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To monitor biomechanical parameters related to cardiovascular disease, it is necessary to perform
correct volume flow estimations of blood flow in arteries based on local blood velocity
measurements. In clinical practice, estimates of flow are currently made using a straight-tube
assumption, which may lead to inaccuracies since most arteries are curved. Therefore, this study will
focus on the effect of curvature on the axial velocity profile for flow in a curved tube in order to find
a new volume flow estimation method. The study is restricted to steady flow, enabling the use of
analytical methods. First, analytical approximation methods for steady flow in curved tubes at low
Dean numbers �Dn� and low curvature ratios ��� are investigated. From the results a novel volume
flow estimation method, the cos �-method, is derived. Simulations for curved tube flow in the
physiological range �1�Dn�1000 and 0.01���0.16� are performed with a computational fluid
dynamics �CFD� model. The asymmetric axial velocity profiles of the analytical approximation
methods are compared with the velocity profiles of the CFD model. Next, the cos �-method is
validated and compared with the currently used Poiseuille method by using the CFD results as input.
Comparison of the axial velocity profiles of the CFD model with the approximations derived by
Topakoglu �J. Math. Mech. 16, 1321 �1967�� and Siggers and Waters �Phys. Fluids 17, 077102
�2005�� shows that the derived velocity profiles agree very well for Dn�50 and are fair for 50
�Dn�100, and this result applies for 0.01���0.16, while Dean’s �Philos. Mag. 5, 673 �1928��
approximation only coincides for �=0.01. For higher Dean numbers �Dn�100�, no analytical
approximation method exists. In the position of the maximum axial velocity, a shift toward the
inside of the curve is observed for low Dean numbers, while for high Dean numbers, the position
of the maximum velocity is located at the outer curve. When the position of the maximum velocity
of the axial velocity profile is given as a function of the Reynolds number, a “zero-shift point” is
found at Re=21.3. At this point the shift in the maximum axial velocity to the outside of the curve,
caused by the difference in axial pressure gradient, balances the shift to the inside of the curve,
caused by the centrifugal forces �radial pressure gradient�. Comparison of the volume flow
estimation of the cos �-method with the Poiseuille method shows that for Dn�100 the Poiseuille
method is sufficient, but for Dn�100 the cos �-method estimates the volume flow nearly three
times better. For �=0.01 the maximum deviation from the exact flow is 4% for the cos �-method,
while this is 12.7% for the Poiseuille method in the plane of symmetry. The axial velocity profile
measured at a certain angle from the symmetry plane results in a maximum estimation error of 6.2%
for Dn=1000 and �=0.16. The results indicate that the estimation of the volume flow through a
curved tube from a given asymmetrical axial velocity profile is more precise with the cos �-method
than the Poiseuille method, which is currently used in clinical practice. © 2009 American Institute
of Physics. �DOI: 10.1063/1.3072796�

I. INTRODUCTION

A. Motivation and aim

Cardiovascular disease �CVD� is the number one cause
of death in western society; it is responsible for nearly half
�49%� of all deaths in Europe.1 The main characteristic
changes in arteries related to CVD are stiffening of the ar-
teries, leading to an elevated blood pressure, and the thick-
ening of the artery walls.2 To obtain local hemodynamic vari-
ables and to deduce the important biomechanical parameters
that are related to the development of CVD, such as compli-
ance, wall shear stress, pulse wave velocity, and vascular

impedance, the pressure and flow at specific areas of the
blood circulation need to be monitored, preferably simulta-
neously and noninvasively.

For more than 50 years, ultrasound measurements have
been used clinically to investigate patients noninvasively.
From the measurements, various geometric and hemody-
namic variables, such as velocity profiles, vessel diameter,
intima-media thickness, wall shear stress, and pulse wave
velocity, can be obtained.3 Frequently used methods to deter-
mine blood flow velocity in the arteries by means of ultra-
sound are based on Doppler or cross correlation to assess
axial velocity profiles.4 Although the velocity profiles are
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asymmetric, in general, in clinical practice a Poiseuille pro-
file is assumed and the flow is calculated based on the mea-
sured maximum or centerline velocity.5,6

The Poiseuille method is adequate for quasistatic flow in
straight arteries with axial velocities only. However, most
arteries are tapered, curved, and bifurcated, causing the axial
velocity distribution to be altered by transversal velocities,
resulting in asymmetrical axial velocity profiles and conse-
quently in inaccurate flow estimations.7 To perform the ve-
locity measurements, the ultrasound beam needs to be posi-
tioned, not perpendicular, but at a certain angle with respect
to the centerline of the artery �the insonation angle�. The
uncertainty in this angle influences the error of the Doppler
measurement.8 Another disadvantage is that the motion of
the artery wall cannot be measured accurately at the same
time since the ultrasound beam needs to be positioned per-
pendicular to the artery for such a measurement.

To study vascular impedance �transfer function between
pressure and the volume flow�, it is important to measure
simultaneously the pressure and the flow at a specific area of
the blood circulation of the patient. Theoretically, the local
pressure can be deduced from the wall distension and the
pulse wave velocity. A relatively new method to measure
axial velocity profiles with ultrasound is a particle imaging
velocimetry based ultrasound measurement.9 The measured
�asymmetric� axial velocity profiles are obtained perpendicu-
lar to the artery and can be combined with the measurement
of wall distension at the same time from the same ultrasound
signal. To obtain an accurate combined measurement, a
novel method needs to be found to accurately estimate the
local volume flow from the measured �asymmetrical� axial
velocity profiles at a certain cross section of a curved artery.
Therefore, this study will focus on the effect of curvature on
the axial velocity profile for steady flow through a curved
tube and a new volume flow estimation method.

The flow regime of interest is based on the parameters
of the carotid artery to obtain physiologically relevant veloc-
ity distributions. The mean axial velocity in the common
carotid artery is roughly 0.2 m/s, the radius is about 4 mm,
and the maximum curvature ratio is about 0.16.10 It is as-
sumed that blood is a Newtonian fluid with a density of
�=1.132�103 kg m−3 and a dynamic viscosity of 	=3.56
�10−3 kg m−1 s−1. This results in a Dean number �see Sec.
II A for definition� of 580. Therefore, the main region of
interest is defined as 1�Dn�1000. The parameters stated

above for the density, viscosity, and radius are also used for
obtaining the analytical and computational results in this
study.

B. Introduction to the theoretical background

Nearly all authors mentioned in Sec. II A of this paper
give the same theoretical/physical explanation to describe
steady flow in a curved tube. When a fluid flows from a
straight tube into a curved tube, a change in the flow direc-
tion is imposed on the fluid. The fluid near the axis of the
tube has the highest velocity and therefore experiences a
larger centrifugal force ��w2 /R, where w is the axial velocity,
� is the density, and R is the distance to the center of curve�
compared to the fluid near the walls of the tube. Therefore,
the fluid at the center of the tube will be forced to the outside
of the curve. The fluid near the walls, having a lower axial
velocity, on the outer side of the curve will be forced inward
along the walls of the tube because the pressure is lower at
the inside of the curve. This overall balance between the
radial pressure and the centrifugal forces results in a second-
ary flow, which influences the axial velocity distribution
�Fig. 1�.

During the past century a few analytical approximation
methods were derived to explain and predict the behavior of
stationary flow in curved tubes. The solutions obtained by
Dean,11 Topakoglu,12 and Siggers and Waters13 will be evalu-
ated more extensively and compared with each other. These
authors derived analytical solutions for small Dean numbers
�Dn
1� and assumed that the analytical solution for a
curved tube is just a small disturbance on the Poiseuille flow
of a straight tube, with the flow being driven by the pressure
gradient.

Topakoglu12 and Siggers and Waters13 used the toroidal
coordinate system with the coordinates �r ,� ,z� �see Fig. 2�.
Dean11 used a slightly different definition, but the results as
presented in this article are adapted to the coordinate system
definition of Topakoglu12 and Siggers and Waters.13 The
most relevant results to this study obtained by the authors
with respect to the axial velocity profiles are briefly shown,
together with the equations, which relate the flow in a curved
tube to the flow in a straight tube.

O IO OI I

FIG. 1. �Color online� An example of the axial velocity distribution in a
curved tube �left�, the corresponding secondary velocity profile �middle�,
and the pressure distribution �right� obtained from CFD simulations, where
“O” marks the outside of the curve and “I” the inside of the curve.

O

R0

ϕ

θR
z

ra

FIG. 2. The toroidal coordinate system �r ,� ,z� with velocities �u ,v ,w�,
which is used to describe flow in a curved tube. The z-coordinate is defined
as z=R0�, where R0 is the curvature radius of the tube, a is the radius of the
tube, and R is the distance to the center of curvature, defined as R0−a�R
�R0+a. In this system u is the velocity in the r-direction, v is the velocity
in the �-direction and perpendicular to u. The velocity in the z-direction is
w, which is perpendicular to both u and v.
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C. Outline

The paper is structured as follows. In Sec. II a short
theoretical background of literature on steady flow in curved
tubes is presented. Three analytical approximation methods
for fully developed flow in curved tubes are discussed more
extensively. Then a novel estimation method, based on the
analytical approximation methods, is derived to assess the
volume flow through a curved tube from the axial velocity
profiles. Finally, a computational fluid dynamics �CFD�
model is introduced, which is applied to investigate flow in
curved tubes for ranges of flow rate and curvature ratio,
where no analytical solution exists.

In Sec. III axial flow profiles from the analytical ap-
proximation methods are compared with each other and with
the results of the CFD models so as to validate the analytical
approximation methods. Furthermore, the CFD solutions are
used to validate the novel volume flow estimation method
and to compare the new estimation method with the currently
used Poiseuille method. Sections IV and V contain the dis-
cussion and the conclusions.

II. METHODS

A. Theoretical background

In 1928 Dean11 published the derivation of an analytical
solution describing the steady flow of an incompressible
fluid in curved tubes with a small curvature, �=a /R0, where
a is the radius of the tube and R0 is the curvature radius
of the tube. This analytical solution was based on the as-
sumption that the secondary flow is just a small disturbance
of the Poiseuille flow in a straight tube. He noticed that
when the fluid motion is slow, the reduction in flow rate due
to the curvature of the tube depends on the single variable
K defined by K=2Re2 a /R0, in which the Reynolds number
can be defined as Re=aWmax /�, where Wmax is the maximum
velocity in the axial direction and � is the kinematic
viscosity.

Dean11 derived a series solution expanded in K to de-
scribe the fully developed, steady flow analytically in a tube
with a small K-number �see Appendix, Sec. 1, which shows
the resulting expressions for the axial velocity �w��. He also
derived the ratio of the flow rate through a curved tube in his
model �QcD� to that in a straight tube �QsD� driven by the
same pressure gradient. This ratio equals

QcD

QsD
= 1 − 0.030 58� K

576
�2

+ 0.011 95� K

576
�4

+ O�K6� .

�1�

Dean11 stated that this equation predicts the flow fairly accu-
rate for K�576. When K=576, a reduction in flow rate is
calculated of approximately 1.9%, compared to flow in a
straight tube.

The second approximation method was derived by
Topakoglu.12 A power series expansion is performed in � to
find the solution for the set of nonlinear differential equa-
tions he derived �see Appendix, Sec. 2�. He obtained the

following relation for the normalized flow rate through the
curved tube in comparison with flow through a straight tube,
under the same conditions:

QcT

QsT
= 1 −

1

48
�2�1.541

67.2
n2 + 1.1n − 1� + O�n3� , �2�

where n= �Re /6�2.
In 1968, McConalogue and Srivastava14 made an exten-

sion to the work of Dean. They solved the equations numeri-
cally with Fourier series for 96�Dn�600. The Dean num-
ber is defined as

Dn = 4Re�2a

R
�1/2

=�� 2a3

�2L
�GMSa2



, �3�

where GMS is the mean pressure gradient, � is the kinematic
viscosity, and 
 is the dynamic viscosity coefficient. The
Dean number is based on the K-number proposed by Dean,
with Dn=4�K and so a Dean number of 96 corresponds to a
K-number of 576.

McConalogue and Srivastava14 showed that for
Dn=600, the position of the maximum axial velocity is
reached at a distance less than 0.38 times the radius from the
outer boundary and that the flow is reduced by 28% in com-
parison to a straight tube. Collins and Dennis15 obtained nu-
merical solutions for an extended range of Dean numbers,
96�Dn�5000. They gave the contour plots of the axial and
transversal velocities for Dn=96, 500, 605.72, 2000, and
5000, which show a good agreement with the results of
McConalogue and Srivastava14 for Dn=96 and Dn=605.72.

The most recent publication of relevance to this study is
the article of Siggers and Waters.13 To derive an analytical
approximation method for flow in curved tubes with a small
Dean number and small curvature ratio, Siggers and Waters13

used the series solution for w expanded in Dn, where wk is
allowed to depend on � �see Appendix, Sec. 3�.

Siggers and Waters13 calculated the axial flow rate in a
curved tube driven by the axial pressure gradient
−���2GSW /a3� with GSW=4Re, which is according to their
calculations given by

QcSW = � Dn�1

8
+

1

27 � 3
�2 −

11

215 � 33 � 5
Dn2�

−
1541

228 � 36 � 52 � 7
Dn4 + O��4,Dn2�3, . . .�� .

�4�

To obtain the flow ratio, this equation should be divided by
the corresponding flow in a straight tube �Qs� and the dimen-
sional flow rate is a�QcSW /�2�.

A summary of the three analytical approximation meth-
ods discussed above is shown in Table I. In each method a
slightly different series expansion method was used and an
equation to describe the flow in a curved tube compared to
the flow in a straight tube was derived. More extensive over-
views about earlier work on flow in curved tubes are given
by Pedley,16 Ward-Smith,17 and Berger and Talbot.18
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B. Flow estimation methods

In clinical practice the volume flow is estimated by as-
sessment of the maximum axial velocity, obtained with
Doppler ultrasound, and the assumption of a Poiseuille ve-
locity distribution across the artery. However, the axial ve-
locity profiles of curved arteries become more and more
asymmetrical for increasing flow rates �Re� and increasing
curvature ratios ���. When the volume flow is estimated
based on the maximum velocity, the asymmetry of the veloc-
ity profiles is neglected, causing an error in the volume flow
estimation. Therefore, a new volume flow estimation
method, which can be applied in clinical practice, is investi-
gated and compared with the flow calculations resulting from
the Poiseuille method.

Motivated by the analytical solutions for the axial ve-
locities derived by Dean,11 Topakoglu,12 and Siggers and
Waters13 �see Appendix�, we propose a new method to esti-
mate the flow rate from the velocity profile on a diameter,
which we call the “cos �-method.” The cross section is di-
vided into two semicircles along the diameter perpendicular
to that on which the measurement is taken. The flow rate
�Qcos �� is estimated by assuming the axial flow to be axisym-
metric in each semicircle, giving the expression

Qcos � = ��
0

a

rw+�r�dr + ��
0

a

rw−�r�dr , �5�

where a is the tube radius, and w+�r� and w−�r� are the mea-
sured velocities on the two radii �see Fig. 3�.

We expect this method to produce more accurate results
than the Poiseuille method since each of the three aforemen-
tioned analytical approximations shows that the largest cor-

rection to Poiseuille flow in the axial velocity profile takes
the form f�r�cos � for some function f . It can be shown that
this correction does not contribute to either the true flux or to
the estimate given by the cos �-method; hence any errors
will be given by smaller terms. Conversely, such a term
would affect the error in the Poiseuille method, leading to
less accurate results.

It should be mentioned that the cos �-method is, in prin-
ciple, applicable for every arbitrary angle of measurement
through the tube, as long as the diameter along which the
measurement is performed, crosses the center point. How-
ever, in clinical practice the ultrasound beam may not always
measure along the true diameter of the artery.

In Sec. III the �asymmetric� axial velocity profiles calcu-
lated with the CFD model �see Sec. II C� are used as input
for the Poiseuille method and the cos �-method; the imposed
flow is used as a reference value.

C. CFD

The aim of the CFD simulations is to calculate the axial
velocity distribution of steady, fully developed flow in
curved tubes. The results will be used to validate the range of
applicability of the analytical approximation methods and to
investigate the flow in curved tubes at higher Dean numbers,
for which the analytical approximation methods are invalid,
but which are most relevant for large arteries in humans.

It is assumed that the fluid in the curved tube is an in-
compressible, Newtonian fluid, which is steady. The govern-
ing equations are

� · v = 0, �
�v
�t

+ �v · �v= − �p + 	�2v .

Here the gravity and body forces are neglected, v is the
velocity, p is the pressure, � is the fluid density, and 	 is the
dynamic viscosity. At the tube walls no-slip boundary condi-
tions are applied and at the inlet a flow rate is prescribed.

The mesh of the finite element based CFD model is com-
posed of isoparametric hexahedral volume elements with 27
points. The elements are of the triquadratic hexahedron
Crouzeix–Raviart type, with a discontinuous pressure over
the element boundaries. An integrated or coupled approach is
used for the continuity equation.19 For the temporal evolu-
tion, a first order Euler-implicit discretization scheme is ap-
plied. To linearize the convective term, the Newton–Raphson
method is chosen. The Bi-CGstab iterative solution method,

TABLE I. Overview of the series expansions used by the authors to derive their analytical approximations.

Author Series expansion to: Flow ratio Qc / Qs=

Dean �1928�
K = 2Re2� =

Dn2

16
1 − 0.030 58� K

576
�2

+ 0.011 95� K

576
�4

Topakoglu �
1 −

1

48
�2�1.541

67.2
n2 + 1.1n − 1�

Siggers and Waters Dn and �
� Dn

Qs
�1

8
+

1

27 � 3
�2 −

11

215 � 33 � 5
Dn2� −

1541

228 � 36 � 52 � 7
Dn4�

plane normal to symmetry plane

symmetry

plane

θ

w− w+

FIG. 3. �Color online� Visual explanation of the division of the axial veloc-
ity profile into w+ and w−. In this figure the symmetry plane and the plane
normal to the symmetry plane of the curved tube are indicated.
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with an incomplete LU-decomposition preconditioner, was
applied to solve the linearized set of equations.

A CFD curved tube model for fully developed flow is
implemented in the finite element package SEPRAN.20 The
mesh of the CFD model consists of a small curved section of
6 axial elements, with a total length of 4 times the radius. It
has 18 elements across the diameter and 48 elements along
its circumference �see Fig. 4�.

Initially, a Poiseuille velocity distribution is prescribed at
the inlet,

w�r� = Wmax	1 − � r

a
�2
 . �6�

For the subsequent time steps, the velocity distribution is
taken at the plane halfway up the tube; this velocity distri-
bution is multiplied with a rotation matrix in order to correct

for the curvature, before it is prescribed at the inlet of the
next time step. It is found that the velocity distribution in the
midplane is not influenced by the stress free outlet condition.
For representative Dean numbers the fully developed curved
tube flow obtained with this method was compared to simu-
lations performed with a longer tube, which had a length of
80 times the radius and was long enough to obtain a fully
developed curved tube flow by only prescribing a Poiseuille
inlet flow. A difference of 0.2% was found, whereas a 50-
fold reduction in computation time was achieved using the
former method.

The simulations are performed for all combinations of
Dn=1, 10, 25, 50, 100, 200, 400, 600, 800, and 1000 with
�=0.01, 0.02, 0.04, 0.08, 0.10, or 0.16, except Dn=1000 and
�=0.01 due to computational instabilities. For the simula-
tions it is assumed that blood is a Newtonian fluid with a
density of �=1.132�103 kg m−3 and a dynamic viscosity of
	=3.56�10−3 kg m−1 s−1 �see also Sec. I A�. In Sec. III the
axial velocity profiles will be analyzed and compared
with analytical and computational results obtained from the
literature.

FIG. 4. �Color online� The mesh of the CFD model with a curvature ratio of
�=0.16.

0 50 100 150
0.75

0.8

0.85

0.9

0.95

1

Dn

Dean1928 (all δ)

Topakoglu δ=0.01

Topakoglu δ=0.16

Siggers&Waters δ=0.01

Siggers&Waters δ=0.16

Q
c
/
Q

s

Flow ratios of Analytical Solutions

FIG. 5. �Color online� The flow ratios between flow in a curved tube �Qc�
and flow in a straight tube �Qs� of the analytical approximations derived by
Dean, Topakoglu, and Siggers and Waters.

FIG. 6. �Color online� The normalized axial velocity profiles of the analyti-
cal approximations derived by Dean �Ref. 11�, Topakoglu �Ref. 12�, and
Siggers and Waters �Ref. 13� for Dn=1, 50, and 100 and �=0.01 or 0.16.
The right panels depict magnifications of the central region. The velocity
profiles derived by Dean do not change for different �’s for a fixed Dean
number, therefore, only �=0.01 is shown. The axial velocity profiles with
�=0.01 are laying on top of each other for every Dean number, while the
velocity profiles of Topakoglu and Siggers and Waters for �=0.16 are
shifted to the right.

023602-5 Estimation of volume flow in curved tubes Phys. Fluids 21, 023602 �2009�

Downloaded 06 Apr 2009 to 131.155.151.77. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



III. RESULTS

A. Analytical approximation methods

Dean,11 Topakoglu,12 and Siggers and Waters13 derived
analytical approximations by using series expansion �see
Table I� to solve the Navier–Stokes equations with the as-
sumption that �
1 and K
1 or Dn
1. The authors all
used a different scaling method, which were not always ex-
plicitly stated. Therefore, the results of this study are normal-
ized to perform a comparison between the three different
analytical approximation methods. The axial velocity profiles
are divided by the maximum of their axial velocity. The ve-
locity profiles are given as a function of �, with �=r /a going
from �1 to 1 �so the half of the measurement diameter in the
−90° ���90° plane is defined positive and the other half in
the 90° ���270° plane is defined negative�.

The Qc /Qs flow ratios of the analytical approximation
methods are plotted in Fig. 5. The solution derived by Dean11

only depends on K, so if K �or Dn� does not change, the
solution will not change for different curvature ratios. The
solutions of Topakoglu12 and Siggers and Waters13 do change
for different curvature ratios, while the Dean number stays
the same. Around Dn=60, Dean’s solution starts to deviate
from the other solutions, it even increases for Dn�100. The
flow ratios derived by Topakoglu12 and Siggers and Waters13

give nearly the same result. They keep on decreasing and
become negative for Dn�220 �not visible in Fig. 5�.

Figure 6 shows the normalized axial velocity profiles in
the plane of symmetry derived by the three analytical solu-
tions for Dn=1, 50, 100 and �=0.01, 0.16 based on the equa-
tions for the axial velocities as given in the Appendix. As Dn
increases, the position—where the maximal velocity is
achieved—moves toward the outside of the curve, while as �
increases, this position moves to the inside of the curve; this
effect is supported by the analytical solutions of Topakoglu12

and Siggers and Waters.13 For example, if �=0.16, then as
long as Dn�50, the maximum velocity is achieved at a posi-
tive value of � �closer to the inside of the curve�.

B. CFD

Results obtained with the CFD model for all simulations
performed with a curvature ratio of �=0.16 are shown in Fig.
7. The position of the maximum velocity can be determined
from the axial velocity profiles of the symmetry plane. For a
higher Dean number and so a higher Reynolds number, the
position of the maximum velocity shifts more to the outside
of the curve, which is in accordance to the derived analytical
solutions of Dean,11 Topakoglu,12 and Siggers and Waters.13

The position of the maximum velocity as function of the
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Dean number and the curvature ratio is shown in Fig. 8. It
shows that the position of the maximum velocity as function
of the curvature ratio ��, left graph� or as function of the Dn
number �right graph� have different relations. There seems to
be a linear relation between the position of the maximum and
�, but this linear relation is not the same for different Dean
numbers.

The right graph in Fig. 8 shows that for low Dean num-
bers the position of the maximum velocity shifts to the inside
of the curve. From Dn=50 and higher, the position of the
maximum velocity is always shifted to the outside of the
curve. For increasing Dean numbers, the shift increases. The
differences in the position of the maximum velocity for dif-
ferent curvature ratios but with the same Dean number be-
come less for higher Dean numbers.

The position of the maximum axial velocity as function
of Reynolds number is shown in Fig. 9. Around Re=20 all
curves pass through the symmetry point �zero�, which from
now on is called “zero-shift point.” For smaller Reynolds
numbers, the position of the maximum is shifted to the inside
of the curve and for higher Reynolds numbers, the position is
shifted to the outside of the curve.

C. CFD versus analytical approximation methods

The results of the analytical approximation methods and
the CFD simulations can be compared by their normalized
axial velocity profiles. The analytical solution derived by
Siggers and Waters13 is compared to the profiles calculated
with the CFD model in Fig. 10. These graphs show that the
analytical solutions are similar to the CFD simulations for
Dn�50 and 0.01���0.16. For Dn=100, the analytical ap-
proximation deviates from the axial velocity profile derived
with the CFD model. This deviation increases for higher
Dean numbers. The same results will be obtained for the
axial velocity profiles calculated from the analytical approxi-
mation method of Topakoglu,12 as his method gives nearly
the same results as the approximation method of Siggers and
Waters.13 The analytical approximation method of Dean11

agrees with the other analytical solution methods for
�=0.01, as this value is closest to �=0, for which the ana-
lytical solution was derived.

Siggers and Waters13 derived their analytical approxima-

tion for curved tubes using series expansion and by assuming
that Dn
1 and �
1. The relative position of the maximum
velocity rW max is related to the Dean number and curvature
ratio by

rW max =
19 Dn2

214 � 32 � 5
−

3�

8
+ O��3,Dn2�2,Dn4�,Dn6� .

�7�

Figure 11 shows this relative position as function of Dean
number for different values of � in comparison with the re-
sults obtained with the CFD model �see also Fig. 8�. In the
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left graph the position of the maximum velocity as function
of � is given for both methods and in the right graph as
function of the Dean number. Again the results of the ana-
lytical approximation coincide with the CFD results for Dn
�50, while for higher Dn numbers the analytical solutions
starts to deviate from the CFD results.

D. Flow estimation methods

The axial velocity profiles obtained with the CFD model
are used as input to compare the volume estimation methods
with each other and with the imposed flow. The flow estima-
tion based on the cos �-method is performed on the axial
velocity profiles of the symmetry plane and the plane normal
to the symmetry plane �see Fig. 3�. The deviation of the
estimated flow from the imposed flow for the different flow
estimation methods is shown in Fig. 12 for simulations with
�=0.01 and �=0.16.

The results in Fig. 12 show that the cos �-method and
the Poiseuille method give similar results for Dn�100. For
higher Dean numbers, the Poiseuille method shows a consis-
tent underestimation of the volume flow, which is nearly
three times larger than the underestimation of the

cos �-method for high Dean numbers �Dn�400�. The
cos �-method with the plane normal to the symmetry plane
as input results in an overestimation of the flow for higher
Dean numbers.

The deviation of the calculated flow of the cos �-method
based on profiles in the symmetry plane is compared to the
imposed volume flow for different Dean numbers and curva-
ture ratios �see Fig. 13�.

For a curvature ratio of �=0.01 and 1�Dn�800, the
cos �-method based on the axial velocity profile in the sym-
metry plane has a maximum deviation from the imposed
flow of less than 4%, while the Poiseuille method has a
maximum deviation of 12.7%. The cos �-method based on
the axial velocity profile in the plane normal to the symmetry
plane results in a maximum deviation of 6.4%,

A curvature ratio of �=0.16 and 1�Dn�200 gives
similar results for the cos �-method based on the axial veloc-
ity profiles of both the symmetry and its normal plane. For
higher Dean numbers the cos �-method based on the symme-
try plane gives an underestimation of the flow, which is
maximally 5.5% at Dn=600. The cos �-method based on the
plane normal to the symmetry plane gives an overestimation
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of the flow which is maximally 7.5% at Dn=600. The
Poiseuille method gives a consistent underestimation for
Dn�50, which is maximally 15.8%.

Figure 13 shows that for the different curvatures the de-
viation of the cos �-method is maximally 5.5% and is
reached for all curvatures around Dn=600, for higher
Dean numbers, the deviation decreases. For small Dean
numbers �1�Dn�25�, the higher curvature ratios give a
slightly larger error, while for intermediate Dean numbers
�25�Dn�200�, the smaller curvature ratios result in larger
deviations from the imposed flow. Finally for high Dean
numbers �400�Dn�1000� the largest curvature ratios have
the largest deviation.

IV. DISCUSSION

A. Analytical approximation methods

All analytical approximation methods are derived for Dn
or K
1 and �
1; however, the results are accurate for
Dn�50. The equations derived for the flow ratios, which
compare flow in a curved tube to flow in a straight tube with
the same pressure gradient, already show that Dean’s analyti-
cal solution does not depend on � for a constant K or Dn. His
solution becomes unrealistic at smaller Dean numbers, com-
pared to the solutions of Topakoglu12 and Siggers and
Waters,13 the flow ratio increases for Dn�100. The analyti-
cal approximation methods derived by Topakoglu12 and
Siggers and Waters13 depend on the curvature ratio and give
similar results.

Investigation of the axial velocity profiles results in es-
sentially the same observations. The three approximation
methods give the same results for �=0.01. An interesting
effect is the displacement of the maximum velocity to the
inside of the curve for higher curvature ratios of the analyti-
cal solutions derived by Topakoglu and Siggers and Waters.
Topakoglu12 did not mention this effect in his paper. Siggers
and Waters13 did notice that their equation for w01 causes the

maximum velocity to move toward the inside of the curve
for increasing �, but did not give any physical explanation.

B. CFD

The fully developed flow profiles calculated with the
CFD tube model correspond with results from the
literature.14,15 However, it is difficult to compare the results
exactly. Often only the Dean number is given in combination
with the value of the �scaled� maximum axial velocity, but
nothing is known about the exact values for the curvature
ratio, diameter, viscosity parameters, etc. A complete de-
scription of a flow problem in a curved tube requires two of
the characteristic dimensionless numbers �, Re and Dn, to be
stated.

Most research is focused on the flow ratio of flow
through a straight tube in comparison with flow in a curved
tube driven by the same pressure gradient. For the simula-
tions in this study, flow is prescribed and no attention has
been paid to the pressure gradient since this cannot be as-
sessed by ultrasound measurements.

Besides a qualitative comparison between the contour
plots of the axial velocities, another more quantitative com-
parison can be made by observing the position of the maxi-
mum velocity. McConalogue and Srivastava14 used a
Fourier-series development method to solve the momentum
and continuity equation in the toroidal system numerically.
They published their resulting contour plots of the axial ve-
locity for different values of Dean number between Dn=96
and Dn=605.72. From these contour plots the relative posi-
tion of the maximum velocity can be deduced.

In Fig. 14 the results are shown in the same graph as the
maximum positions computed with the CFD model. The fig-
ure shows a good resemblance between the results from
McConalogue and Srivastava and the results of the CFD
model. As McConalogue and Srivastava14 stated that they
assume � to be small, one should expect their results should
agree most closely with the �=0.01 solutions of the simula-

0 200 400 600 800 1000
-6

-5

-4

-3

-2

-1

0

1

2

3

D
ev

ia
ti
on

[%
]

Dn

Estimated vs imposed flow

δ=0.01

δ=0.02

δ=0.04

δ=0.08

δ=0.10

δ=0.16

FIG. 13. �Color online� The deviation of the estimated volume flow �based
on the cos �-method� compared to the calculated flow in percentages for
different curvatures, based on velocity profiles obtained from the symmetry
plane.

0 200 400 600 800 1000
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

δ=0.01

δ=0.02

δ=0.04

δ=0.08

δ=0.10

δ=0.16

McConalogue&Scrivastava

δ

Dn

P
os

it
io

n
of

w
m

a
x

FIG. 14. �Color online� The position of the maximum velocity as function
of Dean number for different �’s with the results of McConalogue and
Srivastava �Ref. 14�.

023602-9 Estimation of volume flow in curved tubes Phys. Fluids 21, 023602 �2009�

Downloaded 06 Apr 2009 to 131.155.151.77. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



tions. As can be seen in Fig. 14 their results do match
the �=0.01 results closely, except two data points around
Dn=200.

C. CFD versus analytical approximation methods

Comparison of the analytical axial velocity profiles with
the calculated profiles of the CFD simulations shows that the
analytical solution predicts the axial velocity very well for
Dn�50. It is striking that, despite the assumptions made for
the approximation �small ��, the analytical solution also co-
incides very well with the results of the CFD model for
higher curvature ratios, up to �=0.16. Furthermore, the equa-
tion for the position of the maximum velocity derived by
Siggers and Waters13 coincides very well for Dn�50 with
the calculated positions of the CFD model.

The computational method presented in this study and
the analytical method of Siggers and Waters13 both predict
that for low Dean numbers the maximum position is shifted
to the inside of the curve. This effect increases for an in-
creasing curvature ratio. Since the velocity profiles are fully
developed in space and time, the shift to the inside of the
curve cannot be explained by entrance effects, which holds
for frictionless flow in the core of the tube.10,21

A possible explanation could be that for low Dean num-
bers, and especially for low Dean numbers with a larger
curvature ratio, the Reynolds number is low. Then the values
of the velocity in the secondary field are small, which results
in a negligible pressure gradient in the radial direction which
becomes comparable to the pressure distribution in a straight
tube. However, the geometry of the tube is still curved;
therefore the fluid velocity will be maximal at the inside of
the tube. There the fluid is subject to the highest pressure
gradient in the axial direction because of the shortest axial
distance. This implies that the shift to the inside of the tube is
a pure geometry driven effect.

The shift of the maximum velocity to the inside of the
curve for lower Dean numbers was noticed earlier by Murata
et al.,22 but not many other authors mention this phenom-
enon. Murata et al.22 did not investigate this effect for dif-
ferent curvature ratios and Reynolds numbers.

Plotting the relative position of the maximum velocity as
function of the Reynolds number shows a zero-shift point,
as we would like to call it �see Fig. 9�. Around Re�20
the effect caused by the axial pressure difference balances
the effect of the centrifugal forces �radial pressure differ-
ence�. This zero-shift point can also be found by inserting
rW max=0 in the equation derived by Siggers and Waters,13

which results in two solutions. The first solution is �=0,
which corresponds to a straight tube, and the second solution
is Re=21.3, which corresponds to the zero-shift point.

D. Flow estimation methods

The Poiseuille method and the cos �-method give similar
results for Dn�100. For higher Dean numbers, the
Poiseuille method becomes more and more inaccurate, with
an estimation error of 12.7% compared to the imposed flow
for Dn=1000 and �=0.01. The cos �-method gives much
better results and deviates maximally 4% from the imposed
flow. The cos �-method based on the axial velocity profile in
the plane perpendicular to the plane of symmetry results in a
maximum deviation of 6.4%. The results for a curvature ra-
tion of 0.16 give similar results, but all deviations are
slightly elevated.

The cos �-method is investigated for different curvature
ratios �see Fig. 13�, and the maximal deviation in the sym-
metry plane is only 5.5%, which is a much better estimation
than the Poiseuille method. The analytical approximation
methods support the cos �-method because all derived meth-
ods show that the first correction term on the Poiseuille com-
ponent of the axial velocity depends on cos���, for a fixed r.
To investigate whether the analytical solutions are right, the
axial velocity �obtained from the CFD simulations� is plotted
as function of a fixed r, r=2 mm, for Dn=100 and �=0.16
�Fig. 15�. This figure shows that the axial velocity as func-
tion of � for a fixed r can be described with a cosine func-
tion, which is plotted in the figure based on the mean axial
velocity and the amplitude at �=0.

As shown earlier, the analytical approximation methods
are valid for Dn�100. So the error of the cos �-method can
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be caused by an asymmetric, multiharmonic change in the
axial velocity in curved tubes for higher Dean numbers.
Therefore, the axial velocity is plotted as function of a fixed
r, r=2 mm, for Dn=1000 and �=0.16 �see right graph in
Fig. 15�. From this result, it is clear that for this case a single
cosine function cannot approximate the axial velocity as a
function of � for a fixed r anymore.

In clinical practice, the axial velocity profile will not, in
general, be measured exactly on the symmetry plane. There-
fore the influence of the angle of the ultrasound beam with
respect to the tube is investigated by estimating the flow of
the axial velocity profiles obtained under a certain angle with
respect to the symmetry plane �see Fig. 16�. This indicates
that for Dn=1000 and �=0.16, the maximum error depend-
ing on the angle is an overestimation of volume flow calcu-
lation by 6.1%, which is obtained at the plane normal to the
symmetry plane ��=90°�.

V. CONCLUSIONS

The analytical approximation methods for flow in curved
tubes derived by Dean,11 Topakoglu,12 and Siggers and
Waters13 were investigated, and a quantitative comparison
has been made. The results show that the analytical approxi-
mation derived by Dean does not depend on the curvature
ratio for a fixed Dean number, while the solutions of Topa-
koglu and Siggers and Waters do. The solutions derived by
Topakoglu and Siggers and Waters give similar results.

A CFD model for fully developed curved tube flow was
developed to simulate the axial velocity in a curved tube and
simulations were performed in the ranges of 1�Dn�1000
and 0.01���0.16. The axial velocity profiles obtained with
the CFD model are in good agreement with results presented
in literature, although it is sometimes hard to compare the
results exactly with each other.14,15

The analytical approximation methods were compared to
the results of the CFD model. The approximations derived by
Topakoglu12 and Siggers and Waters13 predict the velocity
profiles very well for Dn�50 and fair for Dn�100 and all
curvature ratios, while Dean’s approximation only coincides

with �=0.01. For higher Dean numbers �Dn�100� no
proper analytical approximation method exists.

At lower Dean numbers, the position of the maximum
velocity is shifted to the inside of the curve, while at higher
Dean numbers, the position of the maximum velocity is lo-
cated at the outside of the curve. This phenomenon can be
explained by the relatively low pressure gradient in the radial
direction in comparison to the axial pressure gradient, caus-
ing the fluid to follow the path with the highest axial pressure
gradient, which is at the inner curve at low flow rates.

A zero-shift point is found when the relative position of
the maximum velocity, obtained from the CFD simulations,
is plotted as a function of the Reynolds number. The equa-
tion for the position of the maximum velocity derived by
Siggers and Waters13 was used to derive the exact zero-shift
point, which is at Re=21.3. At this point the effect caused by
the axial pressure difference equals the effect of the centrifu-
gal forces �radial pressure gradient�.

The cos �-method is supported by the analytical approxi-
mation methods. For Dn�100 the Poiseuille method is still
sufficient, but for Dn�100 the cos �-method estimates the
volume flow nearly three times better than the Poiseuille
method, for �=0.01 4% versus 12.7%. The axial velocity
profile measured at a certain angle from the symmetry plane
results in an estimation error of at most 6.2% for Dn=1000
and �=0.16.

These results indicate that it is possible to estimate the
volume flow through a curved tube from a given �asymmetri-
cal� axial velocity profile with the cos �-method, with a rea-
sonable accuracy. Before this method can be used in clinical
practice, the cos �-method needs to be tested on unsteady
flows, non-Newtonian fluids, and finally on axial velocity
profiles obtained from patients or volunteers. It should be
kept in mind that in most arteries the flow is not fully devel-
oped. However, if entrance effects have the same cos � de-
pendent effect on the axial velocity, this will not give addi-
tional errors for the flow estimation with the cos �-method.

APPENDIX: ANALYTICAL SOLUTIONS
FOR THE AXIAL VELOCITY „w…

In this section the results of the analytical approximation
methods of Dean,11 Topakoglu,12 and Siggers and Waters13

with respect to the axial velocity �w� are shown. It should be
noticed that all authors used different scaling and nondimen-
sionalization methods, which are not explicitly stated here
and for which we would like to refer to the corresponding
articles.

1. Derivation by Dean

Dean11 derived a higher order series solution expanded
in K to describe the fully developed, steady flow analytically
in a tube with a small K-number, which results for the axial
velocity in

w = w0 + Kw1 + K2w2 + ¯ . �A1�

The solutions obtained from the series expansion are
given by
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w0 = 1 − r�2, �A2�

w1 =
cos �

576
�19r�

40
− r�3 +

3r�5

4
−

r�7

4
+

r�9

40
� , �A3�

where r�=r /a.

2. Derivation by Topakoglu

Topakoglu12 performed a power series expansion in �
and by insertion of

w = w0 + �w1 + �2w2 + ¯ . �A4�

Topakoglu derived the following equations, describing
the axial velocity:

w0 = f0 = Re�1 − r�2� �A5�

and

w1 = f1 cos � , �A6�

where

f1 = − 3
4 f0�1 − 1

8640Re2�19 − 21r�2 + 9r�4 + r�6��r� �A7�

and finally

w2 = f20 + f22 cos 2� , �A8�

where

f20 = −1
32 f0�3 − 11r�2 + 1

7200Re2�148 + 43r�2 − 132r�4

+ 68r�6 − 7r�8 + 1
3225.6Re2�823.8 − 3432.2r�2

+ 5835.8r�4 − 5252.2r�6 + 2713.8r�8 − 803r�10

+ 121r�12 − 7r�14��
 �A9�

and

f22 = 1
8�2.5 − 1

3456Re2�46.3 − 61.3r�2 + 29.6r�4 − 4r�6

− 1
42 336Re2�1456.9 − 2402.06r�2 + 1746.49r�4

− 705.47r�6 + 191.23r�8 − 28.01r�10 + 1.6r�12��
r�2.

�A10�

3. Derivation by Siggers and Waters

Siggers and Waters13 used a series solution for w ex-
panded in Dn, where wk is allowed to depend on � to derive
a solution for the axial velocity

w = Dn�
k=0

�

Dn2kwk, �A11�

with

wk = �
j=0

�

� jwkj = wk0 + �wk1 + �2wk2 + ¯ , �A12�

with

w00 = 1
4 �1 − r�2� , �A13�

w01 = − 3
16r��1 − r�2�cos � , �A14�

w02 = 1
128�1 − r�2��− 3 + 11r�2 + 10r�2 cos 2�� . �A15�

To get the O�Dn3� solution they set w1=w1
�1�+w1

�2�, with

w1
�1�=w10

�1�+�w11
�1�+ ¯ . and w2

�1�=w10
�2�+�w11

�2�+¯, with

w10
�1� =

1

215 � 32 � 5
r��1 − r�2�

��19 − 21r�2 + 9r�4 − r�6�cos � , �A16�

w11
�1� =

1

218 � 33 � 52 �1 − r�2�

��6�109 − 586r�2 + 689r�4 − 311r�6 + 39r�8�

− 5r�2�163 − 193r�2 + 86r�4 − 10r�6�cos 2��

�A17�

and

w10
�2� = 0, �A18�

w11
�2� =

1

217 � 32 � 52 �1 − r�2�

��− �257 − 543r�2 + 557r�4 − 243r�6 + 32r�8�

− 25r�2�10 − 14r�2 + 7r�4 − r�6�cos 2�� . �A19�

Some more equations for higher order derivations were
shown, but the explicit solutions were not stated.
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