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A framework for synthesis of reduced order
models

Roxana Ionutiu and Joost Rommes

Abstract A framework for model reduction and synthesis is presented,which en-
ables the re-use of reduced order models in circuit simulation. Especially when
model reduction exploits structure preservation, we show that using the model as
a current-driven element is possible, and allows for synthesis without controlled
sources. Two synthesis techniques are considered: (1) by means of realizing the
reduced transfer function into a netlist and (2) by unstamping the reduced system
matrices into a circuit representation. The presented framework serves as a basis for
reduction of large parasitic R/RC/RCL networks.

1 Introduction

The main motivation for this chapter comes from the need for ageneral framework
for the (re)use of reduced order models in circuit simulation. Although many model
order reduction methods have been developed and evolved since the 1990s (see for
instance [1] for an overview), it is usually less clear how touse these methods effi-
ciently in industrial practice, e.g., in a circuit simulator. One reason can be that the
reduced order model does not satisfy certain physical properties, for instance, it may
not be stable or passive while the original system is. Failing to preserve these prop-
erties is typically inherent to the reduced order method used (or its implementation).
Passivity (and stability implicitly) can nowadays be preserved via several methods
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2 Roxana Ionutiu and Joost Rommes

[19, 10, 21, 26, 2, 25, 16], but none address the practical aspect of (re)using the re-
duced order models with circuit simulation software (e.g.,SPICE [9]). This brings
forward another reason of concern within the circuit simulation industry. The linear
circuit to be reduced is represented by anetlist, which is a description of the circuit
element values (R,L,C) and their connections to the circuit nodes (see also Fig. 1).
However, reduced order models (as a result of model reduction applied on the dy-
namical system describing the original circuit) are usually represented in terms of
system matricesor of theinput-output transfer function. Typically, circuit simulators
are not prepared for inputs in a mathematical representation, and would require ad-
ditional software architecture to handle them. In contrast, a reduced model innetlist
representation could be easily coupled to bigger systems and directly simulated.

Synthesis is the realization step needed to map the reduced order model into a
netlist consisting of electrical circuit components [13].In [7] it was shown that pas-
sive systems (with positive real transfer functions) can besynthesized with positive
R,L,C elements and transformers (see also [32]). Later developments [6] propose a
method to circumvent the introduction of transformers, however the resulting real-
ization is non-minimal (i.e., the number of electrical components generated during
synthesis is too large). Allowing for possibly negativeR,L,C values, other methods
have been proposed via e.g. direct stamping [19, 18] or full realization [14, 20].
These mostly model the input/output connections of the reduced model with con-
trolled sources.

In this chapter we consider two synthesis methods that do notinvolve controlled
sources: (1)Foster synthesis[13], where the realization is done via the system’s
transfer function and (2)RLCYSN synthesis by unstamping[28], which exploits
input-output structure preservation in the reduced systemmatrices [provided that
the original system matrices are written inmodified nodal analysis (MNA)represen-
tation]. The focus of this chapter is on structure preservation and RLCSYN, espe-
cially because synthesis by unstamping is simple to implement for both SISO and
MIMO systems. Strengthening the result of [28], we give a simple procedure to re-
duce either current- or voltage-driven circuits directly in impedance form by remov-
ing all the sources. Such an impedance-based reduction enables synthesis without
controlled sources. The reduced order model is available asa netlist, making it suit-
able for simulation and reuse in other designs. Similar software [8] is commercially
available.

The material in this chapter is organized as follows. The remainder of this sec-
tion introduces terminology for the different nodes pertaining to a circuit topology
(Sect. 1.1). A brief mathematical formulation of model order reduction is given in
Sect. 1.2. The Foster synthesis is presented in Sect. 2. In Sect. 3 we focus on reduc-
tion and synthesis with structure (and input/output) preservation. Sect. 3.1 describes
the procedure to convert admittance models to impedance form, so that synthesized
models are easily (re)used in simulation. Based on [28], Sect. 3.2 is an outline of
SPRIM/IOPOR reduction and RLCSYN synthesis. Examples follow in Sect. 4, and
Sect. 5 concludes.
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1.1 Internal nodes, terminals, and ports

The terms internal nodes, terminals (or external nodes), and ports often occur in
electronic engineering related papers. Aninternal nodeis a node in a circuit that is
not visible on the outside of a circuit, i.e., no currents canbe injected in an internal
node (cf. node 1 in Figure 1). Aterminal (external node)is a node that is visible
on the outside, i.e., a node in which currents can be injected(cf. node a in Fig. 1).
A port consists of two terminals that can be connected, for instance, by a source
or another (sub)circuit (cf. port P in Fig. 1). Sometimes terminals are referred to
as ports and vice versa: from the context it should then be clear which terminal(s)
complete the ports; usually it is implicitly assumed that the ground node completes
the ports. In Fig. 1, for instance, terminal a can be seen as a port (Q) by including
the ground node.

C

R

1a

C

R

P

Q

Fig. 1 Circuit with terminal a, internal node 1, port P, and port Q(a,0).

1.2 Problem formulation

In this chapter the dynamical systemsΣ(A,E,B,C,D) are of the formEẋ(t) =
Ax(t)+Bu(t), y(t) = Cx(t)+Du(t), whereA,E ∈ Rn×n, E may be singular but the
pencil(A,E) is regular,B ∈ Rn×m, C ∈ Rp×n, x(t) ∈ Rn, andu(t) ∈ Rm, y(t) ∈ Rp,
D ∈Rp×m. If m, p> 1, the system is called multiple-input multiple-output (MIMO),
otherwise it is called single-input single-output (SISO).The frequency domain
transfer function is defined as:H(s) = C(sE−A)−1B + D. For systems in MNA
form arising in circuit simulation see Sect. 3.

The model order reduction problem is to find, given ann-th order (descriptor)
dynamical system, ak-th order system:̃E ˙̃x(t)= Ãx̃(t)+B̃u(t), ỹ(t)= C̃x̃(t)+Du(t)
wherek< n, andẼ,Ã∈Rk×k, B̃∈Rk×m, C̃∈Rp×k, x̃(t)∈Rk, u(t)∈Rm, ỹ(t)∈Rp,
andD ∈ Rp×m. The number of inputs and outputs is the same as for the original
system, and the corresponding transfer function becomes:H̃(s) = C̃(sẼ− Ã)−1B̃+
D. For an overview of model order reduction methods, see [1, 5, 24]. Projection
based model order reduction methods construct a reduced order model via Petrov-
Galerkin projection:

Σ̃(Ẽ,Ã, B̃,C̃,D) ≡ (W∗EV,W∗AV,W∗B,CV,D), (1)
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whereV,W ∈ Rn×k are matrices whosek < n columns form bases for relevant sub-
spaces of the state-space. There are several projection methods, that differ in the
way the matricesV andW are chosen. These also determine which properties are
preserved after reduction. Some stability preserving methods are:modal approxi-
mation [23], poor man’s TBR [22]. Amongmoment matching[11] methods, the
following preserve passivity:PRIMA[19], SPRIM[10], spectral zero interpolation,
[2, 25, 16, 30]. From the balancing methods,balanced truncation[4] preserves sta-
bility, andpositive real balanced truncation[21, 26] preserves passivity.

2 Foster synthesis of rational transfer functions

This section describes the Foster synthesis method, which was developed in the
1930s by Foster and Cauer [13] and involves realization based on the system’s
transfer function. The Foster approach can be used to realize any reduced order
model that is computed by standard projection based model order reduction tech-
niques. Realizations will be described in terms of SISO impedances (Z-parameters).
For equivalent realizations in terms of admittances (Y-parameters), see for instance
[13, 27]. Given the reduced system (1) and assuming that all its finite poles are
simple [i.e., the matrix pencil(Ã, Ẽ) is non-defective], consider the partial fraction
expansion [17] of its transfer function:

H̃(s) =
k

∑
i=1

r̃ i

s− p̃i
+ D, (2)

The residues are ˜r i =
(C̃x̃i)(ỹ∗i B̃)

ỹ∗i Ẽx̃i
, the poles are ˜pi and, if non-zero,D gives additional

contribution from poles at∞. An eigentriplet(p̃i , x̃i , ỹi) is composed of an eigen-
valuep̃i of (Ã, Ẽ) and the corresponding right and left eigenvectorsx̃i, ỹi ∈ C

k. The
expansion (2) consists of basic summands of the form:

Z(s) = r1 +
r2

s− p2
+

r3

s
+

(
r4

s− p4
+

r̄4

s− p̄4

)
+sr6 +

(
r7

s− p7
+

r7

s− p̄7

)
, (3)

where for completeness we can assume that any kind of poles may appear, i.e.,
either purely real, purely imaginary, in complex conjugatepairs, at∞ or at 0 (see
also Table 1). The Foster realization converts each term in (3) into the corresponding
circuit block withR,L,C components, and connects these blocks in series in the final
netlist. This is shown in Fig. 2. Note that any reordering of the circuit blocks in the
realization of (3) in Fig. 2 still is a realization of (3). Thevalues for the circuit
components in Fig. 2 are determined according to Table 1.

The realization in netlist form can be implemented in any language such as
SPICE [9], so that it can be reused and combined with other circuits as well. The ad-
vantages of Foster synthesis are: (1) its straightforward implementation for single-
input-single-output (SISO) transfer functions, via either the impedance or the ad-
mittance transfer function, (2) after reducing purelyRCor RLcircuits via modal ap-
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L

Fig. 2 Realization of a general impedance transfer function as a seriesRLCcircuit.

Table 1 Circuit element values for Fig. 2 for the Foster impedance realization of (3)

pole residue R(Ohm) C(F) L(H) G(Ohm−1)

p1 = ∞ r1 ∈ R r1

p2 ∈ R r2 ∈ R − r2
p2

1
r2

p3 = 0 r3 ∈ R
1
r3

p4 = σ + iω ∈ C r4 = α + iβ ∈ C a0
a1

L 1
a1

a3
1

a2
1b0−a0(a1b1−a0)

a1b1−a0
a2

1p5 ≡ p̄4 r5 ≡ r̄4

a0 = −2(ασ +β ω), a1 = 2α , b0 = σ 2 +ω2, b1 = −2σ
p6 = ∞ r6 ∈ R r6

p7 ∈ iR r7 ∈ R 1
r7

2r7
p7 p̄7p8 ≡ p̄7 r8 ≡ r̄7

proximation [23], the reduced netlists obtained from Foster synthesis are guaranteed
to have positiveRC or RL values respectively (see [15] for a proof). Note however
that Foster synthesis does not guarantee positive circuit elements in general (e.g.,
when used to synthesize reduced models originating fromRLCcircuits, or reduced
models ofRCandRLcircuits that were obtained with methods different than modal
approximation). The main disadvantage is that for multi-input-multi-output transfer
functions, finding the Foster realization (see for instance[27]) is cumbersome and
may also give dense reduced netlists (i.e., all nodes are interconnected). This is be-
cause the Foster synthesis of ak-dimensional reduced system withp terminals, will
generally yieldO(p2k) circuit elements.

3 Structure preservation and synthesis by unstamping

This section describes the second synthesis approach, which is based onunstamping
the reduced matrix data into anRLC netlist and is denoted by RLCSYN [28]. It is
suitable for obtaining netlist representations for modelsreduced via methods that
preserve the MNA structure and the input-output connectivity at the circuit termi-
nals, such as theinput-output structure preservingmethod SPRIM/IOPOR[28]. The
strength of the result in [28] is that the input/output connectivity is synthesized after
reduction without controlled sources, provided that the system is inimpedance form
(i.e., inputs are currents injected into the circuit terminals, and outputs are voltages
measured at the terminals). For ease of understanding, the input-output structure
preserving reduction from [28] can be interpreted as model reduction withpreser-
vation of external nodes[e.g., after reducing the circuit in Fig. 1, the nodes forming
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ports Q and P are external (terminals) and will also appear inthe synthesized re-
duced model]. This way the reduced netlist can be easily coupled to other circuitry
in place of the original netlist, and (re)using the reduced model in simulation be-
comes straightforward. The main drawback is that, when the reduced system ma-
trices are dense and the number of terminals is large [O(103)], the netlist obtained
from RLCSYN will be dense. For ak dimensional reduced network withp termi-
nals, the RLCSYN synthesized netlist will generally haveO(p2k2) circuit elements.
The density of the reduced netlist however is not a result of the synthesis procedure,
but a consequence of the fact that the reduced system matrices are dense. Devel-
opments for sparsity preserving model reduction for multi-terminal circuits can be
found in [29], where sparse netlists are obtained by synthesizing sparse reduced
models via RLCSYN.

First, we motivate reduction and synthesis in impedance form, and show how
it also applies for systems that are originally in admittance form. Then we explain
model reduction via SPRIM/IOPOR, followed by RLCSYN synthesis.

3.1 A simple admittance to impedance conversion

In [28] it was shown how SPRIM/IOPOR preserves the structureof the input/output
connectivity when the original model is in impedance form, allowing for synthesis
via RLCSYN without controlled sources. The emerging question is: how to en-
sure synthesis without controlled sources, if the originalmodel is in admittance
form (i.e., it is voltage driven)? We show that reduction andsynthesis via the input
impedance transfer function is possible by removing any voltage sources from the
original circuit a priori and re-inserting them in the reduced netlist if needed.

Consider the modified nodal analysis (MNA) description of aninputadmittance1

typeRLCcircuit, driven byns voltage sources:



C 0 0
0 0 0
0 0 L




︸ ︷︷ ︸
EY

d
dt




v(t)
iS(t)
iL(t)




︸ ︷︷ ︸
ẋY

+




G Ev El
−Ev

∗ 0 0
−El

∗ 0 0




︸ ︷︷ ︸
−AY




v(t)
iS(t)
iL(t)




︸ ︷︷ ︸
xY

=




0
B

0




︸ ︷︷ ︸
BY

u(t), (4)

whereu(t) ∈ Rns are input voltages andy(t) = CYx(t) ∈ Rns are output currents,
CY = B∗

Y. The states arexY(t)T = [v(t), iS(t), iL(t)]T , with v(t) ∈ Rnv the node
voltages,iS(t) ∈ Rns the currents through the voltage sources, andiL(t) ∈ Rnl the
currents through the inductors,nv +ns+nl = n. Thenv = n1+n2 node voltages are
formed by then1 external nodes/terminals2 and then2 internal nodes (assuming that

1 The subscriptY refers to quantities associated with a system in admittanceform.
2 The MNA form (4) corresponds to the ungrounded circuit (i.e., the reference node is counted
within then1 external nodes), resulting in a defective matrix pencil(AY,EY). For subsequent com-
putations such as the construction of a Krylov subspace, thepencil(AY ,EY) must be regular. Thus
in (4), one node must be chosen as a ground (reference) node byremoving the row/column cor-
responding to that node; this ensures that the regularity conditions(i) and(ii ) from [32, page 5,
Assumption 4] are satisfied. The positive definiteness ofC ,L ,G is also a necessary condition to
ensure the circuit’s passivity.
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the voltage sources may be ungrounded,n1 satisfies:ns < n1 ≤ 2ns+1). The dimen-
sions of the underlying matrices are:C ∈ Cnv×nv, G ∈ Cnv×nv, Ev ∈ Cnv×ns, L ∈
C

nl×nl , El ∈ C
nv×nl , B ∈ C

n1×ns. Assuming without loss of generality that (4) is
permuted such that thefirst n1 nodes are the external nodes, the input voltages are
determined by a linear combination ofv1:n1(t) only. Thus the following holds:

Ev =

(
Bv

0n2×ns

)
∈ C

nv×ns, Bv ∈ C
n1×ns, B = −Bv. (5)

We derive the first order impedance-type system associated with (4). Note that
by definition,iS(t) flows out of the circuit terminals into the voltage source (i.e.,
from the+ to the− terminal of the voltage source, see also [19, Figure 3] [15]).
We can define new input currents as the currents flowinginto the circuit terminals:
iin(t)=−iS(t). Sincev1:n1(t) are the terminal voltages, they describe the new output
equations, and it is straightforward to rewrite (4) in the impedance form:





(
C 0
0 L

)

︸ ︷︷ ︸
E

d
dt

(
v(t)
iL(t)

)

︸ ︷︷ ︸
ẋ

+

(
G El
−El

∗ 0

)

︸ ︷︷ ︸
−A

(
v(t)
iL(t)

)

︸ ︷︷ ︸
x

=

(
Ev

0

)

︸ ︷︷ ︸
B

iin(t)

(
E ∗

v 0
)

︸ ︷︷ ︸
C

(
v(t)
iL(t)

)

︸ ︷︷ ︸
x

=y(t) = Bvv1:n1(t), E ∗
v =

(
B∗

v 0ns×n2

) (6)

whereB describes the newinput incidence matrixcorresponding the input currents,
iin. The newoutput incidence matrixis C, corresponding to the voltage drops over
the circuit terminals. We emphasize that (6) has fewer unknowns than (4), since the
currentsiS have been eliminated. The transfer function associated to (6) is an input
impedance:H(s) = y(s)

iin(s) . In Sect. 3.2 we explain how to obtain an impedance type
reduced order model in the input/output structure preserved form:





(
C̃ 0
0 L̃

)

︸ ︷︷ ︸
Ẽ

d
dt

(
ṽ(t)
ĩL(t)

)

︸ ︷︷ ︸
˙̃x

+

(
G̃ Ẽl

−Ẽ
∗

l 0

)

︸ ︷︷ ︸
−Ã

(
ṽ(t)
ĩL(t)

)

︸ ︷︷ ︸
x̃

=

(
Ẽv

0

)

︸ ︷︷ ︸
B̃

iin(t)

(
Ẽ ∗

v 0
)

︸ ︷︷ ︸
C̃

(
ṽ(t)
ĩL(t)

)

︸ ︷︷ ︸
x̃

=y(t) = Bvv1:n1(t), Ẽ
∗
v =

(
B∗

v 0ns×k2

)
(7)

whereC̃ , L̃ , G̃ , Ẽv are the reduced MNA matrices, and the reduced input impedance
transfer function is:̃H(s) =

ỹ(s)
iin(s) . Due to the input/output preservation, the circuit

terminals are easily preserved in the reduced model (7). Thesimple example in
Sect. 4.1 illustrates the procedure just described.

It turns out that after reduction and synthesis, the reducedmodel (7) can still be
used as a voltage driven admittance block in simulation. This is shown next. We can



8 Roxana Ionutiu and Joost Rommes

rewrite the second equation in (7) as:
(
−Ẽ ∗

v 0 0
)(

ṽ(t)T ĩS(t)T ĩL(t)T
)T

= Bu(t).

This result together withiin(t)=−iS(t), reveals that (7) can be rewritten as:




C̃ 0 0
0 0 0
0 0 L̃




︸ ︷︷ ︸
ẼY

d
dt




ṽ(t)
iS(t)
ĩL(t)




︸ ︷︷ ︸
˙̃xY

+




G̃ Ẽv Ẽl

−Ẽ ∗
v 0 0

−Ẽ ∗
l 0 0




︸ ︷︷ ︸
−ÃY




ṽ(t)
iS(t)
ĩL(t)




︸ ︷︷ ︸
x̃Y

=




0
B

0




︸ ︷︷ ︸
B̃Y

u(t), (8)

which has the same structure as the original admittance model (4). Conceptually one
could have reduced system (4) directly via the input admittance. In that case, synthe-
sis by unstamping via RLCSYN [28] would have required controlled sources [14].
As shown above, this is avoided by: applying the simple admittance-to-impedance
conversion (4) to (6), reducing (6) to (7), and finally reinserting voltage sources af-
ter synthesis [if the input-output structure preserved admittance reduced admittance
(8) is needed]. Being only a pre- and post-processing step, the proposed voltage-
source removal and re-insertion can be applied irrespective of the model reduction
algorithm used. For ease of understanding we relate it here to model reduction via
SPRIM/IOPOR.

3.2 I/O structure preserving reduction and RLCSYN synthesis

The reduced input impedance model (7) is obtained via the input-output structure
preserving SPRIM/IOPOR projection [28] as follows. LetV =

(
VT

1 ,VT
2 ,VT

3

)T
∈

C
((n1+n2+nl )×k) be the projection matrix obtained with PRIMA [19], whereV1 ∈

C
(n1×k), V2 ∈ C

(n2×k), V3 ∈ C
(nl×k), k ≥ n1, i = 1. . .3. After appropriate or-

thonormalization (e.g., via Modified Gram-Schmidt [23, Chapter 1]), we obtain:
Ṽi = orth(Vi) ∈ C

ni×ki ,ki ≤ k. The SPRIM [10] block structure preserving projec-

tion is: Ṽ = blkdiag
(
Ṽ1,Ṽ2,Ṽ3

)
∈ C

n×(k1+k2+k3), which does not yet preserve the

structure of the input and output matrices. The input-output structure preserving

SPRIM/IOPOR [28] projection is̃W =

(
W 0
0 Ṽ3

)
∈ C

n×(n1+k2+k3) where:

W =

(
In1×n1 0

0 Ṽ2

)
∈ C

(n1+n2)×(n1+k2). (9)

Recalling (5), we obtain the reduced system matrices in (7):C̃ = W∗C W, G̃ =

W∗G W, L̃ = Ṽ∗
3L Ṽ3, Ẽl = W∗El Ṽ3, Ẽv=W∗Ev =

(
B∗

v 0ns×k2

)∗
, which compared

to (5) clearly preserve input-output structure. Thereforea netlist representation for
the reduced impedance-type model can be obtained, that is driven injected currents
just as the original circuit. This is done via the RLCSYN [28]unstamping procedure.
To this end, we use the Laplace transform and convert (7) to the second order form:
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{
[sC̃ + G̃ + 1

sΓ̃ ]ṽ(s)=Ẽviin(s)
ỹ(s)=Ẽ ∗

vṽ(s),
(10)

wherẽiL(s) = 1
sL̃

−1
(
Ẽl
∗
)

ṽ(s) and Γ̃ = ẼlL̃
−1Ẽ ∗

l .

The presentation of RLCSYN follows [28, Sect. 4], [15] and isonly summarized
here. In circuit simulation, the process of forming theC ,G ,L system matrices
from the individual branch element values is called “stamping”. The reverse oper-
ation of “unstamping” involves decomposing entry-wise thevalues of the reduced
system matrices in (10) into the correspondingR, L, andC values. When applied on
reduced models, the unstamping procedure may produce negative circuit elements
because the reduced system matrices are no longer diagonally dominant (while the
original matrices were). Obtaining positive circuit elements only is subject to further
research. The resultingRs,Ls andCs are connected in the reduced netlist according
to the MNA topology. The reduced input/output matrices of (10) directly reveal the
input connections in the reduced model via injected currents, without any control-
ling elements. The prerequisites for an unstamping realization procedure therefore
are:

1. The original system is in MNA impedance form (6). If the system is of admit-
tance type (4), apply the admittance-to-impedance conversion from Sect. 3.1.

2. In (6), noLs are directly connected to the input terminals so that, after reduction,
diagonalization and regularization preserve the input/output structure.

3. System (6) is reduced with SPRIM/IOPOR [28] to (7) and converted to second
order form (10). The alternative is to obtain the second order form of the original
system first, and reduce it directly with SAPOR/IOPOR [28, 3].

4. The reduced system (10) must be diagonalized and regularized according to [28].
Diagonalization ensures that all inductors in the synthesized model are connected
to ground (i.e., there are no inductor loops). Regularization eliminates spurious
over-large inductors. These steps however are not needed for purelyRCcircuits.

4 Numerical examples

We apply the proposed reduction and synthesis framework on several test cases. The
first is a simple circuit which illustrates the complete admittance-to-impedance for-
mulation and the RLCSYN unstampting procedure, as described in Sect. 3. The sec-
ond example is a single-input-single-output (SISO) transmission line model, while
the third is a multi-input-multi-output (MIMO) model of a spiral inductor. For the
SISO example, one can easily provide synthesized models viaboth Foster and RLC-
SYN. For the MIMO example, a synthesized model can be obtained straightfor-
wardly with RLCSYN, thus RLCSYN synthesis is preferred overFoster synthesis.



10 Roxana Ionutiu and Joost Rommes

4.1 Illustrative example

Fig. 3 Admittance-type circuit driven by input voltages [19].G1,2,3 = 0.1S, L1 = 10−3H, C1,2 =
10−6, Cc = 10−4, ‖u1,2‖ = 1.

The circuit in Fig. 3 is voltage driven, and the MNA admittance form (4) is:




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 C1 +Cc −Cc 0 0 0
0 0 −Cc C2 +Cc 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 L




˙


v1
v4

v2
v3

iS1
iS2
iL




+




G1 0 −G1 0 1 0 0
0 G3 0 0 0 1 1

−G1 0 G1 +G2 −G2 0 0 0
0 0 −G2 G2 0 0 1
−1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 1 0 −1 0 0 0







v1
v4

v2
v3

iS1
iS2
iL




=




0 0
0 0
0 0
0 0
−1 0
0 −1
0 0




(
u1

u2

)
(11)

Notice that

iin =

(
i1
i2

)
= −

(
iS1

iS2

)
(12)

u =

(
u1

u2

)
=

(
v1

v4

)
, (13)

thus the external nodes (input nodes/terminals) arev1 andv4, and the internal nodes
arev2 andv3. As described in Sect. 3.1, (11) has an equivalent impedanceformula-
tion (6), with:

C =




0 0 0 0
0 0 0 0
0 0 C1+Cc −Cc

0 0 −Cc C2+Cc


 , L =

(
L
)
, G =




G1 0 −G1 0
0 G3 0 0

−G1 0 G1+G2 −G2

0 0 −G2 G2


 , El =




0
−1
0
1


 (14)

Ev =




1 0
0 1
0 0
0 0


 , B =

(
−1 0
0 −1

)
, Bv = −B (15)

Matrices (14), (15) are reduced either in first order form using SPRIM/IOPOR ac-
cording to Sect. 3.2. Here we reduce the circuit with SPRIM/IOPOR and synthesize
it by unstamping via RLCSYN. Note that there is anL directly connected to the
second input nodev4, thus assumption 2. from RLCSYN is not satisfied. We thus
reduce and synthesize the single-input-single-output version of (11) only, where the
second inputi2 is removed. Therefore the new incidence matrices are:
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Ev1 =




1
0
0
0


 , B1 =

(
−1
)
, Bv1 = −B1. (16)

We choose an underlying PRIMA projection matrixV ∈ C
n×k spanning ak = 2-

dimensional Krylov subspace (with expansion points0 = 0). According to Sect. 3.2,
after splittingV and appropriate re-orthonormalization, the dimensions ofthe input-
output structure preserving partitioning are :

n1 = 1, n2 = 3, nl = 1, k2 = 2, k3 = 1, (17)

and the SPRIM/IOPOR projection is:

W̃ =




1 0 0 0
0 4.082·10−1 −4.861·10−1 0
0 8.164·10−1 5.729·10−1 0
0 4.082·10−1 −6.597·10−1 0
0 0 0 1


 ∈C

5×4
, with W ∈C

4×3
. (18)

After diagonalization and regularization, the SPRIM/IOPOR reduced system ma-
trices in (10) are:

C̃=




0 0 0
0 1.749·10−5 −5.052·10−5

0 −5.052·10−5 1.527·10−4


 , G̃ =




1 8.165·10−2 −5.729·10−2

8.165·10−2 9.999·10−2 −7.726·10−2

−5.7295·10−2 −7.7265·10−2 2.084·10−1




Γ̃=




0 0 0
0 0 0
0 0 30.14


 , Ẽv1 =




1
0
0


 (19)

Reduced matrices (19) are now unstamped individually usingRLCSYN. The
reduced system dimension in second order form is thusN = 3, indicating that the
reduced netlist will have 3 nodes and an additional ground node. In the following,
we denote byMi, j i = 1. . .N, j = 0. . .N−1 a circuit element connected between
nodes(i, j) in the resulting netlist.M represents a circuit element of the type:R,L,C
or current sourceJ.

By unstampingG̃ , we obtain the followingRvalues (for simplicity only 4 figures
behind the period are shown here, nevertheless in implementation they are computed
with machine precisionε = 10−16):

R1,0=

[
3

∑
k=1

G̃(1,k)

]−1

=8.0417Ω , R1,2=−
[
G̃(1,2)

]−1
=−12.247Ω , R1,3=−

[
G̃(1,3)

]−1
= 17.452Ω ,

R2,0 =

[
3

∑
k=1

G̃(2,k)

]−1

=9.5798Ω , R2,3=−
[
G̃(2,3)

]−1
=12.942Ω , R3,0=

[
3

∑
k=1

G̃(3,k)

]−1

=13.535Ω .

By unstampingC̃ , we obtain the followingC values:

C2,0=
3

∑
k=1

C̃(2,k) =−3.3026·10−5 F, C2,3=−C̃(2,3) =5.0526·10−5
, F, C3,0=

[
3

∑
k=1

C̃(3,k)

]−1

=1.0221·10−4 F.

By unstamping̃Γ , we obtain the followingL values:



12 Roxana Ionutiu and Joost Rommes

L3,0 =

[
3

∑
k=1

Γ̃(3,k)

]−1

=3.317·10−2 H .

By unstampingẼv1, we obtain the current sourceJ1,0 of amplitude 1A.
The Pstar [31] equivalent netlist is shown below:.

circuit;
r r_1_0 (1, 0) 8.0417250765565598e+000;
r r_1_2 (1, 2) -1.2247448713915894e+001;
r r_1_3 (1, 3) 1.7452546181796258e+001;
r r_2_0 (2, 0) 9.5798755840972589e+000;
r r_2_3 (2, 3) 1.2942609947762115e+001;
r r_3_0 (3, 0) 1.3535652691596653e+001;
l l_3_0 (3, 0) 3.3170000000000033e-002;
c c_2_0 (2, 0) -3.3026513336014821e-005;
c c_2_3 (2, 3) 5.0526513336014765e-005;
c c_3_0 (3, 0) 1.0221180442099465e-004;
j j_1 (1, 0) sw(1, 0);
c: Set node 1 as output: vn(1);
c: Resistors 6;
c: Capacitors 3;
c: Inductors 1;

end;

Table 2 summarizes the reduction and synthesis results. Even though the num-
ber of internal variables (states) generated by the simulator is smaller for the
SPRIM/IOPOR model than for the original, the number of circuit elements gen-
erated by RLCSYN is larger in the reduced model than in the original. Fig. 4 shows
that approximation with SPRIM/IOPOR is more accurate than with PRIMA. The
Pstar simulation of the RLCSYN synthesized model also matches the MATLAB
simulation of the reduced transfer function.

Table 2 Input impedance reduction (SPRIM/IOPOR) and synthesis (RLCSYN)
System DimensionR C L StatesInputs/Outputs

Original 5 3 3 1 5 1
SPRIM/IOPOR 4 6 3 1 4 1

4.2 SISO RLCnetwork

We reduce the SISORLC transmission line in Fig. 5. Note that the circuit is driven
by the voltageu, thus it is of admittance type (4). The admittance simulation of
the model reduced with thedominant spectral zero method (Dominant SZM) [16,
30], synthesized with the Foster approach, is shown in Fig. 7. The behavior of the
original model is well approximated for the entire frequency range, and can also
reproduce oscillations at dominant frequency points.

The benefit of the admittance-to-impedance transformationdescribed in Sect. 3.1
is seen in Fig. 8. By reducing the system in impedance form with SPRIM/IOPOR
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Fig. 5 Transmission line from Sect. 4.2

Fig. 6 Coil structre from Sect. 4.3
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Fig. 8 Input admittance transfer function:
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model (via impedance), after reconnecting the
voltage source at the input terminal

and synthesizing (7) [using the second order form (10)] withRLCSYN [28], we are
able to recover the reduced admittance (8) as well. The approximation is good for
the entire frequency range.
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4.3 MIMO RLCnetwork

We reduce the MIMORLCnetlist resulting from the parasitic extraction [12] of the
coil structure in Fig. 6. The model has 4 pins (external nodes). Pin 4 is connected to
other circuit nodes only viaC’s, which causes the original model (6) to have a pole
at 0. The example shows that the SPRIM/IOPOR model preservesthe terminals and
is synthesizable with RLCSYN without controlled sources

Fig. 9 shows the simulation of the transfer function from input 4 to output 4.
SPRIM/IOPOR is more accurate around DC than PRIMA. Another alternative is to
ground pin 4 prior to reduction. As seen from Fig. 10, SPRIM/IOPOR applied on the
remaining 3-terminal system gives better approximation than PRIMA for the entire
frequency range. With pin 4 grounded however, we loose the ability to (re)connect
the synthesized model in simulation via all the terminals.
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Fig. 9 Input impedance transfer function with
“v4” kept: H44 for PRIMA, SPRIM/IOPOR
and RLCSYN realization
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Fig. 10 Input impedance transfer func-
tion with “v4” grounded: H33 for PRIMA,
SPRIM/IOPOR and RLCSYN realization

5 Conclusions and outlook
A framework for realizing reduced mathematical models intoRLC netlists was de-
veloped. Model reduction by projection forRLCcircuits was described and associ-
ated with two synthesis approaches: Foster realization (for SISO transfer functions)
and RLCSYN [28] synthesis by unstamping (for MIMO systems).An admittance-
to-impedance conversion was prosed as a pre-model reduction step and shown to
enable synthesis without controlled sources. The approaches were tested on sev-
eral examples. Future research will investigate reductionand synthesis methods
for RCLK circuits with many terminals, while developments on sparsity-preserving
model reduction for multi-terminalRCcircuits can be found in [29].
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