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1 Introduction and Result

1.1 Introduction

A (one dimensional) scenery ξ is a coloring of the integers Z with C0 colors {1, . . . , C0}. Two sceneries
ξ, ξ′ are called equivalent, ξ ≈ ξ′, if one of them is obtained from the other by a translation or reflection.
Let (S(t))t≥0 be a recurrent random walk on the integers. Observing the scenery ξ along the path of this
random walk, one sees the color ξ(S(t)) at time t. The scenery reconstruction problem is concerned with
trying to retrieve the scenery ξ, given only the sequence of observations χ := (ξ(S(t)))t≥0. Quite obvi-
ously retrieving a scenery can only work up to equivalence. For an overview about scenery reconstruction
we refer the reader to an excellent survey in [13].

The research in scenery reconstruction was first motivated by the work on the properties of the color
record χ by Keane and den Hollander [11], [3]. They investigated the ergodic properties of χ, this study
was motivated (among others) by the work of Kalikow [10] and den Hollander, Steif [4] in ergodic theory.
In particular, the research on scenery reconstruction started with the scenery distinguishing problem.
The question was raised independently by Benjamini and Kesten in [1] and [12] as well as by den Hol-
lander and Keane in [11]. These questions motivated many researchers to work in the areas concerning
randomly observed scenery, let us just mention Harris [5], Heicklen [6], Burdzy [2], Hoffman [6], Howard
[9], [8], [7], Kesten and Spitzer [14], Levin [17], Lindenstauss [18], Rudolph [6], Pemantle [17], Peres [17].

In [12], Kesten asked whether one can recognize a single defect in a random scenery. In order to pro-
vide an answer to this question, Matzinger in his Ph.D. thesis [21] proved a somewhat stronger result:
typical sceneries can be reconstructed a.s. up to equivalence. The sceneries in Matzinger’s setup are
independent uniformly distributed random variables. He showed that almost every scenery can be almost
surely reconstructed. In [13], Kesten noticed that Matzinger’s proof in [21] heavily relies on the skip-free
property of the random walk. He asked whether the result might still hold in the case of a random
walk with jumps. Merkl, Matzinger and Loewe in [20] gave a positive answer to Kesten’s question un-
der a particular assumption: there are strictly more colors than possible single steps for the random walk.

In the present paper we consider the following problem: can a two-color scenery be reconstructed, if
it is observed along a random walk with jumps. Among others, this question was asked by H. Kesten in
[13]. It turns out that the two color case (C0 = 2) is more difficult than the case investigated by Merkl,
Matzinger and Loewe in [20]. Although several arguments in [20] do not use the fact that there are more
than two colors, the central idea hopelessly fails in the two-color case. To overcome the problem, the
existence of certain test becomes crucial. The aim of the tests is to provide some information about the
localization of random walk. As explained later, this kind of information makes the scenery reconstruc-
tion possible.
The existence of such kind of test was proved in [15]. This was the first important step towards the whole
two-color scenery reconstruction. The present paper provides the second step of two-color scenery recon-
struction. We construct an algorithm that, given some general information about the origin (stopping
times) as well as a small piece of original scenery, retrieves a (long) piece of scenery with exponentially
small error. With this result in hand, one can use the method described in [20] to reconstruct the whole
scenery. In the terminology of [20], the constructed algorithm provides the ”zag”-procedure of overall
scenery reconstruction; in fact, ”zag”-procedure is the core of scenery reconstruction. The whole scenery
reconstruction shall be given in a follow-up paper.

1.2 Main notations and assumptions

We define the main concepts of the paper: scenery, random scenery random walk and observations. Also,
some general notations will be introduced.



Reconstructing a Random Scenery 3

* Scenery is an element of {0, 1}Z.
For every I ⊆ Z, the elements of {0, 1}I are called pieces of scenery. Given a piece of scenery φ ∈ {0, 1}I ,
and a subset I ′ ⊆ I, the piece of scenery (φ(i))i∈I′ is denoted by φ|I ′.
Two pieces of scenery φ ∈ {0, 1}I and φ′ ∈ {0, 1}I′ are equivalent, φ ≈ φ′, if φ is obtained by some
translation and reflection of φ′, i.e. I ′ = aI + b, for some a ∈ {−1,+1}, b ∈ Z and φ(i) = φ′(ai + b),
∀i ∈ I. If φ is obtained from φ′ by translation, i.e. φ(i) = φ′(b + i), then φ and φ′ are called strongly
equivalent, we denote this φ ≡ φ′. If φ is obtained from φ′ by reflection i.e. φ(i) = φ′(−i), ∀i ∈ I, we
write φ = φ′−. By definition, φ v φ′ means that φ ≈ φ′|J for some J ⊆ I ′. If, in addition, the equivalence
is strong, we write φ v φ′. In this case φ is equal to φ′|J up to the translation, only.
For a piece of scenery φ|[x, y], where [x, y] = (x, . . . , y) ⊂ Z is an integer interval, we often write φyx. If
x = 0, then it is skipped, i.e. φ|[x, y] is written as φy.

* Random scenery ξ = {ξ(z)}z∈Z is a family of i.i.d. Bernoulli random variables with parameter
1/2. We use ψ for a realization of ξ, i.e. a scenery ψ is of random element ξ.
The notations defined above is valid for random sceneries. For example, ξyx stands for random piece of
scenery ξ|[x, y], ξy means ξ|[0, y] etc. etc.

* In this paper, S = {S(t)}t∈N is a recurrent random walk that visits every integer z with posi-
tive probability. We assume S starts at origin, i.e. S(0) = 0. For a z ∈ Z we denote Sz = S + z. An
important assumption is that S has only a finite number of steps (”bounded jumps”). More precisely,
we assume that the set {z : P (S(1)− S(0) = z) > 0} is finite. Throughout this paper we denote

L := max{z : P (S(1)− S(0) = z) > 0}.

Thus L stands for length of the maximum jump.
We also define

pL := P (S(L)− S(0)), pmin := min
i
{P (S(1)− S(0) = i) > 0}.

To simplify some proofs we also assume that S is symmetric (however, we do not believe that the sym-
metricity is necessary).

* We realize (ξ, S) as canonical projections of Ω = {0, 1}Z × Ω endowed with product σ-algebra and
probability measure B(1, 1

2 )Z×Qo, where Ω2 ⊆ ZN is the set of all possible paths S, Q denotes the law of
S and B(1, 1

2 ) is the Bernoulli 1
2 -distribution. Hence, the random walk S and scenery ξ are independent.

For a fixed scenery ψ ∈ {0, 1}Z (a realization of ξ), we write Pψ = δψ ×Q = P (·|ξ = ψ).
We define the filtrations F := (Fn)n∈N, where Fn := σ(ξ, S(k) : k = 0, . . . , n) and G := (Gn)n∈N, where
Gn = σ(χ(1), . . . χ(n)).

* We denote by χ the observations :

χ := ξ (S (0)) , ξ (S (1)) , ξ (S (2)) , . . .

and we interpret χ as a random piece of scenery {0, 1}N, so that χ(k) := ξ (S (k)) for all k ∈ N.
For any z ∈ Z, we denote χz(k) = ξ(Sz(k)). The notation introduced in connection with sceneries are
used with observations; in particular, for time interval [x, y] ⊂ N we denote

χz|[x, y] :=: χyz,x := (χz(x), χz(x+ 1), . . . , χz(y)), χyz := χyz,0, χy := χy0,0.

* Words are the binary vectors (w(1), . . . , w(n)), w(i) ∈ {0, 1}, n ∈ N. Formally, words are just the
pieces of sceneries φN1 . Therefore, all definitions introduced in connection with sceneries hold for words as
well. In particular, two words w and w′ can be equivalent (requires the same length) or they can satisfy
the relation w v w′. We shall also use the reflected words w−. Hence, for a word w = (w1, . . . , wN ),
w− = (wN , . . . , w1).
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Let I = [x, y]. The piece of scenery φ|I ( where φ is usually ξ or χ) as a mapping consists of domain I as
well as from the image. The term ”word” is usually used in connection with images only. So, we consider
a piece of scenery as a word, if the domain is not important or needs not to be specified (although,
formally every word has a domain (1, . . . , N)). Hence, we can state that ”the piece φyx is the word w”,
meaning that the image of φ|I is w or, equivalently, ψyx ≡ w. Depending on φ, we shall call w as the
observation- or scenery-word.

1.3 The theorem

The aim of the paper is to show that that, for every natural number l1 that is big enough, there exists an
algorithm A1 which is capable with high probability to reconstruct a finite piece of ξ of length 4el1 around
the origin. For that, the algorithm A1 uses first exp12αl1 +1 observations, χ12αl1 , only. Throughout the
paper α > 0 is a fixed constant that does not depend on l1. We need α to be big enough and we specify it
in Subsection 3.6. Since A1 is supposed to reconstruct the scenery around the origin, it becomes necessary
to get some additional information about the location of S around the origin. In other words, besides
the observations, the algorithm A1 should receive some signals telling him that a particular observation
was generated when S was sufficiently close to the origin. To get such information, A1 is given exp(αl1)
G-adapted stopping times τ = (τ(1), . . . , τ(exp(αl1))) as an additional input. The stopping times are
assumed to satisfy the conditions:

τ(k)− τ(k − 1) ≥ 2 exp(2l1), k = 2, 3, . . . , exp(αl1) + 1, where τ(exp(αl1) + 1) := exp[12αl1]. (1.1)

The aim of τ is to show when S is at most exp(l1) from origin. Thus, they do well, if the following event
holds

E1
stop(τ) := {|S(τ(k))| ≤ exp(l1), k = 1, . . . , exp(αl1)}.

The condition (1.1) states that all stopping times are sufficiently far from each other and they depend
on first exp(12αl1) observation χexp[12αl1], only. In particular, for each τ(k), the algorithm A1 can use
2 exp(2l1) observations starting from τ(k). On E1

stop(τ), all these observations are generated by S being
at most exp(l1) + 2 exp(2l1) from origin. These are the observations that are actually used by A1. The
information provided by τ is essential for the algorithm A1, which is supposed to work on E1

stop(τ), only.
We shall not define the stopping times in this paper. The construction of τ such that the probability of
E1

stop(τ) is sufficiently big is the so-called zig-step of overall scenery reconstruction (see Chapter 3 in [20]).

Besides the observations and the stopping times, A1 is given the third input: a (small) piece ψo of
original scenery. Formally, ψo = ψ|Io, where Io is an integer interval and ψ is the underlying scenery
(the realization of ξ.) The length of ψo (i.e. the length of Io) is at least l1c1L, moreover, we assume
Io ⊆ [− exp(l1), exp(l1)]. Here c1 is a fixed constant not depending on l1 (see Section 3.6).

The output of A1 is a word of length 4 exp(l1). Hence, formally A1 is the mapping

A1 : {0, 1}[0,exp(12αl1)] × [0, exp(12αl1)][1,exp(αl1)]×
( 2 exp(l1)+1⋃
k=2c1l1L+1

{0, 1}k
)
7→ {0, 1}[−2 exp(l1),2 exp(l1)],

where the first input stands for observations χ12α1l1 , the second for stopping times τ and the third for ψo.

The aim of A1 is to produce a piece of original scenery that lies between ψ|[− exp(l1), exp(l1)] and
ψ|[−3 exp(l1), 3 exp(l1)]. Recall that ψ is the realization of ξ. Thus, A1 does well, if the following event
holds

E1
alg works(τ, I

o) :=
{
ξ|[− exp(l1), exp(l1)] v A1

(
χexp(12αl1), τ, ξ|Io

)
v ξ|[−3 exp(l1), 3 exp(l1)]

}
. (1.2)
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Obviously the event (1.2) depends on τ as well as on the chosen interval Io. In the following we do not
know exactly the interval Io. Hence, we want thatA1 works with any given interval Io. The corresponding
event is

E1
alg works(τ) :=

⋂
Io⊂[− exp(l1),exp(l1)]

E1
alg works(τ, I

o).

The description and formal definition of A1 is given in Subsection 3.3. The main result of the paper,
Theorem 1.1 states that the definition of A1 is successful: given E1

stop(τ) holds, the conditional probability
of E1

alg works(τ) is big.

Theorem 1.1 There exists a constant k > 0 not depending on l1 such that, for l1 big enough

P
(
E1

stop(τ) ∩
(
E1

alg works(τ)
)c)≤ e−kl1 . (1.3)

The use of τ and ψo might seem unrealistic - one would like to reconstruct (a piece of) scenery without
any additional help. In Chapter 3 of [20], a general description of such a scenery reconstruction procedure
is given. This procedure is based on repeated use of algorithms A1, where in every stage a longer and
longer piece of scenery around origin is constructed (l1 is increasing). In this procedure, the output of A1

in a lower level (for small l1) is used to define stopping times τ in higher level (for big l1) such that with
high probability the event E1

stop(τ) holds. Also the output in lower level is used as an input ψo for A1 in
higher level. In the perspective of such a feedback, the result of the present paper becomes necessary; in
fact, this is the core of the overall scenery reconstruction.

1.4 Preview

Let us briefly introduce some main ideas behind the construction of A1. We begin with the description of
a ladder word. Let x, y ∈ Z be two location points such that y = x+ c1l1L, where c1 is a fixed constant,
specifies in Section ??. A ladder word w is the piece of observations that S generates by moving from x
to y as quickly as possible. Since the length of the maximum step of S is L, then for ξ = ψ the described
ladder word is obviously the vector(

ψ(x), ψ(x+ L), . . . , ψ(x+ (c1l1 − 1)L)), ψ(y)
)
. (1.4)

The importance of the ladder words in scenery reconstruction comes form the fact that they can be
sometimes recognized (with high probability). Indeed, suppose we ”see x and y in χ”, i.e. looking at
the observations, we know exactly when S is in location x and in location y. In this case, we can almost
surely identify (1.4): just look at all occurrences of x and y in χ with minimal distances. The words
occurring in χ between x any y are (a.s.) always the same and equal to (1.4). The formal definition of
ladder words is given in Section 3.1.
The algorithm A1 consists of two phases. In the first phase, A1 builds a collection of ladder words, W1.
For this, we introduce a selection rule: an observation-word w passes the selection and will be collected
as a ladder word, if it satisfies certain criterions. In the second phase, A1 assembles the words of W1 to
produce a word of length 4 exp(2l1) as the output. The assembling-rule of the second phase is straight-
forward: we start with the given piece ψo, and we attach a ladder word w ∈ W1 with it only if w has an
overlap with ψo at least c1l1

4 . Thus, the second phase looks like a puzzle playing. The role of ψo becomes
now obvious – ψo is the starting piece (the ”seed”) for our puzzle. For the second phase to works, it is
clearly necessary that every ladder word of length c1l1

4 occurs only once in ξ|[−e3l1 , e3l1 ]. It turns out
that for c1 big enough, the latter holds with high probability (Proposition 3.1). Clealry, it is necessary
that W1 contains enough ladder words. On the other hand, for A1 to work, it is also necessary that W1

contains only ladder words. This means that the selection rule for W1 must be balanced – it cannot be
neither too strict nor to weak. To construct such a selection rule is the most difficult part of the scenery
reconstruction.
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1.4.1 Simplified selection rule

The selection rule is based on the fact that (with high probability) some location pairs (x, y) such that
y = c1l1L + x can be seen from observations. This is done by the location tests. Roughly speaking, a
location test for y is the procedure that allows us to take decision, whether a particular observation χ(t)
was generated on y (i.e. S(t) = y) or not. As explained before, with such information in hand, one can
easily ”collect” the ladder word (1.4).
Let us briefly introduce the main ideas behind the location test for y. For tutorial reason, we start with
a very unrealistic and oversimplified version of the tests and then, step by step, we approach to the real
tests.
Let ξ = ψ. We consider a long piece of scenery ψ|[y, y + lm], where l,m are sufficiently big constants;
and we aim to define a (name) function g(ψ|[y, y + lm]) =: gy(ψ) as well as a (name reading) function
ĝ(w), w ∈ {0, 1}lm2+1 such that the following holds

1 If S(t) ≥ y, then ĝ(χ|[t, t+ lm2]) is able to reproduce gy(ξ) with certain positive probability;

2 If S(t) < y, then the probability that ĝ(χ|[t, t+ lm2]) reproduces gy(ξ) is negligible.

In other words, we try to define the name function g and the name-reader ĝ such that ĝ(χ|[t, t + lm2])
reads gy(ψ) only if the piece of observation χ|[t, t+ lm2] satisfies S(t) ≥ y.
Similarly, to get a location test for x, we define the name function g∗(ψ|[x − lm, x]) =: g∗x(ψ) and the
(name reading) function ĝ∗(w), w ∈ {0, 1}lm2+1 such that the following holds

1* If S(t) ≤ x, then ĝ∗(χ|[t− lm2, t]) is able to reproduce g∗x(ξ) with certain positive probability;

2* If S(t) > x, then the probability that ĝ∗(χ|[t− lm2, t]) reproduces g∗x(ξ) is negligible.

It is easy to see that g∗ and ĝ∗ can be deduced from g and ĝ – just define g∗(w) := g(w−) and
ĝ∗(w) := ĝ(w−).

Suppose, for a moment, that we have a working location tests for a pair (x, y), with y = x + c1l1L.
Moreover, suppose that ”being able to reproduce” above just means equalities ĝ(χ|[t, t+ lm2]) = gy(ψ),
ĝ∗(χ|[t, t + lm2]) = g∗x(ψ) and ”is negligible” means being zero. In this case, the reconstruction (or
collecting) of the word (1.4) is rather straightforward. Indeed, for each t ≥ 0 define the observation words

w1(t) := χ|[t− lm, t], w2(t) := χ|[t, t+ c1l1], w3(t) := χ|[t+ c1l1, t+ c1l1 + lm2] (1.5)

and apply the name-reading functions ĝ∗(w1(t)) and ĝ(w3(t)). Because S is recursive, a.s. there exists a
t such that ĝ∗(w1(t)) = g∗x(ψ) and ĝ(w3(t)) = gy(ψ). In particular, this implies that

S(t) ≤ x and S(t+ c1l1) ≥ y. (1.6)

On the other hand, during c1l1 steps, the random walk S cannot move more than c1l1L. But this is ex-
actly the distance between x and y. Hence, the only possibility for (1.6) to hold is that both inequalities
are equalities. In this case, w2(t) equals the ladder word (1.4).

The example above is unrealistic in many respect. It is obvious that a necessary condition for the
location test to work is that there is no z < y such that ψ|[z, z + lm] = ψ|[y, y + lm]. But from the
definition of ξ it follows that for almost all realizations such a z exists (any finite pattern occurs infinitely
many times in ξ). Therefore, it is more realistic to assume that the word ψ|[y, y + lm] is unique in a
certain piece of ψ|I1, only. Since we are interested in reconstructing the scenery around the origin, from
now on, we define

I1 := [− exp(3l1), exp(3l1)]
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and we consider the pairs (x, y) in I1, only. Thus the conditions 2 and 2* are replaced by

P
(
ĝ(χ|[t, t+ lm2]) = gy(ψ), S(t) ∈ [− exp(3l1), y]

)
= 0 (1.7)

P
(
ĝ∗(χ|[t− lm2, t]) = g∗x(ψ), S(t) ∈ [x, exp(3l1)]

)
= 0. (1.8)

Since the above-described selection rule now works only on I1, we have to modify the construction of
(2.1) such that S(t), S(t+ c1l1) ∈ I1. For this we use the stopping times τ(j). Define times

T 1(j) := τ(j) + exp(2l1) + lm2, T 3(j) := T 1(k) + c1l1, j = 1, . . . , exp(αl1). (1.9)

Note that on Estop(τ) it holds S(T 1(j)), S(T 3(j)) ∈ I1, provided l1 is big enough. Now the words defined
by T 1(j) and T 3(j) can be used. More precisely, we define

w1(j) := χ|[T 1(j)− lm2, T 1(j)]

w2(j) := χ|[T 1(j), T 3(j)]

w3(j) := χ|[T 3(j), T 3(j) + lm2]

and we use the same selection rule as previously, with w1(j), w2(j), w3(j) instead of w1(t), w2(t), w3(t).
Note that a necessary condition for this rule is that the probability in 1 and 1* is so big that among
exp(αl1) stopping times most likely there is at least one j such that ĝ∗(w1(j)) = g∗x(ψ) and ĝ(w3(j)) =
gy(ψ). Also note that the T 1(j) is not defined right after τ(j), but after τ(j) + exp(2l1), instead. The
reason for this is following: we are interested in reconstructing the a piece of scenery with length 4 exp(l1)
around origin (recall the definition of E1

alg works). This means that we have to collect also these ladder
words that are about 2 exp(l1) from origin. The stopping times τ(j) stop S at most exp(l1) from origin
(on Estop(τ)). Hence, for S to reach to the ladder words that are are about 2 exp(l1) from origin, some
additional time is needed.

The rule in the previous example requires that we know the names g∗x := g∗x(ψ) and gy := gy(ψ).
They depend on ψ that is unknown. However, by conditions 1 and 1*, the names g∗x and gy can be red
with positive probability. We now modify the selection rule to take into consideration that g∗x and gy are
not known. The modification is based on the fact that the probability to read g∗x and gy is so big that
among exp(αl1) pairs ĝ∗(w1(j)), g(w3(j)) there is at least exp(γl1) pairs such that ĝ∗(w1(j) = g∗x and
g(w3(j)) = gy (with high probability, of course). Here 0 < γ < α is a properly chosen proportion. If the
latter holds, then there exists a pair of names g∗1 , g3 such that the number of stopping times satisfying
ĝ∗(w1(j) = g∗1 and g(w3(j)) = g3 is more than exp(γl1). Unfortunately, there can be many pairs having
the same property. To choose the right pair, we riep benefit from the conditions (1.7) and (1.8). Due
to these condition, the right pair of names g∗x, gy has an important characteristic – for every j such that
ĝ∗(w1(j)) = g∗x and ĝ(w3(j)) = gy, the word w2(j) must be (1.4) and, therefore, the same. Our modified
rule is the following:

Simplified selection: The word w is taken as (1.4), if there exists a pair of names g∗1 , g3 such that
the following holds:

a) there exists more than exp(γl1) stopping times such that

ĝ∗(w1(j)) = g∗1 , ĝ(w3(j)) = g3; (1.10)

b) for every j satisfying (1.10), it holds w2(j) = w.

1.4.2 Avoiding non-ladder words

In the selection rule above, the right choice of γ is crucial: if γ is too big, then the probability that the
true ladder word passes the criterion a) becomes too small. On the other hand, if γ is too small, then
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the probability that a non-ladder word passes the selection rule becomes too big. Let us briefly introduce
the basic argument used to find a suitable lower bound for γ.
Suppose z, z′ ∈ I1 such that |z − z′| < Lc1l1. Consider the possible observation-words that S generates
by going from z to z′ in c1l1 steps. If c1 is big enough, then the probability that all these words are the
same, is small (Proposition 3.1). In Section 3.1 we define the event B1

recon straight which states that for
every z, z′ ∈ I1 there are at least two possible observation-words that S can generate during its way from
z to z′ with c1l1 steps. Any path of S that consists of c1l1 steps has the probability at least (pmin)c1l1 .
Suppose w passes the selection rule. Hence, there exists a set J ⊆ {1, . . . , exp(αl1)} such that at least
|J | ≥ exp(γl1) and for each j ∈ J the following holds : |S(T 3(j)) − S(T 1(j))| < Ll1c1 and w2(j) = w.
Let Yk := 1− Iw2(j1)(w

2(jk)), where j1, j2, . . . are the elements of J . This means that
∑exp(γl1)
k=2 Yk = 0.

Suppose now that w is a non-ladder word. If the event E1
stop ∩B1

recon straight holds, then, for each k ≥ 2,
the probability that Yk = 1 cannot be smaller than (pmin)c1l1 . Given S(T 1(jk)) and S(T 3(jk)) the
random variables Yk are independent. Now the Höffding’s inequality can be used to estimate (see (3.32))

P
(exp(γl1)∑

k=2

Yk = 0
∣∣∣E1

stop ∩B1
recon straight

)
≤ exp[−2 exp((γ + 2c1 ln pmin)l1)].

The right side of the previous display is exponentially small in exponentially small quantity of l1, if
γ > −2c1 ln pmin (see 3.42). Using the obtained bound, it is not hard to see that the probability that a
non-ladder word passes the selection rule is exponentially small in l1 (Proposition 3.2)..
Note that in the foregoing argument we did not use any properties of g and ĝ. Hence, the argument
applies also for the final selection rule given in Subsection 1.4.6.

1.4.3 The names

In this subsection, we explain the nature of the functions g and ĝ (recall that ĝ∗ and g∗ are practically
the same). The construction of these function is based on the following theorem proved in [15]

Theorem 1.2 There exists constants c > 0 (not depending on n), N <∞, m(n) > n, the maps

g : {0, 1}m+1 7→ {0, 1}n
2+1

ĝ : {0, 1}m
2+1 7→ {0, 1}n

2

and the sequence of events Bcell OK(n) ∈ σ(ξ(z)|z ∈ [−cm, cm]) such that:

1) P (Bcell OK(n)) → 1

2) For all n > N and ψn ∈ Bcell OK(n):

P
(
ĝ(χm

2

0 ) v g(ψm0 )
∣∣∣S(m2) = m, ξ = ψn

)
> 3/4.

3) g(ξm0 ) is an i.i.d. binary vector where the components are Bernoulli with parameter 1/2.

(Note the abuse of notation: in [15] the sign ”4” was used instead of ”v”.)
From now on we assume that n > N and m(n) are fixed constant. We specify them in Section 3.6.
Theorem 1.2 provides a test that uses m2 observations χt+m

2

t to test the hypotheses:

Ho : S(t) = y,

H1 : S(t) < y − Lm2

given S(t+m2) = S(t) +m and ξ ∈ Bcell OK(n). Indeed, it S(t) < y − Lm2, then χt+m
2

t is independent
of g(ξy+my ). By the properties of ξ,

P
(
ĝ(χt+m

2

t ) v g(ξy+my )
)

=
(
ĝ(χt+m

2

t ) v g(ξm0 )
)
≤

(1
2

)n2−1

.
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On the other hand, if ψ ∈ EOK, then conditional on A := {ξ ∈ Bcell OK(n), S(t+m2) = m,S(t) = y} it
holds

P
(
ĝ(χt+m

2

t ) v g(ξy+my )
∣∣∣A)

>
3
4
.

The functions g and ĝ look like the desired name and name-reading procedures. Indeed, there is certainly
a positive probability that ĝ(w3(j)) ”reproduces” g(ψ|[y, y + m]), where ”reproducing” now means the
relation ĝ(w3(j)) v gy (note that in this case ”v” actually means the equality to the first or last bit).
On the other hand, the following modification of the (1.7) holds

P
(
ĝ(χ|[t, t+m2]) v g(ψ|[y, y +m]), S(t) ∈ [− exp(3l1), y − Lm2)

)
=

(1
2

)n2−1

. (1.11)

So, taking n big enough, we can make the right side of (1.11) as small as we want.
Unfortunately, for several reasons, the functions from Theorem 1.2 is not good enough. Recall that we
want the mistake (1.3) to be exponentially small in l1. The right side of (1.11) does not depend on l1.
To handle this, we apply Theorem 1.2 repeatedly. This procedure is called iteration and it is the subject
of Section 2. Let us briefly introduce the main ideas behind the iteration.

From now on, we define

l := l1 · l2, where l2 is fixed positive integer, specified in Section 3.6.

We shall apply the functions g and ĝ from Theorem 1.2 l times consecutively. Let w = (w(0), . . . , w(lm)) ∈
{0, 1}lm+1. We define l sub-words, called cells

wi =
(
w((i− 1)m), · · · , w(im)

)
, i = 1, . . . , l.

Note that wi and wi+1 are not disjoint. Using the sub-words wi, we naturally extend the definition of g
to the words in {0, 1}lm+1. We define

g : {0, 1}lm+1 7→ {0, 1}l(n
2+1), g(w) = (g(w1), . . . , g(wl)).

Note that we denote by g the function in Theorem 1.2 as well as its extension (they coincide if l = 1).

Similarly, let v = (v(0), . . . , v(lm2)) ∈ {0, 1}lm2+1. We define cells

vi =
(
v((i− 1)m2), . . . , v(im2)

)
, i = 1, . . . , l.

Using the sub-words vi, we extend the definition of ĝ to the words in {0, 1}lm2+1. We define

ĝ : {0, 1}lm
2+1 7→ {0, 1}ln

2
, ĝ(v) = (ĝ(v1), . . . , ĝ(vl)).

We now give a more accurate interpretation to the phrase ”to reproduce” in the description 1. Since
the ”name-reading” or ”reproducing” procedure is based on Theorem 1.2, it is natural to expect that
ĝ(χ|[t, t+m2l]) reproduces g(ψ|[y, y+ml]), if the relationv holds cell-wise, i.e. ĝ(χ|[t+(i−1)m2, t+im2]) v
g(ψ|[y+(i−1)m, y+im]) for each i = 1, . . . , l. Note that Theorem 1.2 gives lower bound to the probability

Pψ

(
ĝ(χ|[t+ (i− 1)m2, t+ im2]) v g(ψ|[y + (i− 1)m, y + im])

)
,

only if the piece of scenery ψ|[y+ (i− 1)m− cm, y+ (i− 1)m+ cm] belongs to the set Encell OK. If this is
the case, we say that the cell ψ|[y + (i− 1)m, y + im] is OK.
For each (long) piece of scenery ψ|[y, y+ lm] we now correspond the index set I(ψ|[y, y+ lm]) =: Iy(ψ) ⊂
{1, . . . , l} of OK-cells. Similarly, we define I∗(ψ|[x− lm, x]) := I((ψ|[x− lm, x])−) (the reader should be
warned that now we only give a simplified definition of I and I∗; the final definition is given in Section



Reconstructing a Random Scenery 10

2.1).
Although Encell OK has the probability close to one, since l is big, we expect a proportion of cells not
to be OK, i.e Iy 6= {1, . . . , l}. We say that ψ|[y, y + lm] is OK, if at least l(1 − 3ε) cells are OK,
i.e |Iy(ψ)| ≥ l(1 − 3ε). We say that ψ|[x − lm, x] is OK*, if (ψ|[x − lm, x])− is OK. Equivalently,
ψ−|[−x,−x + lm] is OK. We denote by B1

intervals OK the set of sceneries that satisfy: ψ|[y, y + lm]
is OK and ψ|[x − lm, x] is OK* for every pair (x, y) ∈ I1. In particular, if ψ ∈ B1

intervals OK, then
|Iy(ψ)|, |I∗x(ψ)| ≥ (1 − ε)l. The proportion ε is chosen such that P (B1

intervals OK) is sufficiently big
(Theorem 2.1 and the estimation (3.21)).
For not OK cells, the statement 2) of Theorem 1.2 needs not hold, and the cell-wise reproducing might
fail. Hence, we relax the requirement of the full cell-wise reproducing to the requirement that the OK cells
are reproduced. More formally, for any subset I ⊆ {1, . . . , l}, we define ĝ(w) vI g(v), if ĝ(wi) v g(vi),
∀i ∈ I. Now we say that g(χ|[t, t+m2l]) reproduces gy(ψ), if

g(χ|[t, t+m2l]) vI(ψ) gy(ψ).

If ψ ∈ B1
intervals OK, then the latter means that cell-wise reproduction holds for at least l(1− 3ε) cells.

1.4.4 Getting selected

Let us now give some insight, how do we show that the probability for a ladder word (1.4) to pass the
selection is sufficiently high. What follows, is a simplified version of Proposition 3.2. Let

Ej(x, y) :=


S(T 1(j)− lm2) = x− lm

S(T 1(j)) = x, S(T 3(j)) = y,
ĝ∗(w1(j)) vI∗x(ξ) g

∗
x(ξ),

ĝ(w3(j)) vIy(ξ) gy(ξ)

 , Yj := IEj
, j = 1, . . . , eαl1 .

Clearly (1.4) passes the selection if {eαl1∑
j=1

Yj > eγl1
}
.

Now, by the Markov property of S, for each ψ

Pψ
(
Yj = 1|Estop(τ)

)
=Pψ

(
S(T 1(j)− lm2) = x− lm

∣∣∣Estop(τ)
)

×Pψ
(
S(T 1(j)) = x, ĝ∗(w1(j)) vI∗x(ψ) g

∗
x(ψ)

∣∣∣S(T 1(j)− lm2) = x− lm
)

×Pψ
(
S(T 3(j)) = y

∣∣∣S(T 1(j)) = x
)

×Pψ
(
ĝ(w3(j)) vIy(ψ) gy(ψ)

∣∣∣S(T 3(j)) = y
)
.

Recall that T 1(j)− lm2 = τ(j) + exp(2l1). By Estop(τ), |S(τ(j))| ≤ exp(l1). Now, the local central limit
theorem (LCLT) can be used to see that for l1 big enough

Pψ
(
S(τ(j) + e2l1) = x− lm

∣∣Estop(τ)
)
≥ exp(−1.5l1).

By the definitions of w1(j), ĝ∗ and I∗, we have

Pψ

(
S(T 1(j)) = x, ĝ∗(w1(j)) vI∗x(ψ) g

∗
x(ψ)

∣∣∣S(T 1(j)− lm2) = x− lm
)

=

Pψ

(
S(T 1(j)) = x, ĝ∗(χ|[T 1(j)− lm2, T 1(j)]) vI(ψ|[x−lm,x])− g

(
(ψ|[x− lm, x])−

)∣∣∣S(T 1(j)− lm2) = x− lm
)

=

Pψ

(
S(lm2) = x, ĝ∗(χx−lm|[0, lm2]) vI(ψ−|[−x,−x+lm]) g(ψ−|[−x,−x+ lm])

)
=

Pψ

(
S(lm2) = x, ĝ

(
(χx−lm|[0, lm2])−

)
vI−x(ψ−) g−x(ψ−)

)
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By symmetricity of S, for each set V ⊆ {0, 1}ln2
, we have

Pψ

(
S(lm2) = x, ĝ

(
(χx−lm|[0, lm2])−

)
∈ V

)
= Pψ

(
S(lm2) = x− lm, ĝ

(
χx|[0, lm2]

)
∈ V

)
.

The right side of the previous display equals

Pψ−
(
S(lm2) = −x+ lm, ĝ

(
χ−x|[0, lm2]

)
∈ V

)
.

Hence,

Pψ

(
S(T 1(j)) = x, ĝ∗(w1(j)) vI∗x(ψ) g

∗
x(ψ)

∣∣∣S(T 1(j)− lm2) = x− lm
)

=

Pψ−
(
S(lm2) = −x+ lm, ĝ

(
χ−x|[0, lm2]

)
vI−x(ψ−) g−x(ψ−)

)
=

Pψ−
(
S(T 3(j) + lm2) = −x+ lm, ĝ

(
χ|[T 3(j), T 3(j) + lm2]

)
vI−x(ψ−) g−x(ψ−)

∣∣∣S(T 3(j) = −x)
)

=

Pψ−
(
S(T 3(j) + lm2) = −x+ lm, ĝ

(
w3(j)

)
vI−x(ψ−) g−x(ψ−)

∣∣∣S(T 3(j) = −x)
)
.

Suppose ψ ∈ B1
intervals OK. Then the probability in the previous display has the lower bound

inf
ψ:ψ|[y,y+lm] is OK

Pψ

(
S(T 3(j) + lm2) = y + lm, ĝ(w3(j)) vIy(ψ) gy(ψ)

∣∣∣S(T 3(j)) = y
)
. (1.12)

Indeed, (1.12) does not depend on y any more. It is not very hard to see now that by 2) of Theorem 1.2,
(1.12) can be bounded below by

inf
ψ:ψ|[y,y+lm] is OK

∏
i∈I(ψ)

Pψ

(
ĝ(χim

2

(i−1)m2) v g(ψim(i−1)m)
∣∣∣S(im2) = S((i− 1)m2) +m

)
≥

(3
4

)l
.

Finally, for every ψ,
Pψ

(
S(T 3(j)) = y

∣∣∣S(T 1(j)) = x
)

= (pL)c1l1 .

Hence, if ψ ∈ B1
intervals OK, we have

Pψ
(
Yj = 1|Estop(τ)

)
≥ exp(−1.5l1)

(3
4

)l
(pL)c1l1

(3
4

)l
= exp[−(1.5− 2 ln(

3
4
)l2 − c1 ln(pL))l1]. (1.13)

Conditional on Estop and ψ, the random variables Yj are independent. Using Höffding’s inequality, it is
now not difficult to show that α and γ can be chosen such that

P
(eαl1∑
j=1

Yj ≤ eγl1 , B1
intervals OK ∩ Estop(τ)

)
is exponentially small in l1. Since P (B1

intervals OK) is big (3.21), we obtain that the the probability of
selecting (1.4) is sufficiently big.

1.4.5 Avoiding mistakes

In the previous subsections we saw how the selection rule works if ”being negligible” in 2 means ”equal
to zero”. The latter is unrealistic and cannot be guaranteed. We now modify the selection rule such that
the the probability in 2 is considerably small in comparison with the (modified version of the) right side
of (1.13) (which also goes to zero as l1 grows). To explain the meaning of the additional modification,
we consider the events

Ez,I :=
{
∀i ∈ I we have that Sz(m(i− 1)) < m(i− 1)− Lm2

}
, I ⊆ {1, . . . , l}. (1.14)
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Suppose Ez,I holds. Then, for each cell i ∈ I, the random variables χz|[(i− 1)m, im] and ξ|[(i− 1)m, im]
are independent. By 3 of Theorem 1.2, we then have P (χz|[(i− 1)m, im] v ξ|[(i− 1)m, im]) = (0.5)n

2−1.

This implies P (ĝ(χlm
2

z ) vI gy(ξ)) ≤ (0.5)(n
2−1)|I| and, for l big enough the latter yields

P
(
B1

intervals OK ∩ {ĝ(χlm
2

z ) vIy(ξ) gy(ξ)} ∩ Ez,I(ξ)
)
≤ exp[−(0.3n)l]. (1.15)

(Corollary 2.1). Recall that on B1
intervals OK. Since n can be chosen very big, the right side of (1.13)

can be as many times bigger than exp[−(0.3n)l] as we want. This property together with the fact that
P (B1

intervals OK) is big makes the selection rule work.

We now define an additional characteristic of ψ|[y, y + lm], denoted by q(ψ|[y, y + lm]) =: qy(ψ), and
corresponding ”reading function” q̂(w), w ∈ {0, 1}lm2+1 such that for each j, we have

3 If S(T 3(j)) ≥ y, then q̂(w3(j)) reproduces qy(ξ) with certain probability,

4 If S(T 3(j)) < y, then q̂(w3(j)) reproduces qy(ξ) only if Ez,I(ξ) holds.

Denote z = T 3(j). Note the difference with 1 and 2: if z ≥ y, then q̂ and q must fulfill the require-
ment like 1. Of course, the meaning of ”reproduction” is now different, we shall call it q-reproduction.
For z < y, the requirements for q and q̂ are different from that one in 2 – we do not require that the
probability for q-reproduction is small. We require instead that the q-reproducing always implies Ez,I(ξ).
And then, as we just saw, the probability that ĝ(w3(j)) vI(ξ) gy(ξ) (the g-reproduction, in the sequel)
is exponentially small (at least for y = 0, but the case for general y is not different). Hence, we consider
g and q together. For a ladder word to be selected, both q-and g-reproduction must simultaneously
hold (for exp(γl1) stopping times, as usually). In the case z ≥ y, the additional requirement obviously
reduces the probability (1.13); however, if the q-reproduction has a relatively big probability, then the
lower bound like (1.13) might still hold. In the case z < y, the q-reproduction of qy(ξ) (which might
hold with rather big probability) implies Ez,I(ξ), and then the probability of g-reproduction is very small.

The idea of q-reproduction is partially based on the fact that we do not need every ladder word (1.4)
with x, y ∈ I1 do be collected. So far, we have not restricted our choice of x (y is obviously uniquely
determined by x). Now we consider pairs (x, y) that satisfy pair (x, y) that

ψ(y − L) = · · · = ψ(y − 1) 6= ψ(y) = · · · = ψ(y +m3L) 6= ψ(y +m3L+ 1) = · · · = ψ(y +m3L+ L)

ψ(x+ L) = · · · = ψ(x+ 1) 6= ψ(x) = · · · = ψ(x−m3L) 6= ψ(x−m3L− 1) = · · · = ψ(x−m3L− L).

Such pairs are called a barriers. The barriers are random, they depend on ξ. The event B1
enough barriers,

formally defined in Section 3.1 states that we have sufficiently many barriers. In Proposition 3.1 we show
that this event has high probability if l1 is big enough.
To the end of this section we assume y = 0 and we skip y from the notation.

Let ψ|[(2Lm2−1)m, (2Lm2)m] be the first OK cell of ψ. In terms of cell indexes, 2Lm2 = i1 := min I(ψ).
Let z < y. We consider now the random walk Sz, and we want to be able to see from the observations
χz|[0, (i1−1)m2] whether Sz((i1−1)m2) < (i1−1)m−Lm2, i.e. Ez,i1 holds. The numberm(n) is certainly
so big that (2Lm2−1)m−Lm2 > Lm3. Hence Ez,i1 holds, if Sz((i1−1)m2) ≤ m3L. The latter obviously
holds Sz(t) ≤ m3L ∀t ≤ (i1 − 1)m2, which, in turn, holds if the observation-word χz|[0, (i1 − 1)m2] has
the following property: χz|[0, (i1 − 1)m2] does not contain at least m3 consecutive same colors followed
by the different color. Indeed, in order to reach a point z′ > m3L, the random walk Sz must generate at
least m3 consecutive same-color observations and then at least one observation of the other color.
Hence, when χz|[0, (i1 − 1)m2] satisfies the mentioned condition, we can be sure that Sz(t) ≤ m3L
∀t ≤ (i1 − 1)m2, i.e. Ez,i1 holds. If the condition is not met, then the word χz|[0, (i1 − 1)m2] is not
considered for g-reproduction, it will be filtered out.
Suppose now z = 0. In this case we want that χz|[0, (i1 − 1)m2] = (i1 − 1)m. This gives a big chance
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for g-reproduction of the i1-th cell ĝ(χ|[(i1 − 1)m2, i1m
2]) v g(ψ|[(i1 − 1)m, i1m]). But in this case the

observation-word χ|[0, (i1−1)m2] definitely contains m3 consecutive same colors followed by the different
color and such a word will be filtered out. Therefore, we must adjust the described condition to make
sure that (with certain probability) the word χ|[0, (i1 − 1)m2] will be not filtered out. For this note: in
order to reach from z < 0 to z′ > m3L, the random walk must generate (in the observations) at least m3

consecutive same colors, having the different color at the beginning and at the end. On the other hand, to
reach from 0 to z′ > m3L, the random walk can follow the path that begins with m3 same colors, hence
the word χ|[0, (i1− 1)m2] will not necessarily contain least m3 consecutive same colors with the different
color in the beginning (although this event has probability bigger than 1

2 ).
A word (w(0), w(1), . . . , w(u− 1), w(u)) is called block with length u, if w(0) 6= w(1) = · · · = w(u− 1) 6=
w(u). Hence the filtering rule is: the word χ|[0, (i1− 1)m2] will be filtered out, if it contains a block with
length at least m3. Such blocks are called big.
For each block B in ψ, we define the reading length of B as the length of the smallest block that the
random walk generates in observations by crossing it. If the length of B is Lm3, then the reading length
of B is roughly m3 (see Section 2.3 for the formal definition and examples). Suppose now that i1 > 2Lm2

and there is one block with B the reading length at least m3 between m3L+L and (i1−1)m−Lm2. Then,
to reach (i1−1)m from y, the random walk necessarily generates at least one big block in observation. To
reach (i1− 1)m from z < 0, the random walk necessarily generates at least two big block in observations.
Hence, the filtering rule in this case is: χ|[0, (i1 − 1)m2] will be filtered out, if it contains more than one
big block.

Generally, we proceed as follows: we define I(ψ) to be indexes if cells that are not only OK, but have
the additional property: if i ∈ I(ψ) then ψ|[(i − 1)m − Lm2, im + lm2] cannot be a part of any block
with reading length at least m3 (see Section 2.1). This means that any block B with the reading length
at least m3 must end before (i− 1)m−Lm2. This makes our q-reproduction procedure to work. We call
a group of blocks with reading length at least m3 a big cluster if the random walk can cross the group
by generating only one big block in observations. Note that all big clusters of ψ|[0, lm] are located in the
pieces of ψ corresponding to the cells {1, . . . , l}\I(ψ) =: Ic(ψ).
For each i we count all big clusters in ψ|[0, im], for each i = 1, 2, . . . , l and we compare them with the
big clusters in χz|[0, im2] for each i. Formally, e define the functions

q : {0, 1}lm+1 7→ Nl, and q̂ : {0, 1}lm
2+1 7→ Nl

as follows: q(w) = (q1(w), . . . , ql(w)), q̂(v) = (q̂1(v), . . . , q̂l(v)) where

qi(w) := number of big clusters contained in sub-vector (w(0), . . . , w(im))

q̂i(v) := number of big blocks contained in sub-vector (v(0), . . . , v(im2)).

As usually we define q∗(w) := q(w−) and q̂∗(v) = q̂∗(v−).
We denote

q̂(v) ≤ q(w)
(
q̂∗(v) ≤ q∗(w)

)
if and only if q̂i(v) ≤ qi(w)

(
q̂∗i (v) ≤ q∗i (w)

)
for all i.

Hence, if q̂(χz|[0, lm2]) ≤ q(ψ|[0,ml]) =: q(ψ), then for each i, the number of big blocks in χz|[0, im2]) is
not bigger than the number of big clusters in ψ|[0,mi]. The foregoing argument shows that in case z < y,
this implies that Sz is always ”one cluster-end behind” implying Ez,I(ψ).
If z = 0, then the observation word χ|[0, lm2] will be not filtered out if, for each i ∈ I(ψ), the S moves
from 0 to (i− 1)m generating as few big blocks in observations as possible. In Proposition 2.1 we show
that this event has the probability bigger than

(pmin)|I
c(ψ)|m2

.

This follows from the observation that this particular event restricts the behavior if Sy during its stay
on the cells in Ic(ψ), only. The bound on the previous display is big enough to still have the bound like
(1.13) (Theorem 2.3).
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1.4.6 Final selection

We are now ready to define the final version of the selection rule.

* Note, for every u ∈ {0, 1}lm+1, q(u) = (q1, . . . , ql) is vector, such that qi = {0, 1, . . . , l}, q1 = 0
and qi ≤ qi+1 ≤ qi + 1. Any such vector is called a q-vector. Hence, for every u, q(u) and q∗(u) are
q-vectors.

Recall that, for any u ∈ {0, 1}lm+1, g(u) = (g1, . . . , ql), where gi ∈ {0, 1}n2+1. Any such word is
called a g-word. Hence, for each u, g(u) and g∗(u) are g-words.

In section 2.1 we shall give the formal definition of Iy(ξ) and I∗x(ξ). When B1
intervals OK holds, then

|Iy(ξ)|, |I∗x(ξ)| ≥ (1− 3ε)l for each pair x, y ∈ I1.

* We call (I∗, I, q∗, q, g∗, g) a set of attributes, if I∗, I ⊂ {1, . . . , l}, |I∗|, |I| ≥ l(1 − 3ε(n)), q, q∗

are q-vectors and g∗, g are g-words.

Recall the definition if observation words w1(j), w2(j), w3(j), j = 1, . . . , exp(αl1). For each set of at-
tributes (I∗, I, q∗, q, g∗, g) we define the set J(I∗, I, q∗, q, g∗, g) ⊂ [1, exp(αl1)] as follows:

j ∈ J(I∗, I, q∗, q, g∗, g) if and only if j satisfies

q̂∗(w1(j)) ≤ q∗, ĝ∗(w1(j)) vI∗ g∗, q̂(w3(j)) ≤ q, ĝ(w3(j)) vI g. (1.16)

As described, the selection rule is based on g- and q-reproduction, and it consists of two parts – getting
selected and avoiding non-ladder words. The principle of the final selection is exactly the same as the
one of simplified selection described in Subsection 1.4.1.

With g- and q-reproduction, the getting selected part (a)) means that (with high probability) for each
x, y ∈ I1, y − x = Lc1l1 there exists a set of attributes (I∗, I, q∗, q, g∗, g) and at least exp(γl1) stopping
times τ(j) with corresponding index set J(x, y) such that for each j ∈ J(x, y), (1.16) hold and the word
w2(j) is the same, say w. Hence the first requirement of selection rule is to check whether there exists
a set of attributes (I∗, I, q∗, q, g∗, g) such that ∃J ′ ⊂ J(I∗, I, q∗, q, g∗, g) such that |J ′| ≥ exp(γl1) and
j 7→ w2(j) is constant on J ′. The existence of such set of attributes and index-set J ′ can be easily
checked.
The second requirement of the selection rule (b)) is avoiding the non-ladder words. We already know that
if (x, y) form a barrier then (with high probability) the vectors q∗x(ξ), qy(ξ) and words g∗x(ξ) and gy(ξ)
cannot be read somewhere else. Hence, if I∗, I, q∗, q, g∗, g found in the first step are indeed I∗x(ξ), Iy(ξ)
q∗x(ξ), qy(ξ), g

∗
x(ξ), gy(ξ) as we want them to be, and if w is the word to be selected, then the following

must hold: whenever there is a stopping time index j satisfying (1.16), then w2(j) = w. Thus, the set J ′

must actually be J(I∗, I, q∗, q, g∗, g).

We now give the formal definition of the selection rule.

Definition 1.3 We define the set W = W(χ12αl1 , τ) as follows. A word w ∈ {0, 1}c1l1+1 belongs to W
if and only if there exists a complect of attributes (I∗, I, q∗, q, g∗, g) such that the following conditions are
satisfied:

a) |J(I∗, I, q∗, q, g∗, g)| ≥ exp(γl1)

b) if j ∈ J(I∗, I, q∗, q, g∗, g), then w2(j) = w.
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2 Iteration

In this Section, we formalize g- and q-reproduction, described in Subsection 1.4.3. We begin with the
definition of the OK-pieces of scenery, and we prove that a long piece of random scenery is typically OK
(Theorem 2.1). In Subsection 2.2, we prove the inequality (1.15) (Theorem 2.2). In Subsection 2.3, we
formalize q-reproduction and we found a suitable lower bound for (1.12) (Theorem 2.3). This is the main
ingredient for obtaining the lower bound (1.13). Finally, in Subsection 2.4 we show how the barriers make
the whole name-reading procedure to work.

Throughout the section, n, m(n) and l > 2Lm2 are fixed integer.

2.1 OK cells

In Theorem 1.2 we defined the set Bcell OK(n) ∈ σ(ξ(z)|z ∈ [−cm, cm]) that contains all typical pieces of
sceneries in interval [−cm, cm]. In this definition, c > 1 is a fixed integer not depending on m. Thus, any
word w ∈ {0, 1}2cm+1, regarded as a piece of scenery restricted to [−cm, cm] either belongs to Bcell OK(n)
or not. We say that such a word w is completely OK, if w ∈ Bcell OK(n).

* Let wN1 := (w(1), . . . , w(N)), w(j) ∈ {0, 1} be a binary word. Consider a sub-word wa+ma of w. We say
that wa+ma is weak-OK, if a− cm ≥ 1, a+ cm ≤ N and the extension of w, wa+cma−cm is completely OK.
Thus, any word of length m is weak-OK, if it is a certain sub-word of a larger word of length 2cm that
is completely OK.

* Define integer intervals

Di :=: [di−1, di] := (di−1, . . . , di), where di := im, i = 1, 2 . . . .

Clealy Di-s are not disjoint, Di ∩Di+1 = {di} . It is also clear that D1 ∪ · · · ∪Dl = [0, lm].

* Consider the words w ∈ {0, 1}lm+1. For each such a word we define l sub-words, called cells w1, . . . , wl
as follows:

wi ∈ {0, 1}m+1, wi := wdi

di−1
= (w(di−1), . . . , w(di)), i = 1, . . . , l. (2.1)

Hence, when speaking about a cell wi, we always consider it as a sub-word of a longer word w with the
length lm. Regarding w as a mapping, we equivalently define wi = w|Di.

* Using the representation (2.1) we define the sets of indexes

II(w) := {i ∈ [2Lm2, l] : wi is weak-OK}.
Hence II(w) is a set of all indexes bigger than 2Lm2 such that wi is weak-OK.

* We say that binary word w = (w(1), . . . , w(N)) of length at least N ≥ m1.1 is empty, if there is no
index j such that w(j) = w(j+1) = · · · = w(j+m0.9). We say that a cell wi has empty neighborhood
if di + Lm2 ≤ lm, di−1 − Lm2 ≥ 0 and (w(di−1 − Lm2), . . . , w(di + Lm2)) is empty.

* We say that a word (w(1), . . . , w(N)) contains a fence if ∃1 ≤ i ≤ N − 2L+ 1 such that

w(i) = · · · = w(i+ L− 1) 6= w(i+ L) = · · · = w(i+ 2L− 1).

We say that a cell wi in representation (2.1) is isolated, if Lm+2 ≤ i ≤ l−Lm−1 and both (sub-)words,
wi+Lm+1 = (w(di+Lm2), . . . , w(di+Lm2+m)) and wi−(Lm+1) = (w(di−1−Lm2−m), . . . , w(di−1−Lm2))
contain a fence.

* Let w be as in (2.1). Define

I1
II(w) := {i ∈ [2Lm2, l] : wi is isolated}
I2
II(w) := {i ∈ [2Lm2, l] : wi has empty neighborhood}
III(w) := I1

II(w) ∩ I2
II(w), I(w) := II(w) ∩ III(w).



Reconstructing a Random Scenery 16

* Let ε(n) =: P (Bcell OK(n)c) ∨ exp(−m0.7). We know, that ε(n) → 0. Consider a word w ∈ {0, 1}lm+1.
We say that w is OK if

|II(w)| ≥ l(1− 2ε(n)) and |III(w)| ≥ l(1− exp(−m0.7)),

Recall the definition ξml := ξ|[0, lm] and let us define the events

EOK := {ξml is OK}
EOKa :=

{∣∣II(ξml)∣∣ ≥ l(1− 2ε(n))
}

EOKb :=
{∣∣III(ξml)∣∣ ≥ l(1− exp(−m0.7))

}
.

Clearly,
EOK = EOKa ∩ EOKb (2.2)

and on EOK

|I(ξml)| ≥ l(1− 3ε(n)), (2.3)

provided n is big enough.

The following theorem states that for n big enough, the probability of EcOK is exponentially decreas-
ing in l. Hence, EOK represents the typical behavior of ξml. The proof is based on Höffding’s inequalities
and we leave it to Appendix.

Theorem 2.1 There exists N < ∞ such that for each n > N there exists a(n) > 0 not depending on l

such that for all l big enough the event EOK is independent on ξLm
3

and

P (EOK) ≥ 1− e−al.

2.2 Iterated g-functions

Recall the function g : {0, 1}m+1 7→ {0, 1}n2+1 and ĝ : {0, 1}m2+1 7→ {0, 1}n2
from Theorem 1.2. In the

present section we extend these definitions to the sets {0, 1}lm and {0, 1}lm2+1.

* Let w ∈ {0, 1}lm+1. Using the cell-representation (2.1) we extend the definition of g as follows

g : {0, 1}lm+1 7→ {0, 1}l(n
2+1), g(w) := (g(w1), g(w2), . . . , g(wl)). (2.4)

Note: by definition wi and wi+1 are not disjoint - they have a common bit. However, by the definition, g
does not depend on the first bit. Hence, applied on the scenery ξml, the components gi(ξml) and gj(ξml)
are independent.

* Define intervals

Ti :=: [ti−1, ti] := (ti−1, . . . , ti), where ti := im2, , i = 1, 2 . . . .

So, Ti-s are defined as Di-s with m2 instead of m.
Clearly Ti-s are not disjoint, Ti ∩ Ti+1 = {ti} . It is also clear that T1 ∪ · · · ∪ Tl = [0, lm2].

* Consider binary words v = (v(1), . . . , v(lm)) ∈ {0, 1}lm2+1. For each such a word we define l sub-words,
v1, . . . , vl as follows:

vi ∈ {0, 1}m+1, vi := vtiti−1
= (v(ti−1), . . . , v(ti)), i = 1, . . . , l. (2.5)

Regarding v as a mapping, we equivalently define vi = v|Ti.
Using the sub-words (2.5) we define

ĝ : {0, 1}lm+1 7→ {0, 1}ln
2
, ĝ(v) := (ĝ(v1), ĝ(v2), . . . , ĝ(vl)).
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* LetA = (a′1, . . . , a
′
l), B = (b′1, . . . , b

′
l) be lp and lr dimensional vectors, respectively. Let I ⊆ {1, 2, . . . , l}.

We define the following notation:

A vI B iff for each i ∈ I we have that a′i v b′i.

Recall the definition of Ez,I in (1.14). The event Ez,I says that for each i ∈ I we have that at time
ti−1 the random walk Sz is further away than L(m2) from the point di−1. In that case, during the
time interval Ti the random walk Sz can not visit the (location) set Di. This, in turn, implies that the
observation χz|Ti are independent of ξ|Di. Then, obviously, ĝ(χz|Ti) is independent of g(ξ|Di).

The following theorem yields the bound (1.15).

Theorem 2.2 There exists αI(n) > 0 not depending on l, such that for all z < 0 the following holds:

P

(
∃I ⊂ {1, 2, ..., l} with |I| = l(1− 3ε (n)) such that

Ez,I holds and ĝ(χlm
2

z ) vI g
(
ξml

) )
≤ e−αI l, (2.6)

provided l and n are both big enough.

Proof. Let z > 0. Denote ξi = ξ|Di, χz,i := χz|Ti. Let Yi, Xi i = 1, . . . , l be Bernoulli random variables,
where

Xi = 1 iff ĝ(χz,i) v g(ξi)

Yi = 1 iff Sz(ti−1) < di − Lm2.

By definition, g(ξi) is a n2 + 1 dimensional random vector, with elements being Bernoulli iid with pa-
rameter 1

2 . For each fixed n2-dimensional binary vector w we, therefore, get:

P (w v g(ξi)) = (0.5)n
2−1 (2.7)

Note, when {Yi = 1} holds, then g(ξi) is independent of ĝ(χz,i). By (2.7) then

P (Xi = 1|Yi = 1) = P (ĝ(χz,i) v g(ξi)|Yi = 1) = (0.5)n
2−1.

Let I ⊂ {1, . . . , l}. Consider the probability P (Xi = 1, i ∈ I|Yi = 1, i ∈ I). If {Yi = 1, i ∈ I} holds, then,
{Xi, i ∈ I} are iid random variables, with parameter (0.5)n

2−1. Hence

P (Xi = 1, i ∈ I|Yi = 1, i ∈ I) = (0.5)(n
2−1)|I|.

Thus, for each I ⊆ {1, . . . , l} we have

P
(
Ez,I ∩ {ĝ(χlm

2

z ) vI g(ξml)}
)

= E(
∏
i∈I

XiYi) = P (
∏
i∈I

XiYi = 1) =

P (Xi = 1, i ∈ I|Yi = 1, i ∈ I)P (Yi = 1, i ∈ I) ≤ (0.5)(n
2−1)|I| (2.8)

Using(2.8), the probability in (2.6) can bound by

∑
I⊂{1,2,...,l},
|I|=l(1−3ε(n))

P
(
Ez,I ∩

{
ĝ(χlm

2

z ) vI g(ξml)
})

≤
(

l
3lε (n)

) (
1
2

)(n2−1)l(1−3ε(n))

. (2.9)

Using Stirling’s approximation, one can show that for l big enough(
l

3lε (n)

)
≤ exp[−l

(
(3ε (n) ln (3ε (n)) + (1− 3ε (n)) ln (1− 3ε (n))

)
] = exp(−lε2(n)),
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where ε2(n) := 3ε(n) ln(3ε(n))+(1−3ε(n)) ln(1−3ε(n)) → 0, as n grows. Hence, if n is big enough, then
the sum in (2.9) can bounded by

exp(−lε2(n))
(
(0.5)(n

2−1)l(1−3ε(n))
)
≤ exp(−ln2 ln 2

2
) = exp(−lαI(n)),

where αI(n) = n2 ln 2
2 .

2.3 Counting blocks

We now give the formal definition of block.

* Let w = (w(u), . . . , w(v)) be a word. We say that w is a block, if

w(u) 6= w(u+ 1) = w(u+ 2) = · · · = w(v − 1) 6= w(v).

The length of block is defined as v−u. The w(u) and w(v) (or u and v) are the beginning of the block
and the end of the block, respectively. The color w(u+ 1) is called the color of block. For two blocks,
A = [a1, a2], B = [b1, b2] we denote A < B if a1 < b1.
Let φ : D −→ {0, 1} be a piece of scenery. Let T = [t1, t2] ⊂ D be an integer interval of length at least
3. Since φ|T can be considered as a word, the definition of block applies to φ|T as well.
For given φ, we also call a location interval T = [t1, t2] a block of φ, if φ|T is a block (as word). So, in
the following, a block can be a certain pattern (word) or a certain location (T ), where φ has a block. In
the latter case, speaking about blocks, the piece φ must be specified. We call a block big if its length is
at least m3.

Note: although the block basically means many consecutive bits of the same color, by definition the first
and last bit of a block must be different. For example, 01110 is a block with length 4, but 00001 is not a
block.

* Let [t1, t2] ∈ N be a (time) interval. We call R ∈ Z[t1,t2] an admissible path of length t2 − t1, if for
all t ∈ [t1, t2 − 1]

P (S(1)− S(0) = R(t+ 1)−R(t)) > 0.

So an admissible path is just a possible trajectory of S in time interval [t1, t2], starting at R(t1) and
ending at R(t2). The word ”possible” means that the probability of such a trajectory is positive.
Let R(n) be the set of all admissible paths of length n. Thus

R(n) :=
{
R ∈ Z[0,n] : P (S(1)− S(0) = R(i+ 1)−R(i)) > 0, i = 0, . . . , n− 1

}
.

* Let B = [b1, b2] ⊂ Z be a block of scenery ψ. Define

l(B) := min
{
n > 1

∣∣∣ ∃R ∈ R(n) such that ψ ◦R = ψ(R(0)), . . . , ψ(R(n))
is a block, R(0) ≤ b1, R(n) ≥ b2

}
. (2.10)

The number l(B) will be called as the reading-length of B.
Suppose l(B) = n and R(0), . . . , R(n) is the admissible path that attains the minimum in (2.10). Then
the points R(0) and R(n) are called the reading-beginning and the reading-end of B, respectively.
The reading length of a block is the length of the smallest block in observations, generated under condi-
tions that S crosses B. Clearly, l(B) is approximately b2−b1

L , but it depends also on ψ outside the block
B. Let us consider some examples.

Examples: 1. If S is a simple random walk (i.e. L = 1), then l(B) = b2 − b1 and reading beginning
(reading end) and the beginning (the end) of the block coincide.

2. Let L = 3. Consider the word (w(1), w(2), . . . , w(11)) = 00111111000. This word contains a block
with the length 7. The reading length of this block is, obviously, 3. The beginning of the block is w(2),
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the end of the block is w(9). The reading beginning is w(2) or w(1) with the reading ends w(11) or w(10),
respectively.

3. Let L = 3. Consider the word (w(1), w(2), . . . , w(11)) = 0011111111000. It contains a block of length
9, the reading length of the block is 3, the reading beginning of the block is w(2), the reading end of the
block is w(11).

4. Suppose L = 4 and P (S(1)−S(0) = 2) = P (S(1)−S(0) = 3) = 0. Consider the word w(1), . . . , w(18) =
011101111111110111. This word contains a block of length 10 B = (w(5), . . . , w(15)). The reading length
of this block is 5.

5. Change the word without changing the block and consider the word 1110111111111000. The reading
length of B is now 3, the reading-beginning is w(4), the reading-end is w(16).

6. Consider now the words as in the last 2 examples. Suppose P (S(1)−S(0) = i) > 0, i = −4,−3, . . . , 3, 4.
Then the block has reading length 3 no matter what the neighborhood of the block is.

* Let A = [a1, a2], B = [b1, b2] be two blocks of ψ, A < B. We say that A and B are connected if they
are of same color, say 1, and there is an admissible path from A to B such that moving along this path,
only the color 1 is observed. Formally, A and B is connected, if there exists an n and R ∈ R(n) such
that R(0) ∈ (a1, a2), R(n) ∈ (b1, b2) and ψ ◦R(0) = ψ ◦R(1) = · · · = ψ ◦R(n).
In other words, the blocks of the same color are connected, if it is possible to read them as one block.

Let B1 < B2 < . . . < Bh be blocks of ψ. We say that B1 ∪ . . . ∪Bh is a big cluster, if

• Bi has the reading length at least m3, i = 1, . . . , h;

• B1, . . . , Bh are connected;

• there is no more blocks with the reading length at least m3 connected to B1.

We define the reading-path of a big cluster in the same way as the reading path of a block (which can be
a big cluster consisting of one block) – this is the shortest admissible path to cross the big bluster and
producing exactly one block. Formally, for a big cluster C := B1 ∪ . . . ∪Bh we define the reading length
of the big cluster as

l(C) := min{n > 1 : ∃R ∈ R(n) such that ψ(R(0)), . . . , ψ(R(n)) is a block, R(0) ≤ c,R(n) ≥ d},

where c is the beginning of B1 and d is the end of Bh. These points are referred to as the beginning
and the end of C, respectively. Clearly, l(C) ≥ m3. The reading-path of C is any path that attains the
minimum above.

* Let us fix ψ ∈ EOK. Denote I = I(ψm
2l), II = II(ψm

2l), III = III(ψm
2l).

Consider the set IcII := [1, l]− III . Clearly IcII is an union of disjoint intervals, i.e.

IcII = [l1, l2] ∪ [l3, l4] ∪ · · · ∪ [l2k−1, l2k], (2.11)

where l1 = 1, l2, l3, . . . ∈ [2Lm2, l], li ≤ li+1.
The set of cell-indexes [l2i−1, l2i] corresponds to the location-interval (cells) [(l2i−1−1)m, l2im] or [dl2i−1−1, dl2i

].
Let us denote

ri := (l2i−1 − 1)m, si = l2im, i = 1, . . . , k. (2.12)

By definition, S visits every point in Z i.o.. This means, there exists an integer k ≥ 1 such that
P (S(k) − S(0) = 1). Let v̄ := inf{k : P (S(k) − S(0) = 1) > 0}. Thus there is an admissible path
R(0), . . . , R(v̄) such that R(0) = 0 and R(v̄) = 1. Similarly, between points a < b there exists an admis-
sible path R(0), . . . , R((b−a)v̄) such that R(0) = a, R(v̄) = a+1, R(2v̄) = a+2, . . . R((b−a)v̄) = b. We



Reconstructing a Random Scenery 20

say that S moves stepwise from a to b, if it moves along the path just described. Obviously, v̄ � m.

In Subsection 1.4.5 we defined big cluster counter q : {0, 1}lm+1 7→ Nl and block counter q̂ : {0, 1}lm2+1 7→
Nl.
Define the events

Fmin(1) :=
{
q̂(χ|[0, s1m]) ≤ q(ψ|[0, s1]), χ|[s1 −mv̄, s1] contains both colors, S(s1m) = s1

}
.

Fmin(j) :=
{
q̂(χrj

|[0, (sj − rj)m]) ≤ q(ψ|[rj , sj ]), χrj
|[0,mv̄] and χrj

|[(sj − rj)m−mv̄, (sj − rj)m]

contain both colors Srj
((sj − rj)m) = sj

}
, j = 2, . . . , k − 1.

For the last interval in (2.12) we define F (k) as F (j), j > 1, if sk < l. If rk = l, we define

Fmin(k) :=
{
q̂(χrk

|[0, (l − rk)m]) ≤ q(ψ|[rk, l]), χrk
|[0,mv̄] contains both colors, Srk

((l − rk)m) = l
}
.

Obviously, the events Fmin(j) depend on the random walk, S, only. Moreover, by definition, the event
Fmin(j) depends on the behavior of the random walk during the time interval [0, (sj−rj)m]. This means,
if for a j, there exists at least one admissible path Rj ⊂ R((sj − rj)m) such that

Rj(0) = rj , Rj((sj − rj)m) = sj , (2.13)
q̂(ψ ◦Rj) ≤ q(ψ[sj , rj ]), (2.14)
if rj 6= 0 and sj 6= l

then (ψ ◦Rj)|[0,mv̄], and (ψ ◦Ri)|[(sj − rj)−mv̄, (sj − rj)] have both colors, (2.15)

then Fmin(i) 6= ∅ and Pψ
(
Fmin(i)

)
≥ (pmin)(si−ri)m. The following proposition, proved in Appendix,

shows that for each i, at least one such admissible path exists.

Proposition 2.1 For each i = 1, . . . k the following holds:

Pψ
(
Fmin(i)

)
≥ (pmin)(si−ri)m = (pmin)(l2i−l2i−1+1)m2

. (2.16)

The next theorem is the main ingredient of the ”getting selected” part of the reconstruction. It gives a
lower bound for the probability that g- and q-reproduction to work.

Theorem 2.3 There exist constant αII(n) > 0 not depending on l, such that for all ψ ∈ EOK the
following holds:

Pψ

(
ĝ(χlm

2
) vI g(ξml), q̂(χm

2l) ≤ q(ξml), S(m2l) = ml
)
≥ e−lαII . (2.17)

Proof. For each subset i ∈ [1, l] and I ⊂ [1, l] we define

ES(i) := {S(ti−1)− S(ti) = m}, ES(I) := ∩i∈IES(i)
Ev(i) := {ĝ(χz|Ti) v g(ψ|Di)}, Ev(I) := ∩i∈IEv(i);

Eno−block(i) := { the sequence χz|Ti contains both colors }, Eno−block(I) := ∩i∈IEno−block(i).

Use [rj , sj ], j = 1, . . . , k as in (2.12) to define

Emin(1) := {q̂(χ|[0, s1m]) ≤ q(ψ|[0, s1]), S(s1m) = s1,

χ|[s1 −mv̄, s1] contain both colors}
Emin(j) := {q̂(χ|[rjm, sjm]) ≤ q(ψ|[rj , sj ]), S(sjm) = sj ,

χ|[rj , rj +mv̄] contain both colors, χ|[sj −mv̄, sj ] contain both colors},
j = 2, . . . , k − 1 and

Emin := ∩kj=1 Emin(j).
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If sk = l, then the requirement {χ|[sk − mv̄, sk] contain both colors} is dropped for the definition of
Emin(k).

Consider the event Emin ∩ ES(III). Use the relation Emin ∩ ES(III) ⊂ ES([1, l]) to deduce that

Pψ(Emin ∩ ES(III)) =
k∏
j=1

Pψ(Emin(j)|S(mrj) = rj)Pψ(ES(III))

=
k∏
j=1

Pψ(Fmin(j))Pψ(ES(III)) ≥ (pmin)|I
c
II |m

2
Pψ(ES(III)). (2.18)

Let i ∈ III . If i 6= l2j−1 for each j = 1, . . . , k, then Ecno−block(i) does not depend on Fmin(j). If i = l2j−1

for a j = 1, . . . , k, then Pψ(Ecno−block(i)|Fmin(j)) = Pψ(Ecno−block(i)|S(ti−1) = di−1) and Ecno−block(i) is
independent of Fmin(j′), j′ 6= j. Hence

P
(
Ecno−block(i) ∩ Emin ∩ ES(III)

)
=

k∏
i=1

Pψ(Fmin(i))P
(
Ecno−block(i)|S(ti−1) = di−1, ES(i)

)
Pψ(ES(III)),

implying that, for each i ∈ III

Pψ
(
Ecno−block(i)|Emin ∩ ES(III)

)
= (2.19)

Pψ
(
Ecno−block(i)|S(ti−1) = di−1, S(ti) = di

)
= Pψ

(
Ecno−block(i)|ES([1, l])

)
.

Let us estimate (2.19). If S(ti−1) = di−1 and S(ti) = di, then during Ti random walk stays in the Lm2-
neighborhood of Di. But ψ|Di is isolated and has empty neighborhood. Thus, during Ti the random
walk stays on the area where is no m0.9 consecutive colors. In this case, the probability of generating a
block of length at least m2 is, for big m, bounded above by exp(− am2

m1.8 ) = exp(−am0.2), where a > 0 is
a constant that does not depend on m (see, e.g. Lemma 2.1 in [15]).
Denote

pm := P (S(m2) = m).

Then
P (ES([1, l])) = (pm)l. (2.20)

So, for each i ∈ III , it holds

Pψ

(
Ecno−block(i)

∣∣∣Emin ∩ ES(III)
)
= Pψ

(
Ecno−block(i)

∣∣∣ES([1, l])
)
≤ exp(−am0.2)

(pm)l
.

Now, by local central limit theorem, pm is of order 1
m . Thus, when m is big enough

Pψ(Eno−block(i)|Emin ∩ ES(III)) > 0.75, Pψ(Eno−block(III\I)|Emin ∩ ES(III)) > (0.75)|III |−|I|.
(2.21)

The second inequality follows because conditional on Emin ∩ ES(III), everything that happens during
the time-interval Ti, is independent of events happening during the time-interval Tj , j, i ∈ III . Hence,
for j, i ∈ III the events Eno−block(i) and Eno−block(j) are conditionally independent.

Suppose now i ∈ I ⊂ III . Then ψ|Di is weak-OK. By 2) of Theorem 1.2 we now get that

Pψ(Ecv(i)|Emin ∩ ES(III)) = Pψ(Ecv(i)|Sdi−1(m
2) = di) ≤ 0.25.

This also means that, with i ∈ I

Pψ

((
Eno−block(i) ∩ Ev(i)

)c∣∣∣Emin ∩ ES(III)
)
≤

Pψ

(
Ecno−block(i)

∣∣∣Emin ∩ ES(III)
)

+ Pψ

(
Ecv(i)

∣∣∣Emin ∩ ES(III)
)
< 0.5.
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And, by independence, again

Pψ

(
Eno−block(I) ∩ Ev(I)

∣∣∣Emin ∩ ES(III)
)
> (0.5)|I|. (2.22)

Finally, by the same independence-argument, (2.22) and (2.21),

Pψ

(
Eno−block(III) ∩ Ev(I)

∣∣∣Emin ∩ ES(III)
)

=

Pψ

(
(Eno−block(I) ∩ Ev(I)) ∩ Eno−block(III\I)

∣∣∣Emin ∩ ES(III)
)
> (0.5)l (2.23)

Consider [rj , sj ], j = 1, . . . , k as in (2.12). By the definition of III , [si − Lm2, ri+1 + Lm2] is empty,
for each i = 1, . . . , k − 1 as well as for [sk − Lm2, l], if sk < l. This implies that these intervals do
not contain any small block (and, therefore, no big clusters). Also [si − Lm2 −m, si − Lm2] as well as
[ri+1+Lm2, ri+1+Lm2+m] (i = 1, . . . , k−1) and [sk−Lm2−m, si−Lm2−m], if sk < l, contain a fence.
This means that a interval [si−Lm2, ri+1+Lm2] (i = 1, . . . , k−1) as well as [sk−Lm2−m, si−Lm2−m]
(if sk < l) is not inside a big cluster (without fences this could be a case even if the interval is empty).
The emptiness and the isolation of [si, rj ] imply that the cluster-counting vector q(ψm

2l) is constant on
III .
The event Eno−block(III) ∩Emin ensures that the word χ|[si −mv̄, ri+1 +mv̄], i = 1, . . . , k − 1 does not
contain more than mv̄ +m2 consecutive colors. The same is true for the word χ|[sk −mv̄, l]. The event
Emin also guarantees that all big blocks in observations end before time interval Ti, i ∈ III . Hence,
the block-counting vector q̂(χm

2l) is constant on III . Thus, q̂(χtl) ≤ q(ψtl) if q̂i(χtl) ≤ qi(ψtl) for each
i ∈ IcII . The latter holds if and only if q̂(χ|[rjm, sjm]) ≤ q(ψ|[rj , sj ]) for each j = 1, . . . , k. Hence

Emin ∩ Eno−block(III) ⊂ {q̂(χm
2l) ≤ q(ξml)}.

This means

Emin ∩ Eno−block(III) ∩ Ev(I) ∩ ES(III) ⊂
{
ĝ(χlm

2
) vI g(ξml), q̂(χm

2l) ≤ q(ξml), S(m2l) = ml
}
.

(2.24)
From (2.23), (2.20) and (2.18) it follows

Pψ

(
Emin ∩ Eno−block(III) ∩ Ev(I) ∩ ES(III)

)
=

Pψ

(
Ev(I) ∩ Eno−block(III) ∩

∣∣∣Emin ∩ ES(III)
)
Pψ

(
Emin ∩ ES(III)

)
>

(0.5)lPψ
(
Emin ∩ ES(III)

)
≥ (0.5)l(pmin)|I

c
II |m

2
Pψ(ES(III)) ≥ (0.5)l(pmin)|I

c
II |m

2
(pm)l. (2.25)

Hence (2.24), (2.25) and the inequality |IcII | ≤ l exp(−m0.7) imply

Pψ

(
ĝ(χlm

2
) vI g(ξml), q̂(χm

2l) ≤ q(ξml), S(m2l) = ml
)
≥ (0.5)l(pmin)|I

c
II |m

2
(ps)l ≥

[0.5pm(pmin)m
2 exp(−m0.7)]l = exp[l(ln(0.5pm) +m2 exp(−m0.7) ln(pmin))] = exp[−lαII(m)].

Let us show that, for n big enough,

8αII(n) = −8 ln(0.5ps)−m(n)2 exp(−m(n)0.7) ln(pmin) < n2 ln 2
2

= αI(n) (2.26)

By the LCLT, pm is of order 1
m , meaning that −ln(0.5pm) is of order ln 2m. On the other hand,

m(n) < exp(2n) ([15], (3.10)), implying that − ln(0.5pm) is of order n. The expression

−m(n)2 exp(−m(n)0.7) ln(pmin)

is negligible in comparison with − ln(0.5ps). So, if n is big enough, it holds αII(n) < Kn, for some
K <∞. Since αII(n) is of order n2, for big n, the inequality (2.26) clearly holds.
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2.4 Block at origin

Define the event

Eorigin := {ξ(−L) = · · · = ξ(−1) 6= ξ(0) = · · · = ξ(m3L) 6= ξ(m3L+ 1) = · · · = ξ(m3L+ L)}.

The reason of block-counting is the following observation. Recall the definition of Ez,I given in (1.14).
The next theorem formalizes the argument explained in Subsection 1.4.5.

Theorem 2.4 If z < 0 then

Eorigin ∩ {q̂(χtlz ) ≤ q(ξml)} ⊂ Ez,I(ξml). (2.27)

Proof. Let ξ = ψ, I = I(ψ). Let i ∈ I. The interval Di is isolated and, hence, Di is not included into
any big cluster of ψ, i.e. qi(ψdl) = qi(ψdi). The interval Di has empty neighborhood, which together with
the isolation implies that the number of big clusters in [0, di] is the same as the number of big clusters in
[0, di − Lm2 −m) = [0, di−1−Lm) or

qi(ψm
2l) = qi−1−Lm(ψm

2l). (2.28)

Let z < 0. By crossing an interval, the random walk cannot produce less big blocks than the num-
ber of big clusters in this interval. Hence, the number of big blocks in observations generated by Sz
by crossing the interval [z, di−1−Lm] is at least the number of big clusters in [z, di−1−Lm]. Suppose
now that Eorigin holds. Then the interval [z, di−1−Lm] contains strictly more big clusters than the in-
terval [0, di−1−Lm]. Therefore, the number of big blocks in observations generated by Sz by crossing
the interval [z, di−1−Lm] is strictly bigger than the number of big clusters in ψ|[0, di−1−Lm]. By (2.28),
this number equals qi(ψm

2l). Hence, if Sz(ti) ≥ di−1−Lm, then q̂i(χm
2l

z ) > qi(ψm
2l). Consequently,

Eorigin ∩ Ecz,I ⊂ Eorigin ∩ {q̂(χtlz ) ≤ q(ξml)}c. This proves the statement.

Define
Emistake(z) :=

{
q̂(χm

2l
z ) ≤ q(ξml)

}
∩

{
ĝ(χm

2l
z ) vI(ξml) g(ξ

ml)
}
∩ Eorigin.

Corollary 2.1 If z < 0, then for n and l big enough

P
(
Emistake(z) ∩ EOK

)
≤ exp(−αI l). (2.29)

Proof. By (2.27) we have

Emistake(z) ⊂ Ez,I(ξml) ∩
{
ĝ(χm

2l
z ) vI(ξml) g(ξ

ml)
}
.

Thus
Emistake(z) ∩ EOK ⊂ Ez,I(ξml) ∩

{
ĝ(χm

2l
z ) vI(ξml) g(ξ

ml)
}
∩ EOK . (2.30)

Consider the right side of (2.30). By E∗OK and (2.3), |I(ξml)| ≥ l(1 − 3ε(n))|. Thus, if the right side of

(2.30) holds, then there exists a subset I ⊂ I(ξml) such that |I| = |l(1 − 3ε(n))|, {ĝ(χm2l
z ) vI g(ξml)

}
and Ez,I holds. By Theorem 2.2, this event has probability not bigger than exp(−lαI).
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3 Reconstruction at level l1

3.1 Some definitions

* A vector I ∈ Z[0,n] is ladder interval of length n, if I = (a, a+L, a+ 2L, . . . , a+nL) for some a ∈ Z.
Let L(n) be the set of all ladder intervals of length n.

Let I be a ladder interval and φ ∈ {0, 1}I . The mapping φ is called a ladder piece. If φ ∈ {0, 1}D,
I ⊂ D is a ladder interval, we sometimes say that φ|I is a ladder piece of φ (or φ|D).

Hence, a ladder piece of non-random scenery ψ is any vector (ψ(a), ψ(a+L), . . . , ψ(a+nL)), a ∈ Z, n ∈ N.

Recall: two pieces of scenery φ :∈ {0, 1}D and φ′ ∈ {0, 1}D′
are equivalent, φ ≈ φ′, if there is a mapping

T : Z 7→ Z, T (z) = az + b, a ∈ {+1,−1}, b ∈ Z such that T : D 7→ D′ is a bijection and φ(z) = φ′(T (z))
∀z ∈ D. We also write Tφ = φ′.
Every word w ∈ {0, 1}n+1 is a mapping w ∈ {0, 1}[0,n]. Hence, if I = [a, a+n] for some n, and φ ∈ {0, 1}I ,
then the equivalence φ ≈ w is well defined. By definition, it means that φ(a) = w(1), . . . , φ(a + n) =
w(n+ 1) or φ(a) = w(n+ 1), . . . , φ(a+ n) = w(1).
Let I = (a, a+L, . . . , a+nL) be a ladder-interval and let φ ∈ {0, 1}I be a ladder piece. We write φ ≈l w,
if φ(a) = w(1), . . . , φ(a + Ln) = w(n + 1) or φ(a) = w(n + 1), . . . , φ(a + Ln) = w(1). Hence, if L = 1,
then the relation ” ≈l ” is the same as the equivalence ” ≈ ”.

Given a ladder piece φ ∈ {0, 1}I , I ∈ L(n), we say that w ∈ {0, 1}n+1 is a ladder word of φ, if
φ ≈l w. Hence, any ladder piece has at most two ladder words that are equivalent. Also note that two
ladder pieces are equivalent, if and only if their ladder words coincide. (In the notation of [L,M,M], w is
a ladder word of φ, if w ∈ {(φ)→, (φ)←}.)

* In this chapter, l1, c1 stand for positive integers, they will be specified later. We denote

I1 := [− exp(3l1), exp(3l1)].

* The following event, B1
unique fit, states that any ladder piece of ξ|I1 of length l1c1

4 has unique ladder
word up to equivalence. Formally,

B1
unique fit :=

{
if I, J ∈ L(l1c1/4), I, J ⊂ I1 and I 6= J then ξ|I 6≈ ξ|J

}
.

* Suppose x, y ∈ Z, y = x + (l1c1)L. In this case there is only one admissible path of length c1l1 from
x to y, i.e. there exist unique R ∈ R(l1c1) such that R(c1l1) − R(0) = (l1c1)L. Obviously, this path
consists of maximum jumps, only, i.e. R(i+ 1)−R(i) = L, i = 0, 1, . . . , l1c1 − 1.
Suppose now that x, y ∈ Z, x < y are such that y < x+(l1c1)L. In this case, this might happen that there
is no admissible path going from x to y with exactly l1c1 steps. However, if there is one such admissible
path, then it is clearly not unique. The following event, B1

recon straight, states that if x, y ∈ I1, then among
these admissible paths, there are at least two that generate different words in the observations. More
precisely,

B1
recon straight :=

{
if R ∈ R(l1c1) such that R(0), R(l1c1) ∈ I1 and R(l1c1)−R(0) < (l1c1)L, then
∃R′ ∈ R(l1c1) such that R(0) = R′(0), R(c1l1) = R′(c1l1) and ξ ◦R 6= ξ ◦R′

}
.

* Let ψ be a non-random scenery. We say that x is a left-barrier point of ψ, if

ψ(x+ L) = · · · = ψ(x+ 1) 6= ψ(x) = · · · = ψ(x−m3L) 6= ψ(x−m3L− 1) = · · · = ψ(x−m3L− L).

We say y is a right-barrier point of ψ, if

ψ(y − L) = · · · = ψ(y − 1) 6= ψ(y) = · · · = ψ(y +m3L) 6= ψ(y +m3L+ 1) = · · · = ψ(y +m3L+ L).
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The pair (x, y) is called a barrier of ψ, if x is a left- and y is a right-barrier point. Recall the event Eorigin.
The point y is a right-barrier point of ψ, if the translated scenery ψy := (ψ(i+y))i∈Z belongs to the event
Eorigin. Similarly, x is a left-barrier point, if the translated and reflected scenery ψ−x := (ψ(x − i))i∈Z
belongs to the event Eorigin.

We consider the barriers of ξ, (x, y) such that y − x = (c1l1)L. In order to carry on the reconstruc-
tion in level l1, every interval [z, z + (c1l1/4)L], z ∈ I1 should contain enough left-barrier points of such
barriers. This is the meaning of the event B1

enough barriers. More precisely,

B1
enough barriers :=

 for any j = 0, . . . , L− 1 and for any z ∈ I1,
there existsx ∈ [z, z + (c1l1/4)L] such that:

xmodL = j and (x, x+ (c1l1)L) is a barrier of ξ

 .

* We now define the left-side counterparts of g, ĝ, q and q̂. For a word u = (u1, . . . , un) denote by u− its
reflection, i.e. u− := (un, . . . , u1). Now let

q∗ : {0, 1}lm+1 7→ Nl, q̂∗ : {0, 1}lm
2+1 7→ Nl, g∗ : {0, 1}lm+1 7→ {0, 1}ln

2+1, ĝ∗ : {0, 1}lm
2+1 7→ {0, 1}ln

2

be as follows

q∗(w) = q(w−), g∗(w) = g(w−), w ∈ {0, 1}lm+1 (3.1)

q̂∗(v) = q̂(v−), ĝ∗(v) = ĝ(v−), v ∈ {0, 1}lm
2+1. (3.2)

* Finally, we put
l = l1 · l2.

Hence, the requirement ”l big enough” in all statement of previous chapter is equivalent to the require-
ment ”l1 big enough”.

3.2 Stopping-time events

3.2.1 Right side

* Let τ(1), τ(2), . . . be a sequence of F-adapted stopping times satisfying

τ(k)− τ(k − 1) ≥ 2 exp(2l1), k = 2, 3, . . . . (3.3)

Let z ∈ Z. Define
κ3(z, 1) := min{j : S(τ(j) + exp(2l1) + lm2 + c1l1) = z}

and, inductively,

κ3(z, k) := min{j > κ3(z, k − 1) : S(τ(j) + exp(2l1) + lm2 + c1l1) = z}.

Thus, κ3(z, k) is the index of k-th stopping time τ(j), for which S(τ(j) + exp(2l1) + lm2 + c1l1) = z.
Hence, at time

T 3
z (k) := τ

(
κ3(z, k)

)
+ exp(2l1) + lm2 + c1l1

the random walk is at position z. Let w3
z(k) denote the observation-word of length lm2 starting at time

T 3
z (k), i.e.

w3
z(k) := χ|[T 3

z (k), T 3
z (k) + lm2].

* The words w3
z(k) provide us some information about (unknown) z. This information is captured
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in the values of q̂(w3
k) and ĝ(w3

k) (note that the length of w3
k is lm2). Having sufficiently many k-

s, the values q̂(w3
k) and ĝ(w3

k) give us some information about g(ξ|[z, z + ml]) and q(ξ|[z, z + ml]).
Indeed, by Theorem 2.3, there is a proportion of words w3

k such that q̂(w3
k) ≤ q(ξ|[z, z + ml]) and

ĝ(w3
k) vI(ξ|[z,z+ml]) g(ξ|[z, z + ml]). On the other hand, if y ∈ Z is a right-barrier point bigger than z,

then, by Corollary 2.1, the probability for the relations above to hold is rather small. Hence we expect
that for such y the relations

q̂(w3
k) ≤ q(ξ|[y, y +ml]), ĝ(w3

k) vI(ξ|[y,y+ml]) g(ξ|[y, y +ml]) (3.4)

do not occur.
To make these ideas precise, for each y ∈ Z we define

gy(ξ) := g(ξ|[y, y +ml]), qy(ξ) := q(ξ[y, y +ml]).

The following event is a counterpart of Emistake(z). It states that although y is a right-barrier point and
z < y, the mistake (3.4) still holds.

E1
mistake-r(z, y, k) :=

{
q̂(w3

z(k)) ≤ qy(ξ)
}
∩

{
ĝ(w3

z(k)) vI(ξ|[y,y+ml]) gy(ξ)
}
∩

{
y is a right-barrier point

}
.

Finally, let
E1

mistake-r :=
⋃
E1

mistake-r(z, y, k),

where the union is taken over all z, y, k such that z < y, z, y ∈ I1 and k ≤ exp(αl1).

3.2.2 Left side

We now introduce the left-side counterparts of defined notions. At first, let

κ1(z, 1) := min{j : S(τ(j) + exp(2l1) + lm2) = z}

and, inductively

κ1(z, k) := min{j > κ1(z, k − 1) : S(τ(j) + exp(2l1) + lm2) = z}.

Thus, κl(z, k) is the index of k-th stopping time τ(j), for which S(τ(j) + exp(2l1) + lm2) = z. Hence, at
time

T 1
z (k) := τ

(
κ1(z, k)

)
+ exp(2l1) + lm2

the random walk is at position z. Let w1
z(k) denote the observation-word of length lm2 ending at time

T 1
z (k), i.e.

w1
z(k) := χ|[T 1

z (k)− lm2, T 1
z (k)].

As previously, we consider the characteristics q̂∗(w1
z(k)), ĝ

∗(w1
z(k)) and we compare them with the cor-

responding functions q∗(ξ|[x−ml, x]) and g∗(ξ|[x−ml, x]), where x < z is a left-barrier point. For this
define

q∗x(ξ) := q∗(ξ|[x−ml, x]), g∗x(ξ) := g∗(ξ|[x−ml, x]), I∗(ξ|[x−ml, x]) := I(ξ|[x−ml, x])−).

The counterpart of E1
mistake-r is as follows

E1
mistake-l(z, x, k) :=

{
q̂∗(w1

z(k)) ≤ q∗x(ξ)
}
∩

{
ĝ∗(w1

z(k)) vI∗(ξ|[x−ml,x]) g∗x(ξ)
}
∩

{
x is a left-barrier point

}
.

Finally, let
E1

mistake-l :=
⋃
E1

mistake-l(z, x, k),

where the union is taken over all z, x, k such that x < z, z, x ∈ I1 and k ≤ exp(αl1).

Finally, let
E1

no mistake :=
(
E1

mistake-l ∩ E1
mistake-r

)c
.
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3.2.3 Attributes

* Define

T 1(j) := τ(j) + exp(2l1) + lm2, T 3(j) := τ(j) + exp(2l1) + lm2 + c1l1 = T 1(j) + c1l1.

Hence T 1(j) (or T 3(j)) is defined as T 1
z (k) (or T 1

z (k)) by dropping the requirement that the random walk
is at position z. We now define the counterparts of w1

z(k) and w3
z(k).

Let, for each j = 1, 2, . . .

w1(j) := χ|[T 1(j)− lm2, T 1(j)]

w2(j) := χ|[T 1(j), T 3(j)]

w3(j) := χ|[T 3(j), T 3(j) + lm2].

Let x, y ∈ I be such that y − x = Lc1l1. We consider stopping times τ(1), τ(2), . . . , τ(exp(αl1)). The
following event states that among these stopping times there is at least exp(γl1) stopping times, τ(j)
such that: S(T 1(j)) = x, S(T 3(j)) = y and

q̂∗(w1(j)) ≤ q∗x(ξ), ĝ
∗(w1(j)) vI∗ g∗x(ξ) (3.5)

q̂(w3(j)) ≤ qy(ξ), ĝ(w3(j)) vI gy(ξ), (3.6)

where
I∗ := I∗(ξ|[x− lm, x]), I := I(ξ|[y, y + lm]).

More precisely,

E1
enough times(x, y) :=


there exists a set J(x, y) ⊂ [1, exp(αl1)] such that
|J(x, y)| ≥ exp(γl1) and for every j ∈ |J(x, y)|

S(T 1(j)) = x, S(T 3(j)) = y,
q̂∗(w1(j)) ≤ q∗x(ξ), ĝ

∗(w1(j)) vI∗ g∗x(ξ),
q̂(w3(j)) ≤ qy(ξ), ĝ(w3(j)) vI gy(ξ)

 .

Finally, let
E1

enough times :=
⋂

x,y∈I1, x−y=Lc1l1

E1
enough times(x, y).

* Note, for every u ∈ {0, 1}lm+1, q(u) = (q1, . . . , ql) is vector, such that qi = {0, 1, . . . , l}, q1 = 0 and
qi ≤ qi+1 ≤ qi+1. Any such vector is called a q-vector. Hence, for every u, q(u) and q∗(u) are q-vectors.

Recall that, for any u ∈ {0, 1}lm+1, g(u) = (g1, . . . , ql), where gi ∈ {0, 1}n2+1. Any such word is
called a g-word. Hence, for each u, g(u) and g∗(u) are g-words.

We say that a word u ∈ {0, 1}lm+1 is OK*, if u− is OK. Clearly, if ξ|[x − lm, x] is OK*, then |I∗| ≥
l(1− 3ε(n)). Similarly, if ξ|[y, y + lm] is OK, then |I| ≥ l(1− 3ε(n)).

Note, if (3.5) and (3.6) hold and ξ|[x − lm, x] together with ξ|[y, y + lm] are OK* and OK, respec-
tively, then there exists subsets I∗, I ⊂ {1, . . . , l}, such that |I∗|, |I| ≥ l(1 − 3ε(n)), the q-vectors q, q∗

and g-words g, g∗ such that

q̂∗(w1(j)) ≤ q∗, ĝ∗(w1(j)) vI∗ g∗, q̂(w3(j)) ≤ q, ĝ(w3(j)) vI g. (3.7)

We call (I∗, I, q∗, q, g∗, g) a set of attributes, if I∗, I ⊂ {1, . . . , l}, |I∗|, |I| ≥ l(1 − 3ε(n)), q, q∗ are
q-vectors and g∗, g are g-words.



Reconstructing a Random Scenery 28

For every set of attributes (I∗, I, q∗, q, g∗, g) we define the index-set J(I∗, I, q∗, q, g∗, g) ⊂ [1, exp(αl1)] as
follows: j ∈ J(I∗, I, q∗, q, g∗, g) if and only if j satisfies (3.7).

Hence, if E1
enough times(x, y) holds and ξ|[x− lm, x] together with ξ|[y, y + lm] are OK, then there exists

a set of attributes (I∗, I, q∗, q, g∗, g) such that

|J(I∗, I, q∗, q, g∗, g)| ≥ exp(γl1). (3.8)

Then also S(T 1(j)) = x and S(T 3(j)) = y = x+ Lc1l1, i.e. S(T 3(j))− S(T 1(j)) = Lc1l1.

* The following event implies: if ∃J ′ ⊂ J(I∗, I, q∗, q, g∗, g) such that |J ′| ≥ exp(γl1) and ∀j ∈ J ′ it holds
S(T 3(j))−S(T 1(j)) < Lc1l1, then there exists at least two indexes j

′
, j

′′ ∈ J ′ such that w2(j
′
) 6= w2(j

′′
).

Formally, we fix a set of attributes (I∗, I, q∗, q, g∗, g), we consider the stopping times τ(0), τ(1), . . . and
we define the indexes

j1 := min{j ≥ 0 : (3.9)

q̂∗(w1(j)) ≤ q∗, ĝ(w1(j)) vI∗ g∗, q̂(w3(j)) ≤ q, ĝ(w3(j)) vI g, |S(T 3(j))− S(T 1(j))| < Lc1l1}
(3.10)

jk := min{j > jk−1 : (3.11)

q̂∗(w1(j)) ≤ q∗, ĝ(w1(j)) vI∗ g∗, q̂(w3(j)) ≤ q, ĝ(w3(j)) vI g, |S(T 3(j))− S(T 1(j))| < Lc1l1}.
(3.12)

Here the minimum over empty set is defined to be ∞. Let κ := max{k : jk <∞}.

Clearly the subindexes j1, j2, . . . depend on chosen attributes (I∗, I, q∗, q, g∗, g).

Recall B1
recon straight. The following events are of similar nature. Let

E1
recon straight(I

∗, I, q∗, q, g∗, g) :=
{
κ ≥ exp(γl1), ∃k ≤ exp(γl1) such that w2(j1) 6= w2(jk)

}
∪

{
κ ≤ exp(γl1)

}
E1

recon straight :=
⋂

I∗,I,q∗,q,g∗,g

E1
recon straight(I

∗, I, q∗, q, g∗, g),

where the intersection is taken over all sets of attributes.

3.3 Algorithm

We are ready to give the precise definition of the algorithm A1. The input of A1 consists of three
ingredients

• exp(12αl1) + 1 observations, χ|[0, exp(12αl1)];

• F-adapted stopping times τ = (τ(1), . . . , τ(exp(αl1)) ⊂ [0, exp(12αl1)] satisfying (3.3);

• a piece of original scenery ψo = ξ|Io, where |Io| ≥ 2c1Ll1 and Io ⊂ [− exp(l1), exp(l1)].

The output of A1 is a piece of scenery of length 4 exp(l1). Thus, formally,

A1 : {0, 1}[0,exp(12αl1)] × [0, exp(12αl1)][1,exp(αl1)]×
(
∪k>2c1l1L {0, 1}k

)
7→ {0, 1}[−2 exp(l1),2 exp(l1)].
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The aim of A1 is to produce a piece of original scenery that lies between ξ|[− exp(l1), exp(l1)] and
ξ|[−4 exp(l1), 4 exp(l1)]. Thus, A1 does well, if the following event holds

E1
alg works(τ, I

o) :=
{
ξ|[− exp(l1), exp(l1)] v A1

(
χexp(12αl1), τ, ξ|Io

)
v ξ|[−3 exp(l1), 3 exp(l1)]

}
. (3.13)

Obviously the event (3.13) depends on τ as well as on the chosen interval Io. In the following we do
not know exactly the interval Io. Hence, we want that A1 works with any given interval Io. The
corresponding event is

E1
alg works(τ) :=

⋂
Io⊂[− exp(l1),exp(l1)]

E1
alg works(τ, I

o).

The construction of A1 consists of two phases.

Phase I Collect the ladder words of ξ|I1. For this, the observation-words triples (w1(j), w2(j), w3(j)),
defined by τ(j), are used. The word w2(j) will be collected as a ladder word, if it passes certain
selection procedure. We shall specify the selection rule below, this is the core of A1. The set of
collected works, i.e. the set of all words, that pass the selection rule, will be denoted by W1.

Phase II We assemble the words from W1 to get a big word of length 4 exp(l1) as the output. This
means the construction of a big word (of length 4 exp(l1)) by attaching, one by one, suitable words
from W1. We start from ψo, and we attach to it a word from W1, which has an overlap with ψo at
least c1l1

4 . We then attach a word from W1 to the enlarged ψo using the same overlapping-criterion.
We proceed so, until the desired length has been achieved.

We now give the description and the definition of the selection rule for Phase I and the precise definition
of assembling rule for Phase II. These definitions complete the definition of A1.

The selection rule is the most crucial part of the whole scenery reconstruction. The selection rule must
be restrictive enough to ensure that only ladder words of ladder pieces of original scenery ξ can pass it
(with high probability). Formally, the following event should hold

E1
only ladders := {∀w ∈ W1 there exists I ∈ L(c1l1) such that I ⊂ I1 and ξ|I ≈l w}.

On the other hand, the selection rule must be flexible enough to ensure that enough ladder words pass it
(otherwise the set W1 is too small). More precisely, the following event should hold

E1
enough ladders :=

 for any j = 0, . . . , L− 1 and for any z ∈ I1,
there existsx ∈ [z, z + (c1l1/4)L] such that:

xmodL = j and (ξ(x), ξ(x+ L), . . . , ξ(x+ (c1l1)L)) ∈ W1

 .

Let us briefly introduce the main ideas behind the selection rule. The construction of the selection rule
used for A1 starts from the fact that, with high probability, the events E1

enough times and

B1
intervals OK := {ξ|[z, z +ml] is OK ∀z ∈ I1} ∩ {ξ|[z, z −ml] is OK∗ ∀z ∈ I1}

both hold. This means that for each x, y ∈ I1, y−x = Lc1l1 there exists a set of attributes (I∗, I, q∗, q, g∗, g)
and at least exp(γl1) stopping times τ(j) with corresponding index set J(x, y) such that for each
j ∈ J(x, y), (3.7) hold and the word w2(j) is the same, say w. This yields the first requirement
of selection rule – check whether there exists (I∗, I, q∗, q, g∗, g) that satisfies the following condition:
∃J ′ ⊂ J(I∗, I, q∗, q, g∗, g) such that |J ′| ≥ exp(γl1) and j 7→ w2(j) is constant on J ′. The existence of
such set of attributes and index-set J ′ can be easily checked.
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The second requirement of the selection rule is based on the fact that, with high probability the events
B1

enough barriers and E1
no mistake hold. This means that if (x, y) form a barrier then the vectors q∗x(ξ), qy(ξ)

and words gx(ξ) and gy(ξ) cannot be read somewhere else. Hence, if I∗, I, q∗, q, g∗, g found in the first
step are indeed I∗(ξ|[x − lm, x]), I(ξ[y, y + lm]) q∗x(ξ), qy(ξ), gx(ξ), gy(ξ) as we want them to be, and
if w is the word to be selected, then the following must hold: whenever there is a stopping time index
j satisfying (3.7), then w2(j) = w. Thus, the set J ′ must actually be J(I∗, I, q∗, q, g∗, g). This is the
second requirement of the selection rule.
From the argument above, it is clear that if E1

enough times, B
1
intervals OK, and E1

no mistake hold, then the
selection rule will select all ladder words (ξ(x), ξ(x+L), . . . , ξ(x+L(c1−1)L), ξ(y)), where (x, y) is barrier
of ξ and y − x = Lc1l1. With B1

enough barriers the latter yields E1
enough ladders (see Lemma 3.1 for formal

proof). If, in addition E1
recon straight holds, then, as it is not hard to see, the selection procedure will select

only ladder words (Lemma 3.1). Hence, the selection rule consisting of two requirements described above
is sufficient for our purposes. We now give the formal definition of the selection rule.

Definition 3.1 We define the set W1 = W1(χ12αl1 , τ) as follows. A word w ∈ {0, 1}c1l1+1 belongs to
W1 if and only if there exists a complect of attributes (I∗, I, q∗, q, g∗, g) such that the following conditions
are satisfied:

1. |J(I∗, I, q∗, q, g∗, g)| ≥ exp(γl1)

2. if j ∈ J(I∗, I, q∗, q, g∗, g), then w2(j) = w.

Let us now formalize the Phase II.
For a ladder interval I and a set D ⊂ Z we write |I ∩D| ≥ r if there exists a ladder interval J ∈ L(r)
such that J ⊂ D ∩ I. Recall that two pieces of scenery φ and φ′ are strongly equivalent, φ ≡ φ′, if φ
is obtained by some translation of φ′. Let ψo ∈ {0, 1}k+1 be the given piece of original scenery. Thus,
ψo ≡ ξ|Io for some interval Io ⊂ [− exp(l1), exp(l1)].

Definition 3.2 We say that the piece of scenery φ ∈ {0, 1}[−2 exp(l1),2 exp(l1)] is a solution, formally φ ∈
S(χ12αl1 , τ, ψo), if and only if there exist φi ∈ {0, 1}Di , i = 1, 2, . . . , n such that Di ⊂ [−3 exp(l1), 3 exp(l1)]
and the following conditions are satisfied:

1. D1 = [0, k], φ1 ≡ ψo;

2. for each i = 2, . . . , n it holds φi|Di−1 = φi−1;

3. for each i = 2, . . . , n there exists Ii ∈ L(c1l1) such that

3a) Di = Di−1 ∪ Vi;
3b) |Di ∩ Vi| ≥ c1l1

4 ;

3c) ∃wi ∈ W1(χ12αl1 , τ) such that φi|Vi ≈l wi;

4. [−2 exp(l1), 2 exp(l1)] ⊂ Dn, φ = φn|[−2 exp(l1), 2 exp(l1)].

Finally, the formal definition of A1. The output is any element of S; we choose one of them, if S is not
empty.

Definition 3.3 We define A1(χ12αl1 , τ, ψo) as follows:

• If S(χ12αl1 , τ, ψo) is nonempty, then we define A1(χ12αl1 , τ, ψo) to be its lexicographically smallest
element;

• otherwise, A1(χ12αl1 , τ, ψo) := (1)[−2 exp(l1),2 exp(l1)].
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3.4 Combinatorics for main theorem

Recall the stopping times τ = (τ(0), . . . , τ(exp(αl1))). The aim of the stopping times is to stop the
random walk S near the origin. It is enough, if S(τ(k)) ∈ [− exp(l1), exp(l1)]. Thus, the stopping times
do well, if the following event holds

E1
stop(τ) := {|S(τ(j))| ≤ exp(l1), j = 0, 1, 2, . . . , exp(αl1)}.

Roughly speaking, the main theorem of the paper states that the algorithm A1 reconstructs correctly
with high probability, provided the stopping times τ indeed stop the random walk close to the origin.

Theorem 3.4 There exists a(l2, n, c1) > 0 such that, for l1 big enough

P
(
E1

stop(τ) ∩
(
E1

alg works(τ)
)c)≤ e−al1 . (3.14)

The rest of the paper is the proof of Theorem 1.1. At first we prove some inclusions.

Lemma 3.1 The following inclusions hold

E1
recon straight ∩ E1

stop(τ) ⊂ E1
only ladders; (3.15)

B1
intervals OK ∩ E1

stop(τ) ∩ E1
no mistake ∩ E1

enough times ∩ E1
enough barriers ⊂ E1

enough ladders; (3.16)

E1
only ladders ∩ E1

enough ladders ∩B1
unique fit ⊂ E1

alg works(τ), (3.17)

provided l1 is big enough.

Proof. At first note: if E1
stop(τ) holds, then, for each j = 1, 2, . . . , exp(αl1), it holds

|S(T 3(j))| ≤ |S(τ(j)) + L(exp(2l1) + lm2 + c1l1)| ≤ exp(3l1), (3.18)

provided l1 is big enough. Thus, in this case, during the time interval [T 1(j), T 3(j)], S stays on I1,
j = 1, 2, . . . , exp(αl1).

Proof of (3.15):
We prove (

E1
only ladders

)c∩E1
stop(τ) ⊂

(
E1

recon straight

)c
. (3.19)

Suppose (E1
only ladders

)c∩E1
stop(τ) holds. Then there exists a w ∈ W1 that is not a ladder word of any

ladder piece ξ|I of length l1c1 such that I ⊂ I1. However, the word w has passed the selection rule. This
means that for a complect of attributes (I∗, I, q∗, q, g∗, g) the conditions 1. and 2. of Definition 3.1 hold.
This means, that

|S(T 3(j))− S(T 1(j))| < c1l1, ∀j ∈ J(I∗, I, q∗, q, g∗, g). (3.20)

Indeed, if there were an index j∗ ∈ J(I∗, I, q∗, q, g∗, g) such that (3.20) fails, then there would be a ladder
interval I of length c1l1 such that ξ|I ≈l w. Clearly, during the time interval [T 1(j∗), T 3(j∗)], the random
walk S is on I. Since then S is also on I1, we get I ⊂ I1. This contradicts our assumption on w.
Recall the definition of κ. Since |J(I∗, I, q∗, q, g∗, g)| ≥ exp[γl1], we have κ ≥ exp[γl1]. On the other
hand, by 2 of Definition 3.1, for each jk, k = 1, 2, . . . , exp[γl1], it holds w(jk) = w(j1) = w. Thus,
E1

recon straight(I
∗, I, q∗, q, g∗, g) fails. This completes the proof of (3.19).

Proof of (3.16):
Let x, y ∈ I1 and y − x = c1l1. Since B1

intervals OK holds then, by (2.3), I∗ = I(ξ|[x − lm]) and
I = I(ξ|[y, y + lm]) satisfy |I∗|, |I| ≥ l(1 − 3ε(n)). Since E1

enough times(x, y) holds, there exists q-vectors
q∗ = q∗x(ξ), q = qy(ξ) and g-words g∗ = gx(ξ), g = gy(ξ) such that for each j ∈ J(x, y), (3.7) holds.
Moreover, |J(x, y)| ≥ exp(γl1) and for each j ∈ J(x, y) it holds S(T 1(j)) = x and S(T 3(j)) = y. Then,
obviously, w2(j) = (ξ(x), ξ(x+L), . . . , ξ(y)). Hence, we have a set of attributes (I∗, I, q∗, q, g∗, g) and an
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index set J ′ = J(x, y) ⊂ J(I∗, I, q∗, q, g∗, g) such that |J ′| ≥ exp(γl1) and w2(j) is constant on J ′.
Assume (x, y) is a barrier. Then J ′ = J(I∗, I, q∗, q, g∗, g). Suppose not. Then there exists j∗ ∈
J(I∗, I, q∗, q, g∗, g)\J ′. This means that j∗ satisfies (3.7), but w2(j∗) 6= (ξ(x), ξ(x + L), . . . , ξ(y)). The
latter is possible only, if S(T 1(j∗)) > x or S(T 1(j∗)) < y. Let S(T 1(j∗) = z > x. The event E1

stop(τ)
implies (3.18) and then z ∈ I1. Hence, there is z ∈ I1 and k∗ ≤ j∗ such that E1

mistake-l(z, x, k
∗) holds. This

is a contradiction with E1
no mistake. Hence J ′ = J(I∗, I, q∗, q, g∗, g) and (ξ(x), ξ(x+ L), . . . , ξ(y)) ∈ W1.

Now it remains to show that there are enough barriers in I1. This follows immediately from B1
enough barriers.

Proof of (3.17):
It suffices to show that E1

only ladders ∩E1
enough ladders ∩B1

unique fit ensures that S(χ12αl1 , τ, ξ|Io) consists of
one element that satisfies (3.13).
Consider the ”puzzle-playing” algorithm formalized in Definition 3.2. We show that there is an unique way
to combine the words from W1, i.e. the solution set S is unique. Let ∃φ ∈ S and let D1 ⊂ D2 ⊂ · · · ⊂ Dn

be the sequence of sets ensured by the definition of φ. By 1, φ|D1 is translated from a piece of ξ|I1 by some
b satisfying |b| ≤ exp(l1), i.e. ξ|Io = T [φ|D1], where Tz = z+b is the translation and Io ⊂ [−el1 , el1 ] ⊂ I1.
We show: if φ|Di is translated from a piece of ξ|I1 by b, i.e. ξ|Ji = T [φ|Di], for some Ji ⊂ I1, then
the same applies for φ|Di+1. Recall that φ|Di+1 and φ|Di differ on Vi+1, only. By 3c) and E1

only ladders,
φ|Vi+1 ≈ ξ|J(w) for some J(w) ⊂ I1. Thus, there is an affine T ′ such that ξ|J(w) = T ′[φ|Vi+1] and,
hence, there is a ladder interval J ′ ⊂ J(w) such that ξ|J ′ = T ′[φ|(Vi+1 ∩ Di)]. So, φ|(Vi+1 ∩ Di) is
equivalent with some ladder word of ξ|I1 by T ′. On the other hand, φ|(Vi+1 ∩ Di) is translated by b,
hence it is equivalent with some ladder word of ξ|I1 by T . Let this word be ξ|J . Clearly ξ|J ≈ ξ|J ′.
By 3b), the length of the ladder interval Vi+1 ∩Di as well as J ′ and J is at least c1l1

4 . If T 6= T ′, then
J 6= J ′, which contradicts B1

unique fit. Hence, T ′ = T and φ|Vi+1 is translated from a piece of ξ|I1 by b
and φ|Di+1 is translated from a piece of ξ|I1 by b as well. The same holds for φ, i.e. φ ≡ ξ|I(φ) for some
interval I(φ). By 4, I(φ) = [ao − 2 exp(l1), ao + 2 exp(l1)], where Io := [ao, bo]. So, φ is obtained from a
fixed piece of scenery ξ|I(φ) by a fixed translation, T . Clearly such a φ is unique.
Let us show that φ satisfies (3.13). Since |ao| ≤ exp(l1), we have that

[− exp(l1), exp(l1)] ⊂ I(φ) ⊂ [−3 exp(l1), 3 exp(l1)].

This means
ξ|[− exp(l1), exp(l1)] v φ v ξ|[−3 exp(l1), 3 exp(l1)],

i.e. (3.13) holds.
It remains to show that S is not empty. Consider again the ”puzzle playing” algorithm. Let Di, i ≥ 1 be
the domain of φi at state i. It suffices to show that there exists Vi+1 ∈ L(c1l1) satisfying all requirements
of 3 and such that |Vi+1\Di| ≥ c1l1

2 . Note that Di = ∪L−1
j=0 I(j), where I(j) ⊂ I1 is a ladder interval

with length at least c1l1. Fix j and let aj < bj be the endpoints of I(j). Consider the ladder interval
Ib(j) :=

(
bj − 2(c1l1/4)L, . . . , bj − 1(c1l1/4)L

)
⊂ I(j). By E1

enough ladders there exists z ∈ Ib(j) such
that a ladder word of ξ|V (z), with V (z) =

(
z, z + L, . . . , z + (c1l1)L

)
∈ L(c1l1) belongs to W1. Let this

word be w(z). Clearly, |V (z) ∩Di| ≥ c1l1
4 . By B1

unique fit, w(z) is not a ladder word of any ladder piece
φi|Vj , j = 1, . . . , i. Hence w(z) and V (z) can be taken as wi+1 and Vi+1. The same argument applies
for Ia(j) :=

(
aj + 1(c1l1/4)L, . . . , aj + 2(c1l1/4)L

)
, implying that Di can be efficiently enlarged in other

direction as well.

3.5 Probabilities for main theorem

3.5.1 Scenery-dependent events

At first, estimate the probabilities of B-events. These events depend on ξ, only. Note that all exponential
bounds are valid for l1 being big enough.

Estimate P
((
B1

intervals OK

)c)
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Let
E := {ξ|[z, z +ml] is OK ∀z ∈ I1}, E∗ := {ξ|[z, z −ml] is OK∗ ∀z ∈ I1}.

Now, by translation invariancy of ξ and Theorem 2.1, it holds that for l1 big enough

P (Ec) ≤
∑
z∈I1

P (ξ|[z, z +ml] is not OK) ≤ 2e3l1P (EcOK) ≤ 2 exp[3l1 − al].

Similarly,
P (E∗c) ≤

∑
z∈I1

P (ξ|[z −ml, z] is not OK∗) ≤ 2e3l1P (EcOK) ≤ 2 exp[3l1 − al].

Hence, if l1 is sufficiently big, then

P
((
B1

intervals OK

)c) ≤ 4 exp[(3− al2)l1]. (3.21)

The following proposition also specifies the choice of c1.

Proposition 3.1 There exists constants C1(n) and k1, k2, k3 > 0 not depending on l1 such that for
c1 > C1(n) it holds:

P
((
B1

unique fit

)c) ≤ exp[−k1l1] (3.22)

P
((
B1

recon straight

)c) ≤ exp[−k2l1] (3.23)

P
((
B1

enough barriers

)c) ≤ exp[−k3l1], (3.24)

provided l1 is big enough.

Proof. It follows from Lemma 6.33 in [LMM] that for some constants a1, a2 depending on L, only, the
bound P

((
B1

unique fit

)c)
a1 ≤ exp[−a2l1] is valid. Also, there is a fixed constant Cr such that a2 > 0 if

c1 > Cr. This implies (3.22) for l1 sufficiently big.

Estimate P
(
(B1

recon straight)
c
)

Let R(l1c1)(x, y) := {R(l1c1)(x, y) : R(0) = x,R(l1c1L) = y}. Thus R(l1c1)(x, y) is (possibly empty) the
set of admissible path from x to y with l1c1 steps. Fix x, y such that |y−x| < (l1c1)L. At first note: if l1 is
big enough, then (for any value of C1 ≥ 1) R(l1c1)(x, y) is either empty or has cardinality at least 2. Any
admissible path R ∈ R(l1c1)(x, y) is a sequence R = (t1, . . . , tc1l1) of steps, where |ti| ≤ L. Hence, there
exists a R = (t1, . . . , tc1l1) ∈ R(l1c1)(x, y) such that ti 6= t1 for a i = 2, . . . c1l1 (if no, then R(l1c1)(x, y)
would consists of one path, only). Let R be one of such paths. Let c1 ≥ p 100

2L+1q. The number of possible
steps is bounded by 2L+ 1. Hence, there is a step t that occurs in R at least k := 100l1 times. Formally,
∃t ∈ {−L, . . . , L} such that |{i = 1, . . . , c1l1 : ti = t}| ≥ k. Any rearrangement of the order of steps in R
corresponds to another path in R(l1c1)(x, y). We consider two rearrangements of R. The first, R1, starts
with kl1 steps of size t. Thus R1 = {t11, . . . , t1c1l1} ∈ R(l1c1)(x, y) is such that t11 = · · · = t1k = t. Let u be
another step if R such that u 6= t. The second path, R2, starts with u, and then is followed by k-steps
of size t. Formally, R2 = {t21, . . . , t2c1l1} ∈ R(l1c1)(x, y) is such that t21 = u, t22 = · · · = t2k+1 = t. We now
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estimate the probability that the paths R1 and R2 generate the same word in observation; we estimate

P (ξ ◦R1 = ξ ◦R2) ≤ P
((
ξ(x+ t), . . . , ξ(x+ kt)

)
=

(
ξ(x+ u), ξ(x+ u+ t), . . . , ξ(x+ u+ kt)

))
≤ P

(
ξ(x+ t) = ξ(x+ u))P

(
ξ(x+ 2t) = ξ(x+ u+ t)|ξ(x+ t) = ξ(x+ u)

)
×

× P
(
ξ(x+ 3t) = ξ(x+ u+ 2t)|ξ(x+ t) = ξ(x+ u)), ξ(x+ 2t) = ξ(x+ u+ t)

)
· · ·

· · ·P
(
ξ(x+ kt) = ξ(x+ u+ (k − 1)t)|ξ(x+ t) = ξ(x+ u) · · · ξ(x+ (k − 1)t) = ξ(x+ u+ (k − 2)t)

)
≤ 2−k = exp[−100 ln 2l1].

Now,

Erecon straight =
⋃

x,y∈I1,|x−y|<l1c1

Erecon straight(x, y),

P ((Erecon straight)c) ≤
∑
x,y∈I1

P (Erecon straight(x, y)) ≤ 4 exp(6l1) exp[−100 ln 2l1] ≤ exp[−50l1].

Estimate P
(
(B1

enough barriers)
c
)

For each z, j define

B1
enough barriers(z, j) :=

{
there exists x ∈ [z, z + ( c1l14 )L] such that x mod L = j

and (x, x+ (c1l1))L} is a barrier of ξ

}
.

Define
B(x) :=

{
(x, x+ (c1l1)L) is a barrier of ξ

}
, Yx := IB(x).

Note, if x′−x ≥ 3m3L =: r, then, by the definition, the events B(x) and B(x′) are independent. Clearly
the probability of B(x) does not depend on x, let us denote p = P (B(x)). By definition, p > 2−3m3L.
Denote w = x c1l14r − L

r y > c1−4L
4r l1 and use Höffding’s inequality again

P
((
B1

enough barriers(z, j)
)c) = P

( z+c1l1
4∑

x=z+j

Yx = 0
)
≤ P

( c1l1
4r∑
k=0

Yrk+z+j = 0
)

≤ P
( w∑
k=0

(Yrk+z+j − p) ≤ wp
)
≤ 2 exp[−2wp2]

≤ 2 exp[−2
c1 − 4L

4r
2−6m3Ll1] = 2 exp[−k′2l1],

for k′2 := c1−4L
4r 2−(6m3L+1). Obviously, k′2 > 0, if c1 > 4L. Thus

P
((
B1

enough barriers

)c) ≤ ∑
z∈I1,j={0,...,L}

P
((
B1

enough barriers(z, j)
)c) ≤ 8 exp[(6− k′2)l1] ≤ exp[−l1],

if k′2 ≥ 8. The latter implies c1 − 4L ≥ 4 · 26m3+6 or c1 ≥ r26m3+8 + 4L = 3m3L26m3+8 + 4L.

Hence, Proposition 3.1 holds with C1(n) := max{Cr, p 100
2L+1q, 3m3L26m3+8 + 4L}.

3.5.2 Random-walk depending events

Estimate P (E1
mistake-r ∩B1

intervals OK).

Fix y, z ∈ I1, z < y and note

E1
mistake-r(z, y, k) ∩B1

intervals OK ⊂ E1
mistake-r(z, y, k) ∩ {ξ|[y, y + lm] is OK}, k = 1, 2, . . . . (3.25)
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We now estimate the right side of (3.25). Recall the definitions of T 3
z (k), w3

z(k) and gy(ξ). Consider the
events

E1
mistake-r(y, z, k) ∩ {ξ|[y, y + lm]is OK} ={
q̂(w3

z(k)) ≤ qy(ξ), ĝ(w3
z(k)) vI(ξ|[y,y+ml]) gy(ξ), y is a right barrier point, ξ|[y, y + lm] is OK},

(3.26)

k = 1, 2, . . . . Because of (3.3), conditionally on ξ the events (3.26) are independent and identically
distributed. Hence, the events (3.26) all have the probability equal to

P
(
q̂(χm

2l
z ) ≤ qy(ξ), ĝ(χm

2l
z ) 4I(ξ|[y,y+ml]) gy(ξ), y is a right barrier point, ξ|[y, y + lm] is OK

)
.

(3.27)
The event in (3.27) depends on ξ, only. The distribution of ξ is obviously translation invariant. Therefore,
by Corollary 2.1, (3.27) can be estimated

P
(
q̂(χm

2l
z−y) ≤ q0(ξ)), ĝ(χm

2l
z−y) 4I(ξml) g0(ξ), 0 is a right barrier point , ξml is OK

)
=

P
({
q̂(χm

2l
z−y) ≤ q0(ξ), ĝ(χm

2l
z−y) 4I(ξml) g0(ξ)

}
∩ Eorigin ∩ E∗OK

)
=

P
(
Emistake(z − y) ∩ E∗OK

)
≤ exp(−lαI),

provided l1 is big enough. Therefore,

P (E1
mistake-r ∩B1

intervals OK) ≤
∑
y,z,k

P (E1
mistake-r(y, z, k) ∩B1

intervals OK)

≤
∑
y,z,k

exp(−lαI) < 4 exp[(6 + α)l1 − αI l]. (3.28)

The sum here is taken over all z, y ∈ I1, z < y and k = 1, . . . , exp(αl1).

Estimate P (E1
mistake-l ∩B1

intervals OK).

We need some additional notations. Recall T 1
z (k). Now fix x′ ∈ I1 and define T 1

z (ki), i = 1, 2, . . . , N(x′).
as the i-th stopping time T 1

z (k), for which S(T 1
z (k) + exp(2l1)) = x′. The indexes ki depend on chosen

x′. Define now

E1
mistake-l(z, x, i, x

′) :=
{
q̂∗(w1

z(ki)) ≤ q∗x(ξ)
}
∩

{
ĝ∗(w1

z(ki)) 4I∗(ξ|[x−ml,x]) g
∗
x(ξ)

}
∩

{
x is a left b. p.

}
,

i = 1, 2, . . . , N(x′).
Clearly, for each k there exist i, x′ such that E1

mistake-l(z, x, k) = E1
mistake-l(z, x, i, x

′). The counterpart of
(3.25) is

E1
mistake-l(z, x, i, x

′) ∩B1
intervals OK ⊂ E1

mistake-r(z, x, i, x
′) ∩ {ξ|[x− lm, x] is OK*} =: E(i, x′),

i = 1, 2, . . . , N(x′).
As previously, we observe that P (E(i, x′)) is equal to

P
(
q̂∗(χm

2l
x′ ) ≤ q∗x(ξ), ĝ

∗(χm
2l

x′ ) 4I∗(ξ|[x−ml,x]) g
∗
x(ξ), Sx′(m

2l) = z, x is a left b. p. , ξ|[x−lm, x] is OK*
)
.

(3.29)
To calculate (3.29), at first note the following. Let R(i), i = 0, 1, . . . , k be an admissible path such that
R(0) = x′, R(k) = z. Thus, for any scenery ψ, the observation χ|[0, k] equals ψ(R(i)), i = 0, . . . , k. This
means,

(
χ|[0, k]

)−= ψ(R−(i)), where R−(i) = −R(k− i), i = 0, . . . , k. By symmetry of S, any admissible
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path R[0, k] has the same probability as its reverse R−[0, k]. This means that for any u ∈ {0, 1}k+1 and
for any fixed scenery ψ we have with Pψ(·) := P (·|ξ = ψ),

Pψ

((
χ|[0, k]

)− = u, Sx′(k) = z
)

= Pψ

(
χ|[0, k] = u, Sz(k) = x′,

)
or

Pψ

((
χkx′

)− = u, Sx′(k) = z
)

= Pψ

(
χkz = u, Sz(k) = x′

)
.

By symmetry, again, the left side of last equality equals

P−ψ

(
χk−z = u, S−z(k) = −x′

)
.

In particular, since (ψ|[x− lm, x])− = −ψ|[−x,−x+ lm]

Pψ

(
q̂
(
(χkx′)

−)
≤ q

(
(ψ|[x− lm, x])−

)
, ĝ

(
(χkx′)

−)
4I((ψ|[x−lm,x])−) g

(
(ψ|[x− lm, x])−

)
, Sx′(k) = z

)
=

P−ψ

(
q̂
(
χk−z) ≤ q(−ψ|[−x,−x+ lm]), ĝ

(
(χk−z)

)
4I(−ψ|[−x+lm,−x]) g(−ψ|[−x+ lm,−x]), S−z(k) = −x′

)
.

Recall the definitions of q̂∗, q∗, ĝ∗, g∗. Clearly x is a left barrier point for ψ if and only if −x is a right
barrier point for−ψ and, by definition, ψ|[x−lm, x] is OK* if and only (ψ|[x−lm, x])− = −ψ|[−x,−x+lm]
is OK. Let

A∗(x) := {x is a left b. p. of ψ,ψ|[x− lm, x] is OK*},
A(x) := {x is a right b. p. of ψ, ψ|[x, x+ lm] is OK }.

Thus, for each ψ,

Pψ

(
q̂∗(χkx′) ≤ q∗(ψ|[x− lm, x]), ĝ∗(χkx′) 4I∗(ψ|[x−lm,x]) g

∗(ψ|[x− lm, x]), Sx′(k) = z
)
IA∗(x)(ψ) =

P−ψ

(
q̂
(
χk−z) ≤ q(−ψ|[−x,−x+ lm]), ĝ(χk−z) 4I(−ψ|[−x+lm,−x]) g(−ψ|[−x+ lm,−x]), S−z(k) = −x′

)
×

× IA(−x)(−ψ).

Finally, integrate over ξ and use the fact that ξ and −ξ have the same distribution to get

P
(
q̂∗(χkx′) ≤ q∗(ξ|[x− lm, x]), ĝ∗(χkx′) 4I∗(ξ|[x−lm,x]) g

∗(ξ|[x− lm, x]), Sx′(k) = z, ξ ∈ A∗(x)
)
=

P
(
q̂
(
χk−z) ≤ q(ξ|[−x,−x+ lm]), ĝ(χk−z) 4I(ξ|[−x+lm,−x]) g(ξ|[−x+ lm,−x]), S−z(k) = −x′, ξ ∈ A(−x)

)
(3.30)

Now take k = m2l, y := −x, z := −z and sum over x′ to obtain that P (E(i, x′)) equals

P
(
q̂
(
χm

2l
z ) ≤ qy(ξ), ĝ(χm

2l
z ) 4I(ξ|[y+lm,y]) gy(ξ), y is a right b. p., ξ|[y, y + lm] is OK

)
.

Hence, P (E(i, x′) equals (3.27) and, hence, it is bounded by exp(−lαI). This means

P (E1
mistake-l ∩B1

intervals OK) ≤
∑

y,z,i,x′

P (E1
mistake-r(y, z, i, x

′) ∩B1
intervals OK)

≤
∑

y,z,i,x′

exp(−lαI) < 8 exp[(9 + α)l1 − αI l], (3.31)

where the sum is taken over all z, y, x′ ∈ I1, z < y and i = 1, . . . , exp(αl1).

Estimate P
(
E1

stop(τ) ∩B1
recon straight ∩ (E1

recon straight)
c
)
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Fix a set of attributes (I∗, I, q∗, q, g∗, g) and consider random indexes j1, . . . , jκ as in (3.9) (3.12). They
depend on chosen attributes. We consider the set Ec, where E := E1

recon straight(I
∗, I, q∗, q, g∗, g). On Ec,

the following hold: κ > exp(γl1) and for every k = 1, . . . , exp(γl1) + 1, it holds w2(jk) = w2(j1). Define

Yk := 1− Iw2(j1)(w
2(jk)), k = 2, . . . , κ.

Hence Yk = 1 if and only if w2(jk) 6= w2(j1). Therefore, Ec = {
∑exp(γl1)+1
k=1 Yk = 0}. We now consider

the following σ-algebra

A := σ
(
ξ(z), S(τ(j)), S(T 1(jk)), S(T 3(jk)), z ∈ Z, j = 1, . . . , exp(αl1), k = 1, . . . , κ

)
.

Given A, the values of κ as well as S(T 1(jk)) = xk and S(T 3(jk)) = yk, k = 1, . . . , κ are known. This
means that the random variables Y1, . . . , Yκ depend on the behavior of S from xk to yk during c1l1 steps.
Hence, given A the random variables Y1, . . . , Yκ are independent.
Consider now the events E1

stop(τ) and B1
recon straight. Obviously they both belong to A. Note that on

E1
stop(τ), it holds xk, yk ∈ I1, for every k = 1, . . . , κ. Hence, if in addition also B1

recon straight holds, then
for each k = 2, . . . , κ there exists at least one admissible path from xk to yk that generates different
words in observations. Recall the definition of pmin and deduce that on E1

stop(τ) ∩B1
recon straight it holds

P (Yk = 1|A) ≥ (pmin)c1l1 , k = 2, . . . , κ. Hence, by Höffding’s inequality on E1
stop(τ) ∩ B1

recon straight we
get for a constant d > 0

P (Ec|A) = P
(exp(γl1)+1∑

k=2

Yk = 0
∣∣∣A)

≤ exp[−d exp((γ + 2c1 ln pmin)l1)]. (3.32)

Indeed, for Y1, . . . , Yeb independent Bernoulli random variables with E(Xi) ≥ ea, the Höffding’s inequality
states

P
( eb∑
i=1

Yi = 0
)

= P
( eb∑
i=1

(Yi − EYi) ≤ −
eb∑
i=1

EYi

)
≤ exp

[
−de−b

( eb∑
i=1

EYi
)2] ≤ exp[−deb+2a]

Now take b = γl1, a = c1l1 ln(pmin) to obtain (3.32).
Integrate (3.32) over E1

stop(τ) ∩B1
recon straight to obtain

P
(
Ec ∩ E1

stop(τ) ∩B1
recon straight

)
≤ exp[−d exp((γ + 2c1 ln pmin)l1)]. (3.33)

Finally, estimate

P
((
E1

recon straight

)c ∩ E1
stop(τ) ∩B1

recon straight

)
≤

∑
(I∗,I,q∗,q,g∗,g)

E1
recon straight(I

∗, I, q∗, q, g∗, g),

where the sum is taken over all attributes (I∗, I, q∗, q, g∗, g). There are less than 22(n2l+l)l4l attributes.
Thus, the right side of the previous display is bounded by

22(n2l+l)l4l exp[−d exp((γ + 2c1 ln pmin)l1)] =

exp[2(n2l + l) ln 2 + (4l) ln l − d exp((γ + 2c1 ln pmin)l1)] =

exp[l1(2(n2l2 + l2) ln 2 + (4l2)(ln l1 + ln l2))− d exp((γ + 2c1 ln pmin)l1)].

So, (
E1

stop(τ) ∩B1
recon straight ∩ (E1

recon straight)
c
)
≤

≤ exp[l1(2(n2l2 + l2) ln 2 + (4l2)(ln l1 + ln l2))− d exp((γ + 2c1 ln pmin)l1)]. (3.34)
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Estimate P
(
E1

stop(τ) ∩ (E1
enough times)

c ∩B1
intervals OK

)
Let pL := P (S(1)− S(0) = L) and define

p∗ := exp[−(1.5 + 2αII l2 + c1 ln pL)l1].

Proposition 3.2 If
exp(αl1)p∗ ≥ 2 exp(γl1), (3.35)

then
P

(
E1

stop(τ) ∩ (E1
enough times)

c ∩B1
intervals OK

)
≤ 36 exp[(2− exp(2γ − α))l1], (3.36)

provided l1 is big enough.

Proof. Recall the definitions of T 1(j), T 3(j), j = 1, . . . exp(αl1). Let x, y ∈ I1 be such that y = x+c1l1L
and define

Ej(x, y) :=


S(T 1(j)− lm2) = x− lm

S(T 1(j)) = x, S(T 3(j)) = y,
q̂∗(w1(j)) ≤ q∗x(ξ), ĝ

∗(w1(j)) 4I∗ g∗x(ξ),
q̂(w3(j)) ≤ qy(ξ), ĝ(w3(j)) 4I gy(ξ)

 , Yj := IEj
, j = 1, . . . , eαl1 .

Obviously, {eαl1∑
j=1

Yj ≥ eγl1
}
⊂ E1

enough times(x, y). (3.37)

For each j and for every scenery ψ, it holds

Pψ(Yj = 1) = Pψ(S(T 1(j)− lm2) = x− lm)×
Pψ(S(T 1(j)) = x, q̂∗(w1(j)) ≤ q∗x(ξ), ĝ

∗(w1(j)) 4I∗ g
∗
x(ξ)|S(T 1(j)− lm2) = x− lm2)×

Pψ(S(T 3(j)) = y|S(T 1(j)− lm2) = x− lm, S(T 1(j)) = x, q̂∗(w1(j)) ≤ q∗x(ξ), ĝ
∗(w1(j)) 4I∗ g

∗
x(ξ))×

Pψ(q̂(w3(j)) ≤ qy(ξ), ĝ(w3(j)) 4I gy(ξ)|
S(T 1(j)− lm2) = x− lm2, S(T 1(j)) = x, S(T 3(j)) = y, q̂∗(w1(j)) ≤ q∗x(ξ), ĝ

∗(w1(j)) 4I∗ g
∗
x(ξ)).

Now, by the Markov property of S

Pψ(Yj = 1|Estop(τ)) =Pψ(S(T 1(j)− lm2) = x− lm|Estop(τ)))

×Pψ(S(T 1(j)) = x, q̂∗(w1(j)) ≤ q∗x(ξ), ĝ
∗(w1(j)) 4I∗ g

∗
x(ξ)|S(T 1(j)− lm2) = x− lm2)

×Pψ(S(T 3(j)) = y|S(T 1(j)) = x)

×Pψ(q̂(w3(j)) ≤ qy(ξ), ĝ(w3(j)) 4I gy(ξ)|S(T 3(j)) = y).

Use local CLT to estimate

Pψ

(
S(T 1(j)− lm2) = x− lm

∣∣∣Estop(τ)
)

= Pψ

(
S(T 1(j)− lm2) = x− lm

∣∣∣S(T 1(j)− lm2 − e2l1
)

≥ exp(−1.5l1)

By Theorem 2.3 and symmetry of S, it holds

Pψ(S(T 1(j)) = x, q̂∗(w1(j)) ≤ q∗x(ξ), ĝ
∗(w1(j)) 4I∗ g

∗
x(ξ)|S(T 1(j)− lm2) = x− lm2) ≥ exp[−lαII ]

Pψ(q̂(w3(j)) ≤ qy(ξ), ĝ(w3(j)) 4I gy(ξ)|S(T 3(j)) = y) ≥ exp[−lαII ],
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provided ψ ∈ B1
intervals OK.

Finally,
Pψ(S(T 3(j)) = y|S(T 1(j)) = x) = (pL)c1l1L.

This means, for ψ ∈ B1
intervals OK

Pψ(Yj = 1|Estop(τ)) ≥ exp[−1.5l1] exp[−2lαII ](pL)c1l1L = p∗ (3.38)

Conditional on Estop(τ)) and ψ, the random variables Yi are independent. That follows from the definition
of Estop(τ)). Hence

Pψ

(eαl1∑
j=1

Yj < eγl1
∣∣Estop(τ)

)
≤ P

(eαl1∑
j=1

Zj < eγl1
)
= P

(eαl1∑
j=1

(Zj − p∗) < eγl1 − eαl1p∗
)
, (3.39)

where Zi are independent Bernoulli random variables with parameter p∗. By (3.35), the right side of
(3.39) is bounded by

P
(eαl1∑
j=1

(Zj − p∗) < eγl1 − eαl1p∗
)
≤ P

(eαl1∑
j=1

(Zj − p∗) < −eγl1p∗
)
.

Use Höffding’s inequality to get

P
(eαl1∑
j=1

(Zj − p∗) < −eγl1
)
≤ exp[−de(2γ−α)l1 ].

Finally, integrate over E1
stop(τ) ∩B1

intervals OK and use (3.37) to deduce

P
(
E1

stop(τ) ∩ (E1
enough times(x, y))

c ∩B1
intervals OK

)
≤ exp[− exp(2γ − α))l1].

Sum over all pairs (x, y) ∈ I1 to get (3.36).

3.6 Tuning parameters

Recall that for big n, αI > 8αII .

• Choose n so big that statements of Theorem 2.1, Theorem 2.2, relation (2.26) and the statement
of Corollary 2.1 hold.

• Then choose c1(n) > C1(n), where C1(n) is specified in Proposition 3.1.

• Then choose l2(c1, n) so big that simultaneously

αII l2 > 1.5 + ln 2− c1 ln pL (3.40)
(αI − 7αII)l2 > 9 (3.41)

4αII l2 > −2c1 ln pmin (3.42)
αII l2 > ln 2 (3.43)
al2 > 3 (3.44)

• Then take γ(n, c1, l2) = 4αII l2

• Then take α(n, c1, l2) = 7αII l2



Reconstructing a Random Scenery 40

3.7 Proof of the main theorem

Recall Lemma 3.1. By (3.15), (3.16) and (3.17), for l1 big enough, it holds

P
((
E1

alg works(τ)
)c ∩ E1

stop(τ)
)
≤

P
((
E1

only ladders

)c ∩ E1
stop(τ)

)
+ P

((
E1

all ladders

)c ∩ E1
stop(τ)

)
+ P

((
B1

unique fit

)c); (3.45)

P
((
E1

only ladders

)c ∩ E1
stop(τ)

)
≤ P

((
E1

recon straight

)c ∩ E1
stop(τ)

)
≤ (3.46)

P
((
E1

recon straight

)c ∩ E1
stop(τ) ∩B1

recon straight

)
+ P

((
B1

recon straight

)c);

P
((
E1

all ladders

)c ∩ E1
stop(τ)

)
≤ P

((
B1

enough barriers

)c)
+ P

((
E1

no mistake

)c) + P
((
B1

enough paths

)c ∩ E1
stop(τ)

)
; (3.47)

P
((
E1

no mistake

)c) ≤ P
((
E1

no mistake

)c ∩B1
intervals OK

)
+ P

((
B1

intervals OK

)c); (3.48)

P
((
B1

enough times

)c ∩ E1
stop(τ)

)
≤ P

((
B1

enough times

)c ∩ E1
stop(τ) ∩B1

intervals OK

)
+ P

((
B1

intervals OK

)c)
.

(3.49)

Recall the definitions of l2. The condition (3.45) states 7αII l2 > 4αII l2 + 1.5 + ln 2− c1 ln pL + 2αII l2
or, equivalently,

αl1 > (γ + 1.5 + ln 2− c1 ln pL)l1 + 2αII l.

Taking exponentials,
exp(αl1) exp(−1.5l1 − 2αII l)(pL)c1l1 > 2 exp(γl1).

Recall the definition of p∗ and note that the inequality in the previous display is (3.35). Hence, by
Proposition 3.2, we have the bound (3.36). By (3.43), k4 := exp(2γ − α) = exp(αII l2) > 2, implying
that (3.36) is exponentially small in l1. By (3.44), there exist k5 > 0 such that (3.21) is bounded by
4 exp[−k5l1]. With (3.36), we obtain that (3.49) is bounded by 40 exp[−(k4 ∧ k5)l1].

Use (3.31) and (3.28) with (3.41) to obtain that P (
(
E1

no mistake

)c ≤ 12 exp[(9+α)l1−αI l] = 12 exp[−k6l1]
for a k6 > 0. Hence, (3.48) is bounded by 12 exp[−k6l1] + 4 exp[−k5l1] ≤ 16 exp[−(k6 ∧ k5)l1].

By (3.24), we now get that (3.47) is bounded by 40 exp[−(k4∧k5)l1]+16 exp[−(k6∧k5)l1]+exp[−k3l1] ≤
56 exp[−k7l1] for a k7 > 0.

The requirement (3.42) states that γ + 2c1 ln pmin > 0 implying that

exp[l1(2(n2l2 + l2) ln 2 + (4l2)(ln l1 + ln l2))− d exp((γ + 2c1 ln pmin)l1)] ≤ exp[k8l1]

for l1 big enough. This means (3.46) is bounded by exp[−k9l1] for l1 big enough.

Finally, we get that (3.45) is bounded by exp[−kl1], if l1 is big enough. This proves Theorem 1.1.
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4 Appendix

4.1 Proof of Theorem 2.1

Recall m(n) > n.
For each i = 1, . . . , l random cells ξi = ξ|Di = (ξ(di−1), . . . , ξ(di)).
Consider the event EOKa. We can rewrite

EOKa =
{ l∑
i=2Lm2

Xi ≤ l2ε(n)
}
,

where Xi is Bernoulli random variable that is one iff ξi is not weak-OK. Let

l∗ := Lm2 + c+ 2, l∗ = l − c+ 1.

Then (l∗ − 1)m− cm = Lm3 +m and (l∗ − 1)m+ cm = lm. Clearly P (Xi = 1) ≤ ε(n), if l∗ ≤ i ≤ l∗. If
i > l∗, then, by definition, ξi cannot be weak-OK and, hence, Xi = 1. Now, let n be so big that l∗ ≤ 2Lm2

i.e. c+ 2 ≤ Lm2. This means, EOKa is independent on ξLm
3
. Then also l − l∗ = c− 1 ≤ 2Lm2. Let us

estimate

EOK
c
a =

{ l∑
i=2Lm2

Xi > l2ε(n)
}
⊂

{l−2Lm2∑
i=2Lm2

Xi > l2ε(n)− 2Lm2
}

⊂
c⋃

j=−c+1

{ k∗∑
k=k∗

Xik2c−j >
l2ε(n)− 2Lm2

2c

}

⊂
c⋃

j=−c+1

{ k∗∑
k=k∗

Xk2c−j − (k∗ − k∗ + 1)ε(n) >
l2ε(n)− 2Lm2

2c
− lε(n)

2c

}
.

Here k∗ := p 2Lm2+c
2c q and k∗ := x l−2Lm2−c+1

2c y. Thus k∗ − k∗ ≤ l−4Lm2+1
2c < l

2c , k
∗ − k∗ + 1 < l.

Note, by definition Xi ∈ σ(ξj |j = i − c, i − c + 1, . . . , i + c − 1). Thus, Xk and Xk2c are independent.
This means, for each j we can apply Höffding’s inequality. Thus, for each j

P
( k∗∑
k=k∗

(Xk2c−j − ε(n)) >
lε(n)− 2Lm2

2c

)
≤ P

( k∗∑
k=k∗

(Xk2c−j − EXk2c−j) >
lε(n)− 2Lm2

2c

)
≤ exp

[
− (lε(n)− 2Lm2)2

c(k∗ − k∗)

]
≤ exp[− lε

2(n)
2c

],

provided l is big enough to satisfy lε(n)− 2Lm2 ≥ l ε(n)
2 . Hence,

P (EOK
c
a) ≤ 2c exp

(−ε2(n)l
2c

)
≤ exp(−a1(n)l), (4.1)

for some a1(n) > 0, provided l is big enough.

We estimate P (EOK
c
b) by the same argument. Define

Ei∗OKb :=
{∣∣IiII(ξml)∣∣ ≥ l(1− exp(−m0.8))

}
, i = 1, 2.

Clearly, for n big enough,

E1∗
OKb ∩ E

2∗
OKb ⊂ EOKb and P(EOK

c) ≤ P (E1∗
OKb) + P (E2∗

OKb). (4.2)

Let us estimate P (E2∗
OKb).
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Let Yi be Bernoulli random variable that is 1 iff ξi has not empty neighborhood. Let us estimate
P (Yi = 1). If di−1 − Lm2 ≥ 0 and di + Lm2 ≤ lm, then

P (Yi = 1) =
(
∃j ∈ [di−1 − Lm2, di + Lm2] : ξ(j) = · · · = ξ(j +m0.9)

)
≤ (2Lm2 +m+ 1)(0.5)m

0.9
≤ exp(−m0.85),

in m is big. Otherwise, by definition, Yi = 1. Let N be such that the inequality above holds as well as
(4.2) if n > N . Note that E2∗

OKb is independent of ξLm
3
.

Clearly Yi ∈ σ(ξi−Lm, . . . , ξi+Lm). Hence Yi and Yi+2+2Lm are independent. Let k = 2(1 + Lm). Now
with i∗ = x l−2Lm2−k+1

k y and i∗ ≤ l
k we get

E2∗
OK

c

b =
{ l∑
i=2Lm2

Yi > l exp(−m0.8)
}
⊂

{l−2Lm2∑
i=2Lm2

Yi > l exp(−m0.8)− 2Lm2
}

⊂
k−1⋃
j=0

{ i∗∑
i=0

Y2Lm2+j+ik >
l exp(−m0.8)− 2Lm2

k

}

⊂
k−1⋃
j=0

{ i∗∑
i=0

Y2Lm2+j+ik − i∗ exp(−m0.85) >
l(exp(−m0.8)− exp(−m0.85))− 2Lm2

k

}

⊂
k−1⋃
j=0

{ i∗∑
i=0

(Y2Lm2+j+ik − EY2Lm2+j+ik) >
l(exp(−m0.8)− exp(−m0.85))− 2Lm2

k

}
.

Denote exp(−m0.8)− exp(−m0.85) =: e(m) and apply Höffdings inequality

P
( i∗∑
i=0

(Y2Lm2+j+ik − EY2Lm2+j+ik) ≥
le(m)− 2Lm2

k

)
≤ exp

[
−2(le(m)− 2Lm)2

lk

]
≤ exp[−a2(m)l],

for some a2(m) > 0, if l is sufficiently big. Now, for big l,

P (E2∗
OK

c

b) ≤ 2(k + 1) exp(−a2(m)l) ≤ 2(m+ 1) exp(−a2(m)l) ≤ exp(−a3(m)l),

for some a3(m) > 0.

Similarly we estimate P (E1∗
OKb).

Let Zi be Bernoulli random variable that is 1 iff ξi is not isolated. If i ≥ l − Lm, then, by definition
Zi = 1. Thus

E1∗
OK

c

b = {
l∑

i=2Lm2

Zi > l exp(−m)
}
⊂

{ l−Lm∑
i=2Lm2

Zi > l exp(−m)− Lm
}
.

Again, E1∗
OKb is independent on ξLm

3
. Note, if

∑l
i+2Lm2 Zi > l exp(−m)− Lm, then among the vectors

{ξ2Lm2−Lm−1, ξ2Lm2−Lm, . . . , ξl} there exists at least 1
2 (l exp(−m)− Lm− 1) intervals ξi without fence.

Let Z ′i Bernoulli random variable that is 1 iff the srandom vector (but not the cell) ξ|(di−1, di) does
not contain a fence. Since the intervals (di−1, di) and (dj−1, dj) (i 6= j) are disjoint, Z ′i are iid random
variables. Hence, with j∗ = 2Lm2 − Lm− 1, we get

P (E1∗
OK

c

b) ≤ P
( l∑
j=j∗

Z ′j >
1
2
(l exp(−m)− Lm− 1)

)
.

Clearly
P (Z ′i = 1) = P (ξ|(di−1, di) contains no fence) ≤ (1− (0.5)2L−1)

m−2
2L < e−cm,
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for some c > 0. Now Höffding’s inequality yields

P
( l∑
j=j∗

Z ′j ≥
1
2
(le−m

0.8
− Lm)

)
≤ P

( l∑
j=1

Z ′j − le−cm ≥ 1
2
(le−m

0.8
− Lm)− le−cm

)
=

P
( l∑
j=1

(Z ′j − EZ ′j) >
1
2
l(e−m

0.8
− 2e−cm)− L

2
m

)
≤ exp

[
− (l(e−m

0.8 − 2e−cm)− Lm)2

2l

]
. (4.3)

The right side of (4.3) is bounded by exp(−la4(m)), for some a4(m) > 0, provided l is big enough.
Now, there exists a5(m) > 0 such that for big l,

P (EOK
c
b) ≤ exp(−a3l) + exp(−a4l) ≤ exp(−a5l) (4.4)

Now, by (2.2), (4.1), (4.4)

P (EOK
c) ≤ P (EOK

c
a) + P (EOK

c
b) ≤ exp(−la1) + exp(−la5) ≤ exp(−la),

for some a(m) > 0 and big l.

4.2 Proof of Proposition

By definition,
Emin(i) ∈ σ

(
S(t)− S(t− 1)

∣∣∣t ∈ [1, (si − ri)m]
)
.

This means, if Emin(i) 6= ∅, then Pψ(Emin(i)) ≥ (pmin)(si−ri)m. We shall show that Emin(i) 6= ∅.
Let i ∈ {1, . . . , k}. Let us describe an admissible path Ri ∈ R((si − ri)m) such that simultaneously
satisfies (2.13), (2.14), (2.15). If such an path exists then and (2.16) holds.

Consider an arbitrary index-interval [l2i−1, l2i], i > 1. It corresponds to the location-interval [ri, si].
Let C1 < · · · < Cq be the big clusters of ψ in [si, ri]. Denote by cj , dj , j = 1, . . . , q the beginnings and
ends of big clusters, respectively. Hence, Cj ⊂ [cj , dj ]. The path Ri should read the big clusters as one
block, i.e. along the reading-path.
Moreover, let B1 < B2 < · · · < Bp be the blocks of ψ in the set [si, ri]\(∪qj=1[cj + 2, dj − 2]) that are
bigger than m2/2v̄. By definition, l(Bj) < m3, j = 1, . . . , p. Indeed, if l(Bj) ≥ m3, then Bj would be a
(part of) big cluster. We refer to a Bj as a small block. The small blocks should be red as shortly as
possible, i.e. along the reading path.
Finally let A1 < A2 < . . . < AK , K = p + q be the ordered big clusters and small blocks. Let aj , bj
denote (an arbitrary) reading-beginning and reading-end of Aj .
Since i > 1, it holds l2i−1 ∈ III . Then D2i−1 has empty neighborhood, hence [ri, ri +Lm2] is empty (for
ψ) and, therefore, does not contain any small blocks. Also D2i−1 is isolated. This implies that there is
no point in [ri, ri+Lm2] that is connected with any point in [ri+Lm2 +m, si]. In particular, all objects
of interest, A1, . . . , AK are outside of [ri, ri + Lm2] or, formally, a1 > ri + Lm2.
If si − ri ≤ 2Lm2, then the interval does not contain blocks that are bigger than m0.9. In this case
the path Ri starts at ri, i.e. R(0) = ri and goes to the point si with (l2i − l2i−1 + 1)m2 step without
generating more than mv̄ consecutive same colors in observations. This is clearly possible.
If si − ri > 2Lm2, then we define the minimum-blocks path Ri for interval [ri, si] backwards. More
precisely, we define or prescribe a path R∗ that starts at si and goes to ri with (si − ri)m2 steps. The
prescription of R∗ is the following: start at si, i.e. R∗(0) = si. Then move stepwise to bK (recall, this
is a reading-end of the last small block or the last big cluster in [ri, si]). Recall si = l2im If si 6= l, then
l2i ∈ III and [si − Lm2, si +m] is empty and [si − Lm2 −m, si − Lm2] contains a fence. As explained
above, this implies that bK ≤ si − Lm2. So, by moving stepwise from si to bK , it is not possible that S
generates more than m0.9v̄ same colors in the beginning.
After reaching bK move along the reading path to aK . Then move stepwise to bK−1. Continue so until a1
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and then stepwise until ri+Lm2. Since a1 > ri+Lm2, for such a path less than ((si− ri)−Lm2)v̄ steps
are needed. This means that the path has more than (si − ri)(m− v̄) +Lm2v̄ steps to cover the interval
[ri, ri+Lm2] with length Lm2 without generating more than mv̄ consecutive same colors in observations
and satisfying R∗((si−ri)m) = ri. This is obviously possible, because the interval does not contain more
than m0.9 consecutive same colors. Finally define Ri as R∗ backwards, i.e. Ri(0) = R∗((si − ri)m) =
ri, Rk(1) = R∗((si − ri)m− 1), . . . , Ri(j) = R∗((si − ri)m− j), . . . , Rk((si − ri)m) = R∗(0) = si (recall,
S is symmetric).
Such definition of Ri ensures that (2.13) and (2.15) hold. Let us show that (2.14) holds as well.

Note that the number of big blocks in ψ ◦Ri is equal with the number of big clusters in [ri, si]. Let this
number be M . That means

q̂V (ψ ◦Ri) = qV ([ri, si]) = M,

where V := l2i − l2i−1 + 1. Let

T (j) := inf{k : qk(ψ|[ri, si]) = j}, T̂ (j) := inf{k : q̂k(ψ ◦Ri) = j} j = 1, . . . ,M.

Clearly, (2.14) is violated if there exists j ∈ {1, . . . ,M} such that T̂ (j) < T (j). Fix a j ∈ {1, . . . ,M}. The
inequality T̂ (j) < T (j) means that after reading the j-th big cluster, Ri has more than (V −T (j)+1)m2

steps to go to si. However, the path Ri is constructed such that after reaching to the bj we have at most
(V − T (j) + 1)mv̄ step to go si. That proves (2.14).
Finally consider the first interval [r1, s1] = [0, s1] (obviously, r1 = 0). Since l1 = 1 /∈ III , the interval
[0, Lm2] is not necessarily empty. And [Lm2, Lm2 +m] does not necessarily contain a fence. This means
that it might be not possible to go from a1 to 0 without generating more than mv̄ consecutive same colors
in observations and satisfying R∗((s1)m) = 0. However, it is clearly possible to go from a1 to 0 without
generating any big block in observations. So, for R1, the description of reverse-path, R∗ ends: go from a1

to 0 without generating any big block in the observations. For example, if ψ(0) = ψ(1) = · · · = ψ(Lm3) =
1, then the reverse of the minimum-block path, R∗, states that S goes to 0 (with suitable many steps,
satisfying R∗(s1m2) = 0) by generating only one’s. Thus, if R1 and ψ(0) = ψ(1) = · · · = ψ(Lm3) = 1
hold, then ψ ◦ R1 starts with at least m3 consecutive ones but it does not start with a big block. This
means that (2.14) still holds.
Hence, E∗min(i) 6= ∅ for each i = 1, . . . , k.
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