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The TeraGyroid experiment[1] addressed a large scale problem of genuine scientific interest and
showed how intercontinental Grids enable new paradigms for collaborative computational science
that can dramatically reduce the time to insight. TeraGyroid used computational steering over a
Grid to study the self-assembly and dynamics of gyroid mesophases (found in novel materials and
living cells) using the largest set of lattice Boltzmann simulations ever performed.

I. INTRODUCTION

A. Complex Fluids

The term “simple fluid” usually refers to a fluid which
can be described to a good degree of approximation by
macroscopic quantities only, such as the density field
ρ(x), velocity field v(x), and perhaps temperature T (x).
Such fluids are governed by the well-known Navier-Stokes
equations[2], which, being nonlinear, are difficult to solve
in the most general case, with the result that numerical
solution of the equations has become a common tool for
understanding the behaviour of “simple” fluids, such as
water or air.

Conversely, a “complex fluid” is one whose macro-
scopic flow is affected by its microscopic properties. A
good example of such a fluid is blood: as it flows through
vessels (of order millimetres wide and centimetres long),
it is subjected to shear forces, which cause red blood cells
(of order micrometres wide) to align with the flow so
that they can slide over one another more easily, causing
the fluid to become less viscous; this change in viscosity
in turn affects the flow profile. Hence, the macroscopic
blood flow is affected by the microscopic alignment of its
constituent cells. Other examples of complex fluids in-
clude biological fluids such as milk, cell organelles and
cytoplasm, as well as polymers and liquid crystals. In
all of these cases, the density and velocity fields are in-
sufficient to describe the fluid behaviour, and in order to
understand this behaviour, it is necessary to treat effects
which occur over a very wide range of length and time
scales.

This length and time scale gap makes complex fluids
even more difficult to model than “simple” fluids. While
numerical solutions of the macroscopic equations are pos-
sible for many simple fluids, such a level of description
may not exist for complex fluids, yet simulation of every
single molecule involved is computationally infeasible.

B. Mesoscale modelling

Over the last decade, significant effort has been in-
vested in understanding complex fluids through compu-
tational mesoscale modelling techniques. These tech-
niques do not attempt to keep track of the state of
every single constituent element of a system, nor do
they use an entirely macroscopic description; instead,
an intermediate, mesoscale model of the fluid is devel-
oped, coarse-graining microscopic interactions enough
that they are rendered amenable to simulation and anal-
ysis, but not so much that the important details are lost.
Such approaches include Lattice Gas Automata[3–6], the
Lattice Boltzmann equation[7–12], Dissipative Particle
Dynamics[13–15], or the Malevanets-Kapral Real-coded
Lattice Gas[16–19]. Recently-developed techniques[20,
21] which use hybrid algorithms have shown much
promise.

C. Amphiphile mesophases

In a mixture containing many different fluid compo-
nents, an amphiphile is a kind of molecule which is com-
posed of two parts, each part being attracted towards a
different fluid component. For example, soap molecules
are amphiphiles, containing a head group which is at-
tracted towards water, and a tail which is attracted to-
wards oil and grease; analogous molecules can also be
formed from polymers. If many amphiphile molecules are
collected together in solution, they can exhibit highly var-
ied and complicated behaviour, often assembling to form
amphiphile mesophases, which are complex fluids of sig-
nificant theoretical and industrial importance. Some of
these phases have long-range order, yet remain able to
flow, and are called liquid crystal mesophases. Of partic-
ular interest to us are those with cubic symmetry, whose
properties have been studied experimentally [22–24] in
lipid-water mixturess[22], diblock copolymers[25], and in
many biological systems[26].
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It was recently shown by González and Coveney[27]
that the dynamical self-assembly of a particular am-
phiphile mesophase, the gyroid, can be modelled using
the lattice Boltzmann method. This mesophase was ob-
served to form from a homogeneous mixture, without any
external constraints imposed to bring about the gyroid
geometry, which is an emergent effect of the mesoscopic
fluid parameters.

It is important to note that this method allows exam-
ination of the dynamics of mesophase formation, since
most treatments to date have focussed on properties or
mathematical description[28, 29] of the static equilibrium
state. In addition to its biological importance, there have
been recent attempts[30] to use self-assembling gyroids to
constructing nanoporous materials.

During the gyroid self-assembly process, several small,
separated gyroid-phase regions or domains may start to
form, and then grow. Since the domains evolve inde-
pendently, the independent gyroid regions will in gen-
eral not be identical, and can differ in orientation, po-
sition, or unit cell size; grain-boundary defects arise be-
tween gyroid domains. Inside a domain, there may be
dislocations, or line defects, corresponding to the ter-
mination of a plane of unit cells; there may also be lo-
calised non-gyroid regions, corresponding to defects due
to contamination or inhomogeneities in the initial condi-
tions. Understanding such defects is therefore important
for our knowledge of the dynamics of surfactant systems,
and crucial for an understanding of how best to produce
mesophases experimentally and industrially.

In small-scale simulations of the gyroid, the mesophase
will evolve to perfectly fill the simulated region, without
defects. As the lattice size grows, it becomes more prob-
able that multiple gyroid domains will emerge indepen-
dently, so that grain boundary defects are more likely
to appear, and the time required for localized defects to
diffuse across the lattice increases, making it more likely
that defects will persist. Therefore, examination of the
defect behaviour of surfactant mesophases requires the
simulation of very large systems.

II. THE TERAGYROID SIMULATION GRID

Sufficiently large-scale simulations of surfactant dy-
namics require large amounts of CPU time and disk
space; the use of Grid technologies makes such simu-
lations feasible. Other novel techniques such as steer-
ing, migration, and real-time visualization, were also de-
ployed, as described below.

A. Logistics

The LB3D code used for the simulations was designed
to run on parallel computers, using MPI for communi-
cation. In each simulation, the fluid is discretized onto

a cuboidal lattice, each lattice point containing informa-
tion about the fluid in the corresponding region of space.
Each lattice site requires about a kilobyte of memory per
lattice site so that, for example, a simulation on a 1283

lattice would require around 2.2GB memory, and a sin-
gle system checkpoint would require about 2.2GB of disk
space.

The output from a simulation usually takes the form
of a single 4-byte floating-point number for each lattice
site, representing, for example, the density of a particular
fluid component at that site. Therefore, a density field
snapshot from a 1283 system would produce output files
of around 8MB.

As a conservative rule of thumb, the code runs at ap-
proximately 104 lattice site updates per second per CPU
on a fairly recent machine, and has been observed to have
roughly linear scaling up to order 103 compute nodes. A
1283 simulation contains around 2.1 × 106 lattice sites;
running it for 1000 timesteps requires 2.1 × 109 site up-
dates, or 2.1 × 105 CPU seconds: this is about an hour
of real time, split across 64 CPUs. The largest simula-
tion performed used a 10243 lattice; the smallest, 643.
Around 2TB of data was generated in total.

B. Migration

Table I describes the high-performance computing ma-
chines on which most of the simulation work was per-
formed. Such machines are typically heavily used, so that
intensive jobs are submitted in advance to a batch queue,
and then run when enough resources are available to do
so. The situation frequently arises, therefore, that while
a simulation is running on one machine, CPU time be-
comes available on another machine which may be able to
run the job faster or cheaper. The LB3D program which
was used to perform these simulations, has the ability to
“checkpoint” its entire state to a file. This file can then be
moved to another machine, and the simulation restarted
there, even if the new machine has a different number of
CPUs or even a completely different architecture. It has
been verified that the simulation results are independent
of the machine on which the calculation runs, so that
a single simulation may be migrated between different
machines as necessary without affecting its output.

C. Computational Steering

The technique of computational steering[31–33] has
been used successfully in smaller-scale simulations to op-
timize resource usage. Typically, the procedure for run-
ning a simulation of the self-assembly of a mesophase
would be to set up the initial conditions, and then sub-
mit a batch job to run for a certain, fixed number of
timesteps. If the timescale for structural assembly is un-
known then the initial number of timesteps for which
the simulation runs is, at best, an educated guess. It is
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Machine name Location Number of CPUs Architecture Peak performance (Tflops)

HPCx Daresbury, UK 1280 IBM Power4 Regatta 6.6

Lemieux PSC, Pittsburgh, PA, USA 3000 HP/Compaq 6

TeraGrid Itanium2 Cluster NCSA, USA 256 Itanium2 1.3

TeraGrid Itanium2 Cluster SDSC, USA 256 Itanium2 1.3

Green CSAR, Manchester, UK 512 SGI Origin3800 0.512 (shared)

Newton CSAR, Manchester, UK 256 Itanium2 0.384 (shared)

TABLE I: The main TeraGyroid simulation machines

Machine name Location Architecture

Bezier Manchester, UK SGI Onyx 300, 6x IR3 graphics pipes, 32 CPUs

Dirac London, UK SGI Onyx 2, 2x IR3 graphics pipes, 16 CPUs

SGI loan machine Phoenix, AZ, USA SGI Onyx, 1xIR4 graphics pipe, 1xIR3 pipe

TeraGrid Visualization Cluster ANL, USA Intel Xeon

NCSA Visualization Cluster NCSA SGI Onyx

TABLE II: The main TeraGyroid visualization machines

not uncommon to examine the results of such a simula-
tion once they return from the batch queue, only to find
that a simulation has not been run for sufficient time (in
which case it must be tediously resubmitted), or that it
ran for too long, and the majority of the computer time
was wasted on simulation of an uninteresting equilibrium
system showing no dynamical behaviour.

Another unfortunate scenario often occurs when the
phase diagram of a simulated system is not well known, in
which case a simulation may evolve away from a situation
of interest, wasting further CPU time.

Computational steering, the ability to watch and con-
trol a calculation as it runs, can be used to avoid these
difficulties: a simulation which has equilibrated may be
spotted and terminated, saving CPU time wastage. More
powerfully, a simulation may be steered through param-
eter space until it is unambiguously seen to be producing
interesting results: this technique is very powerful when
searching for emergent phenomena, such as the forma-
tion of surfactant micelles, which are not clearly related
to the underlying simulation parameters.

Steering was performed using the RealityGrid steer-
ing library. The library was built with the intention of
making it possible to add steering capabilities to existing
simulation codes with as few changes as possible, and
in as general a manner as possible. Once the applica-
tion has initialized the steering library and informed it
of which parameters are to be steered, then after every
timestep of the simulation, it is possible to perform tasks
such as checkpointing the simulation, saving output data,
stopping the simulation, or restarting from an existing
checkpoint.

When a steered simulation is started, a Steering Grid
Service (SGS) is also created, to represent the steerable
simulation on the Grid. The SGS publishes its location
to a Registry service, so that steering clients may find
it. This design means that it is possible for clients to

dynamically attach to and detach from running simula-
tions.

The SGS code was implemented in Perl, and commu-
nication between clients, registries, and steered simula-
tions, is performed using the SOAP protocol.

D. Visualization

Successful computational steering requires that the
simulation operators have a good understanding of what
the simulation is doing, in real time: this in turn requires
good visualization capabilities. Each running simulation
emits output files after certain periods of simulation time
have elapsed. The period between output emission is ini-
tially determined by guessing a timescale over which the
simulation will change in a substantial way; however, this
period is a steerable parameter, so that the output rate
can be adjusted for optimum visualization without pro-
ducing an excessive amount of data.

The LB3D code itself will only emit volumetric
datasets as described above; these must then be ren-
dered into a human-comprehensible form through tech-
niques including volume-rendering, isosurfacing, ray-
tracing, slice planes, and Fourier transforms. The pro-
cess of producing such comprehensible data from the raw
datasets is itself computationally intensive, particularly
if it is to be performed in real time, as required for com-
putational steering.

For this reason, the project used separate visualiza-
tion clusters, described in Table II, to render the data.
Output volumes were sent using globus io from the sim-
ulation machine to the remote visualization machine, so
that the simulation could proceed independently of the
visualization; these were then rendered using the open
source VTK[34] visualization library into bitmap images,
which were in turn multicast over the AccessGrid using
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the Chromium[35] and FLXmitter[36] libraries, so that
the state of the simulation could be viewed by scientists
around the globe. In particular, this was demonstrated
by performing and interacting with a simulation in front
of a live worldwide audience, as part of the SCGlobal
track of the SuperComputing 2004 conference.

There are many parameters for such a visualization,
such as the region of the simulation being visualized,
colour maps, isosurface levels, and orientation of the visu-
alization geometry. These were controlled through SGI’s
VizServer software, allowing control of the geometry from
remote sites.

The RealityGrid steering architecture was designed in
a sufficiently general manner that visualization services
can also be represented by Steering Grid Services: in
order to establish a connection between the visualization
process and the corresponding simulation, the simulation
SGS can be found through the Registry, and then inter-
rogated for the information required to open the link.

E. Coordination

In order to be able to deploy the above described com-
ponents as part of a usable simulation Grid, a substantial
amount of coordination is necessary, so that the end user
is able to launch an entire simulation pipeline, containing
migratable simulation, visualization, and steering com-
ponents, from a unified interface. This requires a system
for keeping track of which services are available, which
components are running, taking care of the checkpoints
and data which are generated, and to harmonize commu-
nication between the different components.

This was achieved through the development of a Reg-
istry service, implemented using the OGSI::Lite[37]
toolkit. The RealityGrid steering library[31], which ex-
poses an API to which applications such as the simula-
tion are linked, communicates with the rest of the Grid
by exposing itself as a Grid Service, as shown in Figure
1. Through the Registry service, steering clients are able
to find, dynamically attach to, communicate with, and
detach from steering services to control a simulation or
visualization process.

III. LESSONS LEARNED

A significant amount of effort was required to make
sure that all the required software was ported to and ran
smoothly on the required platforms: not only the appli-
cation and visualization codes, but also the libraries on
which they relied. A significant problem in using such
a heterogeneous Grid is that the location and invocation
of compilers and libraries differ widely, even between ma-
chines of the same architecture. Environmental param-
eters, such as the location of temporary and permanent
filespace, file retention policies, or executable paths, also
varied widely. During the project, these issues were dealt

with through the use of ad hoc shell scripts, but this is
not a satisfactory solution in general.

The TeraGyroid testbed network (Figure 2) was
formed by federating separate Grids in the UK and US:
this required each Grid to recognize users and certificates
from other Grids. During the project, this was mostly
dealt with by communication between the individuals in-
volved, and by posting the IDs of the certificates which
needed to be recognized on a Wiki; however, again, this
is not a scalable long-term solution, and ideally the issue
would be dealt with through use of a third-party certifi-
cate management system.

Much use was made of “dual-homed” systems, with
multiple IP addresses on multiple networks. This caused
problems due to the tendency of authentication systems
such as SSL to confuse host identity with IP address,
requiring ugly workarounds. More generally, most net-
working software at present assumes a homogeneous net-
work, and delegates control of routing to much lower lev-
els. This makes it difficult, for example, for a client pro-
cess running on one host to move files between two other
hosts using a specific network, in the case (as it was with
the TeraGyroid project) where a high-bandwidth net-
work has been constructed specifically for the transfer,
and is to be preferred over other links.

Problems were encountered when the compute and vi-
sualization nodes were not directly connected to the In-
ternet, but communicated through firewalls, which is a
common situation on large clusters. Workarounds such
as port-forwarding and process pinning were used during
the project, but again do not represent good long-term
solutions.

The simulation pipeline requires AccessGrid virtual
venues and simulation, visualization, and storage facil-
ities to be available simultaneously, at times when their
human operators could reasonably expect to be around.
This was often dealt with by manual reservation of re-
sources by systems administrators, but the ideal solu-
tion would involve automated advance reservation and
co-allocation procedures.

It was generally found that existing middleware toolk-
its such as Globus were rather heavyweight, requiring
substantial effort and local tuning on the part of systems
administrators to install and maintain, particularly due
to their reliance on specific versions of custom-patched
libraries. The high-level lightweight Grid Service Con-
tainer OGSI::Lite[37] was found to be invaluable to the
project, since it allowed very rapid development and host-
ing of high-level services such as the Registry in a way
which would not have been possible on similar timescales
using toolkits such as Globus. These issues are examined
in closer detail in a separate document[38].

The TeraGyroid project involved collaboration be-
tween hundreds of individuals across two continents, and
would not have been possible without good communica-
tion facilities. The AccessGrid teleconferencing system
was used to good effect[39] to hold organizational meet-
ings. Text-based Internet Relay Chat (IRC) proved in-
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FIG. 1: Grid Services in a TeraGyroid simulation

FIG. 2: The TeraGyroid testbed network
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valuable as a back-channel for debugging the simulation
Grid. A user-editable web site, or Wiki, was a valuable
tool which acted as a combined bulletin board, configu-
ration repository, scheduling tool, and distributed note-
book.

IV. CONCLUSIONS

Simulation of defect dynamics in liquid crystal
mesophases can require large amounts of computing
power, not only for the calculation itself, but also for vi-
sualization and processing of the results. Computational
steering can reduce wasted computer time and reduce
time-to-insight.

A simulation Grid was formed to perform defect dy-
namics calculations, by federating US and UK-based
HPC Grids through a custom high-performance network.
Collaborative steering sessions with active participants
on two continents and observers worldwide were made
possible through this approach.

Several gaps in existing Grid tools were identified dur-
ing the experiment: debugging network problems and

harmonizing authentication and authorization systems
are still far from easy; portability and interoperability
of the software underlying the Grid are still at an unsat-
isfactory level. These issues and others were dealt with
at the time using quick-fix workarounds, but general so-
lutions are much needed.

The project has produced a large amount of scientifi-
cally valuable data, which is still being analysed. Analy-
sis of the data is itself a computationally and scientifically
demanding problem: the fluid nature of the liquid crystal
creates interesting problems when trying to identify de-
fect regions[40]. We expect to publish details of morpho-
logical and dynamical analysis of the data in forthcoming
papers.
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