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Stability and Passivity of the Super Node
Algorithm for EM Modeling of IC’s

M.V. Ugryumova and W.H.A. Schilders

Abstract The super node algorithm performs model order reduction based on physi-
cal principles. Although the algorithm provides us with compact models, its stability
and passivity have not thoroughly been studied yet. The loss of passivity is a seri-
ous problem because simulations of the reduced network may encounter artificial
behavior which render the simulations useless. In this paper we explain why the
algorithm delivers not passive reduced order models and present a way in order to
overcome this problem.

1 Introduction

To increase their performance, the characteristic dimensions of interconnection sys-
tems are decreased and will decrease even further in the future. Higher speed makes
the effect of higher frequency modes on the interconnection more important. There-
fore, the analysis of the signal propagation on the interconnect system is important.
However, this requires the solution of Maxwell’s equations which is rather demand-
ing from the point of view of which can hardly be used in conventional circuit
simulators.

To be able to work with models for interconnect structures, a technique known
as reduced order modeling is employed (for the various techniques, see [1]). One
application where it is used is Fasterix. Fasterix is a layout simulation tool for elec-
tromagnetic behavior of interconnect systems such as PCBs, IC packages, filters
and passive ICs [2]. As a first step in Fasterix a geometry preprocessor subdivides
conductor into quadrilateral elements. In the lumped model derived directly from
these elements, referred to here as the original (full) circuit model, the number of
components in the circuit is of the order of the square of the number of elements.
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2 M.V. Ugryumova and W.H.A. Schilders

However, this full circuit model is inefficient, because of computer memory and
CPU limitations imply that the interconnect system cannot realistically be simu-
lated. The principle model in Fasterix is a reduced circuit model, which is derived
from the full model by the super node algorithm. Such model runs much faster and
has been shown to be equally accurate in frequency domain. The algorithm employs
a small subset of the original nodes, so called super nodes [2]. The number of super-
nodes depends on the user-defined maximum frequency, i.e. the highest frequency
at which the model has to be valid.

The advantage of the super node algorithm is that it is inspired by physical insight
into the models, and produces reduced RLC circuits depending on the maximum
predefined frequency. Although the algorithm provides us with compact models,
some of them suffer from instabilities which can be observed during time domain
simulations. Therefore investigation of stability and passivity properties of the algo-
rithm is primary important.

The paper is build up as follows. In section 2, 3 and 4, we briefly show the
concept of the super node algorithm. In section 5 stability and passivity properties
applied to the algorithm are discussed whereas in section 6 a technique to preserve
passivity of the reduced models is presented. In the last section, a numerical example
is considered.

2 Full and reduced order models used in Fasterix

Fasterix translates electromagnetic properties of the interconnect system into a full
circuit model which is described by the system of Kirchhoff’s equations [3]:

(R+ sL)I−PV = 0 (1)

PT I + sCV = J (2)

where R ∈ Rε×ε is the resistance matrix, L ∈ Rε×ε is the inductance matrix, P ∈
Rε×η is an incidence matrix, C ∈Rη×η is the capacitance matrix, I ∈Cε is a vector
of currents flowing in the branches, V ∈ Cη is a vector of voltages at the nodes.
Vector J ∈Cη collects the terminal currents flowing into the interconnection system.
Value s is a complex number with negative imaginary part: s =− jω . Matrices R, L,
C are symmetric and positive definite. Matrices R,L,C,P are calculated by Fasterix.
Example of the circuit with η = 3 and ε = 2 is shown in Figure 1. Components Ri,
Li and Ci j are corresponding elements of the matrices R, L and C.

Fig. 1 Example of the origi-
nal RLC circuit described by
(1)-(2)
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From (1)-(2) one can obtain the voltage to current transfer with admittance matrix
Y : Cη → Cη

J =
(
PT (R+ sL)−1P+ sC

)
︸ ︷︷ ︸

Y(s)

V. (3)

It simply says that if V is given then J can be calculated using Y(s) for some
s = s0. Admittance matrix Y(s) describes the behavior of the full circuit.

The goal is to obtain a circuit of order η1 (preferably η1 ¿ η). The ports of the
original model are kept in the reduced one. The original and reduced circuits should
have approximately the same behavior at these ports.

In order to obtain admittance matrix of the reduced circuit, Fasterix subdivides
the set of all nodes in the circuit into two subsets N ∈ Zη1 and N′ ∈ Zη2 . Evidently
η = η1 + η2. Set N contains super nodes, i.e. nodes which will be retained in the
reduced circuit, and N′ contains other nodes. Due to this, vectors V , J and matrices
P, C can be partitioned into blocks, see [2], [3] (chapter 8). Block matrix PN′ has
full column rank. It is supposed that JN′ consists of zeros.

If we consider the voltage in the super nodes as an input VN , and currents flowing
into the system through them as an output JN , we come to the following system:




(
R −PN′

PT
N′ 0

)

︸ ︷︷ ︸
G

+s
(

L 0
0 CN′N′

)

︸ ︷︷ ︸
C


x =

(
PN

−sCN′N

)

︸ ︷︷ ︸
Bi(s)

VN , (4)

JN =
(

PT
N sCT

N′N
)

︸ ︷︷ ︸
BT

o (s)

x+ sCNNVN , (5)

where x =
(

I ,VN′
)T . It should be noted that in (4) matrix G is positive real, and

matrix C is positive semi-definite. From (4)-(5) it follows that JN is linearly related
to VN , i.e.

JN =
(
BT

o (s)(G+ sC)−1Bi(s)+ sCNN
)

︸ ︷︷ ︸
Y1(s)

VN , (6)

where Y1(s) is admittance matrix of the reduced circuit. Expression (6) can be
rewritten in the matrix form: JN = Y1(s)VN , where VN = (V 1

N . . . V η1
N ) is a ma-

trix of predescribed vectors of voltages and JN = ( J1
N . . . Jη1

N ) is a matrix of corre-
spondent vectors of current. Further we assume that VN is given and equals identity
matrix. Therefore JN = Y1(s).

In order to obtain the concrete RLC circuit described by Y1(s), two approxima-
tions of Y1(s) have to be performed. Derivation of them can be found in [3]. In this
paper we will refer to them as Y2(s) and Y3(s). The last one will be considered in
detail.
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3 Admittance matrix for the full frequency range

In [3] the second approximation of Y1(s) is constructed as

Y3(s) = PT
NΨ

(
Ψ T (R+ sL)Ψ

)−1Ψ T PN︸ ︷︷ ︸
YRL(s)

+sYC, (7)

where Ψ is a null space of PT
N . Term YRL(s) stays for the contribution of resistances

and inductances in the circuit. Term sYC comes from the high frequency range ap-
proximation and stays for the capacitance contribution [3]. YRL(s) can be presented
in the pole-residue form as

YRL(s) =
n

∑
i=1

Hi

(s−λi)
=

n

∑
i=1

(
Ψ T PNxi

)(
y∗i PT

NΨ
)

(s−λi)
, n = ε−η2. (8)

where λi are the eigenvalues of the matrix pencil (Ψ T LΨ ,−Ψ T RΨ). Since Ψ T LΨ
and Ψ T RΨ are positive definite then λi ∈ R and λi < 0. yi, xi ∈ Rη1 are left and
right eigenvectors respectively [4].

4 Realization

In this section we will show how Y3(s) in (7) can be translated into RLC circuit.
The network described by Y3(s) has branches between all nodes and ground and
between all nodes. Each branch is calculated as follows [5]. Branch between node i
and ground:

y3,ii =
n

∑
j=1

Y3,i j. (9)

Branch between node i and node j:

y3,i j =−Y3,i j, i 6= j. (10)

All elements of Y3(s) have the same poles λi, and these become the poles for the
network branches when calculated by (9) and (10). Each branch in (9) and (10) is
given as a rational function ∑n

i=1
ci

s−λi
+ se. Using Foster’s canonical form [5], the

branch can be represented by an electrical network as shown in Figure 2. C, Ri,
Li are calculated as C = e, Ri = −λi/ci, Li = 1/ci. Similar to the above, symmet-
ric admittance matrix can be realized exactly by using a Π -structure template [6].
An example of the Π -structure template is shown in Figure 3, where each branch
admittance is realized by the Foster’s canonical form shown in Figure 2.

However Fasterix does not use straightforwardly this way of realization. Since
calculation of all eigenvalues λi in (8) may be time consuming process, Fasterix
first approximates y3(s) with m (m < n) terms. It is done as following. The set
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Fig. 2 Synthesization by electrical network Fig. 3 A tree-port realization of the admittance
matrix 3 by 3 based on Π -structure

of m + 1 match frequencies, sk, is chosen. This set consists of some large negative
values between maximum predefined frequency−Ω and−max(λi), and some small
negative values between −min(λi) and 0. For each sk, corresponding admittance
matrix has to be calculated. Elements of Y3(s) approximate elements of Y2(s) in
frequency domain well therefore Y2(sk) instead of Y3(sk) can be used.

Solving the following set of m+1 equations

skyC,i j +
m

∑
l=1

H̃l,i j

(sk−λl)
= y2,i j(sk), k = 1, ...m+1. (11)

for the coefficients yC,i j and H̃l,i j is equivalent to determine the approximation
of y3(s) with m < n terms. Like it was shown above, the reduced circuit consists
of branches between every pair of circuit nodes. Each branch consists of m parallel
connections of a series resistor R and inductor L, in parallel with a capacitor C. Thus
for the branch between the circuit nodes i and j

Rl =−λlH̃
−1
l,i j, Ll = H̃

−1
l,i j, C = yC,i j. (12)

Evidently m influences at the computational time of simulations. Fasterix chooses
m depending on the size of the model. Usually m≤ 8. For carrying out simulations
of the circuit we used PSTAR which is the Philips circuit simulator program.

5 Stability and Passivity

Circuits constructed using rational functions need to satisfy the stability and pas-
sivity conditions for a linear time-invariant passive system. The stability condition
requires that for a stable system, the output response be bounded for a bounded in-
put excitation [7]. Hence, the rational function representing a stable system has to
satisfy the following stability conditions: (1) the poles lie on the left half of the s
plane; (2) the rational function does not contain multiple poles along the imaginary
axis of the s plain.

The passivity condition requires that a passive circuit does not create energy.
Since non-passive models combined with a stable circuit can generate an unstable
time-domain response, this condition becomes important when model need to be
combined with other circuit for time-domain simulations.
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Passivity is closely related to positive realness of the admittance matrix. The
admittance matrix Y(s) is positive real if (1) Y(s) is analytic for all s with Re(s) > 0,
(2) Y∗(s) = Y(s̄) for all s ∈ C, and (3) Y(s)+Y∗(s)≥ 0 for all s with Re(s) > 0.

Condition (1) means that the system is stable. Condition (2) refers to the system
that has real response. And condition (3) is equivalent to that the real part of Y(s) is
a positive semidefinite matrix at all frequencies.

In the super node algorithm, admittance matrix plays a role of a system function.
Notice that Y3(s) in (7) is stable (all poles λi < 0) but not positive real since YC is
an indefinite matrix. However the following theorem holds.

Theorem 1. Admittance matrix YRL(s) in (7) is positive real.

Proof. In section 3 it was shown that all poles λi < 0 therefore the system is stable.
It is trivial to check out the second condition of positive realness. Let BT = PT

NΨ .
We will show that the third one is satisfied:

Y∗
RL(s)+YRL(s) = BT (

R̃+ sL̃
)−∗B+BT (

R̃+ sL̃
)−1 B = (13)

= BT (
R̃+ sL̃

)−∗ ((R̃+ sL̃
)
+

(
R̃+ sL̃

)∗)(
R̃+ sL̃

)−1 B =

= y∗
((

R̃+ sL̃
)
+

(
R̃+ sL̃

)∗)y,

with y = (R̃+sL̃)−1B. Thus it is sufficient to prove the positive realness for W(s) =
R̃+ sL̃. For s = σ + iω with σ > 0 we have:

W∗(s)+W(s) = (R̃+ sL̃)
∗
+ R̃+ sL̃ = 2R̃+2σ L̃,

which is nonnegative definite. Thus, YRL(s) is positive real. ¥
It is known [6] that a Π -structure template for realization of positive real admit-

tance matrix guarantees construction of the passive circuit. However the important
observation is that in the super node algorithm realization by the Π -structure tem-
plate is applied to the approximation of Y3(s) at a few frequency points sk and not
directly to Y3(s). So if Y3(s) was positive real, the constructed RLC circuit might
not be passive. In the next section, a way to obtain positive real Y3(s) will be sug-
gested.

6 Passivity enforcement

In this section we present a technique in order to obtain positive real Y3(s) which is
efficient for the further realization. If both terms in (7) are positive real then Y3(s)
is positive real as well.

First we consider the term sYC. Matrix YC is indefinite. Following the eigen-
decomposition YC = Vdiag(σ1,σ2, . . . ,ση1)V

−1, all negative eigenvalues are set to
zero. Subsequently, the matrix is reconstructed through the operation
ỸC = Vdiag(σ̃1, σ̃2, . . . , ˜ση1)V

−1 where the modified quantities are denoted with
”˜”. This procedure allows us to get YC positive definite and positive real sYC.
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Above it was shown that YRL is positive real. However the number of terms in
YRL(s) is related to the number of RL elements in the circuit as O(nη2

1 ). Taking it
into account, we are interested to obtain an efficient approximation of YRL(s) which
consists of k < n terms and determines the effective admittance function behavior.
Positive realness of the new approximation must be preserved. One effective way to
achieve it is to use modal approximation [4]. Modal approximation requires selec-
tion of dominant eigenvalues and these can be computed via full null space methods
(QR, QZ) or iterative subspace methods [4].

A pole λ j that corresponds to a residue H j with relatively large ||H j||2/|Re(λ j)|
is called a dominant pole, i.e. a pole that is well observable and controllable in the
admittance function. In our case all λi are real and negative. An approximation of
YRL(s) that consists of k < n terms with ||H j||2/|Re(λ j)| above some value, deter-
mines the effective admittance function behavior [4]:

ỸRL(s) =
k

∑
i=1

Hi

s−λi
. (14)

Since λi < 0 and Hi = (PT
NΨxi)(y∗i Ψ T PN) > 0, with xi = yi, then it follows that

(14) is positive real. Thus applying a Π -structure template for realization of Ỹ3(s) =
ỸRL(s)+ sỸC ensures construction of passive RLC circuit.

7 Numerical example

Fasterix model consists of two printed striplines, which are parallel to each other.
The striplines are 1 mm wide and the length is 15 mm. For the maximum frequency
5 GHz , Fasterix generates mesh with 28 elements. Then this model is interpreted
as a full RLC circuit with η = 28 nodes and ε = 26 RL-branches. In order to build
reduced circuit, Fasterix chooses 15 super nodes and applies the super node algo-
rithm.

For transient analysis, a trapezoidal pulse having rise/fall times of 1 ps and pulse
width of 1 ns is applied to the pins of the lower strip. A 50 Ω resistor Rout is con-
nected between two ports of the upper strip. The voltage is measured over Rout and
regarded as output.

The transient response at the resistor Rout is given in Figure 4. It can be seen
that the time response is unstable since initially the super node algorithm does not
preserve passivity. However, the super node algorithm with proposed passivity en-
forcement preserves passivity. Shown in Figure 5 the two waveforms of the original
and reduced circuits match very well. Table 1 shows a comparison between original
and reduced models. The reduced model has large amount of RLC elements. Nev-
ertheless, when the original circuit is of high order, the simulation time is reduced.
This happens because the number of mutual inductances is zero. For this particular
example YRL(s) contains n = 25 terms and it was truncated till k = 4 terms with the
most dominant poles.
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Fig. 4 Simulation in time domain Fig. 5 Comparison of the original and reduced models

Table 1 Comparison of the original and the reduced models

system dimension R L C Lmutual

original 28 26 26 91 245
reduced 15 420 420 120 0

8 Conclusions

In this paper an overview of a reduction technique, the super node algorithm, used
in the EM tool Fasterix has been presented. This algorithm delivers stable models,
however we have shown that passivity is not preserved. As a remedy, a technique
for passivity enforcement based partly on the modal approximation was introduced.
Realization was performed by using a Π -structure template. This strategy solves
the problem of preserving passivity. However the time complexity of the modified
version of the super node algorithm still needs to be investigated.
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