

On nonnegative garrote estimator in a linear regression model

Citation for published version (APA):

Mohammadi, L., & Geer, van de, S. A. (2006). *On nonnegative garrote estimator in a linear regression model.* (Report Eurandom; Vol. 2006035). Eurandom.

Document status and date:

Published: 01/01/2006

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- · Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

Download date: 16. Nov. 2023

On nonnegative garrote estimator in a linear regression model

Leila Mohammadi EURANDOM, P.O.Box 513, 5600 MB Eindhoven, The Netherlands, mohammadi@eurandom.tue.nl

and

Sara van de Geer

Seminar für Statistik, ETH-Zentrum, LEO D11, 8092 Zürich, Switzerland, geer@stat.math.ethz.ch

Abstract: Subset selection regression is a frequently used statistical method. It waives some of the predictor variables and the prediction equation is based on the remaining set of variables. Subset selection is simple and it clearly reduces the variance. An other method for reducing the variance is ridge regression. Usually, subset selection is not as accurate as ridge. The problems with ridge regression are for example: 1) it is not scale invariant 2) it does not give a simple equation. We need an intermediate method which selects subsets, is stable and gains its accuracy by selective shrinking. Breiman (1995) proposed a new method, called the nonnegative (nn) garrote. In this lecture, in a linear regression model, we consider the nonnegative garrote estimator of the coefficients as introduced by Breiman (1995). This estimator shrinks the least square estimator by a parameter λ in the orthogonal case. In an especial case of λ , we prove the nn-garrote estimator is consistent and its MSE converges to zero. We also obtain the rate of convergence.

1. Introduction.

Subset selection regression is a frequently used statistical method. Suppose we are given data of the form $\{(y_n, x_{1n}, ..., x_{Mn}), n=1,...,N\}$. Subset selection waives some of the predictor variables $x_1,...,x_M$ and then the prediction equation for y is based on the remaining set of variables. Subset selection is simple and it clearly reduces the variance if M is large. An other method for reducing the variance is ridge regression. In this method we assume λ to be a positive value (shrinkage parameter) and the coefficients are estimated by $(X^TX + \lambda I)^{-1}X^TY$. Let $y = \sum_k \beta_k x_k + \epsilon$. If a few of the $\{\beta_k\}$ are nearly zero and the rest are large, then subset selection gives more accurate prediction than ridge regression. If it is not the case, then ridge regression acts better. Thus usually, subset selection is not as accurate as ridge. The problems with ridge regression are for example: 1) it is not scale invariant 2) it does not give a simple equation. As it is known, we need an intermediate method which selects subsets, is stable and gains its accuracy by selective shrinking.

Breiman (1995) proposed a new method, called the nonnegative (nn) garrote.

Consider the regression model

$$y_i = \sum_{j=1}^{m} \beta_j x_{ij} + \epsilon_i, \quad i = 1, ..., n,$$

where $\epsilon_1, ..., \epsilon_n$ are independent with mean zero. The nn-garrote estimator for β_j is $\hat{\beta}_{j,G} = c_j \hat{\beta}_j$ where $\hat{\beta}_j$ is the OLS (ordinary least square) estimator for β_j and where c_j is a shrinkage parameter selected by minimizing

$$\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \sum_{j=1}^{m} c_{j} \hat{\beta}_{j} x_{ij})^{2}$$

under constraints $c_j \geq 0$ and $\sum_{j=1}^m c_j \leq s$. Clearly when s decreases, more of the $\{c_j\}$ become zero and the remaining nonzero $\{c_j\}$ are shrunken. The nn-garrote eliminates some variables, shrinks others, and is stable and scale invariant.

Breiman experimented subset selection and nn-garrote on two well-known data sets. These experiments showed nn-garrote has the mean prediction error and mean model error less than subset selection. In experiments on real and simulated data, the nn-garrote produces lower prediction error than ordinary subset selection. It is also comparable to ridge regression. The tests showed that subset selection is unstable, ridge is very stable and the nn-garrote is intermediate.

Now consider the regression model

$$y_i = \sum_{j=1}^{m} \beta_j x_{ij} + \epsilon_i, \quad \epsilon_i \sim N(0, 1), \quad i = 1, ..., n,$$
 (1)

where $\epsilon_1, ..., \epsilon_n$ are independent and where $\{x_{ij}\}$ are orthogonal.

In nn-garrote the expression $\sum_{i=1}^{n} (y_i - \sum_{j=1}^{m} c_j \hat{\beta}_j x_{ij})^2$ is minimized under the constraints $c_j \geq 0$, for all j, and $\sum_{j=1}^{m} c_j = s$. The solution is easily obtained by $c_j = (1 - \frac{\lambda^2}{\hat{\beta}_j^2})^+$, where λ is determined from s by the condition $\sum_{j=1}^{m} c_j = s$ and where a^+ indicates the positive part of a. Therefore, in this case, nn-garrote coefficients are

$$\hat{\beta}_{j,G} = (1 - \frac{\lambda^2}{\hat{\beta}_i^2})^+ \hat{\beta}_j, \quad \lambda > 0.$$

Under the model (1), the prediction error (see Breiman (1995)) of any estimator $\tilde{\beta}$ is

$$PE(\tilde{\beta}) = n + \sum_{i=1}^{n} (\sum_{j=1}^{m} (\beta_j - \tilde{\beta}_j) x_{ij})^2 = n + MSE(\tilde{\beta}),$$

where $MSE(\tilde{\beta})$ means the mean square error of $\tilde{\beta}$. This component is the prediction error due to lack of fit to the underlying model and also called model error.

In this paper we consider the model (1) and study the behavior of the nn-garrote estimator when $\lambda = \lambda_n \to 0$. For example, we consider the case $\lambda = c\sqrt{\log n/n}$, $c > \sqrt{8}$. We eventually prove in the orthogonal case $X^TX = nI$, the nn-garrote estimator is consistent and its model error tends to zero as $n \to \infty$ and we obtain the rate of convergence.

2. Consistency of the nonnegative garrote estimator.

Convergence in probability - and hence consistency - can be defined in any metric space. Let $\{X_n\}$ be a sequence of random variables taking values in a metric space (M,d), where d(x,y) denotes the distance between points x and y. Let x be a point in M, then we say that X_n converges in probability to x if $d(X_n,x)$ converges in probability to 0, that is if $P(d(X_n,x) > \epsilon) \to 0$ for every positive ϵ . In the simple case where (M,d) is two-dimensional Euclidean space \mathbf{R}^2 with the Euclidean distance, a sequence of random vectors $X_n = (Y_n, Z_n)$ converges to a point (y,z) in \mathbf{R}^2 , if and only if Y_n converges in probability to y and y converges in y converges y co

There is an old result that used to be called Slutsky's lemma, which says:

Slutsky's lemma. If $X_n \to^P x$ in a metric space (M,d) and f is a function from (M,d) into another metric space (M',d') which is continuous at x, then $f(X_n) \to^P f(x)$ in (M',d').

Proof. A function $f:(M,d)\to (M',d')$ is continuous at the point $x\in M$ if for any $\epsilon>0$ there exists $\delta>0$ such that $d'(f(x),f(y))<\epsilon$ for every $y\in M$ with $d(x,y)<\delta$. So

$$0 < P(d'(f(X_n), f(x)) > \epsilon) < P(d(X_n, x) > \delta) \rightarrow 0$$

because $X_n \to^P x.\square$

First consider the simple case

$$y_i = \beta x_i + \epsilon_i, \quad \epsilon_i \sim N(0, 1), \quad i = 1, ..., n, \quad \sum_{i=1}^n x_i^2 = n,$$
 (2)

where $\epsilon_1, ..., \epsilon_n$ are independent. Now we have just a parameter β and the nn-garrote estimator for β is defined by

$$\hat{\beta}_G = (1 - \frac{\lambda^2}{\hat{\beta}^2})^+ \hat{\beta}, \quad \lambda > 0,$$

where $\hat{\beta}$ is the OLS estimator, i.e.,

$$\hat{\beta} = T_n = \frac{\sum_{i=1}^n x_i y_i}{\sum_{i=1}^n x_i^2} = \frac{1}{n} \sum_{i=1}^n x_i y_i.$$

The first lemma considers the case $\lambda = \lambda_n \to 0$ and proves the consistency of $\hat{\beta}_G$ when β is fixed.

Lemma 1. Let β be fixed (independent of n) and $\lambda = \lambda_n \to 0$ as $n \to \infty$. Then $\hat{\beta}_G$ is consistent for β .

Proof. If we view λ_n as a (degenerate) random variable, $\lambda_n \to 0$ means that $\lambda_n \to^P 0$. In view of the consistency of the least squares estimator we have $T_n \to^P \beta$. If $\beta \neq 0$, the function $f(t,\lambda) = (1 - (\lambda/t)^2)^+ \cdot t$ is continuous at the point $(t,\lambda) = (\beta,0)$, so consistency follows from Slutsky's lemma. If $\beta = 0$, consistency follows from $T_n \to^P \beta$, because $|\hat{\beta}_G| \leq |T_n|$. \square

It is easy to extend Lemma 1 immediately to the case where m and $\beta = (\beta_1, ..., \beta_m)$ are fixed (independent of n) and the columns of the matrix X are not necessarily orthogonal. In fact the orthogonality only plays a role in that it ensures that there is an explicit expression for $\hat{\beta}_G$ which involves a number $\lambda = \lambda_n$ and the lemma can then be formulated by requiring that $\lambda_n \to 0$ as $n \to \infty$. But for any fixed m and $\beta \neq 0$, this condition is equivalent to the assumption that $s = s_n \to m$ as $n \to \infty$. To prove this note that the function $g(u_1, ..., u_m) = \sum_{i=1}^n (y_i - \sum_{j=1}^m u_j \hat{\beta}_j x_{ij})^2$ is a quadratic function of u_j and if $s = \sum_{j=1}^m u_j$ is fixed, it has a unique minimizer (say $\mathbf{c} = (c_1, ..., c_m)$). The minimizer \mathbf{c} is a continuous function of s. If $s = \sum_{j=1}^m u_j = m$, then $\mathbf{c} = (1, ..., 1)$, because (1, ..., 1) is the unique minimizer of g in \mathbf{R}^m . So $\mathbf{c} = \mathbf{c}_n \to^P (1, ..., 1)$ as $n \to \infty$.

Lemma 2. Let m and β be fixed (independent of n) and $s = s_n \to m$ as $n \to \infty$. If X^TX is nonsingular for every n and the diagonal elements of $(X^TX)^{-1}$ tend to infinity as $n \to \infty$, then $\hat{\beta}_G$ is consistent for β .

Proof. As mentioned, $s = s_n \to m$ means $\mathbf{c}_n \to^P (1, ..., 1)$. The garrote estimator of β_j is obviously a continuous function of $c_{j,n}$ and the OLS estimator of β_j is consistent. So consistency will follow from Slutsky's lemma. \square

We now show that $|\hat{\beta}_G - \beta| = O_p(n^{-q})$ where $n^q \lambda_n^2 \to 0$ and where $q \in [0, 1/2]$.

Lemma 3. Let $\beta > 0$ be fixed and $n^q \lambda_n^2 \to 0$, where $q \in [0, 1/2]$. Then

$$\lim_{L \to \infty} \limsup_{n \to \infty} P(n^q |\hat{\beta}_G - \beta| > L) = 0.$$
 (3)

Proof. Let L>0 be large and fixed and n be so large that $\epsilon=\frac{L}{n^q}<\beta$ and $0<\lambda_n^2<\beta\epsilon/4$. So

$$\lambda_n < \sqrt{\beta \epsilon}/2 < \beta/2.$$

Let $0 < |t - \beta| < \epsilon/2$. Then we have $\lambda_n < \beta/2 < \beta - \epsilon/2 < t$. Now

$$|(1 - (\lambda_n/t)^2)^+ \cdot t - \beta| = |t - \lambda_n^2/t - \beta| < |t - \beta| + \lambda_n^2/t < \epsilon,$$

because

$$\lambda_n^2 < \beta \epsilon / 4 < (\beta - \epsilon / 2) \epsilon / 2 < t \epsilon / 2.$$

Also $U_n = n^q(T_n - \beta) \sim N(0, n^{2q-1})$. Then

$$P(|T_n - \beta| > \epsilon/2) = P(|T_n - \beta| > \frac{L}{2n^q})$$

$$= P(|U_n| > \frac{L}{2})$$

$$= \int_{|y| > \frac{L}{2}} \frac{1}{\sqrt{2\pi n^{2q-1}}} \exp(-\frac{1}{2n^{2q-1}}y^2) dy$$

$$\to 0 \quad \text{as } n \to \infty \& L \to \infty.$$

Now

$$P(n^q|\hat{\beta}_G - \beta| > L) \le P(n^q|T_n - \beta| > L/2) \to 0 \quad \text{as } n \to \infty \& L \to \infty.$$

The condition $\lambda = \lambda_n \to 0$ is sufficient to have the consistency of $\hat{\beta}_G$. Now suppose $\lambda_n \neq 0$. Note that for n large, $|T_n - \beta| \approx \frac{1}{\sqrt{n}}$. Then when $T_n > \lambda_n$ and $\beta \neq 0$,

$$\hat{\beta}_G = T_n - \frac{\lambda^2}{T_n} \approx \beta - \frac{\lambda^2}{\beta}$$

and $\hat{\beta}_G - \beta \approx -\frac{\lambda^2}{\beta} \neq 0$. Hence intuitively, the consistency of $\hat{\beta}_G$ needs $\lambda_n \to 0$ for $\beta \neq 0$. The next lemma ensures this.

Lemma 4. Let $\lambda_n \neq 0$. Then $\hat{\beta}_G$ is not consistent for all β .

Proof. There are $\eta > 0$ and a subsequence λ_{n_k} such that $\lambda_{n_k} > \eta$ for all k. Let $\beta \in (0, \eta)$. Then

$$\frac{1}{2} = P(T_n < \beta)$$

$$= P(T_{n_k} < \beta)$$

$$\leq P(T_{n_k} < \eta)$$

$$\leq P(T_{n_k} < \lambda_{n_k}).$$

We also have

$$P(T_{n_k} < -\lambda_{n_k}) \le P(T_{n_k} < -\eta) = \int_{-\infty}^{-\sqrt{n\eta}} \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}y^2) dy \to 0.$$

So $P(|T_n| < \lambda_n) \not\to 0$. For $\epsilon < \beta$,

$$P(|\hat{\beta}_G - \beta| > \epsilon) \ge P(|T_n| < \lambda_n).$$

Therefore $\hat{\beta}_G$ is not consistent for $\beta < \eta$. \square

Remark 1. Note that $\hat{\beta}_G$ is consistent for $\beta = 0$ even if $\lambda_n \neq 0$ (see the proof of Lemma 1 for $\beta = 0$).

Although we need $\lambda_n \to 0$, this convergency does not need to be very fast. A famous example for λ_n is $c\sqrt{\log n/n}$, c>0 (see van de Geer (2000) and Donoho and Johnstone (1994)). In the rest of the paper we apply this case to λ_n .

Corollary 1. If $\lambda = c\sqrt{\log n/n}$ and c > 0, then $n^q \lambda_n^2 \to 0$, for $q \in [0, 1/2]$. Then by Lemma 3

$$\lim_{L \to \infty} \limsup_{n \to \infty} P(n^q |\hat{\beta}_G - \beta| > L) = 0.$$

In particular it is true when q = 1/2.

Lemma 5 is the first step to prove the mean square error of $\hat{\beta}_G$ tends to zero as $n \to \infty$.

Lemma 5. Let $c > \sqrt{8}$ and $\lambda = c\sqrt{\log n/n}$. Then the functions

$$f_1(n) = n \int_{\sqrt{n}\lambda/2}^{\infty} x^2 \exp(-x^2/2) dx$$

and

$$f_2(n) = \frac{n\sqrt{n}}{\log n} \int_{-\lambda}^{\lambda} \exp(-\frac{n}{2}(x-\beta)^2) dx$$

are bounded.

Proof. Note that

$$\lim_{n \to \infty} f_1(n) = \lim_{n \to \infty} \frac{\int_{c\sqrt{\log n}/2}^{\infty} x^2 \exp(-x^2/2) dx}{1/n}$$

$$= \lim_{n \to \infty} \frac{-(c^2/4) \log n \exp(-c^2 \log n/8) \frac{1/n}{c\sqrt{\log n}}}{-1/n^2}$$

$$= \lim_{n \to \infty} \frac{c\sqrt{\log n}}{4n^{c^2/8-1}} = 0.$$

Since f_1 is continuous and it tends to zero, then it is bounded. Also,

$$f_2(n) = \frac{n}{\log n} \int_{-c\sqrt{\log n} - \beta\sqrt{n}}^{c\sqrt{\log n} - \beta\sqrt{n}} \exp(-\frac{1}{2}x^2) dx$$

and

$$f_{2}'(n) = \frac{\log n - 1}{\log^{2} n} \int_{-c\sqrt{\log n} - \beta\sqrt{n}}^{c\sqrt{\log n} - \beta\sqrt{n}} \exp(-\frac{1}{2}x^{2}) dx$$

$$+ \frac{n}{\log n} \left[\left(\frac{c}{2n\sqrt{\log n}} - \frac{\beta}{2\sqrt{n}} \right) \exp(-\frac{1}{2}(c\sqrt{\log n} - \beta\sqrt{n})^{2}) + \left(\frac{c}{2n\sqrt{\log n}} + \frac{\beta}{2\sqrt{n}} \right) \exp(-\frac{1}{2}(c\sqrt{\log n} + \beta\sqrt{n})^{2}) \right]$$

$$= \frac{\sqrt{n}}{\log n} \left[\frac{\log n - 1}{\sqrt{n} \log n} \int_{-c\sqrt{\log n} - \beta\sqrt{n}}^{c\sqrt{\log n} - \beta\sqrt{n}} \exp(-\frac{1}{2}x^{2}) dx + \left(\frac{c}{2\sqrt{n \log n}} - \frac{\beta}{2} \right) \exp(-\frac{1}{2}(c\sqrt{\log n} - \beta\sqrt{n})^{2}) + \left(\frac{c}{2\sqrt{n \log n}} + \frac{\beta}{2} \right) \exp(-\frac{1}{2}(c\sqrt{\log n} + \beta\sqrt{n})^{2}) \right]$$

$$= \frac{\sqrt{n}}{\log n} [I_{1} + I_{2} + I_{3}],$$

where

$$I_1 = \frac{\log n - 1}{\sqrt{n} \log n} \int_{-c\sqrt{\log n} - \beta\sqrt{n}}^{c\sqrt{\log n} - \beta\sqrt{n}} \exp(-\frac{1}{2}x^2) dx,$$

$$I_2 = \left(\frac{c}{2\sqrt{n \log n}} - \frac{\beta}{2}\right) \exp(-\frac{1}{2}(c\sqrt{\log n} - \beta\sqrt{n})^2)$$

and

$$I_3 = (\frac{c}{2\sqrt{n\log n}} + \frac{\beta}{2}) \exp(-\frac{1}{2}(c\sqrt{\log n} + \beta\sqrt{n})^2).$$

 $I_1 \to 0$ when $n \to \infty$. Also $\frac{c}{2\sqrt{n\log n}} \to 0$ when $n \to \infty$. If $\beta > 0$, then

$$-\frac{1}{2}(c\sqrt{\log n} + \beta\sqrt{n})^2 < -\frac{1}{2}(c\sqrt{\log n} - \beta\sqrt{n})^2$$

and therefore, $I_2 + I_3 < 0$, when $n \to \infty$. If $\beta < 0$, then

$$-\frac{1}{2}(c\sqrt{\log n} + \beta\sqrt{n})^2 > -\frac{1}{2}(c\sqrt{\log n} - \beta\sqrt{n})^2$$

and again, $I_2 + I_3 < 0$, when $n \to \infty$. Consequently, $\lim_{n \to \infty} f_2'(n) < 0$. Since f_2 is continuous in n, $f_2(2) < \infty$ and it is decreasing when $n \to \infty$, then it is bounded.

In Lemma 6 we show that the MSE is bounded by a multiple of λ^2 or $\frac{1}{n^2}$. Therefore it tends to zero.

Lemma 6. If $\lambda = c\sqrt{\log n/n}$, $c > \sqrt{8}$, then

$$E((\hat{\beta}_G - \beta)^2) \le \begin{cases} c_1 \lambda^2 & |\beta| > \lambda/2\\ c_2 \beta^2 + c_3 \frac{1}{n^2} & |\beta| \le \lambda/2, \end{cases}$$
(4)

for some finite and positive c_1 , c_2 and c_3 .

Proof. Let $T = T_n$. Then

$$E((\hat{\beta}_G - \beta)^2) = \beta^2 P(|T| < \lambda) + E((T - \frac{\lambda^2}{T} - \beta)^2 1(|T| \ge \lambda)).$$
 (5)

Let $|\beta| \leq \lambda/2$. If $T \geq \lambda$, then

$$(T - \frac{\lambda^2}{T} - \beta)^2 \le (T - \beta)^2 1(T - \frac{\lambda^2}{T} - \beta > 0) + \beta^2 1(T - \frac{\lambda^2}{T} - \beta \le 0).$$

Similarly if $T \leq -\lambda$, then

$$(T - \frac{\lambda^2}{T} - \beta)^2 \le (T - \beta)^2 1(T - \frac{\lambda^2}{T} - \beta \le 0) + \beta^2 1(T - \frac{\lambda^2}{T} - \beta > 0)$$

and consequently

$$E(\hat{\beta}_G - \beta)^2 \le c_2 \beta^2 + E((T - \beta)^2 1(|T| \ge \lambda))$$

 $\le c_2 \beta^2 + \frac{1}{n^2} (nE(X^2 1(|X| \ge \sqrt{n\lambda/2})))$

where $X = \sqrt{n}(T - \beta) \sim N(0, 1)$. Now it is sufficient to show

$$nE(X^21(|X| \ge \sqrt{n}\lambda/2)) < c_3.$$

for some $c_3 \in (0, \infty)$. It follows from Lemma 5. Lemma 5 also implies that

$$\frac{1}{\lambda^2}P(|T| < \lambda) < c_4,\tag{6}$$

for some $0 < c_4 < \infty$. Note also that if $|\beta| > \lambda/2$, then

$$E((T - \frac{\lambda^2}{T} - \beta)^2 1(|T| \ge \lambda))$$

$$\le 2E((T - \beta)^2 1(|T| \ge \lambda)) + 2E(\frac{\lambda^4}{T^2} 1(|T| \ge \lambda))$$

$$\le 2E((T - \beta)^2) + 2\lambda^2$$

$$= 2/n + 2\lambda^2 \le c_5\lambda^2, \quad \forall n \ge 2$$

for some $0 < c_5 < \infty$. Using this, (4) and (5), (6) holds. \square

Note that OLS $\hat{\beta}$ is a linear estimator while $\hat{\beta}_G$ is non-linear. There are certain limits on the extent to which nonlinear estimators can improve on linear ones in the worst case. For example, Donoho and Johnstone (1994) considered the model $y_i = \beta_i + \epsilon_i$ with $\sum_{i=1}^n |\beta_i|^{\rho} \leq 1$, where $\rho > 0$.

In fact they assume the parameter space $\Theta_{\rho} = \{\beta : \sum_{i=1}^{n} |\beta_{i}|^{\rho} \leq 1\}$ rather than $\Theta = \mathbb{R}^{n}$.

They proved that in some function estimation problems of a linear nature, the optimal rate of convergence over certain convex function classes is not attained by any linear estimate. Loubes and van de Geer (2000) considered the limitation Θ_{ρ} in adaptive estimation using soft thresholding type penalties. We shall also assume the model (1) with $\sum_{i=1}^{n} |\beta_i|^{\rho} \leq 1$ in the following theorem.

Theorem 1. Consider the regression model

$$y_i = \sum_{j=1}^{m} \beta_j x_{ij} + \epsilon_i, \quad \epsilon_i \sim N(0, 1), \quad i = 1, ..., n, \quad X^T X = nI, \quad \sum_{i=1}^{m} |\beta_i|^{\rho} \le 1,$$

where $\epsilon_1, ..., \epsilon_n$ are independent and $\rho \in (1, 2)$. If $\lambda = c\sqrt{\log n/n}$, $c > \sqrt{8}$, then there exists $k < \infty$, such that

$$E(\sum_{i=1}^{m} |\hat{\beta}_{i,G} - \beta_i|^2) \le k\lambda^{2-\rho},$$

where $\hat{\beta}_{i,G}$ is the nn-garrote estimator of β_i .

Proof. By Lemma 6,

$$E(\sum_{i=1}^{m} |\hat{\beta}_{i,G} - \beta_i|^2) \le c_1 \sum_{i:|\beta_i| > \lambda/2} \lambda^2 + c_2 \sum_{i:|\beta_i| \le \lambda/2} |\beta_i|^2 + c_3 \sum_{i:|\beta_i| \le \lambda/2} \frac{1}{n^2}.$$

for some finite and positive c_1 , c_2 and c_3 . But

$$\lambda^2 \sum_{i:|\beta_i|>\lambda/2} 1 = \lambda^{2-\rho} \sum_{i:|\beta_i|>\lambda/2} \lambda^\rho \leq \lambda^{2-\rho} 2^\rho \sum_{i:|\beta_i|>\lambda/2} |\beta_i|^\rho \leq \lambda^{2-\rho} 2^\rho$$

and also

$$\sum_{i:|\beta_i|\leq \frac{\lambda}{2}}|\beta_i|^2=\frac{\lambda^2}{4}\sum_{i:|\beta_i|\leq \frac{\lambda}{2}}|\frac{\beta_i}{\frac{\lambda}{2}}|^2\leq \frac{\lambda^2}{4}\sum_{i:|\beta_i|\leq \frac{\lambda}{2}}|\frac{\beta_i}{\frac{\lambda}{2}}|^\rho=\frac{\lambda^{2-\rho}}{2^{2-\rho}}\sum_{i:|\beta_i|\leq \frac{\lambda}{2}}|\beta_i|^\rho\leq (\lambda/2)^{2-\rho}.$$

If $l \in (2 - \rho, 1)$, then there exists N such that for any $n \ge N$,

$$\sum_{i:|\beta_i|\leq \frac{\lambda}{2}} \frac{1}{n^2} \leq \frac{1}{n} \leq \lambda^l \leq \lambda^{2-\rho}.$$

Therefore,

$$E(\sum_{i=1}^{m} |\hat{\beta}_{i,G} - \beta_i|^2) \le k\lambda^{2-\rho},$$

for some finite k. \square

Corollary 2. By Theorem 1, we have

$$MSE(\hat{\beta}_{i,G}) = E(|\hat{\beta}_{i,G} - \beta_i|^2) \le E(\sum_{i=1}^{m} |\hat{\beta}_{i,G} - \beta_i|^2) \le k\lambda^{2-\rho}$$

This not only shows $MSE(\hat{\beta}_{i,G}) \to 0$ when $n \to \infty$, but also shows the rate of convergence. If $\rho \to 1$, then this convergency is fast. Now by Markov's inequality for all $\epsilon > 0$

$$P(|\hat{\beta}_{i,G} - \beta_i| > \epsilon) \le \frac{E(|\hat{\beta}_{i,G} - \beta_i|)}{\epsilon} \le \frac{E^{1/2}(|\hat{\beta}_{i,G} - \beta_i|^2)}{\epsilon} \to 0$$

when $n \to \infty$. Therefore $\hat{\beta}_{i,G}$ is consistent for β_i .

References

- Breiman, L. (1995), Better subset regression using the nonnegative garrote. *Technometrics*, November, **37**, N. 4, 373-384.
- Donoho, D. L. and Johnstone, I. M. (1994), Minimax risk for l_q losses over l_p -balls. *Probab. Theory and Related Fields*, **99**, 277–303.
- Loubes J. M. and van de Geer S. A. (2000), Adaptive estimation in regression using soft thresholding type penalties. *Statistica Neerlandica*. Unpublished
- Van de Geer S. A. (2000), Empirical processes in M-estimation. Cambridge University Press.