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On gradient-enhanced damage and 
quasi-brittle and frictional materials 

R. de Borst, J. Pamin, R. H. J. Peerlings, L. J. Sluys 
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Abstract Gradient-enhanced damage and plasticity 
approaches are reviewed with regard to their ability to model 
localization phenomena in quasi-brittle and frictional materials. 
Emphasis is put on the algorithmic aspects. For the purpose 
of carrying out large-scale finite element simulations efficient 
numerical treatments are outlined for gradient-enhanced 
damage and gradient-enhanced plasticity models. For the latter 
class of models a full dispersion analysis is presented at the end 
of the paper. In this analysis the fundamental role of dispersion 
in setting the width of localization bands is highlighted. 

1 
Introduction 
Failure in cohesive-frictional materials involve localization of 
deformation, i.e. we observe that at incipient failure small zones 
of highly strained material develop rather abruptly, while the 
remainder of the structure experiences almost no additional 
straining. Examples are cracks in concrete, shear bands in soils 
and metals, dilatational bands in polymers and rock faults. 
Experiments show that these localization phenomena are 
accompanied by a more or less sharp decrease of the 
load-carrying capacity. This phenomenon is commonly named 
strain softening and can lead to ill-posed boundary value 
problems in standard continuum theories, since in quasi-static 
problems ellipticity of the governing set of differential equations 
is no longer assured, while in dynamic problems hyperbolicity 
can be lost locally. In numerical simulations we observe an 
extreme mesh sensitivity in terms of fineness and direction of 
the grid lines. To remedy this improper behaviour the standard 
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continuum model must be enriched. Here, various strategies 
are possible, such as nonlocal approaches (Pijaudier-Cabot and 
Bazant 1987, Bazant and Pijaudier-Cabot 1988, Simo 1988), 
micro-polar continua (Mfihlhaus and Vardoulakis 1987, 
Mfihlhaus 1989, de Borst 1991, 1993), rate-dependent 
approaches (Needleman 1988, Loret and Pr6vost 1990, Sluys 
and de Borst 1992, Sluys 1992), and continuum models 
enhanced with higher-order deformation gradients (Aifantis 
1984, 1987, 1992, Coleman and Hodgdon 1985, Schreyer and 
Chen 1986, Lasry and Belytschko 1988,Vardoulakis and Aifantis 
1991, Mfihlhaus and Aifantis 1991, de Borst and Miihlhaus 1992, 
Pamin 1994). 

This article is an updated version of a keynote lecture 
presented at the Fourth International Conference on 
Computational Plasticity (de Borst, Pamin and Sluys 1995), 
enriched with elements of a contributed lecture at the same 
conference (Peerlings, de Borst, Brekelmans and de Vree 1995a). 
We shall concentrate on the implications of using 
gradient-enhanced continuum models in large-scale numerical 
simulations of localization and failure. In particular, we shall 
consider gradient plasticity and gradient damage models, 
and we shall demonstrate how effective numerical strategies 
for these enhanced continua can be developed. 

The article is laid out as follows. First, the general setting 
of the boundary value problem is given. Two classes of 
constitutive models are considered, namely gradient-enhanced 
isotropic damage and gradient-enhanced plasticity models. 
Then, the algorithms are developed for both classes of material 
models. It seems that the algorithm for the damage model is 
simpler than that for the gradient plasticity model, which 
observation is related to the issue of the additional boundary 
conditions that emerges in such higher-order continuum 
theories. Finally, a treatment is given of wave propagation in 
a gradient-enhanced plastic medium. The pivotal role of 
dispersion in setting the band width in enriched continua is 
emphasized. 

2 
Enhanced continua 

2.1 
General framework 
For the formulation of the incremental boundary value problem 
in gradient-enhanced continua we introduce the displacement 
vector u = (u~, uy, u~), the strain tensor in a vector form e = (axx, 
~z' ~zz, 7xy, 7yz, Y~) and the stress tensor in a vector form 
a =  (axx, ayy, a ,  a y, ~ ,  Crz~). Setting R = diag[p, p, p] with p the 
mass density, we have, under the assumption of small 
deformations, the equations of motion for a body occupying 



a volume V the damage loading function 

LTo'+ b = Rii, (1) f(g,K) = g-- K (7) 

the kinematic equations 

g -- Lu, (2) 

vanishes. In particular, the damage loading function f and the 
rate of damage growth & have to satisfy the Kuhn-Tucker 
conditions 

and the constitutive equations, either in a total format 

a = fie, a, q), (3a) 

or in a rate format 

&= g(g, a ,q)& (3b) 

where a finite number of scalar or tensor-valued internal 
variables are conveniently collected in a vector q. In the above 
equations the superscript T is the transpose symbol and 
a superimposed dot signifies differentiation with respect to time, 
so that a superimposed double dot implies that a quantity is 
differentiated twice with respect to time. b is a body-force vector 
and L is a differential operator matrix: 

"3. 
o 

0. 
L T= 0 ~yy 

0 0 

0 0 

0 0 
0x 3z 

~. 0. 0. ~ 

(4) 

To complete the incremental boundary value problem we 
specify the standard static and kinematic boundary conditions 
on complementary parts of the body surface S: 

Zvs = t, u = u s ,  (5) 

with Z the stress tensor in a matrix form, v s the outward normal 
to the surface of the body S and t the boundary traction vector, 
and the appropriate initial conditions in case of dynamic 
loadings. The additional boundary conditions that emerge in 
higher-order continuum models will be discussed next, when 
the specific constitutive formulations for damage and plasticity 
are treated. 

2.2 
Gradient damage 
Herein, we shall restrict ourselves to isotropic damage 
formulations. In a strain-based formulation in the sense of Simo 
and Ju (1987) we then have 

f<_0, &=>0, fcb=O (8) 

In (7) g is the local equivalent strain, which can be a function 
of strain invariants, the principal strains, or the local energy 
release due to damage (Lemaitre and Chaboche 1990). In 
a non-local generalization the equivalent strain g is replaced by 
a spatially averaged quantity (Pijaudier-Cabot and Bazant 1987, 
Bazant and Pijaudier-Cabot 1988): 

1 
g ( x ) = ~ ( x ) ! g ( s ) g ( x + s ) d Y 2 ,  Y2~(x)=yg(s),dY2o (9) 

with g(s)a weight function, e.g., the error function, and 
s a relative position vector pointing to the infinitesimal volume 
d~. 

Non-local constitutive relations can be approximated by 
gradient models by expanding the kernel g of the integral in (9) 
into a Taylor series (Mtihlhaus and Aifantis 1991). If we truncate 
after the second-order terms and carry out the integration 
implied in (9) under the assumption of isotropy, the following 
relation ensues: 

g =  g q- cV2g, (10) 

where gis a material parameter of the dimension length squared. 
It can be related to the averaging volume and then becomes 
dependent on the precise form of the weight function g. In here, 

we adopt a phenomenological view in that x ~  is supposed to 
reflect the length scale of the failure process we wish to 
describe macroscopically. 

Formulation (10) has a severe disadvantage when applied 
in a finite element context, namely that it requires computation 
of second-order gradients of the local equivalent strain g. Since 
this quantity is a function of the strain tensor, and since the 
strain tensor involves first-order derivatives of the 
displacements, third-order derivatives of the displacements 
have to be computed, which inevitably necessitates 
CX-continuity of the shape functions. To obviate this problem, 
Eq. (10) is differentiated twice and the result is substituted in 
Eq. (10). Again neglecting fourth-order terms this leads to 

g--  cV2g = g (11) 

131 

~ =  (1 -- og)Deg (6) 

with D e the virgin elastic stiffness matrix, and o~ a scalar-valued 
internal variable, which reflects the amount of damage which 
the material has experienced. It starts at zero (undamaged 
state) and grows to one (complete loss of integrity) as a function 
of a scalar history parameter K, which represents the most severe 
deformation the material has experienced: o) = r and 
initiates at a threshold level K 0. Damage growth is possible if 

When g is discretized independently and making use of the 
divergence theorem, a C~ for g then suffices 
(Peerlings, de Borst, Brekelmans and de Vree 1995a, 1995b). 

As stipulated before, higher-order continua require 
additional boundary conditions. With Eq. (11) governing the 
damage process, either the averaged strain g itself or its normal 
derivative must be specified at the boundary of the body S: 

g = G, (Vg)rvs = g~s, (12) 
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with the subscript s denoting the boundary of the body S (cf. 
Eq. (5)). The physical interpretation of these boundary 
conditions remains an open issue, but in the example 
calculations the natural boundary condition (~, = O) has been 
adopted. 

2.3 
Gradient plasticity 
The flow theory of plasticity adopted below departs from the 
strain-based damage model introduced in the preceding section 
essentially in the sense that the total relation ofEq. (3a) is 
replaced by a rate formulation in the sense of Eq. (3b): 

6"= W(g- -  Jm), (13) 

3 
Algorithmic treatment of gradient damage 

3.1 
Formulation 
For the development of the finite element formulation of the 
gradient-enhanced damage model we start by transforming the 
governing equations for motion (1) and the 'non-local' 
equivalent strain g, Eq. (11), into a weak form: 

6uT(Lr6 + b --  Rii) dV = 0, (19) 
V 

bg(g - dv2g - ~ dV = 0, (20) 
v 

with m the plastic flow direction and 3~ the flow intensity. 
Quite similar to damage theory, a loading function is 
introduced, say f ,  which in a stress-space plasticity theory as 
considered here, bounds the allowable stress states. The salient 
departure from standard plasticity theory is the dependence 
of the yield function on gradients of the equivalent plastic 
strain measure K, in addition to the stresses a and the equivalent 
plastic strain ~ itself. In particular, we shall consider a yield 
function that depends on a, K and the Laplacian of ~c (Mfihlhaus 
and Aifantis 1991): 

f = fla ' ,  ~c, WK). (14) 

Analogously to damage.theory the yield function f and the 
rate of plastic staining 2 have to satisfy the Kuhn-Tucker 
conditions 

where the b-symbol denotes the variation of a quantity. Using 
the divergence theorem, the kinematic relation (2), the 
boundary conditions (5) and (12), and the constitutive relation 
(6) we obtain 

buTRii dV + y (1 -- co) 3dD~gdV = y 6urbdV + y cburtdS, 
V V V S 

(21/ 

[3g g + g(Vbg)rVg] dV = y ~ggdV. (22) 
V v 

The finite element discretization is now rather straightforward. 
We interpolate the displacements u and the 'non-local' 
equivalent strain g by 

u = N a ,  (23) 

J~>_O, f<O,  f,~=O. (15) g = hL (24) 

Henceforth we shall consider the case of a linear gradient 
dependence, so that the yield function can be written as: 

f =  ~b(a, K) + ~V2K, (16) 

with g again an additional material parameter which reflects 
the intensity of the gradient influence. As for the gradient 
damage theory it has the dimension of length squared 
and for vanishing values the gradient influence gradually 
disappears. 

In general, the hardening parameter ~c is integrated along 
the loading path and its rate can be a function ofinvariants of the 
plastic strain rate, ~P = 2m, or the rate of plastic work. Herein, 
we limit our discussion to the strain-hardening hypothesis, 
so that 

with N a matrix which contains the interpolation polynomials 
for the displacements and h a row vector which contains the 
interpolation polynomials for the 'non-local' equivalent 
strains. The vectors a and gcontain the nodal degrees of freedom 
for the displacements and the 'non-local' equivalent strains, 
respectively. The strains and the gradients of g are then 
obtained as 

g = Ba, (25) 

Vg = Qg, (26) 

where B = LN and Q = Vh contain the derivatives of the shape 
functions assembled in N and h, respectively. Inserting 
identities (23)-(26) into Eqs. (21)-(22) yields 

(17) ~ barNrRN/i dV + ~ bar(1 -- co)BTDeBadV 
v v 

with Z = diag [1,1,1,�89189 For most commonly employed 
flow rules, definition (17) reduces to 

(181 

= ~ baTNrbdV + ~ •arNrt dS, (27) 
v S 

bgr[hTh + gQTQ] gdV = ~ bgVhT gdV. (28) 
v v 

with ~ a positive constant, which depends on the adopted 
flow rule (Pamin 1994). 

Note that the structure of Eqs. (27)-(28) is such that for the 
interpolants of the displacements as well as for the interpolants 



(Y of the equivalent strain ~ we can use C~ functions. 
However, to avoid stress oscillations the interpolation of the 
displacements should be one order higher than that of 
the equivalent strains L 

The set of Eqs. (27)-(28) is highly non-linear and must be 
solved using an iterative procedure at structural level. The 
Newton-Raphson procedure is widely used for this purpose 
and has also been adopted in this study. This algorithm requires 
the linearization of the above set of  equations. Care must be 
exercised that this linearization is carried out in a consistent 
fashion, since else the quadratic convergence of the method 
is lost (Simo and Taylor 1985). This linearization process 
has been carried out by Peerlings, de Borst, Brekelmans and de 
Vree (1995a, 1995b ) for this gradient-enhanced damage relation 
and results in: 

o ~i +f~ [~aa O] [~] q_ [KaaLK~a K~ J Ldg_l Ko ]Uda]__ _ K ~ d ~ ) _  1 ]  (29) 

where the d-symbol denotes the iterative improvement  between 
two successive equilibrium iterations, j is the iteration counter, 
and 

f~ = y NVbdV + y NTtdS, (30) 
V 3 

f~=  -- ~ BT%_ldV, 
V 

f~ = yhT~_ldV, 
V 

Ma~ = y NrRNdV,  
V 

K~ = y(1 -- %_~)B~D~BdV, 
V 

K~ = ~(hTh + gQTQ)dV, 
V 

. T a g  K~= - J h  --BdV, 
v cqg 

&o &c 
K~, = -- v ]-~K ~ B~Deg;_~hdV, 

x L _1 0 

Fig 1. Imperfect bar in uniaxial tension 

area has been made in order to trigger localization of 
deformation in this area. For the case of 'ideal-plasticity like 
damage',  in which after a linear-elastic ascending branch, 
a constant stress at increasing damage is assumed, an analytical 
solution has been worked out by Peerlings, de Bors t, Brekelmans 
and de Vree (1995b). The numerical solution appeared to 
agree exactly with this analytical solution. 

Here, we shall consider a linear-softening type damage 
relation, Fig. 2, such that 

~9(~)=0 if K < %  (9(x)- G(K-~~ lc(G K~ ) if ~Co_-<x=< G 

else co(K) = 1 (38) 

with ~c 0 = 1 0  - 4  and G = 0.0125. Young's modulus has been 
set equal to E = 20,000 MPa (so that for the tensile strength 

(31) we have a t = 2 MPa) and as reference value for the gradient 
parameter g--- 1 m m  2 has been adopted. 

Numerical solutions has been obtained for successive levels 
(32) of mesh refinement, namely with 80, 160, 320 and 640 elements 

with a quadratic interpolation for the displacements and a linear 
(33) interpolation for the 'non-local'  equivalent strain L The 

results in terms of load-displacement curves are given in Fig. 3, 
which shows a clear convergence towards a physically 

(34) meaningful solution with a finite energy dissipation. Figure 4 
shows the evolution of the damage and strain profiles for the 
finest mesh. We observe the formation of an initially relatively 

(35) large damaged area, gradually evolving into a narrow 
zone of intense deformation and damage. This behaviour is 
fundamentally different from that when the same problem is 

(36) analysed with a gradient plasticity theory. Then, a localization 
zone of constant thickness is predicted. However, the 
effect of the gradient parameter g on the structura] response 

(37) is similar for both enhanced continuum models. A larger value 
of g leads to a more ductile response and a larger localization 
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where &c/cqg equals 1 upon loading and vanishes for unloading. 
Note that the nonsymmetry in Eq. (29) is caused by the damage 
formalism, and not by the gradient enhancement. Only for 
special choices of the local equivalent strain g symmetry can 
be recovered (Simo and Ju 1987). 

3.2 
Example 
To illustrate the performance of the numerical method, a simple, 
one-dimensional bar of length L = 100 m m  is considered, 
Fig. 1. It is subjected to a uniaxial, pure tensile loading enforced 
by indirect displacement control of the end displacement t2 of 
the bar. While all material characteristics are uniform over 
the entire bar, in the centre of the bar a weakened zone 
with a length d = 10 mm and a 10% reduction in cross-sectional 

O" 

O" t ) 
- -  I 

to0 

Fig 2. Linear (local) softening diagram 

E 
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2.0 

~-. 1.5 

.z. 1.o 

0.5 

0 
0.02 0.04 

elongation [mm] 

Fig. 3. Load-displacement curves for gradient damage relation upon 
mesh refinement 
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50 

Fig. 4a-b. Evolution of damage profiles (top) and strain profiles 
(bottom) along the bar 

area, Fig. 5, where the results of the calculation with the finest 
mesh are presented for g = 0.25, 1.00, and 4.00 m m  2. It is also 
observed that a higher peak load is found for increasing values 
of g, which is due to the fact that the spreading of 
deformation delays the onset of the damage process. 

4 
Algorithmic treatment of gradient plasticity 

4.1 
6eneral 
Equation (14) shows the necessity to compute second-order 
gradients of the equivalent plastic strain measure ~c. One 
possibility to achieve this is to use finite differences (Lasry 
and Belytschko 1988). The algorithm is then a sequence of 
separate solutions of the equilibrium problem using finite 
elements and the plastic yielding problem using finite 
differences. A more general approach (Miihlhaus and Aifantis 
1991, de Borst and Miihlhaus 1992) is to use only finite elements 

2.0 

~-~ 1.5 

~ 1 0  

0.5 

a 

1.0 

0.8 

u 

0.4 
x J  

0.2 

010 

/ / 
/ / ,//'-4.00 

0 05 
elongation [mm] 

--~- 1.00 

/ / -4.~176 
0 

x [mml 
-50 50 

Fig. 5a-b. Influence of the internal length scale x/c on the 
load-displacement curves (top) and the damage profiles (bottom) 

and to solve the two (coupled) problems simultaneously. For 
this purpose, it is necessary to employ a weak satisfaction of 
the yield condition and to discretize the plastic strain 
field in addition to the standard discretization of the 
displacement field, in a spirit similar to that used in the 
preceding section of gradient damage: 

S OuT (LTo" -}- b - Rii) d V  = 0 (39) 
V 

and 

62f(a;,  K i, V2Kj) dV~ = O, (40) 
v, 

where the subscript j refers to the current iteration and Vx 
denotes the volume of the plastic subdomain. Unlike the 
standard algorithms for plasticity, the yield condition is satisfied 
in a distributed sense. Furthermore, it is only fulfilled when 
convergence is reached and not necessarily during the 
iterative process. 

Equation (39) can be modified using integration by parts, 
the standard boundary conditions (5) 1 , and decomposing 

= %-1 + do': 

~ur R u d V  + ~ b~.TdadV 
V V 

= ~ 6 u r b d V  + f 6urtdS  - S 6ew%-~ dV. (41) 
V S V 

Furthermore, the yield function f in Eq. (14) is developed in 
a Taylor series around (aj_ 1, G-l, WG-I)  and truncated after the 



linear terms: 

f(%, ~cj, V2K) = f(%_~, ~:s ~, Vbcj_~) + n rdo  - -  hd2 + gV2(d2), 
(42) 

We next substitute Eq. (50) into Eqs. (41) and (46), so that 
the following relations ensue: 

burRi idV + ~ betH ( d e -  d2m) dV 
V V 

where the following definitions have been used: 

n ~  (43) 

= ~ 5 u r b d V  + ~ 3ur tdS -- ~ 5er% tdV 
V S V 

and 

(51) 

d~c a f  _ ~ f  (44) 
h -  d20K r/c%c 

and 

62[nrHdg - (h +nrHm)d2 +gV2(d)o)]dV~ 
v~ 

= - ~ 6 2 f ( a j _ v ~ c j _ i ,  V b c ~ _ O d V ~  ., (52) 
V~ 
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d~c 0 f  
g - d2 ~V2K - -  ~]g' (45) 

Substitution of Eq. (42) into Eq. (40) then leads to: 

where the values of n, m, h andg  on the left hand side of Eq. (52) 
are determined at the end of iteration j - 1, i.e. tbr the state 
defined by (o- 1,~ 1,V2n 1)" j -  j -  /- 

Using integration by parts for the last term on the left hand 
side of Eq. (52) we obtain 

52 [nTda -- hd2 + gV 2 (d2)] dV) 
v, 

= - y 5.~f(~_, ,  %_~,V2K~ t)dVa. (46) 
v, 

To proceed further, we must first integrate the differential 
stress-strain relation (13) for finite increments of strain. This 
stress update is done in a 'total-incremental'  way, i.e. in every 
iteration the new estimate for the stress is computed 
starting from the equilibrium state ~r 0 at the end of the previous 
loading step: 

o) = ~r o +DeA~ -- A)ojD~mj, 

with the A-symbol denoting the difference between a value 
in the current iteration j and its value at the beginning of the 
loading step. Basically, Eq. (47) constitutes an Euler backward 
algorithm. The flow direction m is approximated by 
m t = m(at),  its value in the trial stress state ~r t = ~r 0 + DeA~. 
The increment of plastic multiplier A2 is directly interpolated 
from the nodal values. For integration points in an elastic 
state an artificial hardening modulus h = E is substituted to 
avoid singularity. The difference between the stress increments 
in two successive equilibrium iterations can be approximated 
by the linearization 

~m e 0 J-1 d a  = DCdg-- d2D~mj_1 -- A2s 1D ~ do'. 
%-1 

Upon introduction of the pseudo-elastic stiffness operator H: 

cqmj_ 1 ] 1 
H : (De)  -1 -~ A,~)_ 1 ~ / , (49) 

A 

this relation can be rearranged as 

d a =  H ( d s - -  d2rnj_ 1). 

62 [nrH d e -  (h + n r H m )  d2] dV;. - y g(V52) r (Vd2) d V;. 
v, v, 

= - ~ 3 2 f ( ~  v~j_vVbcj 1)dK (53) 
V~ 

provided the non-standard boundary conditions 

6 2 = 0  or (Vd2)Tv, = 0  (54) 

are fulfilled on the elasto-plastic boundary Sz of the body. The 
first condition is delicate for finite increments, since the 
elastic-plastic boundary moves when the plastic zone in the 
body evolves. During this process the boundary condition 

(47) 62 = 0 on the momentary  elastic-plastic boundary may not be 
true and (54) 2 must hold. If the same mesh is used for both 
the equilibrium and yield condition, i.e. if integrals over 
the plastic subdomain v; are replaced by integrals over the 
whole body V in Eqs. (52) or (53), either the admissible 32 must 
vanish in the elastic part of the body, which would set 
constraints on the shape functions to be used, or we must 
enforce there f =  0, n = m = 0 and d2 = 0. This is a major 
difference with gradient damage, where the Helmholtz equation 
for the non-local strain variable must be satisfied over the 
whole domain throughout the entire loading process. It may 
partly be the explanation why a proper spread of the damage 
zone is observed in gradient damage when C~ 
interpolants are used for the averaged equivalent strain, while 
deformation is trapped into a single element when the same 

(48) interpolation functions are used for gradient plasticity. 
Then, a proper spread can only be achieved if C 1 -interpolation 
polynomials are used for the equivalent plastic strain, or if 
a penalty approach is used which, at the elastic-plastic 
boundary, enforces (54)2. 

(50) 

4.2 
CLformulation 
In the field Eqs. (51) and (52)/(53) there appear at most 
first-order derivatives of the displacements. Therefore the 
discretization procedure for the displacement field u requires 
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C~ interpolation functions assembled in N, similar 
to Eq. (23). The strains are then derived according to Eq. (25). 
However, as discussed in the previous section, the discretization 
of the plastic multiplier 2 requires C~-continuous shape 
functions: 

2 = hA, (55) 

where A is a vector with nodal degrees of freedom of the plastic 
multipliers. Introducing a matrix Q which contains the 
derivatives of the shape functions in h we obtain the 
discretization of the gradient of the plastic multiplier: 

V2=QA,  Q = V h .  (56) 

Introducing a row vector p which contains the Laplacians of 
the shape functions in h, we find the discretization formula for 
the Laplacian of the plastic multiplier: 

V22 = pA. (57) 

After substitution of the above identities into Eqs. (51) and 
(52), and requiring that the result must hold for any admissible 
variation of 6a and 6A, we obtain the following set of algebraic 
equations: 

[M~ : I [ A I  q- FK~aLK;~ Kx;~J[dA]K~;'~Fda~= Ffr I ' L  f~ (58) 

with the pseudo-elastic stiffness matrix: 

K~ = ~ BTHBdV, (59) 

the off-diagonal matrices: 

K2 = -~BWHmhdV, 
V 

Kz~ = -- ~ hrnrHB dV, 
V 

the nonsymmetric gradient-dependent matrix: 

However, the additional boundary conditions (54) have to be 
enforced in this case. 

4.3 
C~ 
In order to be able to use C~ interpolation functions 
for the plastic multiplier field, we introduce new variables ~b~, 
~by and G: 

~2 02 ~2 
~ = ~ x '  ~r=~yy ' ~ = ~ z  (65) 

and collect them in a vector $ = (~b~, G '  ~b~). Accordingly, we 
can write the gradient of the plastic multiplier as 

V~=~b (66) 

and represent the Laplacian of ;~ as 

V2,~ = Vr4~, (67) 

where the scalar product of the operator V r and the vector 
field q~ denotes the divergence operator. The result of Eq. (67) 
can be substituted in Eq. (52) or (53), but the constraint (66) 
must be added to the formulation. 

Since we want to avoid the introduction of a Lagrangian 
multiplier field in addition to the already defined three fields u, 
2 and ~b, we will make use of a penalty approach. We can 
include the constraint by means of an additional variational 
equation: 

k(V2 - q~)T [V(b2) -- ~b] dV = 0, (68) 
V 

where k is a penalty factor. In computations we use k = E 3, 
(60) where E is Young's modulus. Using the incremental form of 

Eq. (68) together with Eqs. (51) and (52) we obtain a set 
(61) of three integral equations: 

6urRii dV + y 6erH ( d e -  d2m) dV 
g V 

Kz~ = j' [(h + nrHm)hrh - g h r p ]  d V. 
V 

(62) = y 6uTbdV + y buTt dS-- y b~T ~_l dV , (69) 
V S v 

The mass matrix Ma~, the external force vector fe and the vector 
of nodal forces caused by the internal stresses fa are as in 
Eqs. (33), (30) and (31), and the vector of residual forces 
emerging from the inexact fulfilment of the yield condition 
reads: 

f;~ = ~hrf(%_p ~cj i, V2tcj-1) dV. (63) 
V 

32 [ n r H d e -  (h + nTHm) d2 +gVTd~b] dV 
V 

= -- ~ ~2f(%-1, ]~j-1, V 2 / s  1 ) dV, (70) 
g 

where according to Eqs. (18) and (67) we calculate V2tc = t/Vr~b 
and 

If we make use of Eq. (53) instead of Eq. (52), a symmetric 
form of the discretized yield condition is obtained, which 
leads to a similar matrix problem as in Eq. (58), but now the 
nonsymmetry due to the Laplacian term has vanished, i.e. the 
matrix K can be nonsymmetric only because of non-associated 
flow ( m r  n): 

Kxj~ = ff [(h + nTD*m)hTh +gQTQ] dV. (64) 
V 

kjb2vr[v(d2)-dgpldV-k~bdj[V(d~)-ddpldV=O. 
V V 

(71) 

The above equations are discretized using the formulas (23), 
(25), (55) and (56), but now with C~ shape functions 
in h, and the following interpolation for the new variables in ~b: 

q~=Pq), (72) 



where q~ contains the nodal values of q)~, ~by and ~b~ and P is 
a matrix of shape functions, similar to N. Upon the 
discretization of Eqs. (69)-(71) and the usual argument that 
the resulting equations must hold for any admissible 6a, 5A and 
5 ~ ,  we obtain the following set of algebraic equations in 
a matrix form: 

,rKaK 0j Ii 0 0  Fdal 
0 K~ K;4JJ [dq~J 

[ f~ + f~] 

0 

In Eq. (73) the matrices M ,  K ,  K; and K are given in 
Eqs. (33), (59)-(61). K;, ~ and Ka0 are defined as 

Kxx = ~ (h + n r H m ) h r h d V ,  Kx+ = -- yghTVWpdV, (74) 
V v 

and the submatrices with the supersript c in the additional 
(symmetric) matrix introducing the constraint (66) are defined 
a s  

K~x=~QTQdV, K ; 4 = J P r P d V ,  K ~ 4 = - ~ Q r p d V .  
V V 7 

(75/ 

In this formulation all the interpolation functions in N, h and 
P are C~ 

If we substitute the new variables assembled in ~b into 
Eq. (53), which is the starting point for the symmetric 
formulation, we obtain the weak form of the yield condition 
in which the derivatives of 4~ appear only on the right hand side. 
Substitution of the discretization formulas (23), (25), (55) 
and (56) then gives 

iMa o oil i o o o ; i  
0 0 

+ {r'a" :l [i ~ ~ +k dA 

0 K4, KCr;4 K~4JJ[d~J 

re + fa] 

= fj. , 

0 

where 

K4, = ~ g p r p d v  (77) 

and all the other submatrices have been defined previously. 
With the set (76) the additional boundary conditions (54), are 
now written as: 

c~)~ = 0 or d4~rv~. = 0. (78) 

For the penalty method to be successful the penalty submatrix 
K c must be singular. Otherwise non-zero qJ values are not 
admitted. To achieve this goal reduced numerica~ integration 
should be used. Since the penalty constraint assures the 
satisfaction of Eq. (66) only in the sampling points, the best 
results are expected when uniformly reduced integration is 
employed for all the matrices. 

(73) 4.4 
One-dimensional elements 
In the one-dimensional gradient plasticity elements with 
Cl-continuity the axial displacement u is interpolated linearly 
(denoted as L 6G) or quadratically (denoted as L 7G), and 
cubic Hermitian shape functions are used for the plastic 
multiplier 2. For element L 6G two-point Gaussian integration 
is employed. The submatrix K;,. includes polynomials of the 
6th-order and is not integrated accurately. Translation in 
the x-direction must be prevented and two additional 
constraints (e.g. symmetry) or boundary conditions for the 
2-field must be introduced in the model. The element yields an 
exact fulfilment of the yield condition at the integration points, 
which means that when fa~0,  then f ~ 0 ,  but stress 
oscillations are observed. This phenomenon may cause a failure 
of convergence in an early stage of the loading process (Pamin 
1994). 

For element LTG with two-point integration the balance 
between the interpolation for u and 2 is optimal, i.e. the stress 
integration in Eq. (47) gives a stress state o-j, which is constant 
within an element and which exactly fulfils the yMd 
condition. Convergence in one iteration is observed unless 
the softening zone spreads or nonlinear softening is used 
(Pamin 1994). This behaviour is attributed to the special 
qualities of the integration stations, so-called Barlow points, 
in which higher-order accuracy of interpolated field derivatives 
is obtained. 

The above properties are exhibited by the nonsymmetric 
formulation with K;~; from Eq. (62). If the symmetric format for 
K~; according to Eq. (64) is used together with the required 
boundary conditions and two-point (reduced) integration, 
convergence is lost. This behaviour is attributed to an 
unfavourable numerical integration error, since for three-point 
integration the symmetric and nonsymmetric formulation 
give the same results. However, for the three-point integration 
too many constraints are introduced and the results are 
inaccurate. The stresses at one or more points are then mapped 
to the inside of the yield surface ( f <  0), which violates the 
Kuhn-Tucker conditions and results in a disturbance of 

(76) convergence. 
Similarly, two different one-dimensional C~ can 

be defined with separate Lagrange interpolation of the 
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longitudinal displacement u, the plastic multiplier 2 and the 
additional variable ~b. Element L 6C uses linear shape functions 
and one integration point. It is the point, in which the constraint 
~b = 2 is fulfilled. The longitudinal translation must be 

, x  

prevented and two boundary conditions for 2 or ~b should be 
introduced in a model. The element is perfectly convergent 
since the integration station is a Barlow point. Element 
L g c  uses quadratic shape functions and two Gauss points, 
which are again optimal for convergence. Boundary conditions 
similar to the L 6C element must be introduced and the return 
mapping is also exact. In presence of the additional boundary 
conditions (78) the symmetric and nonsymmetric formulations 
give the same results for the one-dimensional C~ 
because the employed numerical integration schemes 
are sufficient for an exact integration of the shape function 
polynomials. 

4.5 
Example 
As example problem, we shall again employ the imperfect bar 
in tension, Fig. 1. For this one-dimensional problem the 
following simple yield function holds: 

d2h7 

f =  a - 6(~c) + Cdx2, (79) 
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Fig. 6. Load-displacement diagrams (top) and evolution of the plastic 
strains (bottom) for C o one-dimensional elements 

with a the axial stress. The hardening parameter ~ is now 
equal to the plastic multiplier 2 and the axial plastic strain 
~P. According to the analytical solution (de Borst and Mtihlhaus 
1992) the width of the localization zone w is now constant 
and given by: 

w = 2nl,  (80) 

with I the internal length scale defined as 

l =  h" (81) 

In Eq. (81) h = &Y/deP is the hardening/softening modulus. 
The same geometric data have been used as in the simulation 

with the gradient damage model. Also the Young's modulus 
and the tensile strength have been assigned the same 
value.The geometric imperfection has been replaced by 
a material imperfection such that the elements in the centre of 
the bar have a 10% reduction in tensile strength, namely at = 
1.8 MPa instead of G = 2.0 MPa. Linear softening has again 
been used with a softening modulus h = - 0.1 E. A value 
for the internal length scale l = 5 m m  has been adopted, 
resulting in g = 50,000 N. The corresponding width of the 
localization zone is w = 31.4 mm. 

We begin the comparison with C%continuous 
penalty-enhanced elements. The left diagram of Fig. 6 shows 
load-displacement paths obtained using elements L 6C and L 9C 

with one-point and two-point Gauss integration, respectively. 
Immediate convergence has been observed in the calculations. 
While the coarse mesh with 20 linear L 6C elements still 
gives a slightly too stiff response and a disturbed 2 distribution, 
the fine mesh and both meshes for the quadratic L 9C element 

yield identical results. When all the inelastic points are in the 
softening regime, the slope of the load-displacement diagram 
is equal to the analytical value. The calculations are also stable 
when the strain in the centre elements exits the softening 
branch (• > ~cu). The load-displacement diagrams then bend 
upwards and the localization zone broadens. This behaviour is 
a result of the fact that, when the softening modulus h goes 
to zero, while g is kept constant, the internal length 
1 locally increases of infinity. 

Next, we apply the Ct-continuous elements L 7G with 
quadratic interpolation of the displacement and Hermitian 
interpolation of the plastic multiplier. Two different values of 
the internal length l are assumed: l = 5 mm (so that g = 50,000 N 
and w = 31.4 mm) and l =  2.5 mm (~ = 12,500 N and 
w = 15.7 mm). Figure 7 shows the load-displacement diagrams 
for these cases. As long as all the points in the structure remain 
in the softening regime, the results for the two meshes with 
20 and 80 elements are practically the same, and equal to 
those for the C~ When in the centre points the linear 
softening branch is exited, the calculations only remain stable 
if a mesh is employed that is dense enough compared to the 
width of the localization zone (and therefore relative to 
the value of the gradient constant ~). Fig. 7 shows that the 
results for both meshes are similar for the larger 
regularization coefficient g = 50,000 N, but for the coarse mesh 
simulation of the case with g =  12,500 N oscillations are 
observed. 

The comparison of the two diagrams in Fig. 8 shows that, 
similar to gradient damage, the internal length l (or 
alternatively, the gradient parameter g) controls the width of 
localization zone in the linear softening regime. 
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5 
Wave propagation and dispersion in gradient continua 
We conclude this contribution with a discussion on wave 
propagation and dispersion in gradient plasticity at the hand 
of the one-dimensional bar of Fig. 1, now loaded by an impact 
load. In this dynamic context the governing equations for 
motion and continuity read 

~a 02u 
Ox -- p c3t z (82) 

and 

Ou 
8 = ~ x ,  (83) 

with u the axial displacement, a and ~ stress and strain and 
x and t spatial and temporal variables, respectively. With the 
strain decomposition 

= ~e + 8p ' (84) 

and the bijective relation between stress a and elastic strain e~ 

a = E~ e, (85) 

the wave equation for one-dimensional gradient-dependent 
softening plasticity is derived as 

g / 04u 04u ~ 02u hE 82u 
h + E [ E ~ x 4 - P ~ ) + p  t~t2 h+Ectx2=O. (86) 

For a dispersion analysis we consider a single harmonic wave 
which propagates through a one-dimensional element 

u (x, t) = Ae '(kx-~tl. (87) 

The frequency 6o is a function of the wave number k 

co = f(k) ,  (88) 

and the function f(k) is determined by the particular system 
under consideration. A system is considered to be dispersive 
if (Whitham 1974): 

f "  (k) ~ 0, (89) 

in which a prime denotes differentiation with respect to k. In 
this case, the phase speed 

co 
c = -- (90) 

k 

is not the same for every wave number k and modes represented 
by its wave number travel at different speeds and will therefore 
disperse. Finally, we adopt the standard definitions for the 
wave length 

2:r 
= - -  (91) 

k 

and the period 

27r 
T = - - .  (92) 

co 

We substitute the harmonic wave solution (87) into Eq. (86). 
The dispersion relation for the gradient-dependent softening 
plasticity system is then elaborated as 

co = Ce k . / .  h + ck 2 (93) 
+ h + gk 2 k/r. 
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with ce = .,~E/p the so-called bar wave velocity. Now, the 
frequency is a real function of wave number k if 

hc 
(94) 

or using Eq. (91) 

2=<2nl, (95) 

with I the internal length scale defined in Eq. (81). Equation 
(94) states that there exists a cut-offvalue for k. This value of 
k corresponds to the mode with the largest wave length that 
the gradient-dependent softening system can transmit. 
Above this value for k all frequencies are real. 

Equation (93) shows that for a non-zero gradient constant 
g, f "  (k) ~ 0, so that wave propagation in the gradient- 
dependent plasticity system is dispersive. The dispersion 
curves have been plotted in Fig. 9 for a linear-elastic system 
(09 = cek), a standard softening plasticity system (with 

imaginary frequencies co = icek~/-  h/(E + h)), and the 
gradient-dependent softening plasticity system. In the right part 
of Fig. 9 the corresponding phase velocity- wave number ( c - k) 
curve is shown. In Fig. 9 the bar wave velocity c e = 1000 m/s, 
the Young's modulus E = 20,000 MPa, the softening modulus 
h = - 0.1 E and the gradient constant ~ = 50,000 N. 

Dispersion in a softening system is closely related to the 
problem of localization of deformation. As a result of softening 
localization of deformation may occur and the behaviour of 
localized zones is very much dependent on the dispersive 
characteristics of the material. For a standard softening 
plasticity system the inability of the material to transmit waves 
with a real frequency (and phase velocity) causes the strains 

to localize in zones of zero thickness. However the dispersion 
contribution due to spatial discretization causes the frequency 
to reach a real zero value, and numerically a stationary wave 
with frequency and phase velocity equal to zero is computed 
in the localization zone (Sluys, Cauvern and de Borst 
1995). The solution is now mesh dependent and corresponds to 
this stationary wave. Its wave length 2 is equal to the width 
of the zone, namely a one finite element wide zone (for 
constant strain elements). 

For the gradient-dependent softening system the fact that 
waves with real phase velocities disperse has the advantageous 
consequence that the localization zone can extend and that 
the strain profile in the localization zone can be transformed 
because different modes travel at different speeds. These 
features are of pivotal importance for simulating zones of  
localized deformation with a finite size instead of the 
zero-thickness solution as obtained for the standard softening 
plasticity system. Also for the gradient model the localization 
zone acts as a stationary wave with frequency and phase velocity 
equal to zero. For this reason the width of the localization 
zone w is equal to the lowest-order wave that the 
gradient-dependent softening system can transmit, i.e. w = 2zd. 
The width of the localization zone apppears as a consequence 
of the length scale effect and the spurious mesh dependence 
is removed (Sluys, de Borst and Mfihlhaus 1993). 

In finite element formulations a discrefization is carried 
out with respect to space and time. Discretization is another 
source of dispersion (Huerta and Pijaudier-Cabot 1994, 
Sluys and de Borst 1994) and is introduced irrespective of the 
fact whether the underlying material exhibits dispersion of 
waves (gradient-dependent softening system) or not (standard 
softening system). The dispersion contribution of temporal 
and spatial discretization has been treated in detail by 
Sluys, Cauvern and de Borst (1995) for a one-dimensional 
elasto-plastic bar with and without gradient influence. 
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