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Preface

Stochastic or random vibrations occur in a variety of applications of mechani-
cal engineering. Examples are: the dynamics of a vehicle on an irregular road
surface; the variation in time of thermodynamic variables in municipal waste
incinerators due to fluctuations in heating value of the waste; the vibrations
of an airplane flying through turbulence; the fluctuating wind loads acting on
civil structures; the response of off-shore structures to random wave loading
(figure 1).

Suppose we know the value of a random variable x at a certain time f.
For future times t > t; the value of x will become more and more uncertain.
Its value becomes less and less correlated to the starting value. It can only
be specified by probability distributions. The theory of stochastic processes
aims to describe this behavior. Although x is stochastic, by describing it in
terms of probability distributions and other statistical characteristics (correla-
tion functions, peak distributions, etc.) calculation procedures and codes can
be established by which decisions on design issues can be made.

Attention will be focussed on problems of external noise. That is, we
shall consider models of mechanical engineering structures where the source
of random behavior comes from outside: e.g. a prescribed random force or
a prescribed random displacement. The statistical behavior of the source is
supposed to be known: for example, a Gaussian random process with known
power density spectrum. No attention will be given to questions on the origin
of the noise: how deterministic laws of physics can produce random fluctu-
ations. A classical example is the chaotic motion of colliding molecules in
otherwise empty space. Another example, closer to the applications consid-
ered here: how winds blowing over the sea surface can lead to the occurrence
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of random waves. Answering these questions is not an easy task; they require
studies of their own and we do not address them here. We focus attention to
the dynamical behavior of mechanical engineering structures subject to ex-
ternal noise of specified form. The structures inhibit inertia, damping and
restoring, linear and non-linear. The main questions we intend to answer are:
how do these structures respond to random excitation, and how can we quan-
tify the random behavior of response variables in a manner that an engineer

is able to make rational design decisions.

In chapter 1, some basic notions on probability theory are recapitulated,
followed in chapter 2 by an introduction to the description of a variable which
varies randomly in time. In chapter 3, methods of Fourier transform are ex-
tended to problems of random vibration. These methods are used in chap-
ter 4, to analyze a linear spring-mass system subject to Gaussian random ex-
citation in the frequency-domain. The description of a random signal in the
time-domain is given in chapter 5; it forms the starting point for analysis in

the time-domain of the spring-mass system; this is presented in chapter 6.

The tensioned beam subject to random excitation provides an excursion to
partial differential equations with random right-hand sides. Formulation and
analytical methods of solution are presented in chapters 7-9. The statistics of
peak values of randomly and Gaussianly varying signals, and the statistics of
the extreme value in a signal of a certain duration, are the subject of analysis
in chapter 10.

The analysis of non-linear systems is presented in chapters 11-14. In chap-
ter 11 we summarize numerical time-domain simulation techniques applied
to non-linear systems. Quasi-static non-linear response to random excitation
is treated in chapter 12, non-linearly damped resonance in chapter 13. Sta-
bility analysis of systems with parametric random excitation is presented in

chapter 14.

Literature: a number of topics presented in subsequent chapters can be
found in the introductory textbooks of Robson [1] and Crandall & Mark [2].
More detailed treatises of stochastic theory are presented in the books of
Stratonovich [3] and Van Kampen [4]. Other references are given where rele-

vant.



The author wishes to express his thanks to Ir. R.J.E. Walpot for his tremen-
dous support in the completion of this manuscript. Dr. ]J.G.M. Kuerten is
acknowledged for critical remarks.
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Figure 1. IDlustration of an off-shore structure; by courtesy of Royal Dutch Shell
Exploration & Production.



Chapter 1

Some basic properties of
probability

To describe random processes, probabilistic concepts are used. In this chap-

ter, some basic notions of probability are explained.

1.1 Probability

We define the concept of probability here as the probability Pr of the occur-
rence of a certain event n. This probability is equal to Pr[n] = 0 in case of an
event which can not possibly occur and Pr[n] = 1 if the event is certain to oc-
cur. If we consider for example the case of a six-sided die, we can expect that
the result N of any given throw is equally likely to be any number between 1
and 6. We can therefore write: Pr[N = n] = p(n) = 1/6 for where n can be
any number between 1 and 6.

Probability theory is the mathematical study of probability and plays an
important role in many aspects of life. As an example, imagine that a certain
investment costs 1.000.000 EUR. The chance of earning 10.000.000 EUR with
the investment is 50%, but it's equally probable that the investment results
in no profit at all. If faced with the choice whether to invest or not, an in-
dividual with a total fortune of just over 1.000.000 EUR won’t choose to go
ahead with the investment. Because when the gamble has a bad outcome for
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him, he will lose all his money and can’t play the game a second time. A big
multinational, on the other hand, has the capacity of playing this game many
times and the theory of probability ensures the company that when playing
the game many times, ‘on average’ the investment will result in a large profit.
It illustrates the power of capital. Another example of how to deal with un-
certainty, in a rational manner, is insurance. The risk an individual is exposed
to is covered by mutual insurance via an insurance company. In this way, the
risk is spread over many people and over a long period of time. The pre-
mium every individual will have to pay to the company will correspond to
the statistical expectation (expected or mean value) of the financial risk he is
exposed to (supplemented with the profit of the insurance company!).

The above examples illustrate that uncertainty becomes a certainty once
the game is played many times. It is this principle which makes probabil-
ity theory a useful tool in practice. Scientific concepts based on probabilistic
models are verifiable (as should be!) because we can repeat measurements
and check the outcome. Equally, designers can make rational decisions in
engineering practice, for example by meeting the standards required by in-
surance companies (such as Lloyd’s insuring ships and offshore structures).

The quantities on which we will focus in the remainder of this text have
a continuous range of possible values as opposed to the discrete value which
the random variable N can have in the case of a die. It is convenient to define
a quantity called the cumulative distribution function (CDF) as the probability
that a random variable has a value X less than a certain specified value x:

P(x) = PriX < ] = /_xoo p(x)dx. (1.1)

The previously defined quantity p(x), the probability density function (PDF),
on its turn can be defined as:

dP(x)

p(x) = I (1.2)

Figure 1.1 and 1.2 show the typical shapes of both quantities in the special
case of a zero-mean Gaussian process (Which will be discussed in section 1.4).
The shapes of these graphs give a nice qualitative indication of the nature

of the random variable. For example, a variable whose values are closely
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clustered around a mean value would give a tall narrow p(x) curve and a
P(x) curve steeply rising near the mean value. The sum of all probabilities,
and therefore the area under the p(x) curve is equal to one: [ p(x)dx = 1.

Suppose that we measured the room temperature x of a classroom in-
finitely many times and that the CDF on the lower side of figure 1.2 charac-
terizes the temperature distribution P(x). The probability that the measured
temperature is within the range x; < x < x3 is equal to P(xz) — P(x;), as
illustrated in the figure.
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Figure 1.1. The PDF of a zero-mean Gaussian process

1.2 Expectation or mean value

An important quantity in probability theory is the expected value E[x] or mean
value y of the variable x. It is also called the first moment of the distribution
p(x) and is given by

(o]

3= {x) = / xp(x)dx. (1.3)

— 0
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Figure 1.2. The CDF of a zero-mean Gaussian process

The mean value operator (.) is a linear operator, which means that it satisfies
the following conditions:

(f+8) = (H+(8
(af) = alf
(fg) = (f)

(1.4)

where x is random variable and « a constant.

1.3 Variance

To describe the nature of the spread of x completely would require the con-
struction of either the P(x) or p(x) functions. A measure for the spread of the
signal around its mean value is given by the variance of x and is commonly
denoted by ¢2. The variance is second moment about the mean of the distribu-
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tion p(x) and is defined by:
g = <[x—y]2>. (1.5)

In other words, the variance is the average of the square of the distance of

each data point from the mean. In terms of the probability density function,

the variance can be written as:

o? = /_ i [x — u]? p(x)dx. (1.6)

In the remainder of this text, all random processes will be considered to be
zero-mean processes if not specified otherwise. In this case, the above equation
obviously simplifies to 02 = [*_x%p(x)dx: the variance is then equal to the
mean square value (MSV). The square root ¢ of the variance is known as the
root-mean-square value (RMS) and is also called the standard deviation of x. It is

a direct measure for the amount of variation around the mean.

1.4 Gaussian distribution

Many real-life random processes can often be considered Gaussian meaning
that their probability density function, see figure 1.1, can be described by the
following relation:

p(x) = U\/lﬁe—“—mz/-’”z, (17)

with y the mean value. A Gaussian distribution is also known as a normal distri-

bution. Equation (1.7) shows that for Gaussian processes, the whole distribution
is defined by its MSV and mean value. For the CDF we can write:

B} = —> / e~ (X120 gy (1.8)
L oV2T J—00

With the definition of the error function as:

erf(Z) = % /0 “ P, (1.9)

this can be written as:

P(x) = % (1 +erf <":/§‘>> . (1.10)

The Gaussian distribution has several important properties:
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* The probability density function is symmetric about its mean value;

68.27% of the area under the curve is within one standard deviation of

the mean;

95.45% of the area is within two standard deviations;

99.73% of the area is within three standard deviations.
A distribution of two zero-mean variables x and y is said to be Gaussian
if the joint probability density function (see figure 1.3) is given by:

_ 02x2—2a§ xy+¢7%y2

1 e 2(ox 03~ 03y) , (1.11)

p(x,y) =
27, [odo] — 0%y

where ¢} and 07 are the variances of x and y respectively and 07, = (xy) is

called the covariance.
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Figure 1.3. Example of a joint Gaussian PDF of two random variables x and y.
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1.5 Higher order moments

In sections 1.2 and 1.3, we defined the first and second moment about the
mean value. In general, the n-th moment about the mean, or n-th central moment

is defined as follows:
pn = ((x = u)"). (1.12)

The third central moment normalized with the second central moment,
p3/ u3'?, is known as skewness. Skewness is a measure of the degree of asym-
metry of a distribution. If the left tail (tail at small end of the distribution)
is more pronounced than the right tail (tail at the large end of the distribu-
tion), the function is skewed to the left and is said to have negative skewness.
If the reverse is true, it has positive skewness. If the two are equal, it has
zero skewness as is the case for a Gaussian distribution. Examples of skewed
distributions are shown in figure 1.4.

The fourth central moment normalized with the second central moment,
14/ 43, is known as the kurtosis or flatness of a distribution. It is a measure
of the peakedness of a distribution and is equal to 3 for a Gaussian distri-
bution. A kurtosis larger than 3 indicates a "peaked" distribution and when
Ha/u% < 3, the distribution is described as "flat". Examples of peaked and
flat distributions are shown in figure 1.5.

Instead of moments, one can express statistical properties in terms of cu-
mulants. The n-th order cumulant, < x" > or x,, is defined as the moment of
n-th order minus all sub-order-moments:

k1 = (x)
k2 = () = (x)(x) = pp =0
k3= (20) =3(x)(x%) +2(x)> = ps
ke = (x*) —4(x)(x%) = 3(x*)% +12(x)*(x*) — 6(x)*
= pa— 33 (1.13)

For a Gaussian distribution, all cumulants of order > 2 are equal to zero. A
distribution is almost Gaussian when the cumulants of order n (with n > 2),
normalized with the standard deviation to the power 7, are small compared
to unity: x,, /0" < 1 forn > 3.
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Chapter 2

Random Vibrations:
Introductory remarks

In the previous chapter we were concerned with the statistical description of
some variable. Variation of this variable with time was not taken into consid-
eration. This will be subject of study in this chapter.

2.1 Random events

Let us consider a quantity x(t) randomly varying with an independent vari-
able t. This independent variable will be considered to represent time. The
quantity x may be any physical quantity such as velocity, pressure or posi-
tion. If we carefully design an experimental setup, it is possible to record a
randomly varying signal (for example: the velocity of a turbulent flow) over
a time interval T. Figure 2.1 shows a typical result for such an experiment.
Although it is possible to plot the measured signal x(t), its random behav-
ior makes it impossible to predict its value at a certain time #; outside the
measured interval T. In order to develop a method to statistically describe
such random signals, it is helpful to first consider some elementary statistical
theories.

Let x(t) represent the force acting on the wheel of a car during a trip.
The forces working on the same wheel during different trips under identical
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x(t)T

< x(t) >

Figure 2.1. Example of a random signal x(t) as measured over a ime interval T.

conditions are denoted by x; (t), x2(t), x3(t), .., etc. The ensemble of all these
random signals is said to constitute a random process {x(t) }. If the conditions
of all the trips are identical, and if the conditions remain steady during each
trip, we can in general assume that the process is both stationary and ergodic.

By stationary we mean that the probability distribution of the quantities
x1(t), x2(t), x3(t), ....etc. at any instant of time #; is independent on the choice
of t;. In other words: all statistical averages are constant in time.

By ergodic we mean that the probability distribution of the process {x(t)}
is equal to the distributions of all the member functions that constitute the
whole process.

So if we restrict our attention to stationary and ergodic random processes,
by determining the statistical properties of a single member function x(t), we
can define the statistical properties of the whole random process {x(t)} of
which x(t) is a member.
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2.2 Ensemble and time averaging

The mean, or average, value of a random signal has been discussed before.
A distinction can be made between the ensemble average (x(t)) and the time
average value x(t) of a random signal. Imagine that we can perfectly isolate a
random process in a lab experiment. The process is turned on at time ¢ = 0.
We then wait until a certain time ¢ has passed and at this time we measure
quantity x. This is repeated N times, see figure 2.2. The ensemble average
or statistical moment is now calculated by taking the sum of all recorded val-
ues divided by N. We can thus write down the following definition for the
ensemble average:
LR x(t

(x(t)) = Jlim 1T(> 2.1)
The time average is calculated by averaging the value of the signal over a
long period of time:

x(1) = lim % /0 T (bt 2.2)

In the special case of a stationary, ergodic process, time averages and ensem-

ble averages are equal (x(t)) = x(t).
The above can be repeated for the k-th moment:

N )
<x"(t)>=Nh;nw; o 2.3)
k(1) = i L/ k(4)dt (2.4)
x¥(t) = Tl_r)r;?/o x; (t)dt. ’
For stationary ergodic processes:
(xk(1)) = xk(t). (2.5)

The probability P(X) is defined as the number of realizations for which at
time ¢ the value of x(t) is smaller than a prescribed value X divided by the
total number of realizations N and letting N — oo. So, at some time ¢, one
has simply to count the number of realizations for which x(t) < X and divide
this number by N; see figure 2.2. This can be repeated for any other value of
X and then results in a complete distribution of P(X) at time t. If the process
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realization 1

AR iy

realization 2

W\/w\m/wk

realization 3

realization N

Figure 2.2. llustration of the principle of ensemble averaging over N realizations.

is non-stationary, the distribution of P(X) will vary with time t! However, if
the process is stationary, P(X) will be the same at any time. Furthermore, if
the process is also ergodic, one can construct the probability distribution of
a single time record. In this case, P(X) is the amount of time that X < x(¢)
divided by the total time T and letting T — oo: see figure 2.3. In general, for
stationary ergodic process the statistics of x(¢) can be derived from a single
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Figure 2.3. Determination of probability distribution from a stationary time record
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2.3 Correlations in time

The extent to which two random variables x(t) and y(t) are correlated can be
quantitatively expressed in the magnitude of the covariance 02, = (x(t)y(t)),
which we already encountered in section 1.4. In the case that x(t) and y(t)
are completely independent of each other afy = (0. The same concept can also
be used to assess the correlation of signals measured at different times with

the definition of the cross-correlation

Ray(7) = (x(t)y(t + 7). 26)

T is called the time separation *. For a stationary process, the cross-correlation
only depends on T because statistical properties of such a process do not
change with time. In the same way, the correlation of a variable x(t) at time ¢
with itself at time t + 7 is defined as

Rux(7) = (x(D)x(t + 7)) (27)

and is called the auto-correlation function. The calculation process is as follows:
we multiply the value of a (zero-mean) quantity x(t) at time ¢ with the value
of the same quantity when a T amount of time has passed, we do this for
all realizations and then take the ensemble average of all such products. If
we assume to be dealing with a stationary ergodic process, Ry.(7T) will be
the same for all member functions of the process. In that case, (x(f)x(t +
7)) = x(t)x(t + 7); the latter can be calculated from a single realization by
time averaging according to equation (2.2). That is, we multiply x(t) with
its value x(t + 7) when a time 7 has passed and treat the product as x; in
equation (2.2). Definition (2.7) shows that the autocorrelation for zero time-
separation is equal to the MSV of x(t), Ryx(0) = (x?(t)). The auto-correlation
function, and correlation functions in general, is therefore often normalized
as follows:

- (x(t)x(t + 7))

Rux(7) = = (2.8)

*Definition (2.6) applies to zero-mean random variables. In case of non-zero-mean x(t)
and y(f), we have to subtract their mean values when calculating their correlations. Cor-
relations are then indicated by double brackets and are defined as: ((x(t)y(t + 7))) =
([x(t) = NIyt + 1) = (y(t+ )]} = (x(BOy(t + 7)) — (x(1))(y(t + 7). The general defi-
nition of correlation is thus similar to that of cumulant: cf. eq. (1.13)
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An example shape of the auto-correlation function is shown in figure 2.4. For
very large time separation 7 the value of R,,(7) must be zero as the following
consideration will show. For very large time separation 7, the two values x(t)
and x(t 4 7) will be quite uncorrelated to each other, so that some products
x(t)x(t 4 1) will be positive and some negative, the values being symmetri-
cally scattered on each side of the value zero. The ensemble average of these
values will therefore be zero, resulting in Ry, (00)=0.

ﬁ(r)T 1

1/@ pemmemccccccacmana e

[

c —
Time separation (t)

Figure 2.4. Example of a correlation function

The shape of the autocorrelation function supplies us with information
about a random signal. The value of T at which R(t) effectively falls to zero
gives an indication for the suddenness of the fluctuations in the signal. The
lower this value of 7, the more sudden the fluctuations in the signal, in other
words: the memory of the system gets shorter. This idea can be quantified
with the use of the typical correlation time, 1., of the process. This can be
defined as the time at which an autocorrelation function normalized with the
MSV drops to a value of 1/e as illustrated in the figure.

Another property of the autocorrelation function, for a stationary random
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process, is symmetry around 7 = 0:

Ryx(T) = Ryx(—7T), (2.9)
which logically results in:
dR,x(0)
=) 2.10
P (2.10)

Property (2.9) can easily be demonstrated as follows:

Rux(t) = (x()x(t + 7)) = (x(t = Dx(t)) = (x()x(t = 7)) = Rua (7).

(2.11)

where, in step 2, we used the property that statistical averages of a stationary
process do not change with a shift in time.



Chapter 3

Fourier transform in case of
random vibration

A powerful method for analyzing the time-dependent behavior of linear sys-
tems is the Fourier transform. With some amendments, this method can also
be applied to random vibrations.

3.1 Fourier integrals and transforms

Any periodic signal can be expressed as a series of harmonically varying
quantities, called a Fourier series. Non-periodic functions, such as a transient
loading, can only be expressed as a Fourier series if we consider it to be peri-
odic, with infinite period. This gives rise to the concept of the Fourier integral.
The following set of equations give the Fourier integral expression for the
non-periodic function x(t):

x(t) = %/w Alw)e® dew (3.1)
Alw) = /m *(H)e~td (3.2)

The quantity A(w) is called the Fourier transform of x(t). It is in general com-
plex and shows how x(t) can be considered to be distributed over the fre-
quency range. On its turn, x(t) is said to be the inverse transform of A(w). The

two quantities together form a Fourier transform pair.
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3.2 Spectral density

The theories of Fourier series and integrals can not be applied directly to ran-
dom signals. This is because the periodic requirement for the Fourier series
is not met which rules out the Fourier series. Moreover, if we consider a ran-
dom signal to continue over infinite time, neither the real or imaginary part
of the Fourier transform converges to a steady value which is why it is not
possible to use the concept of Fourier integrals: see also the text subsequent
to eq. (5.28). Instead, we will introduce a new quantity, the spectral density,
which has no convergence problems.

Consider a stationary ergodic random process x(t) which is assumed to
have started at t = —oo and continue until t = co. Such a signal is not peri-
odic and it is thus impossible to define its Fourier transform. It is possible,
however, to determine the Fourier transform Ar(iw) of a signal xr(t) which
is equal to x(t) over the interval —% < t < I and zero at all other times. In
line with Robson [1]:

T/2 1 oo
T/T/z - T./_ooxT(t)xT(t)dt
1 1 [* ;
= T‘/“wa(t) l:ﬂ ‘/_Oo AT(w)e"‘”dw} dt

- % /_‘: Ar(w) [/:: xT(t)ei“’tdt} dw (3.3)

[e¢]

If we define the complex conjugate of A(w) as A*(w) = [~ x(t)e'“'dt, equa-

—00
tion (3.3) can be written as:

T/zztdt 2 “ A Ar(w)d
T/T/z - 27TT/—oo r(w)Ar(w)dw

1 o 2
- ZnT/_oo|AT(w)| dw

1 o]
= = | lAr(@) de (3.4)

where use is made of the fact that |Ar(w)|? is an even function of w. If we
now let T — oo, we obtain an expression for the MSV of the original signal
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x(t):
(@0) =70 = Jim 1 [ A0yt = [ im (1 Ar(w) )
== AT —T/Zx ~ Jo The\#T T @
(3.5)
The spectral density or power density of x(t) is now defined as:
) 1

S(w) = Jim (7 14r(@)P) (.
so that -

02 = (2(t)) = /0 S(w)dw. (3.7)

The power density indicates how the harmonic content of x(t) is spread over
the frequency domain. The amount of (x?(t)) associated with a narrow fre-
quency band Aw is equal to S(w)Aw. Different realizations of a stationary
ergodic random process have a common S(w). The power density S(w) is
thus a constant, non-random, statistical parameter of the random process
x(t). This contrasts with the Fourier transform A(w) of x(t) which varies
randomly itself: see also section 5.3. If a signal has a spectrum that is uni-
form (constant) over the whole frequency domain, the spectrum is said to be
‘white” and the signal is referred to as white noise. Clearly, this is a theoretical
abstraction; real power densities are never constant. But the abstraction can
be useful to handle certain problems such as lightly damped resonance: see,
amongst others, chapters 13 and 14. A more realistic power density spectrum
is that of the algebraic function:

_ 20201
(14 (w/Q)?)

S(w) (3.8)

Here, ) is a parameter which scales the frequency of the spectrum, while o
is standard deviation:

- 2 * v'dy 207 o
/0 S(w)dw = ;/0 TP 7arctan(77) ) =7 (3.9)
Another, more peaked, spectrum is:
2
Sy 273 2000 (3.10)

w?
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In this expression, () is a parameter which determines at which frequency
the power density has its largest value. By differentiation with respect to
w, one can show that S(w) reaches its maximum at w = (). The standard
deviation is represented by 0. One can easily verify that the integral of S(w)
according to equation (3.10) equals 02 as should be (see equation (3.7)). The
above mentioned spectra are shown in figure 3.1.

%)
«
g
06F |
0.5F 1
eq. (3.8)
0.4F b
0.3} |
eq. (3.10)
0.2F a
0.1F 4
O j L [} 1 L
0 1 2 3 4 5 6
_—
w/Q

Figure 3.1. The power density spectra according to eqs. (3.8) and (3.10).

3.3 The Fourier transform of the autocorrelation func-
tion

There is a direct analytical relationship between the autocorrelation function
and the spectral density of a stationary random signal. To show this, we
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express the autocorrelation as:

T/2

R(7) = (x()x(t + 7)) = x(Dx(E + 1) _Tlgr;T/T/Z (t+7)dt. (3.11)

For its Fourier transform we have

00 . T/2
/ R(t)e"“Tdr = lim { / dt / x(t+7)e *Wdt} . (312
—0 T—oo T/2

To evaluate the term between square brackets, we take the same approach as
in the previous section: we consider a signal x7(t) which is equal to x(t) over
the interval —T/2 < t < T/2 and zero at all other times. We then have

= T/ [/ xT(t)xT(t+T)e_i“’Tdt} dr
= / [ / (H)xr(t+ T)e 'w‘e—iw““)dt] dt
= T/ [/ (t)xr(s )ei“)te_iwsdt] ds

= T/ x7(t) ""tdt/ xr(s)e™"“sds

:TAT( w)Ar(w)

=7 | Ar(w)P (3.13)

Implementing (3.13) in the right-hand side of (3.12), dividing by 7 and using
the definition of the power spectrum density (cf. eq. (3.6)) we find:

S(w) = l/oo R(1)e™“dr
= / ) cos(wT)dT
= —/ ) cos(wT)dT. (3.14)

There is thus a Fourier transform relationship between spectral density and
the autocorrelation function, S(w) being the Fourier transform of 7~ 1R(7).



34 FOURIER TRANSFORM IN CASE OF RANDOM VIBRATION

From the definition of the Fourier transform of section 3.1 it follows that:

R(7) = % /_ Z S(w)e“ dw = /0 ” S(w)e“Tdw = /0 " S(uw)ens{wT)d,

(3.15)
As for a stationary random signal R(T) is a symmetrical function with respect
to T (see eq. (2.9)), S(w) is symmetric as well: S(w) = S(—w). These symme-
tries were used in eqs. (3.14) and (3.15). In case of white noise, i.e. S(w) is con-
stant with respect to w, R(7) will behave like Dirac’s é-function: R(7) = 4(7).
White noise processes are therefore also called d-correlated processes. The
correlation functions associated with the spectra of egs. (3.8) and (3.10) are
shown in figure 3.2. The correlation function associated with spectrum (3.8)
is a simple exponential function: R(t) = 0% 7/?": see Stratonovich [3],
Vol.], Table 1 of §2.1, where a number of analytical relationships for power
density spectra and correlation functions are given. Note that Stratonovich
applied a different normalization to S(w); his S(w) equals the present one
multiplied with the factor 271. The present normalization corresponds to that
of Van Kampen [4], §II1.3.

The correlation function associated with eq. (3.10) has been calculated nu-
merically. It is seen that also this correlation function decays with time. While
decaying, it becomes negative and then approaches zero. A behavior of de-
caying and oscillating around the neutral axis is not uncommon to correlation
functions.
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Figure 3.2. The auto-correlation functions associated with the spectra (3.8) and (3.10).
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Chapter 4

Single degree of freedom
system: analysis in the
frequency domain

Many systems encountered in mechanical engineering practice can be mod-
eled by a single degree of freedom system. This holds for simple spring-mass sys-
tems, but also for multi-degree of freedom systems, which are decomposed
in their natural modes: see chapters 7-9. In the present chapter, we shall pay
attention to an ordinary spring-mass system with linear damping and subject
to random forcing: see figure 4.1. The equation of motion of such systems fol-
lows directly from Newton’s second law (the sum of all forces equals mass

times acceleration):

mi + dx + cx = P(t) 4.1)

where x(t) is displacement response, m mass, c linear spring stiffness, d linear

damping constant and P(t) excitation force.
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x(t)

Jl] =°

Figure 4.1. A spring-mass system.

4.1 Fourier transform

Using the concepts of Fourier transform introduced in section 3.1, we can
write the excitation force as a Fourier integral:

P(t) = % /_ Z Ap(w)e“ dw. 42)

The response of the system, x(t), can be written in a similar form with a
different, frequency dependent, amplitude A,:

) = % / ¥ An(w)e“ dw. 4.3)

— 00

If we now differentiate equation (4.3) with respect to time we get the follow-
ing equations for the time derivatives of the response:

x(t) = % /_ o:oAx(w)iwei“”dw (4.4)'

i(t) = . /w Ay (w)w?e“ dw. (4.5)

=1
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Substituting equations (4.2)-(4.5) into the governing equation for this sys-
tem (4.1):

—m /_o:o Ay (w)w?e“tdw + d /_o:o Ay (w)iwe™tdw + ¢ /:o Ay (w)e“tdw
- /_ Z Ap(w)e® dw (4.6)
This can of course be simplified to:
/_0:0 [(—mw? + diw + ¢) Ax(w) — Ap(w)] e“'dw =0 (4.7)

= [(—mw? + diw + ¢) Ay (w) — Ap(w)] €4 =0

Ap(w)

= A = : .
x(@) —mw? + diw + ¢

(4.8)

which, in combination with equation (4.3), gives a complete description of
the system response x(t).

For further analysis of the system, it is convenient to introduce the dimen-
sionless frequency w* = 2- and the natural frequency or eigenfrequency of the
system wy = /<. With the introduction of these quantities, the expression
for the Fourier amplitude of the system response can be rewritten as:

' w? L w -
Ax(w) = Ap(w) (—mpwg—l—ldw—owoﬁ—c)
0

= Ap(w) (—mwiw*? + idwow* + mw%)_]

6 5 R -1
= Ap(w) ((—w*z + ldwo + 1) mwé) ) 4.9)

mawi

An even further simplification is possible after normalizing Ap with mw3,

Aj(w*) = %“;—72, and introducing a dimensionless damping coefficient § =
d

mawp *

Ap(w")

A (w*) = - .
(w?) —w*2 +idw* +1

(4.10)

If we multiply this equation with the complex conjugate of A, (w), A% (w),
we can derive an expression for the spectral density of the response of the
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system:
Se(w) = lim = |Ag(w)]?
x T ToeenaT' ™
n * 2
= lim L AP(Q )
Tooo TT | —w*? + idw* + 1
Sn
R P ’
(1- w*2)2 + 62w*2
4.11)
because 1
Sh = lim — |AB(w*)|%. (4.12)

T—oo TT

4.2 Types of system response

Objective is to analyse the types of response we can expect from a spring-
mass system under conditions of random excitation using solution (4.11).
For this purpose, we shall use the spectrum of equation (3.10) to represent
the power density of excitation. Our spring-mass system is linear: the mag-
nitude of response will be linearly related to the magnitude of excitation.
Therefore, the standard deviation of response is directly and linearly pro-
portional to the standard deviation of excitation. It is of no use to study this
relationship any further: hence, we put ¢ = 1in eq. (3.10) (the same would be
achieved by dividing the left- and right-hand side of solution (4.11) by ¢ and
re-normalizing S, by 072). The example excitation spectrum we henceforth

use is:

ZQ* * * oo
Splw) = e ar=0/w / Sh(w*)dw® = 1.
0
(4.13)
The power spectrum of response is given by (solution (4.11)):
Sp(w*)
(1 _ w*Z)Z + 02w*2’

Sx(w*) = (4.14)

System response is now governed by two parameters: § and ()*. The parame-
ter 6 determines the magnitude of damping; its effect will be analyzed below.
The parameter ()* determines the frequency where most excitation energy
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occurs in comparison with the natural frequency wy of the spring-mass sys-
tem. The shape of Sj(w*) versus w*/Q* = w/Q was shown in figure 3.1
(curve corresponding to eq. (3.10)). Most excitation energy is located around
w*/Q* = O(1). Soif O* € 1,1e. Q K wy, most energy is at low values
of the dimensionless frequency w*; so at low frequencies compared to the
natural frequency of the system. For O* > 1, ie. O > wy, the opposite is
true: excitation occurs mainly at frequencies that are large in comparison to
the natural frequency. Depending on the value of ()*, three types of system
response can now be distinguished. These are discussed in the subsequent
sections.

4.3 Quasi-static response (()* < 1)

The first type of response is known as guasi-static or sub-critical and is illus-
trated in figure 4.2 for O* = 0.25 and § = 1. The spectrum Sj can only reach
high values in case w*/QO* ~ 1, and thus w* ~ 0.25. The major part of the
system response is therefore found at small dimensionless frequencies where
the denominator in solution (4.14) is practically equal to 1. When w* is very
small, we can approximate S, by

Sp

Sx~Sp=7. (4.15)

This corresponds to a spring-mass system with negligible mass and damping.
Energy of excitation is concentrated at low frequencies where the response of
the system is governed by stiffness only! This is illustrated in figure 4.2: S}
and S, according to (4.14) are almost equal.

4.4 Dynamical response ((2* > 1)

The second type of response is called dynamical or super-critical response and
is illustrated in figure 4.3 for ()* = 4 and § = 1. For this situation, phenom-
ena occur at dimensionless frequencies w* > 1. Energy of excitation occurs
predominantly at frequencies that are large in comparison with the natural
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Excitation spectrum for Q*=0.25
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Figure 4.2. Quasi-static or sub-critical response.

(eigen)frequency of the spring-mass system. The term involving w** in the
denominator of solution (4.14) will dominate. Therefore, response is gov-
erned by inertia forces only: i.e., for large values of w* the system response

can be approximated by
53

which is depicted in the figure with the dashed line. Note the scale on the
horizontal axes in comparison with those of figures 4.2 and 4.4.

4.5 Resonant response (O* = O(1),6 < 1)

The third response type is known as resonant response. The spectra are plotted
in figure 4.4 for O* = 1and 6 = 1 and 6 = 0.25. Note the different scales on
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Figure 4.3. Dynamical or super-critical response.

the vertical axes.

To analyze the behavior of resonant response, consider the response spec-
trum Sy (w*) of equation (4.14) when § < 1. Disregarding terms containing
6 one has: S, — UTSL:"—Q—); Clearly, this expression explodes as w* — 1, that
is: for frequencies close to the natural frequency of the system. The explosion
is a consequence of dropping the damping term in the denominator of the
response spectrum. For w* — 1, the damping term cannot be neglected any-
more. To show this in mathematical terms, we introduce a 'new’ frequency
v* such that: w* = 14 év*. We consider now the situation of w* close to the
natural frequency, such that v* = O(1). Then we have for the denominator

of eq. (4.14):

(1—w*?)? =4820*2 4+ O(8°), (4.17)
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Excitation spectrum for Q*=1
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Figure 4.4. Resonant response.
52w = 52+ 0(8%) (4.18)
and
Si(w*) = Sh(w* = 1) + O(6) (4.19)

The result is that, with a relative error of O(4):

N S8 (wr =1
Se(w*) =46 2%1—). (4.20)

This result is shown in figure 4.5. The response peaks at v* = 0, i.e. w* =
1. The height of the peak is 6~25%(w* = 1); the width is 4, so the mean square
response related to resonance scales as 6! S%(w* = 1). The exact value of the
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Figure 4.5. The response spectrum as a function of frequencies v* and w*.

mean square response can be calculated using relation (3.7):

0 517; .
o2 = / o = | e g (4.21)

As we have seen, in case of resonant response, most of the response energy
is concentrated around the natural frequency (w* = 1). Therefore, we can
approximate Sj by S3(w* = 1), so that

Sp(w* =1) o dw*
785 / 1 _ w*Z + 62w dw = 5p (w - 1)/0 (1 _ w*2)2 + 62w*2
(4.22)
An exact solution can be found for this integral when using the following

transformation: w*? = x and thus w* = x1/? and dw* = 1/2x 1/%dx. Us-

ing integral rule 3.252.12 in Gradshteyn & Ryzhik (which gives a thorough
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overview of exact integral solutions) [5], we can write:

/°° dw* _ / x~12gx

0o (1—w2)2+82w?  2Jo (1-x)2+6x
x~1/24y

N 2/ 1—i»x2 (2—8%)x

= 53 (4.23)

The expression for the resonant part of the variance of the system response
therefore simplifies to:

2 n —
Ores = 7 55 (w*=1) (4.24)

To check whether the system response is dominated by resonance we
have to compare the value of o,,; with the total value of the variance, atzo,.
Even for systems with an eigenfrequency that differs a lot from the typical

excitation frequency (), the response can still be dominated by ¢Z; if only &

res
is small enough. This is shown in figure 4.6 where the response of a system
with high natural frequency (* < 1) and light damping (6 < 1) is shown
(in this case (O* = 0.25 and § = 0.25). The response spectrum reveals two
peaks: one close to w* = 0.1 where the response is quasi-static (S, = S})
and one around w* = 1 which is due to resonance. The total variance of the
system is:

Tiop = Og—s + O (4.25)

where the variance due to the quasi-static response is:

2 /0 Sn(w*)dw* (4.26)

Although S3(w* = 1) is small as Q* < 1 (see equation (4.13)), the contri-
bution of the resonance peak can be large if 6 <« 1! With the help of €qu
tion (4.24) one can calculate the minimum required damping necessary to
suppress resonance under random excitation.
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Figure 4.6. Quasi-static system with little damping applied.
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Chapter 5

The description of a stationary
Gaussian signal in the
time-domain

An alternative to the frequency domain analysis of the previous chapter is
analysis in the time-domain. To be able to perform such an approach, it is nec-
essary to have explicit descriptions of the external noise in the time-domain.
These descriptions are presented in this chapter.

5.1 Random signal described by sinusoidal waves with
random phase angles

A conventional way to describe a stationary Gaussian random time signal is
by addition of large numbers of sinusoidal waves with random phase angles:

N
x(t) = Z(ZS(wn)Aw)1/2cos(a)nt+(pn),
n=1
w, = nAhw , 0<t<T , T=2n/Aw (5.1)

The amplitude of each wave is defined in accordance with (25(w,)Aw)/?

where S(w,) is the value of the power density taken at the frequency wy
of the corresponding sinusoidal wave, and Aw, is the width of the parts in
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which the power spectrum is broken up: see figure 5.1. The phase angle ¢,

S(w)

®n=NA® (0]

Figure 5.1. Break-up of the power density spectrum in discrete parts to generate a
random time-series.

is random. For each # its value is chosen at-random according to a prob-
ability which is constant and equal to 1/(27) in the range 0 < ¢, < 27
The randomly selected value of ¢, is constant in time. The duration of the
time-series is limited to 277/ Aw in order to avoid repetition. This implies: to
achieve long time duration, the parts in which the spectrum is divided, have
to be sufficiently small. The argument of the sinusoidal wave can apart from
¢, be expressed as

wupt = nAwt =2nnt/T =2nnz , 0<z<1. (5.2)

It shows that the series representation of eq. (5.1) corresponds to a Fourier
series expansion of the signal over the time interval for which it is valid. Such
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a representation of a random signal can also be found in Van Kampen [4],
§II1.3. In the subsequent sections we shall show that the signal generated
according to equation (5.1) approaches for N — co a stationary Gaussian
process with power density equal to S(w).

5.2 Gaussianity of the time-series

The series of sinusoidal waves can also be written as

N
x(t) = E AnXn (5.3)
=1
where
an = (28(wy)Aw)? (5.4)
and
Xy = €08 (Wnt + @n) . (5.5)

Consider now a fixed moment in time. The variable x,, is a random variable
of which the probability distribution can be derived from the probability dis-
tribution of ¢,, using transformation of variables invoking relation (5.5). The
variable ¢, is two-valued for —1 < x, < +1: for every x, there exist two
values of ¢, in the interval 0 < ¢, < 2m. Let us first restrict attention to
the initerval 0 < ¢, < 7 where the connection between x, and ¢, is single-
valued. In this case, the probability that X,, < x, is equal to the probability
that &, < @,:

P(x,) = P(¢n). (5.6)

Using the connection between cumulative probability and probability den-
sity (cf. equation (1.2)), we have

p(xn)dx, = p(@n)d@n, (5.7)

or

(5.8)
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Now p(¢,) is constant and equal to 1/(27), while from equation (5.5) it fol-
lows that

-2 (59

so that (5.8) becomes

1

n) = 5 o173 / —1< %, <+1. 5.1
p(x) Zﬂ(l—x%)l/z Sxp S+ ( O)

We only considered the interval 0 < ¢, < 7. Because the connection be-
tween x, and ¢, in the interval 0 < ¢, < 27 is the same, we just have to
multiply the right hand side of (5.10) by 2 to obtain the complete probability
distribution of p(x,):

1

p(xn) = e —1<x, < +1. (5.11)

The surface underneath this probability density distribution is 1 as should
be. Because p(x,) is a symmetrical function of x,, uneven moments of x, are
zero. The second moment can be calculated as follows:

+1 5 1 n 5
/ Xap(Xe)day = ;/0 cos” pd¢

-1
L /71 1
= ;/0 <§+§c052¢)d¢

= % (5.12)
For the fourth moment, we can write
/+l xXpp(xn)dx, = 1 /7I cos* pde
-1 T Jo
= %/On (g-f—%coszqﬂrécoszkp) d¢
= % (5.13)

8

We can now conclude from representation (5.3) that at any moment in
time x equals the sum of a large number of independent stochastic variables
x,,, each having the same probability distribution. According to the central
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limit theorem (Van Kampen [4], §1.7), the probability distribution of x ap-
proaches the Gaussian distribution. This is even true if x,, n fixed, is non-
Gaussian, as is the case above. This feature is responsible for the dominant
role of the Gaussian distribution in all fields of statistics.

To make the Gaussianity of x plausible, consider the so-called characteristic
function of p(x,), defined as:

+1
Gxn(k) = /_1 ’kx"px(xn)dxn (514)

Expanding the exponential term, noting that uneven moments of x,, are zero
and using egs. (5.12) and (5.13), we can write

+1 1L ] 1

_ - 14 6
= 1 k2+64k + O(K9). (5.15)

The characteristic function associated with a,x, then reads

Gayx, (K) =1 - ik%z + 61—4k4a4 + O(k9). (5.16)

The characteristic function of the sum of random variables equals the product
of the characteristic function of the individual terms. Therefore,

Gx (k) = Gax (k) Gayx, (k)-"Ganxn (k)

N
= H G”nxn (k)
n=1

= ﬁ <1——k2a +61—4k4 4+O(k6))
n=1

N k2 k4
= exp <——a - 6—411” + O(ké))

n=

= exp (—%2 i as — ia +0( k6)> (5.17)

—

n 1

Here,

N N
Y a2=2) S(wn)Aw =277, (5.18)

n=1 n=:1
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if N — oo, while

N
ah ~
=1

, (5.19)

z| %

n

where N is the number of parts of width Aw into which the power density
spectrum is subdivided. We now have,

B kot
Gx(k) = exp <———2-0' +0 (T)) ’ (520)
so that
k2
Gx(k) ~ exp <—702) as N — oo. (5.21)

This is the characteristic function of the Gaussian distribution with zero-mean
and standard deviation ¢. In conclusion, the distribution of x approaches that
of a stationary Gaussian distribution with the desired properties (zero-mean,
standard deviation equal to ¢). The larger the number of terms in the series
representation, i.e. the smaller Aw in the break-down of the power spectrum,
the smaller the higher order terms will be in comparison to the term retained:
the series representation will represent more and more a Gaussian distribu-
tion with increasing N or decreasing Aw.

5.3 Power density spectrum of the time-series

The Fourier transform of x(t) can be expressed as:

A _ [ te~iwntq 5.2
(W) = _mx( Je t, (5.22)
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where, in line with (5.1), we have discretised the frequencies: ie. w, =
mAw = m2m/T. Substituting (5.1), we can write:

N 12 (T2 .
Alwm) = Y (25(wn)Aw) /T/ et cos(wput + @, )dt

n=1 =T/2
N +T/2

= Y (ZS(wn)Aw)l/z/ (cos Wt — isin wpt)
n=1 =T/2

(cos @, cOS Wyt — sin @, sin wyt)dt

N +T/2

= Y (25(w,) Aw)'? {/T/ (COS Py COS Wiyt COS Wit
n=1 —T/2

+isin @, Sin Wyt sinwyt) dt

+T/2
- / (sin @,, COS Wyt Sin Wyt
-T/2

+1€OS @, SIN Wyt COS Wy, t) dt } . (5.23)

The term in the first integral is an even function with respect to ¢, the term in
the second is uneven. Hence,

N +T/2

Alahy) = Z(ZS(wn)Aw)l/z/ (COS @y COS Wiyt COS Wiyt
n=1 -T/2

+isin @, Sin Wyt sin wyt) dt
N 121 +T/2
= z (25(wn)Aw) [ cos gon/ {cos(wm — wp)t
2 ~T/2

—+— coS(Wm + wy )t} dt

1. +T/2
+ izsin %/T/ {cos(wm — wy)t — cos(wm + wy)t} dt]
~T/2
N . +T/2
1 . sin(wy, — wp)t
= 25 (wy)Aw)? | = (cosy + isin @) ——m 1)
,,z::]( 2 (Wm —wn) |_1/2
1 . sin(wp + wy )| TT72
+  =(cos@n —isin @,) —F————
2( ¢ or) (Wi +wn) |_1/2
_ (ZS(cu,,,)Au.))l/2 T(coS @ + 1sin @), (5.24)

where we used the properties

(W —wy)T/2=(m—n)m, (5.25)
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(W +wn)T/2= (m+n)m, (5.26)

sin((wm — wn)T/2)

= T/2 forn=m

wm - (,Un

sin((wm — wn)T/2) 0 forn#m (5:27)
Wy — Wy

sin((wm + wx)T/2) . (5.28)
W, + Wy

From (5.24) it can be concluded that the Fourier transform of a random func-
tion varies itself randomly through its dependency on ¢,,. Furthermore, the
Fourier transform grows unboundedly with time T. Quite different is the
situation if we consider the power density of x(t) which is related to A(w)
as:

S(w) = lim — |A(w)]?. (5.29)

Substituting (5.24), we obtain

S(w) = Th_r};o 2lﬂ_S(w,,,)Aa)(cos2 Pm + 50 @) | = S(Wh). (5.30)

because TAw/(27r) = 1. So, we have shown that S(w,) in series expres-
sion (5.1) corresponds to the discretised value of the power density S(w) of
x(t) at w = wy.



Chapter 6

Single degree of freedom
system: analysis in the
time-domain

Methods are presented to analyze a single degree of freedom system in the
time-domain. The approach is complementary to the frequency-domain anal-
ysis presented in chapter 4. Methods and results given can be used to back-up
direct numerical simulations of systems in the time-domain.

6.1 Time-domain description of the excitation

In the previous chapter, a description in the time-domain was presented for
a stationary Gaussian process. This representation is used to generate a time
signal for the excitation of the spring-mass system we intend to analyze:

Z

P*(t*) = E (25h(w )1/2cos(w:t*+qon),

wr = nAw* ., 0<t'<T , T=21/Av* (6.1)

n

The break-up of the power density spectrum in discrete parts to generate the
above time-series was shown in figure 5.1. An illustration of a time-domain
realization of the excitation according to equations (6.1)is shown in figure 6.1.
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The power spectrum was described according to eq. (4.13). MATLAB was
used. We took Q* = 1, Aw* = 3-1072, T = 200, N = 10°. Random phase
angles were generated by a random generator, normalized to values between
0 and 271. From the generated signal, various interesting statistical properties
can be calculated. For this purpose, one can adopt the time averaging meth-
ods of chapter 2. In this way, results for standard deviation, auto-correlation
and probability distribution can be calculated. Note that the standard devi-
ation should be equal to 1, the auto-correlation should be equal to the cor-
relation shown in figure 3.2 and the probability distribution should be close
to the Gaussian distribution. The accuracy of the results can be assessed as
a function of the value of Aw*. Also a range of different realizations can be
generated from which ensemble averages can be determined. Stationarity
and ergodicity can thus be verified.

An illustration of the Gaussianity of series representation (6.1) with the
power density spectrum according to eq. (4.13) has been given in figure 6.2.
The probability distribution was calculated according to the procedure out-
lined in figure 2.3. While )* = 1, the spectrum was broken down taking
Aw = 3 and Aw = 3-1073 with N = 10 and N = 10%, respectively. It is
seen that Gaussianity improves with increasing N as forecasted by egs. (5.17)-
(5.21) in the previous chapter.
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Figure 6.1. Illustration of a time-domain realization of the excitation for QO* = 1.
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Figure 6.2. Probability distribution of excitation according to representation (6.1)
and spectrum (4.13) with Q* = 1.
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6.2 Solution in the time-domain

We shall analyze the response behavior of the spring-mass system formulated

in dimensionless form:

i+6x+x=P(t"), (6.2)

where
P*(t") = P(t)/c, (6.3)
t* = wot. (6.4)

The dots denote differentiation with respect to dimensionless time t*, ¢ is
the stiffness or spring constant and wy is the eigenfrequency of the system.
Eq. (6.2) follows from eq. (4.1) using (6.3), (6.4) and

wo = Vec/m 6 =d/(mwyp). (6.5)

Given P*(t*) as described by equation (6.1) and disregarding any transient
response, the solution of equation (6.2) can be found by describing x as:

N N
x =Y ancos(wWit" + @n) + Y _ Busin(wit* + @n). (6.6)
i=n n=1
Substitute (6.6) in (6.2) and equate coefficients of terms like cos(wjt* + ¢,)
and sin(wjt* + @,):

— w2 + 8B’ + iy = (2Sh(wE)Aw*) 2, (6.7)

—Bnwi% + Sa,wl 4+ Bn =0, (6.8)
from which it follows that:

*2
1-w,
ow?

&y = B ) (6.9)

*

. : 6.10
(1 - wi2)? + 2w;? o)

By = (25 (w?) Aw*)"? iy

Using the property (we sometimes repeat basic algebra to brush-up the an-
alytical mind; for an overview on algebraic rules and properties of known
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mathematical functions, see Abramowitz & Stegun [6] which is now also
available in digital form; property (6.11) can be found under 4.3.17 of [6]):

cos(z1 + z3) = €0S 21 €COS 25 — sin z1 sin z. (6.11)

equation (6.6) can be written as:

N
=Y (a2+ ;32 2 cos (wit* + ¢u — arctan(Bn/an)), (6.12)

n=1

where -
o5+ B = i jsg’)’i‘j T (6.13)
and Seo
Bulon = 17— a’;*z. (6.14)

From (6.12) and (6.13) it can be seen that the spectral den51ty of the response
equals solution (4.11) (as should be!).

The above results can be used to back-up direct numerical simulation re-
sults of the spring-mass system. The equation, i.e. eq. (6.2), can be split-up
into two first order equations:

X =y
y = —dy—x—P*(t"). (6.15)

Implementing the excitation according to eq. (6.1), the above two equations
can be integrated numerically by standard routines. As initial conditions, one
can take: x = y = O at t = 0. The numerically calculated result will exhibit
a transient response which decays as e~%*": for further details on transient
response, see section 6.4. Once the transient response has vanished, the result
should, in statistical sense, be the same as the analytical solution (6.12) which
does not exhibit transient behavior.

6.3 Resonant response

In section 4.5 we have seen that resonant response (0 = O(1), § <« 1) is
governed by a small band of frequencies around w* = 1. To describe this
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behavior, we write
wy,=146v,, , n=m+Ny , Ny=1/Aw. (6.16)

Oscillations at natural frequency w* = 1 thus correspond to n = Ny or
m = 0 in the series representations of the solution. Substituting this in solu-
tion (6.12) and dropping terms of magnitude ¢ directly compared with order
unity we have

niox _ 1/2 N—Np " 1/2
. - nSh(w 1)) Z 4Av
25 (1 + 4v3?)

m=—Np
1
cos {t* + v, T* + ¢m + arctan (—) }, (6.17)
205
where
T* = §t%. (6.18)

Note that v}, = mAv* and that v}, extends from —NpAv* to +(N — Np)Av*.
Solution (6.17) can also be written as:

nf, ok _ 1/2
X = (Lp(w_—l)) {fl(T*)COSt*—fz(T*)Sint*}

20
n * __ 1/2
= (15%)5;1)) a(T*)cos {t* +(T")}, (6.19)
where:
a(T*) = {fH(T) + (T}, (6.20)
Y(T*) = arctan { fo(T*)/ f1(T*)}. (6.21)

Here, f1(T*) and f(T*) are Gaussian random signals:

N I 1
f1(T*) = Z (W) cos (va + ¢ + arctan (ﬁ)) ;
(

m=—No'
6.22)
N-Np 4AL* 1/2 1
*) ey - *T* m - )
AlT") m:Z_NO(ﬂ(l +4v;;?)> o0 (”'” i S <2vfn>>
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which are stochastically equivalent to:

, N 8AV* 1% o
AT =) (m) cos (VT + @u), (6.24)
n=1 n
N-Ny SA % 1/2 .
T =Y [————) sin(uiT" +¢n). (6.25)
- (14 4v32)

These signals hold over the time interval
0<T"<Ty , Ty=2m/Av". (6.26)

The power densities of the signals equal 4/ (77(1 + 4v*?)) implying that their
standard deviations are equal to unity:

, ©  4dvr 7 N
2(T* _ 2 * _ = = ® —

(RN = (BTN = [ gy = morctan(20”) =1 {6
Furthermore, f1(T*) and f,(T*) are uncorrelated. This can be shown as fol-
lows:

E3 * ol 1 T6 * * *
(AT)RT)) = dim = [ fi(T")f2(T")dT
0 —® 0 0
) N N 8AU*
= A, 2;";0 71+ 4021+ 40Ty
T * *
% /0 " cos <2nn% ) qon> sin (2nm% + gom) aT”
(6.28)
Here,

L /Ta cos (271 L + )sin (27rm L + ) aT*
—— N— n T m
Ty Jo Ty ¢ To ?
1
= /) cos(2mnz + ¢,) sin(2mmz + @, )dz
1 /. .
= 5 /0 [sin(27t(m — 1)z + @ — @n) + sin(271(m + 1)z + @ + @,)] dz

= %/01 [sin(@m — @n) cos(27t(m — n)z) + cos(Pm — @n) sin(271(m — n)z)
+ sin(@m + @n) cos(271(m + n)z) + cos(@m + @n) sin(27t(m + n)z)] dz
= 0. ' (6.29)
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because the integrals of the oscillatory terms are zero over the interval 0 <
z < 1. Hence,

(A(T") f2(T7)) = 0. (6.30)

The mean-square value of response can now be calculated as follows (using
eq. (6.19), (6.27) and (6.30)):
nSp(w* =1)

o5 = (x*()) = —Ex—=((fi(Tx)cost" — fo(T")sin £°)%)

= =D i) 2eoste + (1) sin? e
=2(f1(T*) fo(T")) cos t* sin t*]
nSH(w* =1)

= e =2 (6.31)

which is the same as eq. (4.24)!

From solution (6.19) it is seen that resonant response to random excita-
tion consists of quasi-deterministic sinusoidal behavior around the natural
frequency with an amplitude and phase which vary randomly and slowly
with time (T* = 6¢*). An illustration of this behavior is given in figure 6.3,
taking 6 = 0.02 and T = 600.

Calculating resonant response by direct numerical integration of the dif-
ferential equation of the spring-mass system can be quite cumbersome. The
damping term in the equation is very small and at the same time, the deter-
mining factor for the magnitude of the resonant response: a recipe for prob-
lems! While performing numerical integration, round-off errors are made.
These can create an artificial form of damping, which is larger than the real
damping. To avoid this, very small time steps are required which leads to
long calculation times.



66 SINGLE DEGREE OF FREEDOM SYSTEM: ANALYSIS IN THE TIME-DOMAIN
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Figure 6.3. Resonant response ((0* =1, § = 0.02)
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¥ 6.4 Transient response

The solutions presented so far did not take transient behavior into account.
Both the solutions for response in the frequency-domain presented in chap-
ter 4 and the solutions in the time-domain given in the previous sections de-
scribe response that is statistically stationary *. In the present section, we
shall present descriptions for transient behavior due to some initial condition
imposed at time zero. More specifically, we shall consider the case where
displacement and velocity are zero at time zero.

A description in the time-domain for transient response is simply ob-
tained by using the linearity of the governing differential equation: cf. eq. (6.2).
A solution can be written as

x(t) = xg(t*) + xs(t), (6.32)

where xs(t*) is the stationary solution given by eqs. (6.12)-(6.14). Because
xs(t*) satisfies eq. (6.2) with random right hand side P*(t*), xy (t*) will be
the solution of the homogeneous problem

Xg +0xg +xy = 0. (6.33)
The two basic solutions of this problem are:

xy = Ae=*"'12 cos ((1 = 52/4)1/2t*) + Be~®" 25in ((1 - 52/4)1/2t*) :

6.34
At time zero, we require that displacement and velocity are zero: o
x(t")=x(t")=0 at t*=0 (6.35)

From eq. (6.32) it then follows that
xg(t*) = —x5(0) , xu(t*) =-x5(0) at t* =0, (6.36)

where x5(0) and x5(0) are specified by egs. (6.12)-(6.14) substituting t* =
0. Given conditions (6.36), the constants A and B of solution (6.33) can be
evaluated to:

A = —x5(0) (6.37)

*With stationary response we mean response of which the statistics (mean value, standard
deviation, etc.) do not vary with time. The response signal itself obviously varies with time

(in a random way)
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B=(1-6)""" (—xs(O) - gx5(0)> (6.38)

The statistics of response can be determined as follows. The excitation P*(*)
is a Gaussian process. In that case, any variable that is linearly related to
P*(t*) will be Gaussian as well. Also variables that suffer from a time-lag
with respect to P*(t*) because of inertia and/or damping. Therefore, the
probability distribution of x(t*) will be Gaussian. All that remains to be spec-
ified are the parameters that determine this distribution, i.e. mean and stan-
dard deviation. The mean of x(t*) equals the mean of xy(t*) plus the mean
of xg(t*), which are both equal to zero (because (P*(t*)) equals zero). Hence,

(x(t7)) = 0. (6.39)
The standard deviation follows from the mean-square response as:

o = (1) = ((xu(t") + x5(1))?)
= (xB(t") + 28(17) + 2xn (1) (1))
= (xB(t)) + (E(1) + 2{an (F)xs (7)) (6.40)
Substituting solutions (6.34) and (6.37)-(6.38) we end up with moments
of products of xg(t) with xg(0) and x5(0). The determination of these cor-
relations, though not impossible, can be quite laborious, depending on the
shape of the power density spectrum of P*(t*). A more simple situation
arises in case of resonant response. Such response occurs when damping
is light, § < 1, and the total response is governed by the resonance peak in
the power density spectrum. When § < 1, the time domain description for
transient response given by eqs. (6.34) and (6.37)-(6.38) can be simplified to:

xp(t*) = —x5(0)e™ T /2 cos t* — x5(0)eT /2 sin t*, (6.41)

where, as before, T* = 6t*. For resonant response, xs(t*) can be described by
the right hand side of eq. (6.19):

xs(t*) =00 {fi(T*) cost* — fo(T*)sint*}, (6.42)

where f1(T*) and f,(T*) are uncorrelated Gaussian signals described by egs. (6.24)-
(6.25). The total response (transient and stationary) is then given by:

x(t*) = 0 (fl(T*) = fl(O)e_T*/z) cos t* — 0y (fz(T*) - fz(O)e_T'/z) sin t*.
(6.43)
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The standard deviation can be assessed as:
2 = ()
= ‘73<(f1(T*) —f1(0)e‘T'/2)2> cos? t*
+03 < (fZ(T*) = fz(o)e—T*/2)2> sin?t*
=203 ((A(T) = £0077%) (A(T) - f1(0)e 7))
X sin t* cos t*. (6.44)

Now

* 2 - _
(AT =1@T2)) = (T + ()T
“2((T)A0)e™ T2 (645)
Here,

(FE(T)) = (f£(0)) =1: (6.46)
see eq. (6.27). The auto-correlation of f;(T*) follows from its power den-
sity spectrum which is 4/ 71(1 + 4v*2. The Fourier transform of this spectrum
(cf. eq. (3.15)) yields the autocorrelation function being e~ /2: this result is
easily obtained from eq. (3.8) setting () = 1/2, ¢ = 1 and noting that the

auto-correlation associated with eq. (3.8) is 02T’ (see text subsequent to
eg. (3.15)). The net result for eq. (6.45) is now:

* 2 %
<(f1(T*) — f1(0)e” ) >= 1-eT. (6.47)
Clearly, the same result is obtained for the second term on the right hand side
of eq. (6.44):
2 .
<(fz(T*> - f2(0)e™T/2) >= 1-eT. (6.48)

For the third term we can write:

(AT = A7) (AT - f; <o>e—T*/2)>
= (AT Fo(T") + (f1(0) f2(0))e™
— ((i(0) f2T*)) + (f2(0) f1(T*))) ™7/ (6.49)
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In view of result (6.30),

(A(T) £2(T*)) = {1(0) f2(0)) = 0. (6.50)

Furthermore, using a procedure similar to that of egs. (6.28)-(6.29) one can
show that:

(f1(0)f2(T")) + (f2(0) f1(T)) = O (6.51)

Here it is noted that the separate correlations are not equal to zero! These
values can be calculated in the following way:

(ORI = (DAT+T) = Jim [ AT T+ T 652

The right hand side can be evaluated upon substituting series representa-
tions (6.24)-(6.25), using addition formulae for trigonometric functions to bring
the terms back to products of terms like sin(2mnT/Tg) and cos(2mnT/Tj)
and evaluating the integrals; all this similar to the procedure of eq. (6.29). The

result is
. N 2Avsin(v, T*) % 2sin(vT*)dv
(0T ; m(1+4v2) /o (1 + 4v?) (6:53)
Similarly it can be shown that
. ® 2sin(vT*)dv
(BOATN =~ [ 5 (65

The above cross-correlation functions are zero if T* = 0 but have nonzero but
opposite values for T* > 0.
The standard deviation now follows from eq. (6.44) as

3T =c3(1-2e"T). (6.55)

The Gaussian probability density distribution for transient response is then
given by

1 _x2/(20.2(T*))
= 6.56
: U(T*)\/Zne (6.56)

The distribution approaches a Dirac d-function around x = 0 as t — oo. For
T* — oo the distribution evolves to a stationary Gaussian distribution with
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Figure 6.4. Transient cumulative Gaussian response behavior in case of zero initial
response.

standard deviation 0. An illustration of the distribution is given is figure 6.4.

The cumulative Gaussian distribution for transient response reads as

P(x) = % (1 +erf (W) ) ) 6.57)

where erf is the error function: cf. eq. (1.9). An illustration of the cumulative
distribution is given in figure 6.5. It is seen that the cumulative distribution
evolves from a Heaviside function at T* = 0 to the stationary Gaussian dis-
tribution as T* — oo.
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Chapter 7

Multi degree of freedom system:
the tensioned beam

The beam is a basic element of many constructions of mechanical engineer-
ing. Its stiffness against lateral deflection can be increased by applying lon-
gitudinal tension at both ends. A guitar string is a nice example of such
application. In off-shore structures we find beams and tensioned beams at
various places. For example, as elements of steel jacket structures; as risers
in which oil or gas flows from the well at the sea floor to the production plat-
form (Brouwers [8]); or as anchoring device keeping a floating platform at its
position, see figure 7.1 for examples of such structures. Direct wave loading
and wave-induced lateral displacement via a floating structure are the cause
of random response behavior in time. Analyzing the random behavior of the
tensioned beam is the objective of subsequent chapters. In the present chap-
ter, we shall focus on the formulation of the governing partial differential
equations. Furthermore, we shall identify the conditions under which bend-
ing stiffness and stiffness by pre-tensioning prevail. In chapter 8, analysis is
focussed to the case of a tensioned string, in chapter 9 to the beam.
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Figure 7.1. Illustration of various types of off-shore structures; by courtesy of Royal
Dutch Shell Exploration & Production

7.1 Basis equations

Attention is focussed on the so-called marine riser which connects a floating
off-shore structure to the oil or gas well at the sea bottom: Brouwers [8]. The
riser can be modeled as a tensioned beam which undergoes lateral deflection
as a result of direct wave forcing and lateral motion of the floating structure,
see the sketch in figure 7.2.

Basic equations can be formulated when applying Newton’s second law
in horizontal direction to an infinitesimal element of the beam, see figure 7.3:

9%x  0x
—dD +d(T,0) + Fdz = (mw + dﬁ) dz. (7.1)

Equilibrium of moments yields:

dM = Ddz. (7.2)

The bending moment is related to deformation according to the Bernoulli-
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Figure 7.2. Riser configuration.

Euler relation )
0x
M = El—, <
552 (7.3)
while for small angles, angle and displacement are related to each other by

the geometrical relation
ox

=

6 (7.4)
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Figure 7.3. Infinitesimal element of a tensioned beam.

Substituting equations (7.2)-(7.4) into equation (7.1) yields the partial differ-
ential equation of the tensioned beam:

d*x 9 o0x 0%x ox

where:
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x = horizontal deflection

z = vertical distance from riser base

t = time

E = modulus of elasticity

I = moment of stiffness against bending
T, = riser tension (T, > 0)

m = mass per unit length

d = damping constant per unit length

F = external force per unit length

The bottom end of the riser is assumed to be fixed to the base:

x=0 at z=0 (7.6)
and subject to a rotational constraint
0%x ox
— =C,— at z=0, 7.7
EIl 52 Gy 3. at z=0 (7.7)

where C,, is the rotational stiffness. At the top, the riser is connected to the
floating structure by a hinge:

x=V() at z2=1, (7.8)
0%x
Ela—zz =0 at Z:L, (79)
where V(t) is the time-dependent horizontal displacement of the floating

structure and L is the length of the riser.

7.2 Tensioned string versus beam

Two kinds of stiffness can be distinguished in the tensioned beam: bending
stiffness and stiffness due to tensioning. The question now is: which is the
important one? To answer this question, consider a beam of length L subject
to a typical lateral deflection of magnitude a. The magnitudes of the bending
and tension terms in equation (7.5) are then:

d%x Ela
gx ~ B4 1
ElS 5 (7.10)
2
&% o I (7.11)

0z2 12
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Hence, bending and tension forces compare to each other as:

D; = % (7.12)
In case of low pre-tension, D; will be large and bending stiffness dominates.
The tension forces can be disregarded and we end up with the problem of the
beam: see chapter 9.

On the other hand, when D; « 1, the stiffness of the beam against lateral
deflection is mainly due to pre-tension (the guitar string!) and bending forces
can then be disregarded. However, when neglecting bending forces, the gov-
erning partial differential equation reduces from fourth- to second-order in
z, so that 2 out of 4 boundary conditions have to be dropped. A singular
perturbation problem results (just as the resonance problem in case of light
damping in the spring-mass system; see section 4.5). To solve this problem,
boundary layers have to be introduced at both ends of the tensioned string
(so boundary layers not only occur in fluid mechanics!). At the bottom end,
the boundary layer is described by a local coordinate:

7= 6—1% ;. on=0(1),e< 1. (7.13)

In terms of this coordinate, we have:

otx EI 9%x
%% T 0%
T— ~ —==—. 7.1
dz2 L2€2 on? (7.15)
Bending and tension forces become of the same magnitude as:
EI T 1/2

For large pre-tension, such that € < 1 or D; < 1, bending forces will only be
important in small areas of length Le = (EI/T)!/2 at both ends of the beam:
(E1/ T)/2 <« L when Dy < 1. Outside these areas, i.e. the main section of the
beam, lateral deflection, angles and curvatures are governed by pre-tension
forces rather than bending forces. The boundary layers at the top and bottom
serve to adjust deflections, angles and curvatures to the values prescribed by
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the boundary conditions. Because bending and tension forces are 4th and
2nd order derivatives with respect to vertical distance, these terms can be
assumed to dominate in comparison to all other terms in the boundary layers.
To show this in explicit terms, introduce the boundary layer coordinate #
defined by equation (7.13) into basic equation (7.5). This gives, after some
re-ordering of terms:

*x *x  ,I* o*x  ox

For small ¢, the right hand side becomes small and can be disregarded. Be-
cause the boundary layer is very short in length, inertia, damping and exter-
nal forces are relatively small. The boundary layers are areas where response
is quasi-static in nature. Solutions describe exponential decaying behavior
over the distance (EI/T)!/2. In case of clamped ends (C, — o in equa-
tion (7.7)) they reveal local bending stress increase due to increasing curva-
ture. To avoid any local stress increase, hinges or ball-joints should be in-
corporated at the ends of the tensioned string (like the guitar string). In the
subsequent analysis, we shall pay no further attention to the boundary layers
at the top and bottom: for further details, see Brouwers [8]. We shall consider
the case of the beam without pre-tension (chapter 9) and the string without
bending stiffness (chapter 8) only.
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Chapter 8

Random Vibrations of a
tensioned string

As we have shown in the previous chapter, for cases where the dimensionless
ratio D; given by eq. (7.12) is small, D; < 1, forces due to bending stiffness
can be disregarded. Furthermore, the pre-tension is assumed to be constant
with respect to z: T,(z) = T, (which is justified if the total weight of the
riser is much less than the pre-tension applied at the top). The governing
equation of the tensioned beam, i.e. eq. (7.5) can then be simplified to that of
the tensioned string;:

2 2
S S T 8.1)

-1 meg tig;

" 0z2

We disregard lateral displacement imposed at the top. The boundary condi-

tions are:
x(z,t)=0 at z=0 and z=L. (8.2)
The effects of boundary conditions imposed on angle and curvature are ac-

commodated by boundary layer type solutions at the top and bottom, see
section 7.2 . These are not considered here.
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8.1 Separation of variables

Drop the excitation and damping forces in equation (8.1):

0%x(z, t) 0%x(z,t)
SN R T2

To solve this equation we will apply separation of variables [7]. This involves

(8.3)

expressing the solution x(z,t) as a product of two functions which only de-
pend on z and ¢, respectively:

x(z, t) = g(z)h(t) (8.4)
Substitution in (8.3) and dividing through g(z)h(t) gives:
2 2
v 1 0%g(z) 1 9%h(t) (85)

3@ 922 h(f) or

The above equation can only hold if the terms on the left- and right-hand side
are equal to a constant —A (the minus sign is chosen for convenience). This
results in the following ordinary differential equations:

d2
50 - 240 (86
2
CHLDREI0 (87)

We will start with finding a solution for the first differential equation (8.6),
using x(z,t) = 0 at z = 0, L as boundary conditions. These boundary condi-
tions can now be expressed as g(z) = 0 at z = 0, L because h(t) = Oleads to a
trivial solution x = 0 for all times t. The general solution for such an equation

g(z) = Asin (@z) + Bcos <\/%z) (8.8)

The constant A and B can be determined using the boundary conditions. The

is:

first boundary condition (g(0) = 0 leads to B = 0). The second boundary

condition only leads to non-trivial solutions in case /#L = nm with n an
integer. This leads to the following eigenvalues:

A =T ("—;-)2 . n=1,23..,0 (8.9)
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with the corresponding eigenfunctions or natural modes:

gn(z) = sin (nTTCZ) ,

Following the same procedure for the second differential equation (8.7)

n=1273..,00 (8.10)

only leads to trivial solutions using the initial conditions #(0) = 0and dh(0)/dt =
0: h(t) = 0. This means that the total solution x(z,t) = g(z)h(t) equals zero

in this case. A non-zero solution is only obtained by introducing a forcing.
This will be considered in the next section.

8.2 Expansion in eigenfunctions

The solution of equation (8.1) is written as an infinite series of eigenfunctions
with time-dependent amplitudes:

x(z,t) = i:lxn(t)gn(z) (8.11)

with g,(z) = sin(nmz/L). The equation for the amplitudes x,, can be found
by substituting the above equation into the PDE:

* [ n?r? . /n7z d?x,(t)  dx,\ . (nmz
n;] {T,—L—zxn(t) sin (T) + (mT + dﬂ) sin (T)} = Flz, 1)
(8.12)

This equation can be solved for x,(t) using well-known properties of orthog-
onality of eigenfunctions g and gy:

L
/0 gn(z)gk(z)dz=0 if k#n (8.13)
and . .
/0 gn(2)gn(z)dz = 3. (8.14)
In order to use this property we multiply (8.12) with gx and integrate from
z=0toz=L:

L& n®m? . (nmz\ . [knz
/0 n;l [T,Tx,,(t)sm( 7 )sm( I >+

dx,(t)  dx,\ . /nnzy\ . [(knz
(m i +d gr ) sin (T> sin (T)] dz
L
- / F(z,t) sin (@> i, (8.15)
0 L
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Using the orthogonality properties this can be simplified to:

n2rm? d?x,(t) dx,\ L
(T’ () +m—ap = ) 3
L . /nmz
=/0 Fzt)sin () dz. (8.16)

Equation (8.16) can also be written in a form which is equal to that of a spring-
mass system (equation (4.1)):

m¥E, + dxn + cuxy = Py(t), (8.17)
where:
— R 8.18
Cyhp =N°TT ﬁ, ( : )
2 (L . /nmZ
Pa(t) = Z/o F(zt)sin (22 dz. (8.19)

We see that by expanding the solution in terms of eigenfunctions of the ten-
sioned string, the amplitude of each eigenfunction can be described by the
equation of a single degree of freedom spring-mass system. In chapters 4
and 6, we have presented methods for analyzing the behavior of x,(t) in case
of random excitation.

An interesting question is how the overall response is dominated by one
of the eigenfunctions or eigenmodes. One important factor is the axial shape
of the excitation. If the axial shape of F(z, t) equals one of the eigenfunctions,
say F(z,t) = gx(z)f(t), then P,(t) will only have a value different from zero
if n = k. This follows directly from property (8.13)-(8.14). Furthermore, if
F(z,t) is constant with respect to z, F(z,t) = F(t), then:

Pn(t):nil;F(t) for n odd, (8.20)
P,(t) =0 for n even. (8.21)

Another factor which can lead to domination of one eigenmode are the values
of the natural frequency of the string:

Wy = (C—> = "E — ’ n=123..,00. (822)
m L \m
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If one particular natural frequency, say wy, has a value which is in the center
of the power density spectrum of excitation and the others (wy_1, wi41, etc.)
have values where energies of excitation are much less, the standard devi-
ation of x(t) will dominate over the others. This follows directly from the
results presented in chapters 4 and 6. In other words: as designers we can
influence response with the value of the eigenfrequencies which depend on,
amongst others, the amount of pre-tension which is applied.
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Chapter 9

Random vibrations of a beam

As was shown in chapter 7, whenever D; > 1, bending forces dominate
over tension forces in differential equation (7.5). Disregarding the tension
and external forces, we have:

*x  *x  Ox

The boundary conditions at z = 0 are:

x(0,t) =0 and Elaz—x =0 (9.2)
7 azz /
andatz = L:
x(L,t)=V(t)  and Elé-Z—x =0 (9.3)
! 0z2 ’

The second boundary conditions in egs. (9.2) and (9.3) describe the situation
of zero bending stress apparent in case of frictionless ball-joints or hinges.
Condition (9.3a) describes prescribed random motion at the top (for example
the motion of a floating structure to which the beam is connected via a hinge).

9.1 Quasi-static response

Assume for the time-being that response is quasi-static, denoted by x,. In
that case, we can disregard all dynamical terms in equation (9.1), so that:
4
9*xy

El =0. (9.4)



88 RANDOM VIBRATIONS OF A BEAM

Integrating this expression twice gives:
s + 9.5)
— =c1z+ . .
The constants ¢; and c; are determined using the following boundary condi-
tions:

92
EI=£=0 at z=0, (9.6)
92
EISE=0 at 2=l 97)
which yields ¢; = ¢, = 0. Hence:
9%x,
L =0 9.8)

Again, we integrate this equation twice:
xp(z) = c3z+ ¢4 (9.9)
Apply the two remaining boundary conditions:
xp =0 at z=10 (9.10)
x, =V at z=1 (9.11)
which yields c3 = V/L and ¢4 = 0, so that:
xp(2) = V- 7. 9.12)

The total solution of equation (9.1) is written as:
X = Xp + Xp. (9.13)
Substituting this in equation (9.1) and using equation (9.12) yields for x:

a4xh ath axh z

3t TMor Th T I

The boundary conditions for this problem at z = 0 as well as z = L are:

El (mV +4v). (9.14)

0%x
xp = ﬁ =0, (9.15)
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In conclusion, by adding the solution for quasi-static response we have trans-
formed our problem from a homogeneous PDE with inhomogeneous bound-
ary conditions (equations (9.2)-(9.3)) to a PDE with prescribed excitation at
the right-hand side and homogeneous boundary conditions: equations (9.14)-
(9.15). This problem is similar to that treated in the previous chapter, except
that we now have a fourth-order spatial derivative representing bending stiff-
ness instead of a second order spatial derivative representing stiffness due to

tensioning.

9.2 Separation of variables

To apply separation of variables, drop the damping and excitation terms:
84xh ath

Now write x(z, t) as a product of functions g(z) and h(t):

El

x(z 1) = g(2)h(t) 9.17)
Differential equation (9.16) then becomes:

1 og(2) _ _mLazh(t)

g(z) ozt h(t) ot?

(9.18)

This equation can only be valid if both functions are equal to a constant +A.
This results in the following ordinary differential equations

dig(z) A

£ = 53(2) 9.19)
d*h —
dt(zt ) _ %h(t) (9.20)

In order to obtain the eigenfunctions we solve equation (9.19). Therefore, we
choose ¢** as basic solution for the differential equation. It then follows that
#% = +1/A/EI and we end up with the following four values for a:

1 1 1 1
A1 A\ AN AN
w=(q) w=-(a) ~=i(@) «=-(5) e
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The solution of g(z) can then be written as:

1
/\ 1
(71)

Applying 3 out of the 4 boundary conditions, we find

g(z) = A1e87 + Ae™* + Az cos + A4 sin

( %) ' z] (9.22)

o] = Agsin (EAT) ) (9.23)

Implementing the boundary condition g = 0 at z = L, one gets (%)1/4 L=

n7t with n an integer. The eigenvalues thus are:

4
Aﬂzm<lf>, n=1,2,3,.. 0. (9.24)
14
The associated eigenfunctions are:
. (N7Z
gn(z) = sin <T> (9.25)

9.3 Eigenfunction expansion

If we now add the excitation and damping force, we can solve eq. (9.14) by

expansion in eigenfunctions:

d*x 0%x  ox z
R R T TR

Substitute x(z, t) = Yoo ; x,(t)gn(z) into equation (9.26) to obtain:

= ntmt . /NnTZ d?x, dx,\ . /nmnz

L [EIT"” sin (°7) + ('" ar ”‘E) sin (T>] =

n=1

(mV +4dV). (9.26)

Z . .
—7 (mV+av).  (927)

As in the previous chapter, multiply the left- and right-hand side of this equa-
tion with g, (z) and integrate over z from z = 0 to z = L. Using the orthogo-
nality property

/OL gn(z)gk(z)dz =0 for k#n (9.28)

u[gga&@wzzg for Eesn (9.29)
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we have:
ntmt d?x,  dx, 2, . n [Lz . /nnz
EI g xn +m=rs +d7_—z(mv+dv)/0 2 sin (T) dz. (9.30)
The integral can be evaluated as:
1 Lz . /nnz S
Z/o 7 sin (T) dz = /Oxsm(nnx)dx

1 /1
= —— xd[cos(nnx‘l]

nit Jo
_xcos(nmx) /
= ————| +— [ cos(nnx)d
= _cos(nn) + 1 sm(nrcx)
nit (n)2 0
__cos(nm) _ (=)™ ©.31)
nm ni '
so that equation (9.30) becomes
ntmt d2x, dx, 2(-1)", . ;
El— A Xt M +ddt i (mV+dV). (9.32)

Each amplitude of an eigenfunction is thus described according to an ordi-
nary mass-spring system with random excitation. The eigenfrequencies are:

n?m? [EI

Who = L2 -nT i (933)

Note the difference with the eigenfrequencies of the tensioned string that are
given in equation (8.22). Equation (9.32) can be solved further according to
the methods presented in chapters 4 and 6.

9.4 The general problem of the tensioned beam

The general problem of the tensioned beam as described by equation (7.5)
and boundary conditions (7.3)-(7.4) can be solved by combining the methods
presented in chapter 6 and the previous sections of the present chapter:
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1.

2,

4.

Derive a quasi-static solution associated with the prescribed motion at

the top:
o*x, 0 0xp
7 oz (“Z@) =0 034

subject to the boundary conditions as given in equations (9.2)-(9.3). The

El

solution will be of the form:

xp = f(2)V(t). (9.35)
The total solution is:
X =Xxp+ X (9.36)
where xj, is a solution of the problem
d*x, 0 ox), %xy, oxy, N )
o T T(z) =2 o AT — Fgt) -
El 54 T3, (T (z) 3 ) tmes +d 5 (z,t) — f(z) (mV +dV)
(9.37)
subject to the homogeneous boundary conditions:
2
=2 _0 at 2z=0 and z=L (9.38)
0z2

Expand x;, in eigenfunctions E,(z) with eigenvalues A, which are the
solutions of

d‘E, d dE,
EI e ( r(2) = ) —AnEn =0 (9.39)
subject to the four boundary conditions:
d?E,
En = W =0 at z=20 and z =1L (940)

The solutions of equation (9.37) are an infinite series of eigenfunctions,
n = 1,2,3,.., c0 with prescribed values for A,, n = 1,2,3,...,,00; the
eigenvalues. The solution for xj can be written as:

o0

xp =Y xn(t)En(2). (9.41)

n=1
The amplitude of each eigenfunction is described by an equation which

is similar to that of the single degree spring-mass system. It is ob-
tained by substituting equation (9.41) into (9.37), multiplying the left-
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and right-hand side by the adjoined eigenfunction Ej(z), integrating
with respect to z from z = 0 to z = L and using the orthogonality prop-
erty:

/OL E.(2)Ex(z)dz=0 for k+#n (9.42)

L
/ En(2)Ex(2)dz = an for k=n (9.43)
0

Note that E;(z) is not necessarily the same as E,,(z). Methods for deriv-
ing Ei or its governing adjoined differential equation can be found in
Courant & Hilbert [7].

5. The equation for each amplitude of the eigenfunction is now obtained
by substituting equation (9.41) in PDE (9.37), multiplying left and right
hand with E,(z) and integrating with respect to z fromz =0toz = L:

[ (o (450 o)

+ ( 4y +ddx") E,,(Z)Ek(z)} &

"z T
L — . . L =
- /0 F(z, Ex(2)dz — (mV + dV) /0 @) E(2)dz  (9.44)

Substituting equation (9.39) into the first term, using the orthogonality
property (9.42)-(9.43) and dividing all terms by «,, we have for each
amplitude of the eigenfunctions the ordinary spring-mass type prob-
lem.

d%x dx,

/\nxn + mF + d dt = Pn(t), (9.45)

where

Pu(t) = / " Pz, DEn(2)dz — ! (m¥ +dV) / * () En(2)d
’ ’ (9.46)
The natural frequencies are wyo = (A,/m)¥/2, n = 1,2,3,...,,00. This
problem can be further handled in the usual manner.
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Chapter 10

Peak and extreme statistics

Given a Gaussian random signal of the variable x(t), the probability density
of all possible values of x is given by a Gaussian distribution. The Gaussian
distribution is determined by the mean value and standard deviations, see
equation (1.7). The previously presented methods enable specification of the
standard deviation of x(t); its mean value (if relevant) can be calculated by
standard methods of static structural analysis. So the probability distribution
of instantaneous values of x, that is the percentage of time that x(t) lies be-
tween certain values, is fully specified. Given a record of random fluctuations
x(t) in time (see figure 10.1), however, the statistics of the peak values of x(t)
are different from those of the instantaneous values. Furthermore, the extreme
value of x(t), i.e. the value of the largest peak in a given record of certain du-
ration is subject to uncertainty; it will be different for different realizations of
the process. Also, the statistics of extreme values will be different from those
of Gaussianly distributed instantaneous values. Peak values are important
for assessing fatigue damage in mechanical structures; extreme values are im-
portant for analyzing the possibility of yield. This means that there is a great
need in deriving expressions for these statistics in mechanical engineering
practice. Deriving these expressions is the objective of this chapter.
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x(t) I peaks highest peak = extreme _____,

/)

time

Figure 10.1. Peaks and extreme of a random record.

10.1 Peak statistics

The simplest case for determining the statistics of peaks is that of narrow-band
response. That is, response which is governed by a narrow-band of frequen-
cies as, for example, is the case for resonant response: sections 4.5 and 6.3.
Response can then be described by a sinusoidal wave of which the amplitude
varies slowly and randomly with time. Clearly, the statistics of peaks in such
a signal are those of the amplitude: see figure 6.3. To derive its probability
distribution, we write (see also equation (6.19)):

x = p(T*)sin {t* + p(T*)}, (10.1)
where T* is ‘slow’ time defined as:

T = 5t", (10.2)
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with § <« 1. For the time derivative, we have:

do(T*
x = p(T")cos{t"+¢(T*")}+6 ‘c)l(T*>
+ 6%p(T*)cos{t*+lp(T*)}. (103)

Because § < 1 we can approximate x with a relative error of O(4) by:

sin {t* +¢(T")}

x=p(T")cos {t" +9(T")}. (10.4)

Response x and its time derivative are uncorrelated, i.e. their covariance is

zero, because for stationary processes we can write:

T
(ot = = lim%/o X(£) ()t
1 T

T—oo

= e | e

1 T
= lim = (-ﬂ(t*)) =0. (10.5)

The standard deviation of x is equal to that of x. This can be seen as fol-
lows. The standard deviation of x is related to the power density of x by (see
equation (3.7)):
o2 = / 8 i, (10.6)
0
According to the theory of chapters 3 and 4, we have for the power density

of the time derivative of x:
Si = w?Sy, (10.7)

so that the standard deviation of x is given by
0% = / W2 dew. (10.8)
0

In case of lightly damped (6 < 1) resonant response, the power density of x
peaks sharply in a narrow band of frequencies near the natural frequency. As
w is made dimensionless with the natural frequency, S, will peak at w = 1.
So the value of the integral in equation (10.8) is mainly determined by values
of Sy at and very close to w = 1. Therefore, for § < 1,

o2 = /0 S,dw = o2, (10.9)
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The joint Gaussian distribution of x and % can now be expressed as (cf. equa-
tion (1.11)):

1 242
px, %) = 2702’ R (10.10)

The value of pand 1, 0 < p < 00, 0 < ¢ < 277 is uniquely related to that of x
and x, —o0 < x < 00, —c0 < x < 0. That is, for any particular value of x and
x there is only one corresponding value for p and ¢, and vice versa. In this
case, the joint probability that X < x and X < x is equal to that of p <p and
Y <y

P(p, ¢) = P(x, %) (10.11)

x=x(p,p)x=%(p,¥)

Cumulative probability is related to probability density as:

*P(p, ¥)
0poy

so that we can derive from (10.11) the following relation for probability den-

0%P(x, %)

plo.¥) = poplxi) = — = (10.12)

sities:

dxdx
o) = {ptw )| ol (10.13
dpdlp x(pp)x=x(p.9)
The Jacobian can be evaluated as:
dxdi| |% $| _ |oxdx  oxdx
T |9x 9% - N A D
dpdy S 5 opoyPp oY dp

= plcos®(t* + ) +sin®(t* + ¢)] = p. (10.14)

Noting that x? + %2 = p?, the joint distribution of p and ¢ now becomes

P__,—p?/(203) 10.15

p(p’ lp) 27_[0. » ( : )

This can also be written as the product of two independent probability den-
sities of amplitude and phase:

p(p, y) = p(p)p(¥)- (10.16)

where

p(p) = (_Tfiz.e—pz/@fff) 0<p< oo (10.17)

X
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and
p(p) == 0<yp<2m (10.18)

Note that - o
/0 p(p)dp=1  and /0 p(p)dp =1: (10.19)

the total surface underneath the probability density must be equal to one as
should be (because the cumulative probability must become equal to one at
the upper boundary of the domain, see equation (1.1)).

The probability density according to equation (10.17) is known as the
Rayleigh distribution. It is shown in figure 10.2.

1.4 T T T T T T T T T
cp]

1.2F b

0.8L -

0.4f 1

0.2r b

Figure 10.2. The Rayleigh distribution: equation (10.17).

The above shown distribution for peaks applies to a narrow-band pro-
cess as is the case in, for example, resonant response. For more general non-
narrow-band processes, the peak distribution is more complicated. In fact, it
can then be described by Rice’s distribution: see Robson [1]. The high-tails end
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of this distribution, that is the probability density of the high values of p in
Rice’s distribution, can be conservatively approximated by the Rayleigh dis-
tribution [1]. Therefore, the Rayleigh distribution represents a conservative
estimate to the real peak distribution. In this sense it can be used to estimate
fatigue damage due to a large number of stress peaks apparent in a mechan-
ical structure.

10.2 Fatigue damage

The cumulative damage which occurs at some place in a mechanical engi-
neering structure due to cyclic stresses can be assessed using Miner’s hypoth-
esis. It implies that the total damage equals the sum of the damage due to
each individual stress cycle. The damage d; due to a single cycle with stress
amplitude p; is given by

d; = pp}, (10.20)

where B and A are material constants. Their values are assessed from cyclic
fatigue tests. The total damage is:

d=Y pp}. (10.21)
i=1
To avoid failure during lifetime,
d<1. (10.22)

The coefficient A, A > 1, in equation (10.21) reflects the fact that larger stress
peaks contribute more than smaller ones. For welds, A can have values of
about 4: American Welding Society. In that case, a stress amplitude which
is two times larger leads to an accumulated damage which is 16 times larger,
implying that the total number of cycles before failure will be 16 times smaller.

In our problem, the stress cycle is random in nature. We can write for
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large numbers of cycles n:
" 1 n
d = B) pf=pn (; ZA-A)
i=1 i=1
= pnip’)

= pn /O " 0" plp)dp, (10.23)

where p(p) is probability density of peaks. The number of cycles can be cal-
culated from the average frequency of the random stress record:
_, Jo w?Sdw
Y Sdw

where S is the power density of the stress record. The number of cycles now

(10.24)

is:
T

n=——=
2/ w
where 271/ w is average time between peaks and T is total time.

(10.25)

The damage can now be calculated once we know the probability density
of peaks. Because A is relatively large, the contribution to the integral in equa-
tion (10.23) will mainly come from large values of p, i.e. the large tails end of
p(p). For a Gaussian random process, this part of the peak distribution can
be conservatively described by Rayleigh’s distribution: cf. equation (10.17).
In this case,

) 0 AA+] _ N
| o*pleordo = [ Emee @ ap, (10.26)
Takingn = p/o
0 HA+1 ©
P -0 (2w) g /\/ A1 72/2 5
/0 poald dp=o0 . n e dy. (10.27)
Taking t = (1/2)n*
o /0017/\4-161/21726177 _ 0,)\2)\/2/00 A2t gy
0 0
= o 2Mr(14A/2) (10.28)

where T is the Gamma function which can be found in Abramowitz & Ste-
gun [6], chapter 6. The fatigue damage then becomes:

d = Bno*2M2T(1+ A/2). (10.29)
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For A = 4,T(1+ A/2) = 2in which case d = 88nc*.

The above relations can also be used to calculate the amplitude of an
equivalent deterministic sinusoidal stress cycle: that is, a sinusoidal stress
cycle which leads to the same fatigue damage as that caused by the random
cycle. The equivalent amplitude p,, follows from the equality

Brp,, = Pn /Ooo o pp)dp, (10.30)

which can be evaluated to

oo 1/A
Peq = < /0 p*p(p)dp) : (10.31)

Substituting the expression for the integral given by egs. (10.26)-(10.28), one
has
peq = V2 (T(1+A/2))V*. (10.32)

For A = 4, this becomes p,; = 1.680.

10.3 Extreme statistics

Consider the probability P(p) that any of the peaks out of a time record hav-
ing n peaks will be less than a particular value p. The probability that all of
the n peaks are less than p is then (see also Longuet-Higgins [9]):

Fs(p) = P"(p) (10.33)
p=p
where P(p) is the CDF of peaks:
p
P(p) = [ ple)de. (10.34)

As shown in section 10.1, for narrow-band processes peaks are described ac-
cording to the Rayleigh distribution (which represents, as mentioned before,
also a conservative estimate to the distribution of the larger peaks in case of
more general non-narrow-band Gaussian processes):

Pp) =1-e /), (10.35)
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so that
. A2 2\ "
By(p) = (1— /() (10.36)
The PDF of extremes is then
. dPs 2NN D i
ps(P) = r =n (1 —e !2?) 2¢ ) (10.37)

In figure 10.3 we have shown the density of extremes for number of peaks n =
10® and n = 10%. The density shifts to higher values when n increases, as to
be expected! Knowing the duration of a stationary state of random excitation,
i.e. the number of peaks n, we can quantify the possible values of the largest
peak which are some multiple of the standard deviation. This enables us to
estimate the likelihood of overstressing leading to yield at sensitive places in
a mechanical engineering structure. In off-shore structures, one considers in
general the so-called 100-years storm: a stationary sea-state lasting about 3
hours and having a probability of occurring once in 100 years. The number
of peaks in such a period is typically 10°. Methods of random analysis as
presented in previous sections are used to calculate the standard deviation
of stress during such a sea-state. The statistics of extremes are subsequently
used to analyze the possibilities of overstressing.
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Figure 10.3. Probability density of the extreme peak normalized with standard devi-
ation for different values of n (number of peaks).



Chapter 11

Non-linear analysis: Some
general observations and
numerical time-domain
simulation

The methods of analysis presented in the previous chapters were concerned
with linear systems subject to Gaussian random excitation. In case of linear
systems subject to Gaussian excitation, response is also Gaussian. Governing
probability distributions of response variables are thus known; all that is nec-
essary is specification of the parameters of these distributions, e.g. standard
deviations, using the methods presented in the previous chapters. If the sys-
tem is non-linear, however, the situation is rather different. The probability
distributions of instantaneous response become non-Gaussian, peak statis-
tics become non-Rayleigh or non-Rice, etc. For each particular non-linear
system, the probability distributions as well as their parameters have to be
determined.

A crude method to handle non-linear systems is by numerical time-domain
simulation. It is in fact straightforward application of the results presented
in chapter 5. Gaussian excitation is generated by a series of sinusoidal waves
with randomly chosen phase angle: equation (5.1). The differential equa-
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tion which describes the system to which the excitation is applied is solved
numerically in the time-domain (and space-domain if necessary). Statistical
parameters of response can be derived from the generated random record us-
ing previously presented methods. Ensuring that instationary transients are
removed from the time-record, the probability distribution of instantaneous
response can be assessed according to the procedure presented in figure 2.3.
Moments of response can be calculated according to equation (2.4). By gen-
erating a large series of different realizations, statistical parameters can also
be gathered from ensemble averaging: see figure 2.2. But in all these cases,
the numerical approach is lengthy and time-consuming; in particular, if one
wants to achieve accuracy in the assessment of the tails of the distributions,
such tails being of prime importance for the evaluation of fatigue damage and
extreme response. Moreover, numerical results yield only data; obtaining in-
sight into the effect of design variables on design criteria from these data is
rather cumbersome. Analytical methods for handling random processes are
therefore the preferred way for the designer. But such methods only exist for
specific non-linear problems. Some of these that are particularly important
for mechanical engineering practice, will be considered in the next chapters.



Chapter 12

Non-linear quasi-static response

Whenever there is a direct non-linear relation between two stochastic vari-
ables, the statistical relationships between these two variables can be derived
using well-known methods of probability theory. With direct relationship
we mean a relation without time-delay. In dynamical systems such as the
spring-mass system of chapters 4 and 6 and the tensioned beam of chap-
ters 7, 8 and 9, a direct relationship will occur when the inertia and damping
forces play a minor role. This will happen if the center of gravity of the power
density spectrum of excitation is at frequencies which are much lower than
the natural frequency of the system. Response is then primarily governed
by excitation forces and static restoring forces. The restoring forces can be
non-linear as a result of non-linear, non-elastic behavior of the structure. But
non-linearity can also occur through the excitation force. An example of the
latter is the non-linear drag force acting on members of off-shore structures
due to water velocities associated with random waves on the sea surface.
These drag forces are particularly important in case of large waves acting on
relatively small members of off-shore structures. We shall treat this problem
in some detail as an example of how to proceed in case of quasi-static non-
linear behavior.

The drag force acting on a bluff body in fluid is proportional to the square
of the velocity v of the fluid perpendicular to the body. In case of alter-
nating fluid velocity, the force will be proportional to v|v|. For a linearly
quasi-statically responding structure, the response variable will also be pro-
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portional to v|v|. Therefore,
x = av|v|, (12.1)

where x is response variance and « constant of proportionality; the value of &
can be calculated by applying static analysis under unit force. The velocity of
the fluid due to wind-generated waves can, in general, be well-presented by
a Gaussian distribution. To derive the distribution of x given relation (12.1)
we note that there exists a one-to-one relationship between x and v: for each
value of v there is only one value of x and vise versa. In this case, the proba-
bility that X < x is equal to the probability that V < v(x):

P(x) = Py(v) , (12.2)

where v = v(x) follows from the inverse of relationship (12.1).

v = (a|x])"V?x, (12.3)

(to derive this relation consider first v > 0, x > 0 and subsequently v <
0, x < 0 and combine the results). Cumulative probabilities are related to
probability densities as

_dPy(v) _ dP(x)
pv(v) - do ’ p(X) - dx ’ (124)
so that we can derive from equation (12.2):
dv
p(x) = {pv(v) = } - (12.5)
For p,(v) we take the Gaussian distribution
1 —02/ (202
po(v) = —= s /(205), (12.6)
Furthermore,
do 1 _
—| =7 (alx) 172, (12.7)

Relation (12.4) can now be evaluated to the following probability density of
X:

1 2
_ - Ixl/ (2002)
P = S a2 ' (128)
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The standard deviation o, of x follows from:

e 20)%08 o _ 20)%02
3 = /_ xzp(x)dx = —( 1)/2” /0 327t gt = ( 1)/2 I <2> = 3a20?
(12.9)

where we took x = 2ac?t. In (12.9) T is the Gamma function: Abramowitz &
Stegun [6], chapter 6. In terms of 0y, equation (12.8) becomes:

8moy|x -1/2 “lx
p(x) = (%) e |x1V3/ () (12.10)

For the cumulative probability density we can write:

* ol It
= Ydx = / L~ 1N, 12.1
P = [ pxde = o= 172 (12.11)
with x = 20,t/+/3. The integral on the right-hand side can also be expressed
in terms of the incomplete Gamma function y(x1, x2): Abramowitz & Stegun [6],
chapter 6:

Pl = 5+ 2\1/_ =, (1 1«5'{2‘) . (12.12)

In fact, this result could have been directly obtained by substituting eq. (12.3)
in eq. (12.2) using eq. (1.10) and noting that the incomplete Gamma function
can be expressed in the error function: Abramowitz & Stegun [6], property
6.5.16. In figure 12.1, the above distribution has been shown and compared
with the Gaussian distribution. It is seen that for large values of x/oy, the
probability of not being exceeded is less in case of the above distribution. It
reflects a larger probability of obtaining large values at equal standard devi-
ation due to quadratic loading.

Given a non-linear direct relationship between wave loading and response,
it is also possible to derive descriptions for the probability distributions of
peaks invoking the narrow-band model. In this way it is possible to derive
analytical expressions for fatigue damage and extreme statistics in case of
non-linear quasi-static behavior: Brouwers and Verbeek [11]. This approach
can be applied to many other non-linear problems as long as the non-linear
behavior is quasi-static.
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Figure 12.1. CDF for Gaussian process and for drag loading,.



Chapter 13
Non-linearly damped resonance

As mentioned before, analytical methods for handling non-linear problems
of random vibration are only available for specific cases. One of these cases
is non-linearly damped resonance of a mass-spring system. In case of light
damping, the governing equation can be reduced using two-scale expan-
sions. The resulting stochastic problem can be treated by a Fokker-Planck

equation.

13.1 Two-scale expansions

Attention is focussed to a mass-spring system with non-linear power-law
damping: i.e. the damping force equals dx|x|*. In dimensionless form ap-
plying the non-dimensioning of eqs. (6.2)-(6.5), the equation of motion is:

i+ Sx|A|* + x = PX(Y), (13.1)

which becomes equal to eq. (6.2) for « = 0 (linear damping). The excitation is
a stationary Gaussian process described according to equation (6.1). When-
ever 6 < 1, damping will be unimportant in solutions of eq. (13.1) except
for frequencies close to the natural frequency w* = 1. This becomes appar-
ent when disregarding damping and analyzing the behavior of the solution
of the resulting equation in the frequency domain: see section 4.5. Therefore,
when focussing on the solution appropriate for resonance, we can limit atten-
tion to the behavior, of the excitation in a narrow band of frequencies around
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w* = 1. This can be modeled as:
w=1+6  , v =0(1). (13.2)

The exponent 8, B > 0, is 1 in case of linear damping; its value appropri-
ate for non-linear damping will be determined below. The excitation de-
scribed by eq. (6.1) can now be approximated by (analogous to the procedure
of eqgs. (6.16)-(6.25)):

+N-=Np AV* 1/2
P(t*) = 26P/25}/2 ) ( 5 ) cos(t* + vy, T* + ¢m), (13.3)
m=—Ny
where
T =6, yy=mht S =Si(w*=1). (13.4)

Eq. (13.3) can also be written as (see again egs. (6.16)-(6.25))

P(t*) = 26P/28)/2 (f1(T*) cost” + fo(T*)sint*), (13.5)
where "
AT =Y, (Av) 2 cos(vET* + @), (13.6)
n=1
N
f(T) ==Y (Av)Y2sin(VET* + ¢,). (13.7)
n=1

Here, f1(T*) and f,(T*) are Gaussian white-noise processes of power density
1/2 (compare the above equations with eq. (5.1)). Furthermore, f;(T*) and
f2(T*) are uncorrelated:

- T/2
(fif2) = fif2 = lim :lr /_ +m fif2dT" =0 (13.8)

the prove of this is similar to the procedure of eqgs. (6.28)-(6.30).

The excitation consists of sinusoidal waves with randomly and slowly
varying amplitudes: cf. egs. (13.5)-(13.7). In view of the two times t* and
T* apparent in the excitation, we also assume that the solution of eq. (13.1)
exhibits the two times t* and T*:

x=x(t*, T, (13.9)
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so that 3 3
= O* | X
== +9 3T+ (13.10)
9%x 9%x
E= a2 5 + O(6%). (13.11)
Substituting eqgs. (13.9)-(13.11) and (13.5) into (13.1) yields:
0%x 0%x ox | ox |*
hlied B_~ ~ -
R P SR Tl e
= 26P/28}2 (fi(T*) cost™ + fo(T*)sint*)
+O(6%) + O (6B + O(5'+8). (13.12)
For small § we can disregard all terms except the first two:
0%x \
32 +x=0 if 6 —0, (13.13)
the solution of which is:
x = 6"a(T*) cos(t* + ¢(T")), (13.14)

where amplitude and phase can vary with the second and slow time T*. The
value of the exponent 7y has yet to be determined.

A problem like eq. (13.12) gives rise to supposing a solution for x in terms
of a perturbation expansion in powers of J as:

=0"(x1 +Fxy+ ...) ,  u>0 (13.15)

Equations for xj, x,, etc. are obtained by substituting expansion (13.15) in
eq. (13.12) and equating terms of equal order in 4. The largest or leading
order are the terms formed by the first two terms in eq. (13.12) expressed in
X1 82
at*Z
which is of course the problem formed by eq. (13.13) with solution: x; =

a(T*) cos(t* + ¢(T*)). The next order of terms lead to the problem:

9*x1 Lray—p 0% 9% [*
oroT* ot* | ot*
12887271 K SV2 (£(T*) cost* + fo(T*) sin ") (13.17)

+x1 =0, (13.16)

82x2
= s -1
at*2 “+ x2 20
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Now, meaningful solutions are only obtained if the terms on the right hand
side are all of order 6°. Hence: B—pu = 1+ay—pu =B/2—v7—u=0,s0

that
2 2 1

24a ﬁ:2+a PO¥E Ty
In terms of these values and substituting the solution for x;, eq. (13.17) be-

p= (13.18)

comes:

82x2

Wﬁ—xz = a (asin(t* + ¢)) + a' T sin(t* + @) | sin(t* + ¢) |

3T
+281/2(fy cost* + fosint*). (13.19)

Here, the term that is due to damping can be expanded in a Fourier series:
sin(t* + ¢)|sin(t* + ¢)|* = ag sin(t* + ¢) + azsin2(t* +¢) +...  (13.20)
where

o = —/ sin? 57| sin y7|*dy

_ _/ﬂ/z w2y

2 (a+31
B _B< 2 ’2)
2T ((a+3)/2)

= AAT(a 1 4)/2) (1321)

where B is Beta function and I' is Gamma function: Abramowitz & Stegun [6],
chapter 6.

Implementing eq. (13.20) and using addition formulae for trigonometric
functions, eq. (13.19) becomes

82
£+X2 = {2

at*Z

d;i,* (acos ) + aga® ! cosp + ZSi/Zfz(T*)} sin t*

+ {deT* (asing) + a;a* ! sing + 25%/2f1(T*)} cost*
+up cos 2¢ sin 2™ + wp sin2¢p cos 2t + ... (13.22)

The basic solutions of the homogeneous part of the above differential equa-
tion are sint* and cost*. Terms like sint* and cost* on the right hand side
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of eq. (13.22) then give rise to particular solutions of the type t* sint* and
t* cos t*. These grow unboundedly with increasing t*. To arrive at meaning-
ful solutions, we have to avoid this behavior; that is, we have to set the coef-
ficients of the terms like sint* and cos t* on the right-hand side of eq. (13.22)
equal to zero. This criterion for avoiding secular behavior is at the heart of the
two-scale method. It leads to specification of the equations governing ampli-

tude and phase:
Zdi* (acos¢) +ma't* cosp = —2S1/%f, (13.23)
zd;* (asin @) +a1a'* sing = —251/2f; (13.24)

The above equations determine the amplitude and phase of solution (13.14).

13.2 Derivation of the Fokker-Planck equation

Egs. (13.23) and (13.24) are two-coupled first order equations for amplitude
and phase with white-noise excitation. These equations can be transformed
into a so-called Fokker-Planck equation for the transient joint probability
density distribution of amplitude and phase. Advantage of this transforma-
tion is that the resulting Fokker-Planck equation is a linear partial differen-
tial equation, in contrast to egs. (13.23) and (13.24), which are non-linear for
general values of a. As we shall see later, the Fokker-Planck equation asso-
ciated with egs. (13.23)-(13.24) can be solved yielding explicit descriptions of
the stationary probability distribution of amplitude and phase. The Fokker-
Planck equation was initially derived in connection with models of random
motion of molecules. In later years, the approach has been extended to non-
linear problems: e.g. Stratonovich [3] and Van Kampen [4]. Below, we shall
present a heuristic derivation of the Fokker-Planck equation associated with
eqs. (13.23)-(13.24). These two equations can be formulated as:

du

7 = —8(w) + (T, (13.25)

where
u = (ug,uz) = (acos¢,asing), (13.26)
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g(u) = %leu(u% + u2)*/?, (13.27)
£(T") = =(f(T7), A(T7)), (13.28)

where f; and f, are white noise or é-correlated processes.
Objective is to derive an equation that describes the probability density
pu(u, T*) given equation (13.25). From (13.25) it follows that

u(T* + AT*) = u(T*) — g(u(T* + AT*))At + SV/2F(AT*) +o(AT*), (13.29)

where o(AT*) is used to indicate a rest term that goes to zero more rapidly
than AT* if AT* — 0. The function F(AT*) is defined as

T4 ET
F(AT*) = / £(1)dr. (13.30)
The white-noise is zero-mean. Hence,
(F(AT*)) = 0. (13.31)

Furthermore,

G = [ dn [ dnlumf(a)

% T*

- T*+AT* T*+AT*
= Zbun d’l’l/ dnd(T2 — 1)
2 T *
- AT* AT*
= Zbmn d'ﬁ/ A6 (T2 — 1)
2 0 0
T AT* —T+AT*
= Zbmn dr / o(t)dt
) m A 1 . ( )
- gémnAT*, (13.32)

where we used the property that f; and f, are mutually uncorrelated white
noise processes of power density 1/2, in which case the autocorrelation func-
tions of fi and f; are Dirac é-functions with intensity 7: see eq. (3.14). Fur-
thermore, we note that higher order moments of F,, are o(AT*).

Equation (13.29) provides a relation between the statistical values of u(T* +
AT*) denoted by u’ and of u(T*) and F(AT*) denoted by u” and F:

u” = v’ + g(u')AT* — S}/°F (13.33)



13.2 DERIVATION OF THE FOKKER-PLANCK EQUATION 117

Using methods of transformations of random variables (Van Kampen, §1I5 [4]),
the following relation between the probability densities of u’, u” and F de-
noted by p,(u’, T* + AT*), pu(u”, T*) and pp(F, AT*) can be given:

pu(W, T* + AT*)dV, = / p(F, AT*) pu (0", T*)dVdV, (13.34)

where use was made of the property that F is statistically independent of u”.
Invoking (13.33) we can expand as

Pu(U”/T*) — ( /+g( I)AT* Sl/ZF T*)
= ' T*) +Z ,’ s(u)AT" — SV2R)
k
1 0%p, .
+§slzaZT(,)PF +0o(AT?). (13.35)
]

Expanding the left-hand side of equation (13.34) for small AT* and imple-
menting (13.35) in the right-hand side, we have

* 0 u u', T " AV 4 %
puw, )+ P T ppe = B [ AT (T
op,(u/, T* .

+ L 22T (o w)aT - 5172R)
k

1 0%p, (0, T*)
+=51)y ——"—FF »dVr +0o(AT")
2 E au;.au,; ]

du” ; ap, (v, T* .
o (et T+ D2 g wa

1 azpu (u/I T*) 3 *
+ ZL-ns] ZT;(ZAT +0o(AT*). (13.36)

where we used equations (13.31)-(13.32) to evaluate moments of F. The Jaco-
bian can be assessed as follows:

ag1 * ig *
du’| |1+570T"  5pAT 8gk
= |= 1 =1 POT" +o(AT"). (1337
' dmare 4 SmATe| T L 8T +olaT?). (1337
1 2

Leaving out the primes and collecting terms like AT*, one finds from equa-
tions (13.36)and (13.37):

dpu(u, T*) u, T)
SR oI Zau (ge(u)pu(u, T)) + = S Z % ,  (13.38)
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which, in vector notation, reads as

apu _ 7T
3pv =V (8Pu) + 7 518pu. (13.39)

The above equation is the Fokker-Planck equation associated with the fluc-
tuation equation (13.25). It describes the evolution of the joint probability
density of u; and u; as a function of time given some initial distribution at
T* = 0. For example, if u; and u, have fixed deterministic values u;9 and uz
at time zero, the initial conditions for equation (13.39) are:

pu(u, T*) = 8(ug — u10)6(uz — uy) at T =0, (13.40)

where 