EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Performance and QoS-aware MPEG-4 video-object coding for
multiprocessor architecture

Citation for published version (APA):

Pastrnak, M. (2008). Performance and QoS-aware MPEG-4 video-object coding for multiprocessor architecture.
[Phd Thesis 1 (Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR632362

DOI:
10.6100/IR632362

Document status and date:
Published: 01/01/2008

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR632362
https://doi.org/10.6100/IR632362
https://research.tue.nl/en/publications/02db0612-3082-4652-adbd-fb920e014ea1

Performance and QoS-aware
MPEG-4 video-object coding for
multiprocessor architecture

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
Rector Magnificus, prof.dr.ir. C.J. van Duijn, voor een
commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen op
donderdag 24 januari 2008 om 16.00 uur

door

Milan Pastrnak

geboren te Cadca, Slowakije

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr.ir. P.H.N. de With
en
prof.dr.ir. J.L. van Meerbergen

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN
Pastrnék, Milan

Performance and QoS-aware MPEG-4 video-object coding for multiprocessor
architecture / by Milan Pastrnék. - Eindhoven : Technische Universiteit
Eindhoven, 2008.

Proefschrift. - ISBN 978-90-386-1744-2

NUR 959

Trefw.: beeldcodering / multiprocessoren / elektronische beeldtechniek ;
beeldkwaliteit / digitale televisietechniek.

Subject headings: video coding / multiprocessing systems /

quality of service / digital signal processing chips.

Performance and QoS-aware
MPEG-4 video-object coding for
multiprocessor architecture

Milan Pastrnak

Committee members:

prof.dr.ir. P.H.N. de With (TU Eindhoven, prommoter)
prof.dr.ir. J.L.. van Meerbergen (TU Eindhoven, prommoter)
prof.dr.ir. H. Corporaal (TU Eindhoven)

prof.dr.ir. R.L. Lagendijk (TU Delft)

prof.dr.ing. P. Pirsch (Leibniz University Hannover)
prof.dr.ir. H.J. Sips (TU Delft)

prof.dr.ir. A.J Vinck (University of Essen)

SHI

Maria Curia Fellowships

The research work reported in this dissertation was supported by European

Union via the Marie Curie Fellowship program under the project number
HPMI-CT-2001-00150.

Cover design: Bregje Schoffelen
Printing: Printservice Technische Universiteit Eindhoven

© Copyright 2008 Milan Pastrnak

All rights are reserved. No part of this book may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission from the copyright owner.

Acknowledgements

In 2002, around the time I was finalizing my studies at OOTI Program, I was
certain about knowing that my academic life was not yet over; and the blurry
ideas I had during my OOTI studies about becoming a PhD student happened
to be more genuine after talking to, nowadays my promoter, Prof.dr. Peter de
With.

This research and all the work conducted within this thesis would not have
been possible without Peter arranging the Marry Curie Fellowship program
and, together with Dr. Gert-Jan van Dijk and Ir. Peter Hupperetz, creating a
PhD position for me within LogicaCMG Nederland. Also, the transition from
student life into a working one would not have been as smooth without the
mentorship of Gert-Jan, who helped me to understand the working style in a
large, Dutch company.

Therefore, I would like to express my gratitude to Dr. Gert-Jan van Dijk and Ir.
Peter Huppertz, but above all, I would like to thank to my promoter, Prof.dr.
Peter de With, for giving me the opportunity to conduct my PhD research
under his supervision at Eindhoven University of Technology. Throughout all
these years, Peter, with his great amount of energy, was playing the key role
in both, the scientific and managerial supervision of my research work. As my
promoter, Peter had given me much advice as well as encouragement through-
out all these years.

Also, I would like to express my sincere appreciation to my second promoter,
Prof.dr. Jef van Meerbergen, for helping me throughout my transition period
from computer science domain into the world of design of multimedia embed-
ded systems, as well as for his guidance during my stay at Philips Research,
where I have spent half of my research time in the cooperation with members
of the Hijdra project group.

Within the Hijdra group, my special thanks go to Ir. Peter Poplavko, who
helped me in my understanding of clock-cycle-true simulations, the debugging
of software, and the mapping of the decoder on the target platform simulator.
I am also appreciative to Dr. Marco Bekooij, Dr. Bart Mesman, Dr. Sander
Stuijk, Ir. Calin Ciordas and all members of this group for having the oppor-
tunity to participate in their delighted and motivating discussions.

Additionally, I would like thank Dr. Dirk Farin for his help at the beginning
stage of decoder development and for the time we had spent on interesting
discussions about Linux and music. Also, many thanks to all my colleagues
from Video Coding and Architectures group, with whom I had spent many
enjoyable moments.

My further regards are expressed to my current colleagues at Philips Research,
especially for their forbearance while I was finishing my thesis.

I would like to thank the promotion committee members for reviewing this
thesis; especially to Prof.dr. Peter de With, for a very thorough review, and
Prof.dr. Inald Lagendijk, for providing me with useful comments on the draft
version.

Also, I would like to faithfully admit that without the love and care of my
parents and other members of my family, this work would be never where it is
now. Last, but definitely not least, I would like to thank my wife Eva for her
love, patience, sacrifice, and endless support.

Contents

1 Introduction 1
1.1 Pervasive multimedia coding 1
1.2 Platforms and trends Lo 0oL 4
1.3 Research scope and background 6

1.3.1 Predictable mapping and timing models 7

1.3.2 QoS on multiprocessor platforms 8

1.4 Conducted research and contributions 10
1.4.1 Research objectives L. 10

1.4.2 Research contributions 11

1.5 Thesis organization and scientific background 12
2 Object-based coding and multiprocessor system-on-chip 15
2.1 Imtroduction Lo 15
2.2 Principles of object-based videoo 16
2.3 Object-based data reception in MPEG-4 18
2.4 Arbitrary-shaped objects decoding in MPEG-4 20
2.4.1 Video objects and VOP planes 20
2.4.2 Decoding process of ASVOP 22

2.5 Background sprite codingo oL 38
2.6 Network-on-Chip (NoC) 39
2.6.1 NoC computation units 40
2.6.2 NoCtopologies 41

2.7 Tile-based NoC and application modeling 42
2.8 Applied NoCs for experiments 44
2.8.1 HEthereal NoC 44
2.8.2 CELL processor v o vt 45

2.9 Designflow o 46
2.10 Mapping assumptions 47

2.11 Conclusions 48

i

Contents

3

Performance estimation and timing models
3.1 Introduction
3.2 Synchronous Data Flow Graph
3.3 Performance analysis oo
3.4 Prediction model of execution time
3.4.1 HSDF Graph for Shaped Video-Object Decoding
3.4.2 Construction of timing models
3.4.3 Derived timing models for AS VO MPEG-4 decoding . .
3.4.4 Validation of timing models
3.5 Dynamic behavior of arbitrary-shaped VO
3.6 AS VO MPEG-4 decoding complexity
3.7 Parametrical model of communication resources
3.7.1 Derived bandwidth models for AS VO decoding
3.7.2 Validation of bandwidth model
3.8 Multidimensional model of resources
3.8.1 Job model at different quality levels
3.8.2 Available and used system resources
3.9 Conclusions L

Algorithmic modification for enhanced parallelism
4.1 Introduction to uniform processing and sprite coding
4.2 Parallelism Overview
4.2.1 Task parallelism
4.2.2 Dataparallelism
4.2.3 Communication granularity
4.24 Strategy to extract parallelism
4.3 Mixed granularity in AS VO MPEG-4 Decoding
4.4 Repetitive Padding o000
4.4.1 Task splitting of repetitive padding
4.4.2 Evaluation of modified repetitive padding
4.5 Block-level pipelining and synchronization for extended padding
4.5.1 Optimization of communication granularity
4.5.2 Evaluation of the modified extended padding
4.6 Data-level parallelism within the full decoder
4.7 Sprite decoding on CELL processor
4.8 Background Sprite Decoding 0L
4.8.1 Original MPEG-4 algorithm
4.8.2 Modified sprite-reconstruction algorithm
4.9 Construction of MB data Matrix for Random Access
4.10 Experiments and results of modified sprite decoding algorithm
4.11 Conclusions

49
49
ol
53
55
o7
59
60
62
65
67
70
71
73
75
75
77
78

Contents iii

5 Hierarchical Quality-of Service approach 103
5.1 Introduction 103
5.2 Development of scalability of AS VO MPEG-4 decoder 106

5.2.1 Scalability overview and introduction of concept 106
5.2.2 Task-level scalability of the AS VO MPEG-4 decoder . . 107
5.2.3 Visual degradation caused by task skipping 109
5.2.4 Measurement of quality degradation 110
5.3 Local QoS 113
5.3.1 Local QoS concept 113
5.3.2 Operability of Local QoS for AS VO MPEG-4 decoding 114
5.3.3 Resource-usage prediction of VOP decoding 115
5.4 Hierarchical Quality-of-Service architecture 116
5.4.1 Introduction to QoS concepts 116
5.4.2 Layered architecture of QoS and requirements 118
5.4.3 QoS problem definition 121
5.4.4 Heuristic algorithm for multi-job quality optimization . 123
5.5 Global QoS experiments and results 126
5.6 Conclusionso 130

6 Local QoS for BW-constrained MP-NoC using BE services 133
6.1 Introduction L 133
6.2 Limitations with reservation-based QoS 135
6.3 Bandwidth monitoring within an NoC 136

6.4 Combining best-effort and reservation-based QoS management . 138
6.5 Bandwidth control experiment with AS VO MPEG-4 decoding 140

6.5.1 Scalable task-level AS VO MPEG-4 decoding 140

6.5.2 Experimental architecture 142

6.5.3 Experiment with a combined bandwidth control 144

6.6 Conclusions 147

7 Conclusions 149
7.1 Chapter conclusions 149
7.2 Evaluation of AS VO MPEG-4 computation complexity 152
7.3 Example application of presented work 152
7.4 Conclusions on research contributions 154
7.5 Futurework 156

A Visual bitstream structure 157
B Test video sequences 159

References 163

iv

Contents

CHAPTER

Introduction

This chapter provides an outline of the thesis and briefly introduces the research
scope and contributions. The chapter commences with outlining the trends
n multimedia coding. Afterwards, a similar discussion follows on computing
platforms. The third part presents the research scope and background: i.e.
predictable mapping and Quality-of-Service management. The fourth section
summarizes the research contributions. This introductory chapter concludes
with an overview of the individual succeeding chapters, indicating the relevant
publications and contributions of the author to this thesis.

1.1 Pervasive multimedia coding

The concept of Digital TeleVision (DTV) was first introduced in the early 1990-
ties. On one hand, the broadcasting in digital form improves the robustness of
the transmission against noise, while on the other hand, the digital represen-
tation of three color components forming the full-color image signal results in
a huge data expansion. Unfortunately, the transmission of three digital base-
band signal components sampled at a decent video frequency requires a large
bandwidth. For this reason, compression is one of the most important technol-
ogy components of DTV and other forms of digital video communication. The
nowadays proven concept of DTV would be impossible without a compression
algorithm such as MPEG-2 and the related DVB standard. The compression
is also of great value for storage systems as it increases the effective capacities
of magnetic hard disk storage and optical disc media, such as Digital Versatile
Disk (DVD) and its latest successors Blue-ray disk and HD-DVD. The com-
pression also plays the dominant role in portable devices, like mobile phones

1

2 Chapter 1. Introduction

=
audiovisual m_

presentation

multiplexed
downstream
control / data

sprite

2D background

; A 3D objects
multiplexed scene
upstream / coordinate

control / data system

user events

video A audio
compositor compositor
projection ;
plane /

[

\d
I

¥
O O O
hypothetical viewer
O display O
speaker user input

Figure 1.1: MPEG-4 compositional view [60].

and PDAs. One of the latest multimedia devices is the iPhone' that is based
on the H.264 compression standard for video content. The bandwidth limita-
tion of the Internet motivated the development of the MPEG-4 Simple Profile
and the related DivX standard. Video playback over the Internet is nowadays
based on a multitude of commercial and freeware players, e.g. Flash, VLC,
Real, Quick Time, K-Lite, which support a variety of compression standards
and resolutions, up to high-definition H.264 and AAC coding for audio.

In contrast with the traditional video processing using rectangular frames with
video information, this thesis studies the implementation of object-based coding
of video signals. The novelty of the object-based video processing is that it

YiPhone is a registered trademark of Apple Inc.

1.1. Pervasive multimedia coding 3

considers the video signal to be a collection of individual objects in front of a
scene background. For compression, those objects are individually coded. At
the receiving side, the resulting video scene is reconstructed by parallel pro-
cessing of the independent video-object (VO) decoders. Besides this parallel
computing, the decoding results have to be buffered and combined with the
reconstructed scene background (rendering). Figure 1.1 outlines a typical com-
position of a video scene with synthetic and natural visual and audio objects.
For more details, the reader is referred to Chapter 2.

We have decided to focus on the Core Profile of the MPEG-4 standard that
specifies the syntax and usage of several audio-visual decoding tools [101], like
arbitrary-shaped decoding and other tools for support of non-rectangular video
data®. Our motivation for using object-based coding is that it poses interesting
new requirements on e.g. buffering and dynamism within the system design.
Besides this, it simply was one of the latest standards available at the start of
the research work.

Object-based coding itself provides a broad potential for future applications,
due to to the build-in interactivity and compositionality. However, the dy-
namism and the buffering complicates the system design of full object-based
video processing. Let us now briefly discuss the involved major aspects.

1. Complezity

The complexity of object-based MPEG-4 video processing occurs at several lev-
els. First, the block-based Motion-Compensated (MC) Discrete Cosine Trans-
form (DCT) decoder comprises both temporal and spatial decoding techniques.
The decoding complexity is growing with the number of video object decoders.
Second, for real-time applications, those decoders have to produce decoded
data within a specified time interval. Third, object-based coding combines the
traditional texture compression techniques with shape coding that is address-
ing the compression of the arbitrary-shaped contour information of the moving
video objects. The experiments in this thesis have resulted in a quantifica-
tion about the relative complexity of the individual decoding tasks and tools.
This complexity comparison is provided in Chapter 3, where all decoding algo-
rithms have been explained to the reader and first experiments on complexity
are conducted. From that explanation, it will become clear that decoding of
shape information with motion compensation consumes a comparable amount
of clock cycles as MC-DCT decoding for the contents of the object. This makes
AS VO MPEG-4 decoding clearly more complex than MPEG-2 decoding and
comparable to H.264 decoding in the order of magnitude.

>The Core Profile of MPEG-4 should not be mixed with MPEG-4 AVC / H.264 coding
for HDTV applications and next generation DVD recording.

4 Chapter 1. Introduction

2. Dynamism

Object-based video is more dynamic in behavior than conventional video pro-
cessing. This is because, the number of video objects per scene is varying as
new objects appear and others vanish. Moreover, the size of objects is vari-
able over time, e.g. as they move closer to the camera or move away from it.
Last but not least, each video object consists of different block types such as
boundary blocks, texture blocks and transparent blocks.

3. Scalability and associated QoS

Irrespective of video objects, multimedia compression can be made scalable in
quality and/or computing, because in many applications it is desired to use
the most inexpensive platforms for this kind of processing. If the computing
requirements are variable, they sometimes may exceed the capabilities of the
chosen platform. In such cases, the computing could be downscaled at the
expense of some quality to continue processing without interruptions. The
subject of scalable video algorithms was addressed in earlier research [47, 112].
This work concentrated on the scalability for transmission, or closed encoder-
decoder chains. In this thesis, we pursue a scalability concept that enables
various levels of processing in the decoding terminal without effecting the en-
coding and transmission of the video. Furthermore, for the multiprocessor
architecture, the scalability can be considered for all three primary resources:
computing, communication and memory.

The sequel of this chapter is as follows. In Section 1.2, we summarize various
examples of platforms for multimedia processing. Section 1.3 formulates the
problem statement and research questions. In Section 1.4, we outline the con-
ducted research and list the contributions. Section 1.5 presents the structure
of the thesis content and the relation to scientific publications of the author.

1.2 Platforms and trends

System-on-Chip (SoC) represents an evolving paradigm for the design of In-
tegrated Circuits (ICs). The evolution of ICs enables that integration grows
from simple electronic systems to the nowadays complex, multi-functional de-
vices as illustrated in Figure 1.2. The simple SoCs from the past were based
on Application-Specific Integrated Circuits (ASICs), addressing specific appli-
cation domains, e.g. the sensor system or A/D converters. With the growing
complexity of multimedia applications, it has become logical that the I/O sub-
systems, hierarchical memory, coprocessor(s) and main computational unit(s)
have to be integrated also. Besides the aforementioned computing units, also
a communication infrastructure is needed. In the first SoCs, this issue was

1.2. Platforms and trends 5

MPEG-4
_ Simple

- Profile

encode

—
) _| HDTV P

Complexity _ encode _

10000 | pedicated _ reality) AS Video

streaming
multimedia
processors - Cable |~ H.264 Intel
graBEhlc . modems encode Viiv(e)
HD
decode DIVX

encode

—

Programmable

DSPs. [
1000 | - | H2et) ispy
encode
MPEG
V 34 decode
modem

“" General-purpose
processors

decode

ﬂ
100 | | accel MPEG-1

I
1995 2000 time

Figure 1.2: Various multimedia functions and the current trends in comput-
ing cores.

addressed by several interconnect mechanisms with busses as the preferred
communication system.

At the high integration densities of modern process technologies, the intercon-
nection design has become the most critical step in the whole design process.
Consequently, the design of on-chip communication for complex SoCs is a key
to the overall system performance [27]. To avoid lengthy and complex trajec-
tories for on-chip communication, a popular approach is to integrate a set of
processors in a networked fashion on a single chip. Therefore, the Network-on-
Chip (NoC) is an evolutionary step from the bus-based architecture to a more
concurrent communicating processor system. Let us discuss some examples of
multiprocessor systems from the past decade.

The distributed computing on multiprocessor platforms was observed as one
of the most energy-saving approaches for extensive computing. This problem
was already studied in the mid-nineties in a project targeting an experimental
Television Processor(TVP). The project has resulted in a Coprocessor Array
(CPA) and a Telecommunication and Control Processor (TCP)? [56]. Other
researchers worked on similar concepts [12].

3This IC was commercially produced by Philips Electronics under the name SAA7430.

6 Chapter 1. Introduction

The OMAP platform [25] aims at real-time processing and low-power con-
sumption on a heterogenous multiprocessor architecture. The OMAP design
separates the execution of general-purpose tasks on an ARM9 core and a TI
cd5x DSP for high efficiency of real-time signal processing tasks. The interest
for multi-core systems becomes apparent in the gaming market as well. The
latest products, such as the XBox 360 with a triple-core, PlayStation 2 with
the Emotion Engine or PlayStation 3 based on the CELL processor clearly
show the trend for multiprocessor architectures. The integration of dedicated
DSPs together with a RISC core on one chip is available as e.g. TMS DaVinci
processors with TMS320C4 and ARM926. Similarly for multimedia, an ex-
ample architecture is the Viper [34], which is based on a dedicated TriMedia
processor together with a 32-bits RISC core. The Cake platform [113] is an
an example of an architecture focusing on low-cost consumer video and audio.
It combines VLIW cores, CPUs, and accelerators, which are connected to a
memory.

NEXPERIA |28] forms a more general heterogeneous programmable system of-
fering an integrated, programmable system-on-chip (SoC) and companion ICs,
and it includes reference designs, system software, and development tools. A
similar, but homogeneous concept of multiple cores integrated on a single chip
for personal computers, was shown in the form of a working processor with
80 identical cores, delivering more than 1 trillion floating-point operations per
second (teraflops). These examples prove the attractiveness of the multiproces-
sor concept for future systems. Even general-purpose computers such as PCs
have all kinds of integrated specialized processors to perform dedicated tasks
on communication, memory control, disk control, graphics operation, simply
because it is more efficient.

1.3 Research scope and background

Object-based video processing requires a simultaneous execution of the indi-
vidual video-object decoders. It is difficult to provide more functions and
create efficient architectures without several Application-Specific Integrated
Circuits (ASICs). The efficient mapping of the advanced video applications on
a plurality of individual processing cores, communicating with each other and
integrated on one chip, is a complicated problem. The designer wants to have
an estimate of the system behavior and resource usage at the time of executing
all involved tasks. This points to the desire for a predictable mapping of the
multiple multimedia applications onto such a chip. Furthermore, the predica-
bility is highly preferred for processing multiple video objects with real-time
requirements, because of the dynamical behavior of these objects.

1.3. Research scope and background 7

The simultaneous execution of multiple video applications in a system, while
aiming at real-time performance of that system needs a resource management
system. This management can ensure that each application meets its deadline.
Critical situations occur when not all tasks can meet their deadlines, because
sufficient computing power is not available. The only remaining solution is
to reduce the computing effort or other resource requirements to speedup the
execution. This reduction of computations will inevitably lead to a degrada-
tion of the output quality of applications. When optimizing the resource usage
in combination with the best quality, applications should be controllable with
respect to their computing requirements (and thus quality). This type of con-
trol is known as Quality-of-Service management, which selects the presented
quality output based on the availability of system resources (computations,
memory, bandwidth). The research scope of this thesis is on the intersection
of these domains: object-based video coding and its predictable mapping onto
and Quality-of-Service for a multiprocessor SoC. In the sequel, a more detailed
view on these issues is provided.

1.3.1 Predictable mapping and timing models

The problem definition of a predictable design of MP-NoC systems is split in
three aspects. First, the design of an MP-NoC for a set of parallel applica-
tions with dynamic resource usage is so complicated that the construction of
an accurate processor model coping with those tasks is indispensable. Second,
we see a trend towards more dynamism in advanced multimedia applications.
This trend originates from the dependency of the processing on the input data
and the type of processing that is applied. As a consequence, the conventional
way of a worst-case design of an MP-NoC is becoming increasingly overdimen-
sioned and thus inefficient. Instead, we have to pursue flexibility in on/off
switching of the processing tasks. Third, to handle the dynamic properties of
tasks and facilitate their predictability, we aim at making an accurate model
of the task execution capturing the dynamic behavior as closely as possible.
Let us discuss these aspects in some more detail.

1. Covering dynamism in an application

The dynamism in recent applications comes from the algorithm and input data.
Therefore, the model of an application should be able to cover and emulate
the possible dynamic behavior. In our work, we also consider the input data
characteristics and take them into account in the execution and communica-
tion model. In this thesis, we have adopted MPEG-4 object-based coding as
an example of an application with a high level of dynamism. Certainly, video
objects change more rapidly over time than rectangular video frames. The
use of video objects is common in the computing and Internet environment al-

8 Chapter 1. Introduction

though some of those objects are created in different fashion. With the advent
of 3D TV and the integration of synthetic video objects into natural scenes,
we expect that the usage of objects will also grow in the multimedia domain.
As a conclusion, we will develop application models that depend on the input
data (or other key features), like object size, so that the models will closely
represent the actual execution.

2. Application model development

A commonly used model for real-time audio and video applications is the Syn-
chronous Data Flow (SDF) graph. The SDF graph is well studied for mapping
DSP applications onto multiprocessor architectures (e.g. see the TV applica-
tion in [29]). Many techniques to analyze and map such applications have been
proposed [48][106]. The SDF graph allows the analysis of a complex applica-
tion partitioned into a set of communicating tasks. The buffering between the
tasks and the strict communication rules enable mapping of tasks on individual
processors without loss of generality. Furthermore, exploring the task granu-
larity of an application directly leads to quickly generating various mappings
onto an MP-NoC, which gives a speedup of the exploration of the design space.
A natural split of the communication and computation parts allows a more ac-
curate analysis of the overall system timing behavior. Hence, the approach in
our research is to model applications in the form of SDF graphs and partition
them into communicating tasks.

3. Processor model development

The MP-NoC processor model has to accurately correspond with the execution
of the application on the target system. In our approach we deploy a tile-based
architecture that separates the processing elements from the communication
features. The predictable mapping paradigm requires that the execution on the
system would match with the prediction made at design time. Therefore, we
aim at building application models based on the execution on clock-cycle-true
simulators of target processor tiles, and we assume that task scheduling has
predictable characteristics, e.g. Time Division Multiple Access (TDMA). Fur-
thermore, the communication model is based on guaranteed task throughput:
once a data connection is established, the data delivery is always guaranteed.
In the next subsection, the processor model will be extended with monitoring
features for a Quality-of-Service control.

1.3.2 QoS on multiprocessor platforms

Quality-of-Service (QoS) management is a very popular technique in mainly
two domains: computer networks and multimedia systems. In the area of net-
works, QoS is applied in the transport layer of the communication hierarchy.
Examples are video conferencing, video on demand and similar multimedia

1.3. Research scope and background 9

Application profile Runtime monitors Input stream
v ' '
Resource QoS (De) allocation Resource Assigned L
- Application
profile management request management | resources

Reproduced v
content

Figure 1.3: General QoS framework for a multimedia system with runtime
control.

applications that have to deliver their services using non-predictable media.
The non-predictable nature requires the persistent monitoring of the network
performance and the prioritization of a subset of network data tokens in the
transport mechanism [71, 123, 21]. In contrast with networked QoS, multi-
media runtime systems focus more on the optimal allocation of the system
resources among a set of applications active in the system. Due to the com-
plexity of resource management in a multitasking system, most of the existing
approaches concentrate on one, mostly computational resource of the plat-
form [18, 63]. We concentrate on the second QoS domain, i.e. QoS control in
multimedia systems.

A general concept of a Quality-of-Service management is illustrated in Fig-
ure 1.3. First, a detailed model of computation of a scalable application is
used for effective management of the QoS. Second, in the combination with
the profile of available resources, the QoS requests the resources from the plat-
form management. If the resources can be allocated to the application, a fixed
reservation is performed. Third, to improve efficiency, we explore the addition
of best-effort computing on top of fixed-reservation services.

1. Scalable application model

The AS VO MPEG-4 decoding is defined as a sequential process. This process
can be controlled by a QoS system when the application becomes scalable in
computation and output quality. Since it is modeled as an SDF graph with
various communicating tasks, we will explore the scalability at level of task
switching. In this way, we do not have to rewrite the whole application for de-
signing a scalable coding algorithm. The objective is to implement scalability
without the obligation to use the scalable video-coding profile of MPEG-4 to
operate with standard non-scalable streams.

2. Monitoring of resources
The platform with integrated QoS should provide means for the runtime al-
location of resources and the resource-usage monitoring. The monitoring of

10 Chapter 1. Introduction

computation resources requires an extension of the computation-scheduling
algorithms at individual processing tiles. For the monitoring of communica-
tion resources, the platform-integrated NoC probes initially used for collecting
debug information will be tuned for the runtime monitoring of communication-
link utilization.

3. Best-effort adaptation

As a fixed reservation-based approach ensures a predictable mapping due to its
strict resource-usage rules, the consequence is a low utilization of the reserved
resources resulting from over-allocation. An improvement in the utilization of
resources can potentially increase the video output quality. This is achieved
by activating some of the idle processing tasks via best-effort services.

1.4 Conducted research and contributions

1.4.1 Research objectives

The research topic of this thesis is to study the mapping of MPEG-4 video-
object coding on multiprocessor architectures while keeping track of the re-
source usage and enabling QoS control. Given the results of the scope discus-
sion in the previous section, we formulate the following research objectives.

1. AS VO MPEG-4 decoding model

This involves the design of an MPEG-4 application model for arbitrary-shaped
objects, that incorporates the previously discussed dynamic behavior with suf-
ficient accuracy. The currently used Synchronous Data Flow models cannot
capture the application dynamism and therefore an extension of the SDF mod-
els is required.

2. Quality-of-Service

This requires the design of a QoS framework that handles the decoding of
multiple dynamic video objects as a parallel application. This involves a hi-
erarchical control of the system and applications themselves. Scalability is
achieved by task switching within the MPEG-4 decoding applications.

3. Best-effort computing
To improve efficiency, best-effort computing is deployed for idle tasks that are
not covered by the reservation-based approach.

The above-listed objectives are addressed independently and inter-dependently:
as a stand-alone problem and as a joint problem in which all aspects play a
role simultaneously. The remaining part of this section summarizes our con-
tributions for each objective presented above.

1.4. Conducted research and contributions 11

1.4.2 Research contributions

1. Parametrical timing models

Our major contribution towards the first objective is in introducing paramet-
rical models describing the execution of MPEG-4 video coding in high detail.
Instead of a single-valued performance metric, we propose a linear paramet-
rical function that is added to the Synchronous DataFlow (SDF) model that
describes the dynamism at the task level. Two key elements play a role for ac-
curate modeling: input data dependency and the characteristics of the target
processor of the multiprocessor system.

e A set of linear equations describing the required computational resources
for AS VO MPEG-4 decoding with an accuracy above 90%.

e The second contribution is a similar linear parametrical model for the
usage of communication resources involved in the MPEG-4 coding appli-
cation.

e A concept for combining the previous individual models per resource into
one multidimensional model to cover the usage of different resource types
in the complete MP-NoC.

2. Hierarchical QoS system

Given the multiple applications running in parallel, we have adopted a layered
hierarchical QoS system that controls the average quality of all applications
executed at the system while controlling the individual applications simulta-
neously. The new hierarchical QoS management employs the estimation of re-
source requirements derived from the above-discussed timing models. Besides
the control aspects, the hierarchy supports the modularity and compositional-
ity of the system.

e A hierarchical QoS system architecture for a multiprocessor system in-
terpreting the actual resource usage measured inside the NoC.

e A scalable model of computation based on activation/deactivation of
non-essential tasks within the AS VO MPEG-4 application.

e A heuristic algorithm for negotiating the assignment of available re-
sources between Global and Local QoS managers.

3. Best-effort computing

We address a combined solution for the control of a computation by extending
the guaranteed-throughput services with best-effort computing. The strategy
of this combination serves in cases when the highest quality-level cannot be
assigned to all tasks in parallel.

12 Chapter 1. Introduction

e An algorithm in which the most important tasks are assigned to guar-
anteed throughput to ensure their quality, whereas the remainder of the
tasks are assigned to the best-effort computing so that the overall system
efficiency is optimized.

Besides the above principal categories, the research has resulted in additional
contributions.

e In order to conduct the research in this thesis, we developed a fully
compliant AS VO MPEG-4 decoder in such a way that it could be used for
time-controlled pipelined execution of application tasks and explorations
of task-level parallelism, data-level parallelism.

e An alternative algorithm for extended padding and post-processing tasks
in the MPEG-4 decoder to perform processing at macroblock level in
order to minimize the required buffering and enable pipelined processing.

e An alternative algorithm for MPEG-4 sprite decoding featuring random-
access to coded macroblock data that enables distributed data-level pro-
cessing over various processors.

1.5 Thesis organization and scientific background

The core part of the thesis is structured into two major parts based on the
primary contributing steps to the final architecture, and an overall system
contribution. Chapters 2, 3, and 4 contain a detailed view on the video-coding
mapping issues required by a predictable mapping and our parametrical per-
formance modeling. Chapters 5 and 6 detail our concept for Quality-of-Service
management and a connection with the multimedia applications. Figure 1.4
depicts the above-mentioned chapters that are individually outlined below.

Chapter 1 addresses the background on the desired realization of multipro-
cessor systems for executing recent multimedia standards and motivate the
presented research. We introduce a predictable mapping paradigm for multi-
processor NoC systems. Afterwards, we present a framework for a hierarchical
Quality-of-Service resource management. The chapter discusses the research
issues and our contributions and concludes with an outline of the thesis.

Chapter 2 presents an overview of the MPEG-4 video coding standard, in par-
ticular the details of the arbitrary-shaped video object decoding tools. In the
second half, a multiprocessor platform is defined as a target architecture. The
system concept was first presented at the 4th Symp. On Embedded Systems

1.5. Thesis organization and scientific background 13

Chapter 1. Introduction

D
c
"g Chapter 2. Object-based coding and
8 multiprocessor system-on-chip
©
©
[0}
g .
< Chapter 3. Performance estimation and | | Modeling and
g timing models optlmlzat_lon for
ey mapping
[]
©
D -
£ Scalability and Chapter 4. Mapping of coding <
o QoS concept subsystems
=4 Lo P
é Chapter 5. Hierarchical Quality-of-
L] -
g Service system
g Best-Effort
8 computing
Q Chapter 6. Local QoS adaptation of
¢] jobs towards Best-Effort computation

Chapter 7. Conclusions

Figure 1.4: Thesis structure indicating also chapter dependencies.

(PROGRESS 2003) |90] and at the Workshop On the Design of Multimedia
Architectures (MMA 2003) [97].

Chapter 3 introduces a solution for performance estimation and its importance
for predictable mapping. The predictable design of embedded systems were re-
ported at the 8th Int. Workshop on Software and Compilers for Embedded
Systems (SCOPES2004) [8]. The extended version focusing on dataflow anal-
ysis was published in a book chapter of the book Dynamic and Robust Stream-
ing in and between Connected Consumer-Electronic Devices [7]. The dynamic
characteristics of the computational requirements motivate the usage of linear
parametrical functions in data-flow models as presented at the 14th Workshop
on Circuits, Integrated Systems and Signal Processing (ProRisc) [98]. Details
obtained by further exploration of our application and MP-NoC were presented
at the 4th IEEE Int. Workshop on System-on-Chip for Real-Time Applica-
tions (SoCRT) [89]. The parametrical modeling for communication resources
was presented at the 25th Symp. on Information Theory in the Benelux [82]
and further elaborated for both intra and inter-coded video frames at the 9th
IEEE Int. Symp. on Consumer Electronics (ISCE) [81]. Multidimensional

14 Chapter 1. Introduction

parametrical models of the partitioned AS VO MPEG-4 decoder and MP-NoC
platform resource modeling were presented at the 27th Symp. on Information
Theory in the Benelux [83].

Chapter 4 discusses the specific mappings on architectures that are constrained
in communication resources, granularity or the internal memory size. First part
focuses on the optimal utilization and balanced traffic between cores can be
achieved by partitioning the application to tasks with the same granularity
as the processing granularity. The second part explores the mapping of back-
ground sprite decoding algorithm on the CELL processor. The new MPEG-4
background sprite decoding was presented at the 26th Symp. on Information
Theory in the Benelux [88]. The adaptation of the AS VO MPEG-4 decoder
towards the same granularity level of the communication was given at the SPIE
Visual Communications and Image Processing 2006 (VCIP 2006) [85].

Chapter 5 deals with the scalability of the AS VO MPEG-4 decoder and the
hierarchical Quality-of-Service (QoS) management framework. Our concept of
two management layers which are communicating with each other and find-
ing a balance in the negotiation on resources was presented at the Workshop
On Resource Management for Media Processing in Networked Embedded Sys-
tems [91]. The task-level scalability was published in the proceedings of the
9th IEEE Int. Symp. on Consumer Electronics (ISCE). The high-layer QoS
control was presented at the IEEE Int. Symp. on Circuits and Systems in
2006 (ISCAS) [87].

Chapter 6 concentrates on combining the reservation-based technique for guar-
anteed throughput with runtime monitoring to handle a non-optimal resource
allocation by best-effort computing. This explored concept results in a perfor-
mance-scalable MPEG-4 decoding application. It is shown that in about 80%
of frame-based tasks, the activation of higher quality-level processing was ob-
tained compared to the pure reservation-based approach. The results were
published at the 10th IEEE Int. Symp. on Consumer Electronics (ISCE) [84]
and obtained a best paper award. The extended version of this work was pub-
lished in the IEEE Transactions on Consumer Electronics 2006 [86].

Chapter 7 concludes the research presented in this thesis and provides the
suggestions for future work. It also briefly presents the results of the decoding
application on a commercial mobile device.

CHAPTER

Object-based coding and
multiprocessor system-on-chip

The objective of this chapter is to first give a brief overview of the arbitrary-
shaped MPEG-4 decoding algorithm (Sections 2.2 - 2.5) . Individual compres-
sion steps are discussed, with the emphasis on the object-oriented nature of the
processing, since this is different from MPEG-2 and MPEG-4 AVC processing.
The second half (Sections 2.6 - 2.8) of this chapter is devoted to architecture
details of the target multiprocessor platform with a focus on on-chip communi-
cation and the tile-based processing of the system.

2.1 Introduction

The mapping of a streaming multimedia application to a multiprocessor Net-
work-on-Chip (NoC) requires several design steps that lead to an MP-SoC con-
figuration, satisfying the performance and throughput constraint of the appli-
cation. In general, Figure 2.1 illustrates the arbitrary-shaped MPEG-4 decoder
as an intrinsically interesting and typical multimedia application to be mapped
onto a multiprocessor Network-on-Chip as the target platform. The arbitrary-
shaped MPEG-4 decoding was chosen as a representative recent sample out of
a multimedia standard that has shown continuous growth in complexity with
an ever increasing number of profiles and levels and it involves variable amount
of resource requirements. The platform choice for a multiprocessor Network-
on-Chip follows the natural evolution in the design of System-on-Chips. This
trend to go for multiprocessor solutions occurs because a single core system

15

16 Chapter 2. Object-based coding and multiprocessor system-on-chip

Arbitrary-shaped - Enclosed design flow

7

Design problem | —»-

MP SoC

Figure 2.1: General structure of the target system design.

cannot easily increase the CPU clock frequency, while the above-mentioned
type of application still requires a growing amount of computational resources.

This chapter provides details on both the selected application and the platform
as it is essential to understand the aspects that motivate the research presented
in succeeding chapters. The details of the decoding process are presented in
(Sections 2.2 - 2.5). Readers familiar with the decoding of the arbitrary-shaped
video objects can skip this part!. The individual decoding steps of arbitrary-
shaped MPEG-4 decoding are presented in very detailed form, because they
are the fundamentals of the work presented through the whole thesis?. The
background sprite reconstruction is presented briefly, because details and work
based on this technique are discussed only in Chapter 4. The second part of
the current chapter (Sections 2.6 - 2.8) introduces the multiprocessor Network-
on-Chip as a target platform for the execution of the arbitrary-shaped MPEG-
4 decoder application. The design flow involved with the mapping and as
visualized in Figure 2.1, is discussed in Section 2.9 in more detail.

2.2 Principles of object-based video

The concept of object-based video processing and the system aspects of a cor-
responding video codec based on such a concept are an essential feature of the
presented research. Compared to traditional video coding, MPEG-4 defines
the new concept of object-based video coding, in which foreground objects are
segmented from the scene and coded as individual image objects. This means

!Even if we adopt a profile that overlaps with MPEG-2, the arbitrary-shaped MPEG-4
decoder contains many new functions.

2At the project start, there was no software available. Therefore, the author had to
design the software of the arbitrary-shaped MPEG-4 decoder himself. The development
of a standard-compliant and validated arbitrary-shaped video object MPEG-4 decoder is a
notable contribution already.

2.2. Principles of object-based video 17

(b) Original stream.

MPEG
awarded
) EMMY

(c) Artificial rendering. (d) Rendering of several VOs.

Figure 2.2: An example of video objects and scene composition in MPEG-/.

that not only the texture and motion of the object is coded, but also the shape
of the object.

The MPEG-4 Core Profile? provides the coding techniques for video object-
based coding* to provide an interactive usage of individual objects originated
by different sources and the combination of natural and synthetic video signals
in one scene. This means that objects can be taken from different sources in
the network.

The main differentiation with the previously successful standards like H.263 or

3Since this thesis is fully focused on arbitrary-shaped coding, we mean with MPEG-4
always this profile or related profiles that support arbitrary-shaped objects and the coding
of them.

In this thesis, with objects we mean video objects unless otherwise stated. There is no
relation to object-oriented software or programming.

18 Chapter 2. Object-based coding and multiprocessor system-on-chip

MPEG-1/2 is in aiming at content-based coding [94]. The initial thought was
that it would be better to code each object within a scene with its own coding
tools and settings so that the optimal efficiency would be achieved. The estab-
lishment of the standard was time-aligned with the Internet hype at the end
of the previous millennium, where Internet was seen as the major driver and
content provider for video material and video objects (VO). Probably, this will
come true, but later than expected and in a different form from which it was
initially designed for [99]. Despite the success of the MPEG-4 AVC substan-
dard for the next generation of DVD, content- and object-based processing is
recently again emerging [61] for exploring lower bitrate coding. This is visual-
ized in the following example.

Figure 2.2 portrays the example usage of video objects in realistic and artificial
scenes. The news reader Akiyo, shown at the top left was extracted from the
original sequence at the top right. At the bottom left, the news reader is in-
serted in a laboratory environment, which seems a quite realistic scenario. The
bottom-right picture shows an example of a more complex scene composition
with the same object and inserted graphics. The user can disable the fore-
ground object in order to see the part of the video sequence that was originally
hidden behind the foreground object. Such a feature is useful if the foreground
object covers a substantial part of the scene.

2.3 Object-based data reception in MPEG-4

For MPEG-4 decoding, each video object can be found in the elementary
stream containing the compressed video-object data. The correct position-
ing and scaling of the object is done by the composition editor (see Figure 2.4)
at receiver side. There is a special stream for describing the scene composi-
tion, called Binary Format for Scenes data (BIFS). BIFS controls the position
of individual video objects, and background usage and any control parameter
that is needed for the scene composition.

The scene graph within the BIFS and object-oriented stream-based setup are
visualized in Figure 2.3. All decoded scenes are described in a scene-graph,
which is a hierarchical representation of audio, video and graphical objects,
each represented by a node abstracting the interfaces to those objects [51]).
The concept of separating foreground objects from a background image and
individual object manipulation requires that each object is individually coded
and transmitted. The background of the scene is considered as a separate video
object and the coding of it is called sprite coding.

2.3. Object-based data reception in MPEG-4 19

Scene description stream (BIFS)

Object description

stream A

Visual stream

Visual stream

Visual stream

Audio stream

Figure 2.3: MPEG-4 scene graph and composition of different AV elemen-
tary streams.

An object stream starts with a visual object sequence header, which is then
split in subheaders for the individual objects and followed by the elementary
bitstreams. This together forms a hierarchical data structure with headers
and layers. The MPEG-4 standard allows both: the separate coding of con-
figuration data and combined configuration with elementary bitstream. In
Appendix A further clarification of details and the transmission structure is
provided.

The compression of object data at the encoder and decompression of those
objects at the decoder is achieved by employing the coding system as depicted
in Figure 2.4. The extraction of the VO definition, like segmentation of shape,
texture data, the frame type and corresponding tools are selected before defin-
ing the scene and encoding individual objects into elementary streams. These
streams are combined into a multiplexed stream that is delivered to the re-
ceiver. In our work, we focus on the decoding of arbitrary-shaped video ob-
jects and the decoding of the background image sprite (see the bottom half of
Figure 2.4).

20 Chapter 2. Object-based coding and multiprocessor system-on-chip

N elementary
EnCOder BIFS bitstream(s)
PN vo - ~multiplexed
@ty > Definition ﬂ VOP 1 ‘ ™_bitstream

Broadcasting /
Internet / DVD

(/”777""“\‘ Composition |
~ \?Utffjt/ o editor ‘
/" multiplexed ™
&==Decoder

Figure 2.4: Structure of the object-based MPEG-4 codec.

2.4 Arbitrary-shaped objects decoding in MPEG-4

2.4.1 Video objects and VOP planes

For the MPEG-4 decoding of Arbitrary-Shaped (AS) video objects, we focus
on the tools in the standard that support this feature. Every Video Object
(VO) is represented in several information layers, with the Video Object Plane
(VOP) at the base layer. The moving behavior of video objects is captured
with Video object Sequences (VS). A video object sequence is time-sampled
series of consecutive VOPs.

Binary Alpha Block
16 BAB (CAE coded)

4 luminance,
s Y1 Y2 2 chrominance
’j (DCT coded blocks)
~P == e 8l Y3 | 4 cr Cb |8
8 8 8 8

Figure 2.5: Macroblock representation of a video object within a VOP.

The position and texture data of a video object is captured by a rectangular
area, called VOP bounding box. This box is composed of a grid of a 16 x 16
sample blocks. The texture information is enclosed by the four 8 x 8 blocks

2.4. Arbitrary-shaped objects decoding in MPEG-4 21

Optimal shape mask

Figure 2.6: In MPEG-4 coding, the VOP bounding box is always positioned
such that the amount of macroblocks is minimal. The left image
requires 64 MDBs, the right image, which is preferred, requires
only 56 MB:s.

of luminance data and the two corresponding 8 x 8 blocks of chrominance
data (for 4:2:0 chrominance format). The six 8 x 8 blocks forming the col-
ored texture is called a MacroBlock (MB). The shape information is stored in
a collocated Binary Alpha Block (BAB) of 16 x 16 binary values indicating
opacity or transparency of the texture pixels. Figure 2.5 depicts an artificial
video object, which is described as a rectangular area of MBs and BABs.

VO 1 - P frame

VO 1 -1 frame VO 1 - B frame VO 2 — | frame

Figure 2.7: Moving video object(s) in an MPEG-/ scene.

Prior to the encoding of a video object, the bounding box has to be optimally
positioned (see Figure 2.6), in order to minimize the block overhead. Due to
the fact that video objects change in size and position over time, the bounding
box sizes and positions change accordingly.

In the MPEG-4 standard, each scene is composed and rendered from inde-
pendent VOs. An intra-coded VOP can coexist with an inter-coded VOP
as illustrated in the most right picture from Figure 2.7. MPEG-4 supports
predictive and bidirectional predictive coding of VOPs (P-VOP and B-VOP
frames).

22 Chapter 2. Object-based coding and multiprocessor system-on-chip

2.4.2 Decoding process of AS VOP

The decoding process of an arbitrary-shaped VO object is portrayed in Fig-
ure 2.8. The shaded box represents the texture decoding that is inherited from
the MPEG-2 standard. The new elements in the decoder are shape decoder, in-
verse coefficient prediction and a backward loop based on reconstructed VOPs.

Coded bitstream Previously
(Shape) | shape | 1| Structea
D decoding VOP
e
m .
u Coded bitstream
It (motion) Motion > Motion
i decoding | compensation
p
| VOP
e recon-
X \ struction
€ Variable Inverse
r > length scan
decoding

Coded bitstream

(texture)
Inverse DC Inverse
IDCT
prs‘dﬁ:(t?on ™1 quantization [" |

Figure 2.8: Block diagram of an arbitrary-shaped object MPEG-4 video de-
coder.

The MPEG-4 standard includes two algorithms for encoding the shape infor-
mation. The first algorithm is Shape-Adaptive DCT (SA-DCT), that provides
the same number of transform coefficients as the number of pixels enclosed by
the VO part in the pixel block. However, it has several drawbacks [58], such
as the non-orthogonality and the mean weighting defect, so that it requires
the modification of the DCT transformation, thereby limiting reuse of existing
DCT hardware solutions. In our work, we focus on the second type of shape
encoding, which is based on Context Arithmetic Encoding (CAE) of shape
information. The texture part of the object is encoded with the conventional
Motion-Compensated DCT coding. This type of arbitrary-shaped VO coding
is relying on the traditional block-based processing of coded images.

As is indicated in Figure 2.8, the macroblock bitstream is encoded from three
individual parts in this respective order: shape information, motion vectors,
texture information. The order of encoding has strong influence on the decod-

2.4. Arbitrary-shaped objects decoding in MPEG-4 23

ing process because the coded information are inserted to the final bitstream
without any markers and therefore without decoding the preceding part, the
next one cannot start. The processing of macroblock starts with decoding the
BAB type (see Table 2.1). Based on the BAB type, the following functions are
performed.

e Shape reconstruction - is based on the decoding of BAB-type, the motion
vectors of the referenced BAB, the sampling ratio, the scan order and the
processing of intra- or inter-Context Arithmetic Encoded (CAE) shape
is executed,

e Motion processing - the motion vectors are decoded and used for fetching
the reconstructed macroblock from the previously reconstructed VOPs,

o Texture decoding - is composed of Variable Length Decoding (VLD), the
inverse scan, the inverse DC & AC prediction, the inverse quantization
(IQ) and the inverse DCT transformation.

The reconstructed macroblock contains four signal channels (see Figure 2.5),
the BAB is available after the CAE operation, the Y, Cr, Cb components
are fully reconstructed after performing motion compensation on the texture
decoding output and the referenced macroblock. The individual decoding op-
erations are discussed in the remainder of this section.

A. BAB-type decoding

A video object plane contains three different MB types for coding of the
arbitrary-shaped video objects. The standard distinguishes three types of mac-
roblocks: boundary, opaque, and transparent. The transparent MB does not
contain any visible pixels. The opaque macroblock has all pixel visible. There-
fore, the BAB is not encoded but is clear from the macroblock type, i.e. all
BAB pixels have value 0 for transparent, or 1 for opaque macroblock. The
boundary macroblock is defined as a macroblock that contains both transpar-
ent pixels and opaque pixels and therefore it contains both the object shape
and texture information.

The predictive coding of the BAB introduces another four BAB types: two with
changes in shape information and two without changes of the shape. These
pairs are further split in cases with shape motion vectors equal to zero or non-
zero. Based on the required Context Arithmetic Encoding (CAE) method and
motion compensation of the shape, the coded BAB can be classified into seven
different types as listed in Table 2.1.

24 Chapter 2. Object-based coding and multiprocessor system-on-chip

Transparent MB

— |
Opaque MB | \ | < —

|/4— Boundary MB

Figure 2.9: Different macroblocks within VOP.

BAB Semantic

type
0 BAB motion vector is 0, BAB does not require update of shape.

BAB motion vector is non 0, BAB shape does not require update of shape.

BAB is transparent.

BAB is opaque.

BAB requires intraCAE decoding of shape.

BAB motion vector is 0; BAB requires interCAE decoding of shape.

BAB motion vector is non 0; BAB requires interCAE decoding of shape.

O O = W DN =

Table 2.1: BAB types and the required operations for the shape decoding.

For each macroblock, the BAB type is context-based coded. The context for
I-VOP is calculated from the BAB types of surrounded BABs. Let be b(y, z)
the BAB type of the BAB where y is the BAB row index and x is the BAB
column index. If the index is outside the BAB, the BAB type is assumed to
be transparent. A context C is based on previously decoded BAB types and
it determines the coding output of the VLC. The computed context number is
used as an input index to extract the code bits in a VLC table.

C= 27-(bly—1,2—1)=-2)+9- (b(y—1,2)—2) +3- (b(y—1,2+1)—2) +
+ (b(y,z—1)—2) (2.1)

The above definition of context C refers to intra-coded VOPs. For B-VOPs,
P-VOPs, S(GMC)-VOPs, the context number for decoding the BAB type is
based on the collocated previously decoded BAB types in the reference VOP,
resulting in seven different context values.

B. Shape motion vector(s) decoding

If the VOP is predictively coded (P- or B-VOP type), the shape can reuse
the previously reconstructed shape of the VOP that is used as the prediction.
Based on the content, the BAB can be directly reused, is just repositioned, or
the content is different and intraCAFE or interCAE has to be performed. The

2.4. Arbitrary-shaped objects decoding in MPEG-4 25

correct position of the referenced BAB is indicated with vertical and horizontal
Motion Vectors (MVs).

If the BAB type indicates that motion vectors are not zero (BAB type has value
1 or 6), the motion vectors are reconstructed from the encoded motion vector
differences. The Shape Motion Vector Differences (SMVDs) are decoded with
a VLC of running 1s and ending with bit 0, followed by a sign bit(1=positive,
O=negative). If the first (horizontal) vector is non-zero, the second (vertical)
motion vector is encoded with the same VLC as the horizontal one, otherwise
one bit is saved by removing the “0” codeword from the table and shifting
all codewords one position up with respect to their index. The reconstructed
integer-valued shape motion vector is found by adding the Shape Motion Vec-
tor Prediction (SMVP) to the SMVDs as defined above. Figure 2.10 depicts
the motion vectors of the surrounded BABs and texture blocks used for the pre-
diction. The candidates are checked in this order: MVsl, MVs2, MVs3, MVtl,
MVt2, MVt3. The shape SMVP is determined by taking the first candidate
that is defined. From the above, it can be noticed that shape and texture
motion are both needed for the decoding of the next macroblock.

C. Sampling ratio and scan order decoding

The individual BABs can be encoded at smaller block sizes than the original
16 x 16 to save bitrate for shape coding. The standard allows two downsam-
pling factors, i.e. a factor 2 or 4, resulting in a BAB size of 8 x 8 and 4 x 4
samples, respectively. The appropriate CAE decoding is performed on the
downsampled BAB size and after CAE, the BAB upsampling is invoked in
order to obtain the 16 x 16 sample resolution of the BAB. The sampling ratio
is coded with a VLC of 1-2 bits, yielding values 1,2 4.

After the sampling ratio, one bit is inserted in the bitstream, which indicates
the horizontal or vertical scanning order of the BAB image for coding. If

(s Jmmm .
| |
MVs2 | MVs3 .
o t2 3] 1
! MV
Current ! t1 | Current
Lt BAB | texture
(TR
(a) Candidates from (b) Candidates from tex-
BABs. ture blocks.

“yn
S

Figure 2.10: Shape motion vector prediction candidates (characters and

“t” refer to shape and texture, respectively).

26 Chapter 2. Object-based coding and multiprocessor system-on-chip

the scan order bit has value 0, the original BAB block was transposed before
encoding. After the CAE decoding, if required, the BAB block should be
inversely transposed.

D. Decoding of Context Arithmetic Encoded shape information

The processing of Context Arithmetic Encoded (CAE) shape information is
based on arithmetic decoding. The pixels of the shape representation are de-
coded in raster order. After the arithmetic decoder is initialized, the following
steps are applied to each sample.

Step 1: A context number is computed based on the context samples, as illus-
trated in Figure 2.11. The context for each pixel is calculated as C' =, ¢ 2k,
The two possible types of the context are shown in Figure 2.11.

Step 2: Using the calculated context number, the probability value at the
position with index C' is used by the arithmetic decoder.

Step 3: The bit sequence of the corresponding binary arithmetic code is de-
coded, to retrieve the decoded shape sample value.

Motion

Current BAB compensated BAB

c9 c8 077 ’ c3 c2 ‘ cl ’ c8
c6 | c5 c4|c3 c2 ‘ ‘ c0 ‘X‘ ‘ c7 | c6 c5 ‘
cl1|c0 X c4
(a) Context for Intra (b) Context for Inter CAE.
CAE.

Figure 2.11: Reconstructed BAB samples used for the context calculation.

Inter-coded VOP can contain both intraCAE- and interCAE-coded BABs, de-
pending on which type of CAE is more efficient with respect to the size of the
coded stream. When all samples in a 16 x 16 Binary Alpha Block (BAB) have
been decoded, the arithmetic decoding process is stopped®.

5In special cases, the BAB image can turn from a binary mask into a grayscale block that
serves the blending of the video object within another signal. For grayscale shape coding,
the shape is composed of two information channels. First, a support region is CAE coded
for binary shape coding. Second, the 8-bit alpha values representing the transparency are
coded in the same way as luminance texture signals. The data of the grayscale channel are
inserted after the data corresponding to texture channels of macroblock.

2.4. Arbitrary-shaped objects decoding in MPEG-4 27

E F
T T T o o
. [B | [B | [. | |
o ! o ' o ' o
a a : [[] : | | : a [
“““ i e Lo Ao | oP oC
= =lm mlm M a'm
© | © | O— __Pp2
E ®E | E B | ®B im | ®B ® p41|‘p3
----- T e s e =
" ®E B B ® i ®B ® O () | O O
o : 0l O : o K D ' c H
[} | BNEN |] : L} [BEE | [}
| |
o o
(O Decoded BAB sample Bl Interpolated BAB sample J !

Figure 2.12: Position of decoded and upsampled BAB values.

E. Upsampling of the BAB

If the decoded sampling ratio indicates that the BAB was downsampled prior
to the encoding, the upsampling processes has to be performed after the CAE
decoding. If the BAB was downsampled to 4 x 4 size, the upsampling is
performed two times. Figure 2.12 illustrates the positions of individual pixel
samples for the upsampling. First, the context number is calculated based on
the surrounding pixels as described in Equation (2.2)

Cfl =F-2°4+F-2'4+L- 224K -24+J-2471-224+H-264+G-27,
Cf2 =H-2°4+G-2'4+F-224FE-224+L -2+ K-22+J-204+71.27,
Cf3 =J-2041.2'+H- 224G - 224+F 22+ E-22+L-204+ K.27,
Cf4 =L-204K-2'4+J-22471-224H-2*+G-2°+F -2+ E.-27.
(2.2)

Pl: if (4-A+2-(B+C+D)+ (E+F+G+H+I1+J+K+L) > Th|Cf1])
then 1 else 0,

P2: if (4-B+2-(A+C+D)+ (E+F+G+H+I1+J+K+L) > Th|Cf2])
then 1 else 0,

P3: if (4-C+2-(B+A+D)+ (E+F+G+H+I+J+K+L) > Th(Cf3])
then 1 else 0,

P4: if (4-D+2-(B+C+A)+ (E+F+G+H+I1+J+K+L) > Th|Cf4])
then 1 else 0.

(2.3)

The context numbers C'f1,C f2,C f3,C f4 are used to access the probability ta-
ble that determines the threshold value based on which the opacity/transparency

28 Chapter 2. Object-based coding and multiprocessor system-on-chip

is set, depending on a number of conditions. These conditions are based on
reconstructing a number of samples, denoted in Figure 2.12 by P1, P2, P3, P4
as described in Equation (2.3).

It can be concluded that the reduction in CAE decoding of downsampled BABs
is leading to extra processing for interpolation.

F. Decoding of luminance CBP

The Coded Block Pattern (CBP) represents the pattern of non-transparent
8 x 8 luminance blocks with at least one non-intra DC coefficient. The pattern
is important to distinguish between the luminance and chrominance blocks.
Since they are encoded without any extra marker information and a boundary
macroblock can have a variable number of luminance blocks, this decoding
pattern is required. Further, in the case of less than four luminance blocks,
the CBP positions luminance blocks within the macroblock.

G. Texture motion-vector decoding

In interframe coding, the reconstruction of the texture blocks relies on the ref-
erence block that is similar to the currently reconstructed block. This block
is used as a prediction that is subtracted from the pixel values of the cur-
rent block and only the differences are encoded. The position of the reference
block is determined by a Motion Vector (MV). The bounding box of the VOP
is positioned by means of the frame coordinates in the VOP header parame-
ter, called VOP _spatial _reference. The motion vector of the current block
(Zeurrs Yeurr) 18 calculated based on the absolute position of the current block
within the frame and the absolute position of the reference block (et s, Yrefs)-
An example of the texture motion compensation is given in Figure 2.13.

iii\\l\::— —_VOP (t-1) spatial reference

I
.

~ VOP (1) spatial reference

(Xreff, Yreff) /\Q\
b (Xcurrs Yeurr)
(dx, dy)

Figure 2.13: VOP motion compensation.

2.4. Arbitrary-shaped objects decoding in MPEG-4 29

P, = Median(MV1,, MV2,, MV3,)
P, = Median(MV1,, MV2,, MV3,) (2.4)

The motion vector is decoded differentially by using a prediction that is formed
by a median filtering of motion vector predictors (MV1, MV2,MV3). The
spatial position of candidates is depicted in Figure 2.14. In the case a candidate
is not valid, its value is set to 0. The value of the texture MV is obtained as
sum of the VLC-coded motion vector differences (MV D,, MV D,), and the
prediction (P, Py). The prediction calculation is given in Equation (2.4).

Mv2 MV3 ‘ MV2 MV3 ‘
MV1 MV1 MV2 | MV3 ‘ MV2 | MV3
‘ MV1 ‘ MV1
(a) Top left. (b) Top right. (c) Bottom (d)
left. Bottom
right.

Figure 2.14: Candidate motion-vector predictors for individual 8 X 8 blocks of
macroblock.

H. Variable length decoding

The decoding of texture information of a VOP starts with Variable Length
Decoding (VLD) of coded data. Two different approaches of VLD are used:
the VLD for a differential DC coefficient (n = 0 in the scan order) of intra-
coded macroblocks and the VLD for differential AC and DC coefficients of
inter-coded macroblocks.

The decoding of a differential DC' coefficient of intra-coded macroblocks starts
with decoding the dct dc_size that is a VLC code that categorizes the dif-
ferential DC coefficient according to its “size”. For each category, the dct dc
dif ferential is added to identify which difference in that category actually
occurred. The final value is the sum of the differential DC values and the
predicted values that are discussed later in this subsection.

Other differential coefficients are decoded with variable length codes to produce
EVENTs. The standard defines an EVENT as a combination of an indication of
a last non-zero coefficient in the current block (LAST), the number of running
zeros preceding the coded coefficient (RUN) and the non-zero value of the
coded coefficient (LEVEL). The MPEG-4 standard contains the VLC table for

30 Chapter 2. Object-based coding and multiprocessor system-on-chip

a subset of possible combinations (Table B-16 of the standard). However, many
of the possible EVENTs have no variable length code to represent them. In
order to code them, the MPEG-4 standard defines an Escape Coding method
to encode these statistically rare combinations. The complexity of VLD relies
in the iterative procedure of updating probability tables and using those tables
for decoding the bitstream.

I. Inverse coeflicient scanning

| A A 7T ST

- 2 lee oo V V
pa e |
o e
_ ‘ ‘
(a) Alternative- (b) Alternative-vertical (c) Zigzag scanning.
horizontal scanning. scanning.

Figure 2.15: MPEG-4 scanning patterns for converting to an 8 x 8 block.

Prior to the inverse quantization, a one-dimensional array of differential coef-
ficients decoded by VLD are converted to two-dimensional 8 x 8 array. The
MPEG-4 standard specifies three types of scanning orders for differential co-
efficients decoding as shown in Figure 2.15. For intra-coded blocks where the
acpred__ flag parameter is 0, the zigzag scanning order is selected for all blocks
in the macroblock. Otherwise, the DC prediction direction is used to select
a scanning pattern on block basis. If the DC prediction refers to the hori-
zontally adjacent block, the alternate-vertical scanning is used, otherwise the
alternate-horizontal scanning is applied.

J. Inverse DC/AC prediction

The adaptive DC prediction determines the prediction value based on previ-
ously decoded blocks. Let F'[0,0] denote the inverse quantized DC value of a
block. The prediction for block X in Figure 2.16 is taken from the block C' or
block A as follows

then predict from C,
else

predict from A.

2.4. Arbitrary-shaped objects decoding in MPEG-4 31

| |
B C D
= e P>
—— DC coefficient prediction
A X Y
eme A== — AC coefficient prediction

Macroblock

Figure 2.16: Previously decoded blocks are used for DC and AC prediction.

The quantized value of the DCT coefficient QFx of the block X is recon-
structed from the inverse scanned differential coefficient PQFx. The quanti-
zation scaling factors of the surrounding blocks can be different so that the
prediction of the actual block should be compensated for those different scal-
ing factors (denoted as dc_scaler). For this reason, we incorporate a scaling
operation in the reconstruction, hence

if predict from C
then QFx0,0] = PQFx[0,0] + Fc[0,0]/dc_scaler (2.6)
else
QFx|0,0] = PQFx[0,0] + F4[0,0]/dc_scaler. (2.7)

When AC prediction is enabled by the parameter ac_pred flag, the coeffi-
cients of the first row or the first column of adjacent blocks are used as pre-
diction. The difference in quantization has to be taken into account by scaling
the prediction coefficient with the ratio between the current quantization step
and the one used for the quantization of the predictor block. The resulting AC
coefficients are obtained as follows

if predict from C
then QFx[0,u] = PQFx[0,u] + (QF¢[0,u] x QPc)/QPx, u=1,..,7,

else
QF)([U,O] = PQF)(['U,O] + (QFA[U,O} X QPA)/QP)(, v=1,.,7.

The quantized coefficients resulting from DC and AC prediction have to be
in the amplitude range [-2048, +2047|. Therefore the, following saturation is

32 Chapter 2. Object-based coding and multiprocessor system-on-chip

used prior to the inverse quantization.

+2047, if QF v, u] > 2047,
QF[v,ul =< QF[v,u], if —2048 < QF|v,u] <2047, (2.10)
2048, if QF[v,u] < —2048.

J. Inverse quantization

The quantized coefficients QF[v, u] have to be inversely quantized to recon-
struct DCT coefficients. The inverse quantization of DC coefficient differs from
the inverse quantization of other coefficients. The reconstructed DC values are
obtained as follows:

F[0,0] = dc_scaler x QF[0,0]. (2.11)

Depending on the quant type parameter, one of the specified two inverse
quantization methods is used for obtaining de-quantized AC coefficients. If
the quant type parameter is non-zero the first inverse quantization depends
on two weighting matrices, where the first is defined for intra- and the second
is defined for inter-coded macroblocks®. If the weighting matrix is denoted as
W, the values F'[v,u] are reconstructed by

{ 0, if QF[v,u] =0,
((2QFw,u]l + k) x Wv,u] x q_s)/16, if QF[v,u] #0.
(2.12)

Flv,u] =

where ¢ s is the quantiserscale parameter and

e — 0, for intra blocks,
| Sign(QF[v,u]), for inter blocks.

The second inverse quantization is used when quant type parameter is equal to
zero. The AC coefficients depend on the quantization parameter quantiser _scale
(denoted as ¢q_s in Equation (2.13)) that may take integer values from 1 to

2quant_precision—1

0, if QF[v,u] =0,
Flv,ul= 2|QFv,ul|+1) x q_s, if QF[v,u] #0,q_s is odd,
(2|QF[v,u]| + 1) x (¢_s—1), if QF[v,u] #0,q_s is even.

(2.13)

All coefficients after inverse quantization have to be saturated to lie in the
range [_Qbits_per_pi:pel+37 2bz’ts_per_pi:pel+3 _ 1]

5The weighting matrices can be overwritten by a user-defined values

2.4. Arbitrary-shaped objects decoding in MPEG-4 33

K. IDCT

The inverse DCT transformation is performed on inversely quantized coeffi-
cients as discussed above. The IDCT for obtaining reconstructed samples is
based on the following equation

N-1N-1
2 2z + Dur 2y + 1omw
flz,yl = N ugzo UEZO C(u)C(v)Fu,v]cos o ST on (2.14)
where N = 8 and
L for u,v =0
C C — \/57 Y Y
(u), Ov) { 1, otherwise.

The accuracy of the N x N IDCT should conform to the IEEE standard speci-
fication for the implementations of the 8 x 8 inverse discrete cosine transforma-
tion [52]. For the implementation of the IDCT algorithm, we have employed
a fast algorithm similar to the one discussed in [74]. Our implementation also
satisfies the above-mentioned accuracy requirement.

L. Repetitive padding

The reference that is used for texture prediction can be any type of texture
block, i.e. opaque, boundary, or transparent. For the prediction, the transpar-
ent pixels of boundary blocks are replaced by data copies of object-boundary
pixels, in order to minimize the amount of DCT coefficients after the transfor-
mation. The so-called repetitive padding steps should be performed to obtain
the same reference data as in the encoder for a proper motion compensation.

The boundary blocks are first padded using Horizontal Repetitive Padding,
i.e. each sample at the boundary of the VO is replicated horizontally to the
left and/or right to fill the row of transparent pixels outside the VO of the
boundary block. The remaining unassigned transparent horizontal samples
are padded using Vertical Repetitive Padding, which works in a similar way,
but column-based as illustrated by Figure 2.17.

M. Extended padding

Similar to repetitive padding, the Eztended Padding task should fill fully trans-
parent blocks of a VO plane with padded values. After performing the repeti-
tive padding at the macroblock level, the VOP contains only fully defined MBs
(padded boundary and opaque) or undefined (transparent) MBs. The motion
compensation of subsequent VOPs can require blocks from the reference VOPs
that partially or fully refer to a block that has undefined texture information.

34 Chapter 2. Object-based coding and multiprocessor system-on-chip

Original texture Horizontal padding Vertical padding

o (D+E4+2G)

Figure 2.17: Principles of horizontal and wvertical repetitive-padding algo-
rithm. The characters represent different pizel values and the
hyphens indicate transparent pizels.

Therefore, the extended and boundary padding should define the complete
texture information for the whole image and should be accomplished prior to
starting the next motion-compensated VOP decoding.

Boundary
MB

Priority 2

Boundary
MB

Boundary
MB

Priority 3 Priority 1

Boundary
MB

Priority 0

Figure 2.18: Priorities for border copying of extended padding, where priority
0 is defined as the highest priority.

The extended padding algorithm works as follows. Exterior macroblocks adja-
cent to boundary macroblocks are filled completely by replicating the samples
at the border of the boundary macroblocks into the whole block. If the padded
macroblock has several neighboring macroblocks, then the macroblock with the
highest priority for padding is selected. The priority is assigned according to
Figure 2.18, and the exterior macroblock is padded by replicating the horizon-
tal or vertical border. The exterior macroblocks not having any neighboring
boundary-macroblock are filled with an integer value of 20#s/Pizel=1 (for 8 hit
luminance coding, this means filing with 128).

2.4. Arbitrary-shaped objects decoding in MPEG-4 35

N. Deblocking

The standard defines two post-processing filters, deblocking and deringing fil-
ters. The deblocking filter removes the coding artifacts at the block edges. The
horizontal and vertical operations are performed along the 8 x 8 block edges
of luminance and chrominance data.

The first, default mode of filtering is applied in normal cases. However, if
there is a small difference in dc values on the block boundaries, the so-called
DC offset mode of deblocking is used. This mode is switched on when the
following criterion in Equations (2.15) and (2.16) holds. Figure 2.19 denotes
the pixel indexing used for the filtering operations. The following condition is
evaluated in order to select the correct filtering mode.

eq_cnt = ¢(vg —v1) + ¢(v1 — v2) + d(v2 — v3) + d(v3 — vg) + P(vg — v5) +
¢(vs — v6) + d(ve — v7) + (v — vs) + P(vs — vo), (2.15)

where THR1 = 2 and

o(y) =1, if [y <THRL,

#(y) =0, otherwise. (2.16)
The filtering in default mode is applied when eq cnt calculated from Equa-
tion (2.15) is smaller than the threshold value THR2=6. In the default mode,

the boundary pixel values v4 and vs are modified by removing or adding the
delta d that is calculated as follows:

V4, filtered = V4 — d,
U5, filtered = Vs + d,

d= MINMAX(5 . (ag’o — a370)/87p, q)- 5(‘ag,o| < QP), (2.17)
where p = 0 and ¢ = (v4 — v5)/2 and furthermore,
aso = SIGN(as0) - MIN (lasol, |as], as2]),
d(cond) returns 1 if cond is true and 0 otherwise,

MINMAX (z,p,q) limits value x within range p to g,
QP denotes the quantization parameter of the MB
where vs belongs.
The frequency components a3, a3,1, a3 are evaluated as the inner product of
the approximated DCT vector [2 -5 +5 2| with the pixel vector v; as below
aso = ([2 —55 2] * [’U3 V4 Uy U6]T)/8,
as1 = ([2 —55 2] * [’01 Vo U3 U4]T)/8,
as o = ([2 —55 2] * [U5 Ve U7 UB]T)/S. (2.18)

36 Chapter 2. Object-based coding and multiprocessor system-on-chip

Block boundary

v0
v1
s,/ | V2
” v3

S S2 4 lva |

- > 4 tt/' So
vO vl v2 v3 v4jvsE v6 vi v8 V9 V5

VVSo\ - (
Pixel indexing on CANRY
a vertical edge \

\ " Pixel indexing on
\ov8 b y

a horizontal edge
v9

Figure 2.19: Indexing of pizels for deblocking filtering.

The second mode of the deblocking filter, called DC offset mode, is applied
when eq _ent calculated from Equation (2.15) is equal or larger than the thresh-
old THR2. Exceeding the threshold value indicates that the default mode will
not be good enough to reduce the blocking artifacts at block grid positions.
The second mode is described in pseudo code as follows

if(jmax —min| <2-QP)

{

4
v, = Z bi - Prntk, for 1 <n <8
k=—4
(lvg —wol < QP) 7w : vy, ifm<1,
Pm = Um, 1f1§m§8,

(lvg —v9| < QP) ? vg : vg, if m >8,
(br:—4<k<4)=1{1,1,2,2,4,2,2,1,1}/16
}

else no change,
where

max = MAX (v1,v2,v3,v4, V5, V6, U7, V8),
min = MIN (v, v2,v3, V4, Vs, Vg, U7, Ug).
(2.19)

2.4. Arbitrary-shaped objects decoding in MPEG-4 37

O. Deringing filter

The deringing is a second, optional post-processing step after deblocking that
can be switched on independently. This function removes ringing effects in
the video signal within the 8 x 8 blocks. The deringing filter architecture is
based on three steps: threshold determination, index acquisition and adaptive
smoothing. The filtering is applied on all luminance and chrominance blocks.

The threshold determination starts with calculating the minimal and the max-
imal gray value within an 8 x 8 block, denoted as min|k] and maz[k], respec-
tively. The threshold and range for the block k are obtained as follows

thr(k] = (max[k] + minlk] +1)/2, (2.20)
rangelk] = max[k] — min[k]. (2.21)

An additional process is applied for the four luminance blocks of a macroblock.
If maz _range is the maximum value of the dynamic range among four lumi-
nance blocks, the following rearrangement of the thresholds is made, specified
by

for(k=1k <5 k++){
if((rangelk] < 32) && mazx_range > 64)
thrlk] = thr[kmax];
if(rangelk] < 16)
thrlk] = 0;
}.

Once the threshold value is determined, the second deringing step involves an
index acquisition that can be obtained as follows. Let rec[h,v] and bin[h, v]
be the gray value at coordinates [h,v] where h,v = 0,1,2,...,7, and the corre-
sponding binary index (opaque or transparent), respectively. Then bin[h,v] is
obtained by

1 if rec[h,v] > thr,

bin(h, v) = { 0 otherwise. (2.22)
11211
2,42
1121

Figure 2.20: Filter mask for adaptive smoothing.

38 Chapter 2. Object-based coding and multiprocessor system-on-chip

The array of binary indices obtained in the previous step are used for apply-
ing the adaptive filtering. The filter is applied only if the binary indices in a
3x3 window are all the same, i.e. they consist of only “0” indices or only “1”
indices. The filter coefficients used for both intra and inter blocks are denoted
by coefli, j], where i,j = —1,0, 1, as depicted in Figure 2.20.

The coefficient at the center pixel, i.e., coef[0, 0], corresponds to the pixel to
be filtered. The filter output is obtained by computing

1 1
filtlh,v] = [84+ Y > coefli, j] - reclh+i,v+4]) | /16. (2.23)
i=—1j=—1

2.5 Background sprite coding

In contrast with the previous steps that are always used in MPEG-4 AS VO
decoding, the background sprite coding in this section is only used in specific
cases. In natural video sequences, a background is always defined, but this does
not apply to synthetic sequences or cases where there is only a still picture as
a scene background. The details of the sprite coding are not presented in this
chapter, but only in the involved chapter where it is actually used. All other
chapters do not employ this feature, so that we only present the concept.
The background sprite image is used for the reconstruction of the scene back-
ground for a set of consecutive frames. The sprite is constructed by merging
several views into one large image that is further encoded and transmitted.
The MPEG-4 standard requires the transmission of warping parameters so
that the decoder knows which part to extract from the sprite and how it
should be warped. At the time of the background reconstruction at the de-
coder, the sprite warping generates the current camera view that is used in the
renderer for the scene recomposition (see Figure 2.21(d)). The sprite trans-
formation is modeled as a mapping between the decoded sprite plane and a
current view plane. This transformation involves a so-called affine transforma-
tion containing rotation, translation and perspective scaling. It is described
by the following specification:

x,:m00'$+m01'y+m02 y,:m10'$+m11'y+m12 (2.24)
maog-x+moy-y+1 "~ mog-x+mor-y+1 7 '

where z/,1’ are the transformed display coordinates and x,y are the original
coordinates for the video texture in the sprite buffer. The global motion pa-
rameters m;; in the above equations are calculated at the encoder.

2.6. Network-on-Chip (NoC) 39

(a) Original image. (b) Segmented object.
ject.

(d) Composed sprite image.

Figure 2.21: Visualization of the reconstruction of an MPEG-4 background
from a sprite image. The wire frame indicated inside the back-
ground at the bottom figure specifies the extraction area used

for reconstruction in the actual frame. Pictures are taken from
Chapter 1 in [37].

This completes the detailed description of the implemented MPEG-4 AS VO
decoder and the sprite coding concept. The following sections will be address-
ing the platform on which the MPEG-4 decoder will be executed.

2.6 Network-on-Chip (NoC)

As already discussed in the previous chapter, the focus of our research is on
using a multiprocessor system for executing the MPEG-4 AS VO decoder.
The parallelism of the platform enables the parallel execution of a multitude
of video object decoders, where the objects can have variable characteristics
(size, motion, shape, etc.). Such a mapping of a multitude of object decoders
onto a multiprocessor platform poses an interesting challenge.

40 Chapter 2. Object-based coding and multiprocessor system-on-chip

In the remaining part of this chapter, we will discuss the experimental setup of
the multiprocessor platform that we studied and used for the above mapping.
First, we will outline the architecture cornerstones of a networked multipro-
cessor system. Afterwards, in a following section, we discuss the topology of
the network. Subsequently, a section on a tile-based processing presents more
details on the individual processors. After having presented the individual
processor layout, we provide two architecture instantiations of a networked
multiprocessor, i.e. Hthereal NoC and CELL processor, which were used in
the experiments in the succeeding chapters. The last section of this chapter
summarizes the design flow.

2.6.1 NoC computation units

Computation units are one of the dominating elements of an NoC architecture.
The research on mapping of MPEG-4 processing onto platforms concentrates
on efficient implementations |78, 3, 118|, or on the encoder for the MPEG-4
Simple Profile (SP) [31, 30]. The results of this research shows that a hetero-
geneous architecture is attractive for high efficiency in computing. However,
for a networked multiprocessor, first the backbone employing a network and a
set of programmable processors has to be developed. This is also our starting
point in this thesis.

Regardless of implementation details, a general approach for designing a ded-
icated multimedia system is based on using a DSP or RISC core processor (or
both) for control and flexible processing, or special accelerators for pixel-based
or streaming-oriented video functions, e.g. DCT, VLD, CAE, ME, MC, etc.
The following elements are commonly used processing units for a multiproces-
sor NoC.

e General-Purpose (GP) processing cores providing high computational
performance and level of programmability. The advantage of GP cores
is that any kind of application can be mapped, but processor utilization
and the communication usage is highly unpredictable at the design time.

o Dedicated processors support a specific class of applications only. This
is the most efficient solution, but also most expensive and it requires a
long design time. Dedicated processors are typically used for algorithms
where computing is very demanding.

e Field-Programmable Gate Arrays (FPGAs) sub-systems contain program-
mable logic components and programmable interconnects. Components
differ in size and functionality from basic operations as AND, OR up to
complex video functions. The major advantage of FPGA technology is

2.6. Network-on-Chip (NoC) 41

the re-programmability and therefore it fills the gap between dedicated
and general-purpose processors.

Concluding, the above-listed processing can be combined in any kind of fashion
into a heterogeneous NoC platform. The optimal mixture of those elements de-
pends on the application and its requirements. Despite the fact that we would
prefer a heterogeneous solution, there was not sufficient manpower to develop
dedicated processors for specific tasks. Therefore, we focus on a homogeneous
network-on-chip in this thesis. In a succeeding project, FPGA subsystems con-
taining dedicated accelerating processors will be added (this was started while
writing this thesis; a first application study on finding of objects was reported
in [115]).

2.6.2 NoC topologies

The NoC chips contain the processing and storage units, and the switches and
physical links to facilitate the connections between them. The switches act as
routers and repeaters in a network. Network architectures are generally cate-
gorized with respect to their topology as follows.

MEM3 CPU1 MEM1 NoC
DSP1
Embedded
FPGA
MEM2
ASIC
CPU2

Subsystem

Figure 2.22: An example of an NoC with indirect connections, because every
unit is connected to a Network Interface (NI).

e Shared medium networks: the link between the nodes is shared and only
one node can use it at a time (e.g. a bus).

e Direct networks: the topology allows direct point-to-point communica-
tion (e.g. a switch matrix).

42 Chapter 2. Object-based coding and multiprocessor system-on-chip

o Indirect networks: the nodes have a network port that is connected to a
switch acting as a router, providing point-to-point communication (this
acts as a mixture of the two previously mentioned networks).

o Hybrid networks: the combination of the above-mentioned approaches,
mostly providing direct communication as an extension of an indirect or
shared medium network.

Our target architecture employs an indirect network, where individual process-
ing units are connected via a so-called network interface to the routers. This
choice was motivated by several aspects.

First, the network interface separates the computing cores from the network.
This enables that estimation of computational resources can be handled sepa-
rately from the estimation of communication resources. Further, the integra-
tion of accelerators is performed more easily due to the well-defined interfaces.

Second, our first results on resource usage estimations (similar to the estimation
techniques used in [55]) of the resource requirements revealed that one single
MPEG-4 AS VO, would require up to eight ARM7 [1] cores’ for decoding a
single object at CIF resolution at 25 frames/s. If a decoder should support
MPEG-4 Level 1 decoding, a scene may have up to four AS video objects.
Then the NoC should have at least 32 ARMTY cores. This number is too
large for an efficient design of a complex switch matrix. This relatively simple
analysis leads to the conclusion that direct networks cannot be used in our NoC.
Therefore, as indicated above, we have adopted indirect networks. Besides this
argumentation, indirect networks offer a self-configuring property that can be
employed in the Quality-of-Service approach from Chapter 5.

2.7 Tile-based NoC and application modeling

For the NoC platform, we employ a tile-based architecture with distributed
memory, as depicted in Figure 2.23. Each processing tile represents a small
self-contained embedded computer, consisting of one embedded CPU core (e.g.
RISC), local memory for data (DMEM) and instructions (IMEM), and possi-
bly, application-specific accelerators (not depicted in the figure). Furthermore,
each tile contains a so-called Communication Assist (CA), which is a gateway
from the tile’s local memory subsystem to the standard network services. A
storage tile provides access to large memories in the background, e.g. external
off-chip memory. The storage tile contains a memory controller that performs

"This calculation was based on multiplying an averaged amount of clock cycles needed
for one macroblock, the number of macroblocks per frame and frame frequency in order to
obtain a first impression on the complexity of computations on an embedded processor.

2.7. Tile-based NoC and application modeling 43

tile A tile B
s s
0 |le—p»| Processor g »| processor
=
= : stall - A stall
] A X
: » "o
DMEM |2 DMEM '3
! 1
) /|
i =
. .
| FIFO ! FIFO
) filling \ & filling
r_I l—|
! NI NI :
1 1
- -
: network :
' R R .
1 1}

Figure 2.23: MP-NoC tile-based architecture which is the corner stone for this
thesis. A key feature is that every tile has its own local memory
without caches to support predictable behavior.

data transfers (possibly with some pre/post-processing) between the network
and the off-chip memory. The NoC transports data packets between the tiles.

In general, the applications mapped onto the NoC are modeled with dataflow
graphs, provided that the following constraints on this architecture are satis-
fied.

e The tasks run concurrently in different tiles and use only the local mem-
ory from the same tile (Note that the execution of tiles is based on pre-
dictable real-time scheduling, e.g. TDMA). The instructions and data
structures used by tasks are mapped to the local memories and caching
is not used. This enables a prediction of the task execution times. The
accesses to remote memory® through the storage tiles may be performed
using explicit message passing, involving the communication assist (CA)
and the switch network.

e The local memory arbitration between the processor and the communi-

8 A-priori knowledge about the memory access patterns can be used for an efficient orga-
nization of the memory traffic[64].

44 Chapter 2. Object-based coding and multiprocessor system-on-chip

cation assist should have well-defined access delays to have predictable
local behavior.

e As already stated using indirect networks, the NoC provides point-to-
point connections with tightly bounded packet propagation delays. These
bounded delays can be achieved in the NoC at a reasonable cost [102].
Similar to data edges in dataflow graphs, the connections must be inde-
pendent from each other and they must carry multiple tokens in FIFO
order.

In conclusion, from the above tile-based MP-NoC description, we extract the
following NoC key characteristics. First, data is passed from one tile to the
other in a robust way, free from access conflicts, due to the independent con-
nections. Second, both flexible homogeneous and more efficient heterogeneous
platforms are supported. Third, any kind of communication link can be set up
due to the well-defined communication structure.

2.8 Applied NoCs for experiments

2.8.1 /Athereal NoC

Several NoCs [9, 26, 44, 75] have been proposed, using different topologies and
routing strategies. In our research we aim at mapping two types of communica-
tion services onto the previously defined tile-based architecture. These service
types are guaranteed services and best-effort services. We have adopted the
KEthereal interconnect [42] as the NoC system offering both services, as it was
shared by the project partners in our research domain (PreMaDona, Hijdra).

In our work on Quality-of-Service, an NoC should offer runtime monitoring
features. Up till now, the monitoring was used mainly for debugging pur-
poses. The role of monitoring becomes more valuable when it is coupled to
advanced QoS management that can explore the monitoring information for
better distribution of resources. The NoC monitoring service, as illustrated
in Figure 2.24, consists of configurable monitoring probes (P) attached to a
selection of the NoC components, i.e. Routers (R) or Network Interfaces (NI).
Processing nodes in our architecture are ARM cores, as depicted in the figure.
On top of the probes, an associated programming model is deployed, and a
monitoring traffic management strategy has to be considered. In the sequel,
we discuss briefly the monitoring in the NoC.

The monitoring probes collect the required information from the NoC com-
ponents in the form of events. The collected information involves link uti-
lization and point connection information. Although in our experiments all

2.8. Applied NoCs for experiments 45

s ol il
= @

$44

= e

Figure 2.24: NoC architecture with a monitoring service (MSA) and moni-
toring Probes (Pn) to support QoS control.

routers have activated probes, generally monitoring probes are not necessarily
attached to all NoC components.

The traffic management is implemented with a Monitoring Service Access point
(MSA), which is primarily used to collect network traffic information from the
probes. The MSA provides monitoring information to the system control part
(in our case QoS management) and the MSA can also configure the probes. In
our experiments, the information exchange was implemented via Guaranteed
Throughput (GT) connections embedded within the existing network topology.

In our implementation, we employ RISC processor tiles, using an instruction-
set simulator of the ARMT7 RISC processor model [1]. Local memory is assumed
to have a uniform address space with a single-cycle access delay.

2.8.2 CELL processor

An alternative already available multiprocessor NoC is comprising heteroge-
nous cores. This NoC implementation will be used in Chapter 4 and is depicted
in Figure 2.25. The architecture consists of a 64-bit Power Processor Element
(PPE) and its L2 cache, multiple Synergistic Processor Elements (SPE) [38]
that all have their own local memory (LS) [32], a high-bandwidth internal El-
ement Interconnect Bus (EIB), two configurable non-coherent I/O interfaces,
a Memory Interface Controller (MIC), and a pervasive unit that supports ex-
tensive test, monitoring, and debug functions.

46 Chapter 2. Object-based coding and multiprocessor system-on-chip
? $ 16 B/cycle (each)
L] [s] [es] Lo [es] [us] [is] [os]
Y Y

‘ EIB (up to 96 Bytes/cycle) ‘

]
]

16 B/cycle (each)

16 B/cycle 16 B/cycle 16 B/cycle (2x)

MIC BIC

™
Dual XDR Flex 10

16 B/cycle

Figure 2.25: High-level Cell processor diagram, from [95].

The (EIB) connects to one PPE, the eight SPEs and the memory interface
controller. The commands and data communication are separated. The EIB
has a structure that is based on four “rings”, each representing a chain con-
necting all data ports. Data moves through a ring in one direction. Two rings
push data clockwise and two other rings communicate counterclockwise. Each
ring can move 16 Bytes at a time from any position on the ring to any other
position. The suitability of this architecture is further evaluated in Chapter 4.

2.9 Design flow

For our experiments, we have adopted the design flow as presented in [107],
but we have superimposed two additional steps on top of it. The design flow
is schematically shown in Figure 2.26. The two steps at the top were added
in our work to explore the video processing algorithm with respect to its map-
ping onto a multiprocessor platform and to properly partition an algorithm
into Synchronous Data Flow (SDF) graphs, which are the starting point for
the platform-specific design steps (covered by the existing design flow).

At the time of starting the research, the required SDF graphs were not available
so that the author was forced to explore the top steps in depth. An SDF graph
model is basically a set of communicating tasks and the dependencies among
individual processing functions called actors. This model of computation is
used in the later stages of the design flow (see Chapter 3 for more details on
data-flow graphs). During the design, the partitioned actors were also ported to

2.10. Mapping assumptions 47

A
Algorithm specification (standard,
requirements description)
Software specification
design
Platform
independent Sequential code in high level language
(C/ C++ / Matlab)
A
Partitioning to
communicating actors
Synchronous Data Flow Graph (DFG)
\ A
A
) Memory dimensioning
Patrtially
platform
specific Memory-aware SDFG
\ A 4
4 Tile binding and
scheduling
Binding-aware SDFG
Platform v
specific NoC routing and
scheduling
l MP SoC configuration
\

Figure 2.26: Multiprocessor SoC design flow.

the target processing core. The compilation and execution of functions on the
target processor revealed directly realistic data on the computation resource
requirements per actor.

2.10 Mapping assumptions

The mapping of the chosen multimedia application on the multiprocessor NoC
is influenced by several assumptions and boundaries to the research work.
Based on the application characteristics and the target architecture, we specify
the following assumptions and constraints for our work.

e An application is split into a set of communicating tasks executed in
pipelined way, which is modeled by a data-flow graph or by a Kahn
Process Network.

e The initialization time of an application is excluded from the application
models.

48 Chapter 2. Object-based coding and multiprocessor system-on-chip

A tile-based architecture having one processor per tile is considered as a
target platform.

e Processing tiles have programmable embedded processors as computation
units.

e The task scheduling at individual tiles is a-priori known and can be
modified to meet the task/application real-time requirements.

e An application uses only local memory of a tile without caching.

e The physical allocation of resources is provided by platfrom/OS specific
services that are controlled by a QoS system.

e The study is performed on homogeneous processor platforms only, with-
out further exploring accelerators or FPGA components.

2.11 Conclusions

The first part of this chapter introduced object-based video coding in detail
based on the MPEG-4 Core Profile and using arbitrary-shaped video objects.
The complexity of object-based video processing results from the combination
of high-level control-driven operations and streaming-oriented processing at
video-data level. The most important observation of this type of computing
is that processing of video objects that vary in shape and behavior over time,
leads to dynamic usage of platform resources. This property poses new re-
quirements on managing of the resources. In a general application case, we
can instantiate an arbitrary number of objects with arbitrary behavior.

In the second part of this chapter, we introduced a network-based multipro-
cessor system. An essential architectural property is the tile-based Network-
on-Chip (NoC) approach, where processors are connected to a local network
with a special network interface. The NoC contains routers and traffic probes
providing runtime monitoring facilities to implement Quality-of-Service (QoS)
management for the whole system and individual tasks. For the experiments,
we employed two models of recent NoCs: Athereal NoC and CELL processors.
We have used their clock-cycle-true simulators for evaluating accurate results
on performance modeling and QoS management.

The combination of the general application case with multiple dynamic video
objects and its mapping onto a multiprocessor NoC provides an important
generic mapping problem that gives highly relevant information for the design
of many upcoming systems.

CHAPTER

Performance estimation and
timing models

Since video objects vary in shape and behavior over time, the usage of platform
resources is characterized by a dynamic consumption of computation and other
resources. In order to facilitate faster and robust system design, an estimation
of resource consumption is of vital importance. The chapter starts with pre-
senting a computation model based on the actual coding parameters in order to
enhance the accuracy. This is followed by a parametrical model for describing
the usage of communication resources, which is equally important as computa-
tion modeling. The chapter ends with the fusion of various types of resources
in one model, leading to a multidimensional resource-usage model. It is evident
that such a multidimensional model is an attractive starting point for advanced
Quality-of-Service control of executed applications, discussed later in the thesis.

3.1 Introduction

The parallel execution and processing of moving video objects in MPEG-4
coding forms a complicated design and optimization problem that cannot be
solved analytically at compile time. A possible solution to this problem is to
characterize the application execution using model descriptions of the resource
usage. This chapter concentrates on achieving sufficient accuracy in those de-
scriptions with the following two possibilities for applications of these models.
The primary objective is to facilitate a faster design and more robustness of

49

50 Chapter 3. Performance estimation and timing models

a multiprocessor NoC. For example, various scenarios for splitting and dis-
tributing decoding tasks over the processor network can be explored with the
model instead of executing rather lengthy clock-cycle-true simulations of such
distributions. The secondary objective is to reuse them for the runtime esti-
mation of the resource usage. In this way, the model descriptions can be used
as a prediction for resource planning and possibly the corresponding quality
control, thereby avoiding deadline misses or even system breakdowns.

A commonly used model for the processing of real-time audio and video ap-
plications is the Synchronous Data Flow (SDF) graph. The SDF graph is well
studied for mapping DSP applications onto multiprocessor architectures (see
e.g. the TV application in [29]). Many techniques to analyze and map such
applications have been proposed [116, 106]. However, general DSP applications
have static characteristics, whereas object-based video applications are more
dynamic in behavior. Therefore, in this work we extend the SDF formalism to
enable the expression of the dynamism of such applications.

One recent approach for addressing dynamics of applications in embedded
system design was published in [41]. The approach explores the several oper-
ational modes of an application using a static SDF. Each operational point is
called an application scenario, which are runtime selected after periodic inter-
vals. Depending on the estimated WCET within an interval, the best scenario
is selected. We support the adaptivity of this approach, but we want to be
more accurate and avoid switching of SDF graphs. Instead, we pursue an
SDF in which the dynamism is an integral part of it. Moreover, we strive for
a finer granularity of decision making, so that the processor network can be
planned for nearly full utilization (the utilization issue will be further explored
in Chapter 6). The granularity will be chosen in the order of a VOP which has
typically a size of 50-150 MBs. The finer granularity ensures that the system
will have only small efficiency losses.

The performance prediction model that we introduce potentially serves multi-
ple purposes with different forms of timing analysis, depending on the design
and implementation approach. If it is implemented as a hard real-time system,
the Worst-Case Execution Time (WCET) is required for the runtime scheduler
to ensure that the job can meet its timing constraints [62]. The WCET ap-
proach guarantees the real-time behavior, however, it is too pessimistic for an
application with dynamic resource requirements. This pessimism results in a
continuous under-usage of the available resources, which increases the system
costs. For this reason, we have adopted a soft real-time approach, which allows
to exploit the system capabilities to the maximum.

3.2. Synchronous Data Flow Graph 51

The presented performance prediction models can be seen as an extension of
the WCET analysis models proposed in [69]. For a soft real-time design ap-
proach, similar models have been used to analyze an alternative AS-profile
implementation of MPEG-4 [11]. In our case, we concentrate mostly on the
second type of real-time behavior, i.e. soft real-time, because it is more effi-
cient and we observed that the hard real-time problems can be studied as a
special case of the soft real-time domain.

The approach for the model construction is as follows. By a careful exam-
ination of the decoding algorithms for AS VO MPEG-4 decoding, we have
found the performance-critical coding parameters directly affecting the execu-
tion time. Afterwards, these parameters are weighted and combined into the
resource-usage model. The weighting coefficients are obtained from regression
of clock-cycle traces of the actual execution of the decoder.

The sequel of this chapter is divided as follows. Section 3.2 defines in a formal
way Synchronous Data Flow graph as a model of computation used for per-
formance analysis. Section 3.3 discusses different techniques, such as WCET,
Queuing networks, and statistical techniques, which are used for modeling of
the system behavior and their applicability to our research. The details of our
performance prediction model and positioning of arbitrary-shaped MPEG-4
decoding in the model abstraction is given in Section 3.4. Section 3.5 shows
various aspects of the dynamism involved in the AS VO MPEG-4 decoding.
Section 3.6 provides an overview of and discusses the individual task complex-
ities. Section 3.7 addresses a parametrical model for a more optimal allocation
of bandwidth, which is similar to the model for computations presented earlier
in the chapter. Section 3.8 ends this chapter with the fusion of various types
of resources usage in a single multidimensional resource-usage model.

3.2 Synchronous Data Flow Graph

This section introduces Synchronous Data Flow (SDF) graphs in more detail
and formalizes the notations and definitions. In addition we provide an insight
on a more restricted version of SDF, called Homogeneous SDF, which is used
in the remainder of this chapter as a model of computation.

In the past, Kahn process networks [57] were extensively used for describing
streaming applications. However, it is unsuitable for static analysis of bounded
buffering. Synchronous Data Flow graphs (SDF), which were initially proposed
in [66], are used for expressing the task-level parallelism in our model, which
is suited for the exploration of multi-processor system design. The SDF graph
is defined as follows.

52 Chapter 3. Performance estimation and timing models

Definition 3.1 Synchronous Data Flow graph (SDF)

The tuple (V,E,d,P,0,I) defines a Synchronous Data Flow (SDF) graph,
where

o V is the set of nodes (actors),
o FCV xV is the set of directed edges,

o d: E — N is a function describing the number of initial tokens on an
edge (u,v) € E,

e P:V — R' is a function describing the worst-case response time of
actor v €'V,

e O: FE — N is a function describing the number of tokens produced on
edge (u,v) € E by actor u for each execution,

o [: E — Nis a function describing the number of tokens consumed from
edge (u,v) € E by actor v for each execution.

It is common to distinguish data edges and sequence edges, although their be-
havior is the same. Passing a token through a data edge represents the transfer
of a block of data (in the following called data token) from the producer to
the consumer. On a sequence edge, the tokens represent the enforced ordering
between actors, e.g. the release of space in memory or a sequence of calls to a
subroutine by the processor.

The above-defined SDF graph is characterized by a multi-rate dataflow descrip-
tion; consumption and production of data tokens are modeled by the amount
of data tokens involved, thus they are constant integers known at the design
phase. From the nature of our streaming application, we use a more restricted
version of SDF, called Homogeneous SDF, abbreviated as HSDF. HSDF is a
special case of an SDF, in which the execution of an actor consumes one token
from each incoming edge and produces one token to each outgoing edge.

Figure 3.1 depicts an example of an HSDF graph in SDF notation. In the
figure, we follow generally accepted SDF notation, however, since in HSDF
always one token is produced and consumed, the numbers in this figure can be
left out, thereby leading to an HSDF graph. The computations in an HSDF are
represented by the nodes of the HSDF graph (labeled ellipses in the diagram),
called actors. For example, an actor is a decoding task such as Context Arith-
metic Decoding of the shape of a video object. The edges of the graph (arrows

3.3. Performance analysis 53

data edge
sequence edge
initial token

actor Q

Figure 3.1: Example of a Homogeneous Synchronous Data Flow graph. The
data flow starts in source actor S’ and writes output to target
T

in the diagram) represent dependencies between actors and carry tokens that
are produced and consumed by the actors. Referring to the previous example,
an outgoing data token would be the Binary Alpha Block (BAB) of the video
object. Each edge indicates the direction of its token flow and may contain a
few initial tokens, which are placed on an edge at the start of the execution.

The execution of an HSDF can be defined as follows. Each actor waits until
there is at least one data token at each incoming edge. In this case, the so-called
actor firing-procedure starts. In one firing, the actor performs computations
on the contents of the first data block that is available at each data input. It
takes a well-defined time interval to perform the computation of the involved
algorithms. This interval, after compilation, depends only on the contents of
the input data. Such a time interval is called the firing delay of the actor. It
can be fixed or variable in different iterations. When the computations have
finished, one token is consumed from each incoming edge and one token is sent
to each outgoing edge. Conditional branches are not possible in this data-flow
model.

The edges of the graph carry multiple tokens and take them from the producer,
then deliver them in FIFO order to the consumer without any delay. A com-
munication delay can be introduced by splitting an edge into two parts and
introducing an extra delay actor in between. It is important to mention here
that the SDF model has predictable timing behavior, which means that if the
timing of the inputs is known, the timing of the outputs can be derived. Both
aspects allow us to create more complete models, especially for a networked
multiprocessor system. For more details on SDF graphs, the reader is referred
to [66].

3.3 Performance analysis

The performance analysis of applications has to be carried out at different
levels of abstraction during the whole trajectory of mapping multimedia algo-

54 Chapter 3. Performance estimation and timing models

rithms onto a desired architecture. The methodology for predicting actor-level
resource usage (estimation) has been applied in video coding [110]. In our case,
the performance prediction has the two objectives mentioned in the introduc-
tion of this chapter: the mapping analysis at design-time and the runtime
modeling of the application resource usage for realizing an effective Quality-
of-Service control.

Prior to presenting our approach, we first classify different performance tech-
niques to position our model.

o Worst-Case Ezecution Time (WCET) estimation - The WCET estima-
tion techniques are based on three major steps: (1) the extraction of
control flow, (2) the low-level analysis of the target architecture, (3) cal-
culation of the WCET, based on the explored signal path and extracted
low-level details. The advantage of such a technique is the high accuracy
of the construction of the model. However, it requires a complete execu-
tion graph [45], covering the full application. This requirement hampers
the use of the WCET at the early phase of the system design, when this
specification is not yet available, or is continuously subject to changes.

o Analytical Methods based on Queuing Networks - A platform is described
by servers and jobs. Jobs are first inserted into queues and waiting until
the server can handle their requests. A job is characterized with an
arrival rate, a queue by an average number of jobs in the queue, and a
server with the mean service time. The platform can be described and
analyzed as an M/M/1 queueing problem [59]. This type of estimation
based on queueing analysis omits the behavior aspects of jobs, like job
dependencies and interaction.

e Statistical techniques - These techniques are data-driven approaches based
on input data characteristics. This type of performance modeling is ap-
plied to the set of input data and produced output. The mostly used
models are linear models [54]. The major advantages of such models are
the abstraction from irrelevant issues at different stages of the design,
and very fast estimation execution behavior using non-considered input
data.

e Simulations - This is one of the mostly employed techniques, which is
based on the construction of a simulation model that is typically executed
on a host computer system [39]. It is used when the analytical methods
do not allow the use of previous methods, because of the complexity of
the exploration space. The results are highly dependent on a proper
selection of the input data.

3.4. Prediction model of execution time 55

Considering the above classification, the problem of performance analysis of
arbitrary-shaped video-object processing is not suited or too complex for WCET
and Queueing Theory approaches. The WCET is a worst-case model and will
lead to underused resources (e.g. following WCET, resources should be allo-
cated for the full video resolution instead of a few macroblocks). The Queueing
Networks approach will give a model that is probably not accurate enough for
the behavior prediction of multimedia tasks, when the objects are relatively
small, leading to unpredictable statistics.

Our technique presented in the next section is sequentially applying a simula-
tion and statistical approach. The traces of actor execution times are obtained
with a clock-cycle-true simulator of a target processor. Then a statistical
approach is applied to obtain the correlation between input data coding pa-
rameters and the required computation.

3.4 Prediction model of execution time

In this section we will setup an accurate linear performance-prediction model
for each actor that has to be executed on the multiprocessor platform. This
performance-prediction model should be able to follow the dynamism in the
processing over time with sufficient accuracy. For this reason, we base our
model on the actual setting of coding parameters and the input data.

The main resources of the MP-NoC are the computing power of the processing
tiles, the size of the memories and the network communication bandwidth. The
computing power is modeled as the required processing time. At this stage, we
abstract from details of the use of heterogeneous tiles that may exploit inter-
nal parallelism, which would influence the computation time. The abstraction
can be justified by having an additional mapping step in which heterogeneous
features are taken into account. Consequently, we model the processing tiles
as general-purpose computing cores (e.g. RISC), operating at a certain clock
frequency.

Figure 3.2 outlines the resource-estimation process. The resource estimation
accepts inputs from the application and from the architecture. The input from
the application is in the form of an executable specification. The specification
distinguishes individual processing jobs and each job is divided into actors.
The hardware architecture is represented by accurate simulation models, e.g.
the instruction-set simulator for a processing tile, thereby enabling the mea-
surement of the actor firing delay.

56 Chapter 3. Performance estimation and timing models

Job Architecture
1. sequential executable A. simulation models of
specification

processing cores

2. set of actors definition (computation time)

job :forj=1..Jdo B. simulation models of

actorsetV=vy; network-on-chip
(comm. bandwidth)
3. actors parameters

identification C. simulation models of
memories
vir{pii, P2is - } (memory size)

l l

Parameter constraints

Figure 3.2: Detailed view on the design flow. Algorithms in the form of jobs
are executed on the architecture to find timing models used for
multiprocessor mapping.

At the timing-analysis stage, every job is characterized by application-specific
performance constraints on the throughput of the job. In MPEG-4 applica-
tions, these constraints are strongly influenced by the chosen profile of the bit-
stream. For example, the number of shape macroblocks per VOP is limited by
the MPEG-4 profile variable video complexity _verifier mazimum_ buffer size.
The complete video decoding (application) activates a sequence of VOP-decoding
jobs. Each job can use multiple processing tiles in parallel. We model a video-
decoding job as an iterative “for” loop, taking J iterations to produce J data
tokens of a video building block (like a macroblock).

The body of the “for” loop in Figure 3.2 is described by actors and the depen-
dencies between them. We denote the set of actors as V = {v;}. An actor can
be described as a function in a programming language like C/C++, represent-
ing an atomic unit of computation that can be assigned to a processing tile. We
assume that the firing delay of an C/C++ actor v; can be expressed as a linear
timing function ¢;. The function ¢; uses a set of variables, called input-data
parameters {p1;, p2i, ...}, with fixed coefficients {cq;, c14, c2;, ...} that depend on
the architecture of the tile to which the actor is assigned (see Figure 3.2). The

3.4. Prediction model of execution time 57

linear timing function is based on a sum of various terms. Each term refers
to a specific block of the software, and a special parameter can be introduced
that is sometimes incorporated in the linear function indicating the number of
instantiations of that software block. The individual timing functions t; are
combined in an overall timing-function vector ¢, expressing all contributions
to execution times. This timing vector represents the performance prediction-
model adopted in our approach. Note that both the values of the individual
timing functions and the parameters p;(j) may change in each iteration of the
“for” loop.

In this chapter, we consider only Phase I in Figure 3.2 of the resource esti-
mation, namely, the derivation of the parametrical timing model ¢. We will
use a job example to introduce a structure for the HSDF graph. Subsequently,
we derive the performance prediction model for the arbitrary-shaped MPEG-4
decoding. Finally, the calculated firing delays of the obtained performance
prediction model are compared with the corresponding firing delays on the
clock-cycle-true simulator of the RISC processor.

3.4.1 HSDF Graph for Shaped Video-Object Decoding

To express parallelism between actors in the loop body of the job, we use a
computation graph which is an instance of an Homogeneous SDF graph as dis-
cussed in Section 3.2. In the graph G, the parameters V' and ¢ are as defined
in the previous section, while F is the set of edges that models the dependen-
cies between the actors, and m (set of markings) is a function that assigns a
non-negative integer number of initial tokens to every edge.

———) data edge
—> sequence edge

® initial token

Figure 3.3: HSDF graph of a Motion-Compensated AS VO MPEG-/ de-

coder.

58 Chapter 3. Performance estimation and timing models

Figure 3.3 shows a computation graph for arbitrary-shaped video-object de-
coding. For simplicity, the de-multiplexing and other video tasks prior to the
central part of the stream processing are omitted from the graph. Similar to
MPEG-2, the processing involves a block-based coding technique. The de-
picted graph represents the processing required for one macroblock.

The motivation for choosing the computation granularity at the macroblock
level is based on the following arguments.

e The processing nature of the involved video functions is rather different
from task to task. This leads to the decision to go to a granularity level
that is lower than the functional level. The functions are applied to the
VOP layer or lower.

e The required computing power results leads to the distribution of the
object decoding tasks over several cores. This means that the object
decoding has to be distributed at task level. The granularity should be
fine enough to efficiently load each processing core.

When comparing the computation graph with a pure texture decoding of rect-
angular video frames such as in MPEG-2, we easily identify the extension for
the decoding of shape information. In the input bitstream, each macroblock
starts with the shape information, followed by the texture data. Within the
shape-decoding process we have identified the following actors: macroblock-
type decoding (MBtype Dec), shape motion-compensation (ShapeMC), con-
text arithmetic decoding (CAD), and decoding of the coded block pattern
(CBP).

The complete VOP of an object-decoding job involves the processing of a grid
of J macroblocks. Eeach j-th macroblock iteration (1 < j < .J) of the job loop
starts with the macroblock type decoding. Based on the macroblock type [52],
it continues with the shape decoding or directly proceeds with the texture de-
coding. The ShapeMC actor computes the motion compensation for the shape
part and provides the referenced MB shape for the CAD. The shape informa-
tion for an VO macroblock is represented by a 16 x 16 Binary Alpha Block
(BAB). As is depicted in Figure 3.3, the BAB should be sent to the output
of the job (actor “Shape”) for later texture processing (e.g. padding) and the
scene composition. The CBP extracts information about which of the DCT
blocks in the macroblock actually contain texture data. The texture decod-
ing comprises five conventional and well-known steps: motion-vector decoding
(MvD), coefficient decoding (Coeff Dec), texture motion compensation (Tex-
tureMC), Inverse Quantization (IQ) and Inverse DCT (IDCT).

3.4. Prediction model of execution time 59

We discuss now the splitting of actors and surrounding loops in the graph of
Figure 3.3. At some occasions, we have split specific actors into parts based on
their functionality. To correctly model the data dependencies between actors,
we should include a number of sequence edges, due to the data dependency
between the bitstream reading and the sharing of data structures. The se-
quence edge ensures that the connected actors are executed in a predefined
order. For example, the texture part depends on the decoded shape informa-
tion, so that we cannot use pipelining between them. The actors that have
to read sequentially from the bitstream are: MBtype Dec, CAD, CBP, MvD
and Coeff Dec. For this reason, we have introduced a loop surrounding these
actors using sequence edges. We have observed possible parallelism with other
actors, namely ShapeMC, TextureMC, 1Q and IDCT. The output data con-
sumers in Figure 3.3 are modeled with actors “Shape” and “Texture”, covering
the buffering and consumption of decoded data.

3.4.2 Construction of timing models

This subsection presents the construction of the timing models and their coef-
ficients. Prior to giving the details of the model construction, we first discuss
the approach and the applied conservatism in the estimation technique.

We have taken a conservative approach for determining the parametric func-
tion of the HSDF graph'. This means that the parametric function will provide
an upper bound on the duration of any processing where the vector of param-
eters uses input-data-based settings. We expect that our estimation model for
WCET analysis (like in [69]) can be adjusted to derive the upper bounds of the
coeflicient values. We obtain the coefficient values in two steps. First, we run
a limited series of test sequences to obtain the initial set of coefficient values.
Second, for refinement of those values, we perform optimization techniques,
such as e.g. linear regression. This approach does not require the WCET tools.

If an actor exhibits a high variation of processing times, then the application
designer should define a set of parameters that makes an adequate parametric
function. In such a case, it is possible to estimate the coefficients using a linear
regression technique. The linear regression employs coefficient values from the
traces and obtains the final coefficient values, and it also provides a confidence
interval [{Cmin}is {Cmaz }i]- The conservative estimate from the confidence in-
terval is ¢pqz, and therefore we use this estimate in the parametric function to
ensure the conservatism of the HSDF. We use confidence intervals to obtain a
measure of certainty about the value of the coefficients.?

!The consideration of this section also applies to SDF graphs as well.
2Sometimes it is justified to measure the maximum value of the processing time and use
it as a linear term with the maximum value for the corresponding regression coefficient.

60 Chapter 3. Performance estimation and timing models

Experiments with multimedia decoding show a significant variation of the re-
quired processing time. In order to cope with this large variation, we introduce
specific coding parameters into our estimation model. These decoding param-
eters vary in accordance with the execution time, so that our model follows
the actual execution. Therefore, we define for each actor of the computation
graph a set of coding parameters denoted by p;, which are based on an algo-
rithm exploration and the experimental evaluations.

After a number of design iterations, we have found that the computation time
can be estimated accurately using a linear parametrical model, given by

tz(j) = 00,1 + Cl,i.plji(j) + 027i.p27i(j)... . (31)

As mentioned, we apply linear regression to derive the coefficients ¢ ;. The
parametrical model can function in several ways, e.g. as an accurate estimation
of an actor firing time based on input data parameters. It can also function
as WCET analysis, if the worst-case parameters are derived (e.g. the upper
bound for the number of boundary macroblocks is specified in the standard).
The model can be used to derive an average requirement on resource usage,
based on an average number of parameter values, such as the average amount
of DCT coefficients per block.

The choice of a linear parametrical model is motivated as follows. The usage of
linear equations for performance modeling has been explored in the past. For
example, in [6] it is already shown that MPEG-2 decoding can be well modeled
with linear equations. Since a significant part of our decoding functions are
similar to MPEG-2, the usage of such equations seems a valid assumption.
A second argument is found in the complexity. It is generally known that
computing linear functions on a computer is one of the most simple tasks. This
will ensure that the computational costs involved with the model calculation
will be limited. This will allow us to periodically use the model for consistency
checking or prediction.

3.4.3 Derived timing models for AS VO MPEG-4 decoding

Prior to presenting the derived parametrical model, we provide more details
on how we have derived it.

e The equations of the model are partly based on key parameters for
MPEG-4 decoding. Some of the parameters are transmitted to the de-
coder (e.g. macroblock type) in the transmission format and others are
not transmitted (e.g. number of AC coefficients in a DCT block), but

3.4. Prediction model of execution time 61

used in the algorithm as a local parameter having a significant impor-
tance. Both types of parameters are denoted as coding parameters in this
section. The choice for using these coding parameters in our model, re-
sulted from an iterative design procedure. The most likely coding param-
eter having an influence on the computing time was chosen and evaluated
with respect to its influence. If the actual timing model was not accurate
enough, i.e. less than 95%, another coding parameter was adopted and
included in the equation. The coding-parameter choice was defined by
algorithm analysis.

e To support the derivation of the timing model, we have added the genera-
tion of traces to measure the coding parameter values inside the MPEG-4
decoding algorithm, executed on a general-purpose platform. Next, we
have measured the processing time of the actors on the target processor
simulator (in our case the ARMY armulator [1]). By the code inspection,
the coding parameters and their importance was weighted to the actor
execution. Because of using the clock-cycle-true ARM7TDMI simulator
for processing tiles, the basic unit of the timing-function components is
the ARM clock cycle. This means that our equations are based on the
actual execution on the target processor, which gives realistic model with
a potentially high accuracy.

e The third point is about usage of the test data set. The iterative design
procedure for deriving the equations is a form of learning. The derivation
of equations is based on a different data set than the experimental results
on accuracy presented later in this section. For learning we have used
the relatively long “Dancer” sequence with many different macroblocks,
whereas for validation the sequences “Stefan” and “Singer” were used.
The applied sequences originate from the MoMuSys project [93], which
was a leading European project for AS VO MPEG-4 standardization.

The extraction of the timing model for AS VO MPEG-4 decoding was per-
formed at the actor level, as described in the previous subsection. The result
of using Equation (3.1) for each actor, together with measurements of coeffi-
cients as described in the above aspects, leads to a set of parametrical timing
equations, which are modeling the complete execution of the job including
all macroblock iterations. Following all these steps and performing the linear
regression, the final result for the execution of the individual video-decoding
actors leads to the following set of equations. The applied regression was based
on the MATLAB 6.3 algorithm for linear regression.

62 Chapter 3. Performance estimation and timing models

tMBtypeDee = 913 + 1.34kT + 1.9%7
tShapeMC =53 + 417kT

tcAD = 14.13k + 135.12k 1 + 190 Npizs1 + 400 Npis2 + 390 Npirs3
toBp =134+ 111 + 97w + 26Nempty
tuep = 413 + 9807 + 2.9kT

tresturemc = 210+ 3.11kp + 5.81kT
tCoeffDec = 790(,0 + 83NVLD—Bytes + 105NDC’ + 87NDC+
+291Nac-NE + 534N ac—E1 + 618 Nac—p1 + 934N ac—E1

tig = 1.42kep + 14.9kN 4¢
trpcr = T4+ 37.18ky,
tshape =724 6.3k
tiesture = 153 + 16.3ky (3.2)

Let us illustrate the meaning of the above set of equations in more detail. For
example, let us describe the obtained timing function for the CAD actor. It
takes 14.13 kilocycles (indicated by a k) to initialize the actor. If the mac-
roblock is a boundary block, we assign u = 1, otherwise we assign ¢ = 0. For
w =1, 135.12 kilocycles have to be spent on decoding the shape, plus 190-400
cycles for decoding of each bit contained in the arithmetic code. Depending on
three possible actions to be taken for the arithmetic interval edges, the costs
per bit slightly differ from each other. The semantics of each coding parameter
are given in Table 3.1.

3.4.4 Validation of timing models

To validate the linear parametrical model, we have evaluated the relative model
execution-time error of the timing model versus real execution. It is defined
as the relative absolute difference ¢ between the calculated model execution
time ¢; and the measured value e; of the real execution on the clock-cycle-true
simulator of the target processor. The relative model execution-time error is
specified by

erim,j =| ti(J) = {ei}; | /mean({ei};). (3.3)

Table 3.2 portrays the relative model execution-time error for each of the ac-
tors for the validation test sequences. From the obtained results, we conclude
that the largest average relative error is about 5.3%.

3.4. Prediction model of execution time

63

Parameter \ Description

T 1, if the macroblock belongs to Intra coded VOP;
0 otherwise.
T NOT 7 (this is logical inversion of 7).
I 1, if the macroblock is of type ’boundary’;
0 otherwise.
Npits1 —3 Number of bits of type 1,2,3 (as defined in the standard)
used to code shape.
£ 1, if the macroblock is not transparent;
0 otherwise.
w 1, if £&=1 and at least one 8 x 8 block in the BAB is

completely transparent; 0 otherwise.

N, empty —pix

Total number of first empty pixels in all 8 x 8 BAB
sub-blocks (if pixels are checked in the scanning order),
hence Nepmpty —piz < 16 X 16.

% Number of non-transparent sub-blocks in the mac-
roblock, hence ¢ < 6.

Nvip Number of the bitstream bytes shifted into the 64-bit

—bytes local buffer, while reading VLD coded bits.

Npc Number of the non-zero DC DCT coeflicients in the mac-
roblock, thus Npc < 6.

Npc+ Number of the non-zero DC DCT coefficients coded by
more than 1 bit, Npc+ < Npce.

Naic— NE Number of non-zero AC coeflicients coded by a “normal”
VLC code.

Nac— g1-3 | Number of AC coefficients coded by an ESC code, using
types 1, 2, or 3.

y 1, if the macroblock is not transparent;
0 otherwise.

Nac Number of non-zero AC coefficients in the macroblock,
Nac = Nac-NE + Nac-p1 + Nac—g2 + Nac—Es,
Njao <6 x 63.

Vo 1, if o > 0;

0 otherwise.

Table 3.1: Parameters of the proposed AS VO MPEG-/ timing model and
their semantics.

64 Chapter 3. Performance estimation and timing models
Sequence | MBtype | Shape- CAD CBP MvD Text- Coeff
Dec MC MC Dec
Singer 1.47% 0.32% 0.86% 3.40% 0.27% 1.24% 2.87%
Stefan 2.04% 0.73% 0.74% 5.31% 0.47% 1.95% | 4.34%
] Seq. \ 1P \ IDCT \ shape \ texture‘
Singer 1.31% | 1.44% | 0.52% | 0.89%
Stefan 1.54% 1.94% 0.68% | 0.97%

Table 3.2: Relative error of the parametrical timing model at actor level of
the graph presented in Fig. 3.5.

Figure 3.4 shows an example of the model behavior for e.g. the Context Block
Positioning (CBP) actor. The plotted curves exhibit the required processing
time for a sequence of 60 macroblocks. The gray curve shows the timing model
and the bold curve refers to the real execution. It can be seen that the model
is quite accurate because both curves mostly coincide. According to Table 3.2,
the worst-case accuracy has the CBP actor for “Stefan” sequence with an error
of 5.3% only. The timing model provides a level of accuracy that is acceptable
for soft real-time applications.

Actor CEP - WOP O

@
=]
o
=]

—— Timing model
-------- Real execution | —

Clock cycles
4
o
=]
o
T

BO00 — —

5000 -

4000 -

3000 —

2000

1000 -

|
50 [z1]
Macroblock index

Figure 3.4: Visual representation of the obtained timing model and real ex-
ecution for 60 MBs of the CBP actor of the “Singer” sequence.

3.5. Dynamic behavior of arbitrary-shaped VO 65

3.5 Dynamic behavior of arbitrary-shaped VO

The dynamism in the required computation resources is presented and studied
in established video-processing standards, like MPEG-2 [6, 20| and H.263 [50].
The presented dynamism mainly depends on the frame type and the scene
contents and motion, resulting in a varying number of motion-compensated
blocks. Apart from this dynamism, we have observed a much stronger dy-
namism in AS VO MPEG-4 decoding, due to the different macroblock types,
the varying size of a video object and the variable number of objects per scene
(see Section 2.4). For our architecture, we distinguish three different levels of
dynamism.

Computation requirements - CAD Actor
w10

o

T T T
1vVoP ! PvOP PAOP

Clock cycles
o

|
200]
Macroblock index

1
150

Figure 3.5: Obtained characteristic of the CAD actor dynamism for a se-
quence of consecutive macroblocks. The VOP boundaries are
indicated by the dotted vertical lines.

1. Actor level - the required computation resources vary at the actor level,
e.g. type of macroblock, presence of shape information, number of DCT
coeflicients.

2. Job level - video object decoding requires a variable number of loop
invocations, due to the different number of macroblocks per VOP.

3. Application level - a varying number of jobs has to be activated, depend-
ing on the number of active video objects within the scene.

66 Chapter 3. Performance estimation and timing models

VOP size

w
fou]
=]

Dancer

— — = Singer

)
o
=]

Wlacroblocks

200

150

100

a0

| | |
i 50 100 150 200 250 300
VOP index

Figure 3.6: Obtained characteristic of the CAD actor dynamism (CIF reso-
lution,).

The examining of the AS VO MPEG-4 decoder at the actor level reveals the
dynamism at the actor level and at the job level. At the application level, the
AS VO MPEG-4 decoder would be instantiated multiple times and executed
in parallel on the same platform (not discussed here further). For example, the
study of the CAD actor portrays dynamism at both the actor and job level.
In Figure 3.5, the processing of one macroblock is at the actor level, and the
processing per frame is at the job level. The large variation at job level is seen
when going from I-VOP to P-VOP, etc. Inside the I-VOP execution, we can
notice also a large variation, but now at the actor level. The job variation is
due to the number of macroblocks that may reuse the shape mask from the
previously decoded motion-compensated VOPs. The measured overall ratio
of the required computations between complete I-VOP decoding and P-VOP
decoding equals for the most complex actor (CAD) to a factor of about 3.2.

Figure 3.5 provides experimental evidence for our conjecture that object-oriented
coding leads to more dynamism than the conventional frame-based coding tech-
niques. The dynamism at the job level, illustrated by Figure 3.6, is a new level
of dynamism that was not present in MPEG-2 type of systems. In short, the
MPEG-2 type of systems process fixed-resolution images and the correspond-
ing number of blocks to decode, as compared to a high variability resulting
from the varying size of arbitrary-shaped MPEG-4 video objects.

3.6. AS VO MPEG-4 decoding complexity 67

The study of the dynamism at the application-level is beyond the scope of
research presented in this thesis. It is evident that the variability of the scene
and corresponding number of video-object decoders introduce another level of
dynamism. However, the hierarchical approach presented in Chapter 5 can be
extended to deal with a varying number of jobs and to distribute the platform
resources to jobs dynamically.

Given the presented accuracy of our timing model, the reader may come to
the desire to reuse the parametrical timing model as a performance prediction
model. This approach seems to be possible, but probably in limited cases.
For MPEG-2, a statistical model of the resource usage can provide sufficient
accuracy [109, 20], but it is limited to the actor level, which was defined at the
video function level. We expect that our parametrical model is accurate for
prediction modeling at the actor level and job level. It is difficult to foreclose
the performance prediction at application level.

3.6 AS VO MPEG-4 decoding complexity

Having implemented the full standard and looking to the results of the pre-
vious section, at this point it is useful to discuss the decoding complexity of
AS VO MPEG-4 decoding. In this section, we will present these results in the
form of executed clock cycles required for completing the decoding job on a
target processor.

1. Measurements of cycles and relative complezity

We have measured the execution time of the individual decoding tasks of the
decoding job and also computed the total amount of required clock cycles.
With these numbers, the average amount of clock cycles per macroblock was
computed. The results of these measurements are portrayed by Table 3.3 and
were measured for a GOV size of 12 VOPs. This table immediately shows the
relative complexity of individual actors. The computation-demanding actors
are Shape Motion Compensation (Shape MC), Context Arithmetic Decoding
(CAD), Texture Motion Compensation (Text MC), Inverse Discrete Cosine
Transform (IDCT), Repetitive padding (Rep. pad.), and Extended and Bound-
ary Padding (EBP). Of these actors, CAD and IDCT are the most critical ones.
One aspect of the complexity is the dynamism that was already discussed in
the previous section. This dynamism can be also noticed in Table 3.3 as the
CAD actor varies between 13% and 43% in relative complexity per sequence.
This is explained by the strongly varying nature of objects in a video sequence
and from one sequence to the other. For example, in the “News” sequence, the
foreground object is rather static, whereas in the “Stefan” sequence, the tennis
player shows large variations in pose and size. Similar variations in clock-cycle
costs can be noticed for the ShapeMC and IDCT actors.

68 Chapter 3. Performance estimation and timing models

] | Dancer [Singer [News [Fish | Stefan [Average |
MB Type Dec | 0.24% 0.32% 0.30% 0.26% 0.24% 0.27%
Shape MC 11.12% 16.07% 18.74% | 9.18% 6.55% 12.33%
CAD 38.12% 15.65% 13.37% | 33.79% | 43.51% | 28.89%
CBP 0.15% 0.22% 0.23% 0.16% 0.14% 0.18%
MvD 1.09% 1.71% 0.87% 1.35% 1.54% 1.31%
IP&IQ 4.08% 5.57% 6.35% 4.42% 3.64% 4.81%
Coeff Dec 2.67% 1.34% 0.63% 6.11% 2.07% 2.56%
Text MC 9.77% 13.02% 11.81% | 9.92% 9.95% 10.90%
IDCT 13.90% 19.18% 21.80% | 13.80% | 12.75% | 16.29%
Rep. pad. 9.33% 13.15% 13.04% | 9.38% 9.02% 10.78%
EBP 9.51% 13.76% 12.86% | 11.64% | 10.58% | 11.67%
Execution time | 295,842 100,539 | 267,756 | 191,518 | 118,949
(kcycles)

Processed # | 2,064 720 2,640 1,520 671

macroblocks

Average excc. | 143,334 | 139,638 | 101,422 | 125,098 | 177,271 | 137,533
/ MB (cycles)

Table 3.3: Distribution of complexity of individual tasks for one GOV of 12
VOPs at CIF resolution for various sequences and the required
cycle counts for macroblocks.

Table 3.3 shows the average clock-cycle count per macroblock at the bottom
(averaged over all block types). This number enables us to compare it with
results of MPEG-4 Simple Profile decoding and some results of the literature.
The comparison with MPEG-4 Simple Profile is useful, because it is nowa-
days widely implemented in consumer devices. The average complexity of
AS VO MPEG-4 decoding per macroblock within one GOV of our five test
sequences is 137,533 clock-cycles. The MPEG-4 Simple Profile decoding com-
plexity measured with the same clock-cycle-true simulator of the ARM7TDMI
processor resulted in the average complexity of 73,406 clock cycles per mac-
roblock. Hence, the decoding complexity of AS VO MPEG-4 decoding is 1.87
times higher than the MPEG-4 Simple Profile.

2. Discussion

This comparison result can be debated in several ways. For example, the
number of video objects in a scene is not known beforehand by the decoder
and is decided by the encoder. In the case of more video objects, the decod-
ing complexity will be higher than in a simple case with few objects. This
is because more shapes are involved in the decoding, more buffering is re-
quired and more covered macroblocks are processed, which are later overlapped
by foreground objects. For this reason, the MPEG-4 standard limits the to-
tal number of macroblocks produced by the encoder. This limit is for Core

3.6. AS VO MPEG-4 decoding complexity 69

and Main profiles equal to two times the spatial resolution expressed in mac-
roblocks. This limit is specified in the MPEG-4 standard by the parameter
video _memory wverifier _max _size. Taking this parameter into account,
the complexity of the AS VO decoding is calculated by

O4S decoding = Omp X video_memory_verifier _max_size. (3.4)

The parameter Oysp denotes the complexity per processed macroblock. To
compare the complexity for the whole scene with multiple objects, we have
used our averaged complexity per macroblock from Table 3.3 for the param-
eter Opp. In this way, we have obtained an alternative comparison with
MPEG-4 Simple Profile complexity: AS VO MPEG-4 decoding is then 3.75
times higher than the complexity of MPEG-4 Simple Profile decoding.?.

3. Complexity of timing model calculation

Another form of complexity that is briefly discussed here is the involved com-
plexity of regularly updating the measured computational costs using the pro-
posed parametrical timing model. For an accurate profile of the computations,
the model is executed for each macroblock. This involves the reading of the pa-
rameters, multiplications with the coefficients and adding the results together.
The outcome may be useful for prediction of the involved computing at runtime
to facilitate accurate resource management (e.g. in later chapters proposed as
QoS). This concept was also considered in [41], but found to be too complex.
We have verified with actual experiments whether this conclusion is valid for
our case. Using the proposed clock-cycle-true simulator, the model calcula-
tion required 3,134 clock cycles against a average macroblock cost of 137,533
clock cycles, which is 2.3% overhead. This is small enough to be acceptable
for runtime prediction. Furthermore, in the normal operation of the MPEG-4
decoder, also deblocking and deringing actors are enabled which reduces the
overhead to only about 0.8%. Given the large potential benefit for quality
control, this overhead is negligible.

4. Comparison to other standards

The above complexity comparison can be enlarged to other standards, although
the numbers are sometimes not available or not suited for a fair comparison.
An example is the recently published overview of the H.264 standard [120],
stating that H.264 coding is 3 to 3.5 times more complex than the previous
standards MPEG-2/H.263. This statement brings our experiment at the same
level of complexity. The number of H.264 decoding is clearly an extension
of MPEG-2 decoding, as it requires more precise motion compensation and
involves loop filtering and extra intra prediction modes. The arithmetical de-

30ur estimate is that the complexity of MPEG-4 Advanced Simple Profile is within this
range and closer to MPEG-4 Simple Profile.

70 Chapter 3. Performance estimation and timing models

coding is comparable in nature and complexity. In our case, we have shape
motion compensation and the various padding techniques as extra complexity
compared to MPEG-2. This globally explains why the order of magnitude of
the complexity increase is about the same. Further comparisons and discus-
sions on complexity are given at the end of this thesis in Chapter 7, where we
report on several application experiments. Concluding, the AS VO MPEG-4
decoding complexity is in line with the increase of the complexity of recent
video coding standards and as such can be seen as a representative experiment
for platform evaluation.

3.7 Parametrical model of communication resources

In this section it will be shown that the dynamism that was explored earlier
for computation resources is valid for other types of resources as well. Similar
to the WCET approach [11] for the computation resources, the same approach
can be applied to other types of platform resources (memory, communication
bandwidth), but again it results in inefficient resource allocation (worst-case
allocation). For this reason, we also study the usage of the communication
resources and propose a model that fulfils requirements on the accuracy and
model complexity.

The timing properties of the individual actors needs to be completed with the
bandwidth requirements between individual actors, in order to provide com-
plete timing analysis of SDF on a multiprocessor platform [96]. A possible
bandwidth limitation can result in postponing the activation of an actor exe-
cution, so that the overall execution time is larger and/or the timing analysis
is less precise.

The parametrical models developed in the previous section are also adopted to
describe a model for the bandwidth usage. For example, Figure 3.7 illustrates
the large bandwidth difference between the outcome of the worst-case model
of communication resources versus the actually needed resources for the same
video stream.

When analyzing the MPEG-4 decoding, two types of connections are identified
in the communication graphs. The control data and synchronization tokens
are always presented and represent also input-independent connections. For
example, the MBtype Dec actor communicates the macroblock type and the
bitstream position to the CAD actor for every macroblock. This holds also for
the ShapeMC actor, but now some extra information (e.g. reference position
of the macroblock) is required. These connections have very static character-
istics and we model them with a constant number of tokens, also due to the
low amount of data as compared to the streaming parts.

3.7. Parametrical model of communication resources 71

(a) Worst-case estimation. (b) Actual requirements.

Figure 3.7: An example of communication resource-usage model, (kByte/s)
for AS-VO decoding (256x 64 @ 30 Hz).

Communication via input-dependent connections is highly inefficient, if re-
sources are allocated based on a worst-case analysis. For example, the band-
width required between actors CAD and Shape is in the worst-case approach
491.5 kByte/s compared to the actually needed 165.9 kByte/s (see Figure 3.7).
Our results on the analysis of the MPEG-4 decoding show a factor of 2.5 be-
tween the required and the worst-case approach. Similar to Equation (3.1),
we propose to model the communication resources with a linear parametrical
equation, by

bz(j) =ng; + nl,ill,i(j) + TLQ;;ZQ;L(j) + ... (35)

The variable n; stands for the weighting coefficients of the term contributing
to the communication, and the variable [; denotes a specific input-data param-
eter, such as the number of macroblocks per VOP.

3.7.1 Derived bandwidth models for AS VO decoding

Similar to the derivation of the parametrical timing model, we comment on
details of the derivation of the bandwidth model.

e The equations of the model are based on the type of macroblock and the
BAB type. This can be derived by examining the graph of Figure 3.7 and

72

Chapter 3. Performance estimation and timing models

the meaning of the communication edges between actors. For example,
the bitstream position is communicated from the actor MBtype Dec to
the Shape MC actor, if a block is coded with motion compensation.
In this case, the referenced block from the previously decoded frame
is fetched, otherwise only the bitstream position is communicated to
the actor CAD. Hence, the resulting bandwidth clearly depends on the
BAB having motion compensation (the bandwidth switch parameter &
in Table 3.4). The other parameters in the bandwidth model are derived
in the similar way using the edges in the diagram.

The amount of data transferred between actors were measured by instan-
tiating the MPEG-4 decoding algorithm and including a special logging
function to store the amount of involved data at the beginning of each
actor implementation.

The numerical values in Equations(3.6) and (3.7) are independent of
input data. These numbers can be derived by the examining of data
that has to be transferred between two actors. For example, if a decoded
block is transferred, then the involved data structure is communicated of
which the format is known. This leads to the indicated coefficient values.

The derived bandwidth model for the our decoding graph is split in two sets of
equations. First, the set of Equations (3.6) provides details for the connections
between actors that are independent of the input data. The numbers reflect
the communicated flags, block types, etc. Second, the set of Equations (3.7)
presents connections that vary with the input data. A detailed description of
the corresponding parameters is given in Table 3.4.

by BtypeDee,cAD = 5.62
b BtypeDec,Shapemc = 9.6
bcap,cBP =3.75
beBp,MuD = 5.62
bMuD,CoeffDec = 3.75 (3.6)
bshapeMc,cap =2+ 320-&
b AD,shape = 2560
bMuD, TextureMc = 4w

brecturemc,ipcr = 3072w
bCoeffDec,io = 140x
brg,ipct = 384y
biDCT Texture = 384X (3.7)

3.7. Parametrical model of communication resources 73

| Parameter | Description ‘

& 1, if the macroblock shape is motion compensated;
0, otherwise.
v 1, if the macroblock is boundary type;
0, otherwise.
w 1, if the texture is motion compensated;
0, otherwise.
0 Number of non-transparent sub-blocks in the mac-
roblock, hence 6 < 6.
X 1, if the macroblock is not transparent;
0, otherwise.

Table 3.4: Parameter description of the bandwidth model.

Let us briefly discuss an example of the parameters used in the data-dependent
set of equations. For example, if the 7 —th macroblock contains encoded shape
information and belongs to an inter-coded VOP (P- or B-VOP) (£ = 1), the
required communicated data between the ShapeMC and CAD actors is equal
to

bshapemc,cap(j) =2+ 320§ [Bytes]. (3-8)

When knowing the distribution of the macroblock types (boundary, opaque,
etc.) within one VOP, we obtain for the complete VOP the following expression

bShapeMC,C’AD(.j) = (2 +320- 5) : Pboundaryv (39)

where Pyoyndary denotes the fraction of the boundary macroblocks.

Similar to the discussion on using the timing model for runtime prediction, it
is possible to apply the bandwidth model for runtime bandwidth prediction.
In order to find the prediction of the required communication bandwidth for
the next VOP, we use a modeling function similar to Equation (3.5) for every
connection and multiply it by the number of macroblocks inside the VOP. The
numerical results and details of our experiment on the bandwidth parametrical
modeling are presented in the next subsection.

3.7.2 Validation of bandwidth model

To validate the bandwidth model, we have compared the bandwidth model
output values with the actually used bandwidth for execution of the decoder.
The model output and the bandwidth measurement were evaluated after each
VOP. The final results are portrayed by Figure 3.8. The validation simula-
tions show that our modeling technique for the bandwidth requirements was

74 Chapter 3. Performance estimation and timing models

consistently 4.7% too low. For this reason, we added a compensation band-
width of 5% to the model results. This difference of 4.7% in the bandwidth
is explained by the fact that the VOP header information is not considered in
our bandwidth model. Our model is based on macroblock-based execution, so
that periodic higher layer description information is omitted.

Figure 3.8 compares the output of the proposed bandwidth model with the
worst-case approach for communicating different number of macroblocks. The
model with its compensation allocates 2.5 times less bandwidth than the worst-
case approach. This result has significant importance. It means that a large
bandwidth reduction can be exploited for enhanced parallelism in the execution
on MP-NoC. Probably, this obtained result has more practical impact than
the parametrical timing model, because in a networked system bandwidth is
becoming increasingly the most scarce resource in the system. We can also
benefit from this result in terms of runtime bandwidth prediction. In [81], it
was found that the ratio between the various macroblock types varies smoothly
over one scene, which means that variations between consecutive VOPs are
relatively small. This results in a stable prediction of the required bandwidth
if recent system execution parameters are used.

. Bandwidth model of AS VO MPEG-4 decoder
110
3 T T T T

Bandwidth

-------- Bandwidth model
Bandwidth model with compensation -
———Worst-case approach -

0&+-

| | | | |
50 100 150 200 260 300 350 400
Macroblocks

Figure 3.8: Exzample of our modeling function compared to the worst-case
approach.

3.8. Multidimensional model of resources 75

3.8 Multidimensional model of resources

The timing and bandwidth models presented in the previous sections are im-
portant to analyze an application per individual resource. However, the design
of a processor with multiple computing cores (multiprocessor NoC), requires
that the analysis of the actual resource usage becomes a multidimensional prob-
lem. In this section, we provide a generalized concept for modeling the resource
usage of jobs with the purpose to facilitate Quality-of-Service management of
multiple jobs. The intended computing platform is a multiprocessor NoC. This
concept for multiprocessor systems is an idea and was not validated, because of
lack of time. Since it is considered useful for further research, we present it here.

Our objective is to provide a multidimensional model of the resource usage of
a job at different quality levels and additionally, a model of available system
resources that serves our control management. This concept of using two
models, i.e. the application resource usage and the platform resources, can be
applied for runtime QoS management that will be presented in Chapter 5.

3.8.1 Job model at different quality levels

Let us now outline the resource-usage model for one job. Formally, the range
of possible quality settings mapped into a vector q; of a job 4 leads to a job
resource-consumption R; for a resource type J. The resource consumption is
described by a function R; j(qi) = fs(qi,dp), where d), is an arbitrary input-
data parameter that mostly influences the complexity of the computation. For
example, the parameter d, equals the size of a video object in terms of mac-
roblocks. The function f specifies the requested amount of resources for a
particular job. The resource type is J € {C,D,I,B, T}, where C denotes
the computation resources, D the data memory per actor, I the instruction
memory per actor, B the required communication-port bandwidth, and T the
bandwidth on each connection between a pair of actors.

For one job i, we specify the quality setting, so that for a set of jobs the set
of chosen quality values leads to a chosen quality vector qc, in which the vec-
tor components refer to the chosen quality settings of individual jobs. Similar
reasoning can be held for the required resources of R;j, leading to a vector
of resources Ry. For example, when J refers to computations only (J = C),
Rc(qe,dp) is representing the required vector of computations for a set of
jobs at chosen quality level qc and input-data dependence dp. The vector
Rc(qe) can be used for finding the accumulated computation costs per set of
jobs, executed at quality settings qc. If in the mapping this vector of required
computation costs is compared and matching with the available resources, the
allocation can be considered.

76 Chapter 3. Performance estimation and timing models

Accumulated CPU resource usage for one job execution
[clock kilocycles]

Rc
Estimated maximum over the

GOV length

e

4 \ Quality level 1

4 Quality level 2

o T Quality level 3

Tasks

Figure 3.9: Model of different quality levels per resource (J=C).

Required resources

/Quality level 1(J=C)
/\/\Cua/ity level N (J=C)

=)=
Tasks /
J=D N — Connections

J=l /\/\Quality level 1(J=T)
J=B /—/\Qualfty level N (J=T)

Figure 3.10: Multidimensional visualization of required resources per quality
level per resource.

Figure 3.9 portrays an example of the computational requirements of a job,
which is composed of several tasks, at different quality levels. The points
represent the maximum requirements over the reservation period (in our case,
the GOV length). In this example, when comparing quality level 2 with Quality
level 3, the number of resources and the number of tasks is lower for Quality
level 3. At Quality level 3, tasks T4 and T5 are even switched off. At the
higher Quality level 1, task T3 has a lower resource requirement than for
Quality level 2. However, this is not a typical case. Figure 3.10 visualizes the
resource estimation for all different types of resources as described above.

3.8. Multidimensional model of resources 77

3.8.2 Available and used system resources

The model of resource usage of a job has to be completed with the model of the
usage of platform resources. The system resources that are available for a job
execution are modeled and described in the following. We model the available
computation and storage resources per processing tile. If P denotes the set of
processing tiles, then we denote the total available resources as follows: compu-
tation resources of a tile as F,, data storage capacity as Py, instruction storage
capacity as P;, and communication port capacity as P,. The communication
availability is modeled per pair of processing tiles by the amount of data that
is communicated per time unit as D), . Both models, i.e. the available and
used system resources, are visualized in Figure 3.11.

Amount of resources

' Max. available

sed resources

[Processing tiles /
7 Connections p; - pp

Pb,

Dpa,[y

Figure 3.11: System resource model, with explicitly modeled resource con-
sumption extracted from runtime operation or allocated re-
sources.

We have modeled the decoding process of the AS VO MPEG-4 decoder with the
objective to map this application on a multiprocessor network-on-chip (MP-
NoC). The obtained performance prediction model at different quality levels is
based on a set of linear equations (as presented in Sections 3.4 and 3.7), using
parameters depending on the actual I-VOP and P-VOP bitstream characteris-
tics of the MPEG-4 decoding. These models are connected to QoS management
that will be discussed in Chapter 5.

The principal advantage of our technique is that the new mapping is evaluated
analytically based on a set of linear equations instead of executing a clock-cycle-
true simulation for each mapping. Consequently, it significantly decreases the
complexity of the actor-to-processor assignment analysis. The conservative

78 Chapter 3. Performance estimation and timing models

way in which we derived our model coefficients supports the reliability of the
model results and a possible usage of this model for a job with hard real-time
constraints.

3.9 Conclusions

This chapter has started with formalizing the Synchronous Data Flow (SDF)
graph and presenting an execution model for a restricted version of SDF, called
Homogeneous SDF with consuming one data token from each incoming edge
and producing one data token to each outgoing edge. The Homogeneous SDF
graphs are easy to analyze with respect to throughput and deadlock occur-
rences. Besides these aspects, the token-based communication between actors
fits well with the AS VO MPEG-4 decoding application, where execution is
based on consecutive macroblock processing.

The essential part of this chapter focuses on the performance analysis of video
processing algorithms modeled by HSDF, aiming execution on a multiprocessor
platform. In our proposed approach, each video task called actor, is assigned
with a parametrical function modeling the computational requirements. For
simplicity, we have described the requirements in a linear function so that anal-
ysis becomes easier. It was shown that the overhead was a few percent or less
than one percent if all video functions were activated. Each term in the sum-
mation within a model equation depends on (1) the coding parameters having
input-data dependency and (2) coefficients representing the dependency of the
involved processing on the target CPU. The experimental validation of the
proposed parametrical timing model showed that the deviation of the actual
execution time is few percent only. It was found that obtained timing model
has a maximum deviation of 5.3% from the real clock-cycle-true execution on
an Athereal NoC with ARMTY cores.

This type of performance modeling is useful for analyzing several types of be-
havior. First, it can be used as an accurate estimation of an actor execution
time based on input-data parameters. Second, it can function as WCET anal-
ysis if the worst-case parameters are derived (e.g. the maximum number of
boundary macroblocks per video object is specified in the standard profile).
These kinds of analysis can serve both types of execution: a hard real-time
execution with a WCET approach, or the soft real-time operation with an ac-
curate modeling.

Besides modeling of execution time, the allocation of communication resources
is at least as important. Similar to the timing models, we have presented a
technique to model requirements on communication bandwidth depending on

3.9. Conclusions 79

input data. Fortunately, it has been shown that it is possible to model the
communication usage in the same way as computations, namely with a set
of linear parametrical equations. The accuracy of this model is equally accu-
rate or even slightly better. The comparison with the mostly used worst-case
approach for communication resource allocation revealed that it saves an im-
pressive factor of 2.5 on bandwidth consumption. This result has significant
value, as many networked systems executing multimedia applications are in-
creasingly bandwidth-constrained.

At the end of this chapter, we proposed a generic concept for combining para-
metrical resource usage models of several resources simultaneously into one
model. This multidimensional model is intended to be used by a Quality-of-
Service management system that will be presented in Chapter 5.

The analyzed AS VO MPEG-4 decoder shows dynamic behavior at the actor,
job, and application level. Experiments showed that the actor and job level
dynamism was visible in the required clock cycles for e.g. the CAD actor.
The size of a video object is a critical factor in the dynamic behavior of the
application. The complexity analysis revealed that the relative complexity of
the actors in the graph varies considerably with the input scene. The AS VO
MPEG-4 decoding application is considerably more complex than MPEG-4
Simple Profile coding and approaches the complexity of H.264 coding. The
nature of the decoding processing tasks can also be found in the encoder,
so that we envision that the derived models can be adapted to support also
modeling of the corresponding encoding application.

80

Chapter 3. Performance estimation and timing models

CHAPTER

Algorithmic modification for
enhanced parallelism

The direct transition of functional blocks to video tasks (actors in the SDF
model) does not provide an optimal mapping, e.g. some tasks are designed to
function at macroblock level and others at frame/picture level. The detailed
analysis of individual video tasks and modification of the coding algorithms to-
wards a unified, macroblock-based computation is the first result of this chapter.
Secondly, we discuss the result of mapping this macroblock-based computation
on a tile-based system, where we have achieved an efficient execution (for some
tasks improvements about 70%). The final part of the chapter addresses the
limitation of having a small data memory within indiwidual processing tiles.
For this purpose, we study a memory-rich application part of MPEG-4 coding,
i.e. background sprite decoding. For the platform, we have selected, as an ex-
perimental NoC, a CELL processor simulator that encapsulates 8 processing
elements where the local memory is limited to 256 kByte. The re-design of
background-sprite MPEG-4 functions gives a mapping that satisfies the local
memory limitations and it also provides a more efficient execution compared
to the original design.

4.1 Introduction to uniform processing and sprite
coding

The original algorithm for AS VO MPEG-4 decoding [52] was standardized
without having any platform in mind. Therefore, the straightforward imple-

81

82 Chapter 4. Algorithmic modification for enhanced parallelism

mentation following the MPEG-4 standard is not optimal for the direct map-
ping on a multiprocessor platform. The availability of a plurality of processing
cores speedsup the processing when exploiting several types of parallelism.
This parallelism is not visible in the original algorithm. For example, a po-
tential split of the multiplexed DCT blocks during texture processing into
individual color components, which are processed on a single processor, would
introduce only extra communication and buffering overhead, while it would
not speedup the execution. In contrast with this, the simultaneous processing
of individual texture components on multiprocessor systems would contribute
to an increase of the overall throughput. The improvement factor is influenced
by the length of the critical path in the computation graph. In the AS VO
MPEG-4 decoding graph using 4:2:0 color sampling, the critical path is the
processing of the luminance component since this involves the most intensive
processing.

The parallel execution of advanced multimedia coding is a topic of continuous
study. Li et al. [68] discuss the encoding approaches of motion estimation on
a parallel bus network. They exploit the granularity of the load partitions and
associated overheads for minimization of the overall processing time. An alter-
native coding architecture is proposed by Fang [35]. This system is processing
all bit planes in parallel in order to minimize the state memories in a JPEG-
2000 encoder. The platform is based on a reconfigurable FIFO architecture.
The common element in these studies is elegant exploitation of the granular-
ity in processing, but the processing data itself is still based on conventional
rectangular video pictures. Besides the parallel processing of individual color
planes, we will explore further parallelism in this chapter by modification of the
original algorithm using task splitting and introducing the uniform granularity.

The first part of this chapter addresses two algorithmic modifications: task
splitting for shortening the critical path and introducing a uniform granularity
in the processing, which are both improving the processing efficiency. It is
shown that when choosing a uniform granularity of processing, we can avoid
frame buffers between computation tasks and therefore reduce latency. We
introduce a synchronization mechanism that allows the processing of the ez-
tended Padding and postprocessing filters (deblocking & deringing) at block
level. Moreover, with task splitting, it can be expected that a well-chosen dis-
tribution of the data over the multiprocessors will add task-level parallelism
that increases the system throughput. Finally, because of the multiprocessor,
we exploit the inherent parallelism of the individual color components in the
video signal. It will be shown that a substantial reduction of computing power
can be achieved, combined with a lower latency.

4.2. Parallelism Overview 83

The second part of this chapter explores a mapping on a multiprocessor sys-
tem that has a local memory constraint for the individual processors. More
specifically, we study a mapping of the memory-rich MPEG-4 sprite-decoding
algorithm on a CELL processor [95]. From the architecture point of view, the
CELL processor is a multiprocessor System-on-Chip similar to our tile-based
platform. Our studies have revealed that a CELL processor system [38] pro-
vides high computational resources with low power consumption. However,
the current implementation poses a limitation on different types of resources,
mainly on local memories for most of the tiles in the CELL architecture. The
key problem is that the MPEG-4 sprite decoding requires a large memory for
buffering the sprite data. Therefore, we present a new sprite-decoding algo-
rithm that reduces the memory cost of such decoding with a factor of four.
Additionally, our algorithm offers the possibility of high-level data parallelism
and consequently contributes to an increase of throughput rate.

The chapter is organized as follows. The first part deals with the mapping of
the arbitrary-shaped MPEG-4 decoder onto an architecture requiring a uni-
fied processing granularity, including limitations on buffering between tasks.
Section 4.2 discusses three generic forms of parallelism that should be con-
sidered when creating a parallel implementation of a multimedia application.
Section 4.3 outlines the original MPEG-4 algorithm and its inefficiency for a
straightforward mapping. Section 4.4 presents the modification of the repet-
itive padding task in MPEG-4 coding. The modifications of the extended
padding algorithm and the post-processing filters are presented in Section 4.5.
Section 4.6 describes the application of data-level parallelism principles and
presents the complete redesigned computation graph. The last part of the
chapter in Section 4.7 introduces the redesign of the background-sprite MPEG-
4 decoding algorithm, in order to execute it on a tile-based architecture with
small local memory. Section 4.8.1 presents the sprite-reconstruction principle
and addresses the MPEG-4 standard decoding. Section 4.8.2 gives our new de-
coding algorithm while Section 4.9 provides details on the corresponding data
structures. Section 4.10 describes the experiments and results of this study.

4.2 Parallelism Overview

This section addresses three generic forms of parallelism which are all briefly
discussed in the framework of multimedia video coding. It is assumed that a
video coder can be described with a flow graph as presented in Section 3.2. All
tasks can be executed on different processors and depending on the nature of
the algorithm, a parallel execution can be realized. At the end of this section,
we also provide a strategy for extracting parallelism.

84 Chapter 4. Algorithmic modification for enhanced parallelism

4.2.1 Task parallelism

An application is often described by a block diagram in which the relations
between the different processing algorithms composing the application, are
depicted. Regularly, processing blocks in the diagram represent algorithms
which can operate concurrently on different sets of data. For example as in
Figure 4.1, the Video Header parsing task in an MPEG-4 decoder can already
decode data of a different Video-Object plane (VOP) that the Shape & Texture
task is processing. This is again different from the data that the Rendering
task is using within the specific time period. In this way, the different tasks
from the block diagram are executed in parallel. In practice, the block diagram
can serve as a starting point for extracting so-called task-parallelism. Not all
tasks will have the same computational requirements (i.e. require the same
amount of processing time). Using profiling and analysis techniques, the most
computationally-expensive tasks can be identified. To increase the amount
of task parallelism, these tasks should be subdivided into smaller ones. This
typically results in a chain-structured set of tasks as shown in Figure 4.1. As
a consequence, the transformation will result in a reduction of the execution
latency of the application.

Video Header Shape & Texture -
. . Rendering
parsing decoding

Figure 4.1: An example of task-level parallelism for a simplified view on
arbitrary-shaped video-object decoding, where each task is exe-
cuted in parallel.

4.2.2 Data parallelism

Data-level parallelism can be considered to increase the throughput and de-
crease the latency of an application. The idea behind data parallelism is to
perform the same transformation on different data elements in parallel. For
instance in an MPEG-4 decoder, it is possible to perform the inverse quan-
tization in parallel form, e.g. by exploiting the separation of the luminance
and the two chrominance planes. Figure 4.2(b) shows this kind of data par-
allelism that can be extracted from the computation chain shown in Figure
4.2(a). Alternatively, two chrominance planes may be combined into one color
plane. Hence, a typical case is that the computation path that processes the
luminance plane is the critical path. It should be considered whether more
task-parallelism can be found in this chain to further increase the throughput.

4.2. Parallelism Overview 85

Coeff e
Dec

(a) Original graph. (b) Unrolled graph for each
color component.

Figure 4.2: Data-level parallelism for processing of texture.

4.2.3 Communication granularity

A third aspect that can be used when extracting parallelism from an appli-
cation, is exploring the best granularity at which data is communicated. For
example, an inverse quantization task can send data at the level of individual
coefficients to an inverse IDCT task, or it can send the data at the granu-
larity level of complete blocks or even frames. The advantage of using larger
grains of data is that the communication efficiency increases due to the smaller
overhead in communicating the data between the tasks. However, tasks may
have to wait longer, i.e. be idle, while they are waiting for data. Choosing the
correct level of granularity at which data is communicated between tasks is
important to prevent tasks from waiting and avoid spending too much time on
synchronization.

4.2.4 Strategy to extract parallelism

In [108], an analysis technique for identifying task-level parallelism in appli-
cations is presented. The article presents a set of concurrency measures that
help a designer in making a trade-off between the three types of parallelism
discussed previously. Along with those concurrency measures, a strategy to
extract the parallelism is now presented. As a first step, the application is
profiled to identify tasks with a large execution time. These tasks are the com-
putational bottlenecks that should be resolved by splitting these tasks into a
sequence of computationally less intensive tasks. This step introduces addi-
tional task parallelism. The strategy continues with identifying candidate tasks
for the extraction of data parallelism. The structure of the dataflow graph is
used to find these tasks. A designer can use this information to exploit data
parallelism that may be present in the application. The parallelism extraction
strategy then continues with finding the right trade-off between the amount
of time spent on the communication and the time spent on executing tasks,

86 Chapter 4. Algorithmic modification for enhanced parallelism

i.e. the optimal communication granularity is determined. After these steps,
all potential sources of task-level parallelism are considered. However, the re-
sulting dataflow graph may contain many tasks that have a low requirement
for the computational resources, thus these tasks may be idle for considerable
time periods. Dealing with a large number of this type of tasks can complicate
the mapping of the dataflow graph on the computational resources. It is often
preferred to recombine some of the tasks to obtain a balanced workload for
the processing cores of the platform. The last two steps of the parallelism-
extraction strategy deal with this issue in an iterative way. Summarizing, the
strategy involves the following steps:

1. Identification of computational bottlenecks and consecutive splitting of
critical tasks;

2. Exploration of data parallelism for individual tasks;

3. Optimization of communication granularity between tasks.

4.3 Mixed granularity in AS VO MPEG-4 Decoding

Let us first briefly discuss the details of the original AS VO MPEG-4 decoder
for both Intra- and Inter-coded VOPs. Figure 4.3 outlines a distributed ver-
sion of a computation model for an AS VO MPEG-4 decoder. The final visual
scene can be composed of several VOs. The decoding starts with the Shape
and Texture Processing (as presented in detail in Section 3.4.1) at the left side
of Figure 4.3, followed by Ertended and Boundary padding, then applying the
Deblocking and Deringing filters and providing the final shape and texture
data to the Frame renderer. The renderer is a shared task and composes the
original scene from the video background-sprite image and several VOs super-
imposed on it.

In order to come to a decision in choosing the communication /processing gran-
ularity for MPEG-4 decoding, we briefly examine the nature of the processing
tasks. The key property of a macroblock containing shape information is that
it consists both opaque and transparent pixels. For correct motion compensa-
tion of succeeding P- or B-VOPs, such a macroblock should assign a certain
value to transparent pixels. Padding is an algorithm that interpolates trans-
parent pixels from opaque pixels inside the VO. Further details of the repeti-
tive padding will be described in Section 4.4. In contrast with the repetitive
padding of pixels, which functions at the macroblock level, the extended and
boundary padding and postprocessing filters are operating on the whole VOP.
This means that the full decoding process involves functions that operate both
at the macroblock and VOP level. These intrinsic differences in processing
granularity introduce the following limitations:

4.3. Mixed granularity in AS VO MPEG-4 Decoding 87

Input bitstream

MBtype \.
/ Dec N
Shape Texture
decoding decoding

Shape & Texture
processing

Extended
& Boundary
padding

De-blocking
filter

De-ringing | Texture

Frame(s)
render

Binary Alpha Plane (shape)

——> Frame level R
\
—> MBlevel Output scene Yy

Figure 4.3: Computation graph of the AS VO MPEG-/ decoder with padding
and postprocessing video functions.

e large buffers at the full-VOP resolution for VOP-based video functions,
e additional VOP delays between each VOP-based task, and
e unbalanced use of the communication resources.

Let us now propose an alternative for the decoding that exploits further par-
allelism in the decoding process. To this end, we propose a dataflow graph
for a parallelism-enhanced implementation that is still compatible with the
straightforward implementation of an MPEG-4 decoder.

1. We split the original repetitive padding into two tasks: pre-padding and
texture padding, because the function is in the critical path and shape
information needed for processing is available at earlier stages of process-

ing.

2. We propose to increase the parallelism for the extended padding by fa-
cilitating synchronized processing, thereby enabling macroblock-based
pipelined processing.

3. We introduce data-level parallelism to process the individual chromi-
nance VOPs in parallel with the luminance VOP. This type of parallel
data processing holds for the following tasks: Inverse Quantization (1Q),
Inverse Discrete Cosine Transformation (IDCT), Texture Motion Com-
pensation (Texture MC), Repetitive Padding, Extended Padding, and
postprocessing filters.

The above aspects are discussed in detail in the following sections, where also
the increase of parallelism is explored and experimentally validated.

88 Chapter 4. Algorithmic modification for enhanced parallelism

4.4 Repetitive Padding

4.4.1 Task splitting of repetitive padding

The compliant MPEG-4 standard bitstream containing coded AS VOs has the
following structure. For each time instant of the video object, the stream has
encoded header information followed by shape and texture information of suc-
cessive 16 x16 pixel macroblocks. Due to the fact that the bitstream does not
contain any markers for fast allocation of shape and texture information, the
processing has to sequentially parse the original bitstream. However, we iden-
tified a possibility to increase parallelism by splitting the Repetitive-Padding
task. This task should define the values of the transparent pixels for boundary
macroblocks [16].

Input bitstream N

Output texture
Pre-
Padding

Figure 4.4: Modified version of shape-texture decoding with the explicit split-
ting of repetitive padding into two tasks (Pre-Padding, Rep.
Padding).

After detailed analysis of the computation flow, we have found that the shape
data is the most important element for the repetitive padding task. This hinted
us to start processing of shape data immediately after the CAD task that
decodes shape information. This results in a modified computation graph, in
which the original repetitive padding is split into two tasks. The first subtask,
which is in the computation graph denoted by Pre-Padding, identifies for each
pixel if its value has to be taken from the original position, or whether its
value should be copied from the border of the video object. In case it is copied
from one or two borders, we assign a pointer to the special buffer for padded
pixel values. The padded values are computed after the texture decoding
provides the texture data. This task is executed in parallel with the texture
processing. The functionality of the complementary task is to provide the
original functionality of Rep. Padding by filling the above-mentioned pixel
buffer with the real texture values and just copying the data to the output
buffer of the repetitive-padding task.

4.4. Repetitive Padding 89

4.4.2 Evaluation of modified repetitive padding

Figure 4.5 compares the original computation requirements with the algorithm
modified for task splitting. The figure shows only a part of a complete sequence
simulation, but the reduction in computing cycles is well visible. The minimum
and maximum reduction was measured for that complete simulation. It was
found that the depending on the data contents of a macroblock, the obtained
reduction in computation requirements is between 11.6% and 68.5% of the
original algorithm for repetitive padding. With the “Dancer” test sequence we
achieved on the average a substantial 58.1% savings in computation effort as
compared to the original algorithm for the luminance component. The savings
even further improve when applying the data-level parallelism described in
Section 4.6. The bold line depicts the contribution of the original sequential

o Computation complexity of Repetitive padding
5 T T T T T T T

15 = —=nodified algorithm {padding ¥ .Cr.Ch)
[—-—--Criginal algorithm (padding of ¥ signal) | |

— Criginal algorithm {padding of ¥,Cr,Ch) |

Complexity [clockeycles]
=

,'"i’- i ‘

- h 3 S

gy EFN [T oa i

5 P TR W APV IFTY [T RN -\,,'1!' AL a4 s R A

[V R N S N N AN i3

7 ¥ PR A At A A WA R W I LAY
¥ AR W W W T ¥ PR

3

-
W
,

‘i
Vo

i) 1 1 1 1 1 1 1
] 10 20 30 40 50 60 70 60

Boundary macrablock index

Figure 4.5: Ezample of time interval showing the computation complezity of
the original repetitive padding and the modified version (for the
“Dancer” sequence).

implementation for all signal components and the punctuated line shows the
original padding for the luminance component. The modified implementation
for one component (taking into account the advantage of data-parallelism) is
visualized by a dotted line at the bottom of the figure. The optimized reduction
in computations varies between 64.1% and 82.7% with an average of 71.6%.
Further, it can be noticed that the remaining task after splitting (denoted as
Rep. padding) has now constant computational requirements. This occurs
because the computational variation in the data-dependent component has
moved to the Pre-padding task. The remaining part involves only copying of
texture data from buffered positions calculated earlier from BAB data.

90 Chapter 4. Algorithmic modification for enhanced parallelism

4.5 Block-level pipelining and synchronization for ex-
tended padding

4.5.1 Optimization of communication granularity

The MPEG-4 standard defines the extended padding functions after the com-
plete VOP was processed by previous tasks from the computation graph (see
Figure 4.3). We modify this algorithm as follows. Instead of processing VOP
by VOP, the tasks can also be carried out on slices of macroblocks, thereby
enabling smaller granularity of processing.

Processing
of shape
and texture

Figure 4.6: Data dependencies for block-level extended padding. The ex-
tended padding can process a macroblock only when the next
macroblocks at the right and below are fully decoded and padded.

By introducing synchronization tokens and a corresponding modification of
the processing tasks, the granularity of these tasks can be reduced from the
VOP level to the macroblock level. To provide a macroblock-level task pipelin-
ing, we propose extra synchronization between the macroblock-type decoding
task and the extended-padding task. The extended-padding task is idle un-
til it receives the synchronization token from the macroblock-type decoding
task. Furthermore, the extended padding can start padding of the macroblock
only when the complete slice of macroblocks and the macroblock below the
extended-padded macroblock is fully decoded and repetitively padded (see the
gray blocks following the Extended-Padding block in Figure 4.6).

With respect to the latency involved by changing the granularity of extended-
padding processing, the following can be stated. The contribution to the crit-
ical path of the whole decoding process is lowered to only memorizing the
upcoming row of macroblocks for extended padding (see Figure 4.6), as com-
pared to the processing of the whole VOP in the straightforward implementa-

4.5. Block-level pipelining and synchronization for extended padding 91

tion. This is explained by referring to the original extended padding algorithm,
which is visualized in Figure 2.18 and explained below that figure. The applied
priority assignment starts at the block below the padded block which asks for
the upcoming row of macroblocks.

4.5.2 Evaluation of the modified extended padding

Figure 4.7 portrays the experimental results comparing the original extended
padding algorithm with our proposed modified algorithm running on slices.
We have evaluated both algorithms by executing them on an clock-cycle-true
ARMTTDMI processor simulator. The compiled code is identical to the one
used in the final mapping. Let us discuss the results of the “Singer” test se-
quence in more detail.

it Computation complexity of Extended padding
= B T T T
@
[=)
=
2
S
E=R-1 8 E
=
= Original algorithm
B — — -Modified algorithm at block level
E 4= ——=Block-level algarithm for ¥ component |
8
s |
Sk i
1k |
1] | | 1 1 |
5 10 15 20 25
YOP index

Figure 4.7: Ezxperimental results of modified extended padding on the
“Singer” test sequence

The contribution of the original implementation of extended padding to the
overall latency was on the average 537.9 clock kilocycles per VOP containing
60 macroblocks. After the modification of the algorithm, the resulting con-
tribution was on the average only 75.3 clock kilocycles and by introducing
data-level parallelism and performing the individual color-component process-
ing in parallel, it further decreased to 65.8 clock kilocycles. This represents
only 12.2% of the contribution of the original algorithm to the overall latency.
These results prove the attractive potential of our approach for modifications
aiming at enhanced parallelism.

92 Chapter 4. Algorithmic modification for enhanced parallelism

In general, the latency reduction depends on the fraction that the last slice
occupies with respect to the vertical VOP height in slices. A small VOP width
gives a small slice length and if the VOP height is large, the VOP latency
drops significantly. The above-mentioned slice length fraction is varying be-
tween 5% of the VOP size (“Singer” sequence) and 50% of the VOP size (“Fish”
sequence). A sequence can have the aforementioned fluctuation even within
the same video material. However, for most of the processed sequences the
remaining fraction is below 25%.

Additionally, the effect of changing the communication granularity from the
original VOP-size towards the macroblock size also decreases the requirements
on the internal buffer sizes. The straightforward implementation assumes that
data are shared between processing tasks. Therefore, a straightforward im-
plementation of Extended padding on a multiprocessor architecture without
shared memory requires an internal buffer for the whole VOP. The parallel
implementation requires the processed data to be fully stored in the internal
memory of individual processors. In our new approach, the required buffer size
is minimized to just one slice of macroblocks plus one macroblock to perform
the MPEG-4 compliant extended padding algorithm.

4.6 Data-level parallelism within the full decoder

To further increase the throughput of the decoder, we also employ data-level
parallelism. For each color component, we instantiate a separate pipeline of
tasks, so that the execution of the Inverse Quantization, IDCT, etc., can start
as soon as the decoding of coefficients for the luminance plane has finished.
The subsequent processing of Cr and Cb chrominance components runs in
parallel with the further processing of the luminance (Y) plane. Due to the
smaller size of the chrominance planes, the splitting of chrominance parts to
individual component processing is not decreasing the length of the critical
path of the computation graph (no latency decrease), but it may be useful for
better utilization of computation resources.

The critical path, depicted with bold arrows in the graph of Figure 4.8, contains
the tasks for the original bitstream parsing for the decoding of shape informa-
tion and the decoding of Y texture data. The decoding of texture information
is most complex for the luminance component, due to the fact that the AS
VO MPEG-4 standard currently supports only the 4:2:0 sampling. Figure 4.8
portrays the complete graph that contains also the proposed modifications as
discussed in Section 4.4 and Section 4.5. The critical path through the compu-
tation graph that effects the latency of the complete decoding has the following
two parts:

4.6. Data-level parallelism within the full decoder 93

Extended &

> - |
» Repetitive Boundar
4 Y
Padding Y Padding Y

Deblocking &
Deringing Filter
Y

Pre-Padding
16x16

Pre-Padding
8x8

Renderer

Extended &
Boundary
Padding U

Repetitive
Padding U

Deblocking &
Deringing Filter
V]

—> " Extended & Deblocking &
Repetitive Boundary Deringing Filter

Padding V Padding V v

Figure 4.8: AS-VO compliant MPEG-4 decoding computation graph employ-
ing task-level and data-level parallelism. Bold arrows indicates
a critical path. The vertical critical path at the left originates
from the repetitive decoding of each macroblock.

e Bitstream parsing: Context Arithmetic Decoding (CAD), Coded Block
Pattern (CBP), Motion Vector decoding (MvD), DCT coefficients decod-
ing (Coeff Dec Y);

o Texture processing for the luminance component: Inverse Quantization
(IQ), Inverse Discrete Cosine Transformation (IDCT), Repetitive Padding
Y, Extended and Boundary Padding Y, Deblocking and Deringing Filters
of the Y component.

The complexity of the Pre-Padding is significantly lower than Texture Motion
Compensation (Texture MC Y) and similarly, the tasks Coef Dec Y and 1Q Y
are together less expensive than Texture MC Y (see the complexity discussion
in Section 3.6). This explains why these tasks are not included in the critical
path. It should be noted that the indicated bold path remains critical, only
under the following condition: the tasks for different color components are
executed on the same type of processing cores and at the same clock frequency.
In other words, if one of the processor cores operates at a lower frequency, then
the critical path may change to functions that are executed on that processor.

94 Chapter 4. Algorithmic modification for enhanced parallelism

4.7 Sprite decoding on CELL processor

The remaining part of this chapter is devoted to adding and exploring a com-
plementary part of the AS VO MPEG-4 decoding algorithm. This addition
completes the decoder to provide full object-based video scenes containing both
objects and background information. Prior to exploring the algorithm and its
optimal mapping, we present an alternative platform for execution. This pro-
cessor was adopted for sprite coding experiments, because it was claimed that
this platform would be capable of executing AS VO MPEG-4 decoding and
it was commercially available. With a bird’s eye view, the CELL processor

SPE memo64k

mem(lec wacce -

\
\
\
2]

i@ _ < £
\l memo64Kk] Write E <
| N\ Data = -E ::
"“-‘. \ Pre-decoded - -
\ memo64K| \ Address =» 3
- \
= rabl N
' \
© | memeay \
| To rdb41, theny
\ E to Data Flow <=~ o (O)
\ memG64K] To rdbl ovr rdb2, then to ILB/DMA
| a2 1y @ @ @ B ©
.“ Sum Dist. |Final | Array | RL 4:1 Mux
Decod Decode | Access | & Dist.| & Dist.
Data Flow rdb41
rdb41 to DataFlow
meh/

rdb1/2 to DMA/ILB

Figure 4.9: Local memory structure in an SPE of the CELL processor (taken
from [32]).

has a similar tile-based architecture as the experimental platform explored
elsewhere in this thesis. Our initial analysis has revealed that the CELL pro-
cessor system [38] meets computational requirements of the block-based AS
VO MPEG-4 decoding. However, the limited size of the local memory requires
a modification of the MPEG-4 sprite-decoding algorithm. The implementa-
tion of a first-generation CELL processor consists of a 64-bit Power Processor
Element (PPE) with its L2 cache and multiple Synergistic Processor Elements
(SPEs). Each SPE has its own local memory [32]. Synergistic aspects in
processing means that individual processing tiles are directly connected and
perform pipelined execution of distributed algorithms. As shown in Figure 4.9,
an SPE unit contains four 64 kByte memory blocks.

4.8. Background Sprite Decoding 95

A major cost problem of the MPEG-4 decoding algorithm is the buffering re-
sulting from accumulating backgrounds views of the decoded scene background.
The accumulated background image, called sprite, requires a significant mem-
ory for construction. The visual Main Profile Level 2 (MP@L2) of the MPEG-4
standard bounds the maximum size of a reference image for the sprite recon-
struction to 1584 MacroBlocks (MBs) at CIF resolution, which involves about
608 kByte (a single CIF video picture contains 396 MBs) [36]. The target
processing-tile memory limitation of 256 kByte can handle decoding of rect-
angular video pictures or arbitrary-shaped video object decoding, but it can-
not internally buffer the complete reference sprite image. For this reason, we
present a new algorithm that decodes MPEG-4 compliant sprite-background
sequences, while satisfying the target platform constraints on memory. Fur-
thermore, it also exploits data-level parallelism. As a further benefit, it will
enable the mapping of the full decoder on the memory-constrained platform.
In the next section, we will present the modified sprite coding algorithm.

4.8 Background Sprite Decoding
4.8.1 Original MPEG-4 algorithm

A complete object-oriented video sequence requires the reconstruction of the
background on top of which individual video objects are superimposed. The
principles of the background sprite reconstruction have been presented in Sec-
tion 2.5 of this thesis. The affine transformation of the sprite is modeled as a
mapping between the decoded sprite plane and a current view plane. In the
standard, the affine transformation is regularly called warping. This transfor-
mation is described by the following formulas:
;Moo - T+ moe1 - Y + M2 ;Mo T+ mi1 -y +mig

T = , = . 4.1
Mmoo - T +ma1 -y +1 Y Mmoo - T +moy -y +1 (4.1)

In the MPEG-4 standard, the sprite decoding consists of four steps: shape/texture
decoding, buffering of the complete sprite, decoding of the warping vector and
geometrical warping (Figure 4.10). The received coded I-VOP (Intra-coded
Video Object Plane) contains coded data for shape and texture of the refer-
ence sprite. The received coded S-VOP (Sprite Video Object Plane) contains
coded warping vectors.

The Shape/Texture Decoding task in Figure 4.10 decompresses the coded sprite
data and stores the luminance, chrominance and grayscale alpha data of a
sprite in two-dimensional arrays. The width and height of the luminance array
are specified by the syntax parameters sprite_width and sprite_height,
respectively. The resolution of the sprite-reference image is usually several
times larger than the video-scene resolution, so that most of the complete

96 Chapter 4. Algorithmic modification for enhanced parallelism

I-VOP
Bitstream
Shape / Texture .
EE—— ¢ -
Decoding Sprite Buffer
A
|
|
S-VOP |
Bitstream Shape / Texture r
> Update Decoding
Y
- g > Warping | » Reconstructed
Decodna Samples

Figure 4.10: Original MPEG-4 decoding of background sprite.

background of a short sequence is captured. The chrominance and luminance
planes are stored in the so-called Sprite Buffer and are used as references for the
actual background reconstruction corresponding to the current camera view.
The actual view-reconstruction process consists of decoding the warping vector
from the coded data and applying the previously defined warping process onto
the reference image in the Sprite Buffer.

4.8.2 Modified sprite-reconstruction algorithm

The implementation of the above-described algorithm has the inherent prob-
lem of a large reference sprite image that cannot be contained by the local
memories of the SPE elements. The algorithm requires about 2.4 times more
storage than the 256 kByte available at individual SPE cores. For this reason,
we have designed a new algorithm that remains MPEG-4 compliant and addi-
tionally allows a higher degree of both data- and task-level parallelism.

The new algorithm exploits the partitioning and optimal buffering of sprite
data, because it intrinsically involves a high amount of MBs. At this point,
the reader may argue that a solution would exist in storing the sprite in a large
off-tile memory. However, this solution will inevitably lead to a large latency,
as the access to off-tile memory locations requires a considerable access time.
The extra latency will decrease the real-time behavior of the sprite-decoding
task.

The primary difference is in the way how MB data are stored. The original
approach keeps the whole reference image in an uncompressed form. Instead,
we propose to keep the reference sprite image in compressed form and decode
only the part that is required for the reconstruction. As a consequence, the
new decoding process is decomposed into four steps: (1) the construction of
an information matrix for random access to MB data, (2) decoding of warping

4.8. Background Sprite Decoding 97

vectors, (3) decoding of the required MB texture data, and (4) warping of the
actual sprite.

Figure 4.11 portrays the block scheme of the new approach. Let us simplify
the sprite decoding to the situation when the bitstream contains only one
fully encoded sprite image and it is followed by a number of S-VOPs without
updates of the texture/shape information. In a longer sequence with multiple
sprites, this cycle is repeated when a new sprite image (I-VOP) is received.
The decoding of the actual background involves the following steps:

1. Parsing of the I-VOP bitstream and construction of the Random Access
Data Matriz (details are given in the next section).

2. Decoding of the warping vectors from an S-VOP.

3. Calculating the bounding box that defines the actually referenced sprite
view.

4. Fetching and decoding of MB data that was not available in the previous
referenced image for the actual bounding box.

5. Recalculating the image origin.

6. Warping the current view of the sprite image.

I-VOP
Bitstream -
Building Random | (SESE Lt Decoding of MB
Access Data Matrix & RAD Matrix Texture/Shape
Buffer
A A
S-VOP
Bitstream Update of Random
Access Data Matrix

Calculation of

I
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
:
Active Area | y
. I
Warping Vector ! Warping Reconstructed
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Decoding Samples

| Processing Element A | Processing Element B

Figure 4.11: Decoding diagram of the modified background-sprite reconstruc-
tion with a proposal for task-to-processor assignment.

In Figure 4.11, the vertical dotted line indicates that the algorithm has to be
split into at least two parts and mapped onto two processing elements. This
split satisfies the SPE constraints on the memory size (256 kByte). More anal-
ysis and experimental evidence on the modification are given in Section 4.10.

98 Chapter 4. Algorithmic modification for enhanced parallelism

v/ v/ Matrix of pointers to original bitstream
p j¢]

c[p]J]|K[E[L] & DC/AC prediction

lafblc] d [e[flg|h|. [k I [m[n]

Original coded bitstream

Figure 4.12: Data organization for the modified sprite decoding algorithm,
where the arrows indicate pointers to the required data.

4.9 Construction of MB data Matrix for Random
Access

The MPEG-4 compressed bitstream does not contain markers for accessing im-
age data at a macroblock granularity level. At the first stage, we construct the
MB access matriz for access to the bitstream of MB-compressed data. The
texture processing is performed in three steps: DC/AC prediction based on
the previous neighboring blocks, decoding of DCT coefficients and IDCT. To
provide random access to the MB data, two approaches are available. First,
the processing is organized such that data is buffered in matrices of 8 x 8 DCT
coefficients. Second, an alternative is to buffer macroblock DC/AC predictors
and postpone the decoding of DCT coefficients until the moment that the MB
is required for the warping process. Since in the first approach the target ma-
trix for storing DCT coefficients has the same size as the complete sprite, we
have adopted the second approach in which MB data are kept to save memory.

Figure 4.12 exhibits the data organization for the modified sprite decoding al-
gorithm. Note that memory blocks F, L containing pointers are gray, because
these blocks require the decompression of encoded MB data (e, 1 in the figure).
The calculation of the total active area (Step 5 in the algorithmic description)
leads to the processing requirements for the e, 1 MBs in the further warping
process. The algorithm inspects the matrix of pointers to identify the positions
in the original coded bitstream buffer.

4.10. Experiments and results of modified sprite decoding algorithm 99

A major gain in the use of pointers for the decoding process is achieved during
the reconstruction of the first frame (I-VOP). The MPEG-4 standard algorithm
performs DC/AC prediction, DCT coefficients decoding and IDCT on the com-
plete reference image. Instead, we perform first two simple processing stages
(without buffering of DCT coefficients) on the whole image and only the last
step performs actual full decoding but on a restricted image size. This last step
introduces an extra overhead caused by the redundant decoding of the sprite
area that remains identical between two consecutive sprite VOPs. However,
this overhead can be removed if we a priori obtain the warping vectors for the
first image-to-texture parsing and calculate the new active area in the second
image. When using this modification, the number of MBs for the second image
IDCT transformation is reduced by an impressive 76%. Additionally, we can
speedup the texture processing by instantiating subsequent DCT coefficient
decoding and IDCT transformation with parallel MB decoding.

4.10 Experiments and results of modified sprite de-
coding algorithm

We have implemented the modified version of the MPEG-4 sprite decoder.
Figure 4.13 shows the results of decoding the well-known MPEG “Stefan” se-
quence. The amount of required MBs for decoding processing is illustrated at
the left of Figure 4.13 by the (noisy) bold line at the bottom. The decoding of
the background reference sprite requested for the first sprite image extracted
from the complete reference image (in our case 225 MBs) is shown at the top
of the same figure. For this test sequence, the maximum number of uploaded
MBs for the decoding of the active sprite area was 41 MBs.

In Figure 4.14, we show the required buffer sizes in terms of MBs of the original
and the new algorithm. The original decoding requires 1,701 MBs stored in
an uncompressed way (1,584 is the maximum, but multiple 16-pixel MB grid
alignments increases this number to 1,701). The maximum size of the refer-
ence sprite never exceeded 400 MBs. It was found that the original algorithm
requires 4.25 times more memory than our modified algorithm. The figure also
shows that our algorithm requires small bursts of blocks for decoding during
the scene, but these bursts do not accumulate to a significant number, so that
the total remains much smaller than the big burst required for the original
algorithm. In the experiment, the amount of memory to store the original bit-
stream was 37.44 kByte and the resulting random-access data matrix needed
7 kByte of memory (fixed small memory space).

100 Chapter 4. Algorithmic modification for enhanced parallelism

Referenced sprite image

.
in
=

5} T T T
=
]
i=y
240 - o 1
3 i ! i
=3l i L _i
] 1 !
[i i~ T 1 H
1] S o . H [R o
! it i i
250 - l.i H [N 4 4
200
Required macroblocks for update
150 —-=-Complete image size i
100 -
50 -
o Lﬁnm ‘ L n waba w™Maa m
0 50 100 150 200 250

VOP index

Figure 4.13: Processing of “Stefan” sequence by the modified algorithm.

Required number of block decodings
2000 T T T T T T T T T T

1800 -

[IModified algorithm
I Criginal MPEG-4 algorithm

Macroblocks

1600

1400

1200

1000

§00

600

400

200

1 1 | 1 1 = | 1 = 1 =l 1
g 9

10 " 12 13 14
YOP index

Figure 4.14: Comparison of the required number of macroblocks for sprite de-
coding using the original and the modified algorithm.

However, compared to the original algorithm, we found that our proposal has
the disadvantage of occasional extra decoding of the same MBs in the case
of special background movements. Such a movement occurs when the camera
moves away and then back to the view that was used in a previous sprite
decoding. When the camera returns to the old view, the same background has

4.11. Conclusions 101

to be decoded again. This disadvantage depends on the camera motion in the
background. During our experiment with the “Stefan” sequence, we observed
that the repetitive decoding of the same sprite involved 17% of extra MBs
decoding iterations in terms of computation.

4.11 Conclusions

We have shown that a parallelism-enhanced implementation of AS VO MPEG-
4 decoding on a multiprocessor platform offers significantly higher throughput
due to the large reduction of the critical path, as compared to a conventional
implementation. The chapter has discussed techniques to increase the task-
level and data-level parallelism in the MPEG-4 decoder. The task-level par-
allelism is in general achieved by splitting a task on the critical path. The
data-level parallelism addresses parallel processing of individual signal compo-
nents. We have evaluated our algorithms experimentally on a clock-cycle-true
simulator of a multiprocessor architecture using ARM7TDMI processors.

Repetitive padding in MPEG-4 decoding is the primary candidate for intro-
ducing task-level parallelism, because shape data are available at earlier stages
of processing compared to texture data, so that processing can be already ini-
tiated. We have proposed to split this task into two tasks: the filtering of the
shape data and the copying of pixel values. Only the second task remains at
the original place in the critical path. This decreases the original computa-
tional complexity of the repetitive padding to 40.9% of the original task. By
applying additional parallel color-component processing it drops to only 28.4%
on the average.

The modification of the Extended Padding algorithm has two major impacts.
The first is in the reduction of the overall decoding process latency. The stan-
dard describes the extended padding as postprocessing after the whole VOP
is fully decoded. By changing the granularity to block level and introducing
a new synchronization mechanism that is aware of having sufficient data for
processing, we obtained an execution having only 12.2% of the original algo-
rithm execution cycles. Additionally, the task-specific buffering is maximally
one slice of macroblocks of the image resolution plus one macroblock. For ex-
ample, at CIF resolution, this involves only 5.8% of the original internal buffer.

The value of the first part of this chapter is in the elements and strategy for
systematically exploring parallelism. We have provided a strategy to exploit
the parallelism that is generally available in multimedia coding algorithms.
In the study, the identification of the critical path was carried out manually.
We envision that such a manual optimization can be conducted by automated

102 Chapter 4. Algorithmic modification for enhanced parallelism

tools for application analysis in the future. In order to realize this, the de-
tailed knowledge of data availability in the data-flow graph is indispensable.
The generalization to increase parallelism can be summarized as follows. First,
all data inputs of a task on the critical path are evaluated for being available
for processing. If some inputs are available at an earlier stage, then we split
the task that operates on these data and exclude it from the critical path.
Second, we unify the computation granularity. Third, explore the parallelism
of individual component processing.

In the second part of this chapter, the redesign of the background sprite algo-
rithm was addressed in order to map it onto a CELL processor. The modified
algorithm features minimum use of local memory in the processing elements of
the target processor network. A second feature is that it is based on construct-
ing a new special information matrix to support random access to MB-coded
data, which enables independent MB processing. This potentially allows de-
coding at more processing elements, thereby increasing the data-level paral-
lelism. It was shown that the required memory reduces with a factor of about
four, with only 17% computation overhead due to repetitive MB decoding for
the complete sequence. It should be noted that this concept using a special
mapping matrix can be reused for other applications as well. For example, any
kind of processing on a variable-length coded data stream can be split up with
the same principle, thereby facilitating enhanced parallelism.

When taking a broader view on the results of this chapter, we can remark that
the presented techniques on extracting the parallelism suit any application
domain and the parallelization techniques like task splitting and memory opti-
mization, are not unique for our problem statement. However, what is special
in our work is that we have mapped advanced multimedia algorithms onto a
multiprocessor network. When analyzing why the task splitting and memory
organization results were so successful, we have come to the conclusion that
this is because we have redistributed the computational task over the network
and at same time equalized memory and computational load. The result is an
application mapping that fits much better to the multiprocessor network.

CHAPTER

Hierarchical Quality-of Service
approach

This chapter structures the problem of QoS management for a tile-based mul-
tiprocessor platform, such that the individual application control is abstracted
from the overall system control. This leads to a concept of two management
layers that are communicating with each other and finding a balance in the nego-
tiation on resources. For the proper QoS management for AS VO MPEG-/ im-
plementation, we introduce task-level scalability properties into the algorithm.
The chapter concludes with an optimization algorithm assigning a quality level
to a set of parallel executed scalable applications. This optimization algorithm
was experimentally validated with a setup of four applications in parallel, where
it was shown that the quality can be actively controlled to the benefit of indi-
vidual applications.

5.1 Introduction

The target multiprocessor NoC platform, which is executing a number of mul-
timedia applications in parallel, requires an overall system control to ensure
stable performance with the correct quality settings under various platform
conditions. Unfortunately, this overall control task cannot be carried out by
a conventional operating system, because it lacks the knowledge about the
desired overall system usage and it has no notion about the meaning of the
quality of the individual applications and the quality of the complete system.

103

104 Chapter 5. Hierarchical Quality-of Service approach

It is evident that a special controller is needed to safeguard the quality of appli-
cations under various circumstances. The controller will be special as multiple
applications will be executed in parallel.

A second aspect of the previous problem statement is the embedded form of the
target system. For embedded applications, there will be system constraints on
the available computing power and other resources. If the computational load
becomes too high for the platform, we would like to reduce the effort involved
for particular tasks without the complete abortion of the job execution. In
order to do this in a quality-controlled way, we need two elements.

e The multimedia applications should have scalable properties in terms of
performance and computational effort.

e The platform should be able to control and monitor a number of parallel
applications and their resource usage.

The conclusion of this discussion is to implement a special Quality-of-Service
(QoS) system that is capable to handle the control aspects dealing with the
resource usage of multiple applications.

Current status of many system realizations is far from the above system defini-
tion. The mostly used mappings are static and based on dedicated hardware,
so that they obstruct the re-usage of system resources. This aspect does not
match with an application characterized by a varying number of objects and
their sizes such as in AS VO MPEG-4 decoding. The consequence of such
an object-oriented coding application is a variable resource-usage requirement
during processing, thereby asking for a platform that supports this feature.
This has motivated our research on designing a Quality-of-Service manager for
the target multiprocessor system. QoS control has been subject of research
already for a number of years. Therefore, we concentrate on the part that
is usually missing in this type of research. In our case, we discuss multiple
objects and tasks running in parallel on a multiprocessor platform. This cov-
ers the case of a single advanced application or a set of MPEG-4 decoding
applications executed in parallel. This problem statement is a new element in
this thesis and distinguishes itself from previous work on QoS management.
Therefore, we focus particularly on the video-application part of the overall
resource management.

In order to make the application suitable for QoS control, we first introduce a
form of scalability into the existing AS VO MPEG-4 decoding algorithm. This
form of scalability distinguishes several scalable tasks and tasks that can be

5.1. Introduction 105

optionally omitted. Thus, scalability is achieved by task switching. This algo-
rithm will be used in further experiments within this chapter. The author is
aware that the proposed approach represents only a limited form of scalability.
However, the design of a fully complexity-scalable decoding algorithm is a task
of its own and beyond the scope of this thesis. The purpose of this chapter is
to come to a new concept for multiprocessor QoS control.

Let us now briefly outline the QoS management that is proposed in this chap-
ter. In order to allow single and multiple video applications in parallel to be
controlled with the same QoS concept, we introduce a hierarchical QoS archi-
tecture, where a Local QoS controls an individual application while a Global
QoS controls the complete set of active applications and optimizes the sys-
tem behavior. For this purpose, we define a global cost function. This global
function controls the set of applications and determines the overall system be-
havior. It should balance the offered quality of individual applications and their
corresponding resource usage, while maintaining overall system performance.
The model of selecting quality levels and assigning resources is supported by
a heuristic optimization algorithm that will be executed at runtime.

For a single application, the Local QoS controls the quality. As video objects
can change over time in size, shape and texture content, the processing require-
ments are more variable than with frame-based video processing. Our Local
QoS mechanism relies on the earlier results of this thesis, i.e. the execution
times of the timing and bandwidth models from Chapter 3 are actualized with
the results of the previous decoding iteration. Some experimental evidence
will be provided in Section 5.3. This type of resource-usage modeling is tak-
ing the varying requirements on computation into account, e.g. size of video
objects. In general, the Local QoS control can use any suitable resource-usage
prediction and is not bounded to our parametrical models. An alternative for
resource-usage prediction is to apply a statistical model of the execution, such
as used in e.g. [80].

The remainder of this chapter is structured as follows. Section 5.2 discusses
the importance of tasks for the AS video-object reconstruction and defines
the quality levels of our target application. Section 5.4 explains our hierarchi-
cal approach for QoS and presents a model of runtime resource management.
Section 5.4.4 defines the optimization algorithm to maximize the overall cost
function. This model was experimentally tested and results are discussed in
Section 5.5. Section 5.6 summarizes the results of this chapter.

106 Chapter 5. Hierarchical Quality-of Service approach

5.2 Development of scalability of AS VO MPEG-4
decoder

5.2.1 Scalability overview and introduction of concept

QoS management for Systems-on-Chip (SoCs) has been extensively studied
for e.g. MPEG-4 3D graphics [15], wavelet coding [77], etc. The proposed
QoS management approach computes the resource utilization as an algebraic
function of the quality settings, based on e.g. the number of graphical triangles
to be processed, or it explores the temporal scalability of video processing [23].
The following approaches for implementing scalability at receiving terminals
have been published.

e Spatial scalability - the sequences are encoded at different spatial reso-
lution per quality level [33, 40, 122].

e Temporal scalability - the base quality presents frames at lower frame rate
and missing frames are transmitted in enhanced quality levels [70, 119].

e SNR scalability - different quantization steps for different quality levels
are used [104, 121].

e Complexity scalability - the quality levels are scaled with the available
computational resources and different types of coding algorithms are used
per quality level. [74, 111].

e Object scalability - the scene is composed of a set of video objects from
which less important objects can be skipped and the quality of the picture
is evaluated compared to the scene with all video objects [100].

e Fine granularity scalability (FGS) - this is scalable coding of a video
sequence for communication through channels with a wide range of bi-
trates, such as the Internet [73, 112].

From the listed approaches, the most attractive approach for solving our prob-
lem statement is using complexity scalability, but the design of a fully complexity-
scalable algorithm is beyond the scope of this thesis.! An alternative choice
can be object scalability, but degrading the scene to a lower number of video
objects can completely change the semantic meaning of the scene. For this
reason we do not apply this form of scalability. Instead, we have defined a
new type of task scalability based on enabling / disabling tasks that compose
a job. Based on the importance of the task processing to the overall decoding
process, we distinguish essential tasks and non-essential tasks.

L All individual tasks have to be redesigned for complexity scalability and integrated into
an overall scalable concept of the application.

5.2. Development of scalability of AS VO MPEG-4 decoder 107

Reconfiguration Pool-request
request for available resources

Short-time available
resources

Figure 5.1: Ezample of a job with complexity-scalable tasks [74]. Scalability
18 1ndicated by diagonal arrows, and the dotted arrows and dotted
tasks that even can be skipped.

Each job, e.g. an AS VO MPEG-4 decoder, is divided into communicating
tasks. For each job and related quality level, we provide a detailed task graph,
as portrayed by the general example in Figure 5.1. For introducing QoS at
the task level, it is important to identify scalability options for each task?
(see Figure 5.1). If a job contains tasks that may be completely idle, and in
consequence, the corresponding communication resources are idle as well, they
are denoted by dotted lines and circles (Task T5 in Figure 5.1). In the sequel
of this chapter, we experiment only with the task-skipping scalability.

5.2.2 Task-level scalability of the AS VO MPEG-4 decoder

For task skipping, we classify the contribution of a task to the overall decoding
process into essential tasks and non-essential tasks. The decoding of shape
data and texture reconstruction for an object are considered essential tasks.
The second class consists of tasks that enhance the output quality: the de-
blocking and deringing filters, and tasks supporting the correct reconstruction
of the border of an object, like extended and repetitive padding. Note that the
MPEG-4 standard does not allow skipping of the padding processing. How-
ever, we have found that when padding tasks would be skipped for scalability,
compared to leaving out the complete object (the object scalability [100]), the
artifacts on borders of video objects seem to be less quality degrading in the
overall perception of the final scene. Therefore, we classify extended padding
as a non-essential task.

2Scalability can be further enhanced by also exploring the different data edges between
tasks based on a selected quality level. This is not further explored.

108 Chapter 5. Hierarchical Quality-of Service approach

Input bitstream

MBtype

Dec
Texture

2 AN >~ >\ (enhanced

// Extended 4 A / A lit
dShaé)_e dText(l;_re <~~~ & Boundary \}_ _ l, De—;)lltocking L i De'::‘tinging \'_q_u1a ity)
ecoding ecoding —— . = \ filters [ilters /|~]

' padding // Y ; \\ y !

/
~ 4 N - N 4

~ - ~

. _ . __

Binary Alpha Plane (shape)

Frame(s)
render

-\
>

Texture (basic quality)
,,,,,,,,,,,,,, = Scalable data connections

Output scene
——— Data connections

Figure 5.2: The data-flow graph (DFG) of the AS VO MPEG-4 decoder with
indicated task-level scalability.

Figure 5.2 visualizes a task DFG of the AS VO MPEG-4 decoder. The pre-
sented graph also offers optional skipping of some tasks under certain condi-
tions. For example, the extended and boundary padding task is not required
if the currently processed VOP is a B-VOP and thus it does not serve as a
reference picture (conditional skipping).

The Shape Decoding task is based on context arithmetic decoding. The Tex-
ture Decoding task in the diagram involves variable-length decoding, inverse
quantization and inverse DCT (see Chapter 2). As classified earlier, both
tasks are essential. The second large processing task, Extended and Boundary
Padding, combines the shape and the texture data and constructs the texture
information for pixels that are transparent in the current VOP. We can skip
this task in case of resource shortage. The VOP postprocessing consists of two
steps: the deblocking filter and the deringing filter (see details in Chapter 2).
Either one or both of them can be omitted to implement task-skipping scala-
bility.

At this point, the reader can debate whether task-skipping scalability is suffi-
cient for our purpose. Let us briefly discuss a few examples of further forms of
scalability. Our classification of essential and non-essential tasks is based on
the importance of the shape and texture data for the object reconstruction.
However, the MPEG-4 standard allows both lossy shape coding and lossy tex-
ture coding. Assuming that the shape of an object is more important than the
texture, then in extreme cases having several objects, the correct shape infor-
mation of a few objects can already help in the scene reconstruction without
texture in some of the objects. Depending on the shape, some artificial texture
can be added, or texture is re-used from previous frames. Similar reasoning

5.2. Development of scalability of AS VO MPEG-4 decoder 109

‘.‘l‘!
b .

(A) (B) (©)) (E)

Figure 5.3: Resulting quality after task skipping for several VO sequences.
Images from left to right,(A) original VOP, (B) enlarged view
without deblocking, deringing and padding tasks, (C) enlarged
view without deblocking and deringing tasks, (D) enlarged view
without deringing tasks, (E) fully decoded.

can be applied when the priorities of shape and texture are exchanged. These
simple examples show that scalability can be pursued in unconventional ways
to lower the required resources of an application. This can be beneficial for
e.g. mobile devices, but this form of scalability is not further explored.

5.2.3 Visual degradation caused by task skipping

The visual result of skipping the padding tasks is portrayed by Figure 5.3. The
first column contains the fully decoded video objects. The second, third, and
fourth column show enlarged views of object parts under different processing
conditions. The lowest quality is seen in the second column when only essen-
tial tasks are carried out. The third column adds the padding tasks to the
essential decoding tasks. The fourth column shows the quality improvement
when deblocking and deringing is enabled.

It can be seen that each addition to the set of essential tasks, gives a no-

110 Chapter 5. Hierarchical Quality-of Service approach

table improvement in quality. The improvement step from column (B) to (C)
is larger than going from column (C) to (E), where going from (D) to (E)
gives the smallest improvement. Table 5.1 shows the distribution of task com-
plexities in percentage of the used computation resources for different video
sequences. The addition of post-processing filters requires less resources com-
pared to including padding, which also corresponds with the growth in visual
quality.

Sequence | Shape & Text. Extended & Deblocking | Deringing
Decoding Bound. Padding Filters Filters
Singer 28.26% 6.91% 31.44% 33.39%
Dancer 26.92% 5.07% 31.15% 36.86%
News 23.21% 5.88% 44.99% 25.92%
Fish 27.37% 5.47% 35.61% 31.55%

Table 5.1: Average distribution of task complexities of VOP decoding.

5.2.4 Measurement of quality degradation

To quantitatively compare the quality degradation, we have measured the Peak
Signal-to-Noise Ratio (PSNR). In literature, the PSNR for arbitrary-shaped
video objects was defined for a scene as measuring the difference of PSNRs
between the case that a key object is inside the scene or excluded [100]. Since
we aim at a perceptive quality measurement, this definition seems not suited
for our case. Therefore, we propose to measure the PSNR of each object
individually. The PSNR is measured by first obtaining the Mean Squared
Error (MSE) of the VOP as follows

A
1
JWSEVQPZQKE:@%-BQ% (5.1)
=0

where A is the set of all opaque pixels of the VOP, i.e. the visible part of the
VOP, A is the original image and B is the reconstructed image. Subsequently,
the PSNR is derived from the M SFEyop by

2552

PSNR =10 logio0~—g——-
SNR 0 OgloMSEVOP

(5.2)
This definition holds for 8-bit video samples used in AS VO MPEG-4 decod-
ing. We have measured the PSNR for the task-level scalability examples as
presented in the previous section in Figure 5.3. The numerical measurements
are presented in Figures 5.4-5.7. These figures illustrate the PSNRs of the
task-level scalability settings for the luminance signal component. For the ac-
tual size of video objects at individual time instants, the reader is referred to

5.2. Development of scalability of AS VO MPEG-4 decoder 111

Sequence | Shape & Text. Extended & Deblocking | Deringing
Decoding Bound. Padding Filters Filters
Singer 29.05 48.07 48.75 48.14
Dancer 25.16 34.27 34.35 34.50
News 23.63 37.63 37.89 37.82
Fish 29.60 32.01 32.01 32.13

Table 5.2: Average PSNRs for various sequences using different task-level

Appendix B.

scalability settings.

PSNRs in a certain column are measured

with all functions enabled from the previous left up to and in-
cluding the functions of the actual column.

The obtained values are shown in Table 5.2. It is noticeable that decoding
with essential tasks only (shape and texture decoding) leads to a mean PSNR
of 23-29 dB. When including padding tasks the mean PSNR increases with
3-19 dB. The postprocessing filters improve the picture quality only by a very
small fraction. Note that enabling the deringing filter after deblocking for some
sequences (“Singer” and “News” sequences in the table) even results in a slightly
lower mean PSNR due to the smoothing nature of this type of postprocessing.

PSNR - "Dancer" sequence

PSNR [dB]
a

s
m

40 -

3

30+

25

— Shape & Texture
—-—--Padding
Deblocking
Deringing

100 150

200 250
VOP index

Figure 5.4: PSNR of the luminance component of the “Dancer” sequence at
CIF resolution, 25 frames/s.

112 Chapter 5. Hierarchical Quality-of Service approach

PSMNR - "Singer" sequence

EED T T T
e
i 1
= | —— Shape & Texture
O g5 — Padding -
— —--Deblocking
Deringing

k-

-

30~

A

0 50 100 150 200 250
VOP index
Figure 5.5: PSNR of the luminance component of the “Singer” sequence at
CIF resolution, 25 frames/s.
PSMNR - "Mews" sequence

EAD T T T
e
Em
oW
[0

w
7]

34

— Shape & Texture
-~ Padding

— —--Deblocking
Deringing

32

-

2
] 50 100 150 200 250 300
VOP index

Figure 5.6: PSNR of the luminance component of the “News” sequence at
CIF resolution, 30 frames/s.

5.3. Local QoS 113

PSNR - "Fish" sequence

E T T
23 -
o)
% — Shape & Texdure
o \ Padding

B/E K —-—-Deblocking N

Deringing

4

2k

30+

25

26

i 50 100 150 200 250 300

YOP index

Figure 5.7: PSNR of the luminance component of the “Fish” sequence at CIF
resolution, 30 frames/s.

5.3 Local QoS

The previously introduced quality changes by enabling task-level scalability
are controlled by a Quality-of-Service (QoS) unit. For a single MPEG-4 ap-
plication, a single QoS unit is sufficient for quality control. For example, this
unit decides which tasks are enabled or disabled. Later in this chapter, we
introduce the problem of multiple coding applications running in parallel, for
which we need a more advanced QoS concept with overall system control. We
now first study the simple case based on a single application. The control unit
for that application is called Local QoS.

5.3.1 Local QoS concept

This section deals with the QoS control for an individual application. This
so-called intra-application control allows to separate the control of individual
applications from the control of the total system. At the compile-time design
phase, we require analysis of the resource usage for all quality settings of each
job to measure the behavior of the application under different circumstances.
Using these measurements, the Local QoS can provide appropriate control of
the application at runtime.

114 Chapter 5. Hierarchical Quality-of Service approach

Qmax, Qlobal QoS

Reconfiguration request

Local QoS

Evaluator

Input data

Pool request for temporary
available resource

TS

Best-effort allocation

Resource
estimator

Statistics
of the execution

Runtime
monitors

Computation
parameters

Functional
part of job

Figure 5.8: Details of Local QoS components and the interaction with other
layers.

In Figure 5.8, the Local Qos unit contains a Resource Estimator that is respon-
sible for runtime estimations of resource demands, depending on the input data
and the characteristics of the platform. An FEwaluator module compares the
estimation of the required resources with the actually reserved resources for
the job. Based on this evaluation, it schedules the activation of a job, or fires
a request for modifying the resources to the Global QoS manager, which will
be introduced later in this chapter.

5.3.2 Operability of Local QoS for AS VO MPEG-4 decoding

Figure 5.2 portrays the Local QoS connected to the functional part of the ac-
tual job. The Evaluator in the Local QoS periodically observes the difference
between the estimated resource requirements and the actually used resources.
Based on the estimation error and input data characteristics, the Local QoS
unit handles two types of situations.

The first situation aims at controlling short-term variations of the resource
utilization. To compensate those variations in the case that some of the tasks
are scalable, the Local QoS manager can change their local quality settings.
If this step does not sufficiently reduce the resource needs, the Local QoS can
disable some steps of the decoding process by task skipping (e.g. a deblocking
filter). The second situation occurs when the change in required resources
has a long-term nature that needs control, e.g. the size of an object changing
significantly. This case will be covered later when adding Global QoS control.

5.3. Local QoS 115

5.3.3 Resource-usage prediction of VOP decoding

The efficiency of the Local QoS control relies on the accuracy of the Resource
Estimator block in Figure 5.8. Parametrical timing models as presented in
Chapter 3 provide high accuracy, but the amount of parameters (for shape
and texture reconstruction the model contains 17 parameters) needed for every
macroblock seems not practical for periodic transmission within the video data.
Therefore, we propose the following technique for obtaining the prediction.

1. The parameters are measured and inserted into the “user data” as part
of the first VOP of the video object (the refresh rate can be chosen low
enough to avoid too much overhead).

2. The prediction for the first VOP is calculated using the timing and band-
width parametrical models as introduced in Chapter 3 and decoded pa-
rameters from the “user data” part of the input stream.

3. The prediction is used for the interaction with the Global QoS manager
and the corresponding allocation of resources.

4. The parameter values of the actual decoding are extracted by the de-
coder.

5. The new model is calculated based on the measured parameter values
from the actual decoding.

6. The size in macroblocks of the next VOP is decoded from the next VOP
header.

7. The prediction is made by proportionally adjusting the parametrical
models to the size of the next VOP. The resources are planned according
to the proportionally updated model settings. Return to Step 3, unless
the parameters are retransmitted.

A more formal description is now summarized. Let us denote p(t;) as the
prediction of the resource usage of the VOP decoding, Nasp(t;) represent the
amount of macroblocks composing a VOP at time ¢;, and m(t;) the measured
amount of actually used resources. The prediction of the resource usage of the
next VOP is based on the following equations:

p(tiv1) = m(t;) + Ap(titr), (5.3)

Ap(tii1) = C - (Nyp(i + 1) — Nasp(i)). (5.4)

By combining the above equations, the prediction of the resource usage of the
next VOP at time t;11 is obtained by:

116 Chapter 5. Hierarchical Quality-of Service approach

] \ Dancer \ Singer \ News \ Fish \ Stefan \

VOPs 250 250 300 27 240
Rel. error > 10% 34 36 0 5 82
Rel. error > 20% 10 6 0 2 14
mean rel. error 5.31 4.43 1.54 | 647 8.25
std. deviation o 7.39 5.40 1.41 | 8.01 7.11

Table 5.3: Performance of prediction model at VOP level for various se-
quences with statistics of the prediction errors.

p(tiy1) = m(t:) - (Narp(i +1)/Nyup(2)- (5.5)

We have statistically evaluated the prediction model introduced above. Ta-
ble 5.3 shows the measured mean value of the relative prediction error and the
standard deviation of the relative prediction error for the five test sequences. It
can be seen from the table, that the prediction model has a reasonably accurate
prediction, since the mean relative error is small and the standard deviation is
a small fraction, typically well below 10% of the total required execution time.
Also the amount of VOPs with serious large errors above 20% is below 10% of
the VOP length. We can conclude that the proposed prediction technique is a
first feasible step for supporting the QoS control.

5.4 Hierarchical Quality-of-Service architecture

5.4.1 Introduction to QoS concepts

We now extend the single application execution to the case of running multiple
applications in parallel on a multiprocessor system. Prior to presenting our lay-
ered QoS concept, we present a brief overview of QoS concepts of the literature.

The QoS concept has emerged from the optimization problem for network
communication, employing applications with real-time requirements [4, 123].
Considering QoS at terminals [80], the early approaches have defined appli-
cation execution at different quality levels. The system design was tuned for
the delivery of one function or service. Later, concepts changed to resource
management for several resources [65]. The introduction of scalability into ap-
plications (like MPEG-2 SNR scalability) allowed the implementation of QoS
management at the decoder terminal [124, 117].

5.4. Hierarchical Quality-of-Service architecture 117

The QoS control is in general effectuated in three layers, which are as follows.

e Resource layer - the allocation of resources is considered as a basic and
essential layer. This layer is typically controlled by an Operating Sys-
tem (OS). This involves a scheduling policy, allocation of memories and
bandwidth allocation. We assume that an OS is part of the system.

e Application layer - the definition of the application-specific parameters
and related interface to the resource layer.

o User layer - the delivered quality level and its degradation defined for a
user.

In the domain of streaming applications and multiprocessor NoCs, all three
layers have to be addressed [53].

In this thesis, we mainly focus on the above-mentioned application layer of
QoS. More specifically, we investigate the translation of the application pa-
rameters into a request that is supplied to the resource layer and we present
a concept for QoS that also enables the controlled interoperability of joint ex-
ecution of multiple applications. For this purpose, we introduce a hierarchical
QoS system that addresses both the optimization of resource allocation for in-
dividual applications and for a complete set of applications. Furthermore, we
will not discuss the QoS service algorithms in high detail. Instead, we assume
that an algorithm from literature can be adopted, given the broad availability
of proposals this topic [76, 2]. Hence, we introduce a optimization protocol
for hierarchical QoS, which is a missing link between the resource allocations
and the algorithm requirements. In the sequel, we discuss two existing QoS
approaches: the reservation-based and the adaptation-based approach.

In order to be able to provide a reservation-based management, the resource
management layer has to provide guaranteed services [43] for allocation of re-
sources. If the system would allow a runtime adaptation of resources, the
best-effort |46] and monitoring services [102] are essential for the correct oper-
ation.

1. Reservation-based approach

The benefit of a reservation-based QoS mechanism is that it guarantees the
delivery of a defined quality level of an application after the successful reser-
vation of resources. However, in the past, the reservation-based technique was
not adopted due to the inaccurate resource-usage prediction and the long reser-
vation time [67].

118 Chapter 5. Hierarchical Quality-of Service approach

2. Adaptation-based approach

The adaptation-based QoS mechanism [49] addresses a best-effort computa-
tion. Several programming models and middleware components were defined,
e.g. see [103]. However, the adaptation of resources takes place only when
deadlines are missed and can be limited to a small amount of parallel appli-
cations. Furthermore, the dependencies between tasks on different processors
of a NoC can bring the system into deadlock. In the next section we define
our hierarchical QoS approach that is primarily based on a reservation-based
technique.

5.4.2 Layered architecture of QoS and requirements

The architecture of our new QoS concept has a hierarchical layered structure.
It consists two communicating managers, instead of the conventional single re-
source manager. The layered approach separates the system control optimizing
overall quality and behavior from the responsibilities of individual application
QoS units. The advantage of the layered approach is that the Local QoS
control of individual applications can designed along with the application and
independent of the platform where they will be executed. Similarly, the Global
QoS multiprocessor control can be designed without knowing the details of all
applications that will be executed. Thus, applications can be reused on other
platforms more easily. This separation of responsibilities supports composi-
tionality and modularity of the system in order to upload new applications
to the existing system. The respounsibilities of the two QoS managers are as
follows.

e Global QoS manager - it controls the total system performance involving
all applications running in parallel. This manager optimizes the user
benefits instead of a single video application.

e Local QoS manager - it controls an individual application within the
assigned resources (see Figure 5.9), which were assigned by the Global
QoS manager. This manager optimizes the application quality for the
agreed amount of resources.

Since the responsibilities of both QoS managers are essentially different, it
becomes apparent that a protocol between these two QoS managers will be
needed.

The overview of the new architecture and QoS control is shown in Figure 5.9.
Each application is divided into jobs and the platform supports the execution of
each job. Each individual application is controlled by a Local QoS unit, which
negotiates about the assigned resources with the Global QoS control. After

5.4. Hierarchical Quality-of-Service architecture 119

Platform
| \ |
CPU CPU CPU
c c c
ﬁ
M M M
4
Control v l l
management 0s

Resource manager

Global QoS

Local QoS

Local QoS

Local QoS
C

Job C1 Job C2

Application
domain

Figure 5.9: Layered view of the system with the hierarchical QoS.

negotiation, the Local QoS unit has an exact specification of the amount of
resources that are assigned to the application. The Global QoS unit depends
on the Resource manager for the actual resource assignment. The resource
manager provides the real allocation of physical resources in conjunction with
an operating system.

The control of an application execution is conceptually visualized in Fig-
ure 5.10. The execution starts with the activation of the Local QoS unit.
The Local QoS unit has to activate the Resource Estimator (see Fig. 5.8),
which calculates the resource-usage requirements at all quality levels of the
required jobs. In Step 2, the query is send to the Global QoS unit, which de-
cides on the highest quality level that can be guaranteed and allocated for the
application. In Step 3, the response is communicated back to the Local QoS
unit. In the case that resources can be assigned, the Local QoS unit allocates

120 Chapter 5. Hierarchical Quality-of Service approach

individual tasks of the job at the chosen quality and invokes the job execution.
In Step 5, the job signals the end of the processing period. In our case, this
means the completion of the VOP decoding. In Step 6, the Local QoS unit
evaluates the difference between the estimation and real execution and in the
case the difference is above a predetermined threshold, the Local QoS adapts
the estimation model. If this does not sufficiently lower the difference, a new
negotiation on resources has to be performed (which involves restarting of the
process from Step 2).

i Resource manager / OS - -~

_____ Global QoS

|

: - TDM-like scheduling for

: guaranteed processing time

| - Guaranteed bandwidth allocations

| for connections (Athereal like)

\ - Memory allocations per task 1. GQoS activates

N _’ LQoS for the activation
Z§ S of an application

- Activation / Termination of
applications

- Optimization based on the benefit
function

- Resource manager required for

resource availability checking

2. LQoS queries
GQosS for resources/ 3. GQoS signals

availability of resources

Local QoS

- Estimator based on linear Job
parametrical model

- Evaluator checks at VOP basis

- OS low-level services require to

assign resources

4. LQoS activates the job execution

at negotiated quality level - Functional part of the

application
- Connect graph of
communicating tasks
- Execute on defined quality
level via quality settings
parameters tuned by LQoS

5. Job signals the

6. LQoS evaluates the .
end of execution

difference between
execution and estimation

Figure 5.10: Ezxecution of a job in the system with the layered QoS control.
The numbers at the arrows indicate the order of interactions.

The use of the presented layered architecture for system quality control is most
beneficial if a sufficiently accurate execution model for the application map-
ping can be provided. In the case there would be a large error in the resource
estimation, in general, the estimation of total resources would be based on
the number of jobs and their individual erroneous estimates on resource usage.
However, the measurements as provided in Section 5.3.3 have shown that this
rarely happens and the proposed simple prediction model already achieves an
acceptable prediction accuracy.

Let us discuss a few architectural requirements and aspects of the layered QoS
management.

5.4. Hierarchical Quality-of-Service architecture 121

e We require determinism in the QoS for each job, independent of other
jobs. If two or more jobs share a resource, which has not a deterministic
arbitration on serving several jobs, the predictability is not guaranteed.
Hence, the scheduling algorithm should be deterministic.

e The task distribution over the processors should be explored according
to worst-case rules. This is required in order to be able to analyze the
worst-case use of communication resources. The implementation to do
the worst-case analysis is based on using so-called virtual processors and
virtual connections. The assignment of a task to a virtual processor
is one task per one virtual processor. Similarly, the assignment to a
virtual connection is one task-to-task communication link per virtual
connection. The virtual processors and connections are runtime assigned
to the existing resources of the platform based on the agreed allocations.

e We assume that the reconsideration of resource reservations after the
reservation period is performed on a coarser granularity than the period-
ical control of a job by the Local QoS. The choice of a coarser granularity
for a full reconsideration is motivated by the complexity of re-allocation
processes (e.g. requiring task migration). For our MPEG-4 application,
we have defined the reservation period to the length of a GOV and the
periodic control of the Local QoS on a VOP basis®. In a real implemen-
tation, the length of the reservation period should be assigned based on
the performance or response time of the resource manager or the OS.

5.4.3 QoS problem definition

This section concentrates more on the algorithm for actual QoS control. Let
us now specify the QoS control problem in a more formal way. We describe
the resource requirements of the job ¢ at all defined quality settings (vector q;)
per resource J to be a function of the quality settings, hence

Rij(q;) = fs(q;)- (5.6)

The resource type J € {C,D,I,B, T}, where C denotes the computation re-
sources per task, D the data memory per task, I the instruction memory per
task, B the required communication-port bandwidth, and T the bandwidth on
each connection between two tasks.

Next to the definition of job resource requirements, we now define a benefit
function. This function represents the overall system value function (e.g. qual-

3The typical length of an MPEG-2 GOP is 12-24 frames. However, MPEG-4 and related
video standards use more variable GOV lengths. In such a case, we assume that a reasonable
average GOV length is used in the same order of magnitude as a GOP length in MPEG-2.

122 Chapter 5. Hierarchical Quality-of Service approach

ity) for the end-user. We define the benefit 3;(q;(c)) as the contribution of job
i to the user benefit, at selected quality level ¢, giving the quality q,(c) .

Let Pj be the total amount of a particular resource type J per processing tile
in the platform. For example, when we refer to data memory, Pp represents
the total amount of data memory per processing tile and similarly, Po stands
for the total amount of computational resources per tile. For more details, the
reader is referred to Section 3.8%. The total amount of resources of the system
is computed by adding all Py values for resource type J.

The optimization problem for our Global QoS management is now defined as
follows.

maXZ Bi(q;(c)), with chosen quality q;(c),
subject to Z R;c(q;(c) < Z Pa(j
Z R; p(q;(c)) < Z Pp(j
Z Rir(q;(c)) < Z Pr(j
Z R; p(q;(c)) < Z Pp(j
ZRzT q;(c) < ZPT (5.7)

In the above equation, N denotes the number of jobs and M indicates the
number of processing tiles. The optimization has to find the combination of
jobs and their quality settings such that the overall benefit is maximized. The
complexity of this optimization grows with the dimension of resources and
job-description vectors. Therefore, in further experiments, we consider only
computation, communication and data storage resources.

“In Chapter 3, we have used a more restricted version of tasks, called actors. In the
current chapter, we allow the execution of generalized forms of tasks with an arbitrary
nature of computing and communication. For example, a task execution is allowed before
there is an input on all incoming edges. Furthermore, the application does not have to be
always modeled by an SDF graph.

5.4. Hierarchical Quality-of-Service architecture 123

Although having specified the problem statement formally, at this point, we
will not concentrate on finding an algorithm for the exact optimization, because
such an algorithm would require to explore a large design space. This is due
to the fact that the above definition of the problem can be transformed to the
0-1 Knapsack Problem [72|. Since this is an NP-hard problem, it cannot be
implemented at runtime. Therefore, instead, in Section 5.4.4-B, we provide a
heuristic runtime implementation which provides a near-optimal solution.

5.4.4 Heuristic algorithm for multi-job quality optimization

A. Strategic aspects for deriving the heuristic

In order to simplify the problem of finding the operational point close to the
optimum as defined above, we first analyze in detail the application at the
design phase. Second, after the analysis, we have computational and memory
usage requirements of individual tasks, and communication requirements be-
tween tasks. Third, we select the maximum requirement that occurs within a
particular time window (reservation period, depending on the chosen granular-
ity). Fourth, this request is communicated from the Local QoS to the Global
QoS control unit, which tries to satisfy this request. In the algorithm, we
assume that a lower quality level requires less resources. This is a reasonable
assumption for which the practical evidence was given in Table 5.1.

The resource manager (see Figure 5.9) controls the available physical resources
in conjunction with the Global QoS manager, thereby using the resource-usage
requirements defined at the design phase. Based on off-line measurements of
the anticipated quality resulting in benefit 3;(q;(c)), the Global QoS manager
strives for a quality setting that would satisfy the user. At this point, the re-
source manager (OS) is of key importance, as it keeps track of the free capacity
of all physical resources in the platform. Given a set of resource requirements
per task, the resource manager should find a physical processor with sufficient
free capacity. It may happen that the resource manager cannot accommodate
the resources for the new job. If the job has a high importance (higher benefit
Bi(q;(c))), the Global QoS manager may decide to decrease the quality set-
tings of some other jobs to release resources for the new job. The details of
the algorithm optimizing the quality is presented in the following paragraphs.

B. Algorithm description

For simplicity, we assume that the system is in operation and has a set of
running jobs. We consider four types of possible situations in the running
system: (1) a job fires a request to be started, (2) a job requires more resources,
(3) ajobis terminated, (4) a job releases some resources. The second possibility

124 Chapter 5. Hierarchical Quality-of Service approach

Algorithm 1 Heuristic QoS optimization

1: procedure MappingJob()

2: while not(IsEnoughResources(CandidateJob)) do

3: JobToDecrease = FindMinBenefit(ActiveJobs + CandidateJob);
4 if JobToDecrease! = CandidateJob then

5 SetQualityLevel(JobToDecrease, NewQuality)
6: else

7: LowerQualityO fCandidate()

8: if CandidateQuality < Minimum then

9: return

10: end if

11: end if

12: if IsEnoughResources(CandidateJob) then
13: MapJob(CandidateJob)

14: return

15: end if

16: end while

17: if not(IsEnoughResources(CandidateJob)) then
18: Reportinsuf ficient Resources()

19: end if

20: endprocedure

is a special case of the first, and similarly, the fourth situation is a special case
of the third. Let us further describe the algorithm of the negotiation process
for a request to start a new job. The algorithm is a simplified version of check-
ing the availability of resources for the chosen quality of a Candidate Job.

The algorithm starts by checking the ability of adding the Candidate Job to
the list of Active Jobs. The Resource Estimator from the Local QoS manager
of a candidate job calculates the required resources. In the case that there
are not enough resources, a search for the minimum quality decrease of ac-
tive jobs to the overall cost function is performed (minimize the decrease of
Equation (5.7). For an efficient implementation, the Global QoS is storing a
sorted list of such quality changes, which brings the searching algorithm for
finding a new maximum to a linear complexity. The algorithm decreases the
quality of the set of jobs by reducing the quality of individual jobs, followed
by checking whether the system has sufficient resources for the Candidate Job.
The algorithm ends when the system has enough resources for executing the
new set of jobs. If the benefit cost function drops below the level at which the
system tried to activate the Candidate Job, the algorithm also terminates. The
search for a sub-optimal quality assignment based on the resource availability
is summarized in Algorithm 1. The detailed description of individual functions
used in the heuristic algorithm are listed in Table 5.4.

5.4. Hierarchical Quality-of-Service architecture 125

] Function Description

IsEnoughResources | The function checks if the system can reserve resources
at the required benefit 5;(q;(c)). It returns “true” if the
allocation is possible.

FindMinBenefit The function search for a job that contributes with the
lowest benefit §; to the overall system value, returns the
job index with the lowest benefit increase.

SetQualityLevel The function assigns the quality level to the job. The
function is called only for the jobs having a lower benefit
than the actual benefit level and it is assumed that a
lower benefit requires less resources.

LowerQuality Of The function decreases the benefit level of a candidate

Candidate job, the lowest level is 0.

MapJob The function calls the Resource manager routines to al-
locate resources defined by the quality benefit level of a
job.

Reportinsufficient | The function reports to the Local QoS that it is not able

Resources to execute the candidate job.

Table 5.4: Definition of Global QoS functions.

In case that the platform releases more free resources, either by terminating
some of the jobs, or by changing requirements of one or more jobs, depending
on the input data or a user interaction, we introduce the following strategy.
The algorithm starts with a job that gives the highest benefit increase and
checks if it can increase a quality level by using new available resources. For
efficiency, the system has information about the minimum resources that can
increase at least one quality level of a job. If available resources are below this
level, the negotiation algorithm stops (the algorithm stops only when it has
finished the examination of all active jobs).

Let us discuss some aspects of the presented algorithm.

e The reader may be confused that we search both for maximum and min-
imum increase of benefit at different parts of algorithm. The algorithm
principle is such that the decrease of the job quality that minimally lowers
the augmentation of the benefit function results in a minimum decrease
of the overall benefit function. It can lead to gradually decreasing the
overall quality in a number of iterations.

e The benefit augmentation of an inserted job is included to the sorted list
and put at the appropriate position prior to the next iteration.

126 Chapter 5. Hierarchical Quality-of Service approach

/AS MPEG-4 decoder ™
“Singer” sequence,
Size= 104 Macroblocks

-
* AS MPEG-4 decoder, MPEG“S‘pﬁﬁgkgrOU”d

| «—— “Mobile” sequence, o
Size= 25 Macroblocks Size= 396 Macroblocks

; i)
Abstract audio decod
stract audio decoder :&

Figure 5.11: Ezample of an object-based video scene with indicated benefits
and computation complexities (Intended scene position is speci-
fied in the MPEG-4 BIFS scene description.

e The proposed algorithm is sub-optimal due to the following reasons.
First, this is because the system strives for satisfying a set of worst-case
requirements over the allocation period. Second, sub-optimality occurs
because the granularity of processing is limited, so that it cannot be
guaranteed that the optimal point is inside the reservation interval.

5.5 Global QoS experiments and results

In this section, we report on experimenting with the presented heuristic algo-
rithm in order to set a quality assignment for the AS VO MPEG-4 decoding
application. We reused previously obtained results on the execution of the AS
VO MPEG-4 decoder operating at different quality levels (see Section 5.2.2).

| Job | Weight. |
AS VO MPEG-4 decoder - “Singer” video object 0.9
AS VO MPEG-4 decoder - “Mobile” video object 0.7
Abstract audio decoder 0.5
MPEG-4 sprite background decoder 0.45

Table 5.5: Benefit weights of individual jobs.

An example of a resulting video-object scene is shown in Figure 5.11. Evi-
dently, the highest benefit weight is assigned to the decoding of the “Singer”
video object, followed by the decoding of the “Mobile” video object with ben-
efit weights 0.9 and 0.7, respectively. The video decoding is enhanced with
supplementary audio decoding and MPEG-4 sprite decoding. The audio ob-

5.5. Global QoS experiments and results 127

ject (we inserted a dummy job) has weighted benefit 0.5, and the background
sprite decoding has the lowest benefit weight contribution of 0.45. Table 5.5
summarizes the predefined benefit weights of individual jobs of the complete
experimental application. The figure also illustrates the different computation
needs. The computational requirements of both video objects grow with the
number of macroblocks that has to be processed. It can be observed from Fig-
ure 5.11 that the required number of macroblocks is varying per object, so that
the required resources will also vary accordingly. The size of the “Singer” video
object is a rather dynamic variable. It starts with 64 macroblocks, continu-
ously grows to 204 macroblocks and then it decreases to about 96 macroblocks
(see Figure 3.5 in Chapter 3). The varying nature of the video-object size and
the corresponding computational requirements have an effect on the setting of
different quality levels per job over the length of the appearance of the video
object in the scene.

The Resource Estimator is a job-specific component and depends on the im-
plementation of the functional part of the job. The interface between the
Global QoS manager is specified to allow simple query-type requests about
the required resources for a specific quality level of a job, for a specific set of
input data. The output of the Resource Estimator is the matrix R; j(q;) per
resource J as defined by Equation (5.6). In the conducted experiment, the Re-
source Estimator was executed with the actual parameters of the parametrical
models, instead of using the prediction technique in Section 5.3.3, which was
developed at the time of writing this thesis.

The quality dependencies on the available resources are depicted in Figure 5.12.
Fach figure refers to the requirements of a single object. Due to the size depen-
dencies of arbitrary-shaped video objects, the quality distortion is represented
by the percentage of required resources per complete job, normalized to the
average size within the sequence. The different PSNR values refer to the av-
eraged PSNRs values obtained at the different quality settings. The quality
of the MPEG-4 background decoding is expressed in the frame throughput
rate, rather than PSNR. This is because the PSNR of the background image
depends strongly on the global camera motion and the visible part of scene
background. The frame throughput characteristic fits better to the scalable
approach on the quality degradation. The audio processing has similar char-
acteristic as the background decoding. Whereas the first two jobs have a few
quality levels and require a high amount of resources, the other two have a
more linear characteristic of the obtained quality per used resources. This last
property gives more opportunity for scaling the performance of the system.

Another essential component of the Local QoS manager is an Fvaluator that
has the responsibility to measure whether timing requirements of a job are

128 Chapter 5. Hierarchical Quality-of Service approach

zZ
%)
4874 | o
48.06 |
29.05 3793 |
n 3758 |
23.42 T
Resources % Resources %
28.26 3518 66.61 100 ‘ 312 3747 62.83 100
(a) AS VO MPEG-4 decoder - (b) AS VO MPEG-4 decoder - “Mo-
“Singer” video object. bile” video object.
L
2o ?
T O
g2 5
L
Q8- 30 - e
Qr | |
Resources % o Resources %
‘ A= F—
30 100 10 100
(¢) Audio decoder. (d) Background decoding.

Figure 5.12: Quality resulting from the used amount of resource per job. The
PSNR values are average numbers for the duration of video ob-
jects.

satisfied. In the ideal situation, the difference between the output of the Re-
source Estimator and the results of the real execution is zero. In practice,
the input-data dependent processing may result in the under- or over-usage
of resources. For example, when the object enlarges its size, a larger amount
of resources is required. In such a case, the Local QoS fires a request to the
Global QoS for a reconfiguration to obtain more resources. In the case the
requested assignment is not possible, it lowers the quality level at which the
job is executed.

We have simulated the heuristic optimization Algorithm 1 within a MATLAB

5.5. Global QoS experiments and results 129

Priority 1

Priority 2

Priority 3

Priority 4

1 t2 t3 t4

Figure 5.13: Example of the dynamic change of qualities among multiple run-
ning jobs controlled in parallel.

framework. Figure 5.13 portrays an example result of the quality assignment
algorithm for setting the quality level for individual jobs. AS VO MPEG-4 de-
coding jobs use traces ° of the clock-cycle-true ARM7TDMI simulator, which
executes the AS VO MPEG-4 compliant decoder. The quality level Q4 means
decoding without performing the deblocking filtering and padding of video ob-
jects (see [92]). For the audio object, we have applied a random resource-usage
generator with eight abstract quality levels. For the background sprite image
decoder, we again used the traces of the executed Core Profile MPEG-4 back-
ground sprite implementation on the ARM7TDMI simulator. For this job, we
defined 11 quality levels, corresponding to the decrease of the frame rate for
this video object in the range 30 to 0.1 frames/s. For the experiment, we have
manually assigned tasks to specific processors for each job.

Let us discuss the dynamic behavior in Figure 5.13. We focus on times ¢1..t4,
when the change of a job quality setting occurs. At time t1, Job 1 changes its

5The traces refer to the clock-cycle-true execution times of the job on the target multi-
processor system.

130 Chapter 5. Hierarchical Quality-of Service approach

requirements on the resources and offers the resources to the system. These
resources increase the quality level of Job 3. At time t2, Job 2 starts and
decreases the quality level of Job 3 and Job 4. At time t3, Job 1 releases some
resources (video-object size shrunk to almost 1/2 of the size in the previous
allocation period) that fit for Job 2 and Job 4. Additionally, Job 2 terminates
at t4. It can be observed that Job 3 did not reach its original quality before
time ¢2. This is because the evaluation of the cost function has indicated that
it was better to increase Job 4 to a higher quality level than to increase Job 3.
At the beginning, there were not enough resources for Job 4, but Job 1 facili-
tated by decreasing its requirements (not in Figure 5.13) at ¢1 and ¢3.

The experiment above showes a functional behavior of the Global QoS opti-
mization algorithm for a specific set of jobs. In order to get a realistic behavior,
we have used traces of individual jobs executed on the clock-cycle-true simu-
lator of the target processor (Job 1, Job 2 and Job 4). Furthermore, we set an
amount of the available resources manually to a level at which the system can-
not accommodate all jobs at the highest quality and the heuristic Algorithm 1
has to be performed.

5.6 Conclusions

We have proposed a new hierarchical QoS management system that is able to
control a set of multiple jobs executed on a resource-constrained multiproces-
sor system. The QoS contol is split into two layers: a Global QoS for over-
all system control and a Local QoS for individual application control. Local
QoS control is based on the resource-estimation functions that were derived in
Chapter 3. The current chapter has addressed the QoS problem, and proposed
and approach based on task switching within the AS VO MPEG-4 decoding
algorithm to create a quality-scalable application. The enabling and disabling
of tasks proved to be a simple, but effective method to create scalability of
quality without having to redesign the complete decoding algorithm.

We have presented a hierarchical QoS architecture, containing both Local and
Global QoS. The benefit of this proposal is that the control of individual appli-
cations is separated from the optimization of the global system performance.
The concept is such that an operating system can be gluelessly integrated
within our architecture, because it works on a much more local level (instruc-
tions) than the other algorithms. A second benefit of this architecture is its
flexibility with respect to the used resource estimator. For example, the chosen
prediction based on the parametrical models can be replaced by other types of
resource-usage modeling.

5.6. Conclusions 131

A further contribution of this chapter is that we have defined a heuristic algo-
rithm that searches suitable combinations of quality levels per jobs that can
be mapped on the available resources. The algorithm decreases the quality of
the set of jobs by reducing the quality of individual jobs, followed by checking
whether the system has sufficient resources for serving a resource allocation
request. At the Global QoS, the approach is based on a pure reservation-based
approach. An extension of this approach within the Local QoS control will be
presented in the next chapter.

The hierarchical approach was implemented in an experimental MPEG-4 de-
coder for arbitrary-shaped video objects. It should be noticed that the amount
of saved resources depends on the contents of the test sequence and the uti-
lization of the system. We have found that prediction of resource utilization
can lead to significant quality improvement of the complete system when re-
sources are offered for other applications. The proposed QoS mechanism runs
fast enough to be executed in real time, because it operates only on sorted lists
of benefit functions and related parameters.

When looking back to the results, it looks as if some of the concepts could
have been borrowed from the literature in the past decade. However, there is
a major difference between that research and our work. The concepts were all
based on a single computer engine for which the scheduling can be analyzed an-
alytically. In a multiprocessor system, the quality optimization is an NP-hard
problem that cannot be easily solved analytically. Even in the multiprocessor
case, the experimental mappings concentrate on one task per tile mapping. As
this is inherently inefficient, we have chosen a sub-optimal solution that applies
to the more general case of having a non-integer amount of tasks or jobs per
processing tile.

132 Chapter 5. Hierarchical Quality-of Service approach

CHAPTER

Local QoS for BW-constrained
MP-NoC using BE services

The reservation-based QoS control from the previous chapter is not efficient in
special cases. For example, when a job has a dynamic behavior within the adap-
tation interval, resources will be left unused. To improve the efficiency in all
cases with respect to unused resources, we explore the possible benefit of adding
Best-Effort (BE) computing principles for the communication resources within
an MP-NoC. This exploration on best-effort bandwidth usage is o first step
in investigating the complex problem of combining best-effort and reservation-
based computing for multiple parallel tasks running within one multiprocessor
system. For our bandwidth study, the original NoC architecture is extended by
monitoring units to provide communication resource usage during erecution.
Ezrperiments reveal that the proposed mized approach of reservation-based and
best-effort computing yields full bandwidth utilization, so that the SNR of the
video object signal improves by 1-5 dB.

6.1 Introduction

The disadvantage of a reservation-based computing architecture is that the
resources may be left unused when the execution of the video processing is
not as difficult as predicted. This inevitably leads to a lose of computing effi-
ciency. This phenomenon also occurs during AS VO MPEG-4 decoding. Initial
experiments to start up the research of this chapter have shown that the ef-
ficiency of the reservation-based QoS control yields only an average efficiency

133

134 Chapter 6. Local QoS for BW-constrained MP-NoC using BE services

of about 70%. For this reason, we focus on further maximizing the possible
output quality by using the reservation-based technique in combination with
a best-effort runtime adaptation of the computation. The concept behind this
idea is that the local QoS system can control towards higher quality as soon
as resources become available. This assumes that scalable video-coding algo-
rithms are used, as introduced in the previous chapter.

Let us give an idea here how reservation-based and best-effort computing can
be combined in one system. The execution model is such that at global level,
reservation-based computing is employed, whereas the best-effort quality im-
provement is obtained by the activation of idle tasks. The activation is possible
when sufficient remaining resources are reported. Most of the existing litera-
ture reports on studies of scheduling of tasks on a single processor [19, 79].

In this thesis, we study a multiprocessor system in which a network of commu-
nicating processors is included. The efficient mapping of multiple tasks onto
a multiprocessor system is an unsolved case in the scientific literature. This
is due to the large design space and the fact that operating systems are basi-
cally designed for single processor execution. The mapping can be explored for
efficient parallel computing, efficient bandwidth usage of the available commu-
nication links and a suitable memory architecture for global and local data. It
is only recently that the first publications on this topic have become available.
In [17], an integration of hard/soft real-time tasks and best-effort jobs executed
on a multiprocessor system is studied. The study involves computing only and
does not address other resources. The optimal scheduling of tasks over a multi-
processor network is not yet found. If the processors operate independently of
each other, then the solution of [19] can be applied on an individual processor
basis. This chapter attempts to contribute to the above problem exploration
by concentrating on a parameter that was not yet studied: the bandwidth be-
tween the processors. In order to do this, we have to make assumptions on how
we deal with computing. We have chosen map tasks on individual processors
and we will act as if the communication network is the most limiting factor in
the efficiency of the execution’.

In order to serve bandwidth control in our multiprocessor realization, the NoC
architecture is extended with bandwidth-monitoring elements. The concept is
such that when reservation-based computing and bandwidth do not fully utilize
the available communication bandwidth, then the remaining bandwidth is filled
with best-effort tasks that improve the quality, but can be partially aborted.
Therefore, we present a new experimental architecture, which includes event-

In many modern multimedia applications, the bandwidth of processors to the memory
is one of the most limiting factors [55].

6.2. Limitations with reservation-based QoS 135

based monitoring services which are used by the Local QoS for best-effort
control. The new architecture originates from a cooperation between our work
and [24], which is an extension of the Athereal NoC (see Chapter 3). We
have experimentally validated the combined concept of reservation-based and
best-effort computing by executing an AS VO MPEG-4 decoder and installing
the above-mentioned bandwidth-monitoring probes. Experiments later in the
chapter report on a significant image quality improvement, where the absolute
PSNR of approximately 35 dB is enhanced with 1-5 dB.

This chapter is organized as follows. Section 6.2 discusses the execution of an
AS VO MPEG-4 decoder on a pure reservation-based system and motivates
in more detail the extension with best-effort computing. Section 6.3 explains
the NoC extension with network-monitoring services. Section 6.4 defines the
combination of best-effort computing with reservation-based processing. The
experimental mapping of the AS VO MPEG-4 decoder is tested and the result-
ing quality improvement is summarized in Section 6.5. Section 6.6 concludes
this chapter.

6.2 Limitations with reservation-based QoS

The reservation-based QoS as defined in the previous chapter, fulfils the re-
quirement of a predictable system. One of the problems in reservation-based
computing is that the resources are locked for a particular job for a certain
period. From this, it can be directly concluded that the reservation period
is influencing the efficiency of the resource usage. On the other hand, the
reservation period cannot be chosen arbitrarily small, since this would gener-
ate too much overhead and loss of efficiency. Furthermore, a small reservation
period would hamper exploiting the temporal correlation over a certain period.

Let us further elaborate on this aspect. The most well-known temporal depen-
dency within the MPEG hybrid coding architecture is the motion estimation
and compensation. The temporal depth in MPEG-2 coding is restricted to
a Group Of Pictures (GOP), which also specifies the periodic restart of in-
traframe coding. This forms a natural point of granularity for the reservation
of resources? However, the MPEG-4 standard does not have a GOP length but
uses a Group Of Video object planes (GOV), which is a sequence of pictures per
individual video object. For a realistic case, we defined the GOV to 12 frames
or more. This discussion leads to the following limitations of reservation-based
processing.

2A typical GOP length is 12, 15, 21 or 24 pictures per GOP for MPEG-2 coding, for
DVD and DVB standards.

136 Chapter 6. Local QoS for BW-constrained MP-NoC using BE services

1. Relatively long resource-reservation interval

For AS VO MPEG-4 decoding, the reservation of resources for the whole GOV
requires that the system has sufficient resources for decoding each Video Ob-
ject Plane (VOP). However, the MPEG-4 GOV length is not known in advance
and is determined by the actual encoder. Therefore, the QoS control of the de-
coder has to decide on the reservation of resources for the decoding application
for the complete length of a GOV. The GOV number is a variable parameter:
we have observed sequences of up to several hundreds of VOPs in one GOV.
In the worst case, the decoder QoS control has to decide only on a fragment
of the GOV size. Consequently, this approach can sometimes lead to a QoS
decision for a lower quality level for a long sequence of VOPs. This lowering of
the chosen quality level already occurs when only one VOP cannot be decoded
within the available resources.

2. Slow response on the increase of available resources

We have observed that the reservation-based QoS is also sloth in covering the
increase of available resources. The time for the reallocation of resources and
increase of the guaranteed quality level for an application is only possible at
the end of the reservation period. When the quality levels of other jobs change
or when a termination of other applications occurs, the new available resources
cannot be directly used for the subsequent VOP decoding. The decoding at a
higher quality level starts at the first frame of the next reservation period after
having detected that resources are available. In the case that such an increase
of resources appears at the beginning of the reservation period, the response
of the system may be too slow for the system user. These two limitations
motivated to supplement the reservation-based model with a runtime QoS
adaptation.

6.3 Bandwidth monitoring within an NoC

The observation of ongoing computations in a system has received considerable
attention in the literature of which a few publications will be discussed here.
NoC monitoring systems have been proposed [24] for observing the commu-
nication at runtime. This work was mainly driven by testing and debugging
aspects of newly designed system. Passive hardware monitors make use of a
real-time observability solution, called SPY [114]. The runtime use of mon-
itored data by the Operating System (OS) has been proposed by Nollet et
al. [79]. This proposed solution requires an extra NoC to communicate the
monitoring data for feeding the OS. Even though this solution can be used
for monitoring of NoC communication, the extra NoC required for monitoring
data only is simply too expensive for embedded applications.

6.3. Bandwidth monitoring within an NoC 137

Instead, we present a solution based on the Athereal [42] NoC that is extended
with runtime monitoring features inside the NoC, so that an extra network is
avoided. The network extensions in the form of components were designed
by the author of [24]. Our contribution in this thesis is to deploy this novel
concept for bandwidth control of an advanced multimedia application. Up
till now, the monitoring was used mainly for debugging purposes. The role
of monitoring becomes more valuable when it is coupled to an advanced re-
source management that can explore the monitoring information for better
distribution of resources. Our mechanism of using the monitoring information
is highlighted in the next section. Here, we describe individual components
and their meaning by which the NoC architecture is extended.

Figure 6.1 illustrates the NoC architecture with routers (R) and Network In-
terfaces (NI). The new NoC monitoring in Figure 6.1 consists of configurable
monitoring probes (P), attached to the R and NI components, and their asso-
ciated programming model. Also, the system uses a monitoring traffic man-
agement strategy.

The monitoring probes are responsible for collecting the required information
from the NoC components. The probes capture the monitored information in
the form of events. Multiple classes of events can be generated by each probe,
based on a predefined instance of an event model. Monitoring probes are not
necessarily attached to all NoC components. The placement of probes is a
designer choice and is related to the cost versus observability tradeoft.

The traffic management regulates the traffic in the NoC by control signals
from the Monitoring Service Access point (MSA) to the probes. These signals
are also used to configure the probes. Similarly, the monitoring data from
the probes to the MSA are used to obtain the monitoring information from
the NoC. The proposed architecture with the new components is flexible for
the mapping of applications and allows different types of QoS control. Hence,
it covers the already available NoC communication services, e.g. guaranteed
throughput (GT) or best-effort (BE) connections?, or even dedicated solutions
for the traffic information in case of a fixed mapping.

The above framework is integrated in our experiments in the following way.
The presented NoC with communication-monitoring features offers the com-
bination of mixed GT and BE connections. GT connections provide the
reservation-based QoS control of the communication. BE connections are in-
serted to complete and plan resource usage up to or close to 100%.

3The reader should note the difference between reservation-based services and the guar-
anteed throughput mentioned here. GT is a reservation-based service for communication
resources, whereas BE is a principle that applies to any kind of resource usage.

138 Chapter 6. Local QoS for BW-constrained MP-NoC using BE services

NI
R
R
NI

N |

Local QoS

LoE
o

HOOE

;e
i
it

MSA

Figure 6.1: NoC architecture diagram with a Monitoring Service Access
(MSA) point connected to the Local QoS control.

When comparing the earlier mentioned NoC monitoring solutions to the pro-
posed one in this section, the advantage of our monitor-extended NoC is that it
provides monitoring data as a guaranteed service from the router to a control
unit (in our particular case the Local QoS managers) and a special extra NoC
for monitoring data is not required in our approach.

6.4 Combining best-effort and reservation-based QoS
management

In Section 6.2, we have identified the limitations of the reservation-based QoS
model, and we indicated how to improve the efficiency by adding best-effort
computing on top of reservation-based services. The advantage of this com-
bined approach is that relying on guaranteed services avoids deadlock in ex-
ecuting jobs and it ensures a predictable performance and quality, whereas
best-effort services increase efficiency of the mapping on the platform?.

4An alternative case exists where all services are based on best-effort computing. It is
known that in such a case the system can come into deadlock situations. These situations
occur when e.g. one of the tasks is waiting for another one that has no sufficient computing
capacity assigned to it. With guaranteed capacity, this cannot happen.

6.4. Combining best-effort and reservation-based QoS management 139

For clarity, we briefly repeat the functionality of the Global QoS manager.
Global QoS assigns the resources and appropriate quality level to each appli-
cation. The estimator calculates for each application the amount of required
resources for processing the set of new data. The resource request is then
evaluated with the available resources and the Global QoS manager sets the
highest quality that just fits to the platform resources. These resources are
reserved for the application until the end of the reservation period or till the
moment that an exceptional situation occurs.

The Local Q)oS manager is responsible for monitoring the prediction model and
real resource consumption. The monitoring of execution is performed at finer
granularity, in our case at the VOP level. The Local QoS sets the parameters
for scalable communication connections and scalable tasks at runtime, based
on the resource availability. A diagram visualizing the connection of the Global
QoS manager to the Local QoS manager and the usage of runtime monitors is

depicted in Figure 6.2.

Long-term quality setting
for application 1

Long-term quality setting
for application N

Scalable Scalable
implementation implementation

Application 1

Short-term monitoring for monitoring for
best-effort computation 1 effort computation N

Figure 6.2: Diagram for the combined QoS management containing MSA
and CPU monitoring features.

The Local QoS algorithm for extending reservation-based services with the
best-effort principle is as follows. The algorithm checks for all tasks and con-
nections at higher quality than the actual quality g if there are sufficient BE
services to execute the application at higher quality. If such quality can be
enabled, the highest level is selected and activated. A pseudo-formal specifi-
cation is given in Algorithm 2.

The observability of the platform at runtime enables us to employ so-called
best-effort principles to obtain a higher quality level for a short time (fragment

140 Chapter 6. Local QoS for BW-constrained MP-NoC using BE services

Algorithm 2 Local QoS best-effort extension
1: procedure CheckBestE f fort Availability()
2: for p = Current_Quality to Highest Quality do
3 if
4: CheckAvailable Resources(candidateT asksFor BE); and
5. CheckAvailable Resources(candidateConnectionsFor BE); then
6
7
8
9

BE QualityLevel = pj
end if
: end for
. if BE QualityLevel!l = CurrentQualityLevel then
10: Activate BEForQualityLevel(BE _Quality Level);
11: end if
12: endprocedure

of the reservation period). If we would have only a reservation-based solution,
the system would have to wait until the next suitable time (i.e. end of the
reservation period) for changing the quality level and the corresponding re-
source allocation.

In the new solution, using the MPEG-4 decoding application, the Local QoS
calculates for each VOP the resource requirements of the succeeding VOP and
compares it with the runtime information from the MSA monitor and CPU
monitors. The Local QoS temporary sets parameters for scalable tasks to a
higher quality level for decoding of the next VOP only within the actual GOV.
After the GOV, the Local QoS fires a request for setting the higher quality for
the whole next GOV.

6.5 Bandwidth control experiment with AS VO MPEG-

4 decoding

6.5.1 Scalable task-level AS VO MPEG-4 decoding

The scalable task-level AS VO MPEG-4 decoding as presented in Section 5.2,
provides scalability in different types of resources.

o Computation scalability - the decoding chain is modified at runtime for
activating/deactivating additional tasks (Padding tasks, Deringing, De-
blocking).

o Communication scalability - the task-level scalability can modify the
bandwidth requirements based on the task-to-processor assignment.

6.5. Bandwidth control experiment with AS VO MPEG-4 decoding 141

In order to deploy the combination of QoS techniques, we initiate the system
with the worst-case mapping with respect to communication, in which we map
each task to a different processor. After each GOV, this mapping is reconsid-
ered. The mapping of several tasks to one tile is possible, however, a careful
scheduling algorithm and monitoring is a research topic on its own. For this
aspect, we refer to [19, 5], where scheduling problems are addressed.

We have defined three quality levels of our experimental AS VO MPEG-4
decoding to enable the task-level scalability.

e Level 0 - basic quality, the video object shape is fully decoded; the ba-
sic quality of texture after performing IDCT is communicated to the
Rendering task.

e Level 1 - medium quality, the MPEG-4 padding |52] of the texture data
is activated. As a consequence, there are no artifacts on video object
edges. The deblocking filter is applied to the fully padded VOP.

e Level 2 - highest quality, the complete chain including the deringing filter
is executed.

Prior to conducting the experiment, we indicate the complexity of the video
objects occurring in several test sequences. All sequences have CIF resolution.
Since objects have various sizes, we indicate the relative computational effort
with respect to those sizes to obtain a more objective presentation of the com-
plexity. Table 6.1 shows the distribution of task complexities as a fraction of
the video object size. Table 6.2 shows the corresponding fractions required
for communication. To map the tasks of Table 6.1 and Table 6.2, we have
employed three processing tiles, where all decoding tasks are executed on one
tile, all padding tasks on another, etc.

Sequence Shape & Texture | Paddings & De- | Deringing filters
decoding blocking filter
Singer 28.26% 38.35% 33.39%
Dancer 26.92% 36.22% 36.86%
News 23.21% 50.87% 25.92%
Fish 27.37% 41.08% 31.55%
Tennis 33.54% 34.88% 31.58%
[Average \ 27.86% [40.28% \ 31.86% \

Table 6.1: Relative distribution of task complezity of VOP decoding tasks.

142 Chapter 6. Local QoS for BW-constrained MP-NoC using BE services

Sequence Level 0 Level 1: LO & Level 2:
Shape & Text. | Padding & Deblock. | All tasks proc.
Singer 39.8% 83.0% 100%
Dancer 39.4% 81.6% 100%
News 37.8% 83.5% 100%
Fish 42.6% 89.3% 100%
| Average | 39.7% | 83.8% | 100% |

Table 6.2: Cumulative bandwidth of AS-VO MPEG-j decoder at different
quality levels.

6.5.2 Experimental architecture

Our experimental system architecture employs a 2 x 4 mesh Athereal NoC
with eight ARM processing cores. The ARM cores are one-to-one connected
to Network Interfaces (NI). We have implemented a centralized performance-
monitoring service. Each router has a probe for performance monitoring of
the communication-link utilization. Each probe sends monitoring performance
data to the MSA by means of a low-bandwidth GT connection through the
closest located NI, which was designed with an extra NI port for this purpose.
The single MSA connects to NI7 (see Figure 6.3) by means of an extra NI
port. The complete overview is given in Figure 6.3. Apart from the previously
mentioned extra NI ports, the communication of monitoring data is distributed
over the regular NoC network in embedded form.

We have chosen the Advanced Coding Efficiency (ACE) Profile from the MPEG-
4 standard with Level 3, at CCIR-601 resolution. The experiment was con-
ducted in this resolution (not to be confused with CIF resolution for finding
the complexity of tasks). Figure 6.4 illustrates the varying communication
requirements of the “Stefan” AS VO sequence that was segmented from the
original resolution of 688x464 pixels. The bold line indicates the other appli-
cations running in parallel within the system.

Reservation of resources. At the start of the GOV, the Estimator calcu-
lates the computation and communication resource requirements at all three
quality levels. Next, the Global QoS selects the quality level at which all VOPs
can be decoded. Periodically, at GOV level, the Local QoS fires a request to
the Global QoS to raise the quality level of the reservation-based setting, when
the best-effort adaptation was applied at the end of the GOV period. In our
experiment (Figure 6.4), the lowest quality Level 0 is selected between VOP
indexes 13 to 22 because of the exceeded upper limit of the available bandwidth.

6.5. Bandwidth control experiment with AS VO MPEG-4 decoding

143

NIO

RO

R7

XS

NI7

MSA

B = =
e
% %
e

Figure 6.3: Experimental system architecture with 2 x 4 mesh Athereal NoC
connected with eight ARM cores and the MSA.

w10

]

Communication requirements of "Stefan” sequence

———Lavel 1
Level 2

=]
T

Remaining available
communication
resources of the system

Required bandwidth [hits/s)

Figure 6.4: Communication requirements of the “Stefan” tennis sequence.
The bold line represents the remaining communication resources

35
VOP index

left for other applications also executed within the system.

144 Chapter 6. Local QoS for BW-constrained MP-NoC using BE services

Best-effort computation. The Local QoS performs prior to the start of
every VOP a check whether the NoC can offer supplementary BE bandwidth
to obtain higher quality levels. The algorithm for doing this is indicated in
Algorithm 2. The scalable task is then activated for the current VOP.

P1 - Demultiplexing
P2 - Header decoding
P3 - Shape decoding
P4 - Texture decoding
P5 — Ext. Paddings &
Deblocking filter
P6 - Deringing filters
P7 - Rendering
P8 - Display output

GT _ BE

connection ? connection

Figure 6.5: Scalable mapping of an AS VO MPEG-4 VO decoder using task
skipping. The dotted lines are optionally enabled or disabled in
the same as in the previous chapter. P1 and P8 are extra tasks
for data generation and collection.

In our setup, we integrated alien traffic generators that program the system
to a maximum level of communication activity. We assigned the following
connections from Figure 6.5 to the corresponding quality levels:

e Level 0 : cO—cb, cl2,
e Level 1 : all connections at Level 0 + ¢6, c7, c8, cl1,
e Level 2 : all connections at Level 1 4 ¢9, c10.

The Local QoS has to monitor the connections c6-c11, as they are of BE type.
As is depicted in Figure 6.4, the initial quality is at quality Level 0. Prior
to starting the next VOP decoding, the Local QoS checks the status of the
connections and if the estimated communication resources are available, then
it activates the scalable tasks at the highest possible level.

6.5.3 Experiment with a combined bandwidth control

This section provides the numerical results of executing the AS VO MPEG-4
decoder on the system with enabled best-effort computation. First, in order to
illustrate the obtained image quality, we provide measurements of the PSNR
at the different quality levels as defined previously.

6.5. Bandwidth control experiment with AS VO MPEG-4 decoding

145

[
@

¥ PSNR [¢8]
@

PSKR - "Stefan” sequence

hWomusys

— —--Shape & Texture
Padding & Deblocking

———Deringing

a0- -

H/E NS N J

Br L et A -

24 1 1 1 1 1 1 1
5 10 15 20 25 30 k)

VOP index

Figure 6.6: PSNR of “Stefan” sequence at CCIR-601 resolution decoded at
different quality levels and by the referenced MoMuSys decoder.

Figure 6.6 portrays the resulting quality of the MoMuSys decoder ® without
mapping. The quality levels are based on adding an increasing amount of post-
processing, such as deblocking and deringing filters. The bold line in Figure 6.6
represents the reconstructed quality of the MoMuSys decoder with enabled de-
blocking and deringing filters at an average PSNR of 31.43 dB.

The decoding of our experimental decoder without padding and postprocess-
ing filters results in an average PSNR of 26.41 dB (see the bottom line). The
experimental decoder with enabled padding and deblocking filter results in an
average PSNR of 31.63 dB (dotted line) and the full decoding algorithm pro-
vides an average PSNR of 31.17 dB. Note that the deringing filter decreases
the image quality with about 0.4 dB. However, this is typical for this type of
smoothing filter, but the perceptual quality is higher even when the PSNR is
lower.5

The next measurement involves the influence of enabling best-effort comput-
ing at the decoder. The default operation is reservation-based, but for some of
the VOPs we employ the best-effort computing when it is possible given the

5The MoMuSys decoder is the result of the European project with the same name in
which MPEG-4 object-oriented coding was studied at the time of standardization.

5The PSNR is a commonly accepted image quality measurement in coding experiments,
but for filtered images this pixel-based measurement is not accurately reflecting a human
perception.

146 Chapter 6. Local QoS for BW-constrained MP-NoC using BE services

PSMR - "Stefan" sequence decoding

w
2]

-------- Reservation bassed only
Combined with best effort

¥ PSNR [dE]
@

7l
al

28

]S e B g

24 1 1 1 1 1 1 . 1

YOP index

Figure 6.7: PSNR of “Stefan” sequence decoded at the reservation system and
with enabled best-effort computing.

resource limitations (see the related Appendix). The Figure is explained from
the top to the bottom. It would be possible in the reservation-based approach
to assign Quality Level 0 for the whole GOV. Due to the insufficient amount of
communication resources for VOPs 13-22 (as indicated in Figure 6.4), higher
quality levels than Level 0 cannot be assigned for the whole GOV reserva-
tion period. Our combined system involving also BE services is decoding only
VOPs 14-18 at Quality Level 0. Quality Level 1 is achieved for VOP 13 in
the transition towards Quality Level 2 for lower VOP indexes and the interval
19-22 in the opposite transition to higher VOP indexes. Consequently, Quality
Level 2 is taken for VOPs from 1-12 and 23-38.

The obtained PSNR of the original and the combined approach is depicted
in Figure 6.7, where the dotted line represents the reservation-based approach
and the solid line represents the combined solution. The gain in the quality
obtained by our new combined approach is illustrated in Figure 6.8. The max-
imal difference in the PSNR is 6.89 dB and the average increase is 3.86 dB.
This quality difference is clearly noticeable by an inexperienced viewer. A
visual example of such a quality difference can be seen in Figure 5.3. Given
the size of the quality difference, a switching effect occurs in the reconstructed
video sequence. This effect is clearly visible for VOPs in the range 10-20. This
can be combated by applying a scalable decoding algorithm such as MPEG-4

6.6. Conclusions 147

Difference of PSNR hetween reservation based only
and combined with best effort execution

@

Delta ¥ PSNR [dB]
o ~
T T
I

m
T

=
T

D | 1 L I ! I !
5 10 15 20 25 30 35

VOP index

Figure 6.8: PSNR gain per VOP of the combined system using both
reservation-based and best-effort principles.

FGS. However, the usefulness of this profile was already proven in other work
and it was beyond the scope of this thesis.

The communication monitoring typically introduces communication overhead
that is orders of magnitude lower than the required bandwidth of the experi-
mental multimedia application. It should be noted that the obtained time frac-
tion where the quality level is higher than with decoding using the reservation-
based approach only, is highly dependent on the video input data, the length
of the reservation period and the runtime status of the platform. Given the
limitations of the design space in this experiment, we comment on the outcome
in the following conclusions.

6.6 Conclusions

We have experimentally tested the proposed combination of a reservation-
based and the best-effort approach for controlling communication resources.
The experiment was based on the mapping of AS VO MPEG-4 decoding on
a multiprocessor NoC. Since the amount of objects is unknown in advance
and the decoding characteristics are highly variable in resource usage, the ex-
ecution should have guarantees at least on decoding at the lowest quality.
The higher quality levels were achieved by adding the best-effort tasks to the
reservation-based processing at the lowest quality. Coupled to these decisions,

148 Chapter 6. Local QoS for BW-constrained MP-NoC using BE services

we have used best-effort communication connections instead of the initialized
guaranteed-throughput connections, where it was required.

Quality-of-Service in the target architecture is facilitated by link probes in all
Network Interfaces, so that bandwidth usage can be measured. The monitored
data are collected by the Monitoring Service that is connected to the Local
QoS unit. The Local QoS units are controlled by the Global QoS unit as indi-
cated in the previous chapter.

The complete system was experimentally verified with a network of eight ARM
processor cores, using an MPEG-4 Video Object decoder running with the
ACE profile and at CCIR-601 resolution. The proposed framework has shown
that the adaptation of bandwidth at the VOP level within a GOV reservation
period, can improve the image quality significantly. We derived with a bi-
trate setting yielding a good quality with an absolute PSNR of approximately
35 dB. The quality improvement using best-effort control of bandwidth was
about 4 dB on the average.

The main conclusion of this chapter is that by using a combined approach of
reservation-based QoS control with guaranteed communication and best-effort
communication for quality enhancements, allows to nearly fully use all band-
width resources of the target platform. In this way, we are able to reach quality
levels that are higher than in the case of only reservation-based control. The
experiments have shown that the video quality enhancement resulting from
this strategy can be quite substantial. Another system aspect of the followed
approach is that the reaction time of a coding application becomes shorter on
changes in tasks and jobs. On the short term, this can be positive (tasks are
completed) and negative (new guaranteed tasks are added). On the longer
term, the average quality of complete applications is always outperforming the
quality reservation-based processing only.

It is good to consider that the above results were obtained with serious limita-
tions of the possible design space. We have assumed a one task per processor
mapping, the absence of computing constraints and the lack of an operat-
ing system that would be suited for parallel multitasking on a multiprocessor
system. With these limitations in mind, the results in this chapter are a con-
tributing step in the path to a more complete solution with less constraints.
The next step in further research would therefore be the application of best-
effort techniques to both computation and bandwidth control to find a more
balanced QoS.

CHAPTER

Conclusions

The final concluding chapter of this thesis starts with an overview of the in-
dividual chapters. As a representative example of using various techniques of
this thesis, we present a mobile application of the AS VO MPEG-4 decoding
in which scalability played an important role. The third section of this chapter
attempts to define the primary conclusions of this research work. Finally, some
recommendations for future work are given.

7.1 Chapter conclusions

In this thesis, we have explored the mapping of an advanced multimedia appli-
cation such as Arbitrary Shaped (AS) Video Object (VO) MPEG-4 decoding
on a network of processors. The work presented in this thesis has contributed
to a larger embedded-systems research project' aiming at the mapping of ap-
plications onto multiprocessor platforms, like Network-on-Chip (NoC). In the
research, we have mainly focused on the upper design layers, dealing with the
application and its control for an efficient execution. The aspects addressed for
the mapping are performance modeling of the MPEG-4 decoding, granularity
optimization of the decoding algorithm, task-level scalability and Quality-of-
Service (QoS). Let us now summarize the outcomes of the individual chapters.

Chapter 1 has defined the scope of this thesis and has introduced the research
problems caused by the the desired execution of object-based decoding on a

!The PROGRESS program of the Dutch Technology Foundation STW under the Pre-
MaDoNa project EES.6390.

149

150 Chapter 7. Conclusions

multiprocessor System-on-Chip. We have divided the problem statement into
four parts: (1) partitioning of the application to facilitate pipelined execution,
(2) modeling of the performance, (3) introduction of scalability in the algo-
rithm to support Quality-of-Service control, and (4) the usage of two control
principles for efficient bandwidth control on an NoC. The chapter contributions
were all published at international peer-reviewed conferences, journals and a
published book chapter.

Chapter 2 serves as a reference chapter for the details of the AS VO MPEG-4
decoding and presents a brief introduction to the network-based multiproces-
sor. It can be concluded from the extensive description of AS VO MPEG-4
decoding, that the conventional DCT coding techniques from MPEG-1/2 are
extended with the coding of object shapes. As a further extension, specific pro-
cessing in the form of padding and block-based filtering is added to improve
the quality of the object borders. At the system level, the AS VO MPEG-4
decoding allows the designer to think in individual planes and objects that to-
gether make up the scene composition. To support the research in this thesis,
a standard-compliant and validated AS VO MPEG-4 decoder was developed,
which was new at the time of the research start. The second part of the
chapter provides the characteristics of the Network-on-Chip as the target plat-
form. The platform should be able to handle the features of MPEG-4 decoding:
the combination of high-level control-driven operations and streaming-oriented
processing at the video-data level. We have proposed a specific modification
of the NoC to support QoS control in the form of network probes for runtime
monitoring. The platform features a tile-based computing network, in which
each tile is separated from the network by buffered communication. This al-
lows multiple instantiations of objects, each having its own size and dynamics.
Finally, we have presented two experimental setups, using clock-cycle-true im-
plementations of the Athereal NoC and the CELL processor.

Chapter 3 has introduced a data-flow model for describing an application as a
set of communicating actors. This model supports the distributed computing
over a plurality of processors and pipelined execution for high efficiency. The
research result of the chapter is the extension of the Synchronous Data Flow
graph (SDF) by a linear parametrical model of required computation resources.
The linear equations in the model are based on the important coding param-
eters of the input stream (BAB-type of the block, number of non-transparent
sub-blocks, number of AC coefficients coded by an ESC code, etc.) and weight-
ing coefficients that depend on the target processor architecture. Similarly, we
have proposed a parametrical bandwidth-usage model for the communication
resources. It was found that our obtained parametrical timing model has only
5.31% deviation from the real execution on an Athereal NoC with ARM7TDMI
cores. The comparison with the mostly used worst-case approach for commu-

7.1. Chapter conclusions 151

nication resource allocation revealed that it saves a factor of 2.5 of worst-case
allocated resources. Both parametrical models are important for the design
phase exploration and are later used for verifying the possibility of resource-
usage prediction with such models.

Chapter 4 concentrates on improving the partitioning of tasks in order to ob-
tain an improved execution performance. To this end, we have provided an
algorithmic modification of the MPEG-4 padding tasks in order to shorten the
critical path of the decoding algorithm and to unify the processing granularity
in the decoding process. By changing the granularity to macroblock level and
introducing a new synchronization mechanism that is aware of having suffi-
cient data for processing, we have obtained an execution having only 12.2%
(for extended padding) and 40.9% (for repetitive padding) of the original algo-
rithm execution cycles. The unified macroblock processing granularity avoids
frame buffers between individual processing stages and simplifies the mapping
on tile-based NoC. In the second part, the redesign of the background sprite
algorithm was addressed for usage on a CELL processor. By introducing a
random-access feature to the compressed data, a large sprite can be segmented
into smaller parts that can be individually processed without full decoding.
This approach in data parallelism also facilitates distributed processing over
various cores.

Chapter 5 presents our hierarchical Quality-of-Service. To serve scalable execu-
tion, we have classified tasks composing the AS VO MPEG-4 decoding into two
classes. The first class contains essential tasks that cannot be skipped, while
the second class is filled with the enhancement functions removing coding arti-
facts (e.g. blockiness). Scalability of AS VO MPEG-4 decoding was obtained
by enabling/disabling functions of the non-essential tasks next to the essential
tasks. The hierarchical QoS control is based on an application-specific Local
QoS manager and a Global QoS manager responsible for the overall system
control. In our experimental implementation, the Local QoS provides the esti-
mation of the resource usage of an application and monitors the real execution.
The Global QoS selects the best quality levels of the active applications and
reserves resources for the application. The key contribution of this chapter is
that we have defined a heuristic algorithm that searches suitable combinations
of quality levels for individual jobs, so that a set of jobs that can be mapped on
the available resources and provide the highest benefit for the end user. The
heuristic is based on keeping a sorted list of the quality degradation per job,
resulting in the highest increase of available resources.

Chapter 6 addresses the combination of reservation-based QoS and best-effort
principles. This combination was studied with respect to bandwidth control.
In order to monitor the bandwidth usage, the network interfaces were enhanced

152 Chapter 7. Conclusions

with monitoring probes and the employed bandwidth was communicated to the
Local QoS control using an Monitoring Service Access point. The task-level
scalability of Chapter 5 was reused, but now for the combination of reservation-
based and best-effort bandwidth control. The presented experimental study
has shown that the usage of reservation-based QoS only results in the decoding
at a significantly lower quality level. The reservation-based approach guaran-
tees that the VO will be always decoded at least at the lowest quality level,
the best-effort computing improves the quality by using the resources as much
as they are available. The availability is controlled by the Global QoS system
which is the only unit that knows which applications are executing in parallel.

7.2 Evaluation of AS VO MPEG-4 computation com-
plexity

Table 7.1 provides an overview of the different coding standards and relation
of the AS VO MPEG-4 processing tasks to the tasks of the other standards.
The data for the MPEG-2 encoder listed in the first column are taken from |74]
and were measured on a Pentium processor. The second column in the table
is taken from [10], where the computation was measured on a DSP type of
processor. The data in the third column are relative to the gate counts of a
dedicated chip solution for H.264 decoding [22].

The table shows that several tasks are similar in all coding systems, such as
motion compensation and IDCT /DCT processing. Each of the realizations has
one significant task that is clearly more complex than the other tasks. It can
be seen that Context Arithmetic Decoding (CAD) is the most complex task of
AS VO MPEG-4 decoding and it is also unique compare to other standards.
The summation of shape-related processing as covered by CAD and Shape
MC covers more than 40% of the total decoding complexity. Since this is
unique, our estimate is that the AS VO MPEG-4 decoder has the same order
of magnitude of complexity as an H.264 decoder. This make the experiments
with the proposed decoder realistic and representative for processor system
design analysis.

7.3 Example application of presented work

This section summarizes a test mapping which was based on some of the pro-
posed techniques in this thesis. The test contributed to a European research
project, called Spaced4U, where design-time performance prediction was inves-
tigated for component-based software engineering. The test was carried out at
the end of the Spaced4U research project in 2005.

7.3. Example application of presented work 153

MPEG2 | Rel. MPEG-4 | Rel. H.264 Rel. AS VO Rel.
encoder | compl.|| Simp.Prof.| compl.|| decoder compl. || MPEG-4 | compl.
Pentium TI320C80 ARMT
Main 10.0% || MB Type | 0.27%
control Dec
Shape 12.33%
MC
Motion | 32% CAD 28.89%
Est.
CBP 0.18%
MvD 1.31%
Quant 10% Quant 4% TIP&IQ 4.81%
VLC 18% VLD, 38% Parser- 9.7% || Coeff Dec | 2.56%
Parse CABAC
MC 8% MC 29% Intra, In- | 13.2% || Text MC | 10.90%
ter pred. | 32.0%

DCT 14% IDCT 29% 1Q/IT 9.1% IDCT 16.29%
Rep. 10.78%
pad.

Debloc- | 16.3% || Ext./bd. | 11.67%
king padding

Others 18% 9.7%

Table 7.1: Comparison of different standards and the relative task complex-
ities within AS VO MPEG-/ decoding.

The experimental setup was as follows. The employed AS VO MPEG-4 decoder
was ported to the clock-cycle-true simulator of the ARM7TDMI processor?
that was used to construct the NoC. This resulted in obtaining realistic data on
the execution of individual components on such a processor. The obtained data
were used for the estimation of the resource usage and applied as a prediction
for the performance evaluation tools.

The AS VO MPEG-4 decoder and the parametrical model developed in Chap-
ter 3 were used by the SpacedU project to perform the design-time performance
prediction. The scientific results were presented in [13| and [14], with, on the
average, a 90% accuracy in predicting the real-time MPEG-4 decoder behav-
ior. As a spinoff of the joint work with the Spaced4U project, we have ported
the AS VO MPEG-4 decoder to a so-called iPaq PDA. Figure 7.1 portrays
the PDA executing the MPEG-4 decoder (decoding of the “Singer” sequence
at sub-second frame rate with non-optimized code). To our knowledge, this
is the first implementation of an AS VO MPEG-4 decoder on a commercially

2This is a very popular embedded processor for mobile applications.

154 Chapter 7. Conclusions

Figure 7.1: Executed MPEG-/ AS VO decoder on iPaq with ARM 400 MHz.

available portable device. Recently, another example has been published that
deals with content-based media processing on a mobile PDA [105].

7.4 Conclusions on research contributions

In this section, we summarize the key elements of the obtained results from
this thesis. An efficient mapping of advanced multimedia applications onto
an NoC requires that the dynamic resource usage in such applications can be
tracked and used to control this mapping. For this purpose, the resource usage
needs to be measured and the measurements can be used for prediction of the
behavior of the system. Secondly, the word efficient reflects that resources are
used fully, irrespective of the amount of applications running in parallel, or the
amount of processors and network features in the NoC. This has motivated the
study of a hierarchical layered Quality-of-Service control. Given the boundaries
and setting of the above, the principal contributions of this thesis are threefold.

1. Linear parametrical performance model

The presented linear parametrical model is basically a set of linear equations
using coding parameters and weighting coefficients based on the computing
target processor features. This representation has proven to be a simple and
effective means to provide an accurate estimate of the required performance.

7.4. Conclusions on research contributions 155

This setup was experimentally verified for computing and bandwidth usage.
It goes without saying that the computation of a set of linear equations is a
relatively simple task for a processor and it thus poses little overhead for the
system. There is little or no work in literature that has been carried out at the
same level of detail (clock-cycle-true simulation) and accuracy for a modern
multimedia coding application.

2. Hierarchical QoS

This thesis combines multiple video-object decoding applications and a mul-
tiprocessor platform in one problem statement?. For this problem statement,
and to provide system compositionality, we have separated one application
from the other and on top distinguish a Global overview of the complete set of
applications running in parallel. This vision has resulted in the presented hier-
archical QoS system. The hierarchy in QoS was known, but its application on
a multiprocessor is novel. To support QoS-based execution of the multimedia
application, task-level scalability has been presented. The author claims that
these techniques can be more generically applied to a multitude of audiovisual
applications going far beyond the presented MPEG-4 decoding test case. The
provided overview of other related coding standards has shown that there is a
substantial commonality between such standards and that the complexity of
our decoder is representative for other modern systems.

3. Best-effort combined with reservation-based bandwidth control

The main conclusion of this part of the work is that by using a combined
approach of reservation-based QoS control with guaranteed communication
and best-effort communication for quality enhancements, allows to nearly fully
use all bandwidth resources of the target platform. In this way, we are able
to reach quality levels that are substantially higher than in the case of only
reservation-based control. These results were obtained with serious limitations
of the possible design space. We have assumed the absence of computing
constraints and the lack of an operating system that would be suited for parallel
multitasking on a multiprocessor system. With these limitations in mind, the
results of this work are a contributing step in the path to a more complete
solution for multiple task execution on a multiprocessor system. The next step
in further research would therefore be the application of best-effort techniques
to both computation and bandwidth control to find a more balanced QoS.

3This problem statement is certainly a compelling one, and with the trend towards mul-
tiprocessor systems, it will remain so for the upcoming period, not in the least because the
optimal software design recipe for multiprocessor systems is not yet known.

156 Chapter 7. Conclusions

7.5 Future work

We have identified the following aspects for further investigation.

1. Heterogenous networks.

The experiments in this thesis are typically based on a network of ARMT7
processors or the CELL processor. These NoCs are essentially homogeneous
processor networks. It is known from earlier work that the use of application-
specific processors in combination with general-purpose processors increases
the efficiency of the computing platform for many video processing applica-
tions. Therefore, the incorporation of special coprocessors fitting within the
DFG network, is a natural next step in this research work.

2. Semi-automatic tools for distributed mapping.

The mapping on the processor network presented in this thesis was performed
manually. As already indicated, there is no optimal algorithm for mapping ad-
vanced multimedia applications on a multiprocessor system. Given the trend
towards an increased used of multiprocessors, tools to help the architects and
designers in solving complex mapping problems would be no luxury and prob-
ably will become indispensable in the coming years. It will take some time
before the knowledge of experienced architects can be found in a software tool;
therefore semi-automatic tools can be interesting to explore.

3. Dynamic mapping.

In this thesis, the application mapping was assumed to be static, but in more
advanced systems this may not be valid. It will be interesting to see how the
proposed efficiency measures work out for dynamic changes in the application.
For example, the system may hop from one DFG to another in a certain time
period. To maintain mapping efficiency during such a transition is a challenge
of its own.

APPENDIX

Visual bitstream structure

Coded visual data consists of several different types, such as video data, 2D
mesh data or facial animation parameters or user defined data. A wisual
object sequence is the highest syntactic structure of the coded visual bit-
stream. The visual objects sequence is bounded with a unique codes called
visual object sequence start code and visual object sequence end

code. One visual sequence contains one or more concurrently coded visual
objects. The start and the end codes are unique codes in the bitstream used
for identifying some of the structures in the coding syntax The start code of a

VO 1 Elementary bitstream
VOL 1 visual object 1
/ header layer 1
VO 1
header
/ \ VO 1 Elementary bitstream

Visual object VOL 2 visual object 1

v

4

» sequence header layer 2
header
\ VO 2 VO 2 Elementary bitstream
» VOL1 > visual object 2
header
header layer 1

Figure A.1: Ezample of the logical structure of the configuration end elemen-
tary stream data.

visual object is followed by a profile and level information, and a visual object
id. These configuration data are followed by a wideo object, a still texture ob-
ject, a mesh object or a facial/body animation object. The start code of the
videal objects is followed by one or more wideo object layers. The syntax for

157

158 Appendix A. Visual bitstream structure

Visual object VO 1 VO 1 VO 2
sequence h\é(a)d1er VOL 1 VOL 2 h\e/zzca)dzer VOL 1
header header header header

Configuration information
in containers provided by
Elementary bitstream MPEG-4 Systems

visual object 1
layer 1 \
Elementary bitstream /

visual object 1

layer 2

MPEG-4 Systems

Elementary bitstream
visual object 2
layer 1

Figure A.2: Ezample of the visual bitstream with separate configuration.

visual bitstream defines two types of information: configuration information
and elementary stream data. The data for a single layer of a visual object are
enclosed in the elementary stream data.

Visual object VO 1 Elementary bitstream
VO 1 . :
—» sequence VOL 1 visual object 1 —>
header
header header layer 1
Visual object VO 1 VO 1 Elementary bitstream
—» sequence VOL 2 visual object 1 —>
header
header header layer 2
Visual object VO 2 VO 2 Elementary bitstream
—»| sequence VOL 1 visual object 2 —>
header
header header layer 1

Figure A.3: Ezample of the visual bitstream with combined configuration.

Figure A.1 represents the logical structure of visual information. The ISO/IEC
14496 allows both, the separate or combined coding of configuration and ele-
mentary stream data.

1. Separate Configuration is defined such that the configuration information
are always carried separately as illustrated by Figure A.2. The system
specification defines containers that are used to configuration informa-
tion.

2. Combined Configuration associates the elementary stream data with at
most one instance of each of Visual Object Sequence, Visual Object and
Video Object Layer configuration information (see Figure A.3).

APPENDIX

Test video sequences

Stefan sprite sequence

Figure B.1: The “News” sequence.

The motion of the original sequence is high due to the nature of sport sequences.
The “Stefan” background sequence was used in Chapter 4 for optimizing the
local memory buffer for the sprite image. Figure B.1 illustrates three different
camera views: a view at the start of the sequence, moving camera to the left
and the last camera motion to the original position.

Arbitrary-shaped sequences

Figure B.2 and Figure B.3 illustrate decoded texture and shape information
of the sequences used in experiments presented in this thesis. The content of
sequences affect the actual size of processed VOPs. For example, sequences
visualized in lines 1, 2 and 3 have a high variation in the size compared to
sequences in lines 3 and 4.

159

160 Appendix B. Test video sequences

§

i

il

M i

Al

Figure B.2: Ezamples of decoded texture information per sequence. From
top, “Dancer”, “Singer”, “News”, “Fish”, “Stefan” sequences.

161

Figure B.3: Ezamples of shape information per sequence. From top,
“Dancer”, “Singer”, “News”, “Fish”, “Stefan” sequences.

162 Appendix B. Test video sequences
] \ Dancer \ Singer \ News \ Fish \ Stefan \ Sprite \
VOPs 250 250 300 300 239 239
Frames 25 25 30 30 30 30
Average # 131.6 99 .4 224.5 144.8 61.4 378
MBs
VOP size | 77-255 60-204 | 220-242 | 112-182 | 30-110 378
range
(MB)
Scene reso- | 352x288 | 352x288 | 352x288 | 352x288 | 336x280 | 336x280
lution
Table B.1: Sequences’ parameters.
\ Dancer | Singer | News | Fish | Stefan |
MB Type 702,546 319,745 791,489 501,535 279,813
Shape MC 32 903,082 | 16 160,475 | 50 173,903 | 17 583,050 7 796,445
CAD 112 774,044 | 15 738,453 | 35 811,118 | 64 708,242 | 51 755,425
CBP 452,943 216,785 620,471 296,857 172,049
MvD 3 229,157 1 718,802 2 342,352 2 594,366 1 833,053
IP&IQ 12 082,489 5 601,999 | 17 014,919 8 455,911 4 331,412
Coeff Dec 7 912,108 1 349,719 1 683,062 | 11 694,274 2 457,035
Text MC 28 914,351 | 13 090,094 | 31 621,407 | 19 008,157 | 11 840,196
IDCT 41 126,982 | 19 286,613 | 58 362,770 | 26 422,328 | 15 170,353
Rep. pad. 27 606,203 | 13 220,757 | 34 903,745 | 17 955,571 | 10 724,965
EBP 28 138,732 | 13 836,290 | 34 431,104 | 22 298,086 | 12 588,596
Exec. time 295,842 100,539 267,756 191,518 118,949
(kcycles)
Processed 2,064 720 2,640 1,520 671
MBs
Average 143,334 139,638 101,422 125,008 177,271
exec.

Table B.2: Clock-cycle execution time of individual task for a GOV (CIF).

Table B.1 provides the parameters of individual sequences. As is indicated in
the third line, the average number of required macroblocks per sequence length
differs from 61.4 (“Stefan”) to 224.5 (“News”) macroblocks between various se-
quences. Further, the dynamism in the object size is also variable, whereas the
“News” sequence has 22 MBs variation as compared to the “Dancer” sequence,
which has a variation of 178 MBs. Table B.2 lists the measured complexity of
decoding one GOV (12 frames) on the target clock-cycle-true simulator. The
data are measured in clock cycles. The required complexity per task highly
varies per sequence. For example, the CAD task requires 3 times more clock
cycles than the Shape MC task for the “Dancer” sequence, while for the “News”
sequence, this ratio is only 0.71 times.

(1]

2]

3]

[4]

15]

8]

References

ARM Developer Suite Version 1.2. Debug Target Guide. Ref: DUI0058D,
Issued November 2001, http://www.arm.com.

J.H. Anderson, J.M. Calandrino, and U.C. Devi, Real-time scheduling
on multicore platforms, Proc. of 12th IEEE Real-Time and Embedded
Tech. and App. Symp., ISBN 0-7695-2516-4, Apr. 2006, pp. 179-190.

H. Arakida, M. Takahashi, Y. Tsuboi, T. Nishikawa, et al., A 160 mW, 80
nA standby, MPEG-4 audiovisual LSI with 16 Mb embedded DRAM and
a b GOPS adaptive post filter, Proc. of IEEE Int. Solid-State Circuits
Conf. (ISSCC), ISSN 0193-6530, Feb. 2003, pp. 42-476.

C. Aurrecoechea, A. Campbell, and L. Hauw, A Survey of QoS Architec-
tures, ACM/Springer Verlag Multimedia Systems Journal, Ser. 3, Vol. 6,
ISSN 0942-4962, May 1998, pp. 138-151.

S. Banachowski, T. Bisson, and S.A. Brandt, Integrating best-effort
scheduling into a real-time system, Proc. of 25th IEEFE Int. Real-Time
Systems Symp., ISBN 0-7695-2247-5, Dec. 2004, pp. 139-150.

A.C. Bavier, A.B. Montz, and L.L. Peterson, Predicting MPEG exe-
cution times, Proc. of SIGMETRICS/PERFORMANCE Int. Conf. on
Measurement and Modeling of Computer Systems, ISBN 0-89791-982-3,
June 1998, pp. 131-140.

M. Bekooij, R. Hoes, O. Moreira, P. Poplavko, M. Pastrnak, et al., Chap-
ter 5: Dataflow Analysis for Real-time Embedded Multiprocessor System
Design, in P. van der Stock (Ed.), Dynamic and Robust Streaming in and

between Connected Consumer-Electronic Devices, Springer, Dordrecht,
ISBN 1-4020-3453-9, May 2005, pp. 81-108.

M. Bekooij, O. Moreira, P. Poplavko, B. Mesman, M. Pastrnak, et al.,
Predictable Embedded Multiprocessor System Design, Proc. of 8th Int.

163

164

References

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Work. on Software and Compilers for Embedded Systems (SCOPES),
ISBN 3-540-23035-1, Sept. 2004, pp. 77-91.

L. Benini and G. De Michelli, Networks on chips: A new SoC paradigm,
IEEE Computer, Ser. 1, Vol. 35, ISSN 0018-9162, Jan. 2002, pp. 70-80.

M. Berekovic, H.-J. Stolberg, M.B. Kulaczewski, P. Pirsch, H. Mdller,
et al., Instruction Set Extensions for MPEG-4 Video, Journal of VLSI
Signal Processing, Ser. 1, Vol. 23, ISSN 0922-5773, Oct. 1999, pp. 27-49.

M. Berekovic, H.-J. Stollberg, and P. Pirsch, Multicore System-On-Chip
Architecture for MPEG-4 Streaming Video, IEEE Trans. on Clircuits
and Systems for Video Technology, Ser. 8, Vol. 12, ISSN 1051-8215, Aug.
2002, pp. 688-699.

T. Bjerregaard and J. Spars, A Router Architecture for Connection-
Oriented Service Guarantees in the MANGO Clockless Network-on-Chip,
Proc. of the Design, Automation and Test in Europe Conference (DATE),
ISBN 0-7695-2288-2, Mar. 2005, pp. 1226-1231.

E. Bondarev, M. Pastrnak, P.H.N. de With, and M.R.V. Chaudron, On
Design-Time Performance Predictions of Object-Based MPEG-4 Video

Applications, Proc. of DSP Valley’s Annual Research and Tech. Symp.
(DARTS) and Signal Proc. Symp. (SPS), Apr. 2005, pp. 19-22.

E. Bondarev, M. Pastrnak, P.H.N. de With, and M.R.V. Chaudron,
Predictable Component-Based Software Design of Real-Time MPEG-4
Video Applications, Proc. of Visual Communications and Image Pro-
cessing (VCIP), July 2005, pp. 2288-2298.

J. Bormans, N.P. Ngoc, G. Deconinck, and G. Lafruit, Chapter: Ter-
minal QoS: advanced resource management for cost-effective multimedia
appliances in dynamic contexts, in T. Basten, M. Geilen, and H. de Groot
(Ed.), Ambient intelligence: impact on embedded system design, Kluwer

Academic Publ., NL., ISBN 978-1-4020-7668-8, Jan. 2003, pp. 183—-201.

N. Brady, MPEG-4 Standardized Methods for the Compression of Arbi-
trarily Shaped Video Objects, IEEE Trans. on Circuits and Systems for
Video Tech., Ser. 8, Vol. 9, ISSN 1051-8215, Dec. 1999, pp. 1170-1189.

B.B. Brandenburg and J.H. Anderson, Integrating Hard/Soft Real-Time
Tasks and Best-Effort Jobs on Multiprocessors, Proc. of the 19th Euromi-
cro Conference on Real-Time Systems, ISBN 0-7695-2914-3, July 2007,
pp. 61-70.

References 165

18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

28]

S. Brandt, G. Nutt, T. Berk, and M. Humphrey, Soft Real-time Applica-
tion Execution with Dynamic Quality of Service Assurance, Proc. of 6th
IEEE/IFIP Workshop on Quality of Service, May 1998, pp. 154-163.

R.J. Bril, Real-time scheduling for media processing using conditionally
guaranteed budgets, PhD thesis, University of Technology Eindhoven,
ISBN 90-74445-62-4, Sept. 2004.

L.-O. Burchard and P. Altenbernd, Estimating decoding times of MPEG-
2 video streams, Proc. of IEEE Int. Conf. on Image Processing, ISBN
0-7803-6297-7, Sept. 2000, pp. 560-563.

P. Chandra, A. Fisher, C. Kosak, and P. Steenkiste, Network Support for
Application-Oriented Quality of Service, Proc. of 6th IEEE/IFIP Work.
on Quality of Service, May 1998, pp. 187-195.

Ch.-Jr Chen, T.-C. Lian and L.-G. Chen, Hardware Architecture Design
of an H.264/AVC Video Codec, Proc. of the 2006 Conf. on Asia South
Pacific design automation, ISBN 0-7803-9451-8, Jan. 2006, pp. 750-757.

Y. Chen, Z. Zhong, T.-H. Lan, S. Peng, and K. van Zon, Complexity
Scalable MPEG-2 Video Decoding for Media Processors, IEEE Trans.
on Circuits and Systems for Video Technology, Ser. 8, Vol. 12, ISSN
1051-8215, Aug. 2002, pp. 678-687.

C. Ciordas, T. Basten, A. Radulescu, K. Goossens, et al., An event-
based monitoring service for Network-on-Chip, ACM Trans. on Design
Automation of Eletronic Systems, Ser. 4, Vol. 10, 2005, pp. 702-723.

P. Cumming, Chapter 5: The TI OMAP platform approach to SoC, in
G. Martin and H. Chang (Ed.), Winning the SoC Revolution, Kluwer
Academic Publishers, ISBN 1-4020-7495-6, June 2003, pp. 97-118.

W. J. Dally and B. Towles, Route packets, not wires: on-chip intercon-
nection networks, Proc. of 38th Design Automation Conference (DAC),
ISBN 1-58113-297-2, June 2001, pp. 684—6809.

G. De Micheli and L. Benini, Networks on Chips: Technology and Tools,
Morgan Kaufmann, San Francisco, ISBN 0-12-370521-5, July 2006.

J.A. de Oliveira and H. van Antwerpen, Chapter 4: The Philips NEXPE-
RIA digital video platform, in G. Martin and H. Chang (Ed.), Winning
the SoC Revolution, Kluwer Academic Publishers, ISBN 1-4020-7495-6,
June 2003, pp. 67-96.

166

References

[29]

[30]

31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

P.H.N. de With and E.G.T. Jaspers, Design of multimedia software and
future system architectures, Proc. of the SPIE Embedded Processors for
Multimedia and Communications, Vol. 5309, Jan. 2004, pp. 58—69.

K. Denolf, Low Power Design of Block-Based Video Codecs, PhD thesis,
University of Technology Eindhoven, June 2007.

K. Denolf, C. De Vleeschouwer, R. Turney, G. Lafruit, and J. Bormans,
Memory centric design of an MPEG-4 video encoder, IEEE Trans. on
Clircuits and Systems for Video Technology, Ser. 5, Vol. 15, ISSN 1051-
8215, May 2005, pp. 609-619.

S.H. Dhong, O. Takahashi, M. White, T. Asano, et al., A 4.8 GHz
Fully Pipelined Embedded SRAM in the Streaming Processor of a CELL
Processor, Proc. of IEEE Int. Solid-State Circuits Conf. (ISSCC), ISSN
0193-6530, Feb. 2005, pp. 134-135.

R. Dugad and N. Ahuja, A scheme for spatial scalability using nonscal-
able encoders, IEEE Trans. on Circuits and Systems for Video Technol-
o9y, Ser. 10, Vol. 13, ISSN 1051-8215, Oct. 2003, pp. 993-999.

A. Dutta, R. Jensen, and A. Rieckmann, Viper: A multiprocessor SoC
for advanced set-top box and digital TV systems, IEEE Design and Test
of Computers, Ser. 5, Vol. 18, ISSN 0740-7475, Sept. 2001, pp. 21-31.

H.-C. Fang, Parallel Embedded Block Coding Architecture for JPEG
2000, IEEE Trans. on Circuits and Systems for Video Technology, Ser.
9, Vol. 15, ISSN 1051-8215, Sept. 2005, pp. 1086-1097.

D. Farin, P.H.N. de With, and W. Effelsberg, Minimizing MPEG-4 Sprite
Coding-Cost Using Multi-Sprites, Proc. of SPIE Visual Commun. and
Image Proc., Vol. 5308/1, ISBN 0-8194-5211-4, Jan. 2004, pp. 234-245.

D.S. Farin, Automatic Video Segmentation Employing Object/Camera
Modeling Techniques, PhD thesis, University of Technology Eindhoven,
ISBN 90-386-2381-X, Dec. 2005.

B. Flachs, S. Asano, S.H. Dhong, P. Hotstee, et al., A Streaming Process-
ing Unit for a CELL Processor, Proc. of IEEE Int. Solid-State Clircuits
Conference (ISSCC), ISSN 0193-6530, Feb. 2005, pp. 134-135.

P.J. Fortier and H.E. Michel, Computer Systems Performance Evaluation
and Prediction, Digital Press, ISBN 978-1-55558-260-9, June 2003.

E. Francois and J. Vieron, Extended Spatial Scalability : A Generaliza-
tion of Spatial Scalability for Non Dyadic Configurations, Proc. of IEEE
Int. Conf. on Image Processing, ISSN 1522-4880, Oct. 2006, pp. 169-172.

References 167

|41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

S.V. Gheorghita, Dealing with Dynamism in Embedded System Design,
PhD thesis, TU Eindhoven, ISBN 978-90-386-1644-5, Dec. 2007.

K. Goossens, J. Dielissen, et al., The Athereal network on chip: Con-
cepts, architectures, and implementations, IEEFE Design and Test of
Computers, Ser. 5, Vol. 22, ISSN 0740-7475, Sept. 2005, pp. 21-31.

K. Goossens, J. van Meerbergen, A. Peeters, and P. Wielage, Networks on
silicon: Combining best-effort and guaranteed services, Proc. Design, Au-
tomation and Test in Europe Conference and Ezhibition (DATE), ISBN
0-7695-1471-5, Mar. 2002, pp. 423-425.

P. Guerrier and A. Greiner, A generic architecture for on-chip packet-
switched interconnections, Proc. of Design, Automation and Test in
Europe Conference and Ezhibition (DATE), ISBN 1-58113-244-1, Mar.
2000, pp- 250-256.

J. Gustafsson, B. Lisper, R. Kirner, and P. Puschner, Input-Dependency
Analysis for Hard Real-Time Software, Proc. of 9th IEEE Int. Conf.
on Object-oriented Real-time Dependable Systems, ISBN 0-1795-2054-5,
Oct. 2003, pp. 53-60.

A. Hansson, K. Goossens, et al. A unified approach to mapping and
routing on a network on chip for both best-effort and guaranteed service
traffic. VLSI Design, 2007:Article ID 68432, 16 pages, 2007.

C. Hentschel, M. Gabrani, K. van Zon, R.J. Bril, and L. Steffen, Scalable
Video Alghorithms and Quality-of-Service Resource Management, Digest
of Technical Papers of IEEE Int. Conf. on Consumer Electronics (ICCE),
June 2001, pp. 338-339.

P. Hoang and J. Rabaey, Scheduling of DSP Programs onto Multiproces-
sors for Maximum Throughput, IEEE Trans. on Signal Processing, Ser.
6, Vol. 41, ISSN 1053-587X, June 1993, pp. 2225-2235.

J. Huang, P.-J. Wan, and D.-Z. Du, Criticality- and QoS-Based Multire-
source Negotiation and Adaptation, Journal Real-Time Systems, Ser. 3,
Vol. 15, ISSN 0922-6443, Oct. 2004, pp. 249-273.

Ch.J. Hughes, P. Kaul, S.V. Adve, R. Jain, Ch. Park, and J. Srinivasan,
Variability in the execution of multimedia applications and implications
for architecture, Proc. of 28th Int. Symp. on Computer Architecture,
ISSN 0163-5964, July 2001, pp. 254-265.

ISO/IEC 14496-11, Coding of audio-visual objects, Part 11: Scene de-
scription and Application engine (BIFS, XMT, MPEG-J), 2005.

168

References

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

ISO/IEC 14496-2:1999/ Amd 1:2000, Coding of Audio-Visual Objects -
Part 2:Visual, Amendement 1: Visual Extensions, Maui, Dec. 1999.

Jingwen J. and K. Nahrstedt, Qos specification languages for distributed
multimedia applications: a survey and taxonomy, IEEE Multimedia, Ser.
3, Vol. 11, ISSN 1070-986X, 2004, pp. 74-87.

R. Jain, The art of computer system performance analysis, Techniques
for Ezperimental Design, Measurement, Simulation and Modeling, John

Wiley & Sons Ltd., ISBN 978-0-471-50336-1, April 1991.

E.G.T. Jaspers, Architecture design of video processing systems on a chip,
PhD thesis, TU Eindhoven, ISBN 90-74445-57-8, Apr. 2003.

E.G.T. Jaspers, P.H.N. de With, and J.G.W.M. Janssen, A flexible het-
erogeneous video processor system for TV applications, IEEE Trans. on
Conumer FElectronics, Ser. 1, Vol. 45, ISSN 0098-3063, Feb. 1999, pp.
1-12.

G. Kahn, The semantics of a simple language for parallel programming,
Proc. of IFIP Congress, 1974, pp. 471-475.

P. Kauff and K. Schuur, Shape-adaptive DCT with block-based DC sep-
aration and DC correction, IEEE Trans. on Circuits and Systems for
Video Tech., Ser. 3, Vol. 8, ISSN 1051-8215, June 1998, pp. 237-242.

L. Kleinrock, Theory, Volume 1, Queueing Systems, John Wiley & Sons
Ltd., ISBN 0-471-49110-1, April 1975.

R. Koenen, Overview of the MPEG-/ Standard - (V.15 - Beijing Ver-
sion), WG11 (MPEG), July 2000.

M. Kunter, A. Krutz, M. Droese, M. Frater, and T. Sikora, Object-based
multiple sprite coding of unsegmented videos using H.264/AVC, Proc. of
IEEFE Int. Conf. on Image Processing (ICIP), ISBN 1-4244-1437-7, Sept.
2007, pp. [-65-1-68.

T.-W. Kuo, L.-P. Chang, Y.-H. Liu, and K.J. Lin, Efficient Online
Schedulability Tests for Real-Time Systems, IEEE Trans. on Software
Engineering, Ser. 8, Vol. 29, ISSN 0098-5589, Aug. 2003, pp. 734-751.

G. Lafruit, Nam Pham Ngoc, W. van Raemdonck, N. Tack, and J. Bor-
mans, Terminal QoS for real-time 3D visualization using scalable MPEG-
4 coding, IEEE Trans. on Circuits and Systems for Video Technology,
Ser. 11, Vol. 13, ISSN 1051-8215, Nov. 2003, pp. 1136-1143.

References 169

|64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

R. Lauwereins, M. Engels, M. Ade, and J. A. Peperstraete, Graphe-11: A
System-Level Prototyping Environment for DSP, IEEE Computer, Ser.
2, Vol. 28, ISSN 0018-9162, Feb. 1995, pp. 35-43.

C. Lee, J. Lehoczky, D. Siewiorek, R. Rajkumar, and J. Hansen, A scal-
able solution to the multi-resource QoS problem, ISBN 0-7695-0475-2,
1999, pp. 315-326.

E. A. Lee and D. G. Messerschmitt, Static scheduling of synchronous data
flow programs for digital signal processing., IEEE Trans. on Computers,
Ser. 1, Vol. 36, ISSN 0016-9340, 1987, pp. 24-35.

B. Li, Agilos: A Middleware Control Architecture for Application-Aware
Quality of Service Adaptations, PhD thesis, University of Illinois at
Urbana-Champaign, 2000.

P. Li, B. Veeravalli, and A.A. Kassim, Design and Implementation of
Parallel Video Encoding Strategies Using Divisible Load Analysis, IEEE
Trans. on Circuits and Systems for Video Technology, Ser. 9, Vol. 15,
ISSN 1051-8215, Sept. 2005, pp. 1098-1112.

Y.-T. S. Li, S. Malik, and A. Wolfe, Efficient Microarchitecture Modeling
and Path Analysis for Real-Time Software, Proc. of 16th IEEE Real-
Time Systems Symposium, ISBN 0-8186-7337-0, Dec. 1995, pp. 298-307.

T. Liu and J.R. Kender, Computational approaches to temporal sampling
of video sequences, ACM Trans. on Multimedia Computing, Communic.,
and Applications, Ser. 2, Vol. 3, ISSN 1551-6857, May 2007, pp. 1-23.

Q. Ma and P. Steenkiste, Quality-of-Service Routing for Traffic with
Performance Guarantees, Proc. of IFIP 5th Int. Work. on Quality of
Service, ISBN 0-4128-0940-0, 1997, pp. 115-126.

S. Martello and P Toth, Knapsack Problems - Algorithms and Computer
Implementations, John Wiley & Sons Ltd., ISBN 0-471-92420-2, 1990.

S.H. Mian, Analysis of MPEG-4 scalable encoded video, IEE Proceedings
Communications, Ser. 3, Vol. 151, ISSN 1350-2425, 2004, pp. 270-279.

S.0. Mietens, Complexity Scalable MPEG Encoding, PhD thesis, Univer-
sity of Technology Eindhoven, ISBN 90-386-2040-3, Feb. 2004.

M. Millberg, E. Nilsson, R. Thid, S. Kumar, et al., The Nostrum back-
bone - a communication protocol stack for networks on chip, Proc. Int.
Conf. on VLSI Design., ISBN 0-7695-2072-3, Jan. 2004, pp. 693-696.

170

References

|76]

[77]

78]

[79]

[80]

[81]

[82]

[83]

[84]

O. Moreira, J.-D. Mol, M. Bekooij, and J. van Meerbergen, Multipro-
cessor resource allocation for hard-real-time streaming with a dynamic
job-mix, Proc. of 11th IEEE Real Time and Embedded Technology and
Applications Symposium, ISSN 1080-1812, Mar. 2005, pp. 332-341.

L. Nachtergaele, B. Vanhoof, M. Peon, G. Lafruit, J. Bormans, and
I. Bolsens, Implementation of a scalable MPEG-4 wavelet-based visual
texture compression system, Proc. of 36th ACM/IEEE conference on
Design automation, ISBN 1-58133-109-7, June 1999, pp. 333-336.

H. Nakayama, T. Yoshitake, H. Komazaki, Y. Watanabe, H. Araki, et al.,
An MPEG-4 video LSI with an error-resilient codec core based on a fast
motion estimation algorithm, Proc. of IEEE Int. Solid-State Clircuits
Conf. (ISSCC), ISSN 0193-6530, Feb. 2002, pp. 368-474.

V. Nollet, T. Marescaux, and D. Verkest, Operating-system controlled
network on chip, Proc. of 41st Design Automation Conference, ISSN
0738-100X, June 2004, pp. 256—259.

C.M. Otero-Perez, L. Steffens, P. van der Stok, S. van Loo, et al., Chap-
ter: QoS-based resource management for ambient intelligence, in T'. Bas-
ten, M. Geilen, and H. de Groot (Ed.), Ambient intelligence: impact on
embedded system design, Kluwer Academic Publ., NL., Dordrecht, ISBN
978-1-4020-7668-8, Jan. 2003, pp. 159-182.

M. Pastrnak and P.H.N. de With, Data Storage Exploration and Band-
width Analysis for Distributed MPEG-4 Decoding, Proc. of 8th IEEE
Int. Symp. on Consumer Electronics (ISCE), ISBN 0-7803-8527-6, Sept.
2004, pp. 67-72.

M. Pastrnak and P.H.N. de With, On the Computing Analysis of Arbi-
trary Shape Coding in MPEG-4, Proc. of 25th Int. Symp. on Information
Theory in the Benelux, ISBN 90-71048-20-9, June 2004, pp. 193-200.

M. Pastrnak and P.H.N. de With, Multidimensional Model of Estimated
Resource Usage for Multimedia NoC QoS, Proc. of 27th Int. Symp. on
Inf. Theory in the Benelux, ISBN 90-71048-22-5, June 2006, pp. 109-116.

M. Pastrnak, P.H.N. de With, C. Ciordas, J.L.. van Meerbergen, and
K. Goossens, Mixed Adaptation and Fixed-reservation QoS for Improv-
ing Picture Quality and Resource Usage of Multimedia (NoC) Chips,
Proc. of 10th IEEE Int. Symp. on Consumer Electronics (ISCE), ISBN
1-4244-0215-8, June 2006, pp. 207-212.

References 171

[85]

[36]

[87]

[38]

[89]

[90]

191]

[92]

(93]

[94]

M. Pastrnak, P.H.N. de With, S. Stuijk, and J.L. van Meerbergen, Paral-
lel Implementation of Arbitrary-shaped MPEG-4 Decoder for Multipro-
cessor Systems, Proc. of Visual Communications and Image Processing

(VCIP), ISBN 0-8194-6117-2, Jan. 2006, pp. 607711-1..607711-10.

M. Pastrnak, P.H.N. de With, and J.L.. van Meerbergen, QoS Concept for
Scalable MPEG-4 Video Object Decodidng on Multimedia (NoC) Chips,
IEEE Trans. on Consumer Electronics, No. 4, Vol. 52, ISSN 0098-3063,
Nov. 2006, pp. 1418-1426.

M. Pastrnak, P.H.N. de With, and J.L.. van Meerbergen, Realization
of QoS Management Using Negotiation Algorithms for Multiprocessor
NoC, Proc. of IEEE Int. Symp. on Circuits and Systems (ISCAS), ISBN
0-7803-9390-2, May 2006, pp. 1912-1915.

M. Pastrnak, D.S. Farin, and P.H.N. de With, Adaptive Decoding of
MPEG-4 Sprites for Memory-Constrained Embedded Systems, Proc. of
26th Int. Symp. on Information Theory in the Beneluz, ISBN 90-71048-
21-7, May 2005, pp. 137-144.

M. Pastrnak, P. Poplavko, P.H.N. de With, and D.S. Farin, Data-flow
timing Models of Dynamic Multimedia Applications for Multiprocessor
Systems, Proc. of 4th IEEFE Int. Work. on System-on-Chip for Real-Time
Applications (SoCRT), ISBN 0-7695-2182-7, July 2004, pp. 206-209.

M. Pastrnak, P. Poplavko, P.H.N. de With, and J.L. van Meerber-
gen, On Resource Estimation of MPEG-4 Video Decoding for A Mul-
tiprocessor Architecture, Proc. of 4th Int. Symp. On Embedded Systems
(PROGRESS), ISBN 90-73461-37-5, Oct. 2003, pp. 185-193.

M. Pastrnak, P. Poplavko, P.H.N. de With, and J.L. van Meerbergen,
Hierarchical QoS Concept for Multiprocessor System-on-chip, Proc. of
Work. On Resource Management for Media Processing in Networked Em-
bedded Systems, ISBN 90-386-0544-7, Mar. 2005, pp. 139-142.

M. Pastrnak, P. Poplavko, P.H.N. de With, and J.L.. van Meerbergen,
Novel QoS Model for Mapping of MPEG-4 Coding onto MP-NoC, Proc.
of 9th IEEE Int. Symp. on Consumer Electronics (ISCE), ISBN 0-7803-
8920-4, June 2005, pp. 93-98.

A. Pearmain, J. Cosmas, A. Carvalho, and V. Typpi, The MoMuSys
MPEG-4 Mobile Multimedia Terminal and Field Trials, Proc. of ACTS
Mobile Communications Summit 1999, June 1999, pp. 741-746.

F. Pereira and Touradj E., The MPEG-4 Book, Upper Saddle River, NJ:
IMSC Press, July 2002.

172

References

195]

[96]

[97]

98]

[99]

[100]

[101]

[102]

[103]

[104]

D. Pham, S. Asano, M. Bolliger, M.N. Day, et al., The Design and Im-
plementation of a First-Generation CELL Processor, Proc. of IEEE Int.
Solid-State Circuits Conf. (ISSCC), ISSN 0193-6530, Feb. 2005, pp. 134—
135.

P. Poplavko, T. Basten, M. Bekooij, J. van Meerbergen, and B. Mesman,
Task-level timing models for guaranteed performance in multiprocessor
networks-on-chip, Proc. of Int. Conf. on Compilers, Architecture and
Synthesis for Embedded Systems, ISBN 1-58113-676-5, Oct. 2003, pp.
63-72.

P. Poplavko and M. Pastrnak, Modeling Predictable Multiprocessor Per-
formance for Video Decoding, Proc. of Work. On the Design of Multime-
dia Architectures (MMA), ISBN 90-386-0822-5, Dec. 2003, pp. 133-136.

P. Poplavko, M. Pastrnak, T. Basten, P.H.N. de With, and J.L. van
Meerbergen, Mapping MPEG-4 Video Object Shape-Texture Decoding
onto an Multiprocessor Network-on-Chip, Proc. of 14th Int. Work. on

Circuits, Integrated systems and Signal Processing (ProRisc), ISBN 90-
73461-39-1, Nov. 2003, pp. 139-147.

Secondlife project: http://secondlife.com/.

A. Puri and A. Eleftheriadis, MPEG-4: an object-based multimedia cod-
ing standard supporting mobile applications, Mobile Networks and Appli-
cations archive, Special issue: mobile multimedia communications, Ser.
1, Vol. 3, ISSN 1383-469X, 1998, pp. 5-32.

LLE.G. Richardson, H.264 and MPEG-4 Video Compresion, Video Coding
for Nexzt-generation Multimedia, John Wiley & Sons Ltd., Chichester,
ISBN 0-470-84837-5, Sept. 2003.

E. Rijpkema, K. G. W. Goosens, A. Radulescu, J. Dielissen, J. van Meer-
bergen, et al., Trade offs in the design of a router with both guaranteed
and best effort services for networks on chip, Proc. of Design, Automa-
tion and Test in Europe Conference and Ezhibition (DATE), ISBN 0-
7695-1870-2, Mar. 2003, pp. 350-355.

B. Sabata, S. Chatterjee, M. Davis, J. Sydir, and T. Lawrence, Tax-
anomy of QoS Specifications, Proc. of the IEEE 3rd Int. Work. on Object-
oriented Real time Dependable Sys. (WORDS ‘97), 1997, pp. 100-107.

M. Schaar and H. Radha, A hybrid temporal-SNR. fine-granular scalabil-
ity for Internet video, IEEE Trans. on Clircuits and Systems for Video
Technology, Ser. 3, Vol. 11, ISSN 1051-8215, Mar. 2001, pp. 318-331.

References 173

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

K. Seo, J. Ko, I. Ahn, et al., An Intelligent Display Scheme of Soccer
Video on Mobile Devices, IEEFE Trans. on Circuits and Systems for Video
Tech., Ser. 10, Vol. 17, ISSN 1051-8215, Oct. 2007, pp. 1395-1401.

S. Sriram and S. S. Bhattacharyyan, Embedded Multiprocessors: Schedul-
ing and Synchronization, Marcel Dekker Inc., New York, ISBN 0-8247-
9318-8, Mar. 2000.

S. Stuijk, Predictable Mapping of Streaming Applications on Multipro-
cessors, PhD thesis, University of Technology Eindhoven, ISBN 978-90-
386-1624-7, Oct. 2007.

S. Stuijk and T. Basten, Analyzing concurrency in computational net-
works., Proc. of MEMOCODE 2003, 1th Int. Conf. on Formal Methods
and Models for Co-Design, ISBN 0-7695-1923-7, June 2003, pp. 47-48.

Y. Tan, P. Malani, Q. Qiu, et al., Workload prediction and dynamic
voltage scaling for MPEG decoding, Proc. of the 2006 Conf. on Asia
South Pac. Design Autom., ISBN 0-7803-9451-8, Jan. 2006, pp. 911-916.

F. Thoen and F. Catthoor, Modeling, Verification and Exploration of
Task-level Concurency in Real-Time Embedded Systems, Kluwer Aca-
demic, Boston, ISBN 0-7923-7737-0, Sept. 1999.

D.S. Turaga, M. van der Schaar, and B. Pesquet-Popescu, Complexity
scalable motion compensated wavelet video encoding, Ser. 8, Vol. 15,
ISSN 1051-8215, Aug. 2005, pp. 982-993.

M. van der Schaar-Mitrea, System and Network Constrained Scalable
Video Compression, PhD thesis, TU Eindhoven, Dec. 2001.

J. van Eijndhoven, J. Hoogerbrugge, M.N. Jayram, P. Stravers, and
A. Terechko, Chapter 4: Cache-Coherent Heterogeneous Multiprocessing
as Basis for Streaming Applications, in P. van der Stock (Ed.), Dynamic
and Robust Streaming in and between Connected Consumer-FElectronic
Dewices, Springer, ISBN 1-4020-3453-9, May 2005, pp. 81-108.

B. Vermeulen, S. Oostdijk, and F. Bouwman, Test and debug strategy
of the PNX8525 nexperia digital video platform system chip, IEFEFE In-
ternational Test Conference (ITC), 2001, pp. 121-131.

J.A. Vijverberg, N.A.H.M. de Koning, Jungong Han, P.H.N. de With,
and D. Cornelissen, High-Level Traffic-Violation Detection for Embed-
ded Traffic Analysis, Proc. of IEEE Int. Conf. on Acoustics, Speech and
Signal Processing, ISSN 1520-6149, Apr. 2007, pp. 11-793-11-796.

174

References

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

M. Wan, H. Zhang, V. George, M. Benes, A. Abnous, et al., Design
methodology of a low-energy reconfigurable single-chip DSP systems,
Journal of VLSI Signal Processing, Ser. 1, Vol. 28, ISSN 1573-109X,
Jan. 2001, pp. 47-61.

P. Wang, Y. Yemini, D. Florissi, and J. Zinky, A distributed resource
controller for qos applications, Proc. of IEEE/IFIP Network Operations
and Management Symp., ISBN 0-7803-5927-5, Apr. 2000, pp. 143-156.

Y. Watanabe, T. Yoshitake, K. Morioka, T. Hagiya, H. Kobayashi, et al.,
Low power MPEG-4 ASP codec IP macro for high quality mobile video
applications, Proc. of IEEE Int. Conf. on Consumer Electronics (ICCE),
ISBN 0-7803-8838-0, Jan. 2005, pp. 337-338.

S. Wenger, Temporal scalability using P-pictures for low-latency appli-
cations, Proc. of IEEE 2nd Workshop on Multimedia Signal Processing,
ISBN 0-7803-4919-9, Dec. 1998, pp. 559-564.

T. Wiegand and G.J. Sullivan, The H.264/AVC Video Coding Standard
[Standards in a Nutshell|, IEEE Signal Processing Magazine, Ser. 2, Vol.
24, ISSN 1053-5888, Mar. 2007, pp. 148-153.

D. Wilson and M. Ghanbri, Optimal DCT coefficient adjustment applied
to MPEG-2 SNR scalability, ISBN 0-7803-3925-8, 1997, pp. 1664—1668.

D. Yu and J.B. Ra, Fine spatial scalability in wavelet based image coding,
IEEE Int. Conf. on Image Processing, ISSN 1522-4880, Sept. 2005, pp.
IT -862-5.

L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, RSVP: A
New Resource ReSerVation Protocol, IEEE Network, Ser. 5, Vol. 7, ISSN
0890-8044, Sept. 1993, pp. 8-18.

J.A. Zinky, D.E. Bakken, and R.E. Schantz, Architectural support for
quality of service for CORBA objects, Theory and Practice of Object
Systems (TAPOS), Ser. 1, Vol. 3, ISSN 1074-3227, May 1997, pp. 55-73.

Summary

Performance and QoS-aware MPEG-4 video-object coding for mul-
tiprocessor architecture

The introduction of Arbitrary-Shaped (AS) Video Objects (VO) in the MPEG-4
coding standard has enabled various applications using both natural and syn-
thetic composition of video scenes. The work presented in this thesis aims
at realizing an embedded-systems design involving the mapping of this type
of applications onto a multiprocessor platform, like Network-on-Chip (NoC).
The research has focused on the upper design layers, dealing with the appli-
cation and their control for an efficient execution. The aspects addressed for
the mapping are performance modeling of the MPEG-4 decoding, granularity
optimization of the algorithm, introduction of task-level scalability, and con-
trolling the quality of the applications by a Quality-of-Service (QoS) manager.

The AS VO MPEG-4 decoding algorithm comprises of the conventional DCT
coding techniques from MPEG-1/2 that are extended with the coding of object
shapes and specific processing for the improvement of the picture quality of
object borders, employing padding and block-based filtering. At the system
level, the AS VO MPEG-4 coding allows the designer to think in individual
planes and objects that together compose the scene. The target platform for
such an application should be able to handle the features of MPEG-4 coding:
the combination of high-level control-driven operations and streaming-oriented
processing at the video-data level. The platform features a tile-based comput-
ing network, in which each tile is separated from the network by buffered
communication. This allows multiple instantiation of object decoding, each
having its own dynamic behavior.

The Synchronous Data Flow (SDF) graph is a traditional model for com-
putation of multimedia applications mapped on the multiprocessor system.
However, SDF cannot cope with the dynamic behavior of object-based video.
Therefore, this research has extended SDF by a linear parametrical model of
the required computation resources. The model is based on the coding param-
eters of the input stream (BAB-type of the block, number of non-transparent

sub-blocks, number of AC coefficients coded by an ESC code, etc.) and weight-
ing coeflicients depending on the target processor architecture. Similarly, thesis
proposes a parametrical model for the communication resources. It was found
that our obtained parametrical timing model has about 5% deviation from the
real execution on an Athereal NoC with ARMY7 cores. Our comparison with
the mostly used worst-case approach for communication resource allocation
revealed that it reduces the required resources with a factor of 2.5.

For more efficient system control, the thesis presents a hierarchical Quality-
of-Service (QoS) concept in combination with a scalable MPEG-4 decoder.
To serve scalable execution, we have classified the tasks involved with the
AS VO MPEG-4 decoding into two classes. The first class contains essential
tasks that cannot be skipped, while the second class is filled with the en-
hancement functions. Scalability of AS VO MPEG-4 decoding was obtained
by enabling/disabling optional functions of the non-essential tasks next to the
essential tasks. The resource distribution is controlled by a hierarchical QoS
management. This QoS is based on two QoS managers. In our experimental
implementation, the Local QoS provides the estimation of the resource-usage
of an application and monitors the real execution. The Global QoS selects the
best quality-levels of the active applications and reserves resources for the ap-
plication. The key contribution of our work on QoS is the design of a heuristic
algorithm that searches suitable combinations of quality levels for individual
jobs, so that a set of jobs can be mapped on the available resources.

In order to further improve the efficiency of the mapping, we have distin-
guished reservation-based QoS control and best-effort computing on top of it
as an addition. This combination was studied for controlling the bandwidth
of the communication resources. The reservation-based approach guarantees
that the video object will be always decoded at least at the lowest quality level,
while the best-effort computing improves the quality by using the resources as
much as they are available, as controlled by the Global QoS. The complete sys-
tem was experimentally verified with a network of eight ARM processor cores,
using an MPEG-4 Video Object decoder at the ACE profile and at CCIR-
601 resolution. The proposed framework showed that the adaptation at finer
granularity, e.g. a VOP level within a GOV, significantly improve the image
quality (provided that resources are constrained.

The mapping exploration of AS VO MPEG-4 decoding for execution on an NoC
addresses a general case of running modern multimedia applications, because
of the variability and dynamics of tasks. It has been shown that parametrical
models help in planning the execution and QoS management and best-effort
computing clearly improve the efficiency of multiple tasks executed in parallel.

Curriculum Vitae

Milan Pastrndk was born in éadca, Slovakia, on May 14th, 1976. In 1994, he
graduated from Turzovka Gymnazium, a comprehensive high school, in Slo-
vakia. He obtained the M.Sc. degree in Information Systems at the University
of Zilina, Slovakia, in 1999. In 2002, he received the Professional Doctorate
in Engineering degree in Software Technology from Eindhoven University of
Technology, in The Netherlands. Between 2002 and 2006, he was employed by
LogicaCMG Nederland, where he performed his PhD research work.

Since 2007, he is with Philips Research Laboratories, in Eindhoven, The Nether-
lands, as Research Scientist. He is currently working on video content anal-
ysis for consumer electronics appliances. He received a Best Paper Award at
the IEEE ISCE in 2006 for his work on QoS management on Multiprocessor
NoC. His research interests are on the hardware-software co-design, design of
multiprocessor systems, quality-of-service for multimedia systems, system-level
design, and content analysis.

	Contents
	1 Introduction
	1.1 Pervasive multimedia coding
	1.2 Platforms and trends
	1.3 Research scope and background
	1.3.1 Predictable mapping and timing models
	1.3.2 QoS on multiprocessor platforms

	1.4 Conducted research and contributions
	1.4.1 Research objectives
	1.4.2 Research contributions

	1.5 Thesis organization and scientific background

	2 Object-based coding and multiprocessor system-on-chip
	2.1 Introduction
	2.2 Principles of object-based video
	2.3 Object-based data reception in MPEG-4
	2.4 Arbitrary-shaped objects decoding in MPEG-4
	2.4.1 Video objects and VOP planes
	2.4.2 Decoding process of AS VOP

	2.5 Background sprite coding
	2.6 Network-on-Chip (NoC)
	2.6.1 NoC computation units
	2.6.2 NoC topologies

	2.7 Tile-based NoC and application modeling
	2.8 Applied NoCs for experiments
	2.8.1 Æthereal NoC
	2.8.2 CELL processor

	2.9 Design flow
	2.10 Mapping assumptions
	2.11 Conclusions

	3 Performance estimation and timing models
	3.1 Introduction
	3.2 Synchronous Data Flow Graph
	3.3 Performance analysis
	3.4 Prediction model of execution time
	3.4.1 HSDF Graph for Shaped Video-Object Decoding
	3.4.2 Construction of timing models
	3.4.3 Derived timing models for AS VO MPEG-4 decoding
	3.4.4 Validation of timing models

	3.5 Dynamic behavior of arbitrary-shaped VO
	3.6 AS VO MPEG-4 decoding complexity
	3.7 Parametrical model of communication resources
	3.7.1 Derived bandwidth models for AS VO decoding
	3.7.2 Validation of bandwidth model

	3.8 Multidimensional model of resources
	3.8.1 Job model at different quality levels
	3.8.2 Available and used system resources

	3.9 Conclusions

	4 Algorithmic modification for enhanced parallelism
	4.1 Introduction to uniform processing and sprite coding
	4.2 Parallelism Overview
	4.2.1 Task parallelism
	4.2.2 Data parallelism
	4.2.3 Communication granularity
	4.2.4 Strategy to extract parallelism

	4.3 Mixed granularity in AS VO MPEG-4 Decoding
	4.4 Repetitive Padding
	4.4.1 Task splitting of repetitive padding
	4.4.2 Evaluation of modified repetitive padding

	4.5 Block-level pipelining and synchronization for extended padding
	4.5.1 Optimization of communication granularity
	4.5.2 Evaluation of the modified extended padding

	4.6 Data-level parallelism within the full decoder
	4.7 Sprite decoding on CELL processor
	4.8 Background Sprite Decoding
	4.8.1 Original MPEG-4 algorithm
	4.8.2 Modified sprite-reconstruction algorithm

	4.9 Construction of MB data Matrix for Random Access
	4.10 Experiments and results of modified sprite decoding algorithm
	4.11 Conclusions

	5 Hierarchical Quality-of Service approach
	5.1 Introduction
	5.2 Development of scalability of AS VO MPEG-4 decoder
	5.2.1 Scalability overview and introduction of concept
	5.2.2 Task-level scalability of the AS VO MPEG-4 decoder
	5.2.3 Visual degradation caused by task skipping
	5.2.4 Measurement of quality degradation

	5.3 Local QoS
	5.3.1 Local QoS concept
	5.3.2 Operability of Local QoS for AS VO MPEG-4 decoding
	5.3.3 Resource-usage prediction of VOP decoding

	5.4 Hierarchical Quality-of-Service architecture
	5.4.1 Introduction to QoS concepts
	5.4.2 Layered architecture of QoS and requirements
	5.4.3 QoS problem definition
	5.4.4 Heuristic algorithm for multi-job quality optimization

	5.5 Global QoS experiments and results
	5.6 Conclusions

	6 Local QoS for BW-constrained MP-NoC using BE services
	6.1 Introduction
	6.2 Limitations with reservation-based QoS
	6.3 Bandwidth monitoring within an NoC
	6.4 Combining best-effort and reservation-based QoS management
	6.5 Bandwidth control experiment with AS VO MPEG-4 decoding
	6.5.1 Scalable task-level AS VO MPEG-4 decoding
	6.5.2 Experimental architecture
	6.5.3 Experiment with a combined bandwidth control

	6.6 Conclusions

	7 Conclusions
	7.1 Chapter conclusions
	7.2 Evaluation of AS VO MPEG-4 computation complexity
	7.3 Example application of presented work
	7.4 Conclusions on research contributions
	7.5 Future work

	A Visual bitstream structure
	B Test video sequences
	References

