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Shales, clays, hydrogels and tissues swell and shrink un-
der changing osmotic conditions, which may lead to failure.
The relationship between the presence of cracks and fluid flow
has had little attention, while the relationship between fail-
ure and osmotic conditions has had even less attention. The
aim of this research is to study the effect of osmotic condi-
tions on propagating discontinuities under different types
of loads for saturated ionized porous media using the Finite

∗Address all correspondence to this author.

Element Method (FEM). Discontinuous functions are intro-
duced in the shape functions of the FEM by partition of unity
method, independently of the underlying mesh. The method
allows for crack propagation in arbitrary directions. Dam-
age ahead of the crack-tip is introduced by the cohesive zone
model. Tensile loading of a crack in an osmoelastic medium
results in opening of the crack and high pressure gradients
between the crack and the formation.The fluid flow in the
crack is approximated by Couette flow. Results show that



depending on the load, permeability, prestress and the stiff-
ness of the material, when crack propagation initiates, fluid
is attracted to the crack-tip from the crack rather than from
the surrounding medium causing the crack to close. The re-
sults show reasonable mesh-independent crack propagation
for materials with a high stiffness. Interestingly, step-wise
crack propagation through the medium is seen. This is be-
cause the propagation of the crack alternates with pauses in
which the crack-tip area consolidates. As the load on the solid
increases, the failure load is reached and the crack propagates
again. Furthermore, propagation is shown to depend on the
osmotic prestressing of the medium. This mechanism may
explain the tears observed in intervertebral discs as degener-
ation progresses.

1 Introduction
Shales, clays, hydrogels and tissues swell and

shrink under changing osmotic conditions. This
change in conditions can lead to localized stresses
and even to failure. This phenomenon is seen in the
oil industry (e.g. hydraulic fracturing and borehole
instability), in material design (clay, diapers, or-
thopaedic prosthesis and seals) and in medical biology
(intervertebral disc herniation and tissue engineering).
Examples of tensile failure are delamination, such as
in the annulus of the intervertebral disc or in material
test experiments, failure of concrete dams, pressurized
well bores and hydraulic fracturing. In all these cases
a strong coupling exists between fluid pressure and
crack propagation. Numerical simulation techniques
including coupling of fracture propagation and fluid
exchange between the fracture and the formation are
highly desirable to enhance the understanding of the
process of tensile failure in these type of materials.
The etiology of intervertebral disc herniation is largely
unknown. IVD tissue is avascular and therefore ages
relatively fast [1]. During ageing, the disc changes
in size, structure and osmotic prestress. Furthermore
the number of cracks grow [1, 2]. While some papers
suggest that herniation is the result of weakening of the
disc due to ageing [3–5], others believe that fast ageing
is the cascading effect of an initial disruption [6, 7].
Genetic studies actually suggest that occupation (i.e.
loading history) is of less influence than genetics [8, 9].
Wognum et al. [10] showed that cracks open under
decreasing osmotic pressure (i.e. ageing) which causes
stress localization at the crack-tip. The same mecha-
nism may be responsible for borehole instability.
Some fluid-driven fracture propagation in ionized
porous media, such as hydraulic fracturing, are de-
sired. The controlled fracturing of tight sand is wanted
in order to extract gas at commercial rates. Analytical
solutions have been developed for the modeling
of fluid-driven fractures [11–13]. More specifically,
hydraulic fracturing in porous media [14, 15] is con-
sidered a benchmark. Detournay and Garagash [16]
combined analytical and numerical analysis to show

that fluid-driven fracture depends on permeability and
propagation velocity for unsaturated porous media.
Derivations of these solutions demanded simplifica-
tions, such as the assumption of no or minimal fluid
exchange between crack and material.

In the past efforts have been made to simulate
damage in porous media. Hogenization and upscaling
techniques have been used [17, 18], but these are only
suitable to study damage evolution when there is no
prominent crack to be distinguished. Full fracture
calculations for a macro crack in porous media were
performed in a FE setting from the 1990s. Boone et
al. [15] introduced interface elements equipped with
the cohesive zone model (Dugdale [19] and Baren-
blatt [20]) for the fracturing process in a poro-elastic
setting. They studied stress testing with water to
initiate micro-cracking for a known path. The use
of interface elements is suitable if the crack path is
known a priori, since it requires a priori alignment of
the element with the crack path. Adaptive remeshing
methods have been combined with cohesive zone
models [21, 22]. These methods are able to capture
fracture evolution in nonhomogeneous porous mate-
rials without assumptions about the singularities of
the solid and fluid fields. Unfortunately, the adaptive
remeshing schemes are computationally expensive
and require suitable mapping procedures [22, 23].
Alternatively, fractures are introduced in a mesh free
way by exploiting the partition of unity property of
the finite element shape functions [24]. Fractures are
modeled as discontinuities in the displacement field.
A discontinuity is introduced in the FEM by adding
an enhanced (discontinuous) field to the standard dis-
placement field. The number of degrees of freedom at
the nodes whose support is crossed by a discontinuity,
are increased. Therefore no new nodes are added dur-
ing propagation and no dummy stiffness is required.
Belytschko [25] introduced this method together with
an asymptotic enhancement of the displacement field
at the crack-tip. Practical benefits of exploiting the par-
tition of unity method are that standard discretization
is used and that crack propagation is independent of
the discretization. The partition of unity approach has
been combined in solid mechanics with cohesive zone
models allowing the cohesive zone to run through the
continuum elements [26–28].

The strong discontinuity concept has been intro-
duced in porous media by Larsson et al. [29, 30] by the
introduction of a regularized Dirac distribution func-
tion to the pressure field at the location of the discon-
tinuity for shear banding in an enhanced strains ap-
proach, where Armero and Callari [31] assumed con-
tinuous flow.
Along the same lines, Roels et al. [32] used the par-
tition of unity method to simulate crack propagation
in the solid part combined with a moisture transfer



scheme. Results show that the solution for the fluid
phase smoothed upon mesh refinement, since a fine
mesh is needed to capture the steep change increase of
capillary pressure field and corresponding decrease in
permeability. Al-Khoury et al. [33] used a strong dis-
continuity for the solid phase combined with a dou-
ble porosity model for the fluid phase with coupling of
fracture flow to the bulk material by a leakage term.
Unfortunately only one-dimensional examples have
been addressed. It is unclear how the model will be-
have in two dimensions.
Réthoré et al. [34, 35] used partition of unity approach
with a strong discontinuity for the solid phase and a
weak discontinuity for the fluid phase. Furthermore,
fluid flow in the crack to the size of the opening is mod-
eled by a cavity model assuming viscous fluid in the
crack. Only static cases have been considered, but they
show mesh-independency of the fluid phase.
All aforementioned papers have shown that the par-
tition of unity approach is suitable for studying crack
growth in porous media. While treatment of the solid
phase is straightforward, there is no consensus on the
treatment of the fluid flow as result of a displacement
discontinuity, nor have osmotic forces been taken into
account.
In this paper a framework for mesh-independent frac-
turing in ionized porous media under tensile loading is
introduced. Lanir’s plane strain osmoelastic model [36]
for small deformations is used to model the bulk mate-
rial. This model has as independent variables the dis-
placement and the chemical potential of the fluid. It
represents the bulk effect of the presence of ions, but
assumes that the ion flow is fast compared to fluid dif-
fusion.
The partition of unity approach is used to introduce
strong discontinuities in the displacement field. The
gradients in the pressure at fractures call for a weak
discontinuity for the chemical potential field. This ap-
proach is combined with cohesive zone modeling [28]
for damage evolution. A direct coupling between fluid
flow in the crack, in the formation and between the for-
mation and the crack, and coupling to ionization is for-
mulated. Several examples are considered, both with
and without an external mechanical load. The effect of
prestress in the bulk material on fracture propagation
is considered.

2 Governing equations
The governing equations consist of equations for

the bulk and for the discontinuity, dominated by mass
balance, momentum balance and constitutive behavior.
A body Ω has an external boundary Γ with a traction
force on Γt and fluid supply on Γf, with ~n the normal
unit vector on the boundary Γ directed outwards. The
body is cut by a discontinuity Γd in two domains, Ω+

and Ω−. The normal of the discontinuity ~n+ is di-
rected towards Ω+. Some constitutive behavior will

introduce nonlinearity into the model. This is itera-
tively solved. The Newton-Rhapson procedure is used
to calculate the results. Therefore, some elements are
linearized.

Bulk material
Osmoelastic media have large negatively charged

groups attached to the solid matrix. Counter charges
are present in the fluid making the medium electrically
neutral. Due to the fixed charges the total ion concen-
tration inside the medium is higher than in the sur-
rounding fluid. This excess of ion particles leads to an
osmotic pressure difference, which causes swelling of
the medium. The degrees of freedom for the model are
the displacement ~u and the chemical potential of the
fluid µf. Lanir’s osmoelastic model [36] is summarized
as (1).

(Momentum) 2µ∇2~u + (c− 2µ)~∇tr(ε− εi)− ~∇µf = 0
(Mass) ∂tr(ε−εi)

∂t − ~∇ · (K~∇µf) = 0,
(1)

with c = 2µ + λ + ∂∆π
∂tr(ε

˜
) with µ and λ the Lamé con-

stants and ∆π the osmotic pressure difference between
the material and external salt solution. K represents
the permeability of the bulk material, in this case as-
sumed isotropic and constant. The presence of ions
fixed to the solid matrix results not only causes an os-
motic pressure, but also prestressing of the material.
Three types of prestress are considered (Fig. 1), namely
the initial condition is the result of swelling in both di-
rections (free swelling), in only x-direction or in only
y-direction.

a. b.

c.

Fig. 1. Representation of three types of prestress: free
swelling a. in both directions, b. in x-direction and c. in
y-direction.

Discontinuity kinematics
By exploiting the partition of unity principle [24],

the displacement field and the chemical potential dis-
tribution is separated into two different scales: the
bulk behavior (standard field) and crack behavior (en-
hanced field). The displacement field ~u of the body is



additively decomposed into the standard or continu-
ous part ~̂u and the enhanced part ~̃u.

~u(~x) = ~̂u(~x, t) +HΓd(~x)~̃u(~x, t) (2)

The Heaviside function HΓd is defined by (3) with the
jump at the middle of the discontinuity.

HΓd =
{

+h/2 ~x ∈ Ω+

−h/2 ~x ∈ Ω− (3)

The Heaviside function is acting on a smooth function
~̃u(~x, t), hence allows for continuity of the crack surface.
The jump at the discontinuity Γd is given by [~u] and
represents the opening of the crack (shear or normal
opening).

[~u(~x, t)] = h~̃u(~x, t), ~x ∈ Γd. (4)

with h = H+
Γd
−H−

Γd
the magnitude of the jump of the

Heaviside function.
Opening of a crack causes a high gradient in the chem-
ical potential at both crack surfaces. In opening mode
there is no pressure difference between the crack sur-
faces but a pressure difference between the crack sur-
face and the middle of the crack. Using the partition
of unity property, a distance function DΓd similar to
Réthoré et al. [34] is introduced. This function allows
for the natural introduction of steep gradients without
enforcing it. The decomposition becomes

µf(~x) = µ̂f(~x, t) +DΓd(~x)µ̃f(~x, t) (5)

The distance function is defined with respect to the co-
ordinates of the crack ~xΓ, namely by

DΓd =
h
2
|(~x−~xΓ) ·~n+|, ~x ∈ Ω (6)

with h the magnitude of the Heaviside jump. The gra-
dient of the distance function ~∂D is given by

~∂D =∇sDΓd =
{ h

2~n
+ ~x ∈ Ω+

h
2~n
− ~x ∈ Ω− =HΓd~n

+ (7)

where ∇s∗ = 1/2{∇ ∗+(∇∗)T} holds.

Local behavior
A local coordinate system (n,s) is introduced where

index n denotes the normal component directed to Ω+

and s denotes the tangential component directed to-
wards direction of propagation. A displacement jump
is decoupled into

[~u] = [u]n~n+ + [u]s~t+ (8)

with ~n+ = −~n− directed into the body and ~t+ is
directed along the crack surface in direction of propa-
gation. We define crack surfaces Γ+ = ∂Ω+ ∩ Γd and
Γ− = ∂Ω− ∩ Γd.

Local mass balance
Deformation around the discontinuity is strongly

linked to fluid flow. Fluid flow takes place at the sur-
face of the discontinuity from the medium into the
crack and a flow along the crack when opening of
the crack increases. When the crack is closed, the
normal fluid flow f± over surface Γ±d determines the
amount of fluid exchange. When the crack opens, addi-
tional terms are included. Figure 2 shows a schematic
overview of the local mass balance. In case of tensile

Ω+
f+

Ω-

f-

[u](t)

[u](t+dt)
q (s)Γq (s+ds)Γ

Fig. 2. Schematic representation of the fluid flow at the crack sur-
face with parameter s the distance along the crack.

mode, there is a balance between tangential flow and
normal flow.

f + + f− = − ∂qΓ
∂s − ˙[u]n,

qΓ = −|[u]n|kKd
∂µf

Γ
∂s .

(9)

where s represents the distance along the crack, with
s = 0 the crack-tip and s positive in direction of~t+. Tan-
gential flow is assumed Couette flow in which Kd is the
permeability and k a material factor.

Local momentum balance
A discrete crack is preceded by local damage. This

micro-damage can be lumped into one constitutive re-
lation (cohesive zone) and projected on the crack [28].
The model relates the decohesion, i.e. softening of the
traction forces, as result of opening of the crack. As the
damage is related to solid part of the material, the dam-
age is related to the effective stresses.
At each crack surface, the following relation holds

(σe − (µf + ∆π)I)± ·~n± =~t±Γ (~x, t), ~x ∈ Γ± (10)



Fig. 3. Schematic representation of the traction forces at the crack
surface

This is represented in Fig. 3. The cohesive law holds
locally and is described in the local coordinate system
of the discontinuity. The cohesive zone model is non-
linear. The change in traction forces is related to the
displacements.

∆t
˜
+
Γ = T

¯ e~u˜
− µ

f
Γn

˜
+ (11)

where T
¯ e the tangent stiffness containing the softening

behavior. Furthermore, for the osmotic forces in the
crack surfaces holds that the ionic concentration in the
crack is the same as in the external reservoir.

µ
f
Γ = pΓ − 2RTcex, ∆π+ = 0, (12)

with pΓ hydraulic pressure in the crack.

Yield criterion
Crack growth is determined by the stress state in

the solid matrix. Therefore the yield criterion, next
to the cohesive zone, is related to the effective stress.
The effective stress at the crack-tip varies locally and
therefore the critical effective stress state is calculated
nonlocally from the stress states around the crack-tip.
A length scale la is introduced which determines the
influence radius and steepness of surrounding stress
states.
To take the difference between compressive and ten-
sile forces in to account, the yield law by Remmers et
al. [28] is used. For that reason an equivalent traction
teq(α), with α the to be determined angle, is introduced
such that

te,eq(α) =

√
< te,n(α) >2 +

1
β

< te,s(α) >2, (13)

with < x > McCauley brackets, i.e. x = 0 if x < 0. β
is typically set to 2.3 [37] and the angle is limited to
0 < α < π. Crack propagation is initiated when the
equivalent traction force (teq) is larger than the critical
value tult.

3 Numerical description
The weak form for the Finite Element Method is

derived by standard Galerkin approach. Then the
weak equations are discretized leading to a time-
dependent, non-linear system. This is solved using
a Cranck-Nicholson scheme for time-integration and
Newton-Rhapson iteration within each time increment.

Weak form
The momentum balance and mass balance are mul-

tiplied by test functions and subsequently integrated
over the domain Ω. These test functions are taken
of the same form as the shape functions for the inde-
pendent variables and therefore consisting of a contin-
uous and discontinuous part. The displacements are
enhanced with a strong discontinuity function. The
chemical potential is enhanced with a weak disconti-
nuity function.

~η = ~̂η +HΓd~̃η, ϕ = ϕ̂ +DΓd ϕ̃. (14)

Using integration by parts the discontinuity is intro-
duced as a boundary integral. This is elaborated at the
specific balance equations in the next section.

Momentum balance
The momentum equation after applying integra-

tion by parts is given by

∫
Ω+∪Ω−∇s(~̂η +HΓd~̃η) : σdΩ =

∫
Γt

(~̂η +HΓd~̃η) ·~ttdΓ
−∫

Γ+
d
(~̂η +HΓd~̃η) ·~t+Γ dΓ− ∫

Γ−d
(~̂η +HΓd~̃η) ·~t−Γ dΓ

(15)
with σ = σe − pI, p = µf + ∆π.
This equation must hold for all variations of test func-
tions, therefore it holds also if ~̂η =~0 or if ~̃η =~0. Both op-
tions are separately applied. This results in two equa-
tions. The first equation denotes the standard or con-
tinuous field behavior (taking ~̃η =~0 and momentum
balance demands~t+Γ =−~t−Γ ). Then in total the next mo-
mentum balance for continuous field is found

∫
Ω+∪Ω−∇s~̂η : σdΩ =

∫
Γt

~̂η ·~ttdΓ (16)

The second equation denotes the behavior of the en-
hanced field (taking ~̂η =~0). With t±Γ =~t±e − µf

Γ~n
±, the

momentum balance for the enhanced field is:

∫
Ω+∪Ω−HΓd∇s~̃η : σdΩ +

∫
Γ+

d
~̃η · h(~t+e − µf

Γ~n
+)dΓ

=
∫

Γt
HΓd~̃η ·~ttdΓ

(17)



Mass balance
The variational mass balance is given by

∫
Ω+∪Ω−∇(ϕ̂ +DΓd ϕ̃) ·~qdΩ
−∫

Ω+∪Ω−(ϕ̂ +DΓd ϕ̃)∇ · ~̇udΩ
=

∫
Γf

(ϕ̂ +DΓd ϕ̃) ffdΓ− ∫
Γ+

d
(ϕ̂ +DΓd ϕ̃)~̃q ·~n+dΓ

−∫
Γ−d

(ϕ̂ +DΓd ϕ̃)~̃q ·~n−dΓ

(18)

Taking ϕ̃ = 0, the mass balance for the continuous field
becomes

∫
Ω+∪Ω−∇ϕ̂ ·~qdΩ− ∫

Ω+∪Ω− ϕ̂∇ · ~̇udΩ +
∫

Γ+
d

ϕ̂~̃q ·~n+dΓ

+
∫

Γ−d
ϕ̂~̃q ·~n−dΓ =

∫
Γf

ϕ̂ ffdΓ
(19)

For the flow around the crack holds (9). In variational
form this reduces to:

∫
Γ+

d
ϕ̂~̃q ·~n+dΓ +

∫
Γ−d

ϕ̂~̃q ·~n−dΓ =

= −∫
Γd

ϕ̂
∂qΓ
∂s dΓ− ∫

Γ+
d

ϕ̂[~̇u] ·~n+dΓ
(20)

The term with tangential flow is simplified using diver-
gence theorem

∫

Γd

ϕ̂
∂qΓ

∂s
dΓ = −

∫

Γd

∂ϕ̂

∂s
qΓdΓ + ϕ̂qΓ|Sd (21)

Combining Eqs. (20) and (21) with(19), the mass bal-
ance for continuous field is found:

∫
Ω+∪Ω−∇ϕ̂ ·~qdΩ− ∫

Ω+∪Ω− ϕ̂∇ · ~̇udΩ
+

∫
Γd

∂ϕ̂
∂s qΓdΓ− ∫

Γd
ϕ̂[~̇u] ·~n+dΓ =

∫
Γf

ϕ̂ ffdΓ + ϕ̂qΓ|Sd

(22)
Using ϕ̂ = 0 and DΓd = 0 on Γd, the mass balance for
the enhanced field is equal to

∫
Ω+∪Ω−∇(DΓd ϕ) ·~qdΩ− ∫

Ω+∪Ω−(DΓd ϕ)tr(ε̇)dΩ
=

∫
Γf

(DΓd ϕ) ffdΓ
(23)

Spatial discretization
The weak form is provided by equations (16), (17),

(22) and (23). Discretized forms are derived by divid-
ing body Ω into elements Ωe, e = 1..ne (Ω =

⋃ne
1 Ωe).

The result is that the discontinuity is discretized in el-
ements Sd and the boundary in elements Se. The dis-
placements, the chemical potential and their variations
are discretized similarly (Bubnov-Galerkin approach)
by

~̂u = ~N
˜

T
~a
˜u, ~̃u = ~N

˜
T~b

˜u
µ̂f = m

˜
Ta

˜µ, µ̃f = m
˜

Tb
˜µ

(24)

where ~N
˜

= [N
˜ x N

˜ y] contains the shape functions,
which are the same in x- and y-direction. The columns
~a
˜u and ~b

˜u contain the nodal values for bulk part and
enhanced part, resp.. Similar are m

˜
, a

˜µ and b
˜µ columns

of shape functions and nodal values. Then strain is dis-
cretized by

∇sε = B
¯
~a
˜u +HΓd B

¯
~b
˜u (25)

The first order differential operator on the displace-
ment shape functions is denoted by B

¯
= [L

¯
N
˜ x L

¯
N
˜ y] The

matrix L
¯

contains the differential operators:

L
¯

=




∂
∂x 0
0 ∂

∂y
∂

∂y
∂

∂x


 (26)

Furthermore C
¯

= L
¯

T(~lm
˜

T) a 2 × m matrix is defined
with ~l = ( 1 1 0 )T . Then B

¯
T · (~lm

˜
T) = ~N

˜
C
¯

holds and
∇µf = C

¯
a
˜µ +HΓd C

¯
b
˜µ.

Finally the stress and flux are discretized. The stress
consist of the effective stress and the chemical poten-
tial. The effective stress in vector notation is given
by σ

˜ e = (σe,xx,σe,yy,σe,xy)T . The stress is linearized
with respect to the column of nodal values such that
a Newton-Rhapson scheme can be used.

σ = ∂σ
˜∂ε
˜

∂ε
˜∂~a
˜u

~a
˜u + ∂σ

˜∂ε
˜

∂ε
˜

∂~b
˜u

~b
˜u + ∂σ

˜∂a
˜µ

a
˜µ + ∂σ

˜∂b
˜µ

b
˜µ

= D
¯

B
¯
~a
˜u +HΓd D

¯
B
¯
~b
˜u − (~lm

˜
T)a

˜µ −HΓd(~lm˜
T)b

˜µ

(27)
Here D

¯
is a (3x3) matrix for 2-D. The matrix D

¯
is de-

fined as follows (c = 2µ + λ + ∂∆π
∂tr(ε

˜
) ).

D
¯

=




c (c− 2µ) 0
(c− 2µ) c 0

0 0 2µ


 (28)

The traction forces at the discontinuity Sd are dis-
cretized as

(σe− (µf + ∆π)I) ·~n+ =~t+Γ = hT
¯
~N
˜

T~b
˜u−~n+m

˜
Ta

˜µ (29)

with T
¯ e = Q

¯
T
¯ e,dQ

¯
the tangent stiffness of the cohesive

zone. The seepage flux is linearized by

∆~q = ∂~q
∂~a
˜u
·~a

˜u + ∂~q

∂~b
˜u

·~b
˜u + ∂~q

∂a
˜µ

a
˜µ + ∂~q

∂b
˜µ

b
˜µ

= −K
¯

C
¯

a
˜µ − K

¯
(DΓd C

¯
+ ~∂DΓd m

˜
T)b

˜µ

(30)



Finally, linearization of the local mass elements, results
in the next elements.

∫
S+

d

∂ϕ
∂η~qΓ ·~t+dΓ

=
∫

S+
d

∂m
˜∂η |[~ui]T~n+|kKd

∂m
˜∂η

T
dΓa

˜µ

+
∫

S+
d

∂m
˜∂η Kd

∂µf
i

∂η k|[~ui]T~n+|k−1 sgn([~ui] ·~n+)(~n+)T~N
˜

T
dΓ~b

˜u

(31)

ϕ~qΓ ·~t+|S+
d

= m
˜
~qΓ ·~t+|S+

d
(32)

Time discretization
To solve the system of equations, a time stepping

algorithm is required. The solution is sensitive to the
magnitude of the time increment (time step). A large
step leads to under estimation of fluid pressure in con-
fined compression. Taking too small steps leads to ini-
tial oscillation. For stable time integration it is required
that [38]:

∆t >
∆x2

cK
, (33)

This means that the time needed for the fluid to prop-
agate a distance ∆x is related to the the square of the
distance, permeability of the framework and the stiff-
ness of the framework.
In this model the Cranck-Nicholson scheme is used.
This means that differential terms are approximated
linearly and weighted. Stabilization is reached if im-
plicit time stepping is used.

Total system
The total set of governing equations and disconti-

nuity equations is given by

(
K
¯ uu,i −K

¯ u¯,i
−K

¯ ¯u,i −∆tθK
¯ ¯¯,i

)
δ~c

˜i =

(
f
˜ ext,u

− f
˜ int,u

∆t f
˜

θ

ext,¯
− ∆t f

˜
θ

int,¯

)
.

(34)
where~c

˜i contains the nodal values of the displacements
and chemical potential for the continuous and discon-
tinuous part. In the equations subscript i denotes the
temporary solution~c

˜i in iteration step i and superscript
n denotes the solution~c

˜
n of previous time step n. Even

though matrices D
¯

, K
¯

, T
¯ e are symmetric, M

¯ µu,i and
M
¯ uµ,i cause asymmetry of the system.

The solution procedure is driven by time. In the ex-
amples the displacement is increased monotonically.
Snap-back can occur due to non-uniqueness of the so-
lution.
The model has been programmed using the Jem/Jive
finite element toolkit which has been developed by Ha-
banera, B.V., Delft, The Netherlands. For implementa-
tion aspects like the tracking of the crack-tip, increasing

the degrees of freedom or other propagation issues we
refer to Remmers et al. [28, 39, 40].

4 Numerical examples
In the next examples an exponential cohesive law is

used for the damage evolution, i.e. softening behavior
after reaching the critical stress state. Defined is criti-
cal length δn = Gc/τult, with τult the ultimate traction
forces and Gc the fracture toughness. The cohesive law
is then for positive opening

tn = τulte
−( [u]n

δn ), [u]n ≥ 0. (35)

This is shown in Fig. 4. A history parameter κ is in-
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Fig. 4. Normalized distribution of the exponential cohesive law for
tensile loading related traction forces and displacement.

troduced to incorporate unloading. Each time step the
current opening κ0 and traction τ0 are stored. When the
new opening is smaller than previous, then unloading
takes place according to

tn =
τ0

κ0
[u]n. (36)

Damage is defined as

D = 1− tn

τult
(37)

Macro crack is developed when the local damage ap-
proaches maximum (D = 1), i.e. when the cohesive law
approaches zero. When locally the opening decreases
compared to previous time step unloading takes place.
The cohesive law parameters Gc and τult can be ob-
tained from experimental data. The temperature is as-
sumed 298 K in all examples.



Delamination test
A delamination test is performed in which a crack

propagates at a predefined angle of 0◦. An initial defect
of length 13 mm is inserted on the lefthandside, Fig. 5.
The sample is fixed on the righthandside and is in con-
tact with a filter (µf = 0). Crack propagation is initiated
by pulling the sample on the top and bottom over ap-
proximate 8 mm with a fixed velocity of 1.0e-3 mm/s.
The local fluid distribution is determined by Eq. 9.

The material properties and boundary conditions

Fig. 5. The mesh and boundary conditions for delamination consist-
ing of 575 elements. Material is pulled at the top and bottom on the
left and is on the right in contact with a filter.

are given in table 1. This means that 2RTΓcex =
4.96 N/mm2 holds. A time step of 0.1 s is used.
The influence of mesh refinement and time discretiza-

Table 1. Material properties and boundary conditions for delamina-
tion test.

E = 1.4e+4 [N/mm2]

ϕf
i = 0.10 [-]

cex = 1.0e-3 [mmol/mm3]

Kd = 2.0e-1 [mm4N−1s−1]

Gc = 0.020 [N/mm]

la = 7.8 [mm]

ν = 0.33 [-]

K = 2.0e-1 [mm4N−1s−1]

cfc
i = −1.0e-3 [mmoleq/mm3]

k = 2 [-]

τult = 1.1 [N/mm2]

v = 1.0e-3 [mm/s]

tion on the crack propagation and the flow around the
crack is considered. For the mesh refinement, the mesh
of Fig.5 is refined to 2701 elements. The correspond-
ing time step is a quarter of the time step of the coarse
mesh. Furthermore, the influence of local mass balance
is considered by decreasing the local permeability with

respect to the standard case or prescribing the chemical
potential in the crack.

Pull test
In the second case a pull test is considered with

a yield criterion based on optimal principal stress as
mentioned in the model section. An initial defect of
approximately 22 mm is inserted in the middle, Fig. 6.
The sample is fixed at the bottom and is pulled at the
top with constant speed, while in contact with a filter
at the sides (µf = 0). The material properties are identi-
cal to those specified in table 1, except that Kd = 2.0e-1
mm4N−1s−1 and K = 2.0e-1 mm4N−1s−1. Crack propa-
gation is initiated by loading the sample over the com-
plete width with a fixed velocity of 5.0e-4 mm/s. A
time step of dt = 0.1 s is used. In this second case the

Fig. 6. The mesh and boundary conditions for pull test: material is
pulled at the top with bottom fixed and at sides in contact with a filter.

angle of growth is not prescribed. To ensure growth
only under tension, equivalent traction forces are used,
with β = 2.3, Eq. (13). Similarly to delamination, the
influence of prestress and local mass balance is consid-
ered.

Osmolarity test

Fig. 7. The mesh and boundary conditions for the osmolarity test:
the material is fixed at bottom, right and top and is in contact with a
filter at these sides.

As a last example, a test is performed in which the
effect of decreasing osmotic pressure is considered on
a crack with length ≈ 18 mm at the rim of the material.
For that purpose the external salt concentration is in-
creased, i.e. the chemical potential on the boundaries



Table 2. Material properties and boundary conditions for osmolarity
test.

E = 90.0 [N/mm2]

ϕf
i = 0.80 [-]

cex = 0.15e-3 [mmol/mm3]

Kd = 2.8e-4 [mm4N−1s−1]

Gc = 0.2e-2 [N/mm]

la = 7.8 [mm]

ν = 0.2 [-]

K = 2.8e-4 [mm4N−1s−1]

cfc
i = −0.2e-3 [mmoleq/mm3]

k = 2 [-]

τult = 0.25 [N/mm2]

∆µf = −0.4e-3 [N/mm2]

is decreased. The material is fixed at the top, right side
and bottom to a filter which alters the chemical poten-
tial by −0.4e-3 N/mm2.

∆µf = ∆π(cex
i + ∆cex)− ∆π(∆cex). (38)

This means that the external salt concentration is in-
creased from initial state by ∆cex = 4.82e-7t. A time
step of 8.0 s is used. The material properties and con-
ditions are given in table 2.

The influence of prestress is considered on crack
propagation and flow around the crack.

5 Results
Delamination test

The presence of fixed charges causes an initial
strain of εi,x = εi,y = 1.9e-5 in case of prestress in both
direction and an initial strain of 2.8e-5 when only pre-
stressed in one direction. A weak interface criterion
causes propagation in a straight line for all cases.
Considering the chemical potential distribution, Fig. 8,
the figures show localization at the crack-tip with a
negative chemical potential. This low chemical poten-
tial is relaxed by fluid redistribution towards the crack-
tip. The chemical potential is largest at the left due to
largest opening of the crack.
In order to check the results, the spatial discretization

is refined (from 575 to 2701 elements, ”dx refine”) and
time discretization is refined without refining in space
(from 0.5 s to 0.125 s, ”dt refine”). Results are shown
approximately at the same point (Fig. 9). It is evident
that both in time and in space, the results are the same,
except for the slight mismatch in space due to a mis-
match in integration points between the coarse and fine

a.

b.

Fig. 8. Delamination in case of prestress in both directions after
950 time increments (i.e. 9.5e-2 mm displacement of top boundary).
Distribution of a. chemical potential in [N/mm2] and b. flow in x-
direction in [mm/s].

mesh.
Finally, the influence of local mass balance is consid-
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Fig. 9. Comparison of the effect mesh- and time refinement for de-
lamination at a point just ahead of the initial crack (dx = 13.71 mm).

ered. Decreasing the crack permeability decreases the
tangential flow. It does not alter the crack path dramat-
ically. When assuming contact with an external reser-
voir (i.e. µ

f
Γ = 0), the flow is reversed with respect to the

previous cases. The fluid distribution (Fig. 10) shows
that the chemical potential is now highest in front of the
macro crack, instead of at the start of the macro crack
such as in the previous cases.

Pull test
This case considers a more compliant material then

for delamination. The prestress caused an initial strain



a.

b.

Fig. 10. Distribution of chemical potential in [N/mm2] for delamina-

tion in case of prestress in both directions and µ
f
Γ = 0 after 1100

increments (i.e. displacement of top boundary of du = 1.1e-2 mm)
for a. chemical potential and b. flow in x-direction.

of εi,x = εi,y = 1.9e-4 in case of prestress in both direc-
tion and an initial strain of 2.8e-4 when prestressed in
only one direction.
Figure 11 shows the chemical potential distribution
and flow in case of prestress in both directions with
crack growth. Even though the direction of crack
growth is not pre-defined, the damage growth is al-
most straight. Localization takes place at both crack-
tips with low chemical potential, Fig. 11a. Fluid is at-
tracted from the left and right towards the crack. The
stress field is the largest in the middle of the crack (Fig.
11b).

The displacement, tangential flow and chemical po-
tential are considered almost in the middle of the crack
(Fig. 12). For all cases of osmotic prestress, the chemi-
cal potential becomes more negative, though in the case
without prestress the chemical potential decreases less.
In the case of prestress in x-direction only, a negative
opening is seen at start and increases, which causes
a wave in tangential flow. Furthermore, the time for
crack to initiate increases. When damage initiates, a
steep increase in chemical potential is seen in the mid-
dle of the crack. Unfortunately, Newton-Rhapson does
not converge anymore after several growth stages.

Trends do not alter under mesh and time discretiza-
tion refinement. Lastly, when changing the boundary
condition at the crack to the boundary condition repre-
senting contact with a reservoir, resulted in oscillations
in pressure and displacements.

Osmolarity test
The sample is subjected to an increase of external

salt concentration. The result is a global decrease in
chemical potential (Fig. 13a) and a local increase of
stress ahead of the crack-tip (Fig. 13b).

a.

b.

Fig. 11. Distribution for pull test of a. chemical potential and b.
stress component σe,yy for the pull test after 1010 increments (i.e.
5.05e−2 mm of pull displacement) in case of prestress in both di-
rections including cohesive zone.
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The flow is considered in a close-up of the crack-
tip (Fig. 14). Crack growth causes a local flow at the
crack-tip directed towards the crack-tip (in x- and y-
direction), while the flow away from the crack-tip is
directed opposite in the crack.
This trend is seen for all cases with prestress, except for

osmotic prestress in only x-direction. In that case a so-
lution could not be found. Of the other two cases, dam-
age progressed longest in case of prestress only in the
y-direction. Furthermore, in case of prestress in both
directions, opening of the crack is largest while chem-
ical potential in the crack is smallest. This pattern is
seen throughout time. The fact that the curve for pre-
stress in only y-direction is longer than in case of pre-
stress in both directions, but with zero values, means
that damage has occurred but not evolved.



a.

b.

Fig. 13. Distribution for the osmolarity test after 300 increments (i.e.
a change in chemical potential of −0.96 MPa) just before damage
initiation for prestress in both directions for a. of chemical potential
and b. of stress component σe,yy.

a.

b.

Fig. 14. Distribution at the crack-tip for osmolarity test of flow for
prestress in both directions after 306 increments (i.e. a change in
chemical potential of −0.98 MPa) just after damage initiation a. in
x-directions and b. y-direction.

6 Discussion
In this paper has addressed a small strain numeri-

cal model to study the interplay between prestressing
of the solid material, fluid flow and mode-I crack
propagation for ionized porous media. The partition
of unity approach is used to integrate cracks into the
FEM. A strong discontinuity is inserted in the displace-
ment field by enhancing the field by the Heaviside
function. A weak discontinuity is inserted in the field
of chemical potential via a distance function to capture
the high gradient in this field.
The results are meant to indicate trends rather than
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Fig. 15. Evolution for the osmolarity test in plane of crack of chemi-
cal potential, tangential flow and crack mouth opening (CMOD) after
130 increments, ∆µf = −0.4 MPa.

yielding quantitative predictions. The model captures
local trends well. A profound influence is seen of
the fluid phase on the crack propagation in the solid.
The presence of fluid slows down crack initiation and
propagation. The flow from the surrounding medium
causes an increase in volumetric strain at the crack-
tip, and hence an increase of the (tensile) effective
stress at the crack-tip. This increase triggers damage
and possible further crack propagation. Upon crack
propagation a local change in flow direction is seen.
The deformation around the crack causes fluid to flow
mostly from the crack itself, because the permeability
is far higher in the crack than in the medium. This flow
from the crack to the crack-tip causes closing of the
crack and, hence, slows down crack propagation. The
expression of this phenomenon depends on loading
protocol and on (direction) of prestress.
Considering the example without external mechanical
load, opening and growth of the crack takes place
due to a global decrease in osmotic pressure. This
phenomenon is similar to the drying of clay, but in
fully saturated conditions. This mechanism could be
an explanation for the poor relation between inter-
vertebral disc herniation and load. Furthermore this
could be a mechanism for borehole instability.
Bilinear shape functions with chemical potential and
displacements at the corner nodes are used to calculate
the solution as a simplification. Réthoré et al. [34]
show that these approximations are sufficient for
structural response in non-propagating cracks when
the mesh is fine enough and do not produce issues
related to the Babuska-Brezzi conditions [41]. This
condition requires a higher order interpolation of the
displacement field than of the pressure field. The
introduction of the distance function even increases
the order of interpolation of the pressure field locally.
This is needed for the higher order terms in the cavity
model [34]. As the higher order of interpolation is
used only locally, the order of integration does not
seem to produce any stability problems related to
the Babuska-Brezzi condition. Further comparison



between this approach and literature is difficult since
partially saturated conditions are considered [32, 33].
Furthermore, results, such as mesh-dependency, is
most prominent in lower stiffness cases.

Below the results are addressed in more detail.
Generally, upon loading the effective stresses at the
crack-tip increase and the chemical potential decreases.
This is due to fluid flow away from the crack-tip. Upon
crack propagation the fluid redistribution causes the
effective stress at the tip to suddenly decrease and the
chemical potential to increase. The time needed to
resolve the flow over the extension is equivalent to the
stiffness times permeability (∆t ∼ ∆x2/cK).
In case of the delamination test, the stiffness and per-
meability are so high that fluid (nor chemical potential
nor tangential flow) hardly seems to influence crack
growth. Furthermore, the presence of prestress seems
to enhance crack propagation . The contact with a
reservoir changes the flow pattern at the crack, but
influence on crack propagation is low.
When the material is less stiff, the influence of the fluid
becomes more profound. In the pull test, the chemical
potential in the crack decreases to such an extent, that
the osmotic pressure in the crack is lower than in the
material. The low osmotic pressure in the crack causes
flow from the material into the crack and with that
further opening of the crack. The time to initiation is
longer in case of no prestress than with prestress due
to the slower opening of the crack (Fig. 12). In the case
without initial prestress in y-direction, the crack closes
temporarily due to the larger osmotic pressure in the
bulk material than in the crack.
Upon crack growth a steep change in chemical po-
tential takes place. Due to the lower stiffness and
permeability of the material than the previous case,
more time is needed to resolve the flow. Furthermore,
the stress at the crack-tip is not relieved as it should be,
which causes fast crack growth. Finally, the mismatch
between the physical flow and the simulated flow
via the weak discontinuity causes loss of numerical
stability. A solution cannot be found anymore.
In the last case the material is not loaded mechanically
at the external boundary of the material, but crack
initiation is dominated by internal loading. A material
of relatively low stiffness is considered. By changing
the external salt concentration at the outside of the
material, the osmotic pressure is lower outside than
inside the material. This difference in osmotic pressure
initiates flow. Flow is attracted from inside the crack
near the crack-tip, rather than from the surrounding
medium. The result is opening of the crack. The open-
ing of the crack is largest in case minimal prestress
in y-direction (Fig. 15), since the pressure difference
between the material and the crack is larger. In all cases
stability of the calculations is lost upon the forming of
the macro crack, most probably because the fluid flow
is unresolved.

Depending on the material properties, prestress
can either enhance or slow done crack propagation.
In case of very stiff materials, propagation can be en-
hanced by the extra stiffness. In lower stiffness cases,
such as the intervertebral disc, the prestress provides
protection against small osmotic changes. When ion-
ization is lost, cracks can open again and propagate.
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