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Abstract

In this paper we look at the pinning of a directed polymer by a one-dimensional linear
interface carrying random charges. There are two phases, localized and delocalized, depend-
ing on the inverse temperature and on the disorder bias. Using quenched and annealed large
deviation principles for the empirical process of words drawn from a random letter sequence
according to a random renewal process (Birkner, Greven and den Hollander [6]), we derive
variational formulas for the quenched, respectively, annealed critical curve separating the two
phases. These variational formulas are used to obtain a necessary and sufficient criterion,
stated in terms of relative entropies, for the two critical curves to be different at a given
inverse temperature, a property referred to as relevance of the disorder. This criterion in
turn is used to show that the regimes of relevant and irrelevant disorder are separated by a
unique inverse critical temperature. Subsequently, upper and lower bounds are derived for
the inverse critical temperature, from which sufficient conditions under which it is strictly
positive, respectively, finite are obtained. The former condition is believed to be necessary
as well, a problem that we will address in a forthcoming paper.

Random pinning has been studied extensively in the literature. The present paper opens
up a window with a variational view. Our variational formulas for the quenched and the
annealed critical curve are new and provide valuable insight into the nature of the phase
transition. Our results on the inverse critical temperature drawn from these variational
formulas are not new, but they offer an alternative approach that is flexible enough to be
extended to other models of random polymers with disorder.
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1 Introduction and main results

1.1 Introduction

I. Model. Let S = (Sn)n∈N0 be a Markov chain on a countable state space S in which a given
point is marked 0 (N0 = N ∪ {0}). Write P to denote the law of S given S0 = 0 and E the
corresponding expectation. Let K denote the distribution of the first return time of S to 0, i.e.,

K(n) := P
(
Sn = 0, Sm 6= 0 ∀ 0 < m < n

)
, n ∈ N. (1.1)

We will assume that
∑

n∈N
K(n) = 1 (i.e., 0 is a recurrent state) and

lim
n→∞

logK(n)

log n
= −(1 + α) for some α ∈ [0,∞). (1.2)

Let ω = (ωk)k∈N0 be i.i.d. R-valued random variables with marginal distribution µ0. Write
P = µ⊗N0

0 to denote the law of ω, and E to denote the corresponding expectation. We will
assume that

M(λ) := E
(
eλω0

)
<∞ ∀λ ∈ R, (1.3)

and that µ0 has mean 0 and variance 1.

Let β ∈ [0,∞) and h ∈ R, and for fixed ω define the law Pβ,h,ω
n on {0} × Sn, the set of

n-steps paths in S starting from 0, by putting

dPβ,h,ω
n

dPn

(
(Sk)n

k=0

)
:=

1

Zβ,h,ω
n

exp

[
n−1∑

k=0

(βωk − h) 1{Sk=0}

]
1{Sn=0}, (1.4)

where Pn is the projection of P onto {0}×Sn. Here, β plays the role of the inverse temperature,

h the role of the disorder bias, while Zβ,h,ω
n is the normalizing partition sum. Note that k = 0

contributes to the sum while k = n does not, and that the path is tied to 0 at both ends. This
is done for later convenience.

Figure 1: A directed polymer sampling random charges at an interface.

Remark 1.1. Note that (1.2) implies p := gcd[supp(K)] = 1. If p ≥ 2, then the model can be
trivially restricted to pN, so there is no loss of generality. Moreover, if

∑
n∈N

K(n) < 1, then
the model can be reduced to the recurrent case by a shift of h. Similarly, the restriction to µ0

with mean 0 and variance 1 can be removed by a scaling of β and a shift of h.

Remark 1.2. The key example of the above setting is a simple random walk on Z, for which
p = 2 and α = 1

2 (Spitzer [20], Section 1). In that case the process (n, Sn)n∈N0 can be thought
of as describing a directed polymer in N0×Z that is pinned to the interface N0 ×{0} by random
charges ω (see Fig. 1). When the polymer hits the interface at time k, it picks up a reward
exp[βωk − h], which can be either > 1 or < 1 depending on the value of ωk. For h ≤ 0 the

2



polymer tends to intersect the interface with a positive frequency (“localization”), whereas for
h > 0 large enough it tends to wander away from the interface (“delocalization”). Simple random
walk on Z

2 corresponds to p = 2 and α = 0, while simple random walk on Z
d, d ≥ 3, conditioned

on returning to 0 corresponds to p = 2 and α = d
2 − 1 (Spitzer [20], Section 1).

II. Free energy and phase transition. The quenched free energy is defined as

fque(β, h) := lim
n→∞

1

n
logZβ,h,ω

n . (1.5)

Standard subadditivity arguments show that the limit exists ω-a.s. and in P-mean, and is non-
random (see e.g. Giacomin [11], Chapter 5, and den Hollander [18], Chapter 11). Moreover,

fque(β, h) ≥ 0 because Zβ,h,ω
n ≥ eβω0−hK(n), n ∈ N, and limn→∞

1
n logK(n) = 0 by (1.2). The

lower bound fque(β, h) = 0 is attained when S visits the state 0 only rarely. This motivates the
definition of two quenched phases:

L :=
{

(β, h) : fque(β, h) > 0
}
,

D :=
{

(β, h) : fque(β, h) = 0
}
,

(1.6)

referred to as the localized phase, respectively, the delocalized phase.

Since h 7→ fque(β, h) is non-increasing for every β ∈ [0,∞), the two phases are separated by
a quenched critical curve

hque
c (β) := inf

{
h : fque(β, h) = 0

}
, β ∈ [0,∞). (1.7)

with L the region below the curve and D the region on and above. Since (β, h) 7→ f que(β, h) is
convex and D = {(β, h) : f que(β, h) ≤ 0} is a level set of f que, it follows that D is a convex set
and hque

c is a convex function. Since β = 0 corresponds to a homopolymer, we have hque
c (0) = 0

(see Appendix A). It was shown in Alexander and Sidoravicius [2] that hque
c (β) > 0 for β ∈

(0,∞). Therefore we have the qualitative picture drawn in Fig. 2. We further remark that
limβ→∞ hque

c (β)/β is finite if and only if supp(µ0) is bounded from above.

0
β

h

s

L
D

Figure 2: Qualitative plot of β 7→ hque

c
(β). The fine details of this curve are not known.

The mean value of the disorder is E(βω0 − h) = −h. Thus, we see from Fig. 2 that for
the random pinning model localization may even occur for moderately negative mean values of
the disorder, contrary to what happens for the homogeneous pinning model, where localization
occurs only for strictly positive parameter (see Appendix A). In other words, even a globally
repulsive random interface can pin the polymer: all that the polymer needs to do is to hit the
positive values of the disorder and avoid the negative values as much as possible.

3



The annealed free energy is defined by

fann(β, h) := lim
n→∞

1

n
log E

(
Zβ,h,ω

n

)
. (1.8)

Since

E
(
Zβ,h,ω

n

)
= E

(
exp

[
n−1∑

k=0

[logM(β) − h] 1{Sk=0}

]
1{Sn=0}

)
, (1.9)

we have that f ann(β, h) is the free energy of the homopolymer with parameter logM(β) − h.
The associated annealed critical curve

hann
c (β) := inf{h : f ann(β, h) = 0}, β ∈ [0,∞), (1.10)

therefore equals
hann

c (β) = logM(β). (1.11)

Since fque ≤ fann, we have hque
c ≤ hann

c . The disorder is said to be relevant for a given choice
of K, µ0 and β when hque

c (β) < hann
c (β), otherwise it is said to be irrelevant. Our main focus in

the present paper will be on deriving variational formulas for hque
c and hann

c and investigating
under what conditions on K, µ0 and β the disorder is relevant, respectively, irrelevant.

1.2 Main results

This section contains three theorems and four corollaries, all valid subject to (1.2–1.3). To state
these we need some further notation.

I. Notation. Abbreviate
E := supp[µ0] ⊂ R. (1.12)

Let Ẽ := ∪k∈NE
k be the set of finite words consisting of letters drawn from E. Let P(ẼN)

denote the set of probability measures on infinite sentences, equipped with the topology of weak
convergence. Write θ̃ for the left-shift acting on ẼN, and P inv(ẼN) for the set of probability
measures that are invariant under θ̃.

For Q ∈ P inv(ẼN), let π1,1Q ∈ P(E) denote the projection of Q onto the first letter of the
first word. Define the set

C :=

{
Q ∈ P inv(ẼN) :

∫

E
|x|d(π1,1Q)(x) <∞

}
, (1.13)

and on this set the function

Φ(Q) :=

∫

E
xd(π1,1Q)(x), Q ∈ C. (1.14)

We also need two rate functions on P inv(ẼN), denoted by Iann and Ique, which will be defined
in Section 2. These are the rate functions of the annealed and the quenched large deviation
principle that play a central role in the present paper, and they satisfy I que ≥ Iann.

II. Theorems. With the above ingredients, we obtain the following characterization of the
critical curves.
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Theorem 1.3. Fix µ0 and K. For all β ∈ [0,∞),

hque
c (β) = sup

Q∈C
[βΦ(Q) − Ique(Q)], (1.15)

hann
c (β) = sup

Q∈C
[βΦ(Q) − Iann(Q)]. (1.16)

We know that hann
c (β) = logM(β). However, the variational formula for hann

c (β) will be
important for the comparison with hque

c (β).

Next, let

dµβ(x) :=
1

M(β)
eβxdµ0(x), x ∈ E, (1.17)

and

qβ(x1, x2, . . . , xn) := K(n)µβ(x1)µ0(x2) × · · · × µ0(xn), n ∈ N, x1, x2, . . . , xn ∈ E. (1.18)

Further, let Qβ := q⊗N

β ∈ P inv(ẼN). Then Q0 is the probability measure under which the words
are i.i.d., with length drawn from K and i.i.d. letters drawn from µ0, while Qβ differs from Q0

in that the first letter of each word is drawn from the tilted probability distribution µβ. We will
see that Qβ is the unique maximizer of the supremum in (1.16) (note that Qβ ∈ C because of
(1.3)). This leads to the following necessary and sufficient criterion for disorder relevance.

Theorem 1.4. Fix µ0 and K. For all β ∈ [0,∞),

hque
c (β) < hann

c (β) ⇐⇒ Ique(Qβ) > Iann(Qβ). (1.19)

We will see that also the supremum in (1.15) is attained, which is to be interpreted as saying
that there is a localization strategy at the quenched critical line.

Disorder relevance is monotone in β (see Fig. 3).

Theorem 1.5. For all µ0 and K there exists a βc = βc(µ0,K) ∈ [0,∞] such that

hque
c (β)

{
= hann

c (β) if β ∈ [0, βc],
< hann

c (β) if β ∈ (βc,∞).
(1.20)

0
β

h

hque
c (β)

hann
c (β)

βc

s

s

Figure 3: Uniqueness of the critical inverse temperature βc.

III. Corollaries. From Theorems 1.3–1.5 we draw four corollaries. Abbreviate

χ :=
∑

n∈N

[P(Sn = 0)]2, w := sup[supp(µ0)]. (1.21)
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Corollary 1.6. If α = 0, then βc = ∞ for all µ0.

Corollary 1.7. If α ∈ (0,∞), then the following bounds hold:
(i) βc ≥ β∗c with β∗

c = β∗c (µ0,K) ∈ (0,∞] given by

β∗c := sup
{
β : M(2β)/M(β)2 < 1 + χ−1

}
. (1.22)

(ii) βc ≤ β∗∗c with β∗∗
c = β∗∗c (µ0,K) ∈ (0,∞] given by

β∗∗c := inf
{
β : h(µβ |µ0) > h(K)

}
, (1.23)

where h(µβ |µ0) =
∫
E log(dµβ/dµ0) dµβ is the relative entropy of µβ w.r.t. µ0, and h(K) :=

−
∑

n∈N
K(n) logK(n) is the entropy of K.

Corollary 1.8. If α ∈ (0,∞) and χ <∞, then βc > 0 for all µ0.

Corollary 1.9. If α ∈ (0,∞), then βc < ∞ for all µ0 with µ0({w}) = 0 (which includes
w = ∞).

We close with a conjecture stating that the condition χ < ∞ in Corollary 1.8 is not only
sufficient for βc > 0 but also necessary. This conjecture will be addressed in a forthcoming
paper.

Conjecture 1.10. If α ∈ (0,∞) and χ = ∞, then βc = 0.

1.3 Discussion

I. What is known from the literature? Before discussing the results in Section 1.2, we give a
summary of what is known about the issue of relevant vs. irrelevant disorder from the literature.
This summary is drawn from the papers by Alexander [1], Toninelli [21], [22], Giacomin and
Toninelli [14], Derrida, Giacomin, Lacoin and Toninelli [8], Alexander and Zygouras [3], [4],
Giacomin, Lacoin and Toninelli [12], [13], and Lacoin [19].

Theorem 1.11. Suppose that condition (1.2) is strengthened to

K(n) = n−(1+α)L(n) with α ∈ [0,∞) and L strictly positive and slowy varying at infinity.
(1.24)

Then
(1) βc = 0 when α ∈ ( 1

2 ,∞).

(2) βc = 0 when α = 1
2 and L(∞) ∈ [0,∞) or limN→∞[L(N)]−1

∑N
n=1 n

−1[L(n)]−2 = ∞.
(3) βc > 0 when α = 1

2 and
∑

n∈N
n−1[L(n)]−2 <∞.

(4) βc > 0 when α ∈ (0, 1
2).

(5) βc = ∞ when α = 0.

The results in Theorem 1.11 hold irrespective of the choice of µ0. Toninelli [22] proves that if
logM(λ) ∼ Cλγ as λ → ∞ for some C ∈ (0,∞) and γ ∈ (1,∞), then βc < ∞ irrespective
of α ∈ (0,∞) and L. Note that there is a small gap between cases (2) and (3) at the critical
threshold α = 1

2 .

For the cases of relevant disorder, bounds on the gap between hann
c (β) and hque

c (β) have been
derived in the above cited papers subject to (1.24). As β ↓ 0, this gap decays like

hann
c (β) − hque

c (β) �





β2, if α ∈ (1,∞),
β2ψ(1/β), if α = 1,

β2α/(2α−1), if α ∈ ( 1
2 , 1),

(1.25)
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for all choices of L, with ψ slowly varying and vanishing at infinity when L(∞) ∈ (0,∞).

Partial results are known for α = 1
2 . For instance, when

∑
n∈N

n−1[L(n)]−2 = ∞ the gap
decays faster than any polynomial, which implies that the disorder can at most be marginally
relevant, a situation where standard perturbative arguments do not work. When L(∞) ∈ (0,∞),
the gap lies between exp[−β−4] and exp[−β−2] for β ∈ (0,∞) small enough, modulo constants in

the exponent. When L(n) = O([log n]−
1
2
−θ), n→ ∞, θ ∈ (0,∞), the gap lies above exp[−β−θ′ ]

for all θ′ ∈ (0, θ) and β ∈ (0,∞) small enough. Both cases correspond to marginal relevance.

Remark 1.12. Most of the above mentioned results are proved for Gaussian disorder only, and
in the cited papers it is stated somewhat loosely that proofs carry over to arbitrary disorder
subject to (1.3).

Remark 1.13. The fact that α = 1
2 is critical for relevant vs. irrelevant disorder is in accordance

with the so-called Harris criterion for disordered systems (see Harris [17]): “Arbitrary weak
disorder modifies the nature of a phase transition when the order of the phase transition in the
non-disordered system is < 2”. The order of the phase transition for the homopolymer, which is
briefly described in Appendix A, is < 2 precisely when α ∈ ( 1

2 ,∞) (see Giacomin [11], Chapter
2). This link is emphasized in Toninelli [21].

II. What is new in the present paper? The main importance of our results in Section 1.2
is that they open up a new window on the random pinning problem. Whereas the results cited
in Theorem 1.11 are derived with the help of a variety of estimation techniques, like fractional
moment estimates and trial choices of localization strategies, Theorem 1.3 gives a variational
characterization of the critical curves that is new (it is very rare indeed that critical curves for
disordered systems allow for a direct variational representation). Theorem 1.4 gives a necessary
and sufficient criterion for disorder relevance that is explicit and tractable, although not easy
to handle. Theorem 1.5 shows that uniqueness of the inverse critical temperature is a direct
consequence of this criterion, while Corollaries 1.6–1.9 show that the criterion can be used to
obtain important information on the inverse critical temperature.

Remark 1.14. Theorem 1.5 was proved in Giacomin, Lacoin and Toninelli [13] with the help
of the FKG-inequality.

Remark 1.15. Corollary 1.6 is the main result in Alexander and Zygouras [4].

Remark 1.16. Since (see Section 8)

lim
β→∞

M(2β)/M(β)2 = 1/µ0({w}), lim
β→∞

h(µβ |µ0) = log [1/µ0({w})], (1.26)

with the understanding that the second limit is ∞ when µ0({w}) = 0, Corollary 1.7 implies
Corollaries 1.8–1.9.

Remark 1.17. Note that χ = E(|I1 ∩ I2|) with I1, I2 two independent copies of the set of
return times of S (recall (1.1)). Thus, according to Corollary 1.8 and Conjecture 1.10, βc > 0
is expected to be equivalent to the renewal process of joint return times to be recurrent. Note
that 1/P(I1 ∩ I2 6= ∅) = 1 + χ−1, the quantity appearing in Corollary 1.7(i).

Remark 1.18. For Gaussian disorder (with µ0({w}) = 0) we have β∗
c ∈ (0,∞) if and only if

χ ∈ (0,∞), while for Bernoulli disorder (with µ0({w}) = 1
2) we have β∗

c ∈ (0,∞) if and only if
χ ∈ (1,∞). This shows that the condition µ0({w}) = 0 is not (!) necessary for βc < ∞, i.e.,
Corollary 1.9 is not optimal.
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Remark 1.19. As shown in Doney [9], subject to the condition of regular variation in (1.24),

P(Sn = 0) ∼
Cα

n1−αL(n)
as n→ ∞ with Cα = (α/π) sin(απ) when α ∈ (0, 1). (1.27)

Hence the condition χ < ∞ in Corollary 1.8 is satisfied exactly for α ∈ (0, 1
2) and L arbitrary,

and for α = 1
2 and

∑
n∈N

n−1[L(n)]−2 < ∞. This fits precisely with cases (3) and (4) in
Theorem 1.11.

Remark 1.20. Corollary 1.7(ii) is essentially Corollary 3.2 in Toninelli [22], where the condition
for relevance, h(µβ |µ0) > h(K), is given in an equivalent form (see Equation (3.6) in [22]). Note
that, by (1.2), h(K) <∞ when α ∈ (0,∞).

1.4 Outline

In Section 2 we formulate the annealed and the quenched large deviation principle (LDP) that
are in Birkner, Greven and den Hollander [6], which are the key tools in the present paper. In
Section 3 we use these LDP’s to prove Theorem 1.3. In Section 4 we compare the variational
formulas for the two critical curves and prove the criterion for disorder relevance stated in
Theorem 1.4. In Section 5 we reformulate this criterion to put it into a form that is more
convenient for computations. In Section 6 we use the latter to prove Theorem 1.5. In Sections 7–
8 we prove Corollaries 1.6–1.9. Appendix A collects a few facts about the homopolymer.

2 Annealed and quenched LDP

In this section we recall the main results from Birkner, Greven and den Hollander [6] that are
needed in the present paper. Section 2.1 introduces the relevant notation, while Sections 2.2
and 2.3 state the relevant annealed and quenched LDP’s.

2.1 Notation

Let E be a Polish space, playing the role of an alphabet, i.e., a set of letters. Let Ẽ := ∪k∈NE
k

be the set of finite words drawn from E, which can be metrized to become a Polish space.

PSfrag replacements

τ1

τ2
τ3

τ4

τ5

T1 T2 T3 T4 T5

Y
(1)

Y
(2)

Y
(3)

Y
(4)

Y
(5)

X

Figure 4: Cutting words out from a sequence of letters according to renewal times.

Fix µ0 ∈ P(E), and K ∈ P(N) satisfying (1.2). Let X = (Xk)k∈N0 be i.i.d. E-valued random
variables with marginal law µ0, and τ = (τi)i∈N i.i.d. N-valued random variables with marginal
law K. Assume that X and τ are independent, and write P ∗ to denote their joint law. Cut
words out of the letter sequence X according to τ (see Fig. 4), i.e., put

T0 := 0 and Ti := Ti−1 + τi, i ∈ N, (2.1)

and let
Y (i) :=

(
XTi−1 , XTi−1+1, . . . , XTi−1

)
, i ∈ N. (2.2)
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Under the law P ∗, Y = (Y (i))i∈N is an i.i.d. sequence of words with marginal distribution q0 on
Ẽ given by

q0

(
(x1, . . . , xn)

)
:= P ∗

(
Y (1) = (x1, . . . , xn)

)

= K(n)µ0(x1) × · · · × µ0(xn), n ∈ N, x1, . . . , xn ∈ E.
(2.3)

The reverse operation of cutting words out of a sequence of letters is glueing words together
into a sequence of letters. Formally, this is done by defining a concatenation map κ from ẼN to
EN0 . This map induces in a natural way a map from P(ẼN) to P(EN0), the sets of probability
measures on ẼN and EN0 (endowed with the topology of weak convergence). The concatenation
q⊗N

0 ◦ κ−1 of q⊗N

0 equals µN0
0 , as is evident from (2.3)

2.2 Annealed LDP

Let P inv(ẼN) be the set of probability measures on ẼN that are invariant under the left-shift
θ̃ acting on ẼN. For N ∈ N, let (Y (1), . . . , Y (N))per be the periodic extension of the N -tuple
(Y (1), . . . , Y (N)) ∈ ẼN to an element of ẼN, and define

RN :=
1

N

N−1∑

i=0

δeθi(Y (1),...,Y (N))per ∈ P inv(ẼN). (2.4)

This is the empirical process of N -tuples of words. The following annealed LDP is standard
(see e.g. Dembo and Zeitouni [7], Section 6.5). For Q ∈ P inv(ẼN), let H(Q | q⊗N

0 ) be the specific
relative entropy of Q w.r.t. q⊗N

0 defined by

H(Q | q⊗N

0 ) := lim
N→∞

1

N
h
(
πNQ |πNq

⊗N

0

)
, (2.5)

where πNQ ∈ P(ẼN ) denotes the projection of Q onto the first N words, h( · | · ) denotes relative
entropy, and the limit is non-decreasing.

Theorem 2.1. The family P ∗(RN ∈ · ), N ∈ N, satisfies the LDP on P inv(ẼN) with rate N
and with rate function Iann given by

Iann(Q) := H
(
Q | q⊗N

0

)
, Q ∈ P inv(ẼN). (2.6)

This rate function is lower semi-continuous, has compact level sets, has a unique zero at q⊗N

0 ,
and is affine.

2.3 Quenched LDP

To formulate the quenched analogue of Theorem 2.1, we need some more notation. Let P inv(EN0)
be the set of probability measures on EN0 that are invariant under the left-shift θ acting on EN0 .
For Q ∈ P inv(ẼN) such that mQ := EQ(τ1) <∞ (where EQ denotes expectation under the law
Q and τ1 is the length of the first word), define

ΨQ :=
1

mQ
EQ

(
τ1−1∑

k=0

δθkκ(Y )

)
∈ P inv(EN0). (2.7)
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Think of ΨQ as the shift-invariant version of Q ◦ κ−1 obtained after randomizing the location of
the origin. This randomization is necessary because a shift-invariant Q in general does not give
rise to a shift-invariant Q ◦ κ−1.

For tr ∈ N, let [·]tr : Ẽ → [Ẽ]tr = ∪tr
n=1E

n denote the truncation map on words defined by

y = (x1, . . . , xn) 7→ [y]tr := (x1, . . . , xn∧tr), n ∈ N, x1, . . . , xn ∈ E, (2.8)

i.e., [y]tr is the word of length ≤ tr obtained from the word y by dropping all the letters with
label > tr. This map induces in a natural way a map from ẼN to [Ẽ]Ntr, and from P inv(ẼN) to
P inv([Ẽ]Ntr). Note that if Q ∈ P inv(ẼN), then [Q]tr is an element of the set

P inv,fin(ẼN) = {Q ∈ P inv(ẼN) : mQ <∞}. (2.9)

Theorem 2.2. (Birkner, Greven and den Hollander [6]) Assume (1.2). Then, for µ⊗N0
0 –a.s. all

X, the family of (regular) conditional probability distributions P ∗(RN ∈ · |X), N ∈ N, satisfies
the LDP on P inv(ẼN) with rate N and with deterministic rate function Ique given by

Ique(Q) :=

{
Ifin(Q), if Q ∈ P inv,fin(ẼN),
limtr→∞ Ifin

(
[Q]tr

)
, otherwise,

(2.10)

where
Ifin(Q) := H(Q | q⊗N

0 ) + αmQH
(
ΨQ |µ⊗N0

0

)
. (2.11)

This rate function is lower semi-continuous, has compact level sets, has a unique zero at q⊗N

0 ,
and is affine.

There is no closed form expression for Ique(Q) when mQ = ∞. For later reference we remark

that, for all Q ∈ P inv(ẼN),

Iann(Q) = lim
tr→∞

Iann([Q]tr) = sup
tr∈N

Iann([Q]tr),

Ique(Q) = lim
tr→∞

Ique([Q]tr) = sup
tr∈N

Ique([Q]tr),
(2.12)

as shown in [6], Lemma A.1. A remarkable aspect of (2.11) in relation to (2.6) is that it quantifies
the difference between Ique and Iann. Note the explicit appearance of the tail exponent α. Also
note that Ique = Iann when α = 0.

3 Variational formulas: Proof of Theorem 1.3

In Section 3.1 we prove (1.16), the variational formula for the annealed critical curve. The proof
of (1.15) in Sections 3.2–3.4, the variational formula for the quenched critical curve, is longer.
In Section 3.2 we first give the proof for µ0 with finite support. In Section 3.3 we extend the
proof to µ0 satisfying (1.3). In Section 3.4 we prove three technical lemmas that are needed in
Section 3.3.

3.1 Proof of (1.16)

Proof. Recall from (1.17–1.18) that Qβ = q⊗N

β , and from (1.11) that hann
c (β) = logM(β). Below

we show that for every Q ∈ P inv(ẼN),

βΦ(Q) − Iann(Q) = logM(β) −H(Q |Qβ). (3.1)
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Taking the supremum over Q, we arrive at (1.16). Note that the unique probability measure
that achieves the supremum in (3.1) is Qβ, which is an element of the set C defined in (1.13)
because of (1.3).

To get (3.1), note that H(Q |Qβ) is the limit as N → ∞ of (recall (1.17–1.18))

1

N

∫

eEN

log

[
dπNQ

dπNQβ
(y1, . . . , yN )

]
dπNQ(y1, . . . , yN )

=
1

N

∫

eEN

log

[
dπNQ

dπNQ0
(y1, . . . , yN )

M(β)N

eβ[c(y1)+···+c(yN )]

]
dπNQ(y1, . . . , yN )

= logM(β) +
1

N
h(πNQ |πNQ0) − β

1

N

∫

eEN

[c(y1) + · · · + c(yN )] dπNQ(y1, . . . , yN ),

(3.2)
where, c(y) denotes the first letter of the word y. In the last line of (3.2), the limit as N → ∞ of
the second quantity is H(Q |Q0) = Iann(Q), while the integral equals NΦ(Q) by shift-invariance
of Q. Thus, (3.1) follows.

3.2 Proof of (1.15) for µ0 with finite support

Proof. The proof comes in three steps.

Step 1: An alternative way to compute the quenched free energy f que(β, h) from (1.5) is through
the radius of convergence zque(β, h) of the power series

∑

n∈N

znZβ,h,ω
n , (3.3)

because
zque(β, h) = e−fque(β,h). (3.4)

Write

Zβ,h,ω
n =

∑

N∈N

∑

0=k0<k1<···<kN=n

N∏

i=1

K(ki − ki−1) eβωki−1
−h, (3.5)

so that, for z ∈ (0, 1], ∑

n∈N

znZβ,h,ω
n =

∑

N∈N

F β,h,ω
N (z), (3.6)

where we abbreviate

F β,h,ω
N (z) :=

∑

0=k0<···<kN<∞

N∏

i=1

zki−ki−1 K(ki − ki−1) eβωki−1
−h. (3.7)

Step 2: Return to the setting of Section 2. The letter space is E, the word space is Ẽ = ∪k∈NE
k,

the sequence of letters is ω = (ωk)k∈N0 , while the sequence of renewal times is (Ti)i∈N = (ki)i∈N.
Each interval Ii := [ki−1, ki) of integers cuts out a word ωIi := (ωki−1

, . . . , ωki−1). Let

Rω
N = Rω

N

(
(ki)

N
i=0

)
:=

1

N

N−1∑

i=0

δeθi(ωI1
,...,ωIN

)per (3.8)
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denote the empirical process of N -tuples of words in ω cut out by the first N renewals. Then
we can rewrite F β,h,ω

N (z) as

F β,h,ω
N (z) = E

(
exp

[
N

∫

eE

{
τ(y) log z + (βc(y) − h)

}
(π1R

ω
N )(dy)

])

= e−Nh E
(

exp
[
NmRω

N
log z +NβΦ(Rω

N )
])
,

(3.9)

where τ(y) and c(y) are the length, respectively, the first letter of the word y, π1R
ω
N is the

projection of Rω
N onto the first word, while mRω

N
and Φ(Rω

N ) are the average word length,
respectively, the average first letter under Rω

N .

To identify the radius of convergence of the series in the l.h.s. of (3.6), we apply the root
test for the series in the r.h.s. of (3.6) using the expression in (3.9). To that end, let

Sque(β; z) := lim sup
N→∞

1

N
log E

(
exp

[
NmRω

N
log z +NβΦ(Rω

N )
])
. (3.10)

Then

lim sup
N→∞

1

N
logF β,h,ω

N (z) = −h+ Sque(β; z). (3.11)

We know from (3.4) and the nonnegativity of f que(β, h) that zque(β, h) ≤ 1, and we are interested
in knowing when it is < 1, respectively, = 1 (recall (1.6)). Hence, the sign of the r.h.s. of (3.11)
for z ↑ 1 will be important as the next lemma shows.

Lemma 3.1. For all β ∈ [0,∞) and h ∈ R,

Sque(β; 1−) < h =⇒ f(β, h) = 0,

Sque(β; 1−) > h =⇒ f(β, h) > 0.
(3.12)

Proof. The first line holds because, by (3.11), −h + Sque(β; 1−) < 0 implies that the sums in
(3.6) converge for |z| < 1, so that zque(β, h) ≥ 1, which gives f que(β, h) ≤ 0. The second line
holds because if −h+Sque(β; 1−) > 0, then there exists a z0 < 1 such that −h+Sque(β; z0) > 0,
which implies that the sums in (3.6) diverge for z = z0, so that zque(β, h) ≤ z0 < 1, which gives
fque(β, h) > 0.

Lemma 3.1 implies that
hque

c (β) = Sque(β; 1−). (3.13)

The rest of the proof is devoted to computing Sque(β; 1−).

0
z

Sque(β; z)

hque
c (β)

1

s

Figure 5: Qualitative plot of z 7→ Sque(β; z).
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Step 3: To the expression in (3.10), defining Sque(β; 1), we can apply Varadhan’s lemma
(because µ0 has finite support), using the LDP of Theorem 2.2, and conclude that

Sque(β; 1) = sup
Q∈P inv( eEN)

[βΦ(Q) − Ique(Q)]. (3.14)

We would like to do the same for (3.10) with z < 1, and subsequently take the limit z ↑ 1, to
get (see Fig. 5))

Sque(β; 1−) = sup
Q∈P inv( eEN)

[βΦ(Q) − Ique(Q)]. (3.15)

However, even though Q 7→ Φ(Q) is continuous (because µ0 has finite support), Q 7→ mQ is
only lower semicontinuous. Therefore we proceed by first showing that the term NmRω

N
log z in

(3.10) is harmless in the limit as z ↑ 1.

Lemma 3.2. Sque(β; 1−) = Sque(β; 1) for all β ∈ [0,∞).

Proof. Since Sque(β; 1−) ≤ Sque(β; 1), we need only prove the reverse inequality. The idea is to
show that, for any Q ∈ P inv(ẼN) and in the limit as N → ∞, Rω

N can be arbitrarily close to Q
with probability ≈ exp[−NIque(Q)] while mRω

N
remains bounded by a large constant. Therefore,

letting N → ∞ followed by z ↑ 1, we can remove the term NmRω
N

log z in (3.10).

In what follows, we borrow an idea from the proof of Theorem 2.2 in Birkner, Greven and
den Hollander [6], Section 4. Fix A < Sque(β; 1). By (3.14) and (2.12), there is a Q ∈ P inv(ẼN)
with mQ <∞ such that βΦ(Q) − Ique(Q) > A. Because Φ and Ique are affine, we may assume
without loss of generality that Q is ergodic.

For ε > 0, the set

Uε(Q) :=
{
Q′ ∈ P inv(ẼN) : Φ(Q′) > Φ(Q∗) − ε

}
(3.16)

is open because Φ is continuous. Proposition 4.1 in [6] gives a lower bound on the probability
that Rω

N ∈ Uε(Q). For the case where Q∗ is ergodic, as here, the proof constructs a set of renewal
paths with N renewals for which Rω

N ∈ Uε(Q). This set is chosen such that, for M large, there
are dN/(M+1)e � N “long” renewals, which are used to reach stretches in ω of length ≈MmQ

that look typical for ΨQ, and bNM/(M + 1)c ≈ N “short” renewals that look typical for Q,
which come in blocks of M consecutive short renewals in between the long renewals and are
used to arrange that Rω

N ≈ Q for large M . The renewal times 0 < j1 < · · · < jN < ∞ are

specified after Equation (4.6) in [6], with a minor adaptation: j1 = σ
(M)
1 (ω) is the first large

renewal time, j2 − j1, . . . , jM+1 − jM are the word lengths corresponding to the za’s mentioned

below Equation (4.2) in [6], jM+2 = σ
(M)
2 (ω) is the second large renewal time, etc. The set of

renewal paths is used to show that

lim inf
N→∞

1

N
log P

(
Rω

N ∈ Uε(Q)
)
≥ −Ifin(Q) − 6ε, (3.17)

which is Equation (4.8) in [6]. Of course, Ifin(Q) = Ique(Q) because mQ <∞.

Here we also want to control the average length mRω
N

of the N renewals. To that end,
let pB(Q, ε,M) be the probability in the left-hand side of Equation (4.5) in [6]. This quantity
depends on Q, ε and M , but not on N . We have

NmRω
N
≤ σ

(M)
dN/(M+1)e+1(ω) (3.18)
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and

lim sup
N→∞

M + 1

N
σ

(M)
dN/(M+1)e+1(ω) ≤

1

pB(Q, ε,M)
+M [mQ + ε] ω − a.s. (3.19)

The latter inequality follows from the definition of the long renewals and the ergodic theorem.
Hence, by (3.10), and restricting the expectation to the set of paths described above, we get

Sque(β; z) = lim sup
N→∞

1

N
log E

(
exp

[
NmRω

N
log z +NβΦ(Rω

N )
])

≥
1

M + 1

(
1

pB(Q, ε,M)
+M [mQ + ε]

)
log z + β[Φ(Q) − ε] − Ique(Q) − 6ε.

(3.20)

Now let z ↑ 1 and ε ↓ 0, to get Sque(β; 1−) ≥ βΦ(Q) − Ique(Q) > A. Since A < Sque(β; 1) was
arbitrary, it follows that Sque(β; 1−) ≥ Sque(β; 1), as claimed.

Combining Lemma 3.2 with (3.13) and (3.14), we obtain (1.15).

3.3 Proof of (1.15) for µ0 satisfying (1.3)

The proof stays the same up to (3.13). Henceforth write C = C(µ0) to exhibit the fact that the
set C in (1.13) depends on µ0 via its support E in (1.12), and define

A(β) := sup
Q∈C(µ0)

[βΦ(Q) − Ique(Q)], (3.21)

which replaces the right-hand side of (3.15). We will show the following.

Lemma 3.3. Sque(β; 1−) = A(β) for all β ∈ (0,∞).

Proof. The proof of the lemma is accomplished in four steps. Along the way we use three
technical lemmas, the proof of which is deferred to Section 3.4. Our starting point is the validity
of the claim for µ0 with finite support obtained in Lemma 3.2. (Note that |E| < ∞ implies
C = C(µ0) = P inv(ẼN).)

Step 1: Sque(β; 1−) ≤ A(β) for all β ∈ (0,∞) when µ0 satisfies (1.3).

Proof. We have Sque(β; 1−) ≤ Sque(β; 1). We will show that Sque(β; 1) ≤ A(pβ)/p for all p > 1.
Taking p ↓ 1 and using the continuity of A, proven in Lemma 3.4 below, we get the claim.

For M > 0, let

ΦM(Q) :=

∫

E
(x ∧M) d(π1,1Q)(x). (3.22)

Then, for any p, q > 1 such that p−1 + q−1 = 1, we have

E
(

eNβΦ(Rω
N )
)

= E
(

eβ
PN

i=1 c(yi) 1{c(yi)≤M}eβ
PN

i=1 c(yi) 1{c(yi)>M}

)

≤
[
E
(

epβ
PN

i=1 c(yi) 1{c(yi)≤M}

)]1/p [
E
(

eqβ
PN

i=1 c(yi) 1{c(yi)>M}

)]1/q

≤
[
E
(

eNpβΦM (Rω
N )
)]1/p [

E
(

eqβ
PN

i=1 c(yi) 1{c(yi)>M}

)]1/q

(3.23)
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and hence

1

N
log E

(
eNβΦ(Rω

N )
)
≤

1

p

1

N
log E

(
eNpβΦM (Rω

N )
)

+
1

q

1

N
log E

(
eqβ

PN
i=1 c(yi) 1{c(yi)>M}

)
. (3.24)

Since Q 7→ ΦM(Q) is upper semicontinuous, Varadhan’s lemma gives

lim sup
N→∞

1

N
log E

(
eNpβΦM (Rω

N )
)
≤ sup

Q∈P inv( eEN)

[pβΦM (Q) − Ique(Q)]. (3.25)

Clearly, Q’s with
∫
E(x ∧ 0)d(π1,1Q)(x) = −∞ do not contribute to the supremum. Also, Q’s

with
∫
E(x∨ 0)d(π1,1Q)(x) = ∞ do not contribute, because for such Q we have Ique(Q) = ∞, by

Lemma 3.5 below, and ΦM(Q) <∞. Since ΦM ≤ Φ, we therefore have

sup
Q∈P inv( eEN)

[pβΦM (Q) − Ique(Q)] ≤ sup
Q∈C(µ0)

[pβΦ(Q) − Ique(Q)] = A(pβ). (3.26)

Next, we use the following observation. For any sequence Θ = (ΘN )N∈N of positive random
variables we have

lim sup
N→∞

1

N
log ΘN ≤ lim sup

N→∞

1

N
log E(ΘN ) Θ − a.s., (3.27)

by the first Borel-Cantelli lemma. Applying this to

ΘN := E
(

eqβ
PN

i=1 c(yi) 1{c(yi)>M}

)
with E(ΘN ) =

(∫

E
eqβx 1{x>M} dµ0(x)

)N

=: (cM )N ,

(3.28)
we get, after letting N → ∞ in (3.24),

Sque(β; 1) ≤
1

p
A(pβ) +

1

q
log cM . (3.29)

By (1.3), we have cM <∞ for all M > 0 and limM→∞ cM = 1. Hence Sque(β; 1) ≤ A(pβ)/p.

Step 2: Sque(β; 1−) ≥ A(β) for all β ∈ (0,∞) when µ0 has bounded support.

Proof. In the estimates below, we abbreviate

Lω
N := NmRω

N
, (3.30)

the sum of the lengths of the first N words. The proof is based on a discretization argument
similar to the one used in [6], Section 8. For δ > 0 and x ∈ E, let 〈x〉δ := sup{kδ : k ∈ Z, kδ ≤ x}.
The operation 〈·〉 extends to measures on E, Ẽ and ẼN in the obvious way. Now, 〈Rω

N 〉δ satisfies
the quenched LDP with rate function Ique

δ , the quenched rate function corresponding to the
measure 〈µ0〉δ. Clearly,

E
(

eLω
N log z+NβΦ(Rω

N )
)
≥ E

(
eLω

N log z+NβΦ
(
〈Rω

N 〉δ

))
, (3.31)

and so, by the results in Section 3.2, we have

Sque(β; 1−) ≥ sup
Q∈C(〈µ0〉δ)

[βΦ(Q) − Ique
δ (Q)]. (3.32)
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For every Q ∈ C(µ0), we have

Φ(Q) = lim
δ↓0

Φ(〈Q〉δ), Ique(Q) = lim
n→∞

Ique
δn

(〈Q〉δn), (3.33)

where δn = 2−n. The first relation holds because Φ(〈Q〉δ) ≤ Φ(Q) ≤ Φ(〈Q〉δ) + δ, the second
relation uses Lemma 3.6(i) below. Hence the claim follows by picking δ = δn in (3.32) and
letting n→ ∞.

Step 3: Sque(β; 1−) ≥ A(β) for all β ∈ (0,∞) when µ0 satisfies (1.3) with support bounded
from below.

Proof. For M > 0 and x ∈ E, let xM = x∧M . This truncation operation acts on µ0 by moving
the mass in (M,∞) to M , resulting in a measure µM

0 with bounded support and with associated

quenched rate function Ique,M . Let Rω,M
N be the empirical process of N -tuples of words obtained

from Rω
N defined in (2.4) after replacing each letter x ∈ E by xM . We have

E
(
eL

ω
N log z+NβΦ(Rω

N )
)
≥ E

(
eLω

N log z+NβΦ
(
Rω,M

N

))
. (3.34)

Combined with the result in Step 2, this bound implies that

S(β; 1−) ≥ sup
Q′∈C(µM

0 )

[βΦ(Q′) − Ique,M (Q′)]. (3.35)

For every Q ∈ C(µ0), we have

Φ(Q) = lim
M→∞

Φ(QM ) = lim
M→∞

∫

E
(x ∧M) d(π1,1Q)(x),

Ique(Q) = lim
M→∞

Ique,M (QM ).
(3.36)

The first relation holds by dominated convergence, the second relation uses Lemma 3.6(ii) below.
It follows from (3.36) that

lim sup
M→∞

sup
Q′∈C(µM

0 )

[βΦ(Q′) − Ique,M (Q′)] ≥ βΦ(Q) − Ique(Q) ∀Q ∈ C(µ0), (3.37)

which combined with (3.35) yields

S(β; 1−) ≥ βΦ(Q) − Ique(Q) ∀Q ∈ C(µ0). (3.38)

Take the supremum over Q ∈ C(µ0) to get the claim.

Step 4: Sque(β; 1−) ≥ A(β) for all β ∈ (0,∞) when µ0 satisfies (1.3).

Proof. For M > 0 and x ∈ E, let x−M = x ∨ (−M). This truncation operation acts on µ0 by
moving the mass in (−∞,−M) to −M , resulting in a measure µ−M

0 with support bounded from

below and with associated quenched rate function Ique,−M . Let Rω,−M
N be the empirical process

of N -tuples of words obtained from Rω
N defined in (2.4) after replacing each letter x ∈ E by

x−M .

16



As in Step 1, for any p, q > 1 such that p−1 + q−1 = 1, we have

E
(

eLω
N log z+NβΦ(Rω,−M

N )
)
≤ E

(
eLω

N log z+NβΦ(Rω
N ) e−β

PN
i=1 c(yi) 1{c(yi)<−M}

)

≤
[
E
(

epLω
N log z+NpβΦ(Rω

N )
)]1/p [

E
(

e−qβ
PN

i=1 c(yi) 1{c(yi)<−M}

)]1/q
,

(3.39)
and hence

1

N
log E

(
eLω

N log z+NβΦ(Rω,−M
N )

)

≤
1

p

1

N
log E

(
epLω

N log z+NpβΦ(Rω
N )
)

+
1

q

1

N
log E

(
e−qβ

PN
i=1 c(yi) 1{c(yi)<−M}

)
.

(3.40)

Let N → ∞ followed by z ↑ 1. For the l.h.s. we have the lower bound in Step 3, while the second
term in the r.h.s. can be handled as in (3.27–3.29). Therefore, recalling (3.10) and writing
p log z = log zp, we get

sup
Q∈C(µ−M

0 )

[βΦ(Q) − Ique,−M(Q)] ≤
1

p
Sque(pβ; 1−) +

1

q
logC−M

with C−M :=

∫

E
e−qβx 1{x<−M} dµ0(x).

(3.41)

Letting M → ∞ and using that limM→∞C−M = 1 by (1.3), we arrive at

1

p
Sque(pβ, 1−) ≥ lim sup

M→∞
sup

Q∈C(µ−M
0 )

[βΦ(Q) − Ique,−M(Q)] ≥ A(β), (3.42)

where the last inequality is obtained via arguments similar to those following (3.35), which
requires the use of Lemma 3.6(iii) below. Finally, let p ↓ 1 and use the continuity of β 7→
S(β; 1−), proven in Lemma 3.4 below.

This completes the proof of Lemma 3.3, and hence of Theorem 1.3.

3.4 Technical lemmas

In the proof of Lemma 3.3 we used three technical lemmas, which we prove in this section.

Lemma 3.4. β 7→ A(β) and β 7→ Sque(β; 1−) are finite and convex on [0,∞) and, consequently,
are continuous on (0,∞).

Proof. For the first function, note that A(β) ≤ supQ∈C(µ0)[βΦ(Q) − Iann(Q)] ≤ logM(β) < ∞
by (1.3) and (3.1), and convexity follows from the fact that A is a supremum of linear functions.
For the second function, note that Sque(β; 1−) ≤ Sque(β; 1) = A(β), and convexity follows from
Hölder’s inequality.

Lemma 3.5. If µ, ν ∈ P (R) satisfy h(µ | ν) < ∞ and
∫
E eλx dν(x) < ∞ for some λ > 0, then∫

E(x ∨ 0) dµ(x) <∞.
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Proof. The claim follows from the inequality
∫

E
f dµ ≤ h(µ | ν) + log

∫

E
ef dν, (3.43)

which is valid for all bounded and measurable f (see Dembo and Zeitouni [7], Lemma 6.2.13)
and, by monotone convergence, extends to measurable f ≥ 0. Pick f(x) = λ(x ∨ 0), x ∈ E.

Lemma 3.6. For every Q ∈ P inv(ẼN),
(i) limn→∞ Ique

δn
(〈Q〉δn) = Ique(Q) with δn := 2−n.

(ii) limM→∞ Ique,M (QM ) = Ique(Q).
(iii) limM→∞ Ique,−M(Q−M ) = Ique(Q).

Proof. (i) The proof proceeds by choosing an appropriate function I : [0, 1] → R and proving
that

(a) I(0) = limδ↓0 I(δ),
(b) I(0) ≥ I(δ1) ≥ I(δ2) whenever δ2 = kδ1 ∈ (0, 1) for some k ∈ N.

(3.44)

Recalling (2.10–2.11), we see that we need the following choices for I:

(1) I(δ) =

{
N−1h

(
〈πNQ〉δ | 〈πNq

⊗N

0 〉δ
)
, δ > 0,

N−1h
(
πNQ |πNq

⊗N

0

)
, δ = 0,

(2) I(δ) =

{
H
(
〈Q〉δ | 〈q

⊗N

0 〉δ
)
, δ > 0,

H
(
Q | q⊗N

0

)
, δ = 0,

(3) I(δ) =

{
N−1h

(
〈πN ΨQ〉δ | 〈πNµ

⊗N0
0 〉δ

)
, δ > 0,

N−1h
(
πNΨQ |πNµ

⊗N0
0

)
, δ = 0,

(4) I(δ) =

{
H
(
〈ΨQ〉δ | 〈µ

⊗N0
0 〉δ

)
, δ > 0,

H
(
ΨQ |µ⊗N0

0

)
, δ = 0,

(3.45)

with N ∈ N. It is clear from the definition of specific relative entropy (recall 2.5)) that if (a) and
(b) hold for the choices (1) and (3), then they also hold for the choices (2) and (4), respectively.
We will not actually prove (a) and (b) for the choices (1) and (3), but for the simpler choice

I(δ) =

{
h
(
〈µ〉δ | 〈µ0〉δ

)
, δ > 0,

h(µ |µ0), δ = 0.
(3.46)

The proof will make it evident how to properly deal with (1) and (3).

Let B(R) be the set of real-valued, bounded and Borel measurable functions on R and, for
φ ∈ B(R) and δ > 0, let φδ be the function defined by φδ(x) := φ(〈x〉δ). As shown in Dembo
and Zeitouni [7], Lemma 6.2.13, we have

h
(
〈µ〉δ | 〈µ0〉δ

)
= sup

φ∈B(R)

{∫

R

φd〈µ〉δ − log

∫

R

eφ d〈µ0〉δ

}

= sup
φ∈B(R)

{∫

R

φδ dµ− log

∫

R

eφδ dµ0

}
.

(3.47)

From this representation, property (b) follows for the choice in (3.46). Next, fix any ε > 0 and
take a φ such that

∫
R
φdµ− log

∫
R

eφ dµ0 ≥ h(µ |µ0)− ε. Then, since φδ converges pointwise to
φ as δ ↓ 0, the bounded convergence theorem together with (3.47) give

lim inf
δ↓0

h
(
〈µ〉δ | 〈µ0〉δ

)
≥ h(µ |µ0) − ε. (3.48)
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Hence lim infδ↓0 I(δ) ≥ I(0) − ε. Since I(0) ≥ I(δ), property (a) follows after letting ε ↓ 0.

Having thus convinced ourselves that (3.44–3.45) are true, we now know that for any Q ∈
P inv(ẼN) the sequences

H
(
〈Q〉δn | 〈q⊗N

0 〉δn

)
, H

(
〈ΨQ〉δn | 〈µ⊗N0

0 〉δn

)
, n ∈ N, (3.49)

are increasing and converge to H(Q | q⊗N

0

)
, respectively, H(ΨQ |µ⊗N0

0 ). This implies the claim
for Q with mQ <∞ (recall (2.11)). For Q with mQ = ∞ we use that Ique(Q) = suptr∈N I([Q]tr)
(recall (2.12)), to conclude that Ique

δn
(〈Q〉δn) is increasing and converges to Ique(Q).

(ii–iii) The proof is similar as for (i).

4 Characterization of disorder relevance: Proof of Theorem 1.4

Proof. We will need the following lemma, the proof of which is postponed.

Lemma 4.1. The supremum supQ∈C [βΦ(Q) − Ique(Q)] is attained for all β ∈ (0,∞).

Let Q∗ be a measure achieving the supremum in Lemma 4.1. Suppose that hque
c (β) = hann

c (β).
Then

hque
c (β) = βΦ(Q∗) − Ique(Q∗) ≤ βΦ(Q∗) − Iann(Q∗)

≤ βΦ(Qβ) − Iann(Qβ) = hann
c (β) = hque

c (β),
(4.1)

where the second equality uses that Qβ is the unique measure achieving the supremum in (1.16)
(with Iann(Qβ) <∞), as shown by (3.1). It follows that both inequalities in (4.1) are equalities.
Consequently, Q∗ = Qβ and Ique(Qβ) = Iann(Qβ).

Conversely, suppose that Ique(Qβ) = Iann(Qβ). Then

hque
c (β) ≥ [βΦ(Qβ) − Ique(Qβ)] = [βΦ(Qβ) − Iann(Qβ)] = hann

c (β). (4.2)

Since hque
c (β) ≤ hann

c (β), this proves that hque
c (β) = hann

c (β).

We now give the proof of Lemma 4.1.

Proof. The proof is accomplished in three steps. The claims in Steps 1 and 2 are obvious when
the support of µ0 is bounded from above, because then Φ is bounded from above and upper
semicontinuous. Thus, for these steps we may assume that the support of µ0 is unbounded from
above.

Step 1: The supremum can be restricted to the set C ∩ {Q ∈ P inv(ẼN) : Ique(Q) ≤ γ} for some
γ <∞.

Proof. We first prove that

lim
a→∞

sup
Q∈C

Φ(Q)=a

[βΦ(Q) − Ique(Q)] = −∞. (4.3)

To that end we estimate, for a ∈ (0,∞),

sup
Q∈C

Φ(Q)=a

[βΦ(Q) − Ique(Q)] ≤ sup
Q∈C

Φ(Q)=a

[
βa− h

(
π1,1Q |µ0

)]
= sup

µ∈P(E)R
E |x|dµ(x)<∞,

R
E x dµ(x)=a

[βa− h(µ |µ0)],

(4.4)
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where we use that Ique(Q) ≥ Iann(Q) = H(Q |Q0) ≥ h(π1,1Q |µ0). The last supremum is
achieved by a measure µλ of the form dµλ(x) = M(λ)−1eλxdµ0(x), x ∈ E, with λ such that∫
E xdµλ(x) = a (recall (1.17)). To see why, first note that such a λ = λ(a) exists because (λ 7→∫
E xdµλ(x)) is continuous with value 0 at λ = 0 and limλ→∞

∫
E xdµλ(x) = sup[supp(µ0)] = w,

where w = ∞ by assumption. Next note that, for any other measure µ with
∫
E xdµ(x) = a, we

have
h(µ |µλ) = h(µ |µ0) − λa+ logM(λ) = h(µ |µ0) − h(µλ |µ0), (4.5)

which shows that h(µ |µ0) ≥ h(µλ |µ0) with equality if and only if µ = µλ. Consequently,

sup
µ∈P(E)R

E |x|dµ(x)<∞,
R
E x dµ(x)=a

[βa− h(µ |µ0)] = β

∫

E
xdµλ(x) − h(µλ |µ0) =: g(λ). (4.6)

Clearly, a→ ∞ implies λ = λ(a) → ∞, and so to prove (4.3) we must show that limλ→∞ g(λ) =
−∞.

To achieve the latter, note that a lower bound on h(µλ |µ0) is obtained by applying (3.43)
to f(x) := β̄ (x ∨ 0) for some β̄ > β. This yields

g(λ) ≤ −(β̄ − β)

∫

E
xdµλ(x) + log [M(β̄) + 1]. (4.7)

The integral in the right-hand side tends to infinity as λ→ ∞, and so (4.3) indeed follows.

Finally, recall the definition of A(β) in (3.21), which is finite because of Lemma 3.4. Then,
by (4.3), there is an a0 <∞ such that

sup
Q∈C

Φ(Q)=a

[βΦ(Q) − Ique(Q)] ≤ A(β) − 1 ∀ a ≥ a0, (4.8)

and so all Q ∈ C with βΦ(Q) − Ique(Q) > A(β) − 1 must satisfy Φ(Q) < a0 and Ique(Q) <
βΦ(Q) + 1−A(β) ≤ βa0 + 1−A(β) =: γ. Consequently, the supremum can be restricted to the
set C ∩ {Q ∈ P inv(ẼN) : Ique(Q) ≤ γ}.

Step 2: Φ is upper semicontinuous on {Q ∈ P inv(ẼN) : Ique(Q) ≤ γ} for every γ > 0.

Proof. From the definition of Φ and the inequality h(π1,1Q |µ0) ≤ Ique(Q) ≤ γ, it follows that
it is enough to show that the map µ 7→ Ψ(µ) :=

∫
E(x ∨ 0) dµ(x) is upper semicontinuous on

Kγ := {µ ∈ P(E) : h(µ |µ0) ≤ γ}. To do so, let (µM )M∈N be a sequence in Kγ converging to µ
weakly as M → ∞. Then

Ψ(µM) =

∫

E
[(x ∨ 0) ∧ n] dµM (x) +

∫

E
x 1{x>n} dµM (x), (4.9)

and so

lim sup
M→∞

Ψ(µM ) ≤

∫

E
[(x ∨ 0) ∧ n] dµ(x) + sup

M∈N

∫

E
x 1{x>n} dµM (x) ∀n ∈ N. (4.10)

By the inequality in (3.43), we have

λ

∫

E
x 1{x>n} dµM(x) ≤ h(µM |µ0) + log

∫

E
eλx 1{x>n} dµ0(x) ∀M,n ∈ N, λ > 0, (4.11)
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and so

sup
M∈N

∫

E
x 1{x>n} dµM(x) ≤

γ

λ
+

1

λ
log

∫

E
eλx 1{x>n} dµ0(x). (4.12)

By (1.3), the limit as n → ∞ of the r.h.s. is γ/λ. Since λ > 0 is arbitrary, we conclude that
the limit as n→ ∞ of the left-hand side is zero. Letting n→ ∞ in (4.10) and using monotone
convergence, we therefore get lim supM→∞ Ψ(µM ) ≤ Ψ(µ), as required.

Step 3: Let Γ(Q) := βΦ(Q) − Ique(Q). Then

sup
Q∈C

Γ(Q) = sup
Q∈C

Ique(Q)≤γ

Γ(Q) ≤ sup
Q∈Pinv( eEN)
Ique(Q)≤γ

Γ(Q). (4.13)

By Theorem 2.2, Ique is lower semicontinuous. Hence, by Step 2, βΦ − Ique is upper semicon-
tinuous on the compact set {Q ∈ P inv(ẼN) : Ique(Q) ≤ γ}, achieving its supremum at some Q∗.
Let µ∗ := π1,1Q

∗. Then, by (1.3), the inequality in (3.43) gives
∫

E
(x ∨ 0) dµ∗(x) ≤ γ + log

∫

E
ex dµ0(x) <∞ (4.14)

and, since Φ(Q∗) > −∞, we also have
∫
E(x ∧ 0) dµ∗(x) > −∞, so that Q∗ ∈ C. Hence

sup
Q∈C

Γ(Q) = sup
Q∈Pinv( eEN)
Ique(Q)≤γ

Γ(Q) = Γ(Q∗), (4.15)

which concludes the proof.

5 Reformulation of the criterion for disorder relevance

Note that, by (2.10–2.12), for α > 0, the necessary and sufficient condition for relevance,
Ique(Qβ) > Iann(Qβ), in Theorem 1.4 translates into

lim
tr→∞

m[Qβ]trH
(
Ψ[Qβ ]tr |µ

⊗N0
0

)
> 0. (5.1)

In Lemma 5.3 below, we give two alternative expressions for the specific relative entropy ap-
pearing in (5.1). These expressions will be needed in Sections 6 and 7.

I. Asymptotic mean stationarity. In what follows we will make use of the notion of asymp-
totic mean stationary (see Gray [16], Section 1.7). Let A be a topological space and equip AN0

with the product topology. A measure P on AN0 is called asymptotically mean stationary if for
every Borel measurable G ⊂ AN0 ,

P(G) := lim
n→∞

1

n

n−1∑

k=0

P(θkG) exists. (5.2)

As in Section 2, θ denotes the left-shift acting on AN0 . If P is asymptotically mean stationary,
then P is a stationary measure, called the stationary mean of P.

For Q ∈ P inv(ẼN), recall from Section 2.3 that κ(Q) ∈ P(EN0) is the probability measure
induced by the concatenation map κ : ẼN → EN0 that glues a sequence of words into a sequence
of letters, i.e., κ(Q) = Q◦κ−1. Our aim is to replace ΨQ in (5.1) by κ(Q), which is not stationary
but more convenient to work with. These two probability measures are related in the following
way.
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Lemma 5.1. If mQ < ∞, then κ(Q) is asymptotically mean stationary with stationary mean

κ(Q) = ΨQ.

Proof. Let X := κ(Y ) ∈ EN0 , where Y is distributed according to Q. Let I denote the set of
indices i ∈ N0 where a new word starts (0 ∈ I). For i ∈ N0, let ri := inf{j ∈ N : i − j ∈ I},
i.e., the distance from i to the beginning of the word it belongs to. For j ∈ I, let Lj denote the
length of the word that starts at j. Then, for any G ⊂ EN0 Borel measurable, we have

n−1∑

i=0

κ(Q)
(
θiX ∈ G

)
=

n−1∑

i=0

i∑

k=0

Q
(
θiX ∈ G, ri = k

)
=

n−1∑

k=0

n−1∑

i=k

Q
(
θiX ∈ G, ri = k

)
. (5.3)

Next, note that

Q
(
θiX ∈ G, ri = k

)
= Q

(
θiX ∈ G, i− k ∈ I, Li−k > k

)

= Q
(
θiX ∈ G, Li−k > k | i− k ∈ I

)
Q
(
i− k ∈ I

)

= Q
(
θkX ∈ G, L0 > k

)
Q(i− k ∈ I).

(5.4)

Hence, dividing the sum in (5.3) by n, we get

1

n

n−1∑

i=0

κ(Q)
(
θiX ∈ G

)
=

n−1∑

k=0

Q
(
θkX ∈ G, L0 > k

)
fk,n, (5.5)

where we abbreviate fk,n := n−1
∑n−k−1

j=0 Q(j ∈ I). By the renewal theorem, limn→∞ fk,n =
1/mQ for k fixed. Since

∞∑

k=0

Q
(
L0 > k

)
= mQ <∞, (5.6)

we can apply the bounded convergence theorem, and conclude that

κ(Q)(G) =
1

mQ

∞∑

k=0

Q
(
θkX ∈ G, L0 > k

)
=

1

mQ

∞∑

k=0

∞∑

j=k+1

Q
(
θkX ∈ G, L0 = j

)

=
1

mQ

∞∑

j=1

j−1∑

k=0

Q
(
θkX ∈ G, L0 = j

)
= ΨQ(G).

(5.7)

The last equality is simply the definition of ΨQ in (2.7).

To complement Lemma 5.1, we need the following fact stated in Birkner [5], Remark 5, where
ergodicity refers to the left-shifts acting on ẼN and EN.

Lemma 5.2. If Q ∈ P inv(ẼN) is ergodic and mQ <∞, then ΨQ ∈ P inv(EN) is ergodic.

An asymptotic mean stationary measure can be interchanged with its stationary mean in
several situations (see Gray [15], Chapter 6), for example in relative entropy computations, as
in Lemma 5.3 below. Before stating this lemma, we use an extension of the notion of specific
relative entropy to measures that are not necessarily stationary. More precisely, for two measures
P and Q on a product space AN, we define the specific relative entropy of P w.r.t. Q as

H(P |Q) := lim sup
n→∞

1

n
h(πnP |πnQ), (5.8)
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where πn is the projection onto the first n coordinates. For Q ∈ P inv(ẼN), we introduce the
following Radon-Nikodym derivative:

fn(x) :=
dπnκ(Q)

dµ⊗n
0

(x), x ∈ EN0 . (5.9)

With this notation, the main result of this section is the following.

Lemma 5.3. For Q ∈ P inv(ẼN) ergodic with mQ <∞,

H
(
ΨQ |µ⊗N0

0

)
= H

(
κ(Q) |µ⊗N0

0

)
, (5.10)

= lim
n→∞

1

n
log fn(x) for κ(Q)-a.s. all x ∈ EN0 . (5.11)

The first equality holds also without the assumption of ergodicity.

Proof. The first equality follows from Gray [16], Corollary 7.5.1, last equality in Eq. (7.32),
which does not need the assumption of ergodicity. For the proof of the other equality, define

f̄n(x) :=
dπnΨQ

dµ⊗n
0

(x). (5.12)

Since ΨQ is stationary and ergodic (Lemma 5.2), Gray [16], Theorem 8.2.1, applied to the pair

ΨQ, µ⊗N0
0 gives that

lim
n→∞

1

n
log f̄n(x) = H

(
ΨQ |µ⊗N0

0

)
(5.13)

for ΨQ almost all x. But ΨQ is the stationary mean of κ(Q) (Lemma 5.1), so that Gray [16],
Theorem 8.4.1, combined with (5.13) gives

lim
n→∞

1

n
log fn(x) = H

(
ΨQ |µ⊗N0

0

)
(5.14)

for κ(Q) almost all x.

II. Alternative formulation. We will apply Lemma 5.3 to the measure [Qβ]tr, which is
ergodic, being a product measure. The word length distribution of it is

Ktr(n) :=





K(n) if 1 ≤ n ≤ tr − 1,
∑∞

m=trK(m) if n = tr,

0 if n > tr.

(5.15)

For [Qβ]tr, the function fn in (5.9) becomes

fn(x) = EKtr

(
n−1∏

k=0

(
eβxk

M(β)

)1{Sk=0}
)

= EKtr

(
e

Pn−1
k=0{βxk−log M(β)}1{Sk=0}

)
. (5.16)

where EKtr denotes expectation with respect to law of the Markov chain S with renewal times
distribution K tr. This follows from the definition of Qβ and (1.17). To emphasize the fact that
in the last expression the sequence x ∈ EN0 is picked from κ([Qβ ]tr), we take two independent
sequences

(xk)k∈N0 , (x̂k)k∈N0 drawn from µ⊗N0
0 and µ⊗N0

β , respectively, (5.17)
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and an independent copy S ′ of S. Let I := {i ≥ 0 : Si = 0}, I ′ := {i ≥ 0 : S ′
i = 0}. Then

H
(
Ψ[Qβ]tr |µ

⊗N0
0

)
= lim

N→∞

1

n
log EKtr

[
e

Pn−1
k=0 [βxk1{k/∈I′}+βx̂k1{k∈I′}−log M(β)] 1{k∈I}

]
. (5.18)

This is the key expression for proving relevance or irrelevance. Note the appearance of two
renewals set I, I ′, which are the key to understanding the issue of relevant vs. irrelevant disorder
(recall Remark 1.17).

6 Monotonicity of disorder relevance: Proof of Theorem 1.5

Proof. In view of (5.10) in Lemma 5.3, the condition for relevance in (5.1) becomes

lim
tr→∞

m[Qβ ]trH
(
κ([Qβ ]tr) |µ

⊗N0
0

)
> 0. (6.1)

We will show that β 7→ H(κ([Qβ ]tr) |µ
⊗N0
0 ) is non-decreasing for every tr ∈ N, which will imply

the claim because m[Qβ]tr = mKtr does not depend on β. It will be enough to show that

β 7→ h(πnκ([Qβ ]tr) |µ
⊗n
0 ) is non-decreasing for all tr, n ∈ N.

Fix tr, n ∈ N. For β ∈ [0,∞) and x̄ = (x0, x1, . . . , xn−1) ∈ En, let

k(β, x̄) :=
dπnκ([Qβ ]tr)

dµn
0

(x̄) = EKtr



∏

k∈Jn

eβxk

M(β)


 , (6.2)

with Jn := {0 ≤ k < n : Sk = 0} the set of renewal times prior to time n for the chain S that
has renewal time distribution K tr, to which we add 0 for convenience. Our goal is to prove that

β 7→ f(β) :=

∫

Rn

[
k(β, x̄) log k(β, x̄)

]
dµ⊗n

0 (x̄) = h
(
πnκ([Qβ ]tr) |µ

⊗n
0

)
(6.3)

is non-decreasing on [0,∞). We will do this by proving a stronger property. Namely, for
β̄ = (β0, β1, . . . , βn−1) ∈ [0,∞)n and x̄ ∈ En, let

k(β̄, x̄) := EKtr



∏

k∈Jn

eβkxk

M(βk)


 . (6.4)

We will show that

β̄ 7→ f(β̄) :=

∫

Rn

[
k(β̄, x̄) log k(β̄, x̄)

]
dµ⊗n

0 (x̄) (6.5)

is non-decreasing on [0,∞)n in each of its arguments.

We will prove monotonicity w.r.t. β1 only. The argument is the same for the other variables,
with one simplification for β0, namely, we may drop the corresponding indicator 1{0∈Jn} in the

third line of (6.6) and in (6.8). First, using that
∫
k(β̄, x̄)dµ⊗n

0 (x̄) = 1 for all β̄, we compute

∂β1f(β̄) =

∫

Rn

∂β1

[
k(β̄, x̄) log k(β̄, x̄)

]
dµ⊗n

0 (x̄)

=

∫

Rn

∂β1

[
k(β̄, x̄)

]
log k(β̄, x̄) dµ⊗n

0 (x̄)

=

∫

Rn

∂β1

(
eβ1x1

M(β1)

)
EKtr


1{1∈Jn}

∏

k∈Jn\{1}

eβkxk

M(βk)


 log k(β̄, x̄) dµ⊗n

0 (x̄).

(6.6)

24



Next, we note that

∂β1

(
eβ1x1

M(β1)

)
dµ0(x1) =

eβ1x1x1M(β1) − eβ1x1M ′(β1)

M(β1)2
dµ0(x1)

=

(
x1 −

M ′(β1)

M(β1)

)
eβ1x1

M(β1)
dµ0(x1) = (x1 −Eβ1) dµβ1(x1),

(6.7)

where Eβ1 := M ′(β1)/M(β1) =
∫
x1 dµβ1(x1). Now, let x̄1 be x̄ without x1, and abbreviate

A(x1; x̄1) := EKtr




∏

k∈Jn\{1}

eβkxk

M(βk)
1{1∈Jn}


 log k(β̄, x̄). (6.8)

Then, for fixed x̄1, the integral over x1 in (6.6) equals

∫

Rn

(x1 −Eβ1)A(x1; x̄1) dµβ1(x1)

≥

∫

Rn

(x1 −Eβ1) dµβ1(x1)

∫

Rn

A(x1; x̄1) dµβ1(x1) = 0,

(6.9)

where the inequality holds because both x1 7→ x1 −Eβ1 and x1 7→ A(x1; x̄1) are non-decreasing
(for the latter we need that β1 ∈ [0,∞)). It therefore follows from (6.6), after integrating over
x̄1 as well, that ∂β1f(β̄) ≥ 0.

7 Disorder irrelevance: Proof of Corollaries 1.6 and 1.7(i)

7.1 Proof of Corollary 1.6

Proof. This is immediate from Theorem 1.4 and the fact that I que = Iann when α = 0. The
latter was already noted at the end of Section 2.

7.2 Proof of Corollary 1.7(i)

Proof. The claim follows from an annealed bound on H(Ψ[Qβ]tr |µ
⊗N0
0 ). Indeed, recalling (5.11),

(5.16), and putting

Θn := EKtr

(
n−1∏

k=0

(
eβxk

M(β)

)1{Sk=0}
)
, (7.1)

we have

Eκ([Qβ]tr)(Θn) = EKtr

(
Eκ([Qβ ]tr)

(
n−1∏

k=0

(
eβxk

M(β)

)1{Sk=0}
))

= ES,S′

(
Eµ⊗n

0

(
n−1∏

k=0

(
eβxk

M(β)

)1{Sk=0} n−1∏

l=0

(
eβxl

M(β)

)1{S′
l
=0}

))

= ES,S′

(
Ξ(β)

Pn−1
k=0 1{Sk=S′

k
=0}

)
,

(7.2)
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where ES,S′ is the expectation with respect to two independent copies S, S ′ of the Markov chain
with renewal time distribution K tr, and

Ξ(β) :=
M(2β)

M(β)2
. (7.3)

If we now let

f tr
2 (λ) := lim

n→∞

1

n
log ES,S′

(
e
λ

Pn−1
k=0 1{Sk=S′

k
=0}

)
, (7.4)

then (3.27), (5.11), (5.16) and (7.2) imply that

H
(
Ψ[Qβ ]tr |µ

⊗N0
0

)
≤ f tr

2

(
log Ξ(β)

)
, β ∈ [0,∞), tr ∈ N. (7.5)

Combining the condition for relevance in (5.1) with the bound in (7.5), we see that to prove
irrelevance it suffices to show that, under the conditions in Corollary 1.8,

lim
tr→∞

m[Qβ ]trf
tr
2

(
log Ξ(β)

)
= 0. (7.6)

By (A.2) in Appendix A, we have

f2(λ) = 0 ⇐⇒ λ ≤ λ0 := − log P(I ∩ I ′ 6= ∅), (7.7)

where I, I ′ are the sets of renewal times for S, S ′ without truncation, and f2(λ) as defined in
Appendix A. By Lemma A.1, if λ < λ0, then suptr∈N tr f tr

2 (λ) <∞. Since limtr→∞m[Qβ]tr/tr =
0 always, (7.6) holds as soon as log Ξ(β) < λ0, i.e., Ξ(β) < 1/P(I ∩ I ′ 6= ∅). Now the claim
follows because P(I ∩ I ′ 6= ∅) = χ/(χ + 1) (see Spitzer [20], Section 1), with χ as defined in
(1.21), and with the convention that the last ratio is 1 if χ = ∞.

8 Disorder relevance: Proof of Corollary 1.7(ii)

Proof. We restrict the expectation in (5.18) to the set

An :=
{

(Sk)n
k=0 : I ∩ {1, . . . , n} = I ′ ∩ {1, . . . , n}

}
, (8.1)

i.e., S follows I ′ and collects only the tilted charges x̂k defined in (5.17). This gives the lower
bound

exp

[
n−1∑

k=0

[βx̂k − logM(β)] 1{k∈I′}

]
P(An). (8.2)

Let kn := |I ∩ {1, . . . , n}|, τ ′0 = 0 and τ ′1 < · · · < τ ′kn
the elements of I ′ ∩ {1, . . . , n}. By the

renewal theorem, we have kn/n→ 1/mtr as n→ ∞. Moreover,

P(An) = P(τ1 > n− τ ′kn
)

kn∏

i=1

Ktr(τ ′i − τ ′i−1), (8.3)

so that

1

n
log P(An) =

1

n
log P(τ1 > n− τkn) +

kn

n

1

kn

kn∑

i=1

logKtr(τ ′i − τ ′i−1) →
1

mtr

tr∑

k=1

Ktr(k) logKtr(k),

(8.4)
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while
1

n

n−1∑

k=0

{βx̂k − logM(β)} 1{k∈I′} →
1

mtr
c(β) (8.5)

with
c(β) := βEµβ

(x̂1) − logM(β) = β[logM(β)]′ − logM(β) = h(µβ |µ0). (8.6)

Hence

mtrH
(
Ψ[Qβ]tr |µ

⊗N0
0

)
≥ h(µβ |µ0) +

tr∑

k=0

Ktr(k) logKtr(k), (8.7)

and
lim inf
tr→∞

m[Qβ]tr H
(
κ([Qβ ]tr) |µ

⊗N0
0

)
≥ h(µβ |µ0) −H(K). (8.8)

Consequently, h(µβ |µ0) > H(K) is sufficient for disorder relevance.

We close by proving the second line of (1.26):

lim
β→∞

h(µβ |µ0) = log [1/µ0({w})]. (8.9)

We distinguish three different cases.

(1) w = ∞. Apply (3.43) with µ = µβ, ν = µ0 and f(x) = x ∨ 0, to get

h(µβ |µ0) ≥

∫

E
(x ∨ 0) dµβ(x) − log [M(1) + 1]. (8.10)

The integral diverges as β → ∞, and so (8.9) follows.

(2) µ0({w}) = 0 with w < ∞. Now µβ converges weakly as β → ∞ to δw, the point measure
at w. Hence (8.9) follows by using the lower semicontinuity of µ 7→ h(µ |µ0) and the fact that
h(δw |µ0) = ∞ because δw is not absolutely continuous w.r.t. µ0.

(3) µ0({w}) > 0 with w <∞. Define

fβ(x) :=
dµβ

dµ0
(x) =

eβx

M(β)
, x ∈ E. (8.11)

This function satisfies
lim

β→∞
fβ(x) = 0 for x < w,

lim
β→∞

fβ(w) = 1/µ0({w}),

fβ(x) ≤ 1/µ0({w}) <∞ for x ≤ w.

(8.12)

Since t 7→ t log t is increasing on [1,∞) and on (0, 1] takes values in [−e−1, 0], we can apply the
bounded convergence theorem to the integral

h(µβ |µ0) =

∫

E
fβ(x) log fβ(x) dµ0(x), (8.13)

to get (8.9).
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A Appendix

In this appendix we recall a few facts about the homopolymer. For proofs we refer to Gia-
comin [11], Chapter 2, and den Hollander [18], Chapter 7.

The homopolymer has a path measure as in (1.4), but with exponent λ
∑n−1

k=0 1{Sk=0}, λ ∈
[0,∞). For a given renewal time distribution K, the free energy f(λ) is the unique solution of
the equation

e−λ =
∑

n∈N

K(n) e−nf(λ) (A.1)

whenever a solution exists, otherwise f(λ) = 0. Clearly

f(λ) = 0 ⇐⇒ λ ≤ − log P(I 6= ∅), (A.2)

where I = {k ∈ N : Sk = 0} is the set of renewal times of S.

Let S, S′ be two independent copies of the Markov chain with renewal time distribution K,
with sets of renewal times I, I ′. Transience of the joint renewal process I ∩ I ′ is equivalent to
P(I ∩ I ′ 6= ∅) < 1. In that case, let

λ0 := − log P(I ∩ I ′ 6= ∅) > 0, (A.3)

and denote by f2(λ) and f tr
2 (λ) the free energy when the renewal times of S, S ′ are drawn from

K, respectively, K tr defined in (5.15). Then limtr→∞ f tr
2 (λ) = f2(λ). Note that f2(λ) = 0 iff

λ ≤ λ0. This property does not hold for f tr
2 (λ), but the following lemma shows that f tr

2 (λ) tends
to zero fast as tr → ∞ when λ < λ0.

Lemma A.1. Suppose that P(I ∩ I ′ 6= ∅) < 1. Then sup
tr∈N tr f tr

2 (λ) <∞ for all λ < λ0.

Proof. As in the paragraph preceding the lemma, define I tr, I ′tr, where now the Markov chains
S, S′ have renewal time distribution K tr. Let K2,K

tr
2 be the renewal time distributions generat-

ing the sets I ∩ I ′, Itr ∩ I ′tr respectively. Put L2(n) :=
∑n

k=1K2(k) and Ltr
2 (n) :=

∑n
k=1K

tr
2 (k).

Then L2(∞) = e−λ0 and Ltr
2 (∞) = 1 because the renewal process I tr ∩ I ′tr is resurrent. Since

Ktr
2 (n) = K2(n) for 1 ≤ n < tr, it follows from (A.1) that

e−λ =

tr−1∑

n=1

K2(n)e−nftr
2 (λ) +

∞∑

n=tr

Ktr
2 (n)e−nftr

2 (λ)

≤ L2(tr − 1) + e−tr ftr(λ)[1 − L2(tr − 1)],

(A.4)

where the equality holds because f tr
2 (λ) > 0 for λ > 0. Hence

tr f tr
2 (λ) ≤ log

[
1 − L2(tr − 1)

e−λ − L2(tr − 1)

]
. (A.5)

The term between brackets tends to (1 − e−λ0)/(e−λ − e−λ0) as tr → ∞, which is finite for
λ < λ0.

The order of the phase transition for the homopolymer depends on the tail of K. If K satisfies
(1.24), then

f(λ) ∼ λ1/(1∧α)L∗(1/λ), λ ↓ 0, (A.6)

for some L∗ that is strictly positive and slowly varying at infinity. Hence, the phase transition
is order 1 when α ∈ [1,∞) and order m ∈ N\{1} when α ∈ [ 1

m ,
1

m−1). This shows that the value

α = 1
2 is critical in view of the Harris criterion mentioned in Remark 1.13.
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