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Analysis of an M/G/1 queue with customer

impatience and an adaptive arrival process

O.J. Boxma∗ and B.J. Prabhu†

October 15, 2009

Abstract

We study an M/G/1 queue with impatience and an adaptive arrival
process. The rate of the arrival process changes according to whether
an incoming customer is accepted or rejected. We analyse two different
models for impatience : (i) based on workload, and (ii) based on queue
length. For the workload-based model, we obtain the Laplace-Stieltjes
Transform of the joint stationary workload and arrival rate process, and
that of the waiting time. For the queue-length based model we obtain
the analogous z-transform. These queueing models also capture the in-
teraction between congestion control algorithms and queue management
schemes in the Internet.

1 Introduction

Data traffic in the Internet is regulated by means of distributed algorithms in
which each flow adapts its sending rate in order to match the bandwidth offered
to it. The bandwidth offered to a flow on a link varies in time according to the
number of concurrent flows traversing that link, and is signalled by the link to
each flow by means of a binary feedback instructing the flow to either increase
or decrease its sending rate. The link generates these feedback signals as a
function of the occupancy of its input buffer : the higher the occupancy, the
higher is the level of congestion, leading to a larger number of decrease signals.
A frequently employed binary feedback signal is packet admission/rejection :
admission signals an increase and rejection signals a decrease. An easy to im-
plement example of a packet admission control policy is to reject an incoming
packet if the buffer is full and to accept it otherwise. However, this policy leads
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to synchronization among concurrent flows and hence to inefficient utilization
of the link bandwidth, cf. [7]. To overcome such effects, various alternative
policies, including probabilistic admission control, have been proposed, cf. [7]
and [14].

The aim of this paper is to model and analyze the above described interaction
between a data source and a link that has a probabilistic packet admission
control policy. The packet arrival process is modelled as a time inhomogeneous
Poisson process whose intensity varies depending on whether an incoming packet
is accepted or rejected. The packet sizes are assumed to be independent and
identically distributed, and the link is modelled as an infinite buffer served at
a fixed rate. An incoming packet is accepted to the queue with a probability
that is a function of the current workload in the queue. We obtain the Laplace-
Stieltjes Transform (LST) of the joint stationary workload and arrival intensity
process, which then leads to the LST of the waiting time of accepted arrivals.
In addition, we also study the model in which incoming packets are accepted
depending upon the number of packets in the system. For this model we give
the z-transform of the joint stationary distribution of the queue length and the
arrival intensity process, which then leads to the z-transform of the number in
the system seen by accepted arrivals.

1.1 Related work

Performance of congestion control algorithms has been widely studied analyti-
cally using stochastic models in a single-source setting, cf. [12], and determin-
istic models for a more general network setting, cf. [11]. Congestion control
algorithms can be classified according to the increase function (i.e., how much
to increase the sending rate for each positive feedback) and the decrease function
(i.e., how much to decrease it for each negative feedback). In most of the studies,
the focus is on obtaining the stationary distribution of the sending rate process
for various increase/decrease functions and packet drop probability functions.
However, the analytical results for the distribution are obtained by decoupling
the interaction of the data source and the link buffer, i.e., by assuming that
the probability of negative feedback depends only on the current sending rate.
Hence, these studies focus on congestion control algorithms without explicitly
incorporating queue-length based admission control.

On the other hand, there is a body of literature which models the effect
of admission control policies on the queue length but with the restriction of a
constant arrival rate, i.e., there is admission control but no congestion control.
In [4], an M/M/1/K queue with probabilistic admission control was studied as-
suming a constant rate for the Poisson input process. In [8], the authors studied
an M/M/1/K with an admission probability that depends on the exponentially
averaged queue length instead of the current queue length. Such an admis-
sion control policy, called Random Early Detection (RED), was proposed in [7].
They obtained the joint distribution of the instantaneous queue length and the
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average queue length process as a solution of a system of differential equations,
for which they gave an analytical expression for K = 1 and K = 2, and nu-
merical results for larger buffer sizes. In [2], a singular perturbation technique
was applied to obtain the joint distribution of the instantaneous and averaged
queue lengths for general values of buffer sizes when the averaging parameter is
close to zero.

Due to its complexity, the analytical study of the interaction between con-
gestion control algorithms and admission control policies has been more or less
restricted to studying the dynamics of the expected values using determinis-
tic differential equations (with or without feedback delay), cf. [13] and [9].
The model considered in the present paper attempts to capture this interac-
tion within a stochastic framework for a certain class of probabilistic admission
control policies.

A related work in which this interaction has been studied is that of [16] in
which the authors model the TCP source as a fluid source whose rate varies
depending upon whether the finite buffer is full or not. The trajectory of the
buffer content process is a continuous function of time whose dynamics are
governed by a set of differential equations. Although there are similarities in
the idea of modelling the interaction between the source and the buffer, there
are several differences in the modelling approach that we take. As opposed
to their fluid model, we model the TCP source as one which emits packets at
distinct epochs thereby causing jumps in the buffer content process which no
longer has a continuous sample path. Another important difference is in the
feedback model itself. In [16] there is a positive feedback if and only if the
buffer is not full. It is thus a model for a Drop-Tail policy, whereas we study a
probabilistic feedback policy - the feedback is positive with a probability that
decreases as the buffer level increases.

The present model is also strongly related to some of the existing models
on impatience investigated in queueing theory, and in the following we describe
this connection.

1.2 Connection with queueing theory

The connection between queueing theory and performance analysis of congestion
control algorithms has been known since long, cf. [17]. The modelling of a link
as a server with a finite buffer is a natural one which immediately brings out
this connection, and this has been used to study admission control policies as
mentioned above. From the queueing theory side, in [15] the authors considered
various rejection rules, i.e., admission control policies in our context, for the
M/G/1 queue. However, the arrival rate to the queue in their model does not
change with the decision to accept or reject a packet. Another somewhat non-
intuitive connection between the two occurs when analysing congestion control
without admission control. It has been shown, for example, that the sending rate
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process of a fairly general class of congestion control algorithms is equivalent to
the workload process in a queue with state-dependent input and service rates,
cf. [3] and [1].

The model under investigation in this paper can be seen as a generalization
of the MAP/G/1 queue with impatient customers which was studied by Combé
in [6]. In that model, the arrival process changes states at each packet arrival
instant. However, the dynamics of the arrival process do not depend on whether
a packet is accepted or rejected, which makes our model a generalization of the
one studied in [6]. Our method of analysis is similar to the one in [6] in that we
obtain a system of Volterra integral equations of the second kind for the joint
stationary distribution of the workload and arrival rate process, from which
we obtain a system of recursive equations for the LST of the joint stationary
process.

A part of the present work containing the LST of the joint stationary work-
load and arrival rate process appeared in [5].

1.3 Organization of the paper

The rest of the paper is organized as follows. In Section 2, we describe the
system model and state the assumptions. In Section 3, we present the analysis
of the model with workload-based impatience leading to the computation of
the LST of the joint stationary workload and arrival rate process. Based upon
this LST, we give the LST of the waiting time of the accepted arrivals. In
Section 4, we analyse the queue-length-based model and obtain the z-transform
of joint stationary queue length and arrival rate process. Based upon this z-
transform, we give the z-transform of the number of customers seen in the
system by accepted arrivals. Finally, we summarize the results and state possible
extensions in Section 5.

2 Model description

Consider a variable data rate source which generates packets at Poisson intensity
λ(t) ∈ L, where L is a finite set of cardinality N . The packet sizes are assumed
to be i.i.d. with distribution function Bi(·), mean µ−1

i , and Laplace-Stieltjes
transform Bi(·), when the data source is in state i. These packets arrive at
a queue, say a router in the Internet, which admits the packets based on the
following admission control policy. An incoming packet which sees a workload
level of x is admitted to the queue with probability f(x), and rejected otherwise.
We do not model the possibility of a rejected packet re-entering the queue at a
later instant. We shall assume that f has the form

f(x) = exp(−νx),
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independently of the state of the input process. The function f(x) can also be
thought of as an impatience function associated with customers arriving to a
server. If an incoming customer sees a higher waiting time, then it is less likely
to join the queue.

For a router in the Internet the buffer occupancy in bits (the workload) is
generally known to the router, and hence a workload-based impatience model
is better suited for the analysis of such systems. However, in some cases the
impatience probability may depend on the number of customers in the system
rather than the total workload which may be unknown. For such a queue-
length-based model, we shall assume that if an incoming packet sees n packets
in the system, then it is admitted with probability pn, 0 < p < 1.

We shall assume that the variable data rate source is informed immediately
whether a packet was admitted or rejected. In practice, there is a delay after
which the source receives this information, and this delay could depend on
the queue length itself. The source reacts to the admission control policy by
adapting its data rate in the following way. With state i of the source we
associate a Poisson intensity λi. The state of the source jumps from i to j with
probability pij if a packet is rejected, and with probability p∗ij if a packet is
accepted. Thus, the intensity of the arrival process potentially changes with
each arrival to the queue. In a protocol like TCP, the state of the source will
jump to a state j ≤ i if a packet is rejected and to a state j ≥ i if a packet
is accepted. However, we shall not assume any particular structure for the
matrices P = [pij ] and P∗ = [p∗ij ].

3 Impatience based on workload

Let Vi(t, x) denote the joint probability that at time t the workload is less than
or equal to x and the input process is in state i. The server is assumed to work
at unit rate. There are three possible events that can happen in a small interval
[t, t + δt) : (i) there are no arrivals, in which case the workload is drained by
an amount δt; (ii) an arrival occurs and is rejected, in which case the input
process changes state; and (iii) an arrival occurs and is accepted, in which case
the input process changes state and there is a jump in the workload process.
The three terms on the RHS in the following equation correspond to the above
three possible events.
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Vi(t + δt, x) = (1− λiδt)Vi(t, x + δt)

+
∑

j

pjiλjδt ·
∫ x

0−
(1− exp(−νy))dVj(t, y)

+
∑

j

p∗jiλjδt

∫ x

0−
Bj(x− y) exp(−νy)dVj(t, y), x > 0, 1 ≤ i ≤ N.

From the above dynamics, we can derive the following integral equation for
i = 1, . . . , N :

∂Vi(t, x)
∂t

=
∂Vi(t, x)

∂x
− λi Vi(t, x) +

∑

j

pjiλj

∫ x

0−
(1− exp(−νy))dVj(t, y)(1)

+
∑

j

p∗jiλj

∫ x

0−
Bj(x− y) exp(−νy)dVj(t, y). (2)

Let us now discuss the issue whether the joint steady-state distribution of work-
load and arrival rate process exists.

Proposition 1 (Stability). If

1. ρmax := supi λiµ
−1
i is finite, and

2. limx→∞ f(x) = 0,

then the joint workload and arrival rate process is stable.

Proof. If limx→∞ f(x) = 0, then ∃x∗ < ∞ such that ρmaxf(x) < 1, ∀x > x∗.
That is, if the workload in the queue is greater than x∗ then the traffic intensity
is less than unity, which implies that the workload process will cross the level
x∗ infinitely often.

In the sequel we assume that the two conditions of the above proposition
hold.

Let
Φi(s) =

∫ ∞

0−
exp(−sx)dVi(x),

denote the Laplace-Stieltjes Transform of the joint distribution function, and
let Φ(s) := [Φi(s)] denote the row vector of the LST of the joint stationary
distribution. Also, let Vi(0) be the stationary joint probability that the workload
is zero and the arrival intensity is λi, and V (0) := [Vi(0)] be the row vector of
these joint probabilities. The following result relates Φ(s) to V (0).
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Lemma 1. The LST of the joint distribution function Φ(s) is given by the
following infinite sum:

Φ(s) = V (0)



∞∑

i=0

D(s + iν)A−1(s + iν)




i−1∏

j=0

C(s + jν)A−1(s + jν)





 , (3)

where the empty product is assumed to be unity, and

A(s) = sI−Λ(I−P), (4)
D(s) = sI, (5)
C(s) = Λ(P−B(s)P∗), (6)

Λ is a diagonal matrix with λi as its ith diagonal entry, B(s) is a diagonal
matrix with Bi(s) as its ith diagonal entry.

Proof. By taking the limit t →∞ in (2), we obtain the following integral equa-
tion for the joint steady-state distribution of the workload and the input process.

dVi(x)
dx

= λiVi(x)−
∑

j

pjiλj

∫ x

0−
(1− exp(−νy))dVj(y)

−
∑

j

p∗jiλj

∫ x

0−
Bj(x− y) exp(−νy)dVj(y), x > 0, 1 ≤ i ≤ N. (7)

The above integral equations can also be derived by writing the balance equa-
tions.

Taking the LST of (7) gives

Φi(s)− Vi(0) =λi
Φi(s)

s
−

∑

j

pjiλj

(
Φj(s)− Φj(s + ν)

s

)

−
∑

j

p∗jiλj
Bj(s)

s
Φj(s + ν). (8)

On rearranging (8), we obtain the following system of recursive equations:

Φ(s)A(s) = V (0)D(s) + Φ(s + ν)C(s), (9)

which upon iterating leads to (3).

We next proceed to determine the constants Vi(0), i = 1, 2, ..., N , which will
then completely characterize Φ(s).

Let γi, i = 1, 2, ..., N , denote the ith eigenvalue of Λ(I − P), such that
γi ≤ γj for i < j, and αi denote the corresponding right eigenvector. Since P
is a stochastic matrix, we can explicitly obtain the first eigenvector, α1, to be
equal to [1 1 . . . 1]T with eigenvalue γ1 = 0. For the location of the other N − 1
eigenvalues of Λ(I−P), we have the following result.
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Lemma 2. The eigenvalues of the matrix Λ(I−P) have positive real parts.

Proof. Applying Geršgorin’s circle theorem, cf. [10], every eigenvalue of Λ(I−P)
lies in at least one of the disks

{s : |s− λi(1− pii)| ≤
∑

j

|λipij | = λi(1− pii)}.

Thus, for every i, the real part of γi is positive.

Since A(s) = sI−Λ(I−P), A(s) is singular at the eigenvalues of Λ(I−P),
i.e., det(A(s)) = 0 at s = γi, i = 1, 2, ..., N . However, Φ(s) is analytic in the
half-plane Re(s) ≥ 0, and hence the constants Vi(0), i = 1, 2, ..., N , are such
that the RHS of (3) is finite at s = γi, i = 1, 2, ..., N .

In order to compute V (0) we shall make use of the above fact and the
following representation

Φ(s)A(s) = V (0)



∞∑

i=0

D(s + iν)




i−1∏

j=0

A−1(s + (j + 1)ν)C(s + jν)





 , (10)

which, for simplicity, we rewrite as

Φ(s)A(s) = V (0)M(s). (11)

Before stating the main result, we first make an assumption under which the
result holds.

Assumption 1. For j ≥ 1, A(s+jν) is invertible at s = γi, which is equivalent
to the condition that γi 6= γk + jν for i 6= k and for every j, i.e., no two
eigenvalues differ by an integer multiple of ν.

The above assumption ensures that A(s + jν) is invertible in the right-half
plane for j ≥ 1. We shall later observe using numerical computations that when
two eigenvalues differ by an integer multiple of ν, we can obtain the constants
Vi(0) by perturbing the entries of the matrix Λ(I−P).

Theorem 1. The joint probability vector V (0) is the unique solution of the
following set of N linear equations:

V (0) =




(I + M(ν)A−1(ν)Λµ−1)α1

M(γ2)α2
...

M(γN )αN




−1 


1
0
...
0


 . (12)
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Proof. Due to the form of A(s), every right eigenvector of Λ(I−P), αi, is also
a right eigenvector of A(s) with eigenvalue (s− γi). For i = 2, 3, ..., N , we right
multiply (11) by αi and set s = γi to get the following N − 1 equations

0 = V (0)M(γi)αi, i = 2, 3, ..., N. (13)

For the final equation, we first note that M(s) is singular at s = 0. To see this,
rewrite M(s) as

M(s) = D(s) + M(s + ν)A−1(s + ν)C(s), (14)

and right multiply by α1. Using (5) and (6), we see that

M(s)α1 = sα1 + M(s + ν)A−1(s + ν)Λ(I−B(s))α1 (15)

is equal to zero at s = 0, and that

lim
s→0

M(s)α1

s
= (I + M(ν)A−1(ν)Λµ−1)α1, (16)

where µ is a diagonal matrix with µi as its ith diagonal entry. We right multiply
(11) by α1 and use the normalization equation V(0)α1 = 1 to obtain

1 = V (0)(I + M(ν)A−1(ν)Λµ−1)α1. (17)

Combining (17) and (13), we obtain the system of equations (12).

3.1 An example with N = 2

To illustrate the computation of the probability vector, V (0), we consider the
following example with N = 2. Let the packet sizes be exponentially distributed
with mean µ−1. The transition probability matrices are

P =
[

1 0
1 0

]
, and P∗ =

[
0 1
0 1

]
.

That is, the source transmits at rate λ1 as long as packets are rejected, and
switches to λ2 and continues to transmit at that rate as long as packets are
accepted. For this example, the matrices A,C and D are

A(s) =
[

s 0
λ2 (s− λ2)

]
,C(s) =

[
λ1 −λ1

µ
s+µ

λ2 −λ2
µ

s+µ

]
, and D(s) = s

[
1 0
0 1

]
.

The eigenvalues and the corresponding right eigenvectors of Λ(I−P) are γ1 = 0
with α1 = [1 1]T and γ2 = λ2 with α2 = [0 1]T .

Let λ1 = 0.5, µ = 1 and ν = 1. In Fig. 1, we plot V1(0) and V2(0) for various
values of λ2 which is also equal to γ2. For our analysis, we had assumed that
γ2 6= kν (see Assumption 1). In the numerical computations as well, we cannot
use (12) to compute V1(0) and V2(0) when λ2 = k, and hence the discontinuities
in the plot at integral values of λ2. However, this numerical example shows that
the values of V1(0) and V2(0) for λ2 = kν could be approximated closely by
assuming λ2 = kν + ε.
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Figure 1: V1(0) and V2(0) as a function of λ2. λ1 = 0.5, ν = 1 and µ = 1.

3.2 Waiting times

Let W be the waiting time of the accepted customers in steady state. The
following result relates the LST of W to Φi, which is the LST of the the joint
steady-state probability that the workload is less than or equal to x and the
input process is in state i.

Proposition 2.

E[exp(−sW )] =
∑

i λiΦi(s + ν)∑
i λiΦi(ν)

.

Proof. In steady state, dVi(x) represents the fraction of time the virtual work-
load is in the interval [x, x+dx] and the background state is i. Since the arrival
rate is λi when the background state is i, the fraction of accepted arrivals that
see a workload in the interval [x, x + dx] and the background state i is given by

λi exp(−νx)dVi(x)∑
i

∫∞
0− λi exp(−νx)dVi(x)

,

and the fraction of accepted arrivals that see a workload of [x, x + dx] is
∑

i λi exp(−νx)dVi(x)∑
i

∫∞
0− λi exp(−νx)dVi(x)

,

which is thus the probability that an accepted arrival sees a workload of [x, x +
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dx]. Hence we can conclude that

E[exp(−sW )] =
∫ ∞

x=0−
exp(−sx)

∑
i λi exp(−νx)dVi(x)∑

i

∫∞
0− λi exp(−νx)dVi(x)

=
∑

i λiΦi(s + ν)∑
i λiΦi(ν)

.

Remark 1. Combé [6] derives a similar result for the special case that the
dynamics of the input process do not depend on whether a packet is accepted or
rejected.

4 Impatience based on number of customers

In this section we shall consider a discrete state-space model to study the joint
behaviour of a variable data rate source and the queue length at the buffer. As in
the previous section, we assume that the variable rate source generates packets
according to a Poisson process of rate λi when it is in state i, i = 1, . . . , N . The
packets arrive at a single server queue which admits the packets based on the
following admission control policy. If an incoming packet sees n packets in the
system, then it is admitted to the queue with probability pn, with 0 < p < 1.
The background state now changes to j w.p. p∗i,j . It is rejected with probability
1 − pn, and then the background state changes to j w.p. pi,j . Unlike in the
previous section however, we shall restrict ourselves to the case when packet
sizes are i.i.d. and exponentially distributed with rate µi when the background
state is i (i.e., the service speed may depend on the background state).

As in Proposition 1, we may conclude that the system is stable when p < 1.
Let {qn,i}, n = 0, 1, . . . , and i = 1, . . . , N , be the steady-state probability
that the system contains n customers while the background state is i. In the
following, we shall obtain the z-transform of {qn,i} defined as

Qi(z) :=
∞∑

n=0

znqn,i, i = 1, . . . , N, (18)

and Q(z) := [Q1(z) Q2(z) . . . QN (z)]. (19)

The steps to obtain Q(z) follow closely the steps for obtaining Φ(s) in Section
3. Let µ (resp. Λ) be a N × N diagonal matrix with µi (resp. λi) as its ith
diagonal element, and let q0 := Q(0). Then,

Lemma 3. The joint transform vector

Q(z) = q0



∞∑

i=0

D(piz)A−1(piz)




i−1∏

j=0

C(pjz)A−1(pjz)





 , (20)
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where the empty product is assumed to be unity, and

A(z) := (z − 1)µ + zΛ(I−P), (21)
C(z) := −zΛP + z2ΛP∗, (22)
D(z) := (z − 1)µ. (23)

Proof. The joint process of the number of customers and background state forms
a two-dimensional Markov process. Its balance equations are: For n = 1, 2, . . . ,
i = 1, . . . , N ,

(λi − λi(1− pn)pi,i + µi)qn,i =
∑

j

λjp
n−1p∗j,iqn−1,j

+
∑

j 6=i

λj(1− pn)pj,iqn,j + µiqn+1,i, (24)

and for n = 0 and i = 1, . . . , N ,

λiq0,i = µiq1,i. (25)

This yields, for i = 1, . . . , N :

µi[Qi(z)− q0,i] + λi(1− pi,i)Qi(z) + λipi,iQi(pz)

=
µi

z
[Qi(z)− q0,i] + z

∑

j

λjp
∗
j,iQj(pz) +

∑

j 6=i

λjpj,i[Qj(z)−Qj(pz)],(26)

and hence

[µi(z − 1) + λiz(1− pi,i)]Qi(z)− z
∑

j 6=i

λjpj,iQj(z)

= µi(z − 1)q0,i + z2
∑

j

λjp
∗
j,iQj(pz)− z

∑

j

λjpj,iQj(pz). (27)

This formula can be written in the following matrix-form:

Q(z)A(z) = Q(pz)C(z) + q0D(z). (28)

The solution to the above system of equations can be expressed in terms of
the infinite sum (20).

In order to determine q0 we shall couple the fact that Q(z) is analytic in the
unit disk {z : |z| ≤ 1}, i.e. it has no poles in the unit disk, with the fact that
det(A−1(z)) has N poles in the unit disk, and deduce that q0 is such that the
RHS of (20) should remain analytic at these N singularities.

We now show that det(A−1(z)) has N poles in the unit disk. Let ζi, i =
1, 2, . . . , N , be the N zeros of det(A(z)).

12



Lemma 4. The N zeros of the polynomial det(A(z)) lie in the disk {z : |z| ≤ 1}.

Proof. Denote U(z) := (µ + Λ(I − P))−1A(z). We shall deduce the location
of the ζi-s from the location of the zeros of det(U(z)). From the definition of
U(z) and (21),

U(z) = (µ + Λ(I−P))−1((z − 1)µ + zΛ(I−P))
= (µ + Λ(I−P))−1((z(µ + Λ(I−P))− µ)
= zI− (µ + Λ(I−P))−1µ

= zI− (µ + Λ(I−P))−1(µ−1)−1

= zI− (µ−1(µ + Λ(I−P))−1

= zI− (I + µ−1Λ(I−P))−1.

From the above equation we can infer that the zeros of det(U(z)) are the same
as the eigenvalues of (I + µ−1Λ(I−P))−1.

Also from the definition of U(z), we have the relation

det(U(z)) = det((µ + Λ(I−P))−1)det(A(z))

which, assuming µ+Λ(I−P) is invertible, says that the zeros of det(A(z)) are
the same as the zeros of det(U(z)).

From the two preceding arguments we can conclude that the set of eigenval-
ues of (I + µ−1Λ(I−P))−1 is the same as the set of zeros of det(A(z)).

We now show that the eigenvalues of I + µ−1Λ(I − P) lie on or outside
the unit circle, which would then prove the lemma. For this we shall apply
Geršgorin’s circle theorem to I+µ−1Λ(I−P) and conclude that its eigenvalues
lie in the set

∪N
i=1{z : |z − (1 + µ−1

i λi(1− pii))| ≤
N∑

j=1

|µ−1
i λipij |}

= ∪N
i=1{z : |z − (1 + µ−1

i λi(1− pii))| ≤ µ−1
i λi(1− pii)},

and hence lie on or outside the unit circle |z| = 1.

Let αi, i = 1, 2, ..., N denote the right eigenvectors of I + µ−1Λ(I − P)
corresponding to the eigenvalue γi, and let

M(z) =
∞∑

i=0




i−1∏

j=0

C(pjz)A−1(pj+1z)


D(piz). (29)

In order to determine q0, we make the following assumption on the eigenvalues
γi.

13



Assumption 2. For any pair i1 and i2 such that i1 6= i2,

γi1 6= pjγi2 .

We now have the following result.

Theorem 2. The probabilities q0 are the unique solution to

q0 =




M(1)A−1(1)α1

M(γ2)α2
...

M(γN )αN




−1 


1
0
...
0


 . (30)

Proof. Let us order the eigenvalues such that |γi| ≤ |γj | for i ≤ j. The first
eigenvalue γ1 = 1 with eigenvector α1 = [1 1 . . . 1]T .

We can rewrite (20) as

Q(z)A(z) = q0M(z) (31)

Right multiplying the LHS of (31) by αi, we get

Q(z)A(z)αi = Q(z)(µ + Λ(I−P))U(z)αi

= Q(z)(µ + Λ(I−P))(z − γ−1
i )αi. (32)

On right multiplying (31) and substituting z = γ−1
i , we get

0 = q0M(γ−1
i )αi, (33)

which would give us N −1 equations corresponding to i = 2, . . . , N , whereas for
i = 1, the RHS of the above equation is 0 as well. To see this is true, we first
rewrite M(z) as

M(z) = D(z) + M(pz)A−1(pz)C(z). (34)

On right multiplying the above equation by α1, we get

M(z)α1 = (z − 1)µα1 + (−z + z2)M(pz)A−1(pz)Λα1

= (z − 1)(µ + zM(pz)A−1(pz)Λ)α1.

The final equation is obtained from the normalization equation, Q(1)α1 = 1,
which concludes the proof.

4.1 Number in the system as seen by accepted arrivals

Let L be the number of customers in the system as seen by an accepted arrival
in steady state. We can derive the z-transform of L by using arguments similar
to those used for deriving the LST of the waiting time in the previous section.
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Proposition 3.

E[zL] =
∑

i λiQi(zp)∑
i λiQi(p)

.

Proof. Following arguments similar to those used in Proposition 2, we can de-
duce that the fraction of accepted arrivals that see n customers in the system
is ∑

i λip
nq(n, i)∑

i

∑
n λipnq(n, i)

,

which is thus the probability that an accepted arrival sees n customers in the
system. Hence we can conclude that

E[zL] =
∑

n

zn

∑
i λip

nqn,i∑
i

∑
n λipnqn,i

=
∑

i λiQi(zp)∑
i λiQi(p)

.

5 Conclusions and future work

In this paper, we have obtained the Laplace-Stieltjes Transform of the joint
workload and arrival rate process of an M/G/1 queue with customer impa-
tience and an adaptive arrival process. This queueing model was motivated
by applications in the Internet, and models the interaction between congestion
control and admission control algorithms. We have also analysed a variant in
which customer impatience is based on the queue-length, and have obtained
the z-transform of the joint queue-length and arrival rate process. We have en-
hanced the model by allowing service times to depend on the state of the input
process.

Possible extensions could consider (i) infinite support for the arrival rate
process, and (ii) packets that re-enter the system upon rejection. These ex-
tensions could be studied with either workload based rejection or packet based
rejection rules.
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