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Abstract: We consider the critical survival probability (up to time t) for oriented percolation
and the contact process, and the point-to-surface (of the ball of radius t) connectivity for critical
percolation. Let θt denote both quantities. We prove in a unified fashion that, if θt exhibits a power
law and both the two-point function and its certain restricted version exhibit the same mean-field
behavior, then θt ³ t−1 for the time-oriented models with d > 4 and θt ³ t−2 for percolation with
d > 7.
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1 Introduction

Percolation, oriented percolation and the contact process are known to exhibit a phase tran-

sition. Various interesting properties around the model-dependent critical point pc have been

studied and revealed, but still there are many open problems. One of the most important

problems is to investigate critical exponents that characterize singular behavior of observables.

Some of them were identified in certain situations.

In this paper, we consider the critical survival probability up to time t for oriented perco-

lation and the contact process, and the probability of the origin o ∈ Zd being connected to

the surface of the ball of radius t, centered at the origin, for critical percolation. Since the

survival probability is a time-oriented version of the point-to-surface connectivity, we denote

both quantities by θt. It is believed that θt exhibits a power law: θt ≈ t−1/δr as t →∞ (in some

appropriate sense). In the percolation school, δr is sometimes called the one-arm exponent.

Lawler, Schramm and Werner proved δr = 48/5 for the two-dimensional site percolation on

the triangular lattice, using the estimates for the stochastic Loewner evolution with parameter

6 (see [21] for a precise statement). Except for this result, there has been no proof of existence

of δr, or identification of its values for finite-range models in mathematically rigorous manner,

even in high dimensions.

In contrast, the behavior of the two-point function is well-understood in high dimensions.

For percolation, the two-point function at pc, denoted τ(x), is the probability of o, x ∈ Zd being

connected to each other, defined at pc. It has been proved that τ(x) ³ |x|−(d−2+η) as |x| → ∞
with η = 0 when d > 6 and the number N of neighbors is sufficiently large [9, 10], where

“³” means that the left-hand side divided by the right-hand side is bounded away from zero

and infinity. For the time-oriented models, the two-point function at pc, denoted τt(x), is, in

terms of the contact process, the probability of x ∈ Zd being infected at time t by the infected

individual at o ∈ Zd at time 0, defined at pc. It has been proved that supx τt(x) ³ t−d/α,

τ̂t ≡
∑

x τt(x) ³ tη and
∑

x |x|2 τt(x)/τ̂t ³ t2ν as t → ∞, with α = 2, η = 0 and ν = 1/2,

when the spatial dimension d is above 4 and N is sufficiently large [17, 19, 20, 23]. These

dimension-independent values of the critical exponents are equal to the values for branching

random walk (mean-field model). Let ρ (; 1/δr) be defined by θt ³ t−ρ as t →∞. It is not so

hard to see that η = 0 implies ρ ≤ 2 for percolation and ρ ≤ 1 for the time-oriented models

(see Section 3.1), where the upper bounds are the mean-field values of ρ.

On the other hand, the critical exponents are known to satisfy the so-called hyperscaling

inequalities, e.g., d − 2 + η ≥ 2ρ for percolation [27] and dν ≥ η + 2ρ for the time-oriented

models [25, (5.2) and (5.4)], where the critical exponents were defined in a wider sense. Other

hyperscaling inequalities were also derived in [7, 25, 27]. By those inequalities, the mean-field

values are known to be incompatible with d < 6 for percolation and with d < 4 for the time-

oriented models. These threshold dimensions are called the upper critical dimensions for the
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corresponding models.

In this paper, we prove in a unified way that ρ takes on the mean-field values for the

time-oriented models with d > 4 and for percolation with d > 7, if ρ exists and both the

two-point function and its certain restricted version exhibit the same mean-field behavior (see

Assumption 2.1). The assumption on the restricted two-point function is expected to hold

above the upper critical dimension for each model, but is still insufficient to extend ρ = 2 for

percolation down to d > 6. For sufficiently spread-out oriented percolation with d > 4, the

asymptotic behavior of θt with ρ = 1 will be reported in [15, 16], without any assumption on

the restricted two-point function. In this respect, our results are not so strong as the results

in [15, 16] for oriented percolation. However, the approach reported in this paper is short and

intuitive, and more importantly, gives a unified approach for both the time-oriented models

and percolation. We expect that, with the help of the random-current representation [1], our

unified approach could be applied to the single-spin expectation 〈σo〉t for Ising ferromagnet in

the box of side length t (with plus-boundary condition), and result in the mean-field behavior,

i.e., 〈σo〉t ³ t−1 as t → ∞, at the critical temperature in high dimensions. This will be

discussed in [26].

We organize the rest of this paper as follows. In Section 2, we define the models and state

the main result. A brief explanation of the proof is given at the end of Section 2, and the

detailed proof is given in Section 3.

2 Models and the results

2.1 Models

We consider the d-dimensional integer lattice Zd as space. For L ≥ 1, let

Ω = {x ∈ Zd : 0 < |x| ≤ L}, D(x) = N−1 1{x∈Ω}, (2.1)

where |x| is the Euclidean norm of x, N is the cardinality of Ω, and 1{··· } is the indicator

function. The model with L = 1 is the nearest-neighbor model, where N = 2d. We call the

model with L > 1 the spread-out model, where N = O(Ld) (see, e.g., [17] for a more general

definition). Our models are defined in terms of D as follows.

Percolation. A bond {x, y} is an unordered pair of distinct sites in Zd, and is occupied with

probability pD(y− x) and vacant with probability 1− pD(y− x), independently of the other

bonds, where p ∈ [0, N ] is the expected number of occupied bonds growing out of a single site.

We denote by Pp the probability distribution for the bond variables. We say that x is connected

to y, and write x ↔ y, if either x = y or there is a path of occupied bonds between x and y.

We define C(x) = {y ∈ Zd : x ↔ y}. For Z ⊂ Zd, we write {x ↔ Z} = {C(x) ∩ Z 6= ∅}.

2



It is known that there is a critical value pc = pc(d, L) ≥ 1 such that
∑

x Pp(o ↔ x) is finite

if and only if p < pc and diverges as p ↑ pc. Let

Bt = {x ∈ Zd : |x| ≤ t}, ∂Bt = {x ∈ Zd : t ≤ |x| ≤ t + L}. (2.2)

and define the two-point function and the point-to-surface connectivity at pc as

τ(x) = Ppc(o ↔ x), θt = Ppc(o ↔ ∂Bt). (2.3)

We are interested in the critical exponents η and ρ, defined by

τ(x) ³ |||x|||−(d−2+η), θt ³ |||t|||−ρ, (2.4)

where f ³ g means that f/g is bounded away from zero and infinity, and where ||| · ||| = | · | ∨1.

Note that ||| · ||| is not a norm on Rd, but it satisfies the following properties: for x, y ∈ Rd and

r > 0,

|||x + y||| ≤ |||x|||+ |||y|||, |||rx|||
{
≤ r|||x|||, if r ≥ 1,

≥ r|||x|||, if r < 1.
(2.5)

We also note that the above definition of ρ is based on the assumption that θt decays as

t → ∞. This has been confirmed only when d = 2 or d ≥ 19 with L = 1, and d > 6 with

L À 1 (see, e.g., [8, 12]).

It has been proved that η = 0 for the nearest-neighbor model with d À 6 [9] and for

the spread-out model with d > 6 and L À 1 [10]. The critical exponent η is believed to be

independent of the range L, as long as it is finite (universality), and thus is expected to be

zero for all d > 6 and L ≥ 1. This dimension-independent value of η equals the corresponding

value for the mean-field model. Various other critical exponents are also known to take on

their respective mean-field values, if (see [3] and references therein)

Ò ≡ sup
x/∈B`

(τ ∗D ∗ τ ∗ τ)(x) → 0, as ` →∞, (2.6)

where “∗” represents a convolution in Zd. With the help of [10, Proposition 1.7(i)], η = 0

implies Ò = O(|||`|||−(d−6)) if d > 6, and thus implies the mean-field values for all the other

critical exponents, except for ρ until now.

Oriented percolation and the contact process. We begin with oriented percolation. A bond

((x, t), (y, t+1)) is an ordered pair of sites in Zd×Z+, and is occupied with probability pD(y−x)

and vacant with probability 1−pD(y−x), independently of the other bonds, where p ∈ [0, N ].

We say that (x, s) is connected to (y, t), and write (x, s) → (y, t), if either (x, s) = (y, t) or there

is an oriented path of occupied bonds from (x, s) to (y, t). Let C(x, s) = {(y, t) ∈ Zd × Z+ :

(x, s) → (y, t)}. For Z ⊂ Zd × Z+, we define {(x, s) → Z} = {C(x, s) ∩ Z 6= ∅}.
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The contact process is a model for the spread of an infection in Zd, and is regarded as

continuous-time oriented percolation in Zd × R+, via the following graphical representation.

Along each time line {x} × R+, we place points in the manner of a Poisson process with

intensity 1, independently of the other time lines. For each ordered pair of distinct time lines

from {x} × R+ to {y} × R+, we place oriented bonds ((x, t), (y, t)), t ≥ 0, in the manner of a

Poisson process with intensity pD(y−x), independently of the other Poisson processes, where

p ≥ 0 is the infection rate. We say that (x, s) is connected to (y, t), and write (x, s) → (y, t),

if either (x, s) = (y, t) or there is an oriented path in Zd × R+ from (x, s) to (y, t) using

the Poisson bonds and time-line segments traversed in the increasing-time direction without

traversing the Poisson points. We define C(x, s) and {(x, s) → Z} for Z ⊂ Zd × R+ similarly

to oriented percolation.

We denote by Pp the probability distributions for these time-oriented models. It is known

that there is a critical value pc = pc(d, L) ≥ 1, depending on the models, such that the sum

over t ∈ Z+ of
∑

x Pp((o, 0) → (x, t)) for oriented percolation, or the integral of
∑

x Pp((o, 0) →
(x, t)) with respect to t ∈ R+ for the contact process, is finite if and only if p < pc and diverges

as p ↑ pc. Let

Bt = Zd × [0, t], ∂Bt = Zd × {t}, (2.7)

and define the two-point function and the survival probability at pc as

τt(x) = Ppc((o, 0) → (x, t)), θt = Ppc((o, 0) → ∂Bt). (2.8)

We are interested in the critical exponents α, η, ν and ρ, defined by

τ̄t ≡ sup
x∈Zd

τt(x) ³ |||t|||−d/α, τ̂t ≡
∑

x∈Zd

τt(x) ³ |||t|||η, (2.9)

∑

x∈Zd

|x|2 τt(x)

τ̂t

³ |||t|||2ν , θt ³ |||t|||−ρ, (2.10)

where, by analogy, we used the same letters η and ρ for the critical exponents of the spatial

sum of the two-point function and the survival probability, respectively.

It has been proved that (α, η, ν) = (2, 0, 1
2
) for the time-oriented models with d > 4 and

L À 1 [17, 20]. The same result except for α = 2 was proved in [23] for nearest-neighbor

oriented percolation with d À 4, but there have been no results on this set of exponents for

the nearest-neighbor contact process. Other critical exponents for both the nearest-neighbor

and spread-out time-oriented models are known to take on their respective mean-field values,

if (see [4] and references therein)

Ò ≡ sup
x:|x|≥`

t≥0

O(x, t) → 0, as ` →∞, (2.11)
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where, for oriented percolation,

O(x, t) =
∑

s,s′∈Z+:
t≤s′≤s

∑

y∈Zd

τs+1(y) (τs′−t ∗D ∗ τs−s′)(y − x), (2.12)

and for the contact process,

O(x, t) =

∫ ∞

t

ds

∫ s

t

ds′
∑

y∈Zd

τs(y) (τs′−t ∗D ∗ τs−s′)(y − x). (2.13)

Since the range of the set of infected sites almost surely grows at most linearly [5], (α, η) =

(2, 0) implies Ò = O(|||`|||−(d−4)/2) if d > 4, and thus implies the mean-field values for all the

other critical exponents than ρ.

2.2 Results

In this paper, we prove in a unified fashion for all three models that the mean-field behavior

for the two-point function implies the mean-field values of ρ, assuming existence of ρ and the

following assumption.

Assumption 2.1. There are positive constants C1 = C1(d, L) and C2 = C2(d, L) that are

independent of t such that, for the time-oriented models,

∑

(x,s)∈Bt/2

Ppc((o, 0) → (x, s), (o, 0) 6→ ∂Bt) ≥ C1|||t|||, (2.14)

and for percolation,

∑
x∈Bt/2+L

Ppc(o ↔ x, o 6↔ ∂Bt) ≥ C2|||t|||2, (2.15)

where Bt/2+L = Bt/2 ∪ ∂Bt/2.

The unrestricted two-point functions defined in (2.3) and (2.8), with η = 0, satisfy the

above inequalities. Therefore, Assumption 2.1 states, in a weak sense, that the above re-

stricted two-point functions exhibit the same mean-field behavior as the unrestricted two-point

functions.

Theorem 2.2. Suppose that η = 0 and α = 2 (the latter is only for the time-oriented models).

If ρ exists and Assumption 2.1 holds, then ρ = 1 for the time-oriented models with d > 4 and

ρ = 2 for percolation with d > 7.

5



o

b

t/2

t

0����

����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

����������������������
����������������������

t
o b

t/2

��

Figure 1: Typical configurations for θt.

We briefly explain the main idea of the proof. It is easy to show that η = 0 implies ρ ≤ 1

for the time-oriented models and ρ ≤ 2 for percolation (see Section 3.1). It thus suffices to

prove the opposite inequalities for ρ. Let us consider typical configurations for θt. When

t À 1, there may be a pivotal bond for the connection from the origin to the boundary ∂Bt.

We take notice of the last pivotal bond b, where we have a connection from the origin to the

first endpoint of b and two disjoint connections from the second endpoint of b to ∂Bt (see

Figure 1). If we could bound the probability of these configurations from below by θ2
t times

the sum of the unrestricted two-point function (over b = (b, b) with b ∈ Bt/2, as in Figure 1),

then η = 0 implies

t−ρ ≥
{

ct1−2ρ, for the time-oriented models,

ct2−2ρ, for percolation,
(2.16)

for some positive constant c, and thus ρ ≥ 1 for the time-oriented models and ρ ≥ 2 for

percolation.

To realize the above idea, we have to control the correction. As we will show in Section 3.2,

most error terms can be made small by letting Ò ¿ 1 and t À 1 in high dimensions. However,

the correction due to the above approximation using the unrestricted two-point function cannot

be controlled by a finite number of applications of the BK inequality (see, e.g., [6, 8]), and here

we will use Assumption 2.1. The desired asymptotic behavior of θt for spread-out oriented

percolation with d > 4 and L À 1 will be reported in [15, 16], with no assumption on the

restricted two-point function. The proof in [15, 16] is based on the lace expansion for θt, and

the difference between the restricted and unrestricted two-point functions is efficiently taken

into account along the expansion. Our proof of Theorem 2.2 does not depend on the full

expansion as in [15, 16], and Assumption 2.1 is inevitable.
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We remark that Assumption 2.1 is still insufficient to fully control the boundary effect and

thus to obtain ρ = 2 for percolation with d > 6. To improve the result down to d > 6, we

may also need some information on the restricted two-point function close to the boundary

(see Remark at the end of Section 3.2).

3 Proofs

We prove Theorem 2.2 in two steps. First, in Section 3.1, we prove that η = 0 implies ρ ≤ 1 for

the time-oriented models and ρ ≤ 2 for percolation. Then, in Section 3.2, we prove that η = 0

and α = 2 (the latter is only for the time-oriented models) imply the opposite inequalities for

ρ, if d > 4 for the time-oriented models and d > 7 for percolation, assuming existence of ρ

and Assumption 2.1.

In the rest of this paper, we omit the subscript pc and write E for the expectation with

respect to P = Ppc . We will use c to denote a finite positive constant which may depend on d

and L, but whose exact value is unimportant and may change from line to line.

3.1 Proof of the upper bound

Proof for the time-oriented models. Let

It = 1{(o,0)→∂Bt}, Xt =
∑

x∈Zd

1{(o,0)→(x,t)}, (3.1)

so that E(It) = θt and E(Xt) = τ̂t. By the Schwarz inequality, we obtain

τ̂ 2
t = E(ItXt)

2 ≤ E(I2
t ) E(X2

t ) = θt

∑
x,y

Ppc((o, 0) → (x, t), (o, 0) → (y, t)). (3.2)

If (o, 0) → (x, t) and (o, 0) → (y, t) occur simultaneously, then there exists a (z, s) ∈ Bt such

that (o, 0) → (z, s) occurs and that (z, s) → (x, t) and (z, s) → (y, t) occur disjointly, i.e.,

on disjoint sets of bonds. Using the Markov property, the BK inequality and η = 0, we can

bound the sum in (3.2) by

∫ t

0

ds
∑

x,y,z∈Zd

τs(z) τt−s(x− z) τt−s(y − z) =

∫ t

0

ds τ̂s τ̂ 2
t−s ≤ c|||t|||. (3.3)

(The integral is replaced by
∑t

s=0 for oriented percolation.) Together with (3.2), we thus

obtain ρ ≤ 1, if ρ exists.
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Remark. For spread-out oriented percolation with d > 4 and L À 1, Theorem 4.1 and

Lemma 4.2 in [14] imply that the left-hand side of (3.2) is asymptotically A2, while the sum in

the right-hand side of (3.2) is asymptotically A3V t, where A and V are constants depending

only on d and L. This leads to a lower bound on θt like (AV t)−1, which is consistent with [14,

Theorem 1.5], where the limit limt→∞ t θt, if it exists, equals 2(AV )−1.

Proof for percolation. We follow the same strategy as above. Let

It = 1{o↔∂Bt}, Xt =
∑

x∈∂Bt

1{o↔x}. (3.4)

Using the Schwarz inequality as in (3.2), we obtain
[ ∑

x∈∂Bt

τ(x)
]2

= E(ItXt)
2 ≤ E(I2

t ) E(X2
t ) = θt

∑

x,y∈∂Bt

Ppc(o ↔ x, o ↔ y). (3.5)

Since η = 0, the leftmost quantity is bounded from below by c|||t|||2. If o ↔ x and o ↔ y occur

simultaneously, then there is a z ∈ Zd such that o ↔ z, z ↔ x and z ↔ y occur disjointly. By

the BK inequality and η = 0, the sum in the right-hand side of (3.5) is bounded by
∑

x,y∈∂Bt

z∈Zd

τ(z) τ(x− z) τ(y − z) =
∑

x,y∈∂Bt
z∈Bt/2

τ(z) τ(x− z) τ(y − z) +
∑

x,y∈∂Bt

z /∈Bt/2

τ(z) τ(x− z) τ(y − z)

≤ c|||t|||2(2−d)+2(d−1)
∑

z∈Bt/2

|||z|||2−d + c|||t|||2−d
∑

x,y∈∂Bt

z∈Zd

|||x− z|||2−d |||y − z|||2−d, (3.6)

where we used |x − z| ≥ t/2 and |y − z| ≥ t/2 in the first sum, and |z| ≥ t/2 in the second

sum. By [10, Proposition 1.7(i)], the convolution of |||x− z|||2−d and |||y − z|||2−d is bounded by

c|||x − y|||4−d, whose sum over x, y ∈ ∂Bt is bounded by c|||t|||2(d−1)+4−d = c|||t|||d+2. Therefore,

(3.1) is bounded by c|||t|||4, and we obtain ρ ≤ 2 using (3.5).

3.2 Proof of the lower bound

In this section, we will use ε = ε(ρ) defined by

ε(ρ)

{
> 0 (but arbitrarily small), if ρ = 1,

= 0, if ρ 6= 1,
(3.7)

for both the time-oriented models and percolation.

Proof for the time-oriented models. We only consider oriented percolation, since the same idea

given below also applies to the time-discretized contact process in [17, 24] that weakly con-

verges to the original contact process as the discretized-time unit tends to zero. We prove

below

θt ≥ c [1−O(Ō)−O(|||t|||−(d−4)/2+ε)] |||t|||1−2ρ, (3.8)
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and thus prove Theorem 2.2 for the time-oriented models, assuming Ō ≡ supx O(x, 0) ¿ 1.

In the proof of (3.8), we will require pc ≤ 3/2, which is a consequence of Ō ¿ 1, if d > 4

[18, 22, 24]. We will also assume existence of a constant a > 1, which is independent of d and

L, such that
∑

s≤t/2 τ̂s ≤ aC1|||t||| (cf., (2.14)) and K ≤ θt|||t|||ρ ≤ aK for some K > 0, which

may depend on d and L. After the proof, we briefly discuss how to remove all these extra

assumptions.

The survival probability θt is the probability of the event that there is a path of occupied

bonds from (o, 0) to ∂Bt. This event can be decomposed into two disjoint events depending on

whether or not (o, 0) is doubly connected to ∂Bt, denoted by (o, 0) ⇒ ∂Bt, which means that

there are at least two bond-disjoint occupied paths from (o, 0) to ∂Bt. If (o, 0) is connected but

not doubly connected to ∂Bt, then there is an occupied pivotal bond b = (b, b) for (o, 0) → ∂Bt

such that (o, 0) → b, b ⇒ ∂Bt and Cb(o, 0) ∩ ∂Bt = ∅, where Cb(o, 0) is the set of sites in

Zd × Z+ connected from (o, 0) without using b. Restricting the location of b in Bt/2 gives

θt ≥
∑

b:b∈Bt/2

1

N
P
(
(o, 0) → b, b ⇒ ∂Bt, Cb(o, 0) ∩ ∂Bt = ∅

)
, (3.9)

where we used pc ≥ 1.

To investigate the right-hand side of the above inequality, we introduce the following two

notions. For an event E and Z ⊂ Zd × Z+, let {E on Z} be the set of bond configurations

whose restriction on bonds b touching Z (i.e., b or b is in Z) are in E. Similarly, we define the

event {E in Z} to be the set of bond configurations whose restriction on bonds b contained in

Z (i.e., both b and b are in Z) are in E. Then, we can rewrite the probability in the right-hand

side of (3.9) as (see [13, Lemma 2.5])

P
({(o, 0) → b, Cb(o, 0) ∩ ∂Bt = ∅} on Cb(o, 0), {b ⇒ ∂Bt} in Cb(o, 0)c

)
. (3.10)

By the “conditioning on cluster” technique [2, 12, 13], (3.10) equals

E
(
1{(o,0)→b, Cb(o,0)∩∂Bt=∅} P

(
b ⇒ ∂Bt in Cb(o, 0)c

))

= P
(
(o, 0) → b, Cb(o, 0) ∩ ∂Bt = ∅

)
P(b ⇒ ∂Bt)

− E
(
1{(o,0)→b, Cb(o,0)∩∂Bt=∅}

[
P(b ⇒ ∂Bt)− P

(
b ⇒ ∂Bt in Cb(o, 0)c

)])
. (3.11)

First, we consider the first term in (3.11). By translation invariance and monotonicity,

P(b ⇒ ∂Bt) is bounded from below by P((o, 0) ⇒ ∂Bt). Since Cb(o, 0) ⊂ C(o, 0), the contribu-

tion to (3.9) is bounded from below by

P((o, 0) ⇒ ∂Bt)
∑

b:b∈Bt/2

1

N
P((o, 0) → b, (o, 0) 6→ ∂Bt) ≥ C1|||t||| P((o, 0) ⇒ ∂Bt), (3.12)

9



where we used the definition of D in (2.1) and Assumption 2.1. We now prove that the right-

hand side of (3.12) is bounded from below by the same formula as in the right-hand side of

(3.8). By restricting the number of occupied bonds growing out of (o, 0) to two, P((o, 0) ⇒ ∂Bt)

can be bounded from below by
(pc

N

)2(
1− pc

N

)N−2 ∑

〈x,y〉
P((x, 1) → ∂Bt, (y, 1) → ∂Bt, C(x, 1) ∩ C(y, 1) = ∅ in Bt), (3.13)

where
∑

〈x,y〉 is the sum over all pairs of distinct sites in Ω. We note that p2
c(1 − pc

N
)N−2 is

always bounded from above by an N -independent constant, while it is bounded from below

by e−1 using pc ≤ 3/2. By conditioning on C(x, 1), (3.13) equals
(pc

N

)2(
1− pc

N

)N−2 ∑

〈x,y〉
E

(
1{(x,1)→∂Bt} P((y, 1) → ∂Bt in C(x, 1)c)

)
. (3.14)

If we ignore the condition “in C(x, 1)c”, we obtain the main contribution e−1

N2

(
N
2

)
θ2

t ≥ K2

4e
|||t|||−2ρ.

The correction is
(pc

N

)2(
1− pc

N

)N−2 ∑

〈x,y〉
E

(
1{(x,1)→∂Bt} P

({(y, 1) → ∂Bt} \ {(y, 1) → ∂Bt in C(x, 1)c})
)
.

(3.15)

We need an upper bound on (3.15) to obtain a lower bound on the left-hand side of (3.12).

Since the event inside P in (3.15) is the event that all occupied paths from (y, 1) to ∂Bt go

through C(x, 1), there must be a (z, s) ∈ C(x, 1) such that (y, 1) → (z, s) → ∂Bt. By the

Markov property, the expectation in (3.15) is bounded by

E
(
1{(x,1)→∂Bt}

∑

(z,s)∈C(x,1)

τs−1(z − y) θt−s

)

=
∑

(z,s)

P((x, 1) → ∂Bt, (z, s) ∈ C(x, 1)) τs−1(z − y) θt−s. (3.16)

We consider
∑

s≤t/2 and
∑

s>t/2 separately. For the former sum, we use the BK inequality to

bound (3.16) by

t/2∑
s=2

s∑

s′=1

∑

z,z′∈Zd

τs′−1(z
′ − x) τs−s′(z − z′) τs−1(z − y) θt−s θt−s′ . (3.17)

Since t − s′ ≥ t − s ≥ t/2 and s ≥ 2 (because x 6= y), the contribution to (3.15) is bounded

by 4ρ(aK)2Ō|||t|||−2ρ, where we used (2.5). On the other hand, we use (3.16) to bound the sum

over s > t/2. If we ignore the condition (x, 1) → ∂Bt, then (3.16) is bounded by

t∑

s=t/2

τ̂s−1 τ̄s−1 θt−s ≤ c|||t|||−d/2

t∑

s=t/2

|||t− s|||−ρ. (3.18)
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Since ρ ≤ 1, the right-hand side is further bounded by c|||t|||−d/2+1−ρ+ε ≤ c|||t|||−2ρ−(d−4)/2+ε.

Therefore, (3.12) is bounded from below by

C1K
2

4e
(1− 4ρ+1ea2Ō− c|||t|||−(d−4)/2+ε) |||t|||1−2ρ. (3.19)

Next, we investigate the second term in (3.11). Note that the event {b ⇒ ∂Bt} \ {b ⇒
∂Bt in Cb(o, 0)c} implies existence of a (z, s) ∈ Cb(o, 0) such that b → ∂Bt and b → (z, s) → ∂Bt

occur disjointly. By the BK inequality and the definition (2.1), the contribution to (3.9) from

the second term in (3.11) is bounded by

∑

(z,s),(v,s′):
1≤s′<t/2

∑

b:b=(v,s′)

1

N
P((o, 0) → b, (z, s) ∈ Cb(o, 0)) τs−s′(z − v) θt−s θt−s′

≤
∑

(z,s),(v,s′):
1≤s′<t/2

∑

(y,r),(u,s′−1)
0≤r<s′

τr(y) τs′−1−r(u− y) D(v − u) τs−s′(z − v) τs−r(z − y) θt−s θt−s′

≤ 2ρaK

|||t|||ρ
t/2−1∑
r=0

τ̂r

t∑
s=r+1

(t/2)∧s∑

s′=r+1

∑

x∈Zd

(τs′−1−r ∗D ∗ τs−s′)(x) τs−r(x) θt−s, (3.20)

where we used s′ ≤ t/2 to bound θt−s′ . We separate the sum over s into
∑

s≤3t/4 and
∑

s>3t/4.

When s ≤ 3t/4, we bound θt−s by 4ρaK|||t|||−ρ, and then bound the remaining term by

Ō
∑t/2−1

r=0 τ̂r ≤ aC1Ō|||t|||. When s > 3t/4, we bound τ̄s−r by c|||t|||−d/2 using r < t/2, and

then bound the remaining term, using ρ ≤ 1, by

c|||t|||
t/2−1∑
r=0

t∑

s=3t/4

|||t− s|||−ρ ≤ c|||t|||3−ρ+ε. (3.21)

By summarizing the above estimates, (3.20) is bounded by

(8ρa3C1K
2Ō + c |||t|||−(d−4)/2+ε) |||t|||1−2ρ. (3.22)

The proof of (3.8) is completed by (3.19) and (3.22).

We obtain (2.16) from (3.8) if Ō ¿ 1, t À 1 and d > 4. Together with ρ ≤ 1 proved in

Section 3.1, this completes the proof of ρ = 1.

Remark. In the above proof, we exploited the assumptions stated below (3.8). These as-

sumptions can be removed via a delocalization argument [4] (or, it is also called ultraviolet

regularization [2, 3, 12]). In fact, we can prove that there is a c` > 0 such that

t−ρ ≥ c` [1−O(Ò )−O(t−(d−4)/2+ε)] t1−2ρ, for t À `. (3.23)
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Recall that (α, η) = (2, 0) implies lim`→∞ Ò = 0, as explained below (2.11). Taking ` and t

in (3.23) sufficiently large, independently of d and L, we obtain (2.16) for the time-oriented

models. Therefore, we do not need the extra assumptions stated below (3.8).

We briefly explain the idea for the proof of (3.23). Recall (3.9), where b is the last pivotal

bond for (o, 0) → ∂Bt. The space-time rectangle R`(b) is defined as

R`(b) =
{
b + (reb, s) ∈ Zd × Z+ : r ∈ [−`, `], s ∈ [0, `]

}
, (3.24)

where eb = (v − u)/|v − u| for b = ((u, s), (v, s + 1)). We may modify the occupation status

of bonds contained in R`(b), in order to thin the connection from (o, 0) to ∂Bt. Let ER`(b) be

such an event that b is “minimally” connected, via b, to both X± ≡ b + (±`eb, `). Then, we

obtain (cf., (3.9))

θt ≥
∑

b:b∈Bt/2

P(ER`(b)) P
(
(o, 0) → b, CR`(b)(o, 0) ∩ ∂Bt = ∅, {X+→ ∂Bt} ◦ {X−→ ∂Bt}

)
,

(3.25)

where E1 ◦ E2 is the event that E1 and E2 occur disjointly, and CR`(b)(o, 0) is the set of sites

connected from (o, 0) without using any bonds contained in R`(b). In (3.25), we used the fact

that ER`(b) is independent of the other three events in P. We choose c` = infb P(ER`(b)). For

the remaining term, we follow the same strategy as in the proof for the case Ō ¿ 1, except

that we do not need an argument around (3.13). This leads to (3.23).

It remains to determine ER`(b). This was well-explained in [4] for the time-discretized

contact process. A variant of ER`(b) in [4] was chosen in such a way that c` is bounded away

from zero uniformly in the discretized-time unit. It is not hard to adapt the idea of [4] to our

settings, and we refrain from giving its details. See [4, Figure 1].

Proof for percolation. The strategy is the same as above. We prove below

θt ≥ c [1−O(O0)−O(|||t|||−(d−5−ρ∨1)+ε)] |||t|||2−2ρ, (3.26)

for t ≥ 2L (so that ∂Bt/2 ⊂ Bt), and hence Theorem 2.2 for percolation, assuming O0 ¿ 1.

Similarly to the proof for the time-oriented models, we will also assume that pc ≤ 3/2, which

is indeed the case when O0 ¿ 1 and d > 6 [11, 18], and that there is a (d, L)-independent

constant a > 1 such that
∑

x∈B3t/2+L
τ(x) ≤ aC2|||t|||2 (cf., (2.15)) and K ≤ θt|||t|||ρ ≤ aK for

some K > 0, which may depend on d and L. These assumptions can be removed as discussed

above and as in [2, 3, 12], and thus we omit its details for simplicity.

The percolation version of the joint inequality of (3.9)–(3.11) is

θt ≥
∑

b:b∈Bt/2

1

N
P(o ↔ b, Cb(o) ∩ ∂Bt = ∅) P(b ⇔ ∂Bt)

−
∑

b:b∈Bt/2

1

N
E

(
1{o↔b, Cb(o)∩∂Bt=∅}

[
P(b ⇔ ∂Bt)− P(b ⇔ ∂Bt in Cb(o)c)

])
, (3.27)
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where “⇔” represents a double connection for percolation. Similarly to the argument around

(3.12), by using P(b ⇔ ∂Bt) ≥ P(o ⇔ ∂B3t/2) and Cb(o) ⊂ C(o), together with the definition

(2.1) and Assumption 2.1, the first sum in (3.27) is bounded from below by

C2|||t|||2 P(o ⇔ ∂B3t/2). (3.28)

We first prove that (3.28) is bounded from below by the same formula as in the right-hand

side of (3.26). There are minor changes to investigate P(o ⇔ ∂B3t/2), and now we discuss these

modifications. Let C̃3t/2(x) ⊂ B3t/2+L be the set of sites to which there is an occupied path

from x that includes at most one bond touching ∂B3t/2 and no bonds touching o ∈ Zd. By

restricting the number of occupied bonds touching o ∈ Zd to two, P(o ⇔ ∂B3t/2) is bounded

from below by (cf., (3.13))

(pc

N

)2(
1− pc

N

)N−2 ∑

〈x,y〉
P
(
x ↔ ∂B3t/2 in {o}c, y ↔ ∂B3t/2 in {o}c, C̃3t/2(x) ∩ C̃3t/2(y) = ∅

)
.

(3.29)

By conditioning on C̃3t/2(x), the above expression equals

(pc

N

)2(
1− pc

N

)N−2 ∑

〈x,y〉
E

(
1{x↔∂B3t/2 in {o}c} P

(
y ↔ ∂B3t/2 in {o}c ∩ C̃3t/2(x)c

))

=
(pc

N

)2(
1− pc

N

)N−2 ∑

〈x,y〉

[
P(x ↔ ∂B3t/2 in {o}c) P(y ↔ ∂B3t/2 in {o}c)

− E
(
1{x↔∂B3t/2 in {o}c} P

({y ↔ ∂B3t/2 in {o}c} \ {y ↔ ∂B3t/2 in {o}c ∩ C̃3t/2(x)c})
)]

.

(3.30)

Here, we have P(x ↔ ∂B3t/2 in {o}c), instead of P(x ↔ ∂B3t/2). The correction is the prob-

ability of the event that all occupied paths between x and ∂B3t/2 go through the origin, and

thus is bounded by the probability of the event that x ↔ o and o ↔ ∂B3t/2 occur disjointly.

By the BK inequality and monotonicity, we obtain

P(x ↔ ∂B3t/2 in {o}c) ≥ P(x ↔ ∂B3t/2)− τ(x) θ3t/2 ≥ θ3t/2+L − τ(x) θ3t/2. (3.31)

The contribution to (3.30) from θ 2
3t/2+L is bounded from below by (4ρ+1e)−1K2|||t|||−2ρ, where

we used pc ≤ 3/2 (cf., the argument below (3.13)) and t ≥ 2L together with (2.5). Since

N−2 = D(x) D(y) in (3.30), the contribution from the terms containing τ(x) θ3t/2 or τ(y) θ3t/2

is bounded by K2O(O0)|||t|||−2ρ.

To complete bounding (3.28), it suffices to prove that the expectation in (3.30) is bounded

by

(a2K2O0 + c|||t|||−(d−5−ρ∨1)+ε) |||t|||−2ρ. (3.32)
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Since the event inside P is the event that all occupied paths from y to ∂B3t/2 in {o}c go

through C̃3t/2(x) ⊂ B3t/2+L, there must be a z ∈ C̃3t/2(x) such that y ↔ z and z ↔ ∂B3t/2

occur disjointly. Therefore, the expectation in (3.30) is bounded, using the BK inequality, by

E
(
1{x↔∂B3t/2 in {o}c}

∑

z∈C̃3t/2(x)

τ(z − y) P(z ↔ ∂B3t/2)
)

≤
∑

z∈B3t/2+L

P(x ↔ ∂B3t/2, z ∈ C̃3t/2(x)) τ(z − y) P(z ↔ ∂B3t/2). (3.33)

We separate the sum into
∑

z∈B3t/2+L\Bt/2
and

∑
z∈Bt/2

. As in (3.18), by ignoring1 the condition

x ↔ ∂B3t/2 and using P(z ↔ ∂B3t/2) ≤ θ(3t/2−|z|)∨0, the former sum is bounded by

∑

z∈B3t/2+L\Bt/2

τ(z − x) τ(z − y) θ(3t/2−|z|)∨0 ≤ c|||t|||(d−1)+2(2−d)
(
L +

t∑
s=0

|||s|||−ρ
)

≤ c|||t|||−2ρ−(d−ρ−3−ρ∨1)+ε. (3.34)

This is further bounded by (3.32), because ρ ≤ 2. For the sum
∑

z∈Bt/2
, we first bound

P(z ↔ ∂B3t/2) by aK|||t|||−ρ. Then, note that the event inside the former P in (3.33) implies

existence of w ∈ B3t/2+L such that x ↔ w, w ↔ z and w ↔ ∂B3t/2 occur disjointly. Again by

the BK inequality, the contribution to (3.33) from z ∈ Bt/2 is bounded by

aK|||t|||−ρ
∑

z∈Bt/2

w∈B3t/2+L

τ(x− w) τ(w − z) τ(z − y) P(w ↔ ∂B3t/2). (3.35)

We further separate the sum over w into
∑

w∈Bt/2
and

∑
w∈B3t/2+L\Bt/2

. For the former sum, we

bound P(w ↔ ∂B3t/2) by aK|||t|||−ρ, and then bound the remaining term by O0, using x 6= y.

For the latter sum, we use P(w ↔ ∂B3t/2) ≤ θ(3t/2−|w|)∨0 and perform the sum over z using [10,

Proposition 1.7(i)]. Since x, y ∈ Ω, the expression (3.35) due to the sum over w ∈ B3t/2+L\Bt/2

is bounded by

c|||t|||−ρ
∑

w∈B3t/2+L\Bt/2

|||w|||(2−d)+(4−d) |||3
2
t− |w| |||−ρ ≤ c|||t|||−ρ+(6−2d)+(d−1)

(
L +

t∑
s=0

|||s|||−ρ
)

≤ c|||t|||−2ρ−(d−5−ρ∨1)+ε. (3.36)

1Some readers might wonder whether the condition x ↔ ∂B3t/2 could be used to have less power in (3.34).
In fact, if we use the inequality

P
(
x ↔ ∂B3t/2, z ∈ C̃3t/2(x)

) ≤
∑

w∈B3t/2+L

τ(w − x) τ(z − w) θ(3t/2−|w|)∨0,

then the contribution due to w ∈ Bt/2 is bounded by (3.36), while the contribution from w ∈ B3t/2+L \ Bt/2

has a worse bound c|||t|||−2ρ+µ, where µ is negative only when d > 9.
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Summarizing the above estimates, we conclude that (3.28) is bounded from below by the

same formula as in the right-hand side of (3.26), where a multiple constant corresponding to c

in (3.26) is O(C2K
2). The second sum in (3.27) can be estimated similarly to (3.35), where z

in (3.35) corresponds to b in (3.27), and is bounded by a similar formula to (3.32), multiplied

by O(C2)|||t|||2. This completes the proof of (3.26).

We obtain (2.16) from (3.26) if O0 ¿ 1, t À 1 and d > 5 + ρ ∨ 1, and thus obtain ρ = 2

for d > 7. This completes the proof.

Remark. The value of ρ for percolation is expected to be 2 as soon as d > 6. The main

obstacle to going down from d > 7 is in (3.34) and (3.36), which correspond respectively

to (3.18) and (3.21) for the time-oriented models. In (3.18) and (3.21), the sum over s is

fully controlled using θt−s ³ |||t − s|||−ρ. On the other hand, the point-to-surface connectivity

θ(3t/2−|v|)∨0, with v = z in (3.34) and v = w in (3.36), is insufficient to obtain the desired bound,

when v is close to the boundary ∂B3t/2. This difficulty is considered to be caused by naively

bounding the probability inside E in (3.30) as in (3.33). Since
{
y ↔ ∂B3t/2 in {o}c

} \ {
y ↔

∂B3t/2 in {o}c ∩ C̃3t/2(x)c
}

is the event that all occupied paths from y to ∂B3t/2 (in {o}c) have

to go through C̃3t/2(x) before reaching to the boundary, the approximation by the unrestricted

two-point function τ(z− y) in (3.33) could be very crude when z is close to ∂B3t/2, due to the

isotropic property for percolation. If we assume that there is a κ ≥ 1 such that, for |z| = `,

P(o ↔ z, o 6↔ ∂Bt) ≤ c|||`|||2−d−κ(|||`||| ∧ |||t− `|||)κ, (3.37)

then we will be able to obtain the desired inequality (2.16) down to d > 6. Note that (3.37)

contains the factor |||t − `||| that decreases as z approaches the boundary ∂Bt, that the sum

of the right-hand side over z ∈ Bt is bounded by c|||t|||2, and that the limit t → ∞ of the

right-hand side, while ` or `/t is fixed, is c|||`|||2−d. Therefore, (3.37) is a good candidate for

the bound on the restricted two-point function, though we have not proved whether (3.37)

really holds or does not. (For random walk, a similar inequality with ` = t and κ = 1 has

been verified by our rough calculation.)
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