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Summary

Propagating discontinuities in ionized porous media

Shales, clays, hydrogels and tissues swell and shrink under changing osmotic conditions.
This change in conditions can lead to localized stresses and even to failure. These
materials are described as a multi-phase materials consisting of a solid part with ions
embedded in the porous solid matrix (fixed charges) and a fluid part containing mobile
counter charges. That is why they are characterized as ionized porous media. The
presence of the fixed charges causes an osmotic pressure difference between the material
and surrounding fluid resulting in prestressing of the material. The response of the
material to mechanical and chemical load is highly influenced by the presence of
prestress, fluid and cracks. Understanding of the mechanisms for fracture and failure
of these materials together with the fluid redistribution are important for material and
construction design. Applications are found in the oil industry (e.g. hydraulic fracturing
and borehole instability), material design (clay, diapers, orthopaedic prosthesis and seals)
and medical treatment (intervertebral disc herniation and tissue engineering).
The relationship between the presence of cracks and fluid flow has had little attention,
while the relationship between failure and osmotic conditions has had even less atten-
tion. The aim has therefore been to study the effect of osmotic conditions on propagating
discontinuities under different types of loads for saturated ionized porous media using
the Finite Element Method (FEM).

Discrete cracks are mathematically represented as displacement jumps, i.e. strong dis-
continuities. The modeling of cracks is challenging. Standard Finite Element models are
not equipped to deal with discontinuous fields while they assume smooth displacement
fields on forehand. Smeared or continuum approaches are suited for cases where no
prominent crack can be distinguished.
An alternative to introducing discrete cracks into the FEM is exploiting the partition of
unity property. The partition of unity method allows inclusion of discontinuous functions
in the shape functions of the FEM and with that an approximation of the discontinuous
field independently of the underlying mesh. For that purpose the number of degrees of
freedom at the nodes is increased and not the amount of nodes, i.e. the topology is not
altered. The method allows for crack propagation in arbitrary directions. In addition,
inclusion of the crack prior to propagation is avoided, and so is the introduction of a
nonphysical dummy stiffness to keep the crack closed before propagation.
Crack propagation in porous media is generally preceded by micro damage. This damage
is introduced in the FEM by the cohesive zone model. The cohesive zone model lumps
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all damage ahead of the physical crack-tip into one equation representing the debonding
of the material and acting on a virtual extension of the crack. There is no consensus on
the treatment of the fluid flow associated with crack evolution. Different approaches are
taken.

In thesis the partition of unity method combined with cohesive zone modeling is applied
to ionized porous media. The bulk material is described as a biphasic material (fluid and
solid part). Ion flow contribution is assumed minimal compared to fluid flow and can
therefore be neglected. Osmotic forces are added via constitutive modeling and initial
stress. The model is described in chapter 2.
The work covers three parts. In the first part, an analytical solution of a dislocation in a
swelling medium is derived acting as a benchmark for the second part. In the second
part, the modeling of a propagating crack under shear loading (mode-II) is addressed.
Finally, in the third part, the modeling of a crack under tensile loading (mode-I) in
a swelling medium is addressed. The fluid flow associated with crack evolution is
differently treated in the second and third part, since the different loading results in very
different fluid flows.

Firstly, the distribution of shear stress is derived in the simplified situation of a non-
propagating dislocation in an osmoelastic medium in chapter 3. This derivation requires
Fourier and Laplace transformations. In addition, the distribution of the flow field
is derived. Comparison of the analytical solution with computer simulations from a
commercial code confirms the importance of a good crack representation. Hence, the
analytical solution for a dislocation can be used as a benchmark to verify the partition of
unity modeling in the second part.
Secondly, shear loading of a crack in an osmoelastic medium is addressed in chapter
4. Shear loading initially causes a high pressure gradient across the crack surfaces over
a small transition zone, while the crack surfaces are still in contact. With time, the
pressure relaxes in magnitude and the transition zone widens. This phenomenon is ap-
proximated by assuming that the fluid flow across the interface associated with damage is
proportional to the jump in pressure. In addition, the associated proportionality constant
depends on the time that passed since opening of the crack allowing for the relaxation of
the fluid flow. Comparison of numerical simulations with the analytical solution of the
first part shows a good match. Compression tests show that the pre-stress in the medium
influences the crack propagation, both in terms of propagation velocity and direction. In
addition, the results show that crack propagation is reasonably mesh-independent.
Finally, tensile loading is addressed in chapter 5. Tensile loading of a crack in an
osmoelastic medium results in opening of the crack and high gradients between the
pressure in the crack and the pressure of the fluid around the crack. This requires
a model for the fluid flow around the crack that is essentially different for mode-I
compared to mode-II. In mode-I, a weak discontinuity is assumed for the pressure in
the crack area, while in mode-II a strong discontinuity across the crack is assumed
for the pressure. In addition, in mode-I the fluid flow in the crack is approximated
by Couette flow. Results show that depending on the load, permeability, prestress and
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the stiffness of the material, when crack propagation initiates, fluid is attracted to the
crack-tip from the crack rather than from the surrounding medium causing the crack to
close and decreasing stress localization. Crack propagation is slowed down. The results
show reasonable mesh-independent crack propagation for materials with a high stiffness.

Interestingly, step-wise crack propagation through the medium is seen both in mode-I
and in mode-II. This is because the propagation of the crack alternates with pauses in
which the crack-tip area consolidates. The consolidation results in a progressive transfer
of the load from the fluid to the solid. As the load on the solid increases, the failure load
is reached and the crack propagates again.
Furthermore, propagation is shown to depend on the osmotic prestressing of the
medium. The dependence is present for mode-II and mode-I. In mode-II the prestress-
ing has an influence on the angle of growth. In mode-I, the prestressing is found to
enhance crack propagation or protect against failure depending on the load and material
properties. It is found that osmotic prestressing in itself can propagate fractures without
external mechanical load, such as the spontaneous formation of cracks during the drying
of clay, but then in fully saturated conditions. This mechanism may explain the tears
observed in intervertebral discs as degeneration progresses.
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List of symbols

∗̂ [−] Continuous field
∗̃ [−] Enhanced field

[∗] [−] Jump over crack surface
~a
~u, a

~µ [mm] Nodal values of continuous field
B [mm−1] Divergence of displacement shape functions:

B = L~N
~~b

~u, b
~µ [mm] Nodal values of discontinuous field
C [mm−1] Divergence of chemical potential shape functions:

C = LT~lm
~

T

c [MPa] Deformation constant, c = 2µ + λ + ∂∆π
∂tr(ε)

cex [mmol/mm3] External salt concentration
cfc, cfc

i , cfc
0 [mmoleq/mm3] Fixed charge concentration:

current, initial, and at stress free state
D [MPa] Material stiffness matrix

δΓd [−] Delta Dirac function
E [MPa] Young’s modulus

ε, εi [−] Current and initial strain tensor
f±Γ [mm/s] Normal flow over crack surface Γ±
ϕf

i [−] Initial volume fraction of the fluid
Γ [−] External boundary of body Ω

Γd, Γ±d [−] Discontinuity boundaries: Γ± = Γd ∩Ω±
HΓd [−] Heaviside function at discontinuity Γd

K [mm4/Ns] Bulk permeability
Kd [mm5/Ns] Crack permeability
kd [mm5/Ns] Unresolved hydraulic permeability
la [mm] Nonlocal length, measure for stress singularity
λ [MPa] Lamé constant
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m
~

[−] shape functions for chemical potential
µ [MPa] Lamé constant, shear modulus

µf [MPa] Chemical potential
~N
~

[−] shape functions for displacement
~n [−] Normal unit vector on Γ, directed outward Ω

~n± [−] Normal unit vector on Γd, directed to Ω±
ν [−] Poisson’s ratio

~∇s [mm−1] Symmetric divergence, ~∇s∗ = 1/2{~∇ ∗+(~∇∗)T}
Ω [−] Body of interest

Ω± [−] Body of interest in direction ~n± of Γd
∆π [MPa] Osmotic pressure difference π − πex

~q [mm/s] Seepage flux
R [Nmm/mmolK] Gas constant

σ, σe [MPa] Total and effective stress
T [K] Temperature

Td [MPa/mm] Tangent stiffmess of cohesive law in local coordinates
t [s] Time parameter

~t+ [−] Tangential vector unit directed towards propagation
~t±Γ [−] Traction force at discontinuity surface Γ±
~u [mm] Displacement

x, y [mm] Spatial parameters
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2 CHAPTER 1. INTRODUCTION

1.1 Scope: Swelling and fracture

Ionized porous media, such as shales, clays and soft tissues, swell and shrink under
changing osmotic conditions. These materials are represented as a multi-phase mate-
rialconsisting of a solid matrix with polyvalent ions attached, the fixed charges [44,67].
The presence of the fixed charges together with mobile counter ions in the medium
leads to a higher concentration of ions inside the medium than outside. The result is an
osmotic pressure difference and a prestress on the solid matrix. These materials desire to
absorb water and swell. In addition, ionized porous media can undergo phenomena like
instability, localization and even fracturing under changing osmotic conditions [87,111].

Deformation as result of swelling in a hydrogel are given in Figs. 1.1 and 1.2. Hydrogel is
a common physical model for soft tissues and consists of cross-linked ionized polymers.
In both cases a hydrogel colored is moved from a highly concentrated salt solution to a
less concentrated salt solution. The sample starts to swell, because of the high ionization
of the gel.
In the first case a weakly cross-linked sample is considered. During swelling, surface
instability is seen followed by other modes of instability (Fig. 1.1). This is the result of the
outside swelling faster than the core. The strains on the solid matrix are large. Finally,
the original shape is restored, only bigger.
In the second case, Fig. 1.2, the experiment is repeated with a highly cross-linked ionized

Figure 1.1: Instability in successive states of swelling of a hydrogel. Time runs from top
left, top right, bottom left to bottom right.

gel. The strong cross-linking produces a much higher stiffness than the previous case.
This time a mirror is placed in the upper right corner to monitor evolution from the top.
The resulting swelling is prohibited by the solid matrix, causing high stresses. In this
case the local stresses exceed the maximum stress the material can bear. The matrix fails
and chops fly off. Failure has taken place without an external load.

Failure of swelling materials often have large environmental and financial consequences.
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mirror

Figure 1.2: Failure of a hydrogel during swelling. Time runs from top left, top right,
bottom left to bottom right.

Some examples are addressed.

1.1.1 Example 1: Borehole instability

Oil reservoirs are typically found under low-permeability clay-rich formations, simply be-
cause these formations trap the oil. While drilling, the drill has to pass at least one layer
of rock rich in swelling ionized poly-silicates. During drilling the drill is cooled down
and guided by a mud. This mud used to be oil-based, but these days the mud has been
replaced by a salty water-based mud in view of the environment. These swelling rocks,
shale or claystone, start swelling as soon as they are in contact with the drilling fluid, even-
tually leading to borehole instability, particularly in deviated borehole. Accurate choice of
drilling fluid composition postpones the failure of the shale or claystone, hence delaying
borehole instability.

1.1.2 Example 2: Hydraulic fracturing

Tight gas sands are typically low porosity, low permeability rocks. They account for about
15% of U.S. gas production. Tight sands require advanced fracture technologies to be
exploited efficiently. Hydraulic fracturing is the key technology in tight gas development.
Most tight gas reservoirs have to be fractured before they flow at commercial rates. In
the 1990s, slick-water fracturing techniques were developed. The slick water used high
volumes of water and low concentrations of proppant. Multi-stage fracturing was another
development, allowing several stages to be treated in quick succession. At present, the
choice of technique depends on the characteristics of a reservoir. Numerical simulation
techniques describing the fracture propagation coupled to the fluid exchange between
the fracture and the formation are highly desirable to enhance the understanding of the
process of hydraulic fracturing.
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1.1.3 Example 3: Intervertebral disc herniation

Intervertebral disc (IVD, Fig. 1.3a) tissue is mechanically described as a porous matrix
containing water with mobile ions. The porous matrix is constructed from collagen, cells
and entangled large polyvalent ions, namely proteoglycans (PGs) [67,99]. Disc tissue is
therefore swollen highly prestressed. These properties help in giving the spine its range
of motion and in absorbing shocks.
Low back pain is associated with IVD herniation (Fig. 1.3b) and is a major health prob-
lem which affects 60%-90% of the population between 20-50 years. Treatment and out-
fall causes costs similar in magnitude to those of diabetes [100]. New multi-disciplinary
collaborations are trying to combine the disciplines of cell biology, patient studies, imag-
ing techniques and numerical simulations in order to develop new insights and treat-
ments [100].
During ageing, the disc changes in structure, composition, volume and prestress. Eti-

a. b.

Figure 1.3: a. Overview of a spine with vertebrae and intervertebral discs (adopted from
http://www.spineuniverse.com). b. A herniated disc, courtesy of T. Videman.
The anterior is at the top of the figure and posterior at the bottom.

ology shows that the amount of cracks increases with ageing of the disc [3,100]. The
prestress in the disc decreases due to loss of ionization [6,43]. Ageing, loss of ionization
of PGs and presence of fissures in the disc seem to be strongly linked. This appears con-
tradictory since material under tension is easier to break than something that is not.
Some papers suggest that aged discs are more susceptible to injuries than healthy discs
and that fissures are the result of injuries [18,42,95,96]. Others have been able to pro-
duce fissures in healthy discs [19,113] and suggest that fast ageing is the result of an
injury. Twin studies showed that occupation (i.e. loading history) is of less influence than
familiarity [11,105]. Clearly, there is no consensus on the etiology of IVD herniation.

1.1.4 Preliminary study

Many computational models have been developed to study the ageing of intervertebral
disc and risks for herniation. Unfortunately, many researchers either neglected the pres-
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ence of fluid [50] or the presence of fixed charges [61]. Wognum et al. [111] investigated
the effect of a decrease in osmotic forces on a pre-existing crack in two models for the
intervertebral disc. Firstly, by a physical experiment with hydrogel (Fig. 1.4) showed that
existing cracks open under decreasing osmotic pressure and become visible.
Secondly, by a (quadriphasic) numerical model (Fig. 1.5), the opening of an existing crack

Figure 1.4: Swelling and shrinking of a hydrogel. Cracks open and close under changing
osmotic conditions [111].

under decreasing osmotic pressure was simulated.
As it is well known that osmotic pressure decreases with degeneration, these two models
suggest that the decrease in osmotic pressure may induce opening of cracks and propa-
gation of cracks in the degenerating disc.

Wognum et al. [111] did not simulate propagation of cracks, nor did they verify their

Figure 1.5: Stress distribution of component σ22. Decreasing the osmotic pressure
causes a global decrease in stress, and a local increase of stress at the tip [111].

hypothesis in human disc tissue.

1.1.5 Computational models of fracture

Most computational models are based on Finite Elements (FE). FE uses a grid and shape
approximations to calculate the fields of interest. Ingredients of computational fracture
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models are as follows.

• Model for bulk behavior

• Method for including discontinuities in the FEM

• Damage initiation or yield criterion

• Damage evolution model or constitutive model for crack growth

Computational models for the simulation of fractures are of two kinds: continuous
and discrete. There are two approaches to the numerical analysis of failure in media,
continuum damage mechanics and fracture mechanics [23]. In continuum damage
mechanics there is no prominent crack to be distinguished, but discontinuities are
distributed over a finite volume. In continuous models failure is simulated using a
smooth displacement everywhere in the body, such as in plastic behavior. This means
that the strain field and stress field is defined uniquely everywhere. Discrete models
allow for a change in gradient (weak discontinuity) or a jump (strong discontinuity) of
the displacement field (Fig. 1.6). The presence of discontinuities in the displacement
affects the gradient of the field, i.e. strain (bottom of Fig. 1.6). Physically a discontinuity
means that a failure surface has developed within the body and continuum theory cannot
be used anymore.

Fractures in ionized porous media are discrete in nature, for instance herniation

Figure 1.6: Displacement u and strain ε as a function of space. Left: weak discontinu-
ity in strain field causes strong discontinuity in strain field. Right: strong
discontinuity in displacement causes strain not to be defined at the disconti-
nuity.

(Fig. 1.3). Jumps in displacement are seen, therefore we would like a discrete fracture
model. A small damage zone, the so-called process zone, ahead of the growth of the
macro-crack is seen in which micro-separations and crack-bridging (fibers running from
ones crack-surface to the other) takes place (Fig. 1.7a). The fracture is preceded by a
damage zone, therefore the material is classified as quasi-brittle.
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Models based on linear elastic fracture mechanics (LEFM) cannot capture this nonlinear
behavior in the process zone. The exact evolution of micro-damage to macro-cracks is
highly dependent on the material, i.e. location in the disc. Phenomena like heterogeneity
and initial defects influence final crack patterns. A way to describe damage is the intro-
duction of the cohesive zone. Barenblatt [10] and Dugdale [30] introduced the concept
of cohesive zone for cases where the length of the process zone is small compared to
the structural dimensions. In this concept all processes in the process zone are lumped
into a relationship between load and debonding of the material, i.e. traction forces
and displacement, in a fictional extension of the crack. The nature of the work of the
cohesive zone is such that the stress singularity in the crack-tip is canceled. The traction
forces reduce to zero towards the actual crack-tip, Fig. 1.7b. Needleman [75] introduced
these cohesive elements at all element boundaries allowing for crack nucleation and a
constitutive model determining length of damage zone.
A benefit of this method is that the stress singularity at the crack-tip predicted by LEFM is
removed and all physical processes ahead of the tip are reduced to one simple equation.
The actual shape of the cohesive zone model is still a point of research [20,101,112].

a. b.

Γ

active cohesive zonemacro crack

Figure 1.7: a. Close-up from a herniation (Fig. 1.3, courtesy of T. Videman) with micro-
damage at the crack-tip pointed out by the arrows. b. Schematic representa-
tion of the cohesive zone.

There are several discrete methods to introduce discontinuities in FEM: adaptive
remeshing, interface elements or meshless methods [23]. In adaptive remeshing the
mesh is continually remodeled to fit the discontinuity between the elements (geometrical
approach). Remeshing is computationally expensive and difficult to implement. Inter-
face elements use elements of zero width that are fitted between the elements to model
the discontinuity (appendix B, Fig. B.2). The nodes of the new elements are related to
the nodes of the continuum elements. Interface modeling requires alignment of the
element with the crack path a priori. Therefore the discontinuity path depends on the
mesh and a dummy stiffness is required to prevent the crack from debonding when it is
not physical [23]. A dummy stiffness that is too low produces a too flexible response and
a dummy stiffness that is too high produces oscillations.
Meshless methods incorporate a displacement jump by cutting the domain (Embedded



8 CHAPTER 1. INTRODUCTION

Discontinuity Elements) or adding discontinuous functions to the shape functions of the
FE (Partition of Unity or eXtended Finite Element method) [9,12]. Embedded Disconti-
nuity Element is based on adding the effect of a displacement jump to the finite elements
as an incompatible strain mode. Unfortunately these methods lack robustness [23].
PU-FEM and X-FEM were developed in the nineties and use enhancement functions
to add discontinuities to the standard shape functions of the FE, for instance a jump
is introduced by adding the Heaviside function. The use of these enhanced functions
makes it possible to preserve continuity along the crack surface. The discontinuity is
projected on the element by additional degrees of freedom and not nodes. It is not
necessary to align elements with the crack path, no dummy stiffness is needed nor
remeshing is required. Furthermore, standard discretization is used. The partition
of unity is a powerful property which can also be used for other scale separation than
crack growth, for instance material separation [38,39]. The benefit of this method is
also that relatively coarse meshes can be used. Unfortunately, the method is not easy to
implement in commercial codes.
Where in previous research the cohesive zone model has been introduced either at all
element boundaries [112] or in the path of interest [86,88], the application of partition
of unity on discontinuity kinematics allowed for the cohesive zone to cross continuum
elements [70,80,107].

An increasing amount of papers is published on applying these tools in biomechan-
ics [37], in which fluid contribution is unfortunately usually neglected. The presence
of fluid highly affects the mechanical response of the structure, fracture initiation and
fracture growth. Most computational poromechanical models involving strong disconti-
nuities consider shear banding (mode-II, denoted in appendix B, Fig. B.1a) in porous me-
dia where fluid exchange from one crack surface to the other is assumed continuous [7]
or decreased [82]. The partition of unity method has been combined with Delta-dirac
function [58] for simulating an undrained localization band.
In tensile mode (mode-I, denoted in appendix B, Fig. B.1b), applications to hydraulic frac-
turing is seen where benchmarks are available when assuming little exchange of fluid be-
tween the fracture and surrounding fluid [16,17,34]. With efficient mesh generators and
transfer schemes, fracturing of porous media has been successfully modeled by adaptive
meshing without making assumptions on the shape of the pressure field or displace-
ment [89,93,94]. Mesh refinement plays a large role in these models.
The partition of unity method allows for relatively coarse meshes in solid mechanics. Cor-
rectly capturing the pressure field corresponding to a displacement discontinuity is not
straightforward. Attempts for combining partition of unity model with porous media in
tensile mode are a double porosity model for the fluid flow without enhancing the fluid
phase [4], a moisturizing model without enhancing the fluid phase [85] and a weak dis-
continuity model for the fluid phase with Couette flow in the crack [83]. Still, numerical
simulations of a fracturing process in a porous medium are limited and it is difficult to
verify and validate model performance with a benchmark. In any case no osmotic effects
were taken into account.
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1.2 Objective

The objective of this research is to explore the effect of osmolarity on propagating quasi-
brittle macro cracks in ionized porous media with Finite Elements. For that, a Finite
Element method is needed which allows for the inclusion of displacement discontinuities
and the associated pressure field. This inclusion should be independent of the underlying
mesh. The requirement that results are independent of spatial discretization, limits the
choice of method to PU-FEM or X-FEM.

• the computed results are mesh-independent

• no remeshing is required

• no artificial length scale have to be introduced in the constitutive model

• fluid flow over crack surfaces is enabled

To reach that aim, several steps were defined.

• Step 1. Singularity solution for shear loading in ionized porous media

• Step 2. Model for crack propagation under shear loading in ionized porous media

• Step 3. Model for crack propagation under tensile loading in ionized porous media

An analytical singularity solution is developed for a non-propagating crack in shear load-
ing. This analytical solution is used as a benchmark to verify the partition of unity model
which is developed in the second step. This model captures a propagating crack in shear-
ing (mode-II) conditions. With this model the effect of osmotic conditions on crack
growth is studied. Lastly, a partition of unity model is developed for tensile (mode-I)
loading in a swelling porous medium. The models for shear loading and tensile loading
require different treatment of the fluid flow related to the discontinuity. The model is
used to determine if the osmotic conditions on crack propagation as result of external
loading and internal loading, i.e. a change in osmotic conditions. These steps form the
outline of this thesis.





11

CHAPTER TWO

Biphasic model for saturated ionized
porous media
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2.1 Introduction

Experimental measurements in porous media are difficult, especially in the spine. For
this reason, computational models are addressed to aid in the understanding and pre-
diction of mechanical and chemical response of ionized porous media such as the in-
tervertebral disc. The models allow for the study of the relation of different parameters
and complex loading conditions, such as cyclic loading. The difficulty and challenge,
though, lies in verifying (assessing numerical accuracy), analyzing sensitivity (assessing
dependence of the results on input parameters) and validating (comparison to real-life)
the models [48,74].
Different models for the intervertebral disc exists. Several papers have focussed on ge-
ometrically and material nonlinearity and global responses to complex loading condi-
tions [50,63]. In these cases, the annulus is represented by a solid material and the
nucleus is modeled by applying a hydrostatic pressure on the wall, either as boundary
condition or by use of solid elements. Unfortunately, the contribution of fluid has been
neglected. The load exchange between fluid and solid is not captured, and therefore
time-dependent effects, such as creep, are not captured. Furthermore the presence of
fluid might enhance or decrease localization.
Based on the poro-elastic and chemical electric (PEACE) model [46] Iatridis et al. found
that changing the fixed charge density from a healthy disc to a degenerated disc, the
stresses in the solid matrix increased and streaming potential decreased which can have
consequences for cell nutrition and remodeling which agrees with experiments [47].
Natarajan et al. [73,74] studied cyclic loading of the disc concluding that a healthy disc
is more flexible and that with increased cycles the height of the disc decreases as found
in experiments [2].
Models including fluid (poro-mechanical models) are usually based on Biot’s model [13,
14] consisting of momentum balance, mass balance and constitutive relations. Further-
more, osmotic forces have to be added to the model.
For this reason, Lanir et al. [56,57] have extended Biot’s model and include osmotic forces
via constitutive laws and initial stress. Ion flow contribution is assumed minimal com-
pared to fluid flow and can therefore be neglected. Based on this model, finite element
studies have been able to predict stress profiles, hydrostatic pressure and material prop-
erties in the intervertebral disc within physical range [91,92].
Lai et al. [54] included ion flow as the third phase using physico-chemical theory allowing
for the tracing of ion contribution. The model has been used to study articular carti-
lage [55,71]. Huyghe et al. [44] introduced a quadriphasic model, separating cations and
anions, including electrical fluxes and streaming potential based on mixture theory. Mix-
ture theory represents the porous media is represented by a spatially superposed interact-
ing media [21]. The model has been implemented by Van Loon et al. [102], where mass
balance is satisfied in a weak sense. The quadriphasic model has been molded into a
mixed-hybrid formulation by Malakpoor et al. [65,66] satisfying mass balance at the ele-
ment boundary. With the quadriphasic model the effect of osmolarity has been studied
on tissue [43] and cracks [111].
Ehlers et al. [31,32] described the inhomogeneous behavior of the human intervertebral
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disc including electro-chemo-mechanical couplings by mixed FEM based on the Theory
of Porous Media.
Different models seem successful at capturing trends. Wilson et al compared a bipha-
sic model [56,109] to the quadriphasic model [44,102] for confined compression and 1D
swelling. As chemo-electro-mechanical models are complex and computationally expen-
sive, it was shown that a biphasic model was sufficient to capture the mechanical behav-
ior of the material, i.e. stresses and strains due to mechanical or chemical perturbations.
Therefore for cases where ion flux is not the focus, a biphasic model is sufficient. This re-
search aims at studying the effect of osmolarity on propagating quasi-brittle macro cracks
in ionized porous media in general. Therefore the biphasic model by Lanir [56] is used.
This model is stated here. A 1D swelling solution is derived for verification. Lastly, the
variational description is given.

2.2 Governing equations

Lanir’s biphasic model [56] for osmotically swelling media is used. A charged solid sat-
urated continuum is considered with a fluid, namely water containing freely diffusing
solutes of low molecular weight subjected to an external salt concentration. The material
is assumed to be isothermal, isotropic, homogeneous and fully saturated.
Mixture theory is used [98]. This means that not every particle in the medium is de-
scribed, but the properties of the constituents are spread over a representative volume
unit (RVU), represented in Fig. 2.1. This volume is large enough to provide a good rep-
resentation, but small enough to avoid averaging out macroscopic variations, which is
similar to homogenization of microscopic scale to define a material point at the macro-
scopic level [29].
The ion flow is assumed to be infinitely fast with respect to fluid flow. This means that

a. b.

Figure 2.1: a. Schematic overview of the disc tissue with its components: water, collagen and PGs.
b.Quantities are averaged over a volume RVU, and represented by volume fractions of
the components.

on forehand an equilibrium is reached with the external salt solution. The medium is
therefore described by only two constituents: the solid (s) and the interstitial fluid (f).
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Since the compressibility of the constituents is small with respect to the compressibility
of the medium, the constituents are assumed to be incompressible. Small deformation
theory is used.
The model consists of momentum balance, mass balance and a swelling equation for the
bulk. For the balances the forces on the solid and fluid separately play a part but also the
influence of the constituents on each other. Biot’s model [13] is used as a basis for the
bulk. Osmotic swelling is added to these equations by means of chemical potential.

2.2.1 Momentum equation

The stress in the mixture follows Terzaghi’s rule of effective stress σe [98]. If inertia and
body forces are neglected, the momentum balance reads

~∇ · σ =~0. (2.1)

The stress is split into two parts, effective stress and hydraulic pressure (p). The effective
stress contains all effects of the fluid and the solid related to deformation.

σ = σe − pI. (2.2)

In small deformation theory the effective stress (σe) follows the (constitutive) linear and
reversible stress-strain relation.

σe = 2µε + λtr(ε)I, (2.3)

with the strain tensor ε = 1/2{~∇~u +(~∇~u)T} = ~∇s~u and tr(ε) = ~∇·~u. The parameters
µ = G = E

2(1+ν) (isotropic) and λ = νE
(1+ν)(1−2ν) = 2νG

1−2ν denote the Lamé constants. E, ν

and G are the Young’s modulus, Poisson’s ratio and shear modulus respectively.
Then the momentum equations are given by

2µ~∇ · ε + λ~∇tr(ε)− ~∇p =~0. (2.4)

2.2.2 Mass equation

The volume fractions are given for the solid by ϕs = Vs

V and for the fluid part by ϕ f = V f

V .
The medium is fully saturated so (2.5) holds.

ϕf + ϕs = 1. (2.5)

The volume of the medium can change through fluid flow and therefore the volume
fractions can alter. An additional subscript 0 will refer to the stress free configuration.
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In absence of chemical reactions, the mass balance per component becomes (2.6) with
α = f , s and D/Dt spatial time derivative.

Dϕα

Dt
+∇ · (ϕα~vα) = 0. (2.6)

Combining equations (2.5) and (2.6) the total mass balance (2.7) is found for incompress-
ible constituents.

~∇ ·~vs + ~∇ ·~q = 0, (2.7)

with ~q =
[
ϕf(~vf −~vs)

]
denoting the filtration flux or seepage flux.

2.2.3 Swelling equation

To introduce swelling into the model, gradients in chemical potentials are introduced.
The presence of polyvalent molecules in the solid causes a concentration effect with the
external solution. This effect is called Donnan-osmosis. Because of the presence of ions,
both solid and fluid have chemical potentials partly determined by the osmotic pressure.
The chemical potential of a constituent is a measure for the free energy of that con-
stituent. So the chemical potential of the fluid is a measure for the fluid flux.
Lanir [56] neglects the time effect of chemical potential response to local ionic diffusion,
which is assumed to be much faster than filtrational or mechanical response. This means
that equilibrium of ions is immediately reached. We define the chemical potential of the
fluid µf as follows.

µf = p− π, (2.8)

with π the osmotic pressure and p the hydrostatic pressure. The seepage flux follows
Darcy’s law in presence of concentration gradients (2.9) and therefore relates to the chem-
ical potential:

~q = −K · ~∇(p− π) = −K · ~∇µf, (2.9)

with K the permeability tensor. When isotropic conditions are considered for the bulk
the permeability is constant, K = KI.
Van ’t Hoff empirical relation defines the osmotic pressure in terms of concentrations of
free cations, c+, anions c−, gas constant R and temperature T. In case of perfect osmotic
equilibrium the osmotic pressure is given by (2.10)

π = RT(c+ + c−). (2.10)

Equilibrium with the external salt solution and the electro-neutrality condition, requires
that:

c+ + c− =
√

(cfc)2 + 4(cex)2. (2.11)
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Figure 2.2: Schematic overview of Donnan osmosis.

Here cex denotes the external salt concentration and is known. The fixed charge density
c f c depends on the volume of the sample and therefore on the deformation. It is mea-
sured by determining the equivalent salt concentration and therefore units are denoted
in moleq/m3 instead of mol/m3. In the small strains setting it is assumed that the initial

volume fraction is equal to the volume fraction at stress free state. Defining c f c
0 the fixed

charge density at stress free configuration, the next holds

c f c =
ϕf

0c f c
0

(ϕf
0 + tr(ε))

(2.12)

Then the difference in osmotic pressure between the material and the external salt solu-
tion is given by

∆π(ε) = RTΓin

√
(cfc)2 + 4(cex)2 − 2Γexcex. (2.13)

2.3 Variational description

The governing equations consist of equations for the bulk and for the discontinuity, dom-
inated by mass balance, momentum balance and constitutive behavior. Figure 2.3 shows
a body Ω with external boundary Γ with a traction force on Γt and fluid supply on Γf,
with ~n the normal unit vector on the boundary Γ directed outwards. The body is cut by
a discontinuity Γd in two domains, Ω+ and Ω−. The normal of the discontinuity ~nΓ is
directed towards Ω+.

2.3.1 Momentum balance

In the solid subproblem a correction for deformation because of osmotic pressure is
already accounted for. We assume inertia forces are negligible and traction forces are
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Ω
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Ω
+
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n
+

Γ
f

Γ
t

Figure 2.3: Schematic representation of the body Ω: the two parts are Ω+ and Ω−, sep-
arated by crack Γd. A traction force holds on Γt and fluid supply at Γf.

included. The strong equations on body Ω are given by the equation of motions, strain-
displacement relation and constitutive law.

~∇ · σe − ~∇µf =~0,
σe = σe(ε),
ε = ~∇ · ~u.

(2.14)

with boundary conditions and initial conditions (Γt ∪ Γu = Γ and Γt ∩ Γu = ∅)

~u(~x, 0) = ~ui(~x), ~x ∈ Ω,
~u(~x, t) = ~uγ(~x, t), ~x ∈ Γu,
(σe − µfI) ·~n =~t(~x, t), ~x ∈ Γt

(2.15)

The equations have to hold in all circumstances. From the Hu-Washizu functionalthe
strong equations are multiplied by variations of the functions and then integrated over
the body Ω. Using partial integration and Gauss theorem the boundary conditions are
integrated in the variational formulation:

∫
Ω~a · (~∇ · B)dΩ = 0

⇔ ∫
Ω(~∇ · (~a · B)− ~∇~a : B)dΩ = 0

⇔ − ∫
Ω

~∇~a : BdΩ +
∫

Γ
(~a · B) ·~ndΓ = 0

(2.16)

Then the variational formulation becomes

∫
Ω

~∇~η : σedΩ−
∫

Ω
~∇~η : µfIdΩ =

∫

Γt
~η ·~tdΓ

∫
Ω(~∇τ · ~u + τ : ε)dΩ =

∫

Γu
(τ · ~uγ) ·~ndΓ

∫
Ω γ : (−σe + σe(ε))dΩ = 0.

(2.17)

Here ~η, τ and γ are the variations in displacement, stress and strain respectively.



18 CHAPTER 2. BIPHASIC MODEL FOR SATURATED IONIZED POROUS MEDIA

2.3.2 Mass balance

The strong equations on body Ω are dominated by the mass balance. They are given by
continuity equation, Darcy’s law and velocity equation.

~∇ ·~v− ~∇ ·~q = 0,
~q = −K · ~∇µf,
~v = ~̇u.

(2.18)

with boundary and initial conditions are (Γ f ∪ Γµ = Γ and Γ f ∩ Γµ = ∅)

~v(~x, 0) = ~vi(~x), ~x ∈ Ω,
µf(~x, 0) = µf

i(~x), ~x ∈ Ω,
µf(~x, t) = µf

Γµ
(~x, t), ~x ∈ Γ¯,

~q ·~n = f (~x, t), ~x ∈ Γf

(2.19)

Then the variational formulation becomes

∫
Ω

~∇ϕ ·~qdΩ−
∫

Ω
ϕ~∇ ·~vdΩ =

∫

Γf

ϕ f dΓ
∫

Ω
~ψ · (~̇u−~v)dΩ = 0∫

Ω ~π · (~q + K · ~∇µf)dΩ = 0

(2.20)

Here ϕ, ~ψ and ~π variations in chemical potential, flux and velocity respectively. Then the
mass balance is satisfied in a weak sense.

2.4 Prestress

The term stress-free was already mentioned. Now it will be more elaborated. The calcula-
tions start in the initial state (Ωi), where the medium is already in equilibrium with an
external salt concentration. Therefore an osmotic pressure exists and the solid matrix is
stressed. Unfortunately, constitutive modeling describes the deformation from a stress-
free state (Ω0) to the current deformed state (Ω). Therefore the equations have to be
rewritten with respect to the initial state. The relations are shown in Fig. 2.4. Two cases
are described. Firstly, it is assumed that the initial state is the state after free swelling.
Secondly, the case that the initial state is not the state after free swelling, but swelling was
inhibited partially in one or two directions.

2.4.1 Free swelling

For the sake of simplicity the medium is assumed to be homogeneous in terms of fixed
charge density, fluid volume fraction and elasticity in the stress-free state. The initial state
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Figure 2.4: Schematic overview of stress-free, initial and current state.

of the medium as represented by the undeformed mesh is not the stress free state.
Firstly, the initial state of the medium is is assumed to be a free swelling state obtained
through equilibration of the medium with an external salt solution. The specimen has
grown from stress-free state to an equilibrium state with maximum stretching of the solid
matrix. In this case the effective stress in the principal directions is equal to the osmotic
pressure.
The osmotic pressure has induced a an initial volumetric deformation (depicted by strain
εi) which is uniform w.r.t. the stress-free configuration, because the material is homoge-
neous and isotropic.

εi = εi I. (2.21)

Then in small strains the strain fields are additive (whereas in large deformations the
deformations are multiplicative):

ε = εi I + ε∆ (2.22)

Here ε∆ is the strain from initial to current state (Fig. 2.4). Initially all the values are
known and the sample is in equilibrium (µf

in = µf
ex = 0) the next holds

cfc
i = ϕf

ic
fc
0

(ϕf
i+2εi)

,

∆π(ε) = RTΓin

√
(cfc

i )2 + 4(cex)2 − 2Γexcex,
σ(ε) = ∆π(ε)I.

(2.23)

Then the stress free fixed charge density is

cfc
0 =

cfc
i (ϕf

i + tr(εi))

ϕ
f
i

(2.24)

In case of nonlinear material models the initial strain εi is found by solving the equation
above iteratively using a Newton-Rhapson procedure

εn+1
i ≈ εn

i −
σe(εn

i )− ∆π(εn
i )

∂σe
∂εi

(εn
i )− ∂∆π

∂εi
(εn

i )
(2.25)
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Here σe = σe,xx = σe,yy holds. In this case the partial derivatives with respect to the
strain components of interest are

∂σe
∂εi

= 2µ + 2λ
∂∆π
∂εi

= ∂∆π
∂cfc

∂cfc

∂εi

= − RTΓincfc√
(cfc)2+4(cex)2

2cfc

(2εi+ϕf
i)

(2.26)

In the derivatives a factor 2 arises because εi works in x and y direction. In this case the
equations are simplified to

εi =
∆π

2µ + 2λ
, ∆π = RTΓin

√
(cfc

i )2 + 4(cex)2 − 2RTΓexcex. (2.27)

Finally, every cycle the strain ε∆ is calculated from the displacement field. Then the initial
strain is added to the calculated strain to get the strain w.r.t. stress-free state and this is
inserted in the constitutive models.

2.4.2 Partially inhibited swelling

Secondly, the initial state is assumed to be a partially inhibited swelling state. An sample
in a holder is in contact with an external salt solution. Subsequently, the sample wants to
swell, but is inhibited partially by the holder. In this case the initial strain is less than in
the case of free-swelling. Assuming the sample has an initial size of wi × hi. Then the
maximum swelling is

(
w
h

)
=

(
wi(1 + εix)
hi(1 + εiy)

)
(2.28)

The corresponding stress is given by Eq. (2.29).

(2µ + λ)εix + λεiy − ∆π = fx
(2µ + λ)εiy + λεix − ∆π = fy

(2.29)

Then when the initial strain in one direction is free, for instance in x-direction, then
fx = 0. When the strain is known in y-direction, the strain is calculated from

εix =
(∆π − λεiy)

(2µ + λ)
(2.30)

The force fy is calculated from the strains. When swelling is completely inhibited in
y−-direction, then εiy = 0 holds. Similarly, swelling in only y-direction is calculated.
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2.4.3 Validation by swelling test

The implementation of the prestress is checked by inducing a small change in external
salt concentration on a sample which is confined in a column which is open at the top.
Then the deformation is given by

ε = εi + δε = εi I + δε~e2~e2. (2.31)

For the stress in semi-1D holds

σ22 ≈ σe,22(εi) +
∂σe,22

∂ε22
(εi)δε− ∆π(cex

i + δcex, εi)− ∂∆π

∂ε22
(εi)δε (2.32)

with

σe,22 = 2µε22 + λ(ε11 + ε22)

cfc = cfc
0 ϕf

i
ε11+ε22+ϕf

i

π =
√

(cfc)2 + 4(cex + δc)2

(2.33)

and the partial derivatives to strain component of interest is

∂σe,22
∂ε22

= 2µ + λ
∂∆π
∂ε22

= ∂∆π
∂cfc

∂cfc

∂ε22

= − RTΓincfc√
(cfc)2+4(cex+δc)2

cfc

(ε11+ε22+ϕf
i)

(2.34)

Then

δε ≈ −σe,22(εi)− ∆π(cex
i + δcex, εi)

∂σ22
∂ε22

(εi)− ∂∆π
∂ε22

(εi)
(2.35)

The increase in height w.r.t. initial state is then given by

swelling = δh = hi(εi + δε) (2.36)

The implementation of the bulk material models have been tested by the swelling test. A
mesh is generated of eight elements over a height of 1 mm and each with width 0.5 mm.
The bottom is fixed and in contact with the external salt concentration. The sides are con-
strained to only movement in the height. Then changing the external salt concentration
at the bottom with ∆c = 0.75e-6 mmol/mm3. A time step of 5 s is used. The material
properties are given in table 2.1.
The change in salt concentration causes a change in chemical potential of ∆µf = 6.0e-

3 MPa, which results in a height change of−4.7e-3 mm.The change in height approaches
the analytical solution (Fig. 2.5).



Table 2.1: Material properties for verification for bulk material.

R = 8.3145 [N mm/mmol K] T = 298 [K]
E = 0.9 [MPa] ν = 0.20 [-]

ϕf
i = 0.80 [-] K = 0.28e-3 [mm4/Ns]

cex = 0.15e-3 [mmol/mm3] cfc
i = −0.2e-3 [mmoleq/mm3]

Figure 2.5: The change at the top of the column due to a change in salt concentration at
the bottom in height. Dotted line is the analytical asymptotical height, the
solid line denotes the transient numerical simulation.
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CHAPTER THREE

Singularity solution for shear loading in
saturated ionized porous media1.

1 Reproduced from: F. Kraaijeveld, J. M. Huyghe, F. P. T. Baaijens, (2009). Singularity solution of
osmoelasticity for verification of discontinuity simulations in soft tissues. Journal of Biomech. Eng. [51]
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Additional list of symbols

∗̂ [[∗]mm s] Laplace and Fourier transformed
∗̃ [[∗]mm] Fourier transformed

C0 [mmol/mm3] Initial concentrations
C1 [mmol/mm3] Deformation dependent change in concentrations

d [mm] Dislocation size
E [mm2] Stress function

er f c [−] Complementary error function
f (x) [mm] Slip function

k [1/mm] Fourier parameter
κ [MPa] Bulk modulus
L [mm] Crack-tip x-coordinate, 2L = crack length

µf [MPa] Chemical potential w.r.t. initial state
µf [MPa] Chemical potential of the fluid
S [1/mm] Stress function
s [1/s] Laplace parameter

3.1 Introduction

Many diseases are associated with localized mechanical failure and damage of tissues.
Examples are cartilage damage [110] and intervertebral disc herniation [111]. To determine
tissue strength and local stresses, experimental studies (both clinical and animal)
are supported by computational studies. Numerical methods have been developed to
describe crack propagation in porous media [7,83,90]. Usually they are not verified by
analytical solutions. The verification is often restricted to a qualitative comparison with
experimental measurements. However, two uncertainties are involved in this compari-
son. One is whether the numerical model actually solves the equation it claims to solve.
The other is whether the equation describes the physical reality of the experiment. In
order to test separately the former question, an analytical solution is a must.
One important property of tissues is their swelling capacity. The presence of fixed
charges in the tissues causes differences in ion concentrations with the surrounding
fluid and therefore a Donnan-osmotic pressure [67,100]. Subsequently, the deformation
of tissues depends not only on mechanical factors, but also on biochemical factors.

Osmotically swelling porous media have been modeled by many groups. Lanir [56]
extended the Biot model [13] for incompressible constituents, namely the solid matrix and
interstitial fluid, by including Donnan-osmotic pressure, but neglecting the influence
of ion flow. Mow et a. [71] developed a biphasic model for articular cartilage. Lai et
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al. [54] formulated a small deformations triphasic theory with ionic diffusion-convection
included. Huyghe and Janssen [45] developed an electrochemomechanical model using
four constituents. It has been implemented for finite deformations and verified for
one-dimensional pressure tests by Frijns [35]. Van Loon et al. [102] implemented a
3D Finite Element model of the quadriphasic model. Van Meerveld [69] validated the
quadriphasic model by analytical solutions.
The confined and unconfined compression test are common validation tools. Wilson et
al. [108] compared the biphasic swelling model by Lanir [56] with the quadriphasic model
by Huyghe et al. [44] and showed that the flow of ions indeed influences the pathway to
equilibrium with the external fluid. Although the quadriphasic model is more realistic in
transient behavior, Lanir’s model is a reliable approximation for the modeling of ionized
porous media, such as the intervertebral disc [92]. The last method is less complex and
computationally less expensive than the former.

Some methods for validation have already been indicated above, however previous re-
search has been restricted to continuous media. There are hardly any methods for valida-
tion of computational efforts of fractured porous media. Tests used in solid mechanics,
like the three-point bending test or analytical solutions from linear fracture mechanics,
are not suitable for porous media since the influence of fluid flow is not accounted for.
crack-tip analysis and localization [8,58,62] have been topics of interest, but only give lo-
cal trends.
Rice and Cleary developed an analytical solution for earthquake (shear faulting) predic-
tions in 1976 [84], which has shown to predict aftershocks. Pure shearing mode of a
crack is considered and special treatment of the crack is circumvented. Rice and Cleary’s
method uses Biot functions [14], which are similar to the Airy functions in solid linear
fracture mechanics. However these functions can only be applied when there is com-
pressibility in the model. Booker [15] calculated the dimensionless stress field along a
shear fault for a fully saturated incompressible porous medium by decoupling the equa-
tions with stress functions according to McNamee and Gibson. [26,68,104] Rice [84]
showed that both methods find the same result in the limiting case of incompressibil-
ity. The objective of this study is to establish a 2D method to study the performance of
computational modeling of ionized porous media with cracks, namely an analytical so-
lution suited for comparison with numerical calculations. In particular, the method by
Booker [15,76] is generalized to ionized porous media.

3.2 Method

In this section the model by Lanir [56] is stated shortly. A perturbation on a homogeneous
situation is considered, therefore the constitutive equations are linearized. The case of
interest is given, after which the analytical solution is derived and numerical calculations
are denoted.
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3.2.1 Governing equations

Osmoelastic media have large negatively charged groups attached to the solid matrix.
Counter charges are present in the fluid making the medium electrically neutral. Due
to the fixed charges the total ion concentration inside the medium is higher than in the
surrounding fluid. This excess of ion particles leads to an osmotic pressure difference,
which causes swelling of the medium. Lanir’s osmoelastic model [56] assumes that small
ions are always in equilibrium with the external salt concentration. This means that ion
contribution is neglected and the medium is described by two constituents only: the solid
(s) and the fluid (f). The constituents are assumed to be incompressible. Infinitesimal
deformations are assumed. The material is linear elastic, isothermal, isotropic, homoge-
neous and fully saturated. A full derivation is stated in chapter 2. Osmotic swelling is
included by the introduction of the chemical potential of the fluid, which is a measure
for the free energy of the fluid. The chemical potential of the fluid µf is defined per unit
volume fluid and will be denoted by chemical potential:

µf = p− π. (3.1)

with π the osmotic pressure and p the hydrostatic pressure. The osmotic pressure is
determined by the empirical Van ’t Hoff equation. This relation defines the osmotic
pressure in terms of concentrations of free cations c+, anions c−, osmotic coefficient Γ,
gas constant R and temperature T.

π = RTΓ(c+ + c−), c+ + c− =
√

(c f c)2 + 4(cex)2 (3.2)

This osmotic pressure holds outside as well as inside the medium, but outside the
medium the fixed charge density c f c is zero and the osmotic coefficient may be differ-
ent. Electroneutrality holds, therefore the amount of negative charges are equal to the
amount of positive charges: c− + c f c = c+. Furthermore, the seepage flux ~q follows
Darcy’s law in presence of concentration gradients. The total equations are given by (3.3).

Momentum equations ~∇ · σ = ~∇ · σe − ~∇(µf + π) =~0
Stress-strain relation σe = 2µε + λtr(ε)I

Mass balance ~∇ · ∂~u
∂t

+ ~∇ ·~q = 0

Darcy’s law ~q = −K · ~∇µf

Swelling equation π = RTΓ
√

(cfc)2 + 4(cex)2

Fixed charge cfc = ϕf
ic

fc
0

tr(ε)+ϕf
i

(3.3)

The parameters µ and λ = κ − 2µ/3 denote the Lamé constants. ν κ and µ are the
Poisson’s ratio, bulk modulus and shear modulus respectively. The parameter λ actually
denotes the compressibility of the structure. The tensor K = KI denotes the permeability
tensor and is assumed isotropic and constant in time and space.
The presence of ions fixed to the solid matrix results in prestress of the solid matrix at
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initial condition. Constitutive relations hold at stress free configuration. Therefore ε is
the strain tensor, which includes the initial strain εi and the deformation part such that
ε− εi = 1/2{~∇~u + (~∇~u)T} holds. Similarly, the fixed charge density is calculated from

the fixed charge density at stress-free configuration cfc
0 and initial volume fraction ϕ

f
i .

Under assumption of small strains the swelling equation is linearized around the initial
strain.

π = π|εi +
∂π

∂tr(ε) |εi(tr(ε)− tr(εi))

= π|εi +
∂π
∂cfc

∂cfc

∂tr(ε) |εi(tr(ε)− tr(εi))

= RTΓ
√

(cfc
i )2 + 4(cex)2 − RTΓ cfc

i√
(cfc

i )2+4(cex)2

cfc
i

(tr(εi)+ϕ
f
i )

(tr(ε)− tr(εi))
(3.4)

with cfc
i the initial fixed charge density and is used to compute the fixed charge density at

stress-free state. For simplification we introduce the constants C0 =
√

(cfc
i )2 + 4(cex)2,

the initial concentrations, and C1 = (cfc
i )2

(ϕf
0+tr(εi))C0

, the change in concentrations due to

unit strain. Then the osmotic pressure in terms of deformation becomes

π(ε) = RT(C0 − tr(ε− εi)C1). (3.5)

Subsequently, system (3.3) can be rewritten to

(Momentum) 2µ∇2~u + (c− 2µ)~∇tr(ε− εi)− ~∇µf = 0
(Mass) ∂tr(ε−εi)

∂t − ~∇ · (K~∇µf) = 0,
(3.6)

with c = 2µ + λ + RTC1, µf = µf + RTC0.

3.2.2 Singularity Case

In this section the problem is stated, that will be considered analytically and numerically.
A rectangular piece of material is considered with a crack in the middle in the x, z-plane
of length 2L. The crack is closed. Fluid flow across the crack is allowed. Shear faulting
is impulsively induced as a small displacement enforced on the upper and lower crack
surface in opposite direction. This is shown in Fig. 3.1. The result is a steep increase of
shear stress and fluid flow.
The upper crack surface is positioned at z = 0+ and the lower crack surface at z = 0−. If
we define ~u = (u, w)T as the displacement field, we can define the jump over the crack
surface

[
u
]

as

[
u
]
(x, t) = u(x, 0+, t)− u(x, 0−, t). (3.7)
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Then the perturbation can mathematically be defined as

[
u
]

= f (x)H(t)

f (x) = d(H(x− L)−H(x + L)) =
{

1 if x ∈ [−L, L]
0 otherwise

(3.8)

Here d denotes the magnitude of the dislocation and therefore the magnitude of the jump
in shear direction. f (x) is called the slip function, H is the Heaviside function. Since the
crack is closed there is no jump in displacement in z-direction (

[
w

]
= 0). Furthermore

we have continuity of stresses (
[
σαα

]
= 0, α = x, z).

We are interested in the shear stress at the crack surfaces, analytically and numerically.

Figure 3.1: Two edge dislocations of magnitude d over crack length 2L.

3.3 Analytical solution

The model (3.6) is strongly coupled. For the derivation of the analytical solution, decou-
pling of the total system of equations is needed. Following Booker [15], the solution is
found using integral transformations of Laplace and Fourier. Except that the equations
are not dimensionless, the derivations are not very different from Booker [15], because
the osmolarity is lumped into the elasticity constant c. Discrepancies are pointed out.

3.3.1 Decoupling

The system (3.6) can be decoupled by the introduction of stress functions (McNamee and
Gibson [68]), appendix A. The stress function S(x, z, t) plays a role in the momentum
equations and E(x, z, t) a larger role in the mass equation.
The stress function S(x, z, t) is introduced such that the function is harmonic, meaning
∇2S = 0 holds. The momentum equation is automatically satisfied, if for the chemical
potential the next holds:

µf = ctr(ε)− 2µ
∂S
∂z

. (3.9)
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The second stress function E(x, z, t) is introduced such that

tr(ε− εi) = ∇2E. (3.10)

Substituting Eqs. (3.9) and (3.10) in Eqs. (3.6), the system of equations is decoupled to
the linear diffusion equations Eqs. (3.11) [68].

∇2S = 0,
∇2 ∂E

∂t − cK∇4E = 0.
(3.11)

The number of equations has not been reduced, but the total system of equations, Eqs.
(3.11), has been rewritten to decoupled partial differential equations, which are easier to
solve. A complete overview is found in appendix A.

3.3.2 Governing equations in Laplace-Fourier domain

Any function can be split up into an even and an odd portion. McNamee and Gibson [68]
only consider symmetric loading and therefore only use the symmetric part of Fourier
transforms. To be able to consider more general cases, general Fourier and Laplace trans-
formations are used (Booker [15]). Fourier (with variable k) and Laplace (with variable s)
transformations are performed to reduce discontinuities to constant values (Appendix).
Fourier transforms carry a tilde and depend on variables k, z and t. Laplace-Fourier trans-
forms carry a hat and depend on variables k, z and s. Since a shear crack in the x, y plane
is considered, the displacement jump will be over z = 0 in the x direction, Fourier trans-
formation along the crack is performed, thus over the x direction. See also appendix A.
The forward Fourier transformation in x becomes (3.12).

Ẽ(k, z, t) =
∫ ∞

−∞
E(x, z, t)e−ikxdx. (3.12)

Equivalently, the Laplace transformation is given by (3.13).

Ê(k, z, s) =
∫ ∞

0
Ẽ(k, z, t)e−stdt. (3.13)

The result is a second order ordinary differential equation (ODE) for Laplace-Fourier
transform Ŝ of S and a fourth order ODE for Laplace-Fourier transform Ê of E. The
dependent and independent variables can be written in terms of the stress functions.
From this, boundary conditions in the form of jump conditions are derived. In total the
two boundary value problems (3.14) and (3.15) are found.

( ∂2

∂z2 − k2)Ŝ = 0[
Ŝ] = 0

[
∂Ŝ
∂z

]
= ik

s f̃ (k).
(3.14)
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and

( ∂2

∂z2 − k2)
(
cK( ∂2

∂z2 − k2)− s
)
Ê = 0.[

Ê] = −i
ks f̃ (k)

[
∂Ê
∂z

]
= 0,[

∂2Ê
∂z2

]
= − is

cp f̃ (s)(c− 2µ)
[

∂3Ê
∂z3

]
= 0.

(3.15)

with f̃ (k) the Fourier transform of slip function f (x):

f̃ (k) =
L∫

−L

de−ikxdx =
2dsin(Lk)

k
. (3.16)

3.3.3 Solution

Previously the boundary value problem (BVP) in the Laplace-Fourier domain has been
derived. This BVP is solved by splitting of the domain. The resulting solution is trans-
formed from the Laplace domain to normal time domain. Since the interest lies in the
shear stress around the crack-tip the equations are simplified by taking z = 0. Then back
transformation from the Fourier domain to the normal x, z domain is performed.
The inverse transform becomes (3.17).

E(x, z, t) =
1

2π

∫ ∞

−∞
Ẽ(k, z, t)e+ikxdk (3.17)

The inverse Laplace transformation is performed by the use of the mathematical formulas
of Abramowitz and Stegun [1] and appendix A.

Solution in Laplace-Fourier domain

The solutions in Laplace-Fourier domain are derived by splitting the domain in an upper
plane (z > 0: Ŝ+, Ê+) and lower plane (z < 0: Ŝ−, Ê−). Far from the crack the solution
is not affected by the jump, so the solution has to approach zero for z → ±∞.
For stress function Ŝ the general solution in the upper plane is given by Ŝ+ = γ+e−|k|z
and for lower plane Ŝ− = γ−e+|k|z. Then the jump condition reduces to

[
Ŝ
]

= limz↓0Ŝ− limz↑0Ŝ
= Ŝ+(k, 0, s)− Ŝ−(k, 0, s) = γ+ − γ−.

(3.18)

Through linear algebra one can derive that the solution of (3.14) is given by (3.19)

Ŝ(k, z, s) =
−isign(k)

2s
f̃ (k)e−|k||z|. (3.19)
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with sign(k) = k
|k| . A similar solution of the mass Eq. (3.15) is now determined and is

given by (3.20)

Ê(k, z, s) = −sign(z)
{(

ikµ f̃ (k)K
s2 + i f̃ (k)

2ks

)
e−|k||z|

+
(

ikµ f̃ (k)K
s2

)
e−

1
cK

√
k2cK+s|z|

}
,

(3.20)

It is unclear why Eqs. (3.19) and (3.20) and the general solutions are inconsistent with
Booker [15], in between Eqs. (12) and (13).

3.3.4 Inverse transformation of the solution

The derived solutions are still in the Laplace-Fourier domain. Back transformations have
to be performed. The solutions involve several terms dependent on Laplace variable s.
The stress function Ŝ contains only a factor 1/s which becomes the Heaviside function
by back transformation. So the inverse Laplace for stress function Ŝ is

S̃(k, z, t) = − isign(k)
2

f̃ (k)e−|k||z|H(t). (3.21)

The inverse Laplace of stress function Ê is more difficult. It contains factors 1/s, 1/s2

but also a factor e
− |z|

√
k2cK+s√
cK

s2 . This latter term is not easy to invert. For deriving the in-
verse of the latter term we need to perform some mathematical manipulations, using the
shift theorem and convolution theorem. This is done in the appendix. Again there are
unexplainable differences with Booker [15], Eq. (A1). The result is

Ẽ(k, z, t) = − iµ f̃ (k)sign(z)
2ck

{
[ c

µ + |z||k|]e−|k||z|H(t)

−cK(k2t + |z||k|
2cK )e|k||z|er f c(λ+)

+cK(k2t− |z||k|
2cK )e−|k||z|er f c(λ−)

}
.

(3.22)

with λ± = |k|√cKt± |z|/√4cKt. The shear stress is then given by

σ̃xz = 2µik
{

∂Ẽ
∂z − z ∂S̃

∂z
}

.

= −µ2 f̃ (k)|k|
c

{[− (1− c
µ )(1− |z||k|)]e−|k||z|H(t)

+cK(k2t + |z||k|+1
2cK )e|k||z|er f c(λ+)

+cK(k2t− |z||k|−1
2cK )e−|k||z|er f c(λ−)

−2k2
√

cKt√
π

e−(k2cKt+z2/(4cKt))
}

(3.23)
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3.3.5 Shear stress

The expression (3.23) simplifies to (3.24) for z = 0, i.e. along the crack surface.

σ̃xz|z=0 = −µ2 f̃ (k)|k|
c

{[− (1− c
µ )

]H(t)

+(2k2cKt + 1)er f c(|k|√cKt)− 2
√

k2cKt√
π

e−(k2cKt)
} (3.24)

Back transformation from Fourier domain is performed by the use of the mathematical
formulas of Abramowitz and Stegun [1], more specifically, the repeated integrals of the
complementary error function (Appendix). Numerical Fourier integration is not possible
since the integrant does not go to zero for increasing Fourier variable k.
The shear stress is given by Eq. (3.25)

σxz(x, 0, t) = −2µ
dH(t)

π(L2 − x2)
{

L− µKF(x, t).
}

(3.25)

with

F(x, t) = 2t
{ (L− x)

(L + x)2 (1− e−
(L+x)2

4cKt ) +
(L + x)
(L− x)2 (1− e−

(L−x)2
4cKt )

}
(3.26)

The expansions (3.25) and (3.25) reduce to Eq. (16) of Booker if we replace expression
c = 2µ + λ + RTC1 by c = 2µ + λ, i.e. if we neglect osmotic effects. When t → ∞,
the function F → 0 and the shear stress is at equilibrium. Using Taylor expansions, it is
found that the shear stress at equilibrium is

σxz(x, 0, tequi) = − 2µd
π(L2 − x2)

(L− µKL
cK

). (3.27)

The equilibrium stress also indicates a high singularity near the crack-tips. As expected
the influence of the osmotic prestress is low on the shear stress at equilibrium, but is not
negligible. Furthermore the osmotic prestress influences the behavior in time.

3.3.6 Chemical potential and flow

To find the distribution for the chemical potential and the flow, it is possible to numer-
ically integrate Eq. (3.9), but it is also possible to derive an analytical expression for the
chemical potential. The chemical potential does not only satisfies Eq. (3.9), but it also
satisfies:

(
∂

∂t
− cK∇2)µf = 2µ

∂2S
∂z∂t

. (3.28)

This equation is found similar to Nur & Booker [76] for hydraulic pressure by substituting
(3.9) into (3.11b) and using that S is harmonic. Since S is time independent the right side
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of Eq. (3.28)is zero. Assuming almost circular diffusion from the crack-tip, the equation
is solved using Hankel transformation [15,76] (appendix). The result is

µf(x, z, t) = µdz
π

[ 1
(x−L)2+z2 − 1

(x+L)2+z2

]

−µdz
π e−z2/4cKt[ e−(x−L)2/4cKt

(x−L)2+z2 − e−(x+L)2/4cKt

(x+L)2+z2

] (3.29)

From this we can derive the flow over the crack (~n vector normal to the crack, z = 0):

~q ·~n(x, 0, t) = −K ∂µf

∂z (x, 0, t)
= −K µd

π

[ 1
(x−L)2 − 1

(x+L)2

]

+K µd
π

[ e−(x−L)2/4cKt

(x−L)2 − e−(x+L)2/4cKt

(x+L)2

]
(3.30)

and the flow along the crack (~t vector in direction of crack-tip x = +L):

~q ·~t|z=0 = −K
∂µf

∂x
(x, 0, t) = 0 (3.31)

3.4 Numerical example

For simulations Finite Element package ABAQUS 6.4-5 has been used. Lanir’s model is
implemented by Wilson [109], but with a Neo-Hookean material law. This law reduces to
the material as used here for small strains. The variational description is given in chapter
2. Quadrilateral linear elements are used. The mesh is given in Figs. 3.2 and 3.3. A crack
is created bluntly by tieing two meshes together except for the crack and crack-tips. A
contact condition is imposed between the crack surfaces. The crack-tips are not restricted
in x-direction in order to have a pure symmetric reaction left and right from the crack-
tip. This also implies that for boundary conditions a pure Heaviside function cannot be
imposed, but the heaviside function is approximated by change over a length ∆x, i.e. the
length of the unconstraint interval around the crack-tip. This way a piece of medium of
size 8 mm ×6 mm with a fixed charge density of cfc

0 = 0.2 mmol/ml, a bulk modulus
of κ = 0.5 MPa and a shear modulus of µ = 0.375 MPa is created. These properties
approximate the properties of disc tissue [102,111]. The size is chosen sufficiently large
that boundaries have no effect on the result using Eq. (3.29).
All boundaries are restricted in normal behavior, i.e. left side is restricted in x-direction,
etc.. The result is that the crack location and length does not change under osmotic load-
ing. The medium is in equilibrium with an external salt concentration. This means that
at all boundaries fluid flow is free and µf

in = µf
ex holds, i.e. the chemical potential of the

fluid in the medium at the boundaries are equal to the external chemical potential. To
prevent the crack from opening, the nodes at the crack surface are fixed in z-direction.
This is in agreement with the jump condition [w] = [uz] = 0. After letting the medium
reach equilibrium, an impulsive shear load is applied on the crack surfaces. A displace-
ment smaller than the width of one element is imposed on the crack surfaces, namely a
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Figure 3.2: Mesh creation for 576 elements. Mesh is refined towards the areas of inter-
est: the crack-tips.

-L

Figure 3.3: Close up mesh at crack-tip x = −L. Nodes are tied outside the crack (|x| >
1). Contact is defined on the crack surfaces x < |L|, z = 0±. The crack-tips
x = ±L are free.

displacement of a magnitude of d/2 for the upper crack surface in positive x-direction
and lower surface in opposite direction.
Similar as in space, it is not possible to impose an impulsive loading in time, but it is
approximated by changing the conditions over a time length ∆t. The influence of time
step is studied. After that, the calculations are run until steady state is reached. Shear
stress in the nodes are calculated by averaging over the neighboring integration points.
The change in shear stress is calculated by deducting the initial shear stress distribution
from the state of interest. The effect of spatial discretization size is studied by consider-
ing three meshes from coarse to fine of mesh size 144 elements, 576 elements and 2304
elements. The parameters are given in table 3.1.
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Table 3.1: Model parameters for numerical and analytical models.

R = 8.3145 [N mm/mmol K] T = 298 [K]
µ = 0.375 [MPa] ν = 0.2 [-]
κ = 0.5 [MPa]

ϕf
i = 0.8 [-] K = 0.28e-3 [mm4/Ns]

cex = 0.15e-3 [mmol/mm3] cfc
i = −0.2e-3 [mmoleq/mm3]

d = 0.004 [mm] L = 1.0 [mm]

3.5 Results

As the result of impulsive loading the medium reacts as if incompressible leading to
high shear stress. Then the fluid flow starts and relaxation takes place. Consolidation
takes place. This is seen in the Eq. (3.25), but also Fig. 3.4.
The dislocation causes compression above the crack and expansion underneath the crack
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Figure 3.4: Consolidation for different calculations at x = 1.0769 mm. With refinement,
the time dependent behavior of the analytical solution is better approximated
except for an offset. a. shows the data with the offset, b. without the offset.

for x > 0 and viceversa for x < 0. The normal stresses are antisymmetric with respect
to the z-axis. The shear stress is symmetric with respect to the z-axis and anti-symmetric
with respect to the crack-tips (Fig. 3.5). The values left and right of the crack-tip are equal
in magnitude (not sign), also for the numerical models. In the crack-tips the shear stress
undergoes a high singularity (x = ±1).
The dislocation causes for x > 0 compression above the crack and expansion underneath

the crack. The normal stresses and the chemical potential are antisymmetric to z-axis and
x-axis. In Figs. 3.6a and 3.6b it is seen that at the crack-tips the compression produces a
positive chemical potential and extension produces a negative chemical potential. Fluid
flow is induced causing relaxation and spreading of the chemical potential.
Figure 3.7 shows the analytical flow and numerical approximations in plane of the crack.

The dislocation causes flow over the crack surface and that increases towards the crack-
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Figure 3.5: Shear stress distribution at t = 30.0 s. A high singularity is seen in all
cases. The stresses left (a.) and right (b.) from the crack-tip, are equal in
magnitude. The numerical shear stress converges to the analytical shear
stress upon refinement, except in vicinity of the crack-tips x = ±− 1.
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Figure 3.6: Analytically calculated distribution of chemical potential (in MPa) at a. t =
30.0 s and b. at t = 301.1 s. Crack is indicated by solid line. Fields of
high and low chemical potential values are seen in regions of compression
and extension respectively. The chemical potential relaxes and diffuses over
time.

tips.
To approximate the impulsive loading of the crack, a steep change in displacement was

applied over a time length of ∆t and over a length interval 1± ∆x. There is no difference
in result between ∆t = 0.1 s and ∆t = 0.01 s. The influence of the loading gradient
is subsequently considered negligible for all calculations. Similar in space, the Heavi-
side was approximated by unconstrained nodes at the crack, Fig. 3.3, over an interval ∆x
around the crack-tip. In Fig. 3.8 it is seen that refinement overall increased accuracy and
not so much the length of the unconstraint crack-tip region.
When the time distribution, as in Figs. 3.4 and 3.8, is considered more closely, it is clear

that the numerical model has not reached equilibrium yet. Using that the stress at equi-
librium satisfies Eq. (3.27) it is found that the analytical also has not reached equilibrium
yet.
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Figure 3.7: The numerically and analytically calculated flow over the crack surface (in
mm/s) at t = 30.0 s. With refinement the numerically calculated flow con-
verges to the analytical flow.

The osmotic prestress influences the initial shear stress as the result of incompressible
behavior, but it influences the time to equilibrium and shear stress at equilibrium too. A
decrease in osmotic pressure causes a decrease in shear stress, Fig. 3.9. Numerically this
effect is smaller than analytically.

Numerical and analytical chemical potential distributions match very well in distribu-
tion. Analytically, at time 30.0 s maximum and minimum chemical potential of ±1.50e-
3 MPa is found while numerically the chemical potential is a bit higher: ±1.58e-3 MPa
for 2304 elements and ±1.61e-3 MPa for 576 elements. At time 301.1 s these values are
±4.18e-4 MPa for the analytical minima and maxima and ±3.88e-4 MPa for the numeri-
cal minima and maxima for 2304 elements and ±4.04e-4 MPa for 576 elements.

3.6 Discussion

In this research an analytical solution for cracks in swelling porous media has been
derived by considering a displacement driven dislocation. The dislocation is impulsively
induced. The analytical solution has been derived by means of stress functions and
Fourier and Laplace transformations. The solution is derived with physical units (i.e. not
dimensionless) and can also be used when there is no osmotic swelling.

In the derivation of the analytical solution some important assumptions were made. A
small perturbation is considered, therefore d << L must hold. The perturbation solution
is additive to the initial state by linearization. This means that the initial state has a low
influence. The jump over the z = 0-plane of the dependent and independent variables
are the boundary conditions over the crack. The displacement jump in shear direction is
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Figure 3.8: Consolidation of shear stress at x = 1.0769 mm. Refinement has a much
larger effect than increasing interval length for spatial loading ∆x on the
equilibrium stress.

given, other variables are continuous. This means that the shear stress response below
and under the crack are symmetrical in the z = 0 plane or values are zero on the plane.
Another assumption is that far away from the crack the influence of the displacement at
the crack is negligible.
In general the decoupling method works well and can be used to consider other problems.
The restriction of this method lies in the boundary conditions. Using these decoupled
equations in Fourier domain, it is not possible to calculate the shear stress distribution
in case of a semi-infinite crack. A Wiener-Hopf procedure can not be applied like models
decoupled in drained and undrained variables [8]. Back transformation by numerical in-
tegration cannot be applied either.
The shear stress distribution in plane of the crack and the distribution in chemical po-
tential have been derived in full dimensions including the osmotic prestress. From these
solutions it is possible to derive a few properties. The shear stress undergoes a singularity
of the order O( 1

(L2−x2)) and relaxes exponentially (Eq. (3.25)), but the high singularity at

the crack-tips does not vanish. The chemical potential distribution is not singular, see
Eq. (3.29). In the crack the chemical potential is zero. In time the chemical potential
decreases exponentially, but also the extremes of the pressure field move away from the
crack-tips in time parallel to the z-axis (the factor e−z2/4cKt). The tangential flow along
the crack is zero. The normal flow in the z = 0-plane, Eq. (3.30), has a singularity of
the order O( 1

(L2−x2)). The flow is positive for x > 0 (upwards) and negative for x < 0
(downwards), and zero for x = 0.
The effect of parameters is apparent from Eq. (3.25)). Firstly, the stress is linearly depen-
dent on the magnitude of the dislocation, but nonlinearly dependent on the length of the
crack. The longer the crack the lower the shear stress produced by the dislocation, also in
equilibrium. In general the term µKF(x, t) is initially not small, but decreases in time to
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Figure 3.9: Shear stress evolution at x = 1.0769 mm with cex in mmol/mm3. A de-
crease in prestress decreases the shear stress analytically and numerically,
but increases the time to equilibrium. The analytical change in shear stress
is larger than the numerical change, but smaller than the difference between
analytical and numerical results.

µL/c.
Secondly, higher Lamé constants result in increasing shear stress. The shear stress distri-
bution is initially nonlinear in the shear modulus but in equilibrium it is linear. A higher
Lamé constant λ results in faster relaxation.
Finally, the response depends on external and internal ion concentrations. Increasing
the external salt concentration decreases the prestress and decreases the shear stress re-
sponse to the dislocation (C1 decreases and therefore c decreases). The relaxation time
is increased. Increasing the fixed charge concentration has the opposite reaction (c in-
creases).
The analytical solution points out weaknesses of the numerical model and calcula-
tions. The numerical modeling has been validated by confined and unconfined pressure
tests [109]. From the expression for the chemical potential Eq. (3.29) the mesh size was
determined such that the chemical potential is zero at the boundaries for the time frame
of interest. The boundary conditions have little influence on the local shear stress distri-
bution as long as the shear stress is constant around the area of interest. While the an-
alytical solution assumes an unrestricted domain, numerically the domain is restricted.
The restriction of the domain does have an influence on the solution, but comparison
with a domain twice as large showed the influence is negligible. The differences of the
numerical and analytical maxima and minima in the distribution of the chemical poten-
tial are the result of the use of a coarse mesh away from the area of interest. Furthermore
Fig. 3.7 shows that the finest mesh can capture the fluid flow very well.
Keeping the crack-tip node unrestricted has lead to a perfectly anti-symmetrical shear-
stress just as the analytical results, i.e. the shear stress left and right from the crack-tips
are equal. Since the influence of time and spatial interval for reaching maximum values
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is low (Fig. 3.8), it is reasonable to use this unrestricted node. Furthermore continuity in
stresses holds, the stresses at the lower crack surface are equal to those at the upper crack
surface.
The numerical model approximates the analytical solution very well, but in the very vicin-
ity of the crack-tips the shear stress is underestimated by a factor 2, Fig. 3.5. The time
dependency of the numerical results matches the analytical solution very well for the
finest mesh except for an offset at a point ahead of the crack-tip and close to the singu-
larity (3.4). It is found that the time behavior is even better at the current crack surface.
Considering the steepness of the spatial curve close to the singularity (Fig. 3.5), a slight
offset in horizontal plane would cause a large mismatch in Fig. 3.4. Therefore the offset
in Fig. 3.4 should be interpreted as a minute horizontal shift of the numerical curves of
Fig. 3.5 towards the singularity.
The importance of a good mesh and crack insertion is further emphasized when the effect
of the osmotic prestress is considered, Fig. 3.9. The offset in the numerical calculations
is larger than the change in shear stress perturbation as result of the change in osmotic
prestress in absolute sense. The offset due to the horizontal shift of the numerical curve
towards the singularity dominates other effects. In general the influence of osmotic pre-
stress for shearing mode is expected to be low, but is not negligible, Eq. (3.27). These
effects could be overlooked if cracks are not treated correctly. A greater influence of the
osmotic prestress is expected when considering the opening mode [111]. The analytical
solution is a benchmark for the performance of numerical models with singularities and
is a step towards arbitrary loading.
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CHAPTER FOUR

Strong discontinuity model for the fluid for
shear loading in saturated ionized porous
media1.

1 Reproduced from: F. Kraaijeveld, J. M. Huyghe, J. J. C. Remmers, R. de Borst, F. P. T. Baaijens, (2009).
Shear fracture in osmoelastic fully saturated media: a mesh-independent model. Engng. Frac. Mech. [53]
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4.1 Introduction

The mechanical causes of intervertebral disc (IVD) degeneration and herniation are
poorly known [100]. The presence of fixed charges in the collagen network of tissues
causes differences in ion concentrations with the surrounding fluid and therefore
Donnan-osmotic pressure. This gives the IVD its prestress and its protective nature
against crack growth. During degeneration a loss of fixed charges and hydration occurs.
Understanding and prediction of failure of the IVD asks for the combination of exper-
iments and computational models. Although finite element models of failure of the
disc exist, the modeling has usually been restricted to stress analysis studies [50,74]
or inserting contact elements as a model for lesions [60]. Accurate modeling of the
crack will improve the predictive behavior of those models. This is not only an issue in
biomechanics, but there is a need for a good model for fracture in ionized porous media
to study geotechnical issues as well.

In this thesis a macro fracture in a continuum is of interest and therefore a discrete
fracture model is used. Herniation is not perfectly brittle. The macro-crack is preceded
by a zone with small-scale yielding and micro-cracking (Fig. 1.7). This process zone
is simulated by a cohesive zone model, where the decrease of strength in the zone is
lumped into a discrete line (in 2D modeling) and a stress-displacement relationship
across this line. There are several discrete methods available for simulating the cohesive
zone.
Barenblatt [10], Dugdale [30] and Hillerborg [40], were the pioneers to cohesive fracture
in solids. This cohesive zone can be introduced as a geometrical entity using interface
elements at all element boundaries [112] or in the path of interest [86,88]. This method
is suitable if the crack path is known a priori, since it requires alignment of the element
with the crack path a priori. A downside is that a high dummy stiffness is needed to
prevent deformation in the interface before initiation and the introduction of length
scales, but the hottest is mesh-dependency [23].
Alternatively, remeshing procedures [20] can be used to explicitly model the discontinu-
ity. Based on this concept fracture in porous media has been investigated by Boone [16]
and Schrefler and followers [89]. Strong discontinuities in the porous media framework
have been introduced to study strain localization, i.e. shear bands.
Strong discontinuities are considered the final failure mechanism within localization
problems. Larsson et al. [58] introduced a discontinuity in the fluid by a regularized
Delta Dirac function. Armero et al. [7] assumes only discontinuous displacement.
Steinmann [97] extended these embedded discontinuity models based on enhanced
strains concepts, without the restriction of locally drained or undrained behavior by a
new interface law based on Darcy’s law.
To eliminate mesh dependency and artificial length scales, Babuska and Melenk in-
troduced a discontinuity in a mesh free way by adding an enhanced field on top of
the standard displacement (and pressure) field, in this case by a Heaviside, function
using the partition of unity property of the Finite Element shape functions [9]. The
number of degrees of freedom at the nodes whose support is crossed by a discontinuity,
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is increased. Therefore no new nodes are added during propagation. Belytschko [12]
introduced this method for a solid together with an asymptotic enhancement of the
displacement field at the crack-tip. Wells et al. [107] introduced cohesive segments within
the finite elements followed by Remmers et al. [80] who modeled the crack not as a
single entity, but as a collection of overlapping cohesive segments. A practical benefit of
the method is that standard discretization is used and crack propagation is independent
of the discretization. A downside of this method is that it is difficult to implement in
commercial codes.
Gasser and Holzapfel have applied the partition of unity method to tissues, namely the
fracture of bone [37] and dissection of an aorta wall [36]. Nevertheless, fluid flow in the
tissue was not accounted for. Réthoré et al. [82] considered shear banding by using
partition of unity with crack-tip singularity for the solid phase and without crack-tip
singularity for the fluid phase, suggesting a discontinuity in the pressure field in case
of shearing, combined with Darcy’s law similar to the enhanced strains models. A
diaphragm with low permeability at the discontinuity is assumed.

The above work has shown that the partition of unity approach is promising for crack
propagation in porous media. Much discussion is still on the treatment of the fluid phase,
because there is no comparison to a benchmark solution. In this research we emphasize
on the inclusion of osmotic effects and insist on a more physical way of relating discon-
tinuity deformation and fluid flow. Unlike earlier approaches, this approach is tested by
comparison to an analytical solution of a two-edge dislocation [51].
For the modeling of the osmoelastic behavior of the material, Lanir’s plane strain
model [56] for small deformations is used. Lanir assumes incompressible constituents,
namely the solid matrix and interstitial fluid, and neglects the influence of ion flow.
Lanir’s model coincides with Biot’s model if osmotic effects are neglected. This model is
implemented with the cohesive segments model by Remmers et al. [24,80] for the solid
phase assuming quasi-brittle crack growth. In the fluid phase a pressure discontinuity is
introduced similarly to the displacement discontinuity in the solid phase, but the discon-
tinuity relaxes due to a permeability across the interface which alters depending on the
time since opening.

4.2 Governing equations

The governing equations consist of equations for the bulk and for the discontinuity, dom-
inated by mass balance, momentum balance and constitutive behavior. Figure 4.1 shows
a body Ω with external boundary Γ with a traction force on Γt and fluid supply on Γf,
with ~n the normal unit vector on the boundary Γ directed outwards. The body is cut by
a discontinuity Γd in two domains, Ω+ and Ω−. The normal of the discontinuity ~nΓ is
directed towards Ω+.
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Figure 4.1: Schematic representation of the body Ω: the two parts are Ω+ and Ω−, sep-
arated by crack Γd. A traction force holds on Γt and fluid supply at Γf.

4.2.1 Bulk behavior

For osmoelastic media have large negatively charged groups fixed to the solid matrix,
the fixed charge. Counter charges are present in the fluid for electro-neutrality. Due to
the fixed charges the total ion concentration inside the medium is higher than in the sur-
rounding fluid. This leads to an osmotic pressure difference and therefore swelling of the
medium. To simulate osmotically swelling porous media Lanir’s model is used in plane
strain (chapter 2) and is repeated here shortly. Lanir’s osmoelastic model [56] assumes
that free ions are always in equilibrium with the external salt concentration. Ion contri-
bution is therefore neglected and the medium is described by two constituents only: the
solid (s) and the fluid (f). The constituents are assumed to be incompressible. The mate-
rial is assumed linear-elastic, isothermal, isotropic, homogeneous and fully saturated.
The presence of the fixed charge causes a deformation dependent pressure difference
between the sample and surrounding fluid. Osmotic pressure is determined by the em-
pirical Van ’t Hoff equation. Van ’t Hoff relation defines the osmotic pressure in terms
of concentrations of free cations, c+, anions c−, gas constant R and temperature T and
depends indirectly on the fixed charge density cfc and the external salt concentration cex.

∆π = π − πex = RT
√

(cfc)2 + 4(cex)2 − 2RTcex (4.1)

Not hydrostatic pressure, but the chemical potential of the fluid is the driving force for
fluid flow. Chemical potential is a measure for the free energy of the fluid. The chemical
potential of the fluid µf is defined per unit volume fluid

µf = p− π. (4.2)

with π the osmotic pressure and p the hydrostatic pressure. The osmotic pressure is
determined by the empirical Van ’t Hoff equation. Van ’t Hoff relation defines the osmotic
pressure in terms of concentrations of free cations c+, anions c−, gas constant R and
temperature T.

π = RT(c+ + c−), c+ + c− =
√

(cfc)2 + 4(cex)2 (4.3)
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This osmotic pressure holds outside as well as inside the medium, but outside the
medium the fixed charge density cfc is zero and the osmotic coefficient may be differ-
ent. Electro-neutrality holds, therefore the amount of negative charges are equal to the
amount of positive charges: c− + cfc = c+. Furthermore we introduce ∆π = π − πex.
The seepage flux ~q follows Darcy’s law in presence of concentration gradients. The total
equations are given by Eqs. (4.4)-(4.9).

Momentum equations ~∇ · σ = ~∇ · σe − ~∇(µf + ∆π) =~0 (4.4)

Stress-strain relation σe = 2µε + λtr(ε)I (4.5)

Mass balance ~∇ · ∂~u
∂t

+ ~∇ ·~q = 0 (4.6)

Darcy’s law ~q = −K · ~∇µf (4.7)

Swelling equation ∆π = RT
√

(cfc)2 + 4(cex)2 − 2RTcex (4.8)

Fixed charge cfc = ϕf
ic

fc
0

tr(ε)+ϕf
i

(4.9)

The parameters µ = E
2(1+ν) and λ = µ 2ν

(1−2ν) are the Lamé constants. E, ν and µ are the
Young’s modulus, Poisson’s ratio, bulk modulus and shear modulus respectively. The
tensor K = KI denotes the permeability tensor and is assumed isotropic and constant in
time and space.
The presence of ions fixed to the solid matrix results in prestress of the solid matrix at
initial condition. Constitutive relation Eq. (4.4) holds relative to stress free configuration.
Therefore, ε is the strain tensor is separated in an initial strain εi and the deformation
from initial to current state, ε∆ = ε− εi = ~∇s~u = 1/2{~∇~u + (~∇~u)T}. Similarly, the
fixed charge density is calculated from the fixed charge density at stress-free configuration
cfc

0 and initial volume fraction ϕf
i. Equations (4.4)-(4.8) are reduced to (4.10).

∂tr(ε)
∂t − ~∇s · (K · ~∇sµf) = 0

2µ~∇s · ε + λ~∇str(ε)− ~∇s(µf + ∆π(ε)) =~0.
(4.10)

The boundary conditions and initial conditions are given by (Γt ∪ Γu = Γ, Γt ∩ Γu = ∅
and Γf ∪ Γµ = Γ, Γf ∩ Γµ = ∅)

~u(~x, 0) = ~u0(~x), ~x ∈ Ω, µf(~x, 0) = µf
0(~x), ~x ∈ Ω,

~u(~x, t) = ~uγ(~x, t), ~x ∈ Γu, µf(~x, t) = µf
γ(~x, t), ~x ∈ Γµ,

(σe − (µf + ∆π)I) ·~n =~tt(~x, t), ~x ∈ Γt ~q ·~n = ff(~x, t), ~x ∈ Γf

(4.11)

If the initial state is an unloaded state, where the material is in contact with a filter (µf
in =

µf
ex, the next holds

σe(εi)− ∆π(εi)I = O (4.12)
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provided that the medium is homogeneous. Then the initial strain is given by

εi = εiI,

εi = ∆πi
2µ+2λ , ∆πi = RT

√
(cfc

i )2 + 4(cex
i )2 − 2RTcex

i
(4.13)

In the case that the swelling in one direction is obstructed, for instance by adjacent verte-
brae, the initial strain is not isotropic.

4.2.2 Discontinuous kinematics

A set basis or shape functions {N}n
i=1, with n the number of integration points, form a

partition of unity since ∑n
i=1 Ni = 1. A field v is interpolated as (4.14)

v(~x, t) =
n

∑
i=1

Ni(~x)(ai(t) +
m

∑
k=1

ψk(~x)bik(t)) (4.14)

with ai the regular degrees of freedom (DOFs), {ψ}m
k=1 additional basis functions and

bik additional degrees of freedom [9]. These additional basis functions may not originate
from the span of the original set of basis functions.
Using these extra basis functions, the displacement field and the chemical potential dis-
tribution are separated into two different scales: the bulk behavior (standard field) and
crack behavior (enhanced field). The opening or sliding of a crack can be incorporated
as a jump in the displacement. A jump in displacement is mathematically represented
by a function operating on a smooth continuous function: the Heaviside function. We
assume that the strain field is defined everywhere even at the surface across which the
jump occurs. Then the displacement field ~u of the body can be additively decomposed
into the continuous part ~̂u and the enhanced part ~̃u [80].

~u(~x) = ~̂u(~x, t) +HΓd(~x)~̃u(~x, t) (4.15)

The Heaviside function HΓd is defined by (4.16) with the jump at the discontinuity.

HΓd =
{ −h/2 ~x ∈ Ω+

+h/2 ~x ∈ Ω− (4.16)

The Heaviside function is acting on the smooth function ~̃u(~x, t) keeping the crack surface
continuous. The jump at the discontinuity Γd is given by [~u] and represents the opening
of the crack.

[~u(~x, t)] = h~̃u(~x, t), ~x ∈ Γd. (4.17)

This is represented in 1D by Fig. 4.2. The strain becomes Eq. (4.18).
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Figure 4.2: A 1-D representation of the effect of the Heaviside function. The total field
built from the standard field and the enhanced field around the crack Γd.

ε = ~∇s~u = ~∇s~̂u +HΓd
~∇s~̃u + δΓd(~̃u~n

+)s (4.18)

with ~n+ the normal at the crack surface directed inwards. The last term only has a con-
tribution in the variational description at the discontinuity.
Figure 4.3 shows in two steps what happens at the crack. On initial growth a small open-
ing arises, i.e. small displacement jump, and a steep gradient in the chemical potential
occurs over a small transition zone (case A). While the opening grows, the gradient in
the chemical potential decreases in magnitude and spreads over a wider transition zone.
High gradients as result of shear loading are approximated by a jump µ̃f(~x, t) over the

A

B

u

Γ
d

μf

u

μf

Γ
d

Figure 4.3: When the crack grows, the displacement jump becomes nonzero and a large
gradient in chemical potential arises with a small transition zone (A). With
time, the displacement jump grows, the gradient in chemical potential de-
creases and the transition zone decreases.

crack surfaces, Fig. 4.4.
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In this case the decomposition becomes

µf(~x) = µ̂f(~x, t) +HΓd(~x)µ̃f(~x, t) (4.19)

and the difference in chemical potential at the discontinuity is given by [µf]:

[µf(~x, t)] = hµ̃f(~x, t), ~x ∈ Γd. (4.20)

The gradient in the chemical potential becomes

~∇sµf = ~∇sµ̂f +HΓd
~∇sµ̃f + hδΓd(µ̃f~n+) (4.21)

4.2.3 Local behavior

The governing equations for the bulk material and discontinuity kinematics are related
by constitutive modeling at the discontinuity in the shape of boundary conditions. A local
coordinate system (n,s) is introduced where n is in the direction of the normal vector to
Ω+ and t is orthogonal in the direction of propagation. This means a displacement jump
is decoupled into

[~u] = [~u]n~n+ + [~u]s~t+ (4.22)

with ~n+ = −~n− directed into the body and ~t+ is directed along the crack surface in
direction of propagation. We define crack surfaces Γ+

d = ∂Ω+ ∩ Γd and Γ−d = ∂Ω− ∩ Γd.

Local mass balance

Deformation at the discontinuity induces fluid flow. The contribution of flow along the
discontinuity is negligible in case of shear failure. The fluid flow across the crack surfaces
is not. Figure 4.4 shows a schematic overview of the local mass balance. The flow across
each of the crack surfaces ( f±Γ ) are equal and depend on the local pressure gradient and
material properties.
Because of the coarseness of the mesh, the local pressure gradient is unresolved and the

pressure gradient is modeled as a jump:

~q ·~n+ = f +
Γ (~x, t) = − f−Γ (~x, t) = −K µf+−µf−

2∆x
(4.23)

where ∆x is the distance the fluid flow has overcome and depends on the time ∆t since
discontinuity developed at that place, the bulk permeability K and aggregate modulus of
the material (c = 2µ + λ− δπ

δtr(ε) ), namely 2∆x2 ≈ ∆tKc. Then

f +
Γ = −kd(µf+ − µf−) = −kd[µf] = −hkdµ̃f (4.24)
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Figure 4.4: a. Representation of the gradient in the chemical potential near a disconti-
nuity approximated by a jump. b. Schematic representation of the fluid flow
at the crack surface.

Equation (4.24) is Darcy’s equation on the unresolved scale and should correspond to the
same equation on the resolved scale Eq. (4.23). This is true if - unlike the paper [82] where
a diaphragm in the crack is assumed - we choose the unresolved hydraulic permeability.

kd =

√
K

c∆t
. (4.25)

The unresolved hydraulic permeability is therefore derived from intrinsic material prop-
erties.

Local momentum balance

A discrete crack is preceded by local damage. This micro-damage is lumped into one
constitutive relation (cohesive zone) and projected on the crack [80], Fig. 1.7. The model
relates the decohesion, i.e. softening of the traction forces, as result of opening of the
crack. For the traction forces at each surface holds σ ·~n+ =~t+Γ = −~t−Γ = −σ ·~n−.

(σe − (µf + ∆π)I)± ·~n± =~t±Γ (~x, t), ~x ∈ Γ± (4.26)

The cohesive law holds locally and is described in local coordinate system of the disconti-
nuity. The cohesive zone model is usually nonlinear and acts on the effective stress. The
system is linearized in order to use the Newton-Rhapson procedure. Locally holds for the
change in traction forces w.r.t. previous step (∆~td) the following equation

∆~td = (~n+~t+)t
~d, ∆t

~d = hTdu
~d (4.27)

with t
~d column vector of the traction forces and u

~d column vector of displacement in local
coordinates. Matrix Td is the tangent stiffness of the cohesive zone model. A transition
of local to global coordinates is made to express the traction forces in terms of nodal
displacements. The change in traction forces ∆~t±Γ in global coordinates is given by

∆~t±d = (~e1 ~e2)∆t
~
±
d . (4.28)
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Then the transition from local coordinates to global coordinates occurs through a map-
ping Q

(~e1 ~e2) = (~n+~t+)QT. (4.29)

The change in traction forces ∆~t±Γ in local coordinates is expressed in terms of enhanced
nodal displacements.

∆t
~
+
Γ = Qt

~
+
d − (µf + ∆π)+n

~
+ = QTe,dQT~u

~
− (µf + ∆π)+n

~
+ (4.30)

Then the tangent stiffness in element coordinates is given by Te = QTe,dQT. Further-
more for the osmotic forces at the crack surfaces holds

π+ = 2RTcex, ∆π+ = 0, (4.31)

as the ionic concentration in the crack is the same as in the external reservoir.

Yield criterion

Crack growth is determined by damage in the solid matrix. Therefore the yield criterion,
next to the cohesive zone, is related to the effective stress. The effective stress at the crack-
tip varies locally, therefore the critical effective stress state is calculated nonlocally using
Gausian functions following Wells et al. [107], Fig. B.5.

σtip = ∑ntot
i=1

wi
wtot

σi
wtot = ∑ntot

j=1 wj

wi = (2π)2/3

l3
a

e
− r2

i
2l2a .

(4.32)

with ri the distance between integration point i and the crack-tip and la is a length scale
parameter which determines the influence of a sample point.
Crack propagation is initiated when maximum shear stress (τmax) is larger than the crit-
ical value τult (Tresca criterion). The maximum shear stress and associated angle αt is
calculated from the stress state according to

τmax = −σxx−σyy
2σxy

αt = 1
2atan(τmax)

(4.33)

This orientates the interface in direction of maximum shear stress.
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4.3 Numerical description

The weak form for the Finite Element Method is derived by standard Galerkin approach.
Then the weak equations are discretized leading to a time-dependent, non-linear sys-
tem. This is solved using a Cranck-Nicholson scheme for time-integration and Newton-
Rhapson iteration within each time increment.

4.3.1 Weak form

The momentum balance and mass balance are multiplied by test functions and subse-
quently integrated over the domain Ω. These test functions are taken of the same form
as the shape functions for the independent variables and therefore consisting for a stan-
dard and enhanced field.

~η = ~̂η +HΓd~̃η, ϕ = ϕ̂ +HΓd ϕ̃. (4.34)

Using integration by parts the discontinuity is introduced as a boundary integral. This
means that Dirac-terms in strain (4.18) has no contribution anymore in the integration
over the body.

Momentum balance

The momentum equation becomes

∫
Ω+∪Ω− ~∇s(~̂η +HΓd~̃η) : σdΩ =

∫

Γt

(~̂η +HΓd~̃η) ·~ttdΓ−
∫

Γd

~̃η · h(~t+Γ +~t−Γ )/2dΓ (4.35)

This equation must hold for all variations of test functions, therefore it hold also if ~̂η =~0
or if ~̃η = ~0. Both options are separately applied. This results in two equations. The first
equation denotes the bulk behavior.

∫
Ω+∪Ω− ~∇s~̂η : σdΩ =

∫

Γt

~̂η ·~ttdΓ (4.36)

Filling in the traction forces leads to Eq. (4.37).

∫
Ω+∪Ω− HΓd

~∇s~̃η : σdΩ + h
∫

Γ+
d

~̃η · (~t+d − µf+~n+)dΓ

=
∫

Γt
HΓd~̃η ·~ttdΓ

(4.37)
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Mass balance

Similarly, the variational equations for mass balance are derived. Note that ~∇ ·~u = tr(ε).
Then mass balance for bulk behavior becomes

∫
Ω+∪Ω− ~∇ϕ ·~qdΩ−

∫

Ω+∪Ω−
ϕ(tr( ˙̂ε) +HΓdtr( ˙̃ε))dΩ =

∫

Γf

ϕ ffdΓ (4.38)

The variational equation for mass balance at the discontinuity becomes

∫
Ω+∪Ω− HΓd

~∇ϕ ·~qdΩ−
∫

Ω+∪Ω−
ϕ(tr( ˙̂ε) +HΓdtr( ˙̃ε))dΩ

=
∫

Γf
HΓd ϕ ffdΓ− h

∫
Γd

ϕ~̃q ·~n+dΓ
(4.39)

with

∫
Γd

ϕ~q ·~n+dΓ = −h
∫

Sd
ϕkdµ̂fdΓ (4.40)

In equation (4.39) the seepage flux at the discontinuity is related to deformation of the dis-
continuity. This combination forms the mass balance at the discontinuity and results into
a symmetry with the traction forces in the stiffness matrix for the numerical simulations.
The weak form is provided by equations (4.36), (4.37), (4.38) and (4.39). Constitutive
behavior at the crack are introduced as a boundary condition.

4.3.2 Discretization

Spatial discretization

A discretized form is derived by dividing body Ω into elements Ωe, e = 1..ne (Ω =⋃ne
1 Ωe). The result is that also the discontinuity is discretized in elements Sd and the

boundary in elements Se. A transition from tensor to matrix notation is made introducing
columns. The displacements, the chemical potential and their variations are discretized
similarly (Bubnov-Galerkin approach) by

~̂u = ~N
~

T
~a
~u, ~̃u = ~N

~

T~b
~u

µ̂f = m
~

Ta
~µ, µ̃f = m

~
Tb

~µ

(4.41)

where ~N
~

= [N
~ x N

~ y] contains the shape functions, which are the same in x- and y-

direction. The columns~a
~u and~b

~u contain the nodal values for bulk part and enhanced
part, resp.. Similar are m

~
, a

~µ and b
~µ columns of shape functions and nodal values. Then

strain is discretized by

~∇sε = B~a
~u +HΓdB~b

~u (4.42)
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The first order differential operator on the displacement shape functions is denoted by
B = [LN

~ x LN
~ y] The matrix L contains the differential operators:

L =




∂
∂x 0
0 ∂

∂y
∂

∂y
∂

∂x


 (4.43)

Furthermore C = LT(~lm
~

T) a 2 × m matrix is defined with ~l = ( 1 1 0 )T. Then

BT · (~lm
~

T) = ~N
~

C holds and ~∇µf = Ca
~µ +HΓdCb

~µ.
Finally the stress and flux are defined. The stress consists of the effective stress
and the chemical potential. The effective stress in vector notation is given by σ

~e =
(σe,xx, σe,yy, σe,xy)T. The stress is linearized to the vector of nodal values such that a
Newton-Rhapson scheme can be used.

σ = ∂σ
~∂ε
~

∂ε
~∂~a
~u

~a
~u + ∂σ

~∂ε
~

∂ε
~

∂~b
~u

~b
~u + ∂σ

~∂a
~µ

a
~µ + ∂σ

~∂b
~µ

b
~µ

= DB~a
~u +HΓdDB~b

~u − (~lm
~

T)a
~µ −HΓd(~lm~

T)b
~µ

(4.44)

Here D is a (3x3) matrix for 2-D. The matrix D is defined as follows (c = 2µ + λ + ∂∆π
∂tr(ε

~
) ).

D =




c (c− 2µ) 0
(c− 2µ) c 0

0 0 2µ


 (4.45)

Furthermore the total traction forces at the discontinuity Sd are defined as

(σe − (µf + ∆π)I) ·~n+ =~t+Γ = hT~N
~

T~b
~u −~n+(m

~
Ta

~µ +
h
2

m
~

Tb
~µ) (4.46)

with T = Te the tangent stiffness including osmotic forces. The seepage flux is linearized
by

~q = ∂~q
∂~a
~u

~a
~u + ∂~q

∂~b
~u

~b
~u + ∂~q

∂a
~µ

a
~µ + ∂~q

∂b
~µ

b
~µ

= −KCa
~µ −HΓdKCb

~µ

(4.47)

Time discretization

The introduction of fluid flow does demands a time stepping algorithm. Time stepping
here is therefore driven by diffusion of the fluid and not dissipation of energy [80]. The
solution is sensitive to the magnitude of the time increment (time step). A large time
step leads to underestimation of fluid pressure in confined compression. Taking too
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small steps leads to initial oscillation. For stable time integration the next law has to be
satisfied [103]:

∆t >
∆x2

cK
(4.48)

A Cranck-Nicholson scheme is used. This means that differential terms are approxi-
mated linearly by looking at the difference between the new and old step and values of
the independent variables are weighted results of the new and old time step. Define
~c
~u = ( ~a

~
T
u

~b
~

T
u )T and c

~µ = ( a
~

T
µ b

~
T
µ )T and~c

~
= ( ~c

~
T
u c

~
T
µ )T. The next holds

∂~c
~∂t = ~c

~
n+1−~c

~
n

∆t
~c = θ~c

~
n+1 + (1− θ)~c

~
n

(4.49)

Stabilization is reached if implicit time stepping is used, i.e. θ ≥ 0.5. Taking θ = 1
reduces the method to Euler implicit.

4.3.3 Total system

Although the bulk material is assumed linear elastic, the presence of damage introduces
nonlinearity. The system is therefore solved iteratively at each time step. Define ~cu =
( ~a

~
T
u

~b
~

T
u )T a 4n× 1 vector and~cµ = ( a

~
T
µ b

~
T
µ )T a 2m× 1 vector.

In the equations subscript i denotes the temporary solution ~c
~i in iteration step i and

superscript n denotes the solution~c
~

n of previous time step n.

Newton-Rhapson solution procedure with Cranck-Nicholson

• Step 0:~c
~0 =~c

~
n

• Step i+1:

– If no convergence solve
(

Kuu,i −Kuµ

−Kµu −∆tθKµµ

)
δ~c
~i =

(
f
~ext,u

− f
~int,u

∆t f
~

θ

ext,¯
− ∆t f

~

θ

int,¯

)
(4.50)

– ~c
~i+1 =~c

~i + δ~c
~i, i = i + 1

• Final iteration step:~c
~

n+1 =~c
~

n + ∑i δ~c
~i
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The matrices involved are given below.

Kuu,i =

( ∫
Ωe

BTDiBdΩ
∫

Ωe
HΓdBTDiBdΩ∫

Ωe
HΓdBTDiBdΩ

∫
Ωe
H2

Γd
BTDiBdΩ + Muu,i

)

Kµµ,i =

( ∫
Ωe

CTKiCdΩ
∫

Ωe
HΓdCTKiCdΩ∫

Ωe
HΓdCTKiCdΩ

∫
Ωe
H2

Γd
CTKiCdΩ + Mµµ,i

)

Kuµ =

( ∫
Ωe

~N
~

CdΩ
∫

Ωe
HΓd

~N
~

CdΩ∫
Ωe
HΓd

~N
~

CdΩ + Muµ,i
∫

Ωe
H2

Γd
~N
~

CdΩ + hMu¯,i/2

)

KT
µu =

( ∫
Ωe

~N
~

CdΩ
∫

Ωe
HΓd

~N
~

CdΩ∫
Ωe
HΓd

~N
~

CdΩ
∫

Ωe
H2

Γd
~N
~

CdΩ

)
,

(4.51)

Muu,i = h2 ∫
Sd

~N
~

Ti~N~
T

dΓ = h2 ∫
Sd

~N
~

Te,i
~N
~

T
dΓ

Mµµ,i = h2 ∫
Sd

kd,im
~

m
~

TdΓ
Mu¯ = h

∫
Sd

~N
~
~n+m

~
TdΓ

(4.52)

and

f
~int,u

=

( ∫
Ωe

BTσ
~ idΩ∫

Ωe
HΓdBTσ

~ idΩ +
∫

Γd
~N
~
~t+Γ,idΓ

)

f
~

θ

int,¯
=

( ∫
Ωe

CT(θ~qi + (1− θ)~qn)dΩ− ∫
Ωe

CT~N
~

T ~ui−~un

∆t dΩ∫
Ωe
HΓdCT(θ~qi + (1− θ)~qn)− ~ui−~un

∆t dΩ +
∫

Γd
m
~
(θ f +

Γ,i + (1− θ) f +,n
Γ )dΓ

)

f
~ext,u

=

( ∫
Γt

~N
~
~tn+1

t dΓ∫
Γt
HΓd

~N
~
~tn+1

t dΓ

)

f
~

θ

ext,¯
=

( ∫
Γf

m
~
(θ f n+1

f − (1− θ) f n
f )dΓ∫

Γf
HΓd m

~
(θ f n+1

f − (1− θ) f n
f )dΓ

)

(4.53)

The same matrix relations hold for bulk behavior, discontinuity behavior and their con-
nections plus some additive linking.
Babuska-Brezzi stability criterion is met if displacement is linearly interpolated and the
chemical potential is defined in the middle of the element. This is not possible since the
crack will get too close to the node and robustness is lost. Another possibility is to inter-
polate displacements quadratically and the chemical potential linearly. As result, element
integration is more difficult. Since Réthoré et al. [82] do not suffer from these issues
while violating the Babuska-Brezzi criterion, here also bilinear basis functions are used.
The model has been programmed using the Jem/Jive finite element toolkit which has
been developed by Habanera. For implementation aspects like the tracking of the crack-
tip, increasing the degrees of freedom or other propagation issues we refer to Remmers
et al. [78,80,81] and appendix B.



56 CHAPTER 4. STRONG DISCONTINUITY MODEL FOR SHEAR LOADING

4.4 Numerical examples

Two examples are considered. Firstly, a static crack under shear loading is studied for
verification. Secondly, quasi-static crack growth due to confined compression is viewed.

4.4.1 Verification

A sample of size 8 mm ×6 mm is considered with in the middle a crack of length 2L =
2 mm. The crack is impulsively loaded by a two-edge dislocation [51]. The crack surfaces
are assumed friction free. This loading leads to a high shear stress at the crack-tips, which
relaxes due to redistribution of the fluid. Figure 3.1 shows the loading. The analytical
solution for shear stress distribution in plane of the crack is given by Eq. (3.25) and for
flow by Eq. (3.30). The distribution for the chemical potential over the complete material
is given by Eq. (3.29).
In contradiction to chapter 3, there are no element edges in plane of the crack. This
results in a slightly different mesh than in Fig. 3.2. For the numerical simulations three
meshes are considered: 112 elements (denoted by N = 1), 510 elements (denoted by
N = 2) and 2170 (denoted by N = 4). Each mesh is a refinement of the previous. All
sides are restricted in movement: upper and lower sides in y-direction and left and right
sides in x-direction. Furthermore at all sides fluid flow is free and therefore dµf = 0. The
material properties are given in Tab. 4.1.

Table 4.1: Material properties for verification.

R = 8.3145 [N mm/mmol K] T = 298 [K]
E = 0.9 [MPa] ν = 0.20 [-]

ϕf
i = 0.80 [-] K = 0.24e-3 [mm4/Ns]

cex = 0.15e-3 [mmol/mm3] cfc
i = −0.2e-3 [mmoleq/mm3]

d = 0.0040 [mm] L = 1.0 [mm]

4.4.2 Compression test

Until now a static crack is considered. As far as we know, there seems to be no bench-
mark for discrete shear failure in porous media, let alone for ionized porous media. To
show that in shearing the osmotic prestress plays an important role a compression test is
considered. For the compression test the sample is boxed except for the contact area with
the piston. On the right the sample is in contact with a filter, which causes an equilibrium
with an external salt solution (µf

in = µf
ex). An initial crack is imposed away from element

interfaces (Fig. 4.6).
For the cohesive damage model an exponential law similar to Xu and Needleman [112] is
used, Fig 4.5. This law denotes the softening behavior after reaching the critical stress
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Figure 4.5: Normalized distribution of the exponential cohesive law for shearing related
traction forces and displacement.

state. Defined is critical length δs = Gc/τult, with τult the ultimate traction forces and Gc
fracture toughness. The cohesive law is then

ts = τult
[u]s
δs

e−( [u]s
δs )2

(4.54)

Note that the surface underneath the curve is the fracture toughness Gc:

∫ ∞
−∞ tsd[u]s =

∫ ∞
−∞ tsd[u]s

= τultδs2
∫ ∞

0
r
2 e−r2

dr = τultδs = Gc.
(4.55)

A history parameter κ is introduced in case of unloading each time step the current open-
ing κ0 and traction τ0 are remembered. When the new opening is smaller than previous,
then unloading takes place according to

ts =
τ0

κ0
[u]s. (4.56)

Damage is defined as

D = 1− |ts|
τult

(4.57)

Macro crack is developed when the local damage approaches maximum (D = 1) and
therefore when the exponential approaches zero. When locally the opening decreases
compared to previous time step unloading takes place. The cohesive law parameters Gc
and τult can be obtained from experimental data. The material properties are given in
table 4.2. External load is applied through the piston. The piston is moved with constant
speed v = 0.15e-3 mm/s. Three types of prestress are considered (Fig. 4.7).
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Figure 4.6: Left: Schematic representation of the compression test. Right: Representa-
tion of the mesh for the compression test.

Table 4.2: Material properties for compression test.

R = 8.3145 [N mm/mmol K] T = 298 [K]
E = 90.0 [MPa] ν = 0.20 [-]
ϕf

i = 0.80 [-] K = 0.28e-3 [mm4/Ns]
cex = 0.15e-3 [mmol/mm3] cfc

i = −0.2e-3 [mmoleq/mm3]
Kd = 0.28e-3 [mm3/Ns]
Gc = 2.0 [J/m2] τult = 0.4 [MPa]
la = 0.2 [mm] v = 1.5e-3 mm/s

a. b. c.

Figure 4.7: Representation of the three different types of prestress, namely as result of
free swelling a. in both directions, b. in x-direction and c. in y-direction.
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4.5 Results

4.5.1 Verification

The dislocation causes a high shear stress just after the crack-tip and a reaction shear
stress just before the crack-tip. Furthermore for x > 0 a compressive zone (i.e. positive
chemical potential) just above the crack-tip arises and expansion just below the crack. The
same behavior is seen at the other crack-tip, but then mirrored.

Shear stress distribution

The numerical simulations can be compared to the analytical solution, by averaging the
stress over the integration points. Numerically the stress is underestimated at the crack-
tips, but this improves upon mesh refinement (Fig. 4.8). Decreasing the space discretiza-
tion leads to higher underestimation of the stress and larger oscillations.
The impulsive loading of the medium results initially in isochoric deformation and high
shear stress. Then the fluid flow redistributes and the shear stress relaxes. Consolidation
takes place. This behavior is seen analytically as well as numerically in Fig. 4.9. With re-
finement, the time dependent behavior of the analytical solution is better approximated.
In all numerical calculations oscillations take place. Initially the time discretization deter-
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Figure 4.8: Numerical shear stress distribution for three different meshes and analytical
shear stress distribution at y = 0 for t = 32 s. High singularity at crack-tips
x± 1 mm is seen.

mines the accuracy of the consolidation behavior. Changing the permeability at the crack
has little influence on the solid behavior, Fig. 4.10. The flow across the crack surface
shows the influence of the mass balance at the crack.
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Figure 4.9: Consolidation for different calculations at x ≈ −0.95 mm corrected by the
equilibrium solution. With refinement, the time dependent behavior of the
analytical solution is better approximated.

-8e-4

-6e-4

-4e-4

-2e-4

0

 0  100  200  300  400  500

s
h

e
a
r 

s
tr

e
s
s
 [

M
P

a
]

time [s]

analytic
kd = kd(t)

kd = Kd/10
kd = Kd

Figure 4.10: Numerically and analytically calculated shear stress at x = −0.957 mm for
finest mesh. The influence of kd is low, but constant permeability seems to
give a little overshoot.

Flow distribution

Firstly, Fig. 4.11 compares the flow across the crack in time with the analytical solution
for three cases: non-constant permeability Eq. (4.25), kd = kd(t), constant permeability
, kd = Kd, and a much smaller constant hydraulic permeability, kd = Kd/10. The case
of a non-constant permeability is closer to the analytical solution because it has a faster
flow redistribution than the other cases. In space though, the flow near the crack-tip is
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Figure 4.11: Numerically and analytically calculated flow (~q ·~n+) over the crack in time
at x = −0.923 mm. The case with crack permeability kd = kd(t) is closest
to the analytical solution. A low permeability kd = Kd/10 prevents flow
across the crack surfaces.

underestimated (Fig. 4.12). Comparison of the constitutive discontinuity mass balance,
Fig. 4.12a, with the averaged flow at the discontinuity, Fig. 4.12b, shows that the intro-
duced constitutive behavior results in a close match between local constitutive and global
constitutive behavior. Comparing partition of unity method (PUM) with other methods
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Figure 4.12: Numerically and analytically calculated flow over the crack in space for t =
32 s. a. Flow as result of local constitutive relation Eq. (4.24) b. Averaged
flow of global constitutive behavior. The case with unresolved hydraulic
permeability kd = kd(t) is closest to the analytical solution. Furthermore,
the local flow and averaged flow match well in this case.

shows that PUM captures the shear stress near the crack-tips better than ABAQUS [51],
Fig. 4.13a. Taking the pressure field continuous gives poor results with respect to the
other methods, Fig. 4.13b.



62 CHAPTER 4. STRONG DISCONTINUITY MODEL FOR SHEAR LOADING

a.

-8e-3

-6e-3

-4e-3

-2e-3

0

-1  0

s
h

e
a
r 

s
tr

e
s
s
 [

M
P

a
]

position dx [mm]

analytic
PUM strong

PUM cont
ABAQUS

b.

-1.5e-6

-1.0e-6

-0.5e-6

1.5e-6

1.0e-6

0.5e-6

0

-1  0  1

n
o

rm
a
l 
fl

o
w

 [
m

m
/s

]

position dx [mm]

analytic
PUM strong

PUM cont
ABAQUS

Figure 4.13: Resulting numerically and analytically calculated shear stress (a.) and flow
(b.) for different methods (t = 32 s). ABAQUS calculations [51] perform
less than PUM calculations for stress distributions. Taking the pressure
field continuous give the worse results for the fluid flow.
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4.5.2 Compression test

Crack growth is investigated in a free swollen sample. The initial size of the sample is the
result of free swelling in both directions. The resulting pre-strain is εix = εix = 1.2e-3.
In Fig. 4.14b the distribution of the chemical potential is given at different time points.
The movement of the piston results in initially straight crack growth which after a while
deflects. At the crack-tip a pressure gradient over the crack exists. Four states of pre-

a. b. c. d.

Figure 4.14: Distribution of chemical potential a. for no fixed charges (εi = 0, dt =
12.5 s), and for prestress in b. both directions (εi <> 0, dt = 16.6 s) c.
x-direction only (εix <> 0, dt = 23.3 s) d. y-direction only (εiy <> 0, dt =
18.9 s). Crack-path is independent of mesh. Results depend on prestress.

stress is shown: no fixed charges, free swelling, constrained swelling in y-direction only
(εiy = 1.5e-3 and εix = 0) and constrained swelling in x-direction (εix = 1.5e-3 and
εiy = 0) are considered. With prestress in y direction, the crack propagates relatively
straight longer than with prestress in x-direction only. Considering the total load the pis-
ton exhibits, Fig. 4.16a, it is seen that to displace the piston, the load needed increases
nonlinearly.
A closer look to freeze the fields at the crack at time point dt = 15 s gives extra informa-
tion on the field, Fig. 4.15. In all cases a wave in chemical potential is seen.

For the prestress in only y-direction more load is needed to reach the same displace-
ment, but the specimen fails faster too, 4.16b. Prestress in both directions or none at all
have a growth pattern in between and hardly deviate from each other in crack path. The
cases with prestress start with negative load. Finally in all cases failure occurs, i.e. load is
not transferred anymore. The fluid flow evolution in case of free swelling is considered
across the crack ~q ·~n+ for two points, in the initial crack (dx = 0.28 mm) and in the
crack (dx = 0.48 mm), Fig. 4.17. The flow in the initial crack is nonzero. Every time the
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Figure 4.15: Distribution of crack mouth opening displacement (CMOD), traction forces
(trac) and chemical potential (chem pot)) for delamination in space at dt =
100 s.
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Figure 4.16: a. Piston displacement versus load. Prestress in x-direction only grow
longest. b. Piston displacement versus crack length. Prestress in only
y-direction causes a faster growth, but shorter crack path.

crack propagates a peak in flow takes place which is also felt in the already existing crack.
The crack grows for several elements after which stress is built up again and in which
the flow relaxes. The fluid flow is nonzero from start. When the local permeability is
taken constant and similar to bulk permeability (kd = Kd), the overal crack propagation
is not changed much, but fluid exchange is lower and more slowly initiated. When the
permeability is taken much lower, there is hardly any fluid flow.
Loading with a larger rate (0.06 N/mm/s) needs a larger load to displace the piston than
in the standard case with rate 0.03 N/mm/s, but the specimen fails earlier. Crack growth
causes higher peaks in flow when the rate is increased. There are two types of discretiza-
tion sensitivity: in time and in space. Decreasing the time discretization by a factor 4 does
not have any influence on bulk and crack behavior. Therefore the time step is sufficiently
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Figure 4.17: Normal flow for free swelling along the crack at points dx = 0.28 mm and
dx = 0.48 mm. Crack growth causes a peak in flow after which relaxation
takes place. The use of the unresolved hydraulic permeability (kd = kd(t))
results in a nonzero initial flow and high peaks in case of growth followed
by relaxation.

small. Decreasing the mesh discretization size by a factor two, does not have a negligible
effect. Decreasing the mesh size, but keeping the nonlocal length la (Eq. (4.32)) con-
stant, increases the amount of integration points over which the stress at the crack-tip is
averaged. The result is that the stress at the crack-tip is lower and therefore crack growth
is slightly slower, but more constant. This has effect on the fluid flow. Decreasing the
nonlocal length and the discretization size by a factor 2 causes faster crack growth.

4.6 Discussion

A small strains framework has been derived to investigate shear fracture in ionized
porous media. The method has been verified by analytical solution, showing its capa-
bilities and limitations. Crack propagation is demonstrated to alternate with pressure
diffusion across the crack resulting in a stepwise propagation of the fracture. The initial
state of swelling affects the rate and the direction of crack propagation.
Two important factors are different with respect to other papers [7,82]. Firstly, osmotic
conditions and prestress have been taken into account in the model. Secondly, the
unresolved permeability is introduced to allow fluid flow across the crack surfaces.
A strong assumption has been made on the enhanced chemical potential field. A jump
in the chemical potential has been assumed to account for steep gradients near borders.
The verification method shows that a jump as approximation for steep gradients seems
reasonable. Réthoré [82] confirms that this assumption is physically feasible, since
forcing pressure discontinuity zero leads to cavities. Using jumps as approximation for
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steep gradient contributes to robustness of the calculations. The role of the chemical
potential in the traction forces, equation (4.26) was not taken into account in the work
by Réthoré [82]. This term is negligible in shear loading. Some robustness was lost by
the use of bilinear elements in space and linear in pressure. The influence of this was
not seen in testing of the continuum element, nor is the effect seen in discontinuous
elements. Improving the element might improve accuracy and robustness.

The bulk behavior has been verified by a 1-D confined compression test and a 2-D
unconfined compression test. For the verification of the implementation of the material
including crack and the constitutive model, a two-edge dislocation is impulsively induced
by prescribing the displacement at the crack. Figure 4.8 shows oscillations. Changing
the time discretization did not decrease the oscillations. A remedy against oscillations
could be the use of asymptotic crack-tip solutions.
The plotted stress is the stress at the integration points. This results in a slight nu-
merical underestimation of the shear stress. A better approximation would be the use
of Gaussian interpolation as used for yield stress analysis. Nevertheless, with mesh
refinement the numerical solution converges to the analytical shear stress. Spatial and
time distribution is captured well for the finest mesh, Figs. 4.8 and 4.9.
The influence of the unresolved hydraulic permeability is low on the shear stress
distribution in space, although the consolidation behavior is affected largely. Figure
4.10 shows that overshoot takes place when unresolved hydraulic permeability is taken
constant. The performance of the mass balance at the crack is genuinely tested when the
flow over the crack surface is considered. Behavior in time, Fig. 4.11, shows that the use
of a unresolved hydraulic permeability with relaxation, Eq. (4.25), performs better than
the use of a constant permeability. It captures the flow better, but there is a difference in
maximum flow. This is the result of the error in space.
The method is prepared for crack propagation with cohesive zone modeling. With
cohesive zone model stress singularity is decreased by damage evolution. Therefore the
(cohesive) crack-tip is not enhanced, i.e. jumps are zero. The effect of zero jump in the
chemical potential at the crack-tip (Fig. 4.12) enforces an underestimation of the flow
across the crack surface compared to the analytical solution. While for the analytical
solution the flow is maximum at the crack-tips, numerically it is zero since a

~µ,i = 0 for
the nodes of the crack tips. The numerical crack is therefore actually smaller than the
analytical crack length. The constitutive relation of the flow at the discontinuity matches
the averaged (resolved) flow at the discontinuity well. This confirms flow over the crack
surfaces has been enabled. The match can be further improved by adding a factor in the
local constitutive behavior Eq. (4.25). The results show that the numerical flow matches
the analytical flow as well as previous calculations [51], but the singularity of the shear
stress is captured better, Fig. 4.13. Since the shear stress drives the propagation, a large
improvement has been made.
The two-edge dislocation test is a test which causes a higher singularity at the crack-tip
than usually used in fracture mechanics. It does show that capturing a dislocation in
a solid is difficult, but capturing the fluid flow as result of the dislocation is even more
difficult. It also shows that fluid flow over the crack is possible.
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A compression test was considered to investigate the effect of fluid flow and prestress on
the crack growth. For this purpose an exponential cohesive law was used to mimic micro
damage ahead of the crack-tip. The choice of cohesive law has a small influence on crack
propagation. This is a property of the cohesive zone [20]. The cohesive zone model has
to be validated with experiments.
Maximum shear stress criterion was used to initiate damage. This criterion does not
differentiate between compression and tension. In this case failure takes place under
compression. This is not uncommon in soils, for example failure of soils under a con-
crete pile. Furthermore, compression tests are the most common tests for soil exper-
iments [64]. Mesh-dependency was not overcome completely, but trends were similar.
Especially the nonlocal length, Eq. (4.32), had a large influence on crack growth. This is
logical, since this length determines the singularity of the stress field at the crack-tip.
The pressure distributions in Fig. 4.14, show that crack path is mesh-independent. While
a structured rectangular mesh has been used, the crack path undergoes a curvature. The
angle of growth is clearly not prescribed. The result is strongly dependent on prestress,
this has also been seen in solids [77]. A prestress in only x-direction causes the crack to
grow straight longer. Prestress in only y-direction causes the crack to grow earlier but
also to be shorter (Fig. 4.16), since it deflects faster. Prestress in both directions or none
at all does not give rise to different crack patterns. The prestress hardly influences crack
growth in homogeneous case, has a clear influence when the prestress is not homoge-
neously distributed.
Previous results were general results which mostly depended on the constitutive model-
ing of the solid, locally and globally. When the unresolved hydraulic permeability in the
mass balance at the discontinuity is considered, Fig. 4.17, it is seen that the choice for the
unresolved hydraulic permeability does not influence the crack growth rate so much, but
it has a large influence on the fluid flow.
A low and constant hydraulic permeability results in zero flow over the crack. In the
other cases, growth causes a peak in flow, which is felt before the crack-tip, decreas-
ing with length to the current crack-tip. The time-dependent unresolved hydraulic per-
meability kd = kd(t) causes a nonzero flow over the crack surface in the initial crack
(dx = 0.28 mm) which resolves in time. For kd = Kd this flow is initially zero and grows
to a magnitude much lower than the previous case except for a large peak arises when
crack growth takes place for the first time. The time-dependent unresolved hydraulic per-
meability kd = kd(t) causes a nonzero flow over the crack surface in the initial crack
(dx = 0.28 mm) which resolves in time. Under compression, effective stress is built up
and the fluid is pushed away. Upon growth, stress is released and with that pressure. The
fluid flows back. Crack growth alternates with fluid relaxation.
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CHAPTER FIVE

Weak discontinuity model for the fluid
for tensile loading in saturated ionized
porous media1.

1 To be published: F. Kraaijeveld, J. M. Huyghe, J. J. C. Remmers, R. de Borst, F. P. T. Baaijens, (2009).
A mesh-independent model for mode-I fracture in osmoelastic saturated porous media. Int. J. Num. Meth.
Eng. [52]
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5.1 Introduction

In the previous chapter fracture growth in ionized porous media has been studied for
shear failure. In this chapter the focus is on tensile failure. In tensile loading, fluid
flow in the crack occurs due to deformation of the bulk material and opening of the
crack. Examples of tensile failure are delamination, such as in the annulus of the
intervertebral disc or in material test experiments, failure of concrete dams, pressurized
well bores and hydraulic fracturing. In all these cases a strong coupling exists between
fluid pressure and crack propagation. Numerical simulation techniques describing
the fracture propagation coupled to the fluid exchange between the fracture and the
formation are highly desirable to enhance the understanding of the process of tensile
failure.
An example of failure in ionized porous media is intervertebral disc (IVD) hernia-
tion. The etiology of intervertebral disc herniation is largely unknown. IVD tissue is
avascular and therefore ages relatively fast [100]. During ageing, the disc changes in
size, structure and osmotic prestress. Furthermore the number of cracks grow [3,100].
While some papers suggest that herniation is the result of weakening of the disc due
to ageing [42,95,96], others believe that fast ageing is the cascading effect of an initial
disruption [19,113]. Genetic studies actually suggest that occupation (i.e. loading history)
is of less influence than familiarity [11,105]. Wognum et al. [111] showed that cracks open
under decreasing osmotic pressure (i.e. ageing) which causes stress localization at the
crack-tip.
This could also be a mechanism for borehole instability [33], a second example for failure
in ionized porous media.
Fluid-driven fracture propagation in ionized porous media is an example for failure in
porous media which is desired. The fracturing of tight sand is needed in order to win gas
at commercial rates. For the modeling of fluid-driven fractures analytical solutions have
been developed [25,41,84]. More specifically, hydraulic fracturing in porous media [17,34]
is considered a benchmark. Detournay and Garagash [27] combined analytical and
numerical analysis to show that fluid-driven fracture depends on permeability and
propagation velocity for unsaturated porous media. Derivations of these solutions
demanded simplifications, such as no or minimal fluid exchange between crack and
material.
Understanding of the relation between fracture and fluid flow is needed for commercial
and medical applications.

Homogenization and upscaling techniques in porous media have been used [28,49],
but these are suitable to study damage evolution when there is no prominent crack
to be distinguished. Full fracture calculations for a macro crack in porous media
were performed in a FE setting from the 1990s. Boone et al. [17] introduced interface
elements equipped with the cohesive zone model by Dugdale [30] and Barenblatt [10] for
the fracturing process in a poro-elastic setting. They studied stress testing with water to
initiate micro-cracking for a known path. The use of interface elements is suitable if the
crack path is known a priori, since it requires a priori alignment of the element with the
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crack path.
Adaptive remeshing methods have been combined cohesive zone models [89,94]. These
methods are able to capture fracture evolution in nonhomogeneous porous materials
without assumptions about the singularities of the solid and fluid fields. Unfortunately,
the adaptive remeshing schemes are computationally expensive and require suitable
mapping procedures [89,93].
Alternatively, fractures are introduced in a mesh free way by exploiting the partition
of unity property of the finite element shape functions [9]. Fractures are represented
by a discontinuity in the displacement field. A discontinuity is introduced in the FEM
by adding an enhanced (discontinuous) field to the standard displacement field. The
number of degrees of freedom at the nodes whose support is crossed by a discontinuity,
are increased. Therefore no new nodes are added during propagation and no dummy
stiffness is required. Belytschko [12] introduced this method together with an asymptotic
enhancement of the displacement field at the crack-tip. Practical benefits of exploiting
the partition of unity method are that standard discretization is used and that crack
propagation is independent of the discretization.
The partition of unity approach has been combined in solid mechanics with cohesive zone
models allowing the cohesive zone run through the continuum elements [70,80,107].

Strong discontinuity concept has been introduced in porous media by Larsson et
al. [58,59] by the introduction of a regularized Dirac distribution function to the pressure
field at the location of the discontinuity for shear banding in an enhanced strains
approach. In a different approach, Armero and Callari [7] assume continuous flow
and have suggested that a dilatant response of the discontinuity would result into a
discontinuity in the fluid flow.
Along the same lines, Roels et al. [85] used the partition of unity method to simulate crack
propagation in the solid part combined with moisture transfer scheme. The progress of
the moisture front in the fracture is calculated separately from the mechanical behavior
by a quasi-static pressure equation together with a Darcian flux equation with permeabil-
ity related to opening. Results show that the solution for the fluid phase smoothed upon
mesh refinement, since a fine mesh is needed to capture the steep change increase of
capillary pressure field and corresponding decrease in permeability.
Al-Khoury et al. [4] used the partition of unity approach in combination with a strong
discontinuity for the solid phase combined with a double porosity model for the fluid
phase. The equations solved as one single system. The fluid flow in the crack is coupled
to fracture in the solid phase by a leakage term. Unfortunately only one-dimensional ex-
amples have been addressed. It is unclear how the model will behave in two dimensions.
Réthoré et al. [22,83] used partition of unity approach with strong discontinuity model
for the solid phase and a weak discontinuity model for the fluid phase. Fracture and
fluid flow is related by a cavity model, which relates the opening to flow in the fracture
assuming viscous fluid in the cavity. Only static cases have been considered, but they
show mesh-independency of the fluid phase.

All aforementioned papers have shown that the partition of unity approach is suitable for
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studying crack growth in porous media. While treatment of the solid phase is straightfor-
ward, there is no consensus on the treatment of the fluid flow as result of a displacement
discontinuity, nor have osmotic forces been taken into account.
In this chapter a framework for mesh-independent fracturing in ionized porous media
under tensile loading is introduced. Lanir’s plane strain osmoelastic model [56] for small
deformations is used to model the bulk material. This model represents the bulk effect
of the presence of ions, but assumes that the ion flow is fast compared to fluid diffusion.
For this paper the partition of unity approach is used to introduce strong discontinuities
in the displacement field. The strong gradients in the pressure at fractures made us de-
cide to introduce a weak discontinuity for the chemical potential field. This approach is
combined with cohesive zone modeling [80] for damage evolution. A direct coupling be-
tween fluid flow in the crack, in the formation and between the formation and the crack,
and coupling to ionization is formulated. Several examples are considered, both with
and without an external mechanical load. The effect of prestress in the bulk material on
fracture propagation is considered.

5.2 Governing equations

The governing equations consist of equations for the bulk and for the discontinuity, dom-
inated by mass balance, momentum balance and constitutive behavior. Figure 4.1 shows
a body Ω with external boundary Γ with a traction force on Γt and fluid supply on Γf,
with ~n the normal unit vector on the boundary Γ directed outwards. The body is cut by
a discontinuity Γd in two domains, Ω+ and Ω−. The normal of the discontinuity ~n+ is
directed towards Ω+.
Ionized porous media is dominated by deformation, i.e. displacement ~u, and fluid flow,
i.e. the chemical potential µf. The governing equations for the bulk are defined in section
4.2 and chapter 2.

5.2.1 Discontinuity kinematics

By exploiting the partition of unity principle [9], the displacement field and the chemical
potential distribution is separated into two different scales: the bulk behavior (standard
field) and crack behavior (enhanced field). The partition of unity principle is given by
equation (4.14). As in chapter 4, the displacement field ~u of the body is additively decom-
posed into the standard or continuous part ~̂u and the enhanced part ~̃u.

~u(~x) = ~̂u(~x, t) +HΓd(~x)~̃u(~x, t) (5.1)

The Heaviside function HΓd is defined by (5.2) with the jump at the middle of the discon-
tinuity.

HΓd =
{

+h/2 ~x ∈ Ω+

−h/2 ~x ∈ Ω− (5.2)
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The Heaviside function is acting on smooth function ~̃u(~x, t) and allows for continuity of
the crack surface. The jump at the discontinuity Γd is given by [~u] and represents the
opening of the crack (shear or normal opening).

[~u(~x, t)] = h~̃u(~x, t), ~x ∈ Γd. (5.3)

with h = H+
Γd
−H−

Γd
the magnitude of the jump of the Heaviside function.

Opening of a crack causes a high gradient in the chemical potential at both crack sur-
faces. In opening mode there is no pressure difference between the crack surfaces but a
pressure difference between the crack surface and the middle of the crack, as shown in
Fig. 5.1. Using the partition of unity property, a distance function DΓd similar to Réthoré

Δx

Resolved

Unresolved

Figure 5.1: Distribution of chemical potential as result of crack growth. Crack growth causes an
instant peak in flow at the location of the crack (dark grey). This is approximated by a
weak discontinuity (lighter grey).

et al. [83] (Fig. 5.2) is introduced. This function allows for the natural introduction of
steep gradients without enforcing it. In this case the decomposition becomes

Figure 5.2: Distance function for simulating a weak discontinuity.

µf(~x) = µ̂f(~x, t) +DΓd(~x)µ̃f(~x, t) (5.4)
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The distance function is defined with respect to the coordinates of the crack ~xΓ, namely
by

DΓd =
h
2
|(~x−~xΓ) ·~n+|, ~x ∈ Ω (5.5)

with h the magnitude of the Heaviside jump. The gradient of the distance function ~∂D is
given by

~∂D = ~∇sDΓd =

{
h
2~n

+ ~x ∈ Ω+

h
2~n

− ~x ∈ Ω− = HΓd~n
+ (5.6)

where ~∇s~u = 1/2{~∇~u + (~∇~u)T} holds. The effect of the strong and discontinuous
functions are represented in 1D by Fig. 5.3. The Heaviside function causes the a discon-
tinuous distribution with a jump at the location of the crack and a linear distribution away
from the crack (Fig. 5.3a). The distance function causes a continuous distribution of the
chemical potential with a nonlinear distribution of the chemical potential away from the
crack.

a.
 

 

Γ
dnode i node i+1

standard
enhanced
total strong

b.
 

 

Γ
dnode i node i+1

standard
enhanced
total weak

Figure 5.3: A 1-D representation of the effect of a. the Heaviside function and b. the
distance function. The total field is the additive result of the standard field
and the enhanced field.

5.2.2 Local behavior

A local coordinate system (n,s) is introduced where index n denotes the normal compo-
nent directed to Ω+ and t denotes the tangential component directed towards direction
of propagation. A displacement jump is decoupled into

[~u] = [u]n~n+ + [u]s~t+ (5.7)

with ~n+ = −~n− directed into the body and ~t+ is directed along the crack surface in
direction of propagation. We define crack surfaces Γ+ = ∂Ω+ ∩ Γd and Γ− = ∂Ω− ∩ Γd.



5.2 GOVERNING EQUATIONS 75

Local mass balance

Deformation around the discontinuity is strongly linked to fluid flow. Fluid flow takes
place at the surface of the discontinuity from the medium into the crack and a flow along
the crack when opening of the crack increases. When the crack is closed, the normal
fluid flow f±c over surface Γ±d determines the amount of fluid exchange. When the crack
opens, additional terms are included. Figure 5.4 shows a schematic overview of the local
mass balance. In case of tensile mode, there is a balance between tangential flow and

Ω+
f+

Ω-

f-

[u](t)

[u](t+dt)
q (s)Γq (s+ds)Γ

Figure 5.4: Schematic representation of the fluid flow at the crack surface with parame-
ter s the distance along the crack.

normal flow.

~qΓ ·~n+ +~qΓ ·~n− = f +
Γ + f−Γ = − ∂~qΓ·~t+

∂s − ˙[u]n,

~qΓ ·~t+ = −|[u]n|kKd
∂µf

Γ
∂s .

(5.8)

where s represents the distance along the crack, with s = 0 the crack-tip and s positive in
direction of~t+. Tangential flow is assumed Couette flow.

Local momentum balance

A discrete crack is preceded by local damage. This micro-damage is lumped into one
constitutive relation (cohesive zone) and projected on the crack [80], Fig. 1.7. The model
relates the decohesion, i.e. softening of the traction forces, as result of opening of the
crack. At each crack surface, the following relation holds

(σe − (µf + ∆π)I)± ·~n± =~t±Γ (~x, t), ~x ∈ Γ± (5.9)

This is represented in Fig. 5.5. The cohesive law holds locally and is described in lo-
cal coordinate system of the discontinuity. The cohesive zone model is nonlinear and
a function of the effective stress. The system is linearized in order to use the Newton-
Rhapson procedure. The transition from local coordinates to global coordinates occurs
through a mapping Q, Eq. (4.29). The change in traction forces ∆~t±Γ in local coordinates
is expressed in terms of enhanced nodal displacements.

∆t
~
+
Γ = QTe,dQT~u

~
− (µf + ∆π)+n

~
+ (5.10)
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Figure 5.5: Schematic representation of the traction forces at the crack surface

Then the tangent stiffness in element coordinates is given by Te = QTe,dQT, Eq. (5.10).
Furthermore for the osmotic forces in the crack surfaces holds that the ionic concentra-
tion in the crack is the same as in the external reservoir.

µ
f
Γ = pΓ − 2RTcex, ∆π+ = 0, (5.11)

with pΓ hydraulic pressure in the crack.

Yield criterion

Crack growth is determined by the stress state in the solid matrix. Therefore the yield
criterion, next to the cohesive zone, is related to the effective stress. The effective stress
at the crack-tip varies locally, therefore the critical effective stress state is calculated non-
locally using Eq. (4.32) from the stress states around the crack-tip. A length scale la is
introduced which determines the influence radius and steepness of surrounding stress
states.
The damage takes place in the solid part, therefore the cohesive law only applies to the
effective stress. The crack-tip is assumed drained. According to the principle of normal-
ity, fracture will initiate perpendicular to maximum principal stress. This principal stress
criterion has shown to be effective, but does not differentiate between compressive and
tensile stresses. Furthermore the contribution of shear stresses and tensile stresses are
of equal importance.
Therefore Remmers et al. [80] introduced a different yield law based on Camacho and
Ortiz [20]. The principal stresses and associated angle αn is calculated from the effective
stress state according to

σe1,2 =
σex − σey

2
±

√(
σex − σey

2

)2

+ σ2
exy (5.12)

The stress state is transformed into normal and shear traction forces te,n = ~n+ · σe ·~n+

and te,s =~t+ · σe ·~t+. An equivalent traction teq(α), with α the to be determined angle,
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is introduced such that

te,eq(α) =

√
< te,n(α) >2 +

1
β

< te,s(α) >2, (5.13)

with < x > McCauley brackets, i.e. x = 0 if x < 0. β is typically set to 2.3 [20] and
the angle is limited to 0 < α < π. Crack propagation is initiated when the equivalent
traction force (teq) is larger than the critical value tult. In the examples the contribution
of the tangential traction forces will be low.

5.3 Numerical description

The weak form for the Finite Element Method is derived by standard Galerkin approach.
Then the weak equations are discretized leading to a time-dependent, non-linear sys-
tem. This is solved using a Cranck-Nicholson scheme for time-integration and Newton-
Rhapson iteration within each time increment.

5.3.1 Weak form

The momentum balance and mass balance are multiplied by test functions and subse-
quently integrated over the domain Ω. These test functions are taken of the same form as
the shape functions for the independent variables and therefore consisting for a continu-
ous and discontinuous field. The displacements are enhanced with a strong discontinuity
function. The chemical potential is enhanced with a weak discontinuity function.

~η = ~̂η +HΓd~̃η, ϕ = ϕ̂ +DΓd ϕ̃. (5.14)

Using integration by parts the discontinuity is introduced as a boundary integral. This is
more elaborated at the specific balance equations in the next section.

Momentum balance

The momentum equation after applying integration by parts is given by

∫
Ω+∪Ω− ~∇s(~̂η +HΓd~̃η) : σdΩ =

∫

Γt

(~̂η +HΓd~̃η) ·~ttdΓ

− ∫
Γ+

d
(~̂η +HΓd~̃η) ·~t+Γ dΓ− ∫

Γ−d
(~̂η +HΓd~̃η) ·~t−Γ dΓ

(5.15)

with σ = σe − pI, p = µf + ∆π. Note that ~n is directed outward and ~n± inward.
This equation must hold for all variations of test functions, therefore it holds also if ~̂η =~0
or if ~̃η = ~0. Both options are separately applied. This results in two equations. The
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first equation denotes the standard or continuous field behavior (taking ~̃η = ~0 and mo-
mentum balance demands~t+Γ = −~t−Γ ). Then in total the next momentum balance for
continuous field is found

∫
Ω+∪Ω− ~∇s~̂η : σdΩ =

∫

Γt

~̂η ·~ttdΓ (5.16)

The second equation denotes the behavior of the enhanced field (taking ~̂η = ~0). With
t±Γ =~t±e − µf

Γ~n
±, the momentum balance for enhanced field is:

∫
Ω+∪Ω− HΓd

~∇s~̃η : σdΩ +
∫

Γ+
d

~̃η · h(~t+e − µf
Γ~n

+)dΓ =
∫

Γt

HΓd~̃η ·~ttdΓ (5.17)

The result is similar to the case of shear fracture, with the total chemical potential at the
crack surface equal to the chemical potential of the fluid in the crack.

Mass balance

The variational mass balance is given by

∫
Ω+∪Ω− ~∇(ϕ̂ +DΓd ϕ̃) ·~qdΩ−

∫

Ω+∪Ω−
(ϕ̂ +DΓd ϕ̃)~∇ · ~̇udΩ

=
∫

Γf
(ϕ̂ +DΓd ϕ̃) ffdΓ− ∫

Γ+
d
(ϕ̂ +DΓd ϕ̃)~̃q ·~n+dΓ− ∫

Γ−d
(ϕ̂ +DΓd ϕ̃)~̃q ·~n−dΓ

(5.18)

Taking ϕ̃ = 0, the mass balance for the continuous field becomes

∫
Ω+∪Ω− ~∇ϕ̂ ·~qdΩ−

∫

Ω+∪Ω−
ϕ̂~∇ · ~̇udΩ +

∫

Γ+
d

ϕ̂~̃q ·~n+dΓ

+
∫

Γ−d
ϕ̂~̃q ·~n−dΓ =

∫
Γf

ϕ̂ ffdΓ
(5.19)

For the flow around the crack holds (5.8). In variational form this reduces to:

∫
Γ+

d
ϕ̂~̃q ·~n+dΓ +

∫
Γ−d

ϕ̂~̃q ·~n−dΓ = − ∫
Γd

ϕ̂
∂qΓ
∂s dΓ− ∫

Γ+
d

ϕ̂[~̇u] ·~n+dΓ (5.20)

The term with tangential flow is simplified using divergence theorem

∫

Γd

ϕ̂
∂qΓ

∂s
dΓ = −

∫

Γd

∂ϕ̂

∂s
qΓdΓ + ϕ̂qΓ|Sd (5.21)

Combining Eqs. (5.20) and (5.21) with(5.19), the mass balance for continuous field is
found:

∫
Ω+∪Ω− ~∇ϕ̂ ·~qdΩ−

∫

Ω+∪Ω−
ϕ̂~∇ · ~̇udΩ

+
∫

Γd

∂ϕ̂
∂s qΓdΓ− ∫

Γd
ϕ̂[~̇u] ·~n+dΓ =

∫
Γf

ϕ̂ ffdΓ + ϕ̂qΓ|Sd

(5.22)
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The local mass balance arises in this case in the continuous mass equations, while in
case of shear loading, chapter 4, the local mass balance arises in the enhanced mass
equations. This means that the mass balance at the crack contributes to the total mass
balance of the continuous field. This result is not surprising since the chemical potential
field is continuous across the crack.
Using ϕ̂ = 0 and DΓd = 0 on Γd, the mass balance for the enhanced field is equal to

∫
Ω+∪Ω− ~∇(DΓd ϕ) ·~qdΩ−

∫

Ω+∪Ω−
(DΓd ϕ)tr(ε̇)dΩ =

∫

Γf

(DΓd ϕ) ffdΓ (5.23)

5.3.2 Discretization

The discretization is separated into two parts, in space and in time.

Spatial discretization

The weak form is provided by equations (5.16), (5.17), (5.22) and (5.23). Discretized forms
are derived by dividing body Ω into elements Ωe, e = 1..ne (Ω =

⋃ne
1 Ωe). The result

is that the discontinuity is discretized in elements Sd and the boundary in elements Se.
The displacements, the chemical potential and their variations are discretized similarly
(Bubnov-Galerkin approach) by

~̂u = ~N
~

T
~a
~u, ~̃u = ~N

~

T~b
~u

µ̂f = m
~

Ta
~µ, µ̃f = m

~
Tb

~µ

(5.24)

where ~N
~

= [N
~ x N

~ y] contains the shape functions, which are the same in x- and y-

direction. The columns~a
~u and~b

~u contain the nodal values for bulk part and enhanced
part, resp.. Similar are m

~
, a

~µ and b
~µ columns of shape functions and nodal values. Then

strain is discretized by

~∇sε = B~a
~u +HΓdB~b

~u (5.25)

The first order differential operator on the displacement shape functions is denoted by
B = [LN

~ x LN
~ y] The matrix L contains the differential operators:

L =




∂
∂x 0
0 ∂

∂y
∂

∂y
∂

∂x


 (5.26)

Furthermore C = LT(~lm
~

T) a 2 × m matrix is defined with ~l = ( 1 1 0 )T. Then

BT · (~lm
~

T) = ~N
~

C holds and ~∇µf = Ca
~µ +HΓdCb

~µ.
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Finally the stress and flux are discretized. The stress consist of the effective stress
and the chemical potential. The effective stress in vector notation is given by σ

~e =
(σe,xx, σe,yy, σe,xy)T. The stress is linearized with respect to the column of nodal values
such that a Newton-Rhapson scheme can be used.

σ = ∂σ
~∂ε
~

∂ε
~∂~a
~u

~a
~u + ∂σ

~∂ε
~

∂ε
~

∂~b
~u

~b
~u + ∂σ

~∂a
~µ

a
~µ + ∂σ

~∂b
~µ

b
~µ

= DB~a
~u +HΓdDB~b

~u − (~lm
~

T)a
~µ −HΓd(~lm~

T)b
~µ

(5.27)

Here D is a (3x3) matrix for 2-D. The matrix D is defined as follows (c = 2µ + λ + ∂∆π
∂tr(ε

~
) ).

D =




c (c− 2µ) 0
(c− 2µ) c 0

0 0 2µ


 (5.28)

The traction forces at the discontinuity Sd are discretized as

(σe − (µf + ∆π)I) ·~n+ =~t+Γ = hT~N
~

T~b
~u −~n+m

~
Ta

~µ (5.29)

with Te = QTe,dQ the tangent stiffness of the cohesive zone. The seepage flux is lin-
earized by

∆~q = ∂~q
∂~a
~u
·~a

~u + ∂~q

∂~b
~u

·~b
~u + ∂~q

∂a
~µ

a
~µ + ∂~q

∂b
~µ

b
~µ

= −KCa
~µ − K(DΓdC + ~∂DΓd m

~
T)b

~µ

(5.30)

Finally, linearization of the local mass elements, results is the next elements.

∫
S+

d

∂ϕ
∂η~qΓ ·~t+dΓ =

∫
S+

d

∂m
~∂η |[~ui]T~n+|kKd

∂m
~∂η

T
dΓa

~µ

+
∫

S+
d

∂m
~∂η Kd

∂µf
i

∂η k|[~ui]T~n+|k−1 sgn([~ui] ·~n+)(~n+)T~N
~

T
dΓ~b

~u

ϕ~qΓ ·~t+|S+
d

= m
~
~qΓ ·~t+|S+

d

(5.31)

Time discretization

To solve the system of equations, a time stepping algorithm is required. The solution is
sensitive to the magnitude of the time increment (time step). A large step leads to under
estimation of fluid pressure in confined compression. Taking too small steps leads to
initial oscillation. For stable time integration the next law has to be satisfied [103]:

∆t >
∆x2

cK
. (5.32)
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While the time needed for the fluid to propagate a distance ∆x is related to the the square
of the distance, permeability of the framework and the stiffness of the framework.
In this model the Cranck-Nicholson scheme is used. This means that differential terms
are approximated linearly by looking at the difference between the new and old step

∂∗
∂t

=
(∗)n+1 − (∗)n

∆t
(5.33)

and values of the independent variables are weighted results of the new and old time step

(∗) = θ(∗)n+1 + (1− θ)(∗)n (5.34)

Furthermore stabilization is reached if implicit time stepping is used (θ ≥ 0.5, for in-
stance by taking the first time increment θ = 1 and the rest θ = 0.5. Taking θ = 1
reduces the method to Euler implicit.

5.3.3 Total system

The governing equations and discontinuity equations reduce to system (5.35). Although
the bulk material is assumed linear elastic, the presence of damage introduces nonlinear-
ity. The system is therefore solved iteratively at each time step. The solution procedure is
driven by time. In the examples the displacement is increased monotonically. Snap-back
can occur due to non-uniqueness of the solution. Define~cu = ( ~a

~
T
u

~b
~

T
u )T a 4n× 1 vec-

tor and~cµ = ( a
~

T
µ b

~
T
µ )T a 2m× 1 vector.

In the equations subscript i denotes the temporary solution~c
~i in iteration step i and su-

perscript n denotes the solution~c
~

n of previous time step n.

Newton-Rhapson solution procedure with Cranck-Nicholson

• Step 0:~c
~0 =~c

~
n

• Step i+1:

– If no convergence solve
(

Kuu,i −Ku¯,i
−K¯u,i −∆tθK¯¯,i

)
δ~c
~i =

(
f
~ext,u

− f
~int,u

∆t f
~

θ

ext,¯
− ∆t f

~

θ

int,¯

)
(5.35)

– ~c
~i+1 =~c

~i + δ~c
~i, i = i + 1

• Final iteration step:~c
~

n+1 =~c
~

n + ∑i δ~c
~i
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The matrices involved are given below.

Kuu,i =

( ∫
Ωe

BTDiBdΩ
∫

Ωe
HΓd BTDiBdΩ∫

Ωe
HΓd BTDiBdΩ

∫
Ωe
H2

Γd
BTDiBdΩ + Muu,i

)

K¯¯,i =

( ∫
Ωe

CTKiCdΩ + M¯¯,i
∫

Ωe
CTKi(DΓd C + ~∂Dm

~
T)dΩ∫

Ωe
(DΓd C + ~∂Dm

~
T)TKiCdΩ

∫
Ωe

(DΓd C + ~∂Dm
~

T)TCTKi(DΓd C + ~∂Dm
~

T)dΩ

)

Kuµ =

( ∫
Ωe

~N
~

CdΩ
∫

Ωe
~N
~
(DΓd C + ~∂Dm

~
T)dΩ∫

Ωe
HΓd

~N
~

CdΩ + Muµ,i
∫

Ωe
HΓd

~N
~
(DΓd C + ~∂Dm

~
T)dΩ

)

Kµu =

( ∫
Ωe

CT~N
~

T
dΩ

∫
Ωe

(DΓd C + ~∂Dm
~

T)T~N
~

T
dΩ + MT

uµ,i + Mµu,i∫
Ωe
HΓd CT~N

~

T
dΩ

∫
Ωe
HΓd(DΓd C + ~∂Dm

~
T)T~N

~

T
dΩ

)
,

(5.36)

Muu,i = h2 ∫
Sd

~N
~

Ti
~N
~

T
dΓ = h2 ∫

Sd
~N
~

Te,i
~N
~

T
dΓ

Muµ,i = h
∫

Sd
~N
~
~n+m

~
TdΓ

Mµµ,i =
∫

Sd

∂m
~∂η |[~u]T~n+|kKd

∂m
~∂η

T
dΓ

Mµu,i = h
∫

Sd

∂m
~∂η Kd

∂µf
i

∂η

T
k|[~u]T~n+|k−1 sgn([~ui]T~n+)(~n+)T~N

~

T
dΓ

(5.37)

and

f
~ int,u

=

( ∫
Ωe

BTσidΩ∫
Ωe
HΓd BTσidΩ +

∫
Γd

~N
~
~t+Γ,idΓ

)

f
~

θ

int,µ
=




∫
Ωe

CT(θ~qi + (1− θ)~qn)dΩ− ∫
Ωe

CT ~ui−~un

∆t dΩ

− ∫
Sd

CT [~u]i ·~n+−[~u]n·~n+

∆t dΓ +
∫

Sd

∂m
~∂s (θqΓ,i + (1− θ)qn

Γ)dΓ

∫
Ωe

(DΓd C + ~∂Dm
~

T)T(θ~qi + (1− θ)~qn)dΩ− ∫
Ωe
DΓd CT ~ui−~un

∆t dΩ


 ,

f
~ext,u

=

( ∫
Γt

~N
~
~tn+1

t dΓ∫
Γt
HΓd

~N
~
~tn+1

t dΓ

)

f
~

θ

ext,¯
=

( ∫
Sf

m
~
(θ f n+1

f − (1− θ) f n
f )dΓ + θm

~
qn+1

Γ |Sd + (1− θ)m
~

qn
Γ|Sd∫

Γf
DΓd m

~
(θ f n+1

f − (1− θ) f n
f )dΓ

)

(5.38)

Newton-Rhapson iterations are stopped when the error εex is less than the given precision

εin, using an euclidian norm ||x
~
|| =

√
∑i x2

i

Res
~

= f
~int

− f
~ext

,

εex =

{
||Res||/|| f

~int
)|| if || f

~int
)|| > 0

||Res|| ∗ || f
~int

)|| if || f
~int

)|| ≤ 0
(5.39)

Even though matrices D, K, Te are symmetric, Mµu,i and Muµ,i cause asymmetry of the
system. This is not a problem for the solution method.
The model has been programmed using the Jem/Jive finite element toolkit which has
been developed by Habanera. For implementation aspects like the tracking of the crack-
tip, increasing the degrees of freedom or other propagation issues we refer to Remmers
et al. [78,80,81] and appendix B.



5.4 NUMERICAL EXAMPLES 83

5.4 Numerical examples

In the example a cohesive law is used for the damage evolution, i.e. softening behavior
after reaching the critical stress state. Defined is critical length δn = Gc/τult, with τult the
ultimate traction forces and Gc fracture toughness. The cohesive law is then for positive
opening

tn = τulte
−( [u]n

δn ), [u]n ≥ 0. (5.40)

This is shown in Fig. 5.6. Note that the surface underneath the curve is the fracture
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Figure 5.6: Normalized distribution of the exponential cohesive law for tensile loading
related traction forces and displacement.

toughness Gc:
∫ ∞
−∞ tnd[u]n =

∫ ∞
0 tnd[u]n

= τultδn
∫ ∞

0 e−rdr = τultδn = Gc.
(5.41)

A history parameter κ is introduced in case of unloading each time step the current open-
ing κ0 and traction τ0 are remembered. When the new opening is smaller than previous,
then unloading takes place according to

tn =
τ0

κ0
[u]n. (5.42)

Damage is defined as

D = 1− tn

τult
(5.43)

Macro crack is developed when the local damage approaches maximum (D = 1), i.e.
when the cohesive law approaches zero. When locally the opening decreases compared
to previous time step unloading takes place. The cohesive law parameters Gc and τult can
be obtained from experimental data.
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5.4.1 Delamination test

A delamination test is performed with a predefined angle of 0◦. An initial defect of length
13 mm is inserted on the lefthandside, Fig. 5.7. The sample is fixed on the righthandside
and is in contact with a filter (µf = 0). Crack propagation is initiated by pulling the sam-
ple on the top and bottom over approximate 8 mm with a fixed velocity of 1.0e-3 mm/s.
The local fluid distribution is determined by Eq. 5.8.

The exact material properties are given in table 5.1. This means that 2RTΓcex =

Figure 5.7: The mesh and boundary conditions for delamination consisting of 575 ele-
ments. Material is pulled at the top and bottom on the left and is on the right
in contact with a filter.

4.96 N/mm2 holds. A time step of 0.1 s is used.
The influence of mesh refinement, prestress and local boundary conditions on the crack

Table 5.1: Material properties for delamination test.

R = 8.3145 [N mm mmol−1 K−1] T = 298 [K]
E = 1.4e+4 [N/mm2] ν = 0.33 [-]
ϕf

i = 0.10 [-] K = 2.0e-1 [mm4N−1s−1]
cex = 1.0e-3 [mmol/mm3] cfc

i = −1.0e-3 [mmoleq/mm3]
Kd = 2.0e-1 [mm4N−1s−1] k = 2 [-]
Gc = 0.020 [N/mm] τult = 1.1 [N/mm2]
la = 7.8 [mm] v = 1.0e-3 [mm/s]

is considered on crack propagation and flow around the crack. For the mesh refinement,
the mesh of Fig.5.7 is refined to 2701 elements. The corresponding time step is a quarter
of the time step of the coarse mesh. For the influence of prestress four cases are com-
pared, no prestress, prestress in both directions and prestress in either x or y-direction
(Fig. 4.7). The modes of prestress are the result of different initial swellings, not the
result of uneven distribution of fixed charges. Furthermore, the influence of local mass
balance is considered by decreasing the local permeability with respect to the standard
case or prescribing the chemical potential in the crack.
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5.4.2 Pull test

In the second case a pull test is considered with yield criterion based on optimal principal
stress. An initial defect of approximately 22 mm is inserted in the middle, Fig. 5.8. The
material is fixed at the bottom and is pulled at the top with constant speed. The material
is in contact with a filter at the sides (µf = 0). Crack propagation is initiated by loading
the sample over the complete width with a fixed velocity of 5.0e-4 mm/s. A time step of
dt = 0.1 s is used. In this second case the angle of growth is not prescribed. To ensure

Figure 5.8: The mesh and boundary conditions for pull test: material is pulled at the top
with bottom fixed and at sides in contact with a filter.

Table 5.2: Material properties for pull test.

R = 8.3145 [N mm mmol−1 K−1] T = 298 [K]
E = 1.4e+3 [N/mm2] ν = 0.33 [-]
ϕf

i = 0.10 [-] K = 1.0e-3 [mm4N−1s−1]
cex = 1.0e-3 [mmol/mm3] cfc

i = −1.0e-3 [mmoleq/mm3]
Kd = 1.0e-3 [mm4N−1s−1] k = 2 [-]
Gc = 2.0e-2 [N/mm] τult = 1.1 [N/mm2]
la = 7.8 [mm] v = 5.0e-4 [mm/s]

growth only under tension, equivalent traction forces are used, with β = 2.3, Eq. (5.13).
Similarly to delamination, the influence of prestress and local mass balance is considered.

5.4.3 Osmolarity test

As a last example, a test is performed in which the effect of decreasing osmotic pressure
is considered on a crack with length≈ 18 mm at the rim of the material. For that purpose
the external salt concentration is increased, i.e. the chemical potential on the boundaries
is decreased. The material is fixed at the top, right side and bottom to a filter which alters
the chemical potential by −0.4e-3 N/mm2.

∆µf = ∆π(cex
i + ∆cex)− ∆π(∆cex). (5.44)
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This means that the external salt concentration is increased from initial state by ∆cex =
4.82e-7t. A time step of 8.0 s is used. The exact material properties are given in table 5.3.

Figure 5.9: The mesh and boundary conditions for the osmolarity test: the material is
fixed at bottom, right and top and is in contact with a filter at these sides.

The influence of prestress is considered on crack propagation and flow around the crack.

Table 5.3: Material properties for osmolarity test.

R = 8.3145 [N mm mmol−1 K−1] T = 298 [K]
E = 90.0 [N/mm2] ν = 0.2 [-]
ϕf

i = 0.80 [-] K = 2.8e-4 [mm4N−1s−1]
cex = 0.15e-3 [mmol/mm3] cfc

i = −0.2e-3 [mmoleq/mm3]
Kd = 2.8e-4 [mm4N−1s−1] k = 2 [-]
Gc = 0.2e-2 [N/mm] τult = 0.25 [N/mm2]
la = 7.8 [mm] ∆µf = −0.4e-3 [N/mm2]
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5.5 Results

5.5.1 Delamination test

The presence of fixed charges causes an initial strain of εi,x = εi,y = 1.9e-5 in case of
prestress in both direction and an initial strain of 2.8e-5 when only prestressed in one
direction. A weak interface criterion causes straight growth for all cases.
Considering the chemical potential distribution, Fig. 5.10, the figures show localization
at the crack-tip with a negative chemical potential. This low chemical potential is relaxed
by fluid redistribution towards the crack-tip. The chemical potential is largest at the left
due to largest opening of the crack.
Figure 5.11 shows the fracture length versus the pull displacement. Crack growth occurs

a.

b.

Figure 5.10: Delamination in case of prestress in both directions after 950 time incre-
ments (i.e. 9.5e-2 mm displacement of top boundary). Distribution of a.
chemical potential in [N/mm2] and b. flow in x-direction in [mm/s].

slightly faster in the case of prestress. With further opening of the crack, the chemical
potential decreases and the tangential flow increases. Numerical oscillations seem to be
present, but the oscillations are actual changes in chemical potential due to crack growth
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and redistribution of load. These changes are less in the case of prestress than when
there is no prestress present. In addition in the case without prestress the growth seems
more smoothly. Furthermore, the chemical potential is nonzero from the start in case
of prestress. When fluid is not taken into account, crack growth occurs faster, while the
time to damage initiation is almost the same as in the case with fluid present.

A closer look to the evolution of different fields at the crack at time point dt = 100 s
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Figure 5.11: Comparison of the effect of prestress for delamination dx = 13.71 mm
(ahead of the initial crack) on tangential flow in the crack, chemical potential
in the crack and crack growth against pull displacement at the top.

in space gives extra information, Fig. 5.12. In the case without prestress a large dip in
chemical potential is seen at the crack-tip of the cohesive zone (where tn = 0, [u]n = 0).
In order to check the results, the spatial discretization is refined (from 575 to 2701 ele-

ments, "dx refine") and time discretization is refined without refining in space (from 0.5 s
to 0.125 s, "dt refine"). Results are shown approximately at the same point (Fig. 5.13). It
is evident that both in time and in space, the results are the same, except for the slight
mismatch in space due to a mismatch in integration points between the coarse and fine
mesh.
Finally, the influence of local mass balance is considered. Decreasing the crack perme-

ability decreases the tangential flow. It does not alter the crack path dramatically. When

assuming contact with an external reservoir (i.e. µ
f
Γ = 0), the flow is reversed with respect

to the previous cases. The fluid distribution (Fig. 5.14) shows that the chemical potential
is now highest in front of the macro crack, in stead of at the start of the macro crack such
as in the previous cases.
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Figure 5.12: Distribution over plane of crack at dt = 100 s of crack mouth opening
displacement (CMOD), traction forces (trac) and chemical potential (chem
pot)) for delamination.
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a.

b.

Figure 5.14: Distribution of chemical potential in [N/mm2] for delamination in case of

prestress in both directions and µ
f
Γ = 0 after 1100 increments (i.e. displace-

ment of top boundary of du = 1.1e-2 mm) for a. chemical potential and b.
flow in x-direction.
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5.5.2 Pull test

This case considers a less stiff material then for delamination. The prestress caused an
initial strain of εi,x = εi,y = 1.9e-4 in case of prestress in both direction and an initial
strain of 2.8e-4 when prestressed in only one direction.
Figure 5.15 shows the chemical potential distribution and flow in case of prestress in
both directions with crack growth. Even though the direction of crack growth is not pre-
defined, the damage growth is almost straight. Localization takes place at both crack-tips
with low chemical potential, Fig. 5.15a. Fluid is attracted from the left and right towards
the crack. The stress field is the largest in the middle of the crack (Fig. 5.15b).
The displacement, tangential flow and chemical potential are considered almost in the

a.

b.

Figure 5.15: Distribution for pull test of a. chemical potential and b. stress component
σe,yy for the pull test after 1010 increments (i.e. 5.05e−2 mm of pull dis-
placement) in case of prestress in both directions including cohesive zone.

middle of the crack (Fig. 5.16). For all cases of osmotic prestress, the chemical potential
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becomes more negative, though in the case without prestress the chemical potential de-
creases less.
In the case of prestress in x-direction only, a negative opening is seen at start and in-
creases, which causes a wave in tangential flow. Furthermore, the time to crack initiation
increases. When damage initiates, a steep increase in chemical potential is seen in the
middle of the crack. Unfortunately, Newton-Rhapson does not converge anymore after
several growth stages.

Trends do not alter under mesh and time discretization refinement. Lastly, changing
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Figure 5.16: Comparison for the pull test of the effect of prestress on crack mouth open-
ing displacement (CMOD), chemical potential and tangential flow in the
crack at dx = 3.5 mm.

the boundary condition at the crack to the boundary condition representing contact with
a reservoir, oscillations were seen.

5.5.3 Osmolarity test

In this section a case without external loading is considered. The sample is subjected
to an increase of external salt concentration. The result is a global decrease in chemical
potential (Fig. 5.17a) and a local increase of stress ahead of the crack-tip (Fig. 5.17b).
The flow is considered in a close-up of the crack-tip (Fig. 5.18). Crack growth causes a

local flow at the crack-tip directed towards the crack-tip (in x- and y-direction), while the
flow away from the crack-tip is directed opposite in the crack.

This trend is seen for all cases with prestress, except for osmotic prestress in only x-
direction. In that case a solution could not be found. Of the other two cases, damage
progressed longest in case of prestress only in the y-direction. Furthermore, in case of
prestress in both directions, opening of the crack is largest while chemical potential in
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a.

b.

Figure 5.17: Distribution for the osmolarity test after 300 increments (i.e. a change in
chemical potential of−0.96 MPa) just before damage initiation for prestress
in both directions for a. of chemical potential and b. of stress component
σe,yy.

the crack is smallest. This pattern is seen throughout time. The fact that the curve for
prestress in only y-direction is longer than in case of prestress in both directions, but with
zero values, means that damage has occurred but not evolved.

5.6 Discussion

In this chapter a small strains numerical model has been derived to study the interplay
between prestressing of the solid material, fluid flow and mode-I crack propagation for
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a.

b.

Figure 5.18: Distribution at the crack-tip for osmolarity test of flow for prestress in
both directions after 306 increments (i.e. a change in chemical potential
of −0.98 MPa) just after damage initiation a. in x-directions and b. y-
direction.

ionized porous media. The partition of unity approach is used to integrate cracks into
the FEM. A strong discontinuity is inserted in the displacement field by enhancing the
field by the Heaviside function. A weak discontinuity is inserted in the field of chemical
potential via a distance function to capture the high gradient in this field.
The results are meant to indicate trends rather than yielding quantitative predictions.
The model captures local trends well. A profound influence is seen of the fluid phase on
the crack propagation in the solid. The presence of fluid slows down crack initiation and
propagation. The flow from the surrounding medium causes an increase in volumetric
strain at the crack-tip, and hence an increase of the (tensile) effective stress at the
crack-tip. This increase triggers damage and possible further crack propagation. Upon
crack propagation a local change in flow direction is seen. The deformation around the
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Figure 5.19: Evolution for the osmolarity test in plane of crack of chemical potential,
tangential flow and crack mouth opening (CMOD) after 130 increments,
∆µf = −0.4 MPa.

crack causes fluid to flow mostly from the crack itself, because the permeability is far
higher in the crack than in the medium. This flow from the crack to the crack-tip causes
closing of the crack and, hence, slows down crack propagation. The expression of this
phenomenon depends on loading protocol and on (direction) of prestress.
Considering the example without external mechanical load, opening and growth of the
crack takes place due to a global decrease in osmotic pressure. This phenomenon is
similar to the drying of clay, but in fully saturated conditions. This mechanism could
be an explanation for the poor relation between intervertebral disc herniation and load.
Furthermore this could be a mechanism for borehole instability.

In this chapter, bilinear shape functions, with chemical potential and displacements
at the corner nodes are used to calculate the solution as a simplification. Réthoré et
al. [83] show that these approximations are sufficient for structural response in non-
propagating cracks when the mesh is fine enough and do not produce issues related to
the Babuska-Brezzi conditions [114]. This condition requires a higher order interpolation
of the displacement field than of the pressure field.
The introduction of the distance function increases the order of interpolation locally.
This is needed for the higher order terms in the cavity model [83]. In this chapter partial
integration is used locally, therefore the order of integration needed is less than used.
This does not seem to produce any stability problems related to the Babuska-Brezzi
condition, probably due to the local use.
Further comparison between this approach and literature is difficult since either
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partially saturated conditions are considered [4,85]. Furthermore, results, such as
mesh-dependency, is most prominent in lower stiffness cases.

The results are addressed in more detail.
Generally, upon loading the effective stresses at the crack-tip increases and the chemical
potential decreases. This is reached by a fluid flow away from the crack-tip. Upon crack
propagation the effective stress at the tip suddenly decreases and the chemical potential
increases by a fluid flow towards the crack-tip. The time needed to resolve the flow over
the extension is equivalent to the stiffness times permeability (∆t ∼ ∆x2/cK).
In case of the delamination test, the material is the stiffness and permeability are so high
that fluid (nor chemical potential nor tangential flow) seems to hardly influence crack
growth. The presence of prestress seems therefore to enhance crack propagation (Fig.
5.11). The contact with a reservoir changes the flow pattern at the crack, but influence on
crack propagation is low.
When the material is less stiff, the influence of the fluid becomes more profound. The
pull test decreases the chemical potential in the crack to such an extent, that the osmotic
pressure in the crack is lower than in the material. The low osmotic pressure in the crack
causes flow from the material into the crack and with that further opening of the crack.
The time to initiation is longer in case of no prestress than with prestress due to the
slower opening of the crack (Fig. 5.16). In the case without initial prestress in y-direction,
the crack closes temporary due to the osmotic pressure in the material which is larger
than the pressure in the crack.
Upon crack growth a steep change in chemical potential takes place. Due to the lower
stiffness and permeability of the material than the previous case, the time needed to re-
solve the flow is bigger. Furthermore, the stress at the crack-tip is not relieved as it should
be, which causes fast crack growth. Finally, the mismatch between the physical flow and
the simulated flow via the weak discontinuity causes loss of numerical stability. A solu-
tion cannot be found anymore.
In the last case a material of relatively low stiffness is considered. The material is not
loaded mechanically at the external boundary of the material, but crack initiation is dom-
inated by internal loading. By changing the external salt concentration at the outside of
the material, the osmotic pressure is lower outside than inside the material. This differ-
ence in osmotic pressure initiates flow. The material shrinks where it is possible, namely
at the crack. The result is opening of the crack. The opening of the crack is largest in
case minimal prestress in y-direction (Fig. 5.19), since the pressure difference between
the material and the crack is larger. The intervertebral disc is highly prestressed, which
gives protection against crack propagation in case of small osmotic changes.
In case of only prestress in y-direction (and with that the largest), damage evolution is
delayed and slower. Therefore the numerical calculations are relatively stable. In all cases
stability of the calculations is lost upon the forming of the macro crack, most probably
because the fluid flow is unresolved. Nevertheless, just after damage propagation a lo-
cal change in flow is seen (Fig. 5.18). Flow is attracted from inside the crack near the
crack-tip, rather than from the surrounding medium.
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Discussion and conclusions

A mesh-independent 2D finite element model of crack propagation in osmotic swelling
porous media has been developed. The model has the capability of describing both
mode-II and mode-I crack propagation. The numerical results have been compared to
a specially designed analytical solution of a dislocation of a non-propagating crack in
swelling porous media. The model has been applied to mode-II failure under confined
compression, to a delamination test and to a mode-I test for crack propagation under
changing salt concentration.
In particular, crack propagation without external mechanical load has been simulated
by applying an external change in salt concentration. This last result is qualitatively
consistent with an experiment on a hydrogel (Fig. 1.4). The mechanism exemplified
by the simulation is hypothesized to explain borehole instability in deviated boreholes
in swelling shales [33,87], as well as the poor relation between disc degeneration and
external mechanical load observed in human disc studies [11,100].

In this thesis discontinuities are included in the mathematics of the finite element
method (FEM) by the partition of unity approach [9,80] making remeshing superfluous.
The effect of the discontinuity on the displacement field and fluid flow is added to the
bulk behavior by the introduction of discontinuous field variables, projection of the crack
onto an element (dividing it in two parts), increasing the amount of degrees of freedom
of the corresponding nodes with these discontinuous variables and integration of the
two parts of the element separately.
Damage preceding propagation, such as micro-cracking, is introduced by cohesive zone
modeling. The cohesive zone model relates traction forces to the opening of a crack
on a fictitious extension ahead of the crack, effectively smearing the stress singularity.
The treatment of displacement discontinuities (the solid phase) is directly adopted from
solid mechanics, but the treatment of the fluid phase is not straight forward. Therefore
different loadings are addressed separately. Both approaches are suitable for porous
media based on Theory of Porous Media [32].
Firstly, shear loading is addressed. In shear loading the crack is closed and no additional
assumptions about the fluid flow in the crack are required. In this thesis a singularity
solution for shear loading is developed to verify the numerical accuracy of the model,
namely a two-edge dislocation. Loading a crack impulsively results in consolidation, i.e.
transfer of load between the fluid and solid phase. Comparison of the analytical solution
with a commercial code, where the crack was geometrically defined, shows that shear
stress is underestimated near the crack-tips causing an offset throughout time.
The numerical representation of the crack is improved by including the displacement
discontinuity in the FEM with partition of unity. The presence of a discontinuity in
the solid phase affects the fluid phase. When a crack is loaded under shear, a pressure
difference holds between the two sides of the discontinuity with a small transition zone,
which fades in time. A small mesh size would be required to capture this phenomenon.
Mesh refinement is circumvented by introducing a jump (strong discontinuity) in the
fluid field (chemical potential). The resulting flow is unresolved in the element. The
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flow on the unresolved scale is related to the resolved scale by the introduction of the
unresolved hydraulic permeability. The method seems robust for different choices of
material stiffness and permeability. In case of the two-edge dislocation, the shear stress
distribution shows oscillations which decreases with mesh-refinement. Comparison of
the results of a two-edge dislocation with the new model to the analytical solution shows
that the model was capable of capturing the singularity behavior quite well. The use of
partition of unity for displacement discontinuity, captures the shear stress singularity for
the finest mesh (still a relatively coarse mesh) well. Similar mesh-independent behavior
is found to other papers [7,82], though in this case fluid exchange between the crack
surfaces is allowed.
A confined compression test under shear loading shows that the flow in the damaged
zone does influence total flow and fracture behavior as found in other papers [7,82].
Furthermore, the osmotic prestress does influence the path and rate of crack growth, also
found by Radi and Loret for prestress in solids [77]. Lastly, crack propagation alternates
with pressure diffusion across the crack resulting in a stepwise propagation of the
fracture. To our knowledge this stepwise propagation is not reported in literature so far.

Secondly, tensile loading is considered. In tensile loading a steep potential gradient at
both crack surfaces is expected (symmetric). The steep gradient is approximated by the in-
troduction of a weak discontinuity using a distance function [83], while the displacement
jump is approximated by a strong discontinuity. The fluid flow at the crack is dominated
by deformation, fluid exchange between the crack and the surrounding material, and flow
in the crack. Couette flow is assumed to model the flow inside the crack. Benchmarks
are hardly available; therefore two tests of external mechanical loading are considered (a
delamination test and a pull test). In addition, one test without external mechanical load
is considered, namely loading of the crack by changing the osmotic pressure (a osmolar-
ity test).
The tests show that tensile loading of the crack results in a low chemical potential of the
fluid in the crack. Depending on the stiffness, prestress and permeability of the material
the low chemical potential is compensated by the fluid in the crack or by fluid from the
surrounding medium. When fluid is extracted from the crack, the crack closes, slowing
down crack propagation. This loading and unloading is also seen in fluid-driven fracture
propagation [17]. The loading and unloading of the crack require a history dependent
damage evolution. In a addition a contact algorithm in the crack is required. Due to the
simplicity of the contact algorithm, numerical stability is decreased.
Furthermore, with the decrease of stiffness or permeability, the time for the fluid flow
to resolve after growth of one element increases (∆t ∼ ∆x2/cK). The element size is
too large to resolve the fluid flow or the rate of propagation too large. The mismatch
between numerical flow and physical flow causes numerical instability and slight mesh-
dependency of the fluid phase. This is not seen in the case of delamination where ma-
terial properties are in the same range as Réthoré et al. [83] and Roels et al. [85]. It is
unclear whether they would suffer the same mesh-dependence for different parameters.
An extension or variant of the approach is needed to overcome mesh-dependency for low
stiffness cases.
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Limitations and recommendations

Numerical simulations

The link between deformation and fluid flow is strong. Therefore improvement of the
underlying element properties, i.e. displacement and chemical potential in the nodes
with linear approximations, is essential for correct approximation of the fluid flow. A
mixed-hybrid approach has shown to be able to deal very well with large gradients in
undamaged materials [66]. This approach is likely to enhance numerical stability. In
addition, the Newton-Rhapson procedure can be improved by separating the convergence
criterion for fluid field and solid field.
The bulk porous matrix is assumed linear elastic and homogeneous. Furthermore,
ion flow is neglected. Permeability and volume fractions are chosen independently of
deformation, while in reality they are not. These simplifications are made, because this
work has been a first step. An extension to nonlinear, anisotropic materials and finite
deformations should be made [31,109].
Inertia forces are neglected. In soft tissue this assumption is probably valid, but for
geotechnical applications it is not. The introduction of inertia forces might produce
acoustical waves and increase singularity of the fluid phase [62]. Furthermore in practise,
materials are 3D and can have different properties in different directions. A step to 3-D
should be made for application.

The previous recommendations involve the bulk material. There is also room for
improvement of the discontinuity kinematics. The partition of unity method seems to be
applicable and useful in ionized porous media. Especially in shear loading, simulations
seem robust. To increase numerical stability in case of tensile loading, a symmetric
strong discontinuity or an increase in the order of the enhancement function might
be an option. Adding information to FEM might result in less numerical stability [72],
therefore a strong discontinuity is preferred.
The cohesive zone models applied here were simple and not validated. The influence of
the choice of cohesive zone model could be examined. Furthermore, phenomena like
time-dependent behavior and friction between the crack surfaces could be added to the
cohesive zone.
The nucleation of damage was based on maximum (principal) effective stress using
stress averaging (nonlocal approach). The yield criterion could be improved to a Drucker-
Prager yield condition [77] or using a multi-scale approach at the crack-tip.
Material transitions also can be approximated by partition of unity, i.e. separating effects
of material transition and not discontinuity. This allows for material transitions within an
element and debonding between different materials within an element and debonding
within composites [5,38].

Verification of the weak discontinuity model has not been performed. It would be in-
teresting to consider hydraulic fracturing in non-ionized porous media and compare the
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results to literature data.
Last but not least, most natural cracks are not purely mode-I or mode-II in nature. There-
fore a step to arbitrary cracking has to be made. This is possible if the fluid phase is not
enhanced by only one enhancement function, but by two: one related to the pressure
difference between crack surfaces due to the shear component, and the other to the flow
in the crack.

Experimental simulations

Validation of the model has not been addressed for both models. There are not many
experiments available in literature and if they are, osmotic conditions are not taken into
account or administrated well. There is a great need for experiments for failure patterns
and associated flow. Length scales and size effects are hardly known.
Hydrogel is very suitable to do validation on small scale. The properties of the hydrogel
can be altered easily, such that a wide range a parameters can be tested. Experiments
have been performed with isotropic hydrogel to show that existing cracks open under de-
creasing osmotic pressure. It would be interesting to visualize the corresponding flow.
Furthermore it would be interesting to visualize deformations in case of reinforced hy-
drogel or tissue. An example for a setup is given in Fig. 6.1.

a. b.

Figure 6.1: Setup for visualization. a. top and bottom view with tissue clammed in the
column. b. Sample is hydrated in external salt solution. The sample is
prestressed by adding polyethylene glycol (PEG, causes osmotic loading of
the sample) to the column separated by a membrane from the sample.
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APPENDIX A

Derivations for analytical solution

A.1 Derivation of stress functions

The system is given by (A.1) and corresponds with (3.6).

µ∇2u + (λ + µ + RTΓC1) ∂
∂x e− ∂

∂x µf = 0,
µ∇2w + (λ + µ + RTΓC1) ∂

∂z e− ∂
∂z µf = 0,

∂e
∂t − K∇2µf = 0.

(A.1)

A.1.1 Stress function S

Firstly, the stress fuction S is derived which is related to chemical potential. For this pur-
pose, the first equation of (A.1) is differentiated to x, the second to z. The differentiated
equations are then summed.

∇2((2µ + λ + RTΓC1)e− µf − RTΓC0
)

= 0. (A.2)

Following McNamee and Gibson [68], the harmonic function S(x, z, t) is introduced. A
function S is said to be harmonic when ∇2S = 0. This function is chosen such it has
opposite sign of strain and with that it has the same sign as pressure. Then for the
chemical potential holds

µf = (2µ + λ + RTΓC1)e− aµ
∂S
∂z
− RTΓC0. (A.3)

Equation (A.2) is automatically satisfied if S is harmonic. The value of the constant a in
(A.3) is reduced in the next steps. Equations (A.1) are reduced to

µ∇2u− µ ∂
∂x e + aµ ∂2S

∂x∂z = 0,
µ∇2w− µ ∂

∂z e + aµ ∂2S
∂z2 = 0,

∂e
∂t − K∇2µf = 0.

(A.4)

The factor µ is removed. The separation of the displacements is introduced.

u = u1 + u2 + u3,
w = w1 + w2 + w3. (A.5)
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Here u1, w1 are associated with strain e, u2, w2 are associated with harmonic function S
and u3, w3 are harmonic functions. If these functions satisfy

∇2u1 + ∂e
∂x = 0,

∇2u2 + a ∂2S
∂x∂z = 0,

∇2u3 = 0
(A.6)

and

∇2w1 + ∂e
∂z = 0,

∇2w2 + a ∂2S
∂z2 = 0,

∇2w3 = 0
(A.7)

then the first two equations of (A.4) are satisfied. If we differentiate (A.6a) to x and (A.7a)
to z the next holds

∇2e = ∇2(
∂u1

∂x
+

∂w1

∂z
), (A.8)

The factor a is chosen a = 2. This prevents fractions in the solution.

A.1.2 Stress function E

The solutions of equations (A.6), (A.7) and (A.8) are given by (A.10). From these solutions
the stress function E is derived. The first equation of (A.10) is chosen intuitively, with X
an arbitrary differentiable function. The remaining equations are found through solving
the PDE’s. For instance the solutions u2 and w2, related to harmonic function S, both
follow the general solution (constant solution not taken into account)

u2 = a1S + a2zS + a3
∂S
∂x + a4

∂S
∂z + a5z ∂S

∂x + a6z ∂S
∂z + h.o.t.

w2 = b1S + b2zS + b3
∂S
∂x + b4

∂S
∂z + b5z ∂S

∂x + b6z ∂S
∂z + h.o.t.

(A.9)

These terms are the result af the fact that ∇2S = 0 holds. They are present in the general
solutions for u1,u3, w1 and w3 as well. Furthermore a4 = −c2/2 has to hold for u2 and
b6 = −a/2 for w2 to satisfy the second equations of (A.6) and (A.7). That is why a = 2
was chosen. Equations (A.8) require a1 = −b1, a4 = −b3, a3 = 0, b4 = a/2. The
solutions are

e = ∇2X, ∇2Y = 0,
u1 = ∂X

∂x , u2 = −z ∂S
∂x , u3 = + ∂Y

∂x ,
w1 = ∂X

∂z , w2 = S− z ∂S
∂z , w3 = + ∂Y

∂z .
(A.10)

E is taken E = X + Y which means that e = ∇2E.
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A.2 State variables in terms of Stress Functions

u = ∂E
∂x − z ∂S

∂x ,
w = ∂E

∂z − z ∂S
∂z + S,

µf = c∇2E− 2µ ∂S
∂z ,

(A.11)

The stresses are given by

σxx = −2µ
{

∂2E
∂z2 + z ∂2S

∂x2 − ∂S
∂z

}
.

σxz = 2µ
{

∂2E
∂x∂z − z ∂2S

∂x∂z
}

σzz = −2µ
{

∂2E
∂x2 + z ∂2S

∂z2 − ∂S
∂z

} (A.12)

These are used to derive the boundary conditions.

A.3 Jump Condition Mode II

Shear faulting is considered. For shear faulting the displacement jump between z = 0−
and z = 0+ is given by

[
u
]

= f (x)H(t). (A.13)

with f (x) the slip function, andH(t) the Heaviside function. There is no jump in normal
displacement and therefore

[
ŵ

]
= 0 holds at z = 0. The slip function has Fourier

transform f̃ (k).
Then taking Fourier and Laplace transformation gives at z = 0:

[
û
]

= f̃ (k)/p = ikÊ → [
Ê
]

=
f̃ (k)
ikp

. (A.14)

[
ŵ

]
= 0 → [∂Ê

∂z
]

= −[
Ŝ
]
. (A.15)

Other jump conditions at z = 0 is continuity of pore pressure and its normal derivative:

[
µ̂f

]
= 0. → c

[
∂2Ê
∂z2

]− ck2[Ê
]− 2µ

[
∂Ŝ
∂z

]
= 0.

[ ∂µ̂f

∂z
]

= 0. → c
[

∂3Ê
∂z3

]− ck2[ ∂Ê
∂z

]− 2µ
[

∂2Ŝ
∂z2

]
= 0.

(A.16)

Furthermore continuity of stresses σ̂xz and σ̂zz is assumed.

[
σ̂xz

]
=

[
σ̂zz

]
= 0. (A.17)
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The following holds:

2µik{[∂Ê
∂z

]} = 0. − 2µ{−k2[Ê
]− [∂Ŝ

∂z
]} = 0. (A.18)

Equations (A.14) - (A.18) form six equations with seven unknowns. They reduce to jump
conditions for the stress functions and their derivatives and for the transformed equations
(A.34).
The first jump condition is derived from (A.14).

[
Ê] =

−i
ks

f̃ (k), (A.19)

while (A.18) gives

[∂Ê
∂z

]
= 0. (A.20)

Substituting (A.19) in (A.18) results in jump condition

[∂Ŝ
∂z

]
=

ik
s

f̃ (k) (A.21)

Substituting (A.20) in (A.15) results in the next jump condition

[
Ŝ
]

= 0. (A.22)

Inserting the jump conditions (A.19) and (A.21) in equation (A.16) gives the jump condi-
tion for second order derivative of function E

[∂2Ê
∂z2

]
= − ik

s
f̃ (k)(1− 2µ/c). (A.23)

The last jump condition is derived by inserting the jump condition (A.20) in equation
(A.16).

[∂2Ŝ
∂z2

]
=

c
2µ

[∂3Ê
∂z3

]
. (A.24)

A.4 Fourier and Laplace Transformations

Integral forms are used to handle discontinuities in space and time. Another advantage
is that integration and differentiation become multiplication and division. We define the
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next Fourier and Laplace transformations of the decoupling functions E and S.

Ẽ(k, z, t) =
∞∫
−∞

E(x, z, t)e−ikxdx

Ê(k, z, s) =
∞∫
0

Ẽ(k, z, t)e−stdt

S̃(k, z, t) =
∞∫
−∞

S(x, z, t)e−ikxdx

Ŝ(k, z, s) =
∞∫
0

S̃(k, z, t)e−stdt

(A.25)

A.4.1 Fourier Transformations

A few reminders about the derivatives to x

∞∫
−∞

{
∂E
∂x

}
e−ikxdx =

∞∫
−∞

e−ikxdE

= lima→∞
{

Ee−ikx}a
−a −

∞∫
−∞

−ikEe−ikxdx

= 0 + ikẼ,
∞∫
−∞

{
∂2E
∂x2

}
e−ikxdx =

∞∫
−∞

e−ikxd( ∂E
∂x )

= lima→∞

{
∂E
∂x eikxeikx

}x=a

x=−a
−

∞∫
−∞

−ik ∂E
∂x e−ikxdx

= ... = −k2Ẽ,
∞∫
−∞

{∇2E
}

e−ikxdx = ( ∂2

∂z2 − k2)Ẽ.

(A.26)

Concluding, the next holds

ẽ = (
∂2

∂z2 − k2)Ẽ. (A.27)
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Then for the displacement functions and pore pressure we find

ũ =
∞∫
−∞

u(x, z, t)e−ikxdx

=
∞∫
−∞

( ∂E
∂x − z ∂S

∂x )eikxdx

= ik(Ẽ− zS̃).

w̃ =
∞∫
−∞

w(x, z, t)e−ikxdx

=
∞∫
−∞

( ∂E
∂z − z ∂S

∂z + S)eikxdx

= ∂Ẽ
∂z − z ∂S̃

∂z + S̃.
µ̃f = c( ∂2

∂z2 − k2)Ẽ− 2µ ∂S̃
∂z − RTΓC02πδ(k).

(A.28)

The Fourier transformed stress components become

σ̃xx = −2µ
{

∂2Ẽ
∂z2 − zk2S̃− ∂S̃

∂z
}

.
σ̃xz = 2µik

{
∂Ẽ
∂z − z ∂S̃

∂z
}

.
σ̃zz = −2µ

{− k2Ẽ + z ∂2S̃
∂z2 − ∂S̃

∂z
} (A.29)

The Fourier transformed governing equations become

( ∂2

∂z2 − k2)S̃ = 0,
( ∂2

∂z2 − k2) ∂Ẽ
∂t − cK( ∂2

∂z2 − k2)2Ẽ = 0.
(A.30)

A.4.2 Laplace Transformations

To take out the time dependency also Laplace transformation is performed.

∞∫

0

∂Ẽ
∂t

e−stdt =
∞∫

0

e−stdẼ = +sÊ. (A.31)

The Laplace transformed equations for displacements (A.28), stress components (A.29)
and governing equations (A.30) are (A.32) to (A.34).

û = ik(Ê− zŜ),
ŵ = ∂

∂z Ê− (z ∂
∂z − 1)Ŝ,

µ̂f = c( ∂2

∂z2 − k2)Ê− 2µ ∂
∂z Ŝ− RTΓC0

2πδ(k)
s .

(A.32)

σ̂xx = −2µ
{

∂2

∂z2 Ê− (zk2 + ∂
∂z)Ŝ

}
.

σ̂xz = 2µik
{

∂
∂z Ê− z ∂

∂z Ŝ
}

.
σ̂zz = −2µ

{− k2Ê + (z ∂2

∂z2 − ∂
∂z)Ŝ

} (A.33)
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( ∂2

∂z2 − k2)Ŝ = 0,
( ∂2

∂z2 − k2)
(
cK( ∂2

∂z2 − k2)− s
)
Ê = 0.

(A.34)

A.5 Laplace Solution

Because the impact of the crack fades away far from the crack, the solution has to ap-
proach zero for z → ±∞. The domain is divided into an upper half plane and a lower
half plane, because there is a sign dependence.

A.5.1 Solution of Ŝ

Firstly, the solution of the harmonic equation (A.34a) is derived. The problem is given by

( ∂2

∂z2 − k2)Ŝ = 0[
Ŝ] = 0

[
∂Ŝ
∂z

]
= ik

s f̃ (k).
(A.35)

It is a Laplace equation and the general solution is given by

Ŝ(k, z, s) = a1e−kz + a2e+kz. (A.36)

For z > 0 the solution is given by Ŝ+ = a+e−|k|z and for z < 0 the solution is given
by Ŝ− = a−e+|k|z. As jump conditions the jump over the displacement is given for the
stress function S and its derivative.

limz↓0Ŝ+ − limz↑0Ŝ− = a+ − a− = 0,
limz↓0

∂Ŝ+
∂z − limz↑0

∂Ŝ−
∂z = −|k|(a+ + a−) = ik

s f̃ (k).
(A.37)

With sign(k) = k/|k| the next holds

a+ = a− = −isign(k)
2s f̃ (k). (A.38)

In conclusion the solution of (A.35) is given by

Ŝ(k, z, s) =
−isign(k)

2s
f̃ (k)e−|k||z|. (A.39)

Note that
[

∂2Ŝ
∂z2

]
= k2a+ − k2a− = 0.
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A.5.2 Solution of Ê

The mass equation is solved similarly to the harmonic stress function. The problem is

( ∂2

∂z2 − k2)
(
cK( ∂2

∂z2 − k2)− s
)
Ê = 0.[

Ê] = −i
ks f̃ (k)

[
∂Ê
∂z

]
= 0,[

∂2Ê
∂z2

]
= − ik

cs f̃ (k)(c− 2µ)
[

∂3Ê
∂z3

]
= 0.

(A.40)

The general solution is given by (A.41) with γ =
√

k2 + s
cK and <(γ) > 0.The solution

is again divided into one for the upper half plane and one for the lower half plane.

Ê(k, z, s) = a+e−kz + a−e+kz + b+e−γz + b−eγz. (A.41)

Again the jump conditions are used to determine these coefficients. a+ = −a− and
b+ = −b− hold. Then the solution of (A.41) is given by (A.42)

Ê(k, z, s) = a+sign(z)e−|k||z| + b+sign(z)e−γ|z|. (A.42)

with

a+ = −( ik f̃ (k)µK
s2 + i f̃ (k)

2ks ),

b+ = ikµ f̃ (k)K
s2

}
.

(A.43)

Then in total the solution is given by

Ê(k, z, s) = −sign(z)
{

ikµ f̃ (k)K
s2 + i f̃ (k)

2ks

}
e−|k||z|

+sign(z)
{

ikµ f̃ (k)K
s2

}
e−

|z|√
cK

√
k2cK+s.

(A.44)

We introduce the Fourier transformed function g̃(k) such that

g̃(k) = ikµ f̃ (k)K (A.45)

Solution rewritten becomes then

Ê(k, z, s) = sign(z)
{[− g̃(k)

s2 − i f̃ (k)
2ks

]
e−|k||z|

+ g̃(k)
s2 e−

|z|√
cK

√
k2cK+s

}
.

(A.46)

A.6 Inverse Laplace

The inverse Laplace transformations are found by Abramowitz and Stegun [1].
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A.6.1 Inverse stress function Ŝ

When the solution of transformed equations are considered several terms dependent on
time are present. For the stress function Ŝ the inverse Laplace is rather simple to derive.
Ŝ contains a factor 1/s. The inverse Laplace is given by

L−1
(1

s

)
= H(t). (A.47)

The inverse Laplace of (A.39) for the stress function Ŝ is

S̃(k, z, t) = − isign(k)
2

f̃ (k)e−|k||z|H(t). (A.48)

A.6.2 Inverse stress function Ê

The inverse Laplace of stress function Ê is more difficult. It contains factors 1/s, 1/s2

but also factor e
− |z|

√
k2cK+s√
cK

s2 . This latter term is not easy to invert. The next holds.

L−1
( 1

s2

)
= tH(t). (A.49)

For deriving the inverse of the complex term the shift theorem is needed and the convo-
lution theorm. The next steps are followed

1. The exponent is inversed

L−1
(

e−
|z|√
cK

√
s
)

=
|z|√

cK
√

4πt3
e−

z2
4ckt . (A.50)

2. Shift theorem L−1
(

F(s− a)
)

= eat f (t) is used:

L−1
(

e−
|z|√
cK

√
k2cK+s

)
=

|z|√
cK
√

4πt3
e−

z2
4ckt−k2cKt. (A.51)

3. Convolution theorem L−1
(

FG
)

= f ∗ g =
∫

g(t− τ) f (τ)dτ is used:

L−1
( e−

|z|√
cK

√
k2cK+s

s2

)
=

t∫

0

|z|(t− τ)√
cK
√

4πτ3
e−

z2
4ckτ−k2cKτdτ. (A.52)
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The integration in equation (A.52) is solved by substitution of x2 = τ (2xdx = dτ) and
substitiution of b = z2

4cK , a = k2cK:

L−1
(

. . .
)

=
t∫

0

|z|(t−τ)√
cK
√

4πτ3 e−
z2

4ckτ−k2cKτdτ

= |z|√
cKπ

√
t∫

0
( t

x2 − 1)e−
z2

4ckx2−k2cKx2
dx

= − |z|√
cKπ

√
t∫

0
(1 + t ∂

∂b)e−
b

x2−ax2
dx,

= − |z|√
cKπ

(1 + t ∂
∂b )

√
t∫

0
e−

b
x2−ax2

dx.

(A.53)

This last integral can be solved by using the formula 7.4.33 of Abramowitz and Stegun [1].
The solution is a combination of error functions. Note that b is positive and therefore the
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Figure A.1: Distribution of error function and its complementary.

next holds (See Figure A.1).

limx↓0er f (
√

ax−√b/x) = limx↓0er f (−√b/x) = −1,
limx↓0er f (

√
ax +

√
b/x) = limx↓0er f (

√
b/x) = +1.

(A.54)
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L−1
(

. . .
)

= − |z|√
cKπ

√
π

4
√

a (1 + t ∂
∂b )×

[
e2
√

aber f (
√

ax +
√

b/x) + e−2
√

aber f (
√

ax−√b/x)
]√t

0
= − |z|√

cK
1

4
√

a (1 + t ∂
∂b )×(

e2
√

ab(−1 + er f (
√

at +
√

b/t)) + e−2
√

ab(1 + er f (
√

at−√b/t))
)

= + |z|
4
√

cKa
(1 + t ∂

∂b )×(
e2
√

aber f c(
√

at +
√

b/t)− e−2
√

ab(2− er f c(
√

at−√b/t))
)

(A.55)

with er f (x) = 2√
π

x∫
0

e−t2
dt the error function and er f c(x) = 1− er f (x) its complemen-

tary. Considering that ∂er f c(x)
∂x = −2ex2

/
√

π, we find

∂
∂b e2

√
ab =

√
a√
b
e2
√

ab,
∂
∂b er f c(

√
at +

√
b/t) = − 1√

πbt
e−(

√
at+

√
b/t)2

∂
∂b e−2

√
ab = −

√
a√
b
e−2

√
ab,

∂
∂b er f c(

√
at−√b/t) = 1√

πbt
e−(

√
at−√b/t)2

(A.56)

Then the derivatives of the error functions become

∂
∂b (e2

√
aber f c(

√
at +

√
b/t)) =

√
a/be2

√
aber f c(

√
at +

√
b/t)− e2

√
ab√

πbt
e−(

√
at+

√
b/t)2

.
∂
∂b (e2

√
aber f c(

√
at−√b/t)) = −√a/be−2

√
aber f c(

√
at−√b/t) + e−2

√
ab√

πbt
e−(

√
at−√b/t)2

.
(A.57)

And for the exponents holds

e−2
√

abe−(
√

at−√b/t)2
= e2

√
abe−(

√
at+

√
b/t)2

= e−(at+b/t). (A.58)

Then differentiating with respect to b in equation (A.55), we find for the inverse Laplace
of the exponent through convolution theory (equation (A.52)) and with b = z2

4cK and
a = k2cK.

L−1
(

. . .
)

= ( −|z|
2|k|cK + t)e−|k||z| + ( |z|

4|k|cK + t/2)e+|k||z|er f c(|k|√cKt + |z|/√4cKt)

+( |z|
4|k|cK − t/2)e−|k||z|er f c(|k|√cKt− |z|/√4cKt).

(A.59)

The complementary error function er f c(x) = 1− er f (x) is introduced. This is conve-
nient for the total expression for the stress function.
The Fourier transformed stress function Ẽ becomes

L−1
(

Ê
)

= Ẽ(k, z, t)

= sign(z)
{
[−g̃(k)t− i f̃ (k)

2k ]e−|k||z|H(t) + g̃(k)L−1
(

e−
1

cK

√
k2cK+s|z|
s2

)}
,

(A.60)
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with g̃(k) = ikµ f̃ (k)K. This expression for the stress function is reduced to

Ẽ(k, z, t) = −sign(z)
{[ i f̃ (k)

2k + |z|
2|k|cK g̃(k)

]
e−|k||z|H(t)

−g̃(k)( t
2 + |z|

4|k|cK )e|k||z|er f c(|k|√cKt + |z|/√4cKt)

+g̃(k)( t
2 − |z|

4|k|cK )e−|k||z|er f c(|k|√cKt− |z|/√4cKt)
}

.

(A.61)

or rewritten

Ẽ(k, z, t) = − iµ f̃ (k)sign(z)
2ck

{
[ c

µ + |z||k|]e−|k||z|H(t)

−cK(k2t + |z||k|
2cK )e|k||z|er f c(|k|√cKt + |z|/√4cKt)

+cK(k2t− |z||k|
2cK )e−|k||z|er f c(|k|√cKt− |z|/√4cKt)

}
.

(A.62)

A.6.3 Derivatives of Inverse Stress Functions

A short notation is introduced:

er f c(|k|√cKt− |z|/√4cKt) = er f c(−),
er f c(|k|√cKt + |z|/√4cKt) = er f c(+).

Partial differentiation with respect to z results in:

∂
∂z (e(−|k||z|)) = −sign(z)|k|e(−|k||z|)
∂
∂z (e(|k||z|)) = sign(z)|k|e(|k||z|)

and

e(±|k||z|) ∂

∂z
(er f c(±)) = −±sign(z)√

πcKt
e−(k2cKt+z2/(4cKt)).

The first order derivatives with respect to z of the stress functions are given below.

∂Ẽ
∂z (k, z, t) =

{[ i|k| f̃ (k)
2k + |z||k|−1

2|k|cK g̃(k)
]
e−|k||z|H(t)

+g̃(k)( t|k|
2 + |z||k|+1

4|k|cK )e|k||z|er f c(+)

+g̃(k)( t|k|
2 − |z||k|−1

4|k|cK )e−|k||z|er f c(−)

− g̃(k)t√
πcKt

e−(k2cKt+z2/(4cKt))
}

.

= iµ f̃ (k)
2ck

{
|k|[ c

µ + |z||k| − 1
]
e−|k||z|H(t)

+|k|cK(k2t + |z||k|+1
2cK )e|k||z|er f c(+)

+|k|cK(k2t− |z||k|−1
2cK )e−|k||z|er f c(−)

−2 k2
√

cKt√
π

e−(k2cKt+z2/(4cKt))
}

.
∂S̃
∂z (k, z, t) = iksign(z)

2 f̃ (k)e−|k||z|H(t).

(A.63)



A.7 INVERSE FOURIER TRANSFORM 125

The second order derivatives with respect to z are

∂2Ẽ
∂z2 (k, z, t) = −sign(z)

{[ ik f̃ (k)
2 + |z|k2−2sign(z)|k|

2|k|cK g̃(k)
]
e−|k||z|H(t)

−g̃(k)( tk2

2 + |z||k|+2sign(z)
4cK )e|k||z|er f c(+)

+g̃(k)( tk2

2 − |z||k|−2sign(z)
4cK )e−|k||z|er f c(−)

}

= − iµ f̃ (k)sign(z)
2ck

{
k2[ c

µ + |z||k| − 2
]
e−|k||z|H(t)

−k2cK(k2t + |z||k|+2
2cK )e|k||z|er f c(+)

+k2cK(k2t− |z||k|−2
2cK )e−|k||z|er f c(−)

}
.

∂2S̃
∂z2 (k, z, t) = − ik|k|

2 f̃ (k)e−|k||z|H(t).

(A.64)

They indeed fulfil the jump conditions.

A.6.4 Other Inverse Laplace

The shear stress in Fourier transforms become:

σ̃xz = 2µik
{

∂Ẽ
∂z − z ∂S̃

∂z
}

.

= 2µ
{[−(|k|−|z|k2) f̃ (k)

2 + |z||k|−1
2|k|cK g̃(k)

]
e−|k||z|H(t)

+ikg̃(k)( t|k|
2 + |z||k|+1

4|k|cK )e|k||z|er f c(+)

+ikg̃(k)( t|k|
2 − |z||k|−1

4|k|cK )e−|k||z|er f c(−)

−ik g̃(k)t√
πcKt

e−(k2cKt+z2/(4cKt))
}

= −µ2 f̃ (k)|k|
c

{[− (1− c
µ )(1− |z||k|)]e−|k||z|H(t)

+cK(k2t + |z||k|+1
2cK )e|k||z|er f c(+)

+cK(k2t− |z||k|−1
2cK )e−|k||z|er f c(−)

−2|k|
√

cKt√
π

e−(k2cKt+z2/(4cKt))
}

(A.65)

Also the chemical potential can be calculated. It is given by

µ̃ f = c( ∂2

∂z2 − k2)Ẽ− 2µ ∂S̃
∂z − RTΓC02πδ(k).

= sign(z)
K g̃(k)e−|k||z|H(t) + g̃(k)sign(z)

2K
(
e|k||z|er f c(+) + e−|k||z|er f c(−)

)

−ikµ f̃ (k)e−|k||z| − RTΓC02πδ(k),

= iµk f̃ (k)sign(z)
2

{
e|k||z|er f c(+)− e−|k||z|er f c(−)

}
− RTΓC02πδ(k)

(A.66)

A.7 Inverse Fourier transform

The shear fault is caused by a dislocation. Then the slip function becomes:

f (x) = d(H(L + x)−H(L− x)). (A.67)
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The Fourier transformed is

f̃ (k) =
L∫

−L

de−ikxdx =
2dsin(Lk)

k
. (A.68)

The function g̃(k) becomes in spatial domain:

g(x) = F−1
(

ikµ f̃ (k)K
)

= −µK ∂ f (x)
∂x

= −µdK(δ(L + x)− δ(L− x))

(A.69)

The shear stress is difficult to calculate. The solution at the crack surface is considered,
namely at z = 0. Then the shear stress is given by

σ̃xz(k, 0, t) = −2µ
[ |k| f̃ (k)

2 + ik
2|k|cK g̃(k)

]
H(t)

+2µg̃(k)
{
(itk|k|+ ik

2|k|cK )er f c(|k|√cKt)− ikt√
πcKt

e−k2cKt
}

= −µ2 f̃ (k)|k|
c

{[− (1− c
µ )

]H(t)

+(2k2cKt + 1)er f c(|k|√cKt)− 2
√

k2cKt√
π

e−(k2cKt)
}

(A.70)

Abramowitz and Stegun [1] paragraph 7.2 deals with repeated integrals of the comple-
mentary error function iner f c(λ):

iner f c(λ) =
∞∫

λ

in−1er f c(l)dl. (A.71)

with

iner f c(λ) = 2√
π

∞∫
λ

(l−λ)n

n! e−l2
dl,

= −λ
n in−1er f c(λ) + 1

2n in−2er f c(λ)
i0er f c(λ) = er f c(λ),
i−1er f c(λ) = 2√

π
e−λ2

.

(A.72)

We can derive that

i1er f c(λ) = −λer f c(λ) + 1√
π

e−λ2
.

i2er f c(λ) = 1
4

{
(1 + 2λ2)er f c(λ)− 2 λ√

π
e−λ2

} (A.73)
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With λ =
√

k2cKt and a factor 2ik
cK|k| we have found for (A.70)

σ̃xz(k, 0, t) =
−µ2|k| f̃ (k)

c
{− (1− c

µ
)H(t) + 4i2er f c(

√
k2cKt)

}
. (A.74)

For calculating the inverse Fourier, the first and second term are calculated separately.
Since f̃ (k) is symmetric and |k| is symmetric, the first term is symmetric. For the inverse
Fourier transformation this means that only the real part, i.e. symmetric part, of eikx =
cos(kx) + isin(kx) will contribute to the final result. This property is shown below.

F−1
(
|k| f̃ (k)

)
=

∞∫
−∞

2d|k| sin(kL)
k eikxdk

= d
π

∞∫
−∞

|k| sin(kL)
k (cos(kx) + isin(kx))dk

= d
π

( 0∫
−∞

−sin(kL)(cos(kx) + isin(kx))dk +
∞∫
0

sin(kL)(cos(kx) + isin(kx))dk
)

= d
π

( 0∫
∞

sin(kL)(cos(kx)− isin(kx))(−dk) +
∞∫
0

sin(kL)(cos(kx) + isin(kx))dk
)

= 2d
π

∞∫
0

sin(kL)cos(kx)dk.

(A.75)

The result of the first Fourier inverse is

F−1
(
|k| f̃ (k)

)
= 2d

π

∞∫
0

sin(kL)cos(kx)dk

= 2d
π

(L−x)cos((L+x)k)+(L+x)cos((L−x)k)
2(x2−L2)

∣∣∣
∞

0
,

= 2d
π

L
(L2−x2) .

(A.76)

The error function i2er f c(
√

k2cKt) is symmetric in k. This means that the second part of
the shear stress is symmetric in k too. The real part of eikx will only contribute. This way
the inverse Fourier reduces to

F−1
(
|k| f̃ (k)i2er f c(

√
k2cKt)

)
=

∞∫
−∞

f̃ (k)|k|i2er f c(
√

k2cKt)eikdk

= 2d
π

∞∫
0

i2er f c(
√

k2cKt)sin(kL)cos(kx)dk

= 2d
π Inti2er f c.

(A.77)

The integral Inti2er f c =
∞∫
0

i2er f c(
√

k2cKt)sin(kL)cos(kx)dk is introduced. By partial in-

tegration we find that the next integral can be derived. The property limx→∞iner f c(x) =



128 APPENDIX A. DERIVATIONS FOR ANALYTICAL SOLUTION

0 is used.

Inti2er f c =
∞∫
0

i2er f c(
√

k2cKt)sin(kL)cos(kx)dk

=
[

1
x i2er f c(

√
k2cKt)sin(kL)sin(kx)

]∞

0

−
∞∫
0

{
−√cKt

x i1er f c(
√

k2cKt)sin(kL) + L
x i2er f c(

√
k2cKt)cos(kL)

}
sin(kx)dk,

= 0 +
[{

−√cKt
x2 i1er f c(

√
k2cKt)sin(kL) + L

x2 i2er f c(
√

k2cKt)cos(kL)
}

cos(kx)
]∞

0

−
∞∫
0

{
cKt
x2 er f c(

√
k2cKt)sin(kL)− 2 L

√
cKt

x2 i1er f c(
√

k2cKt)cos(kL)
}

cos(kx)dk

+ L2

x2 Inti2er f c,

= − L
x2 i2er f c(0) + L2

x2 Inti2er f c − cKt
x2

∞∫
0

er f c(
√

k2cKt)sin(kL)cos(kx)dk

+2 L
√

cKt
x2

∞∫
0

i1er f c(
√

k2cKt)cos(kL)cos(kx)dk,

= 1
L2−x2

{
+ Li2er f c(0) + cKtInter f c − 2L

√
cKtInti1er f c

}
.

(A.78)

We denote Inti1er f c =
∞∫
0

er f c(
√

k2cKt)cos(kL)cos(kx)dk:

Inti1er f c =
∞∫
0

er f c(
√

k2cKt)cos(kL)cos(kx)dk

= 0− 1
x

∞∫
0

{
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√
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√
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}
sin(kx)dk
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x

∞∫
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∞∫
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√
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x
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√
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}
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x2 Inti1er f c,

= − x
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(A.79)

The integral left is similar to Inter f c, but with x and L the other way around. We denote

Inter f c =
∞∫
0

er f c(
√

k2cKt)sin(kL)cos(kx)dk:

Inter f c =
∞∫
0

er f c(
√

k2cKt)sin(kL)cos(kx)dk

=
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1
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√
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]∞

0

−
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1
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e−k2cKtsin(kL) + Ler f c(
√
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π

e−k2cKtsin(kL)sin(kx)dk +
[

L
x2 er f c(

√
k2cKt)cos(kL)cos(kx)

]∞

0

− L
x2

∞∫
0

−2
√

cKt√
π

e−k2cKtcos(kL)cos(kx)dk + L2

x2 Inter f c

= − Ler f c(0)
x2 +

∞∫
0

1
x

2
√

cKt√
π

e−k2cKt
{

sin(kL)sin(kx) + L
x cos(kL)cos(kx)

}
dk + L2

x2 Inter f c

= 1
L2−x2

{
Ler f c(0)− 2x

√
cKt√
π

Intexp
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(A.80)
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The last unknown integral is the one in Intexp. This integral is derived here.

Intexp =
∞∫
0

e−k2cKt
{

sin(kL)sin(kx) + L
x cos(kL)cos(kx)

}
dk

=
∞∫
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√
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√
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√
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Then

Inter f c = Ler f c(0)
L2−x2 − 1

2(L+x) e−
(L+x)2

4cKt − 1
2(L−x) e−

(L−x)2
4cKt

Inti1er f c =
√

cKt
L2−x2

{
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2(L+x) e−

(L+x)2
4cKt − (L+x)

2(L−x) e−
(L−x)2

4cKt

}

=
√

cKt
{

L2+x2
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2(L+x)2 e−
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}
(A.82)

All the separate integrals have been determined and we find for Inti2er f c the next solution.

Inti2er f c = 1
L2−x2

{
Li2er f c(0) + cKtInter f c − 2L

√
cKtInti1er f c

}

= 1
(L2−x2)

{
Li2er f c(0)− cKt 3Lx2+L3

(L2−x2)2 er f c(0)

+cKt
(

(L−x)
2(L+x)2 e−

(L+x)2
4cKt + (L+x)

2(L−x)2 e−
(L−x)2

4cKt

)}
.

(A.83)

Furthermore for the repetitive error function holds:

iner f c(∞) = 0
iner f c(0) = [2nΓ(n/2 + 1)]−1

Γ(n) = (n− 1)!, n ∈ N+.
(A.84)

The next holds:

(L + x)
2(L− x)2 +

(L− x)
2(L + x)2 =

(L + x)3 + (L− x)3

2(L2 − x2)2 =
3Lx2 + L3

(L2 − x2)2 (A.85)
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We have found for Inti2er f c

Inti2er f c = 1
L2−x2

{
L
4 − cKt

(
(L−x)

2(L+x)2 (1− e−
(L+x)2

4cKt )

+ (L+x)
2(L−x)2 (1− e−

(L−x)2
4cKt )

)} (A.86)

Then the shear stress is given by equation (A.74)

σxz(x, 0, t) = F−1
(−µ2|k| f̃ (k)

c
{− (1− c

µ )H(t) + 4i2er f c(
√

k2cKt)
})

= −µ2H(t)
c

{− (1− c
µ )F−1

(
|k| f̃ (k)

)
+ 4F−1

(
i2er f c(

√
k2cKt|k| f̃ (k))

)}

= −2µH(t)d
π

{
(1− µ

c ) L
L2−x2 + 4 µ

c Inti2er f c

} . (A.87)

which leads to

σxz(x, 0, t) =
−2µH(t)d
π(L2 − x2)

{
L− µKF(x, t).

}
(A.88)

with

F(x, t) = 2t
(L− x)
(L + x)2 (1− e−

(L+x)2
4cKt ) +

(L + x)
(L− x)2 (1− e−

(L−x)2
4cKt ) (A.89)

A.8 Chemical potential and flow

The chemical potential does not only satisfies Eq. (3.9), but it also satisfies Eq.(3.28), with
S time independent. Assuming almost circular diffusion from the crack-tip, the equa-
tion can be solved using Hankel transformation. [15,76]. The result is that the chemical
potential follows

µf = (1− e−r2/4cKt)µf
0 µf

0 = AL
sin(θ)

r
(A.90)

with local polar coordinate r defined as the radius at one of the two crack-tips and θ the
angle with x-axis. The parameter A is a measure for the offset: A = 2µdb

2πL . In x, z-plane,
this becomes

µf = 2µd
L

z
2πL

[ L2

(x−L)2+z2 − L2

(x+L)2+z2

]

−2µd
L

z
2πL e−z2/4cKt[ L2e−(x−L)2/4cKt

(x−L)2+z2 − L2e−(x+L)2/4cKt

(x+L)2+z2

] (A.91)

and therefore (A.92) holds.

µf = µdz
π

[ 1
(x−L)2+z2 − 1

(x+L)2+z2

]

−µdz
π e−z2/4cKt[ e−(x−L)2/4cKt

(x−L)2+z2 − e−(x+L)2/4cKt

(x+L)2+z2

] (A.92)
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From this we can derive the flow over the crack (~n vector normal to the crack):

~q ·~n = −K ∂µf

∂z = −K µd
π

[ 1
(x−L)2+z2 − 1

(x+L)2+z2

]

+K 2µdz2

π

[ 1
((x−L)2+z2)2 − 1

((x+L)2+z2)2

]

+K µd(1−2z2/4cKt)
π e−z2/4cKt[ e−(x−L)2/4cKt

(x−L)2+z2 − e−(x+L)2/4cKt

(x+L)2+z2

]

−K 2µdz2

π e−z2/4cKt[ e−(x−L)2/4cKt

((x−L)2+z2)2 − e−(x+L)2/4cKt

((x+L)2+z2)2

]
(A.93)

and the flow along the crack (~t vector in direction of crack-tip x = +L):

~q ·~t = −K ∂µf

∂x = µdz
π

[ −2(x−L)
(x−L)2+z2 − −2(x+L)

(x+L)2+z2

]

−µdz
π e−z2/4cKt[ −2(x−L)

4cKt e−(x−L)2/4cKt

(x−L)2+z2 −
−2(x+L)

4cKt e−(x+L)2/4cKt

(x+L)2+z2

]

−µdz
π e−z2/4cKt[−2(x−L)e−(x−L)2/4cKt

((x−L)2+z2)2 − −2(x+L)e−(x+L)2/4cKt

((x+L)2+z2)2

]
(A.94)
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APPENDIX B

Numerical aspects of a discontinuity

In this appendix some features of the two standard models are repeated and elaborated
with pictures.

B.1 Discontinuities and FEM

The modes of failure are represented in Fig. B.1.

a. b.

Figure B.1: Representation of a. mode II or shear loading and b. mode I or tensile
loading

The mathematical representation of discontinuities are different than the representation
in the FEM. Two methods are compared, Fig. B.2. The basis functions are enhanced with

a. b.

Figure B.2: a. Using interface model, extra nodes are introduced to represent crack. b.
Using PUM, the discontinuity is projected on the mesh by increasing the
degrees of freedom of the existing nodes.
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the following discontinuities.
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Figure B.3: Enhancing the basis functions for a. Strong discontinuity b. Weak discontinuity.

B.2 Cohesive zone

The cohesive zone model represents a damage evolution. The evolution can be repre-
sented as (nonlinear) springs.

a. a.

Figure B.4: Traction forces at the discontinuity represented as (nonlinear) springs for a.
Shear loading b. Tensile loading.
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B.3 Yield criterion

The direction of crack growth is chosen nonlocally, since the local stress field is not known
at the crack-tip and cannot be calculated reliable locally. The stress field is calculated
nonlocally by integration over an area around the tip using

σtip = ∑ntot
i=1

wi
wtot

σi
wtot = ∑ntot

j=1 wj

wi = (2π)2/3

l3
a

e
− r2

i
2l2a .

(B.1)

with ri the distance between integration point i and the crack-tip and la is a length scale
parameter which determines the influence of a sample point. Typically la is a material
length scale. Fig. B.5 shows the integration area. The wider the area the more the stress
field is spread and the less the steepness of the stress field.

Figure B.5: Circle of influence for determining the stress state at the crack tip.

B.4 Implementation aspects

This section is adopted from the thesis of Wells [106] and Remmers [78].
During a calculation, the initiation criterion is monitored. Each time step (increment),
the system of equations are solved iteratively with the Newton-Rhapson procedure. When
the solution of the increment has converged, the propagation criterion is checked. When
the criterion is met, a discontinuity is introduced through the entire element. The as-
sumption of one element crossed straight at one time step is one for implementation and
not of formulation. This assumption avoids spurious unloading and sudden jumps in
the solution [107]. This assumption is of no consequences upon mesh-refinement. Fur-
thermore the solution depends more on energy dissipation though opening of sliding in
the cohesive zone, then on moment of extension. The extension is at the end of the time
increment, to keep the quadratic convergence of the Newton-Rhapson procedure.
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Only elements crossed by a strong discontinuity are enhanced by the Heaviside function,
since the Heaviside function is constant in all other elements, which is already included
in the span of the basis functions. Furthermore only elements crossed by a weak discon-
tinuity are enhanced by a distance function for practical issues. This assumption is of no
consequences, when the effect of the discontinuity is local. .
If only a very small portion of the element is crossed by a discontinuity, the volume of ei-
ther Ω+ (Ω+

s ) or Ω−( Ω−
s ) is small, the Heaviside function is almost constant throughout

the element. To ensure a well-conditioned stiffness matrix, i.e. stable calculations, only
the nodes are enhanced when the support contributes sufficiently to the stiffness matrix.
In other words only all nodes of the element are enhanced when the support is crossed
by a discontinuity and the next holds:

min(Ω+
s , Ω−

s )
Ωs

> εtol (B.2)

with Ωs the volume of a support of a node and εtol the tolerance level dependent on the
solver. Last but not least, the nodes on the element boundary including the crack-tip are
not enhanced, to enforce zero opening at the tip, [~u] =~0.
The difficulty of integration of enhanced elements lies with adequately integration of
both sides of the discontinuity. For the partition of unity method continuous or standard
elements are integrated in a standard FE way, using Gauss integration scheme and have
nodal degrees of freedom ~a

~u and a
~µ. Elements crossed by a discontinuity have nodal

degrees of freedom~a
~u, a

~µ,~b
~u and b

~µ. When an element is crossed by the discontinuity
for the first time, the separate domains Ω+ and Ω− are divided into subdomains by
triangulation and within each subdomain Gauss integration is performed. Furthermore
two integration points are added on the discontinuity for integration of the terms in the
local momentum and mass balance. The discontinuity is represented by a straight line
in 2D, therefore a standard 1-D integration scheme is used. For the integration over the
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Figure B.6: Integration of elements. a. Continuous element b. Element crossed by a
discontinuity.

discontinuity Newton-Cotes algorithm is used to prevent locking [79].
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Voortplantende discontinuïteiten in geïoniseerde poreuze media

Kleischalie, leem, hydrogelen en biologische weefsels zwellen en krimpen onder
verandering van osmotische condities. Deze verandering in condities kan leiden tot
lokale spanningen en tot bezwijkgedrag. De materialen worden gemodelleerd als een
meerfasenmateriaal bestaande uit een vaste stof met ionen ingebed in de matrix (vaste
lading) en een vloeistof met vrij bewegende tegengesteld geladen ionen. Daarom worden
ze gekarakteriseerd als geïoniseerde poreuze media. De aanwezigheid van de vaste
lading veroorzaakt een verschil in osmotische druk tussen het materiaal en de vloeistof
eromheen en daardoor een voorspanning in het materiaal. De reactie van dit materiaal op
mechanische of chemische belasting wordt sterk beïnvloed door de aanwezige voorspan-
ning, vloeistof, en scheuren. Ontwerp en gebruik van dit soort materialen vereist
begrip van de bezwijkmechanismen. Toepassingen zijn te vinden in de olie-industrie
(zoals hydraulic fracturing en boorgatinstabiliteit), materiaal ontwerp (zoals klei, luiers,
prothesen) en voor medische behandelingen (hernia en weefselvervangers). De relatie
tussen scheurvorming en vloeistofstroming is weinig bestudeerd, maar de relatie tussen
scheurvorming en osmotische condities nog minder. Het doel is daarom het effect van
osmotische condities te bestuderen op de voortplanting van discontinuïteiten onder
verscheidene belastingen in verzadigde geïoniseerde poreuze media gebruikmakend van
de eindige-elementenmethode (EEM).

Discrete scheuren kunnen wiskundig voorgesteld worden als verplaatsingssprongen,
i.e. sterke discontinuïteiten. Het modelleren van dit soort discontinuïteiten is een
uitdaging. Standaard Eindige-elementenmodellen kunnen niet omgaan met discontin-
uïteiten, omdat de methode continuïteit van het verplaatsingsveld aanneemt. Continue
of uitgesmeerde benaderingen met EEM zijn geschikt wanneer er geen prominente
scheur is. In het geval van een prominente scheur, kunnen discontinuïteiten toegevoegd
worden aan EEM door het aanpassen van het onderliggende rooster, door gebruik te
maken van tussenliggende elementen of door het rooster lokaal telkens opnieuw aan
te maken. Als alternatief, kan een discontinuïteit onafhankelijk van het onderliggende
rooster ingebracht worden door gebruik te maken van de eigenschap dat de basisfuncties
een "partition of unity" (eenheidsverzameling) vormen. De "partition of unity" methode
laat toe dat discontinue functies toegevoegd worden aan de basisfuncties and daardoor
de benadering van discontinue velden onafhankelijk van het onderliggende rooster.
Daarvoor wordt het aantal vrijheidsgraden van het element met een scheur verhoogd en
niet het aantal elementen. Daardoor verandert de topologie niet. Verder wordt de scheur
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niet op voorhand ingelegd waardoor geen dummystijfheden nodig zijn om de scheur
dicht te houden alvorens groei, zoals bij sommige geometrische methoden.
Scheurvoortplanting in poreuze media vindt in het algemeen plaats door microschade
voor de scheurtip. Deze microschade wordt in het model toegevoegd via de "cohesive
zone" (zone van cohesie) methode. Deze methode verzamelt alle schade voor de echte
scheurtip en brengt deze samen in een vergelijking die het verzwakken van het materiaal
representeert en werkt op een virtuele verlenging van de scheur. De vervorming van
het materiaal veroorzaakt een vloeistofstroming. Er is nog geen consensus hoe de
vloeistofstroming geassocieerd met scheurvorming gemodelleerd kan worden.

In de thesis wordt de "partition of unity" methode gecombineerd met het "cohesive
zone" model toegepast voor geïoniseerde poreuze media. Het bulk materiaal wordt
gemodelleerd als een tweefasenmateriaal, bestaande uit een vaste stof en een vloeistof,
waarbij de invloed van ionenstroom wordt verwaarloosd. Osmose wordt ingecalculeerd
in het constitutieve gedrag en in de initiële spanningstoestand. Het model wordt
beschreven in hoofdstuk 2.
Het werk bestaat verder uit drie delen. In het eerste deel wordt een analytische oplossing
voor een dislocatie in een zwellend medium afgeleid voor verificatie van de methode
afgeleid in het tweede deel. In het tweede deel wordt het modelleren van scheurgroei
onder afschuiving (modus II) behandeld en in het derde deel wordt scheurgroei onder
trekspanning behandeld. Omdat de verschillende belastingen in de laatste twee delen
verschillende vloeistofstromingen veroorzaken, wordt de vloeistofstroming verschillend
behandeld.

In het eerste deel wordt de verdeling van de afschuifspanning in het vlak van de scheur
analytisch afgeleid voor een gesimplificeerde situatie van een niet- voortplantende
dislocatie in een osmo-elastisch materiaal (hoofdstuk 3). Deze oplossing wordt afgeleid
door gebruik van Fourier en Laplace transformaties. Tevens wordt de vloeistof verdeling
afgeleid. Vergelijking van de analytische oplossing met simulaties met een commercieel
eindige-elementen- pakket, laat zien dat een goede representatie van scheuren een must
is. De analytische oplossing is geschikt als standaard voor verificatie van het "partition of
unity" model in het tweede gedeelte.
In het tweede deel wordt het probleem van scheurvorming onder afschuiving onder de
loep genomen (hoofdstuk 4). De afschuivingsbelasting veroorzaakt initieel een hoge
drukgradiënt over de scheur voor een kleine overgangszone, terwijl de scheurvlakken
met elkaar in contact zijn. Met de tijd neemt de druk af in absolute grootte en wordt
de overgangszone breder. Dit fenomeen wordt benaderd door het veronderstellen dat
de vloeistofstroming over de scheur door schade evenredig is met een sprong in het
drukveld. Verder is de evenredigheidsconstante afhankelijk van de tijd sinds opening en
laat relaxatie van de vloeistof toe. Vergelijking van numerieke berekeningen met de ana-
lytische oplossing van het eerste deel laat goede overeenkomsten zien. Compressietesten
laten zien dat voorspanning in het medium invloed heeft op scheurgroei, zowel in
snelheid als in richting. De resultaten van scheurgroei zijn redelijk roosteronafhankelijk.
In het laatste deel wordt het groeien van discontinuïteiten onder trekspanning bekeken.
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Trekspanning op een scheur resulteert in het openen van de scheur en hoge druk-
gradiënten tussen het medium en de scheur. Dit vereist daardoor een andere aanpak
van de vloeistofstroming van modus-I vergeleken met modus-II. In dit geval, wordt
een zwakke discontinuïteit verondersteld voor de druk in het scheurgebied, en dus
continuïteit van de druk, maar een discontinuïteit in het gradiëntveld. Daarnaast, wordt
er voor de vloeistofstroming in de scheur Couette stroming verondersteld. De resultaten
laten zien dat afhankelijk van de belasting , permeabiliteit, voorspanning en stijfheid van
het materiaal, scheurgroei leidt tot het aantrekken van vloeistof naar de scheurtip toe.
Deze vloeistof komt eerder van de scheur zelf dan van de porositeit van het materiaal.
Dit leidt tot het sluiten van de scheuren en daarmee het vertragen van de scheurgroei.
De resultaten zijn onafhankelijk van het rooster voor materialen met grote stijfheid.

Interessant is dat stapsgewijze scheurgroei door het medium is gezien in beide modi van
belastingen. Scheurgroei alterneert met pauzes waarin consolidatie van het scheurtipge-
bied plaatsvindt. De consolidatie resulteert in een belastingoverdracht van de vloeistof
naar de vaste stof. Intussen groeit de belasting op de vaste stof, de bezwijkbelasting
wordt gehaald en de scheur groeit weer.
Verder blijkt scheurgroei afhankelijk te zijn van osmotische voorspanning voor beide
modi. In modus-II beïnvloedt de voorspanning de hoek van groei. In modus-I kan
de voorspanning scheurgroei bevorderen of tegen scheurgroei beschermen afhankelijk
van de belasting en de materiaaleigenschappen. Osmotische voorspanning zelf kan
scheurgroei toestaan zonder een uitwendige belasting, zoals het spontaan ontstaan van
scheuren in klei bij uitdroging, maar dan in volledig door vloeistof verzadigde condi-
ties. Dit mechanisme zou een verklaring kunnen zijn voor de scheuren gezien in tussen-
wervelschijven gedurende degeneratie.
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