

Topology control

Citation for published version (APA):
Buchin, K., & Buchin, M. (2007). Topology control. In D. Wagner, & R. Wattenhofer (Eds.), Algorithms for Sensor
and Ad Hoc Networks: Advanced Lectures (pp. 81-98). (Lecture notes in computer science; Vol. 4621). Springer.
https://doi.org/10.1007/978-3-540-74991-2_5

DOI:
10.1007/978-3-540-74991-2_5

Document status and date:
Published: 01/01/2007

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1007/978-3-540-74991-2_5
https://doi.org/10.1007/978-3-540-74991-2_5
https://research.tue.nl/en/publications/cbc1a1b6-a5a1-488c-bf3d-3a7ec86f2da8

5

Topology Control

Kevin Buchin and Maike Buchin

5.1 Introduction

Information between two nodes in a network is sent based on the network
topology, the structure of links connecting pairs of nodes of a network. The
task of topology control is to choose a connecting subset from all possible
links such that the overall network performance is good. For instance, a goal
of topology control is to reduce the number of links to make routing on the
topology faster and easier.

In this chapter we assume that the network topology can be controlled by
varying the transmission radii of the nodes and selecting and discarding possi-
ble links. Topology control was first considered by Tagaki and Kleinrock [355].
The effect of topology control on the network is demonstrated in Figure 5.1
(taken from [392]).

In the following we consider localized algorithms, i.e., algorithms where
decisions for establishing connections are done locally by the nodes. Each

(a) unit disk graph (b) output of the XTC Algorithm

Fig. 5.1. A network without and with topology control applied.

D. Wagner and R. Wattenhofer (Eds.): Algorithms for Sensor and Ad Hoc Networks, LNCS 4621, pp. 81–98, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

82 K. Buchin and M. Buchin

node independently explores its surrounding region and establishes connec-
tions with neighboring nodes in its transmission range. A localized algorithm
should be sufficiently simple and efficient such that it can be carried out by
the mobile nodes.

Alternatively one can consider centralized algorithms for establishing the
network topology. These gather all connectivity and location information in
one node, construct the topology of the whole network, and propagate it to
all other nodes. We do not consider centralized algorithms since a localized
construction and maintenance is preferred because of the limited resources
and the mobility of the nodes.

Topology control aims to conserve energy as the power in an ad hoc net-
work is limited. The topology should allow for efficient routing and improve
the overall network performance. These goals can be formalized in different
ways. In Section 5.2 we give an overview of quality criteria that influence the
network performance based on the topology.

The topology control problem is well described in a graph-theoretic setting.
Consider the bidirected graph G = (V, E), where the node set V consists of
the nodes of the network, and an edge (u, v) between the nodes u and v exists
if the nodes u and v lie in each other’s transmission range. If the nodes have
differing transmission radii, this yields a directed graph where edges exist if
one node lies in the transmission range of the other (and not necessarily vice
versa). We will assume uniform maximal transmission ranges.

The task of topology control can now be formulated as follows: Given the
graph G = (V, E) compute a subgraph G′ = (V, E′), E′ ⊆ E which allows for
energy efficient routing and increases the network performance and lifetime.
These goals can be measured by several criteria, such as connectivity and
sparseness of G′, which are described in the next section.

Based on the energy model used, one can also consider edge weights for
the graph G. I.e., consider the weight function w which assigns to each edge
e in E a weight w(e), which is the energy needed to transport information
along the edge e. The energy cost of a path in the graph is the sum over the
costs of the edges in the path.

Typical edge weights are given by the link metric, the Euclidean distance
between the endpoints of the edge or an energy metric which takes the Eu-
clidean distance and raises it to a power greater than 1. For the link metric
all edge weights are one, i.e., the number of hops are counted. An energy met-
ric raises the Euclidean distance to an exponent called attenuation exponent
which is typically a value between 2 and 5. I.e., the edge e between two nodes
u and v obtains one of the weights

wlink(e) := 1, wdist(e) := d2(u, v), or wenergy(a)(e) := d2(u, v)a

where a > 1 and wlink, wdist, and wenergy(a) denote the edge weights for the
link, distance, and energy metric, respectively.

Taking the Euclidean distance between the endpoints requires that the
graph is embedded in the Euclidean plane or space, i.e., each node has coor-

5 Topology Control 83

dinates. In general, nodes need not know their coordinates. Some algorithms
require that they know their coordinates (e.g., assume that all nodes have a
GPS), other algorithms require that the nodes can determine the distances
or directions to nodes in their neighborhood and some algorithms do not use
any distance or direction information at all. Often algorithms assume nodes
to have distinctive IDs.

Many localized algorithms for topology control compute a locally defined
geometric graph. Therefore we give an overview of locally defined geometric
graphs in Section 5.3 and in Section 5.4 describe some algorithms computing
different locally defined graphs.

5.2 Quality Criteria

In this section we consider different criteria that may be used to measure the
quality of a network topology.
Connectivity. Perhaps the most basic requirement for a topology is con-
nectivity, i.e., that there is a path between any pair of vertices in V . More
specifically, one requires that any two nodes that are connected by a path in
G should also be connected by a path in G′. Sometimes the stronger notion of
k-vertex-connectivity or k-edge-connectivity is required. A graph is k-vertex-
connected (k-edge-connected) if at least k vertices (edges) need to be removed
for the graph to become disconnected. The reason to ask for connectivity is
simple: A topology G′ that is less connected than G does not have the same
capabilities to transfer information. Asking for k-connectivity might lower the
risk of path loss due to interference.

Sometimes instead of total connectivity a giant connected component suf-
fices. A connected component is a maximal connected subgraph. A giant con-
nected component is a connected component of linear size, i.e., containing cn
vertices, where n is the number of vertices in V and 0 < c ≤ 1 a constant.
For instance if the task of an ad hoc network is to compute an average value
over the network, a giant connected component containing all but few of the
vertices will yield a value very close to that of the total network. For obtain-
ing a giant connected component instead of total connectivity, often a much
smaller transmission radius is sufficient [323], and therefore much less energy.
Symmetry. Another basic requirement for a topology is symmetry, which
means that if (u, v) is an edge in G′, so is (v, u). In a graph-theoretic sense
this means that the computed graph G′ should be bidirectional. Many rout-
ing algorithms require symmetry. Without symmetry, communication in the
network becomes more complicated, e.g., it may not be possible to send back
an acknowledgement (ACK) for received data.
Stretch Factors. A main goal of topology control is high energy-efficiency to
increase the network lifetime. Depending on the energy model used, energy-
efficiency can be measured in different ways, typically using one of the fol-
lowing stretch factors : energy stretch factor, hop stretch factor, or distance

84 K. Buchin and M. Buchin

0.25

0.64

0.2025
0.1125
0.20250.81

0.5175
0.5175 = 1

(a) energy stretch factor
(attenuation 2)

0.5

0.8

0.45 0.35

0.450.9

1.25
0.9 = 1.39

(b) distance stretch factor

1

1

11

1

1

2
1 = 2

(c) hop stretch factor

Fig. 5.2. Example for stretch factors for a pair of nodes.

stretch factor, see Figure 5.2. A stretch factor is the largest ratio of a quantity
measured in a subgraph and in the full communication graph.

The energy stretch factor of a subgraph G′ in G is the largest ratio for any
pair of vertices in V between the energy of the minimum energy path in G′

and in G. Formally, the energy stretch factor is max
u,v∈V

EG′(u,v)
EG(u,v) where EG(u, v)

denotes the energy of the minimum energy path between u and v in G. The
energy of a path is the sum of the energies of the edges, where the energy of
an edge is measured according to the chosen energy model.

The hop stretch factor is the largest ratio of number of hops, i.e., number
of edges, in G′ and G, respectively, between any two vertices in V .

The distance stretch factor is the largest ratio of the Euclidean lengths
of shortest paths in G′ and G, respectively, for any pair of vertices in V .
The problem of designing graphs with low distance stretch factor has been
extensively studied by network designers. If an attenuation exponent larger
than 1 is used in the energy model, a constant distance stretch factor implies
a constant energy stretch factor.

A subgraph G′ of G that has a constant distance stretch factor is a spanner
of G. A spanner is a subgraph G′ of a graph G in which the distance between
any two nodes in G′ is within a constant factor of the distance in G.

Sparseness. The topology determined by a topology control algorithm should
be simple and easy to maintain. These subjective goals are influenced by the
sparseness of the graph. A graph is called sparse if it has few edges: The
number of edges is linear in the number of nodes, i.e., the average vertex de-
gree is constant. The degree of a vertex is the number of of edges adjacent to
the vertex. The maximal vertex degree may still be high in a sparse graph.
A stronger requirement is therefore that all vertex degrees are bounded by a
constant.

5 Topology Control 85

Due to the low complexity of sparse graphs, routing algorithms are more
time and power efficient in sparse graphs. There is a tradeoff between connec-
tivity and sparseness: A sparse graph is likely to have low connectivity.

Throughput. Topology control aims at a topology with large throughput,
i.e., where as much data as possible can be sent over the network. A measure
for the throughput of a network is its bit-meter capacity. We say that the net-
work transports one bit-meter if one bit has been transported over a distance
of one meter. The network’s bit-meter capacity is the amount of bit-meters
that can be transported in one second.

The bit-meter capacity measures the optimal throughput of a network.
For measuring the worst case throughput, throughput competitiveness can be
used. This is the largest number φ, 0 ≤ φ ≤ 1, such that for any pair of
vertices (v, w), if a flow of r can be routed in G from v to w then a flow of φr
can be routed in G′ from v to w.

Interference. Interference occurs when a node cannot receive messages be-
cause several nodes in its transmission range send at the same time. Topology
control handling interference is discussed in Chapter 6.

Adaptability. A further goal of topology control is to determine a topology
that is robust to mobility, i.e., that can react quickly to changing network
conditions. This is measured by the adaptability of a network, which is the
maximum number of nodes that need to change their topology information as
a result of the movement of a node. All locally defined graphs have reasonable
adaptability because in case a node moves the nodes in its neighborhood can
locally recompute their edge sets.

Planarity. Some geographic routing algorithms require that the embedding
of the topology in the plane does not contain crossing edges, i.e., it is a planar
straight-line graph.

5.3 Locally Defined Geometric Graphs and Further
Proximity Graphs

A localized algorithm for topology control computes a subgraph G′ = (V, E′)
of a given graph G = (V, E) based on local decisions. This means that the
decision whether an edge at a node v ∈ V is selected to be in E′ is made
by considering the information of all nodes in a k-hop neighborhood of v,
i.e., all nodes w ∈ V for which there is a path starting at v and ending at
w containing at most k edges for a constant k. For many topology control
algorithms k equals one or two, i.e., only the information of the neighbors or
of the neighbors’ one-hop neighborhood is used.

If the nodes are assumed to lie in some geometric space, typically the
Euclidean plane R

2, this problem is closely related to geometric graphs which
are defined by local properties. Many distributed topology control algorithms

86 K. Buchin and M. Buchin

compute such a locally definable graph, or a variant of such a graph or combine
two locally definable graphs. In this section we give an overview of locally
definable graphs, many of which have been used for topology control, explicitly
or implicitly. We consider here only geometric graphs in the two-dimensional
Euclidean plane R

2.
An example of a locally definable graph is the Gabriel graph (GG): Given

a set of vertices V , two points from V are connected by an edge if the disk with
these points as a diameter contains no further points from V , see Figure 5.3.
If the set of possible edges is restricted to the edges of a graph G, we call this
the restricted Gabriel graph denoted by GG(G) (and analogously for other
graphs).

(a) Gabriel graph (b) Relative neighborhood graph

Fig. 5.3. Empty neighborhoods of an edge.

In the Gabriel graph edges are defined by an empty neighborhood, i.e., an edge
is in the graph if a certain neighborhood of the edge does not contain any
vertices. For the Gabriel graph the empty neighborhood of an edge is the disk
which has the edge as a diameter. Such graphs are considered in detail in
Section 5.3.1. These graphs are typically sparse, i.e., have a low total number
of edges though the maximum vertex degree might be high. A shortcoming of
these graphs is that they might have a high distance stretch factor.

A better stretch factor can be achieved by connecting a point to a nearby
point in all directions. An example is the Yao graph: For every point the plane
is divided into a set of cones with a fixed angle with the point as base and
the point is connected with the nearest neighbor in every cone. These kinds
of graphs are described in Section 5.3.2.

Closely related to locally definable graphs are proximity graphs, i.e., geo-
metric graphs with edges between vertices that are by some means close to
each other. These graphs are discussed in Section 5.3.3. The Gabriel graph is
such a graph. But not all proximity graphs are locally definable. For instance
a minimal spanning tree is a minimal (with respect to edge weight) connected
graph on a set of points. Another important proximity graph is the Delau-
nay triangulation. It can be defined by a local property of the triangles. This
property does not yield a local property for the edges. Therefore, localized
variants of the Delaunay triangulation are considered.

5 Topology Control 87

In Section 5.3.4 we consider graphs which have an exclusion region. An
exclusion region is similar to an empty neighborhood: a region close to an edge
that needs to be empty for the edge to be in the graph. For an exclusion region,
in contrast to an empty neighborhood, not the whole region needs to be empty,
but the region is divided into two halves by the edge and one of the halves
needs to be empty. E.g., a possible exclusion region is the empty neighborhood
of the Gabriel graph, i.e., the disk which has the edge as diameter, and an
edge is then in the graph if one of the half-disks is empty.

Figure 5.4 shows examples for most of the graphs that are described in
the rest of this section. The graphs are shown in order of inclusion. Note
that the graph inclusion H ⊂ G implies that the graph H has smaller degree
and larger stretch factors than the graph G. Many of the properties of the
graphs in this section are also described in the references given in the chapter
notes [199][255]. At the end of this section the most important graphs and
their properties are summarized in Table 5.3.4.

(a) NNG (b) EMST (c) RNG (d) GG (e) DT

Fig. 5.4. Examples of locally defined geometric graphs in order of inclusion: nearest
neighbor graph (NNG), Euclidean minimum spanning tree (EMST), relative neigh-
borhood graph (RNG), Gabriel graph (GG), and Delaunay triangulation (DT).

In the following n always denotes the number of vertices, i.e., n = |V |. Note
that a connected and planar graph has at least n−1 edges (because of connec-
tivity) and at most 3n− 6 (using Euler’s formula). In particular, a connected
and planar graph is sparse.

5.3.1 Graphs with Empty Neighborhoods

Gabriel Graph (GG). The empty neighborhood of an edge in the Gabriel
graph is the disk with the edge as a diameter (see Figure 5.3). Formally, an
edge (v, w) exists if there is no node u such that d(v, u)2+d(w, u)2 ≤ d(v, w)2.
I.e., there is no vertex u s.t. (u, v, w) form a triangle with an angle larger than
π/2 at u.

The Gabriel graph is a bidirectional and connected graph. It is planar and
also sparse. The distance stretch factor of the Gabriel graph is

√
n− 1 and it

is not a spanner. The Gabriel graph has optimal energy stretch factor 1; the
maximum vertex degree is n− 1.

88 K. Buchin and M. Buchin

Relative Neighborhood Graph (RNG). The empty neighborhood of an
edge in the relative neighborhood graph is the intersection of the two disks
centered at the vertices of the edge with their radii equal to the distance
between the two vertices (see Figure 5.3). This intersection is called the relative
neighborhood of the edge. One can also say that the two connected vertices
are relatively close, i.e., there is no node closer to both vertices than they are
to each other. Formally, an edge (v, w) exists if

d(v, w) ≤ max
u∈V \{v,w}

(d(v, u), d(w, u)).

The relative neighborhood graph is a bidirectional and connected graph. It
is planar and also sparse. Its distance stretch factor is n − 1, i.e., it is not
a spanner, and its energy stretch factor is also n − 1. The maximum vertex
degree is n − 1 but can be bounded by 5 if no two points have the same
distance to a third point. If two points do have the same distance to a third
point, we will call this a tie and discuss it further in Section 5.4.3, where an
algorithm using the relative neighborhood graph is described. If one uses tie
breaking, i.e., choosing only one edge in the case of a tie, the maximum vertex
degree can be bounded by 6.

β-Skeletons. β-skeletons are a parameterized family of graphs, which are
parameterized by a positive, real number β. There are two versions of β-
skeletons: lune-based and circle-based. In both versions an edge is established
if its β-neighborhood is empty. For 0 < β ≤ 1 the β-neighborhoods of lune- and
circle-based β-neighborhoods are the same. For larger β, the β-neighborhoods
of lune-based β-skeletons are the intersection of two circles whereas the β-
neighborhoods of circle-based β-skeletons are the union of two (different) cir-
cles. As an example we now give the definition of the β-neighborhoods for
lune-based β-skeletons for β ≥ 1 (For the other cases see [217]).

The β-neighborhood of an edge in a lune-based β-skeleton is the intersec-
tion of two circles. For β ≥ 1 the circles have centers lying on the line defined
by the edge and moving away from the edge with growing β. More specifically
(see Figure 5.5),

– for β = 1 both circle centers are the midpoint of the edge,
– for 1 < β < 2 the centers move from the mid- to the endpoints of the edge,
– for β = 2 the centers are the endpoints, and
– for β > 2 the centers move further away from the edge.

The radii of the circles grow with β and they are chosen such that always the
opposite endpoint of the edge lies on the boundary of the circle. Formally, the
lune-based β-neighborhood of an edge (v, w) and β ≥ 1 is

B
(
(1 − β

2
)v +

β

2
w,

β

2
d(v, w)

)
∩ B

(
(1 − β

2
)w +

β

2
v,

β

2
d(v, w)

)

where B(c, r) denotes the disk with center c and radius r and d(v, w) is the
Euclidean distance between the vertices v and w.

5 Topology Control 89

(a) β = 1 (b) 1 < β < 2 (c) β = 2 (d) β > 2

Fig. 5.5. β-Skeletons.

Both lune- and circle-based β-skeletons are a generalization of the Gabriel
graph. Lune-based β-skeletons are also a generalization of the relative neigh-
borhood graph. I.e., for β = 1 both β-skeletons equal the Gabriel graph and
for β = 2 the lune-based β-skeleton is the relative neighborhood graph (see
Figure 5.5).

Another parameterized family of graphs are γ-neighborhood graphs [376],
which generalize circle-based β-skeletons and the Delaunay triangulation.

5.3.2 Cone-Based Graphs

Yao Graph (YG). The Yao graph is a graph parameterized by a constant
k ≥ 6. For each vertex, the plane is divided into k cones of equal angle and
the vertex is connected to the nearest vertex in each cone (see Figure 5.6(a)
left). There may be several closest vertices in one cone, which we again call
a tie. In this case tie breaking can be used, i.e., choosing one or more of the
closest vertices to connect to. In the original definition [400], an arbitrary
closest vertex was selected. An alternative is to connect to all closest vertices.

This yields a weakly connected directed graph, "weakly" meaning that —
disregarding edge directionality — all nodes are connected. The bidirectional
graph, in which edge directions are ignored, is called the undirected Yao graph
(see Figure 5.6(a) right). The Yao graph is typically not planar, but for fixed

(a) Yao graph (b) Cone-covering graph

Fig. 5.6. Cone-based graphs.

90 K. Buchin and M. Buchin

k it is sparse. It is a spanner with distance stretch factor 1/(1 − 2 sin(π/k))
and energy stretch factor 1/(1 − (2 sin(π/k))α) where α is the attenuation
exponent.

The maximum vertex degree is n − 1, but the outdegree can be bounded
by k if no two vertices have the same distance to a third vertex, or if, as in
the original definition, in the case of a tie one vertex is chosen. A graph with
constant distance stretch factor and bounded vertex degree can be constructed
from the Yao graph [19]. The Yao graph contains the relative neighborhood
graph if in case of a tie one connects to all closest vertices or if it is assumed
that no two points have the same distance to a third vertex.

Θ-Graph. The Θ-graph is often used synonymously to the Yao graph. It is
originally defined sightly different [212]: Instead of connecting to the nearest
vertex in each cone, one connects to the vertex for which the projection on
the axis of the cone is the shortest. The Θ-graph has similar properties as the
Yao graph.

Cone-Covering Graph. A graph related to the Yao graph that is the basis
of an algorithm described in Section 5.4.1 is the following: Each vertex pro-
cesses its neighbors by their distance, starting with its nearest neighbor. Edges
to neighbors are established until the α-cones of the processed neighbors cover
the complete angular range around the vertex (see Figure 5.6(b) left). This
graph has similar properties as the Yao graph but typically the longest edge
is shorter (and therefore the necessary transmission range smaller). To guar-
antee no empty cone of angle greater than α, the angles for the Yao graph
need to be at most α/2, i.e., it connects to k ≥ 4π/α nodes. The degree of the
cone-covering graph can be arbitrarily high, e.g., for points lying on a spiral.
It can be efficiently constructed by incrementally increasing the transmission
radius.

5.3.3 Further Proximity Graphs

Delaunay Triangulation (DT) and Variants. Two vertices are connected
by an edge in the Delaunay triangulation if there exists an empty circle
through the two vertices. The Delaunay triangulation is a bidirectional, con-
nected, planar and sparse graph. All faces of the graph are triangles (with the
assumption that no four or more points lie on a common circle). Formulated
for triangles, one can say that a triangle is in the graph if the circle defined by
the triangle is empty (see Figure 5.7). This is called the empty circle property.
The distance stretch factor of the Delaunay triangulation lies between π/2 and
(4
√

3/9)π ≈ 0.77π. The energy stretch factor is 1 (the Delaunay triangulation
contains the Gabriel graph), and the maximum vertex degree may be n− 1.

In contrast to empty neighborhood graphs, the empty area in the De-
launay triangulation is not necessarily close to the points, but may reach
arbitrarily far away. Therefore the Delaunay triangulation is not locally con-
structible in the sense that one may need to check vertices arbitrarily far away

5 Topology Control 91

(a) triangle (b) not a triangle (c) resulting graph

Fig. 5.7. Delaunay triangulation. A triangle is in the Delaunay triangulation if its
circumcircle is empty.

from an edge. Therefore localized versions of the Delaunay triangulation have
been defined: the k-localized Delaunay triangulation, the restricted Delaunay
triangulation, and the partial Delaunay triangulation. We describe here the
k-localized Delaunay triangulation for which an algorithm will be described
in Section 5.4.2.

For the k-localized Delaunay triangulation one considers the k-localized
empty circle property, which says that no point of the k-neighborhood lies in
the circumcircle of the triangle. A k-neighbor is a vertex to which a path of
length k exists in the original graph. The k-localized Delaunay triangulation
is the Gabriel graph plus all triangles fulfilling the k-localized empty circle
property. For k = 1 the k-localized Delaunay triangulation is not necessarily
planar but it can be converted into a planar spanner by further processing. For
k ≥ 2 it is a planar spanner. The k-localized Delaunay triangulation contains
the Delaunay triangulation, therefore the distance stretch factor is at most
that of the Delaunay triangulation and the energy stretch factor is again 1.
The maximum vertex degree is also n− 1.

Euclidean Minimum Spanning Tree (EMST). A Euclidean minimum
spanning tree is a graph that connects all vertices and whose total Euclidean
edge length is minimized. It is a tree, i.e., a graph without cycles. It is con-
nected and sparse but its energy stretch factor and distance stretch factor are
n−1, i.e., it is not a spanner. Note the difference between spanning and span-
ner: A spanning tree connects all vertices, a spanner is a graph with constant
distance stretch factor.

The maximum vertex degree in a Euclidean minimum spanning tree is 6.
For a given set of vertices, the Euclidean minimum spanning tree need not be
unique. Many useful properties of the Euclidean minimum spanning tree have
been proven by Gilbert and Pollack [160].

Nearest Neighbor Graph (NNG). The nearest neighbor graph is per-
haps the most basic proximity graph. Each vertex is connected to its nearest
neighbor. The nearest neighbor graph is a directed graph. It is in general not
connected, and therefore has not been used for topology control. It is pla-

92 K. Buchin and M. Buchin

nar and sparse but not a spanner. It is contained in a Euclidean minimum
spanning tree and thus has maximum vertex degree 6.

In the k–Nearest Neighbor graph each node is connected to its k nearest
neighbors. Blough et al. [39] use the graph containing only the bidirectional
edges, i.e., both endpoints are in the k–neighborhood of the other end point,
to achieve a topology where each node has a bounded (by k) number of nodes
in its transmission range. For nodes distributed uniformly at random in a
square and a suitable constant λ the resulting graph is connected with high
probability if k ≤ λ log n.

5.3.4 Graphs with Exclusion Regions

Even if a graph is not locally definable there might be a non-trivial larger
graph containing it which is locally definable. In particular it might have an
exclusion region: a region around an edge such that a necessary condition for
the edge to be in the graph is that the region is empty on one side of the edge.
In general the number of edges obtained in such a way might be quadratic,
i.e., the resulting graph is not sparse. But the edges might be of interest as a
candidate set for further processing.

An example of a graph with an exclusion region is the Delaunay triangu-
lation. Its exclusion region is the disk which has the edge as a diameter (the
same area defining the empty neighborhood for the Gabriel graph, but now
we allow vertices to lie in one half of it). Again, the exclusion region only gives
a necessary – not a sufficient – condition for an edge to be in the Delaunay
triangulation.

Also the minimum weight triangulation (triangulation with minimum total
edge length) allows for an exclusion region, as well as the minimum dilation
triangulation (triangulation with minimum maximal stretch factor between
any two nodes) and the greedy triangulation (incrementally constructed tri-
angulation adding shortest edges first if possible). An overview over graphs
with exclusion regions is given by Drysdale et al. [193].

The following table summarizes the most important graphs and their prop-
erties. The bounds in the table are worst case bounds.

5.4 Localized Algorithms

We describe here three localized topology control algorithms. Each algorithm
makes use of one of the graphs described in the previous section: the cone-
covering graph, a localized version of the Delaunay triangulation and the
relative neighborhood graph.

5.4.1 Cone Based Topology Control (CBTC)

We describe a cone based algorithm proposed by Wattenhofer et al. in [391]
and revised and extended by Li et al. in [254]. The algorithm consists of two

5 Topology Control 93

graph property GG RNG YG NNG EMST DT
connected yes yes weakly no yes yes
planar yes yes no yes yes yes
sparse yes yes yes yes yes yes
maximum n− 1
vertex degree

n− 1
(5, 6)

n− 1 6 6 n− 1

distance
stretch factor

√
n− 1 n− 1 1

1−2 sin π
k

– n− 1 ≤ 4
√

3
9

π

energy
stretch factor

1 n− 1 (1
1−2 sin π

k
)a – n− 1 1

spanner no no yes no no yes

Table 5.2. Graph properties of the Gabriel graph (GG), the relative neighborhood
graph (RNG), the Yao graph (YG), the nearest neighbor graph (NNG), the Eu-
clidean minimum spanning tree (EMST) and the Delaunay triangulation (DT). The
a in the energy stretch factor of the Yao graph denotes the attenuation exponent.

phases: a basic step (establishing a candidate edge set) and several possible
improvements (removing unnecessary edges) as a second step. An example for
the resulting topology is shown in Figure 5.8 (taken from [254]).

Algorithm 14: Cone Based Topology Control
Neighbors Nu ← ∅1
Directions Du ← ∅2
Transmission power pu ← pmin3

while pu < pmax & ∃ empty α-cone in Du do4
Increase pu5
Broadcast and gather Acks6
Nu ← Nu ∪ {v : discovered v}7
Du ← Du ∪ {dir(v) : discovered v}8

Basic Step. The basic algorithm 14 is easy to state: For a predefined angle
α the algorithm finds for every node the smallest circular neighborhood such
that there is a point in any cone of angle α starting at the node. I.e., in the
basic step the cone-covering graph described in Section 5.3.2 is computed.

For this, each node incrementally increases its transmission radius and
records the nodes it reaches. Whenever it reaches a new node it checks whether
the cone defined by this node is already covered by previously established
edges. If not, a new edge to this node is established. Note that nodes only
need to know the distances and directions of their neighbors, and not their
exact positions.

94 K. Buchin and M. Buchin

Then the symmetric closure of the up to now directed graph is computed.
I.e., when each node has covered its angular range with cones or reached its
maximal transmission range, it contacts all its neighbors that it has estab-
lished edges to, and if necessary the neighbors add those edges. This symmet-
ric closure is connected for any α ≤ 5π/6. For larger α it is not necessarily
connected.

Remarks on the Connectivity:. In [254] it is proven, that the symmetric closure
is connected. But actually a stronger result holds: It contains a Euclidean
minimum spanning tree. This follows from Lemma II.2 in [254]:

Let R be the maximum transmission range and GR the graph with edge set ER

containing all edges (u,v) lying in each others transmission range. Let Eα be
the set of edges chosen by the algorithm. If α ≤ 5π/6, and u and v are nodes
in V such that (u, v) ∈ ER (that is, (u, v) is an edge in the graph GR, so that
d(u, v) ≤ R), then either (u, v) ∈ Eα or there exist u′, v′ ∈ V such that (a)
d(u′, v′) < d(u, v), (b) either u′ = u or (u, u′) ∈ Eα, and (c) either v′ = v or
(v, v′) ∈ Eα.

First observe that, using the unit disk graph model, if the maximal reachable
graph (all possible edges established) is connected, it contains a Euclidean
minimum spanning tree. Using Lemma II.2 one can show that in the basic step
no Euclidean minimum spanning tree edges are removed: Assume a Euclidean
minimum spanning tree edge is removed, then by the lemma it can be replaced
by a shorter edge which is a contradiction to it being a Euclidean minimum
spanning tree edge.

199

198

197

196

195

194

193

192

191

190

189

188

187

186

185

184

183

182

181

180

179

178

177

176

175

174

173

172

171

170

169

168

167

166

165

164

163
162

161

160

159

158

157

156

155

154

153

152

151

150

149

148

147

146

145

144

143

142

141

140

139

138

137

136

135

134

133

132

131

130

129

128

127

126

125

124

123

122

121

120

119

118

117
116

115

114

113

112

111

110

109

108

107

106

105

104

103

102

101

100

99

98

97

96

95

94

93

92

91

90

89

88

87

86

85

84

83

82

81

80

7978

77

76

75

74

73

72

71

70

69

68

67

66

65

64

63

62

61

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

(a) unit disk graph

199

198

197

196

195

194

193

192

191

190

189

188

187

186

185

184

183

182

181

180

179

178

177

176

175

174

173

172

171

170

169

168

167

166

165

164

163
162

161

160

159

158

157

156

155

154

153

152

151

150

149

148

147

146

145

144

143

142

141

140

139

138

137

136

135

134

133

132

131

130

129

128

127

126

125

124

123

122

121

120

119

118

117
116

115

114

113

112

111

110

109

108

107

106

105

104

103

102

101

100

99

98

97

96

95

94

93

92

91

90

89

88

87

86

85

84

83

82

81

80

7978

77

76

75

74

73

72

71

70

69

68

67

66

65

64

63

62

61

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

(b) CBTC algorithm

199

198

197

196

195

194

193

192

191

190

189

188

187

186

185

184

183

182

181

180

179

178

177

176

175

174

173

172

171

170

169

168

167

166

165

164

163
162

161

160

159

158

157

156

155

154

153

152

151

150

149

148

147

146

145

144

143

142

141

140

139

138

137

136

135

134

133

132

131

130

129

128

127

126

125

124

123

122

121

120

119

118

117
116

115

114

113

112

111

110

109

108

107

106

105

104

103

102

101

100

99

98

97

96

95

94

93

92

91

90

89

88

87

86

85

84

83

82

81

80

7978

77

76

75

74

73

72

71

70

69

68

67

66

65

64

63

62

61

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

(c) CBTC algorithm and
improvements

Fig. 5.8. Topologies computed by the CBTC algorithm.

Improvements. Several improvements which remove energy inefficient edges
that have been established by the basic step are possible as a second step to
the basic algorithm. All improvements preserve connectivity. In the original

5 Topology Control 95

work [391][254] this is proved directly for each improvement but it can also
be seen by the following argument:

1. The original topology computed by CBTC contains a minimum spanning
tree (if the unit disk graph is connected).

2. Any minimum spanning tree is contained in the relative neighborhood
graph.

3. The improvements delete only edges which are not in the relative neigh-
borhood graph and therefore no edges of the minimum spanning tree.

4. After applying the improvements the graph still contains a minimum span-
ning tree and is thus connected.

Shrink Back. In the basic algorithm, nodes might not find a neighbor in every
direction. I.e., there may be directions which are not covered by cones, simply
because there are no neighbors in that direction. In this case the transmission
radius will have been set to the maximum. This improvement reduces these
maximum transmission radii to the smallest transmission radii that reach all
chosen neighbors. The resulting graph will still contain a Euclidean minimum
spanning tree and is therefore still connected.

Asymmetric Edge Removal. The key of this improvement is that for α ≤
2π/3 a Euclidean minimum spanning tree is a subset of the directional edges,
analogously to the case of the Yao graph with k ≥ 6. This follows from the
fact that the Euclidean minimum spanning tree is contained in the relative
neighborhood graph. In other words: For α ≤ 2π/3 any outgoing edge of the
cone-covering graph without corresponding ingoing edge is not necessary to
maintain a Euclidean minimum spanning tree as subgraph. Thus removing
asymmetric, i.e., directed, edges, does not remove any Euclidean minimum
spanning tree edges and the resulting graph is still connected.

Pairwise Edge Removal. In this improvement edges are removed that are not
contained in the relative neighborhood graph. This is done using the following
observation: If a node u is connected to two vertices v and w, and if either
(u, v) or (u, w) are the longest edge in the triangle (u, v, w), it can be removed.
This is in fact a reformulation of the definition of the relative neighborhood
graph. Again a Euclidean minimum spanning tree, which is contained in the
relative neighborhood graph, will still be contained in the resulting graph,
which therefore is connected.

Triangle Inequality Edge Removal. This is the original improvement given
in [391], which uses the triangle inequality for edge removal. An edge (v, w)
is removed if for some vertex u the edges (u, v) and (u, w) are in the graph,
and p(u, v) + p(u, w) ≤ p(v, w), where p(e) denotes the energy of the edge e.
If p is the quadratic distance function, then all removed edges are not edges
of the Gabriel graph.

96 K. Buchin and M. Buchin

5.4.2 Delaunay Based Topology Control

Several topology control algorithms compute a graph containing the Delau-
nay triangulation restricted to the full communication graph, i.e., a graph
containing all edges that are in the Delaunay triangulation as well as in the
communication graph. The resulting topologies have constant distance stretch
factor in the case of the unit disk graph model. The algorithms discussed as-
sume that location information is given at each node.

Gao et al. [148] define a restricted Delaunay triangulation as any planar
graph containing the Delaunay triangulation restricted to the unit disk graph.
They combine such a graph with node clustering (i.e., the restricted Delaunay
triangulation is used to connect clusters) and show how it can be maintained
when nodes move.

Li and his co-authors proposed several topology control algorithms based
on the k–localized Delaunay triangulation [256] described in Section 5.3. For
achieving a reasonable run-time, k is typically chosen as 1 or 2. The 1–localized
Delaunay triangulation is not necessarily planar but a planar subgraph can
be extracted. For k ≥ 2 the k–localized Delaunay triangulation is always
planar. In the following we describe algorithm 15 for computing the k–localized
Delaunay triangulation.

Algorithm 15: k-Localized Delaunay Topology Control
Collect location information of k–hop neighbors1
Find triangles incident to node in local Delaunay triangulation2
Broadcast and receive triangle information3
Check if incident triangles are confirmed by all three vertices4
Add Gabriel graph edges5
Add edges of verified triangles6

Each node collects the location of its k–hop neighbors and computes the De-
launay triangulation of this set of points. Of the computed triangulation it
discards all triangles not incident to itself. It then sends a list of its incident
triangles to its neighbors and receives their list of incident triangles. Each node
checks if its incident triangles are verified by its neighbors. I.e., each node u
checks for a triangle uvw if the same triangle is also in the list of triangles
of v and w. If not, the triangle is discarded. The communication cost of the
verification step can be reduced to O(n) by letting each triangle be checked
only by the vertices at which it has an angle of at least π/3.

5.4.3 Relative Neighbor Topology Control (XTC)

This algorithm was proposed by Wattenhofer and Zollinger in [392]. If based
on Euclidean distances it computes a subgraph of the relative neighborhood
graph, and uses only relative positional information for this.

5 Topology Control 97

Algorithm. The XTC algorithm computes a subgraph of the relative neigh-
borhood graph using only relative positional information, i.e., each node is
required to sort its neighbors by their distance. For this XTC does not use
the description of the relative neighborhood graph by empty neighborhoods,
which would require full positional information. Instead XTC uses the descrip-
tion of the relative neighborhood graph that an edge is established between
two vertices u and v if there is no vertex w that is closer to both u and v than
u and v are to each other.

Algorithm 16: Relative Neighbor Topology Control (XTC)
Establish order ≺u over u’s neighbors1

Broadcast order2
Receive orders3

forall neighbors v in increasing order according to ≺u do4
if �w : w ≺u v & w ≺v u then5

Add v to final neighbor set6

More explicitly, XTC (algorithm 16, from node u’s perspective) does the fol-
lowing: First each node determines its one-hop neighbors, i.e., all other nodes
in its transmission range. Then it sorts its neighbors by any reasonable order,
for instance the link qualities to its neighbors. This order may correspond to
the order on the Euclidean distances between the nodes, but need not. In-
stead they may also depend on obstacles between the nodes. Symmetric edge
weights are assumed. In case of a tie, i.e., when two neighbors have the same
“distance” to it, tie breaking is used for achieving a strict order. This will be
explained in the next paragraph.

All nodes exchange their ordered neighbor lists with their neighbors. Then
each node u processes its neighbor list in order to select those neighboring
nodes that define the neighborhood in the topology control graph: For each
node v on the neighbor list it checks whether there is a node w that comes
before v on its own neighbor list and before itself on the neighbor list of v.
I.e., it checks for a node w s.t. w ≺u v and w ≺v u, where ≺v and ≺w denote
the neighbor orders of v and w, respectively. If this is the case, v is not added
to the topology defining neighborhood, otherwise it is.
Tie Breaking. A tie occurs if two nodes have the same distance to a third
node. To break the tie means to assign distinct and consistent distances to all
pairs of nodes. This situation can be described more generally for a weighted
graph where the goal is to have distinct and consistent edge weights. Assuming
that all nodes have distinctive IDs, this can be done as follows: Assign to each
edge an extended, more general weight, which is the triple of the former edge
weight, the smaller endpoint id and the larger endpoint id. A strict order is
then given by the lexicographic order on these weight triples. For the XTC

98 K. Buchin and M. Buchin

algorithm this means simply that if a node has two neighbors with equal
distance it sorts them according to their IDs.

Properties of GXT C . Let GXTC denote the graph computed by XTC.
GXTC is symmetric by definition (the condition u ≺v w and u ≺w v is sym-
metric). GXTC is connected in the general weighted graph model if the original
graph was connected.

The following properties hold if Euclidean distances are used: The maxi-
mum vertex degree is 6, GXTC is planar and a subgraph of the relative neigh-
borhood graph. If also there are no ties, i.e., no two nodes that have the same
distance to a third node, XTC exactly computes the relative neighborhood
graph.

5.5 Chapter Notes

In this survey we discussed geometric graphs suitable for topology control and
localized algorithms computing such graphs.

A survey on relative neighborhood graphs and its relatives is given by
Jaromczyk and Toussaint [199]. The β-skeletons are proposed by Kirkpatrick
and Radke [217]. Spanners, i.e., graphs with constant distance stretch factor,
are discussed by Arya et al. [19] and Eppstein [113]. Drysdale et al. [193]
give an overview of exclusion regions. Santi [338], [339] and Li [255] survey
topology control for wireless ad hoc networks.

In Section 5.2 we gave criteria for topology control and in Section 5.3
described graphs which fulfill these criteria. In Section 5.4 we described al-
gorithms computing some of these graphs. The criteria were described in a
graph-theoretic sense and the reasoning why they are good for topology con-
trol is more or less heuristic. The criteria are also closely bound to the unit
disk graph model and the assumption that the nodes lie in the Euclidean
plane.

One of the main open problems in topology control is how realistic these
assumptions are. In other words, what are realistic energy and interference
models, and efficient topology control algorithms based on them? In par-
ticular, the impact of the mobility of nodes needs to be addressed. Several
authors [39], [55] show that optimizing the given graph properties not nec-
essarily implicates an improvement of the network performance. Approaches
explicitly handling interference are further discussed in Chapter 6.

	Topology Control
	Introduction
	Quality Criteria
	Locally Defined Geometric Graphs and Further Proximity Graphs
	Localized Algorithms
	Chapter Notes

