real-valued sta-
tionary random sequences. We are interested in a similar bound
for stationary binary sequences. The binary analog to the en-
tropy-power inequality was derived by Shamai and Wyner [23].
For our purposes, we need an adapted version of this binary
analog to the entropy-power inequality.

Assume that a biometric sequence X% is a stationary binary
sequence with entropy

1
Hoo(X) = ]\;E}éo NH(X17X27"'7XN)
lim H(XN|X1,X2,...,XN_1).

N —o0

(55)
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Moreover, now for the binary entropy function h(-) for 0 <
a < 1, its inverse h~*(«) = a, defined as in the previous sec-
tion, corresponds to the probability @ in a binary i.i.d. sequence
with entropy «.

Lemma 2: For the binary mutually independent sequences
XN and CV, if X¥ is stationary with entropy H..(X) and
H(C™N) > Nuv, the following statement holds:

iH(ZN) > hlh~

5 H(Hoo(X) 5 1

‘Wl 66
where ZN = (Z17Z2,....,ZN) = (X1 © 017X2 ©®
C,...,XNy & Cy). This is an adapted version of the bi-
nary analog to the entropy-power inequality (Shamai and
Wyner [23]).

Proof of Lemma 2: We
(Xl,Xg,...,Xn_l) for n =
C"~1 and Z"~! in the same way.

Now from Shamai and Wyner [23] the second to last equa-
tion, from the facts that H..(X) < H(X,|X" 1) and 0 <
h=1(-) < 1/2, it follows that

denote X" ! =
1,2,...,N, and also

H(Za| 2" ") > Wb (H(X, X" )
« W (H(C, "))

> W™ (Hoo (X)) # b= (H(Co O™ ))].
(57

Next, we find that

1 N
SH(ZY)
:%ZH(Z 1271
Z%Zh[h‘l(H (X)) b= (H(CulC™ )]

where (a) follows from convexity of h(3*h~1(u)) in u, since its
second derivative is positive (for the details, see Wyner and Ziv
[17]), and from Jensen’s inequality (see, e.g., Cover and Thomas
[18, p. 25D).

2) Proof of Theorem 5: The fact that reliable codes with rates
up to 1 — Hoo (X @Y) exist for stationary ergodic X ¢ Y -pro-
cesses follows from Verdu and Han [24, p. 1156]. It is essential
that the noise process is ergodic here.

Next assume that for the fuzzy commitment scheme, the triple
(R, L, L,) is achievable. Then we obtain for the entropy of the
secret that

log|S| = H(S) <N -HXN oY)+ 68log|S|+1 (59)
where the inequality in the above expression holds if we apply

the same series of steps asin (31) and use t/I\le fact that for achiev-
able triples (R, L, L,.) we have that Pr{S # S} < 4. Dividing

both parts of the above expression by N and rearranging the
terms, we obtain for achievable triples (R, L, L, ) that

1 1
— o< — <
R-§< log|S| <

1 1
1-—HXYevyM)+—]. (60
‘ < CH(XY & YY) 4 N) (60)
Next, note that H(C™) > N((1 — §)R — 6§ — 1/N), since
(48) also holds here. Using Lemma 2 and (18), we obtain that

Li+6> %I(S; zZN) = %(H(CN o XN - H(XN))

> h {HW<X) xh™! <<1 —OR-6- %ﬂ

1 N
_NH(X ). (61)
In a similar manner, we find for the privacy leakage that
L,+6
1 (@ 1
> (XN Z2N)y > —(HXN e cN) -1
> XN 2Y) 2 G HXY @ C0Y) ~ log|s))
1
>h [h_l(Hoo(X)) *h1 ((1 —OR—6— —)}
— ~ log|S]
(®) 1 1 1
> h|h7 (Heo(X))xh (1-6)R-6—-——=
—R-9 (62)

where step (a) follows from (19) and the fact that H(C™) <
log |S|, and (b) holds, since for achievable triples (R, L, L,,)
we have that log |S| < N(R + §).

Now Theorem 5 follows from (60), (61), and (62) if we let
6] 0and N — oo.

VII. TIGHTER BOUNDS WITH SYSTEMATIC
PARITY-CHECK CODES

A. Tighter Bounds for the Stationary Ergodic Case

Better lower bounds on the leakages can be obtained if we
use binary systematic parity-check codes. We assume that the
information symbols are followed by the parity symbols. First,
we need the following result, though.

Lemma 3: Let CY be the sequence of random variables cor-
responding to a binary linear code where the first log|S| in-
formation symbols (the systematic part) are followed by N —
log |S| parity symbols. In this way, H(C,,|C"~!) = 1 forn <
log |S| and H(C,,|C™~1) = 0 for n > log|S|, where we also
assume that |S| is a power of 2, and hence log |S]| is integer.
Then for the mutually independent sequences of binary vari-
ables XV and C, if XV is stationary with entropy Ho.(X)
and H(CY) > N, the following statement holds:

%H(ON ® XN) > Hoo(X) +v(1 — Ho(X)).  (63)
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Proof of Lemma 3: Using (58) from the proof of Lemma 2,
we can write

1
NH(ZN) =

N
Z Z|Zn1

+ R[h~(H
n=log | S|+1

(log [S] + (N —

ZIH

IV
2=

O [
i

(Hoo (X)) # k1 (1)]

(X)) # h~(0)]

S

log [S]) Hoo (X))

w(X) +  1ogS1(1 = Hao(X))
() + 01 = HeolX))

vV

H
H

vV

(64)

where the last inequality follows from log |S| > H(CYN) >
Nv. This concludes the proof.

Theorem 6: For fuzzy commitment in the stationary ergodic
case, if systematic parity-check codes are applied, we obtain for
the achievable region Ry that

R C {(R,Lme) 0<R<1-H (X®Y)

Ly > Ho(X)1-R)f. (65
From this theorem, we may conclude that in the stationary
ergodic case, when systematic parity-check codes are used in
fuzzy commitment, the secrecy leakage can only be zero if the
secret-key rate R = 0 or if the entropy H.(X) = 1. On
the other hand, zero privacy leakage implies that either the se-
cret-key rate R = 1 or the entropy Ho.(X) = 0. However,
these cases are not interesting, apart from H,(X) = 1, which,
on the other hand, corresponds to the one of the cases consid-
ered in Sections III and IV.
Proof of Theorem 6: Assume that the triple (R, Lg, L) is
achievable. Just as in Theorem 5 we obtain that
1
¥):

(66)

1 1 1
R—6< —log|S| < 1_6(1 CHOXY oY) +

Moreover, we have that H(C™) > N((1 — 8§)R — &6 — 1/N),
since (48) also holds here. Then, using Lemma 3 and (18), we
can write for the secrecy leakage that

1

Li+6> %I(S; zZN) = N(H(CN o XN) - HXN))
> (1 — Hyo(X)) (R—é—éR— %)
+ Hoo(X) = H(XY). ©7)

In a similar way, we obtain for the privacy leakage that

L.+ 6> —I(XN;zM)

IVE

H(XN ®CcN) -

(1—§)R— 5-%)(1_300()())

log |S])

/\

1
+ Hao(X) = - l0g]S]

VZ

Heoo(X) (1 —(1— R+ %)

1
— 925§ —86R - —
6—96 N

(68)
where step (a) follows from (19) and the fact that H(CV) <
log |S|, and (b) holds, since for achievable triples (R, L, L,,)
we have that log |S| < N(R + §). Now from (66), (67), and
(68), letting 6 | 0 and N — oo, we obtain the proof.

The fact that the leakage bounds in Theorem 6 are indeed
stronger than the bounds obtained in Theorem 5 follows from
convexity. Let U be 1 with probability R and 0 with probability
1 — R. Then from convexity of (3 * h='(u)) in u, we obtain

h[h™H (Hoo (X)) * h™H(R)]

< Rh[h~ ( oo (X)) * h™H(1)]

+ (1= R)h[h™ (Hoo (X)) x h™1(0)]
=R+ H.(X)—- RH.(X). (69)
Therefore, it follows that

h[h™H (Hoo(X)) * h™H(R)] = Hoo(X)

<R+ Hoo(X)— RH(X) — Hoo(X)

= R(1 — H (X)) (70)
h[h_l(Hoo(X)) * h_l(R)] - R

<R+ H(X)-RH(X)—R

= H(X)(1 - R). (71)

B. Tighter Bounds for the Memoryless Case

Note that Lemma 3 also holds in the memoryless case, when
XN isii.d. with Pr{X= 1} = p. Then (63) takes the following
form

~H(CY © XN) > h(p) +v(1 = h(p).  (72)
Now the tighter bounds on the achievable region for the general
memoryless case, when systematic parity-check codes are used,
are given by the following theorem. The proof of this theorem
is identical to the proof of Theorem 6 and is, therefore, omitted.

Theorem 7: For fuzzy commitment in the memoryless case
with crossover probability ¢ and probability Pr{X = 1} = p
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if systematic parity-check codes are applied, we obtain for the
achievable region Ry that

R C {(R,LS7LI) L0<R<1-h(q)

L > R(l - h(p>>
L. > h(p)(1 - R)}.
Remark: It should be noted that for the totally symmetric
memoryless case and input-symmetric memoryless case, the

bounds given in the above theorem reduces to the regions given
in Theorem 2 and Theorem 3, respectively.

(73)

VIII. CONCLUSION

In this paper, we have considered fuzzy commitment and in-
vestigated its secrecy and privacy leakage properties. It turns out
that fuzzy commitment is not privacy preserving in the condi-
tional privacy-leakage sense.

Next we have concentrated on unconditional privacy leakage.
Our analysis has shown that fuzzy commitment is only optimal
for the totally symmetric memoryless case if it operates at the
maximum secret-key rate. For secret-key rates which are below
the capacity, the scheme is not optimal with respect to privacy
leakage. However, it is still optimal with respect to secret-key
rates and secrecy leakage.

For the input-symmetric memoryless case, we have con-
cluded that fuzzy commitment is suboptimal with respect to
both the achievable secret-key rate and privacy-leakage rate. It
still enjoys zero secrecy leakage, though.

In the general memoryless and stationary ergodic cases, we
could only determine outer bounds on the achievable regions.
Moreover, we could sharpen these bounds for the case when
systematic parity-check codes are used in fuzzy-commitment-
based biometric systems.

The results for the memoryless case have revealed that fuzzy
commitment leads to both secrecy and privacy leakage that are
larger than necessary. One may argue that for the memoryless
case with fuzzy commitment, we can achieve larger secret-key
rates than with the optimal scheme. However, we have shown
that this increase may only come at the expense of secrecy
leakage.

The results for the stationary ergodic case have also demon-
strated that fuzzy commitment has nonzero secrecy and pri-
vacy leakage in nontrivial cases. We cannot assess its optimality,
though, as we do not have an analog of results presented in [7]
for the stationary ergodic case. Therefore, we have compared
the fuzzy commitment scheme to a two-layer scheme (which is
based on a biometric secret generation model with a masking
layer on top of it) for stationary ergodic biometric sources at
maximum secret-key rate. It turns out that the two-layer scheme
enjoys better properties.

Finally, we would like to note that in order to achieve secure
fuzzy commitment either privacy amplification techniques ad-
ditionally have to be used (see, e.g., [25]) or an extra step in
which uniform memoryless bits are extracted out of biometric
sequences has to be performed (see [26]). In general, for the
memoryless case, an optimal biometric system with chosen keys

should be realized according to the coding principles suggested
in [7].

APPENDIX A
INDEPENDENCE IMPLIES TOTAL SYMMETRY

Consider a memoryless statistics, which is input-symmetric.
Define 3 £ Pr{Y =1} andnote that Pr{X @Y =1} = ¢. If
we assume that X ®& Y and Y are independent, then

Q(1,0)=Pr{Xa®Y =1,Y =0}
=Pr{X @Y =1}Pr{Y =0} =¢(1 - 3)
=Pr{X®Y =0Y =1}

=Pr{XaY =0}Pr{Y =1} =(1-¢q)B. (74)

Q(1,1)

Input-symmetry implies that

QO+, 1) =q(1=8)+(1—-q)p

For ¢ # 1/2, (75) has solution 3 = 1/2, and then the statistics
is totally symmetric.
For ¢ = 1/2, the independence results in

=1/2. (75

Q(0,0) =Pr{X @Y = 0} Pr{V = 0} = (1 — §)/2
Q0,1)=Pr{Xa®Y =1} Pr{Y =1} = 3/2
Q(1,0)=Pr{X @Y =1} Pr{V = 0} = (1 — §)/2
Q1) =Pr{X®Y =0}Pr{Y =1} =5/2  (76)

which implies that 7(X;Y") = 0. Hence we may conclude that
in the input-symmetric case, when I(X;Y) > 0, the indepen-
dence of X @Y and Y implies total symmetry.
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