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THE CAPACITATED MULTI-ECHELON INVENTORY
SYSTEM WITH SERIAL STRUCTURE:

2. AN AVERAGE COST APPROXIMATION METHOD

C.J. Speck and J. van der Wal

Eindhoven University of Technology

This paper considers a multi-echelon, periodic review inventory model with

discrete demand. We assume finite capacities on various production/order

sizes and backordering of excess demand. We have already seen that modi­

fied base-stock policies work quite well under an average cost criterion. Here

a method will be presented which provides an approximation of the aver­

age costs corresponding to a modified base-stock policy in a certain class

of multi-echelon serial systems. In this the moment-iteration method devel­

oped by De Kok plays a central role.

1. Introduction. In this paper we consider a basic production (or inven­
tory) model, in which the stock of a single item must be controlled under
periodic review. We assume demands in each period to be independent,
nonnegative, and integer-valued. Further, all stockouts are backordered and
production, holding, and shortage costs are linear. There are no fixed order
costs.

For the long-run-average cost criterion Federgruen and Zipkin[1986] have
shown that in the capacitated I-echelon inventory system with serial struc­
ture a modified base-stock policy is the optimal periodic review strategy:
If the echelon stock has dropped below a certain level, enough should be
produced to raise total stock to that level if attainable; otherwise, the maxi­
mum feasible amount should be produced. On the other hand, if the echelon
stock is above that level, nothing should be produced.

Analyzing the capacitated N -echelon serial system with N ~ 2 we nu­
merically proved in a preceding manuscript (Speck and Van der Wal[1991D
the possible appearance of a so-called 'push ahead'-effect within the optimal
policy: Due to certain combinations of already known yet to arrive ship­
ments, magnitude of demand, and finite capacities it might sometimes be
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profitable to exploit the maximum capacity in order to possibly avoid future
ordering limitations.

Neither of the aforementioned papers gives an exact calculation of the av­
erage cost for the optimal policy. But already a few approximation methods
have been developed, that successfully cope with the difficulties arising from .
the finite capacities, such as an application of the moment-iteration method
of De Kok[1989], and a related method of Zijm (unpublished manuscript).
Both methods however are as yet only applicable to the capacitated 1­
echelon serial system.

This paper focuses on the development of an average cost approximation
method on behalf of the N -echelon serial system with N ~ 2. In section 2
we introduce notation, definitions, and assumptions. Section 3 contains a
detailed description concerning the average cost calculation when employ­
ing a modified base-stock policy. The moment-iteration method of De Kok
will be brought forward, which fills an essential part in our approximation
method. For clarity reasons we will illustrate our approximation method on
the basis of the capacitated 2-echelon serial system.

2. Definitions and assumptions. As already mentioned we will re­
strict ourselves to the capacitated 2-echelon serial system. Extension of the
method given in section 3 to the N -echelon serial system with N > 2 is
possible, but very laborious.

First of all we recapitulate the model definitions as given in Speck and Van
der Wal[1991]:

1. We define the echelon stock of a given installation as the stock at that
installation plus all the stock in transit to or on hand at any installation
downstream minus the backlogs at the most downstream installation.

2. Next, the echelon inventory position of an installation denotes the
echelon stock plus all items heading for that installation, that already
left the preceding installation (or the external supplier).

The capacitated 2-echelon model we analyzed is characterized by the follow­
ing parameters:

Uj = maximal production/order size, i = 1,2.
it = leadtime of the route from installation 2 to installation 1.
12 = leadtime of the route from external supplier to installation 2.
p = shortage cost per unit per period at echelon 1.
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hi = additional holding cost per unit per period at echelon i, i = 1,2.
Xi = stock at echelon i at the beginning of a period, i = 1,2.
Yi = inventory position at echelon i at the beginning of a period, i = 1,2.

D t = demand in period t, t E IN.
qw = 1P{D = w}, w = 0,1, ... ,the demand probabilities.

F(u) = E:;'=o qw, u E IN, the demand distribution.

We assume Ui to be finite for i = 1,2, while Xi and Yi are always integer­
valued and may be negative since stockouts are backordered.

•

It
t '.

\2 7 \ 11 D
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•
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We distinguish the following activities during every period: At the begin­
ning of the period (a) each echelon inventory position is increased, next (b)
the external demand is met, and at the end of the period (c) a cost deter­
mination takes place.

period

!
b

The expected costs at the end of a period consist of linear holding and
shortage costs (linear ordering costs are not taken into account). Hence,
the expected costs at the end of a period attached to an echelon stock Xi,

i = 1,2, at the beginning of that period are described by the well-known
Newsboy-formulas, here displayed in the discrete form:
For Xi E 7Z, i = 1,2,

00

LI(XI) .- L: qw[(hl +h2)(XI - w)+ +P (Xl - w)-] - h2XI (1)
w=o

L2(X2) .- h2X2. (2)
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Finally, referring again to Speck and Van der WaJ[1991] we assume without
loss of generality

(3)

3. Construction of an approximation method. De Kok[1989] has
shown that an approximation of the average costs corresponding to a modi­
fied base-stock policy in the capacitated N -echelon serial system with N = 1
and 11 E IN can be obtained by reformulating the problem as a DIGII queue.
This is done by comparing the shortfall on the desired echelon inventory level
to the length of a waiting-queue.

Suppose we want to determine the average costs associated with the
modified base-stock policy d1 , with d1 E IN. Let Wt E IN be the shortfall
on the desired echelon inventory position level d1 at the beginning of period
t. Then, starting from a shortfall of Wt on d1 at the beginning of period t
and meeting demand D t leads to a shortfall of Wt +D t at the end of period
t. If this amount exceeds the capacity Ull then the shortfall at the beginning
of period t + 1 shrinks to Wt +D t - U1 ; on the contrary, if Wt +D t ~ U1 ,

then the shortfall is neutralized and the ideal level, d1 , again is achieved.
Hence

(4)

This is the well-known relation for the waiting-time of the (t +l)st customer
in the standard DIGll queue, for which De Kok has developed a moment­
iteration method. The algorithm will be shown later on; it enables us to
derive approximations for the waiting-time distribution for instance.

So if we take the collection of echelon inventory positions associated with
the modified base-stock policy d1,

Z [ d1 ] = { db d1 - l, d1 - 2, ... },

or, equivalently, the set of shortfall positions,

W={O,l,2, ... },

(5)

(6)

as state space we are able to form the enclosed transition matrix, say Ql by
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means of (4):

F(Ud qUI+! qUI+2

F(Ul -1) qUI qUI+!

Ql := F(Ul - 2) qUI-l qUI (7)

Notice its fine diagonal structure, apart from the first column. Then, the
exact average costs going with the modified base-stock policy dl is given by

9 =: Qfr[ dl ], (8)

in which Qr denotes the equilibrium matrix, and r[ d l ] the cost vector
consisting of the expected costs per state from Z[ dl ]. The equilibrium
matrix Qr, here consisting of identical rows of equilibrium probabilities
11"0' 1I"j, 11"2' .••, can be constructed by solving the system

(9)

in which 11" denotes a vector of probabilities. The fact of having a non-finite
transition matrix Ql however, causes the system (8) to be infinite and there­
fore does not permit an exact calculation of the equilibrium probabilities 11";.
But we can derive approximations *; by using De Kok's moment-iteration
method: Every 11";, denoting the equilibrium probability on a gap of i items
on level db in fact specifies the probability on a customer's waiting-time of
i units in a DIGl1 equilibrium system!

Algorithm 1 (Moment-iteration)

Initialisation: Choose lE{Wo} = 0 and 1E{W6} = o.
Iteration: Compute

lE{Wn +Dn } =: lE{Wn } + lE{Dn }j
lE{(Wn + Dn )2} =: lE{W~}+ 21E{Wn }1E{Dn } + lE{D~}.
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Fit a distribution function FWn+Dn to the first two moments of Wn + D n •

Then calculate

lE{Wn+I} = (oo(y_ Ul)dFwn+Dn(Y),
JUt

lE{W~+I} = roo (y _ Ud2 dFWn+Dn(Y).
JUt

Termination: Stop whenever

IIE{Wn+I} -IE{Wn }1 < Cl and IIE{W~+I} -IE{W~}I< C2,

for some prespecified Cl > 0 and C2 > o. Then

Fw(Y) ~ FWn+D(Ul + y) , Y > o.

(10)

(11)

(12)

o

This method has been grafted upon fitting distributions to the first two mo­
ments of an arbitrary distribution. E.g. Tijms[1986] provides us a method
in which mixtures of Erlang distributions yield excellent results.

Thus, applying of the moment-iteration method of De Kok provides an
accurate approximation for the waiting-time distribution of the equilibrium
system, or translated to the inventory system, an approximation for the
equilibrium distribution of the shortfall. Then, discretizing the generated
waiting-time, or shortfall-amount, distribution we obtain the estimated equi­
librium probabilities if;. Truncating (8) finally results in an adequate ap­
proximation of the average cost associated with a modified base-stock policy

dl ·

So far the recapitulation of an application of De Kok's moment-iteration
method to the capacitated I-echelon serial system.

We have been able to extend the idea of De Kok to the N -echelon inven­
tory serial system with N ~ 2, but in which Ii =1 for all 1 ~ i ~ N. Suppose
we want to determine the average cost corresponding to the modified base­
stock policy characterized by echelon inventory position levels (d2, dl ). We
explicitely assume the system to start from the ideal echelon inventory stock
levels di, i = 1,2. This leads to the definition of the state space Z[ (d2 ,dl )]

belonging to the modified base-stock policy (d2, dl ) as the collection of pos­
sible echelon inventory positions (Z2, Zl) at the beginning of a period before
meeting demand:

Z[ (d2,dl )]:= { (z2,zd E yz2 I Zl ~ dl , Zl ~ Z2 ~ d2 }. (13)
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Thus, at the beginning of the first period the system finds itself in the
situation as depicted underneath.

d2

dl

\27 W D
•

U2 V UI V
h2 hI + h2 , P

Consequently, when demand equals D in the first period the stock at echelon
1 and 2 amounts to dl - D respectively d2 - D (remember 12 = It = 1), and
thus there is a fysical stock of d2 - d l on hand at installation 2!

d2 - D

d2 - dl dI - D

\ 11• \ 2 7
U2 V UI V

h2 hI +h2 , P

Then, by looking at the amount d2 - dl available at installation 2 there are
three separate cases distinguishable:

1. 0 ~ d2 - d l ~ U2

2. U2 < d2 - dl ~ UI

3. UI < d2 - dl •

First of all we can skip the case UI < d2 - dl • Namely, every modified
base-stock policy (d2 , dt} aims at a stock of d2 - dl on hand at installation 2
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at the end of an arbitrary period. In the case UI < d2 - d l this means going
for a strictly positive stock at installation 2 during the next period, for at
most UI can be shipped. For this stock amount holding costs are charged,
while no advantage is yielded by this stock, see the analoguous argument
that established the preliminary result in Speck and Van der Wal[1991].

In the other two cases the state space Z[ (d2 , dI ) ] reduces to an irre­
ducible state space in each case. Suppose we practise a modified base-stock
policy (d2, dI ) in which 0 $ d2 - dl $ U2. Then we are able to construct a
partial flow scheme containing the possible transitions from the ideal state
(d2,dI):

By considering the possible transitions from the other states depicted above
we finally attain an irreducible state set Ztl (d2,dI )],

Ztl (d2,dI)] := {(d2,dI),(d2,dI-l), .•. ,(d2,d2 - U2),

(d2 - 1, d2 - U2 - 1), (d2 - 2, d2 - U2 - 2), ... }.
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The corresponding transition matrix has the following structure:

F(d2 - dl ) qd2-dl+I qU2 qU2+I qU2+2

F(d2 - dl ) qd2-dl+I qU2 qU2+I qU2+2

F(d2 - dl ) qd2-dl+I qU2 qU2+I qU2+2

F(d2 - dl ) qd2-dl+I qU2 qU2+I qU2+2

F(d2 - dl - 1) qd2- dl qU2-I qU2 qU2+I

F(d2 -dl -2) qd2-dl-1 qU2-2 qU2-I QU2

For the remaining case (U2 < d2 - dl ::; UI ) a similar flow scheme can
be drawn, which shows the reduction of Z[ (d2 , dd ] to an irreducible state
space Z2[ (d2,dl )],

Z2[ (d2, dl )] := {(d2, dl ), (d2 - 1, dl ), ... , (di +U2, dl ),

(di +U2 -I,dl-I),(dl +U2 - 2,dl - 2), ... }

In this case we obtain a nicely structured transition matrix, reminiscent of
the one in the I-echelon system.

F(U2) QU2+I Qd2- dl Qd2-dl+1 Qd2-dl+2

F(U2 -1) QU2 Qd2-dl-1 Qd2-d1 Qd2 -d1 +I

F(U2 - 2) QU2- I Qd2-dl-2 Qd2-dl-1 Qd2-dl

F(a) Qa+1 Qa+2 QU2+I QU2+2

F(a - 1) Qa Qa+I QU2 QU2+I

F(a - 2) Qa-I Qa QU2-I QU2

in which a := 2U2 - d2+di .
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(d2 , *), and carrying out a corresponding clustering within the transition
matrix associated with ztr (d2 , d1 ) ], we achieve both transition matrices
being the same:

F(U2 ) qU2+I qU2+2

F(U2 -1) QU2 QU2+1

Q2 := F(U2 - 2) QU2-1 QU2 (14)

Inherently, Zl [ (d2 , d1 ) ] changes to

Zl[ (d2 ,dd] =
{ (d2, *), (d2 - 1, d2 - U2 - 1), (d2 - 2, d2 - U2 - 2), ... }

The exact average costs associated with the modified base-stock policy
(d2 ,dd is given by

9 = Q2'Tl[ (d2 ,dd] (15)

or

(16)

depending on the value of d2 - d1• In both cases Q2' is the equilibrium
matrix of the system, and Ti[ (d2,dd] for i = 1,2 the cost vector consisting
of the expected I-period costs per state out of the state space Zi[ (d2 , d1 ) ]

associated with a modified base-stock policy (d2 , dd. The costs are defined
as

T(Z2,Zl):= 100

{L2(Z2 - w) + L1(Zl - w)} dF(w). (17)

Evidently, when at the beginning of a period t the inventory position of
echelon i, i = 1,2, is raised to level Zi, then the stock of echelon i equals
Zl - Dt at the beginning of period t +1. Then the costs at the end of period
t +1 associated with echelon i amount to Li(Zl - Dt).

The equilibrium probabilities 7ro, 7ri, 7r2' ... again can be derived by sol­
ving the system

(18)
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Notice that in case of 0 ~ d2 - dl ~ U2 the equilibrium probabilities of the
states (d2 ,dt}, (d2 ,dI - 1), ... , (d2 ,d2 - U2 ) are obtained by multiplying
the equilibrium probability 11'0 by the relative probabilities within the junc­
tion state (d2 , *).
Though in general it is not possible to determine the equilibrium probabili­
ties 11'; exactly we can provide estimations *;. Namely, as Q2 has the very
same structure as the matrix QI in the capacitated I-echelon serial system,
we again invoke the moment-iteration method of De Kok in order to achieve
an approximation for the waiting-time (or 'shortfall') distribution Fw of the
equilibrium system. Discretisation of this generated distribution Fw then
yields us an approximation for the probabilities 11';:

*0 .- FwU),
*; .- Fw(i +!) - Fw(i - !), i 2: l.

Truncating (15) or (16) yields an estimation of the average costs associated
with the modified base-stock policy (d2 , dI ), provided that the demand dis­
tribution F is explicitly given in order to calculate exactly the expected
I-period costs r(z2, ZI) per state (Z2, ZI) in (17). If only the first two mo­
ments of the demand D are given, we can only approximate the expected
I-period costs: As in the first iteration of algorithm 1 a distribution is fitted
to the moments of D, we have FWo+Do, or FD, at our disposal. By means
of this fitted distribution FD we can easily determine the (approximated)
expected I-period costs.

We have executed the average cost approximation on a class of 2-echelon
serial systems, in which, besides 12 = 11 = 1,

.lE{D} = 100
u{D} = 70

hI = 2
h2 =2
p = 200

CI = 10-3

C2 = 10-3 •

Notice that due to the values of .lE{D} and u{D} the demand distribu­
tion is approximated by an Erlang mixture with the same s,cale parameter,
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according to Tijms[1986].

First we generated the average cost of an optimal (Le. base-stock) pol­
icy for the uncapacitated system by means of the program LIJNSYSTEEM3
given in Van Houtum and Zijm[1990]. LIJNSYSTEEM3 provides an esti­
mation of the optimal (base-stock) policy by a recursive calculation of in­
complete convolutions in which the fit-method described in Tijms[1986] is
used, plus an exact calculation of the average costs associated with the gen­
erated base-stock policy. At the chosen parameter values this happens to
be the base-stock policy (d'f,d'f') = (614.1,498.9). Assuming the demand
distribution to be exactly an Erlang mixture with the same scale parameter
we see that the average cost gOO associated with (614.1,498.9) amounts to
1669.03.
Next, for increasing U2 we have determined the average costs associated
with the modified base-stock policy (ld'fJ, ld'f'J) = (614,498), see table 1.
Thereoff successively can be read the capacity U2 , the average shortfall

(d'f,d'f') = (614.1,498.9)

gOO = 1669.03

U2 lE{W} n 9 ctime

110 215.42 656 14302.1 6.6 s

125 72.09 121 3110.9 3.7 s

150 26.99 38 1922.1 3.0 s

200 7.45 14 1713.5 2.7 s

250 2.60 9 1681.0 3.0 s

300 0.98 6 1672.6 3.0 s

400 0.15 4 1669.5 3.2 s

500 0.02 3 1669.3 3.4 s

Table 1: Increasing U2

lE{W} on the desired echelon inventory levels in the equilibrium system, the
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number of moment-iterations n carried out, the generated average cost ap­
proximation 9 attached to (LdrJ, LdfJ), and an indication ofthe consumed
calculation time in seconds ctime on an Olivetti M240 PC with numerical
coprocessor.
Probabilities smaller than 10-8 were set equal to O.
We find that both average shortfall and average costs decrease if U2 in­
creases, which is according to our expectations. Further we see that the
average cost 9 converges towards 1669 (U2 = 500 almost corresponds with
the infinite capacity case). But we have to keep in mind, that 1669.03 is the
exact average cost belonging to the modified base-stock policy (614.1,498.9),
not (614,498)! Further research however pointed out that the exact average
cost associated with the base-stock policy (614,498) in the uncapacitated
model amounts to 1669.04, thus indicating the average cost function to be
very flat near the minimum.

4. Finding a nearly optimal modified base-stock policy. The cost
calculation method presented above enables us, referring to our conclusions
in Speck and Van der Wal[1991], to derive a nearly optimal modified base­
stock policy serving in its turn as an approximation for the optimal periodic
review policy.

If for the capacitated 2-echelon serial system an initial average cost value
is given associated with an optimal base-stock policy (dr,df) from the un­
capacitated model, then the search for a nearly optimal modified base-stock
policy can be restricted to the grid points of the upper right quadrant in
the 2-dimensional space with (LdfJ, LdfJ) as origin. The extensive scala of
numerical procedures then enables us to achieve a further efficient reduction
of the searching process.
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