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Abstract

Main-chain liquid crystalline polymers (LCPs) are used to produce strong fibers due to
their ability to form highly-ordered orientational states. For sufficiently long chains it is
known that loss of entropy in such highly-ordered states is partly recovered by the formation
of so-called hairpins or kinks. The presence of hairpins not only modifies the microstructure of
LCPs, but it has also been conjectured that hairpins influence their macroscopic mechanical
behavior. In this paper the influence of hairpins on the rheological properties of concentrated
solutions of LCPs is studied.
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1 Introduction

The ability of liquid crystalline polymers (LCPs) to form highly-ordered orientational states with
extraordinary mechanical properties explains why LCPs are industrially used to produce strong
fibres and are the subject of numerous studies in academic circles. LCPs, as all high-molecular
weight polymers, show many characteristic timescales in their relaxation behavior where short
respectively large timescales are to be associated with relaxation of small respectively large parts
of the chain. The largest relaxation time is related to the relaxation of the chain as a whole and
dominates its macroscopic behavior. This fact justifies the success of approaches in which only
the longest relaxation time is taken into account [1]. For isotropic solutions of flexible polymers,
therefore, theories based on rather coarse representations of the chain microstructure adequately
describe the relaxation behavior of these systems. Examples of such theories are the Rouse-
and Zimm models of unentangled polymer liquids and the reptation model of entangled polymer
liquids. The situation with solutions of LCPs, however, is much more complicated due to the
fact that the persistence length of the chains is not negligible compared to their contour length.
The persistence length is the distance along the chain over which orientational correlations persist.
This leads to an anisotropic equilibrium state and a dependence of the distribution function on the
nematic order parameter. Moreover, there exist several different classes of LCPs having a different
chain microstructure such as main-chain and side-chain LCPs. Nevertheless, it is very useful to
develop simplified models of LCP solution dynamics that only depend on a few microstructural
parameters and allow one to study the effect of these parameters on the macroscopic properties
of the LCP solutions in detail.

One of the most studied model of this type is the Doi rigid-rod model [2], [3], [4], [5]. The
rigid-rod model, as its name suggests, neglects flexibility altogether and is applicable to LCPs for
which the persistence length is of the same order as the chain length. In general, however, LCPs of
sufficient length (molecular weight) are semi-flexible and hence form an intermediate case between
that of rigid rods and completely flexible polymers. Consequently, models for semi-flexible LCPs
were developed starting from both extremes. Either by extending the applicability of models for
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flexible polymers [1] or by relaxing the rigid constraint in the rigid-rod model by introducing the
so-called slightly bending rod model [6], [7], [8].

For sufficiently long main-chain LCPs in highly-ordered orientational states it was de
Gennes [9] who suggested that the loss of entropy would be partly recovered by the formation of
so-called hairpins or kinks. The aim of the current work is to adopt the model of the Rouse-chain
to describe the influence of hairpins on the rheological properties of solutions of highly-ordered
semi-flexible LCPs in simple types of flow.

In the papers of the other authors the formation and dynamics of hairpins is also discussed
[10].
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2 Rouse-like model with hairpins

2.1 Microscopic model

In this section we will describe our model for a solution of main-chain LCPs containing hairpins.
Each polymer chain is modeled as a sequence of N + 1 rigid rods, which we will call nematogens
or beads, connected by N flexible springs (see fig. 1). In reality main-chain LCPs are semi-flexible
and will have some persistence length. This is reflected in the model via the parameter l - the
length of each of the beads. The springs connecting the rods reflect the partial flexibility of the
chains. These springs are usually called ”entropy springs”, because of the nature of their elasticity.
This elasticity is due to configurational entropy and not to stretching of chemical bonds. In thermal
equilibrium at a given temperature and pressure a flexible chain segment tends to have a specific
average end-to-end distance, an equilibrium property. If the segment is now distorted, then due
to thermal motion it will evolve back to this equilibrium state. This means that if the end-to-end
distance of the segment is increased beyond its equilibrium value, then it will tend to shrink back.
The nematogens, joined to the ends of such a flexible segment will therefore experience a force
acting on them. This force is modeled by these ”entropy springs”.

l

r
k

n

...

...

Y

Z

X

r
k+1

Figure 1: The chain of nematogens when strong nematic ordering takes place. n - director, rk -
vector of center mass position for k-th nematogen, l - the length of the nematogen

The above model is not only capable of describing main-chain LCPs where rigid and flexible
segments actually form an alternating sequence along the chain, but also LCPs that have a more
uniform structure in which the semi-flexibility manifests itself via a resistance to bending (worm-
like chain behavior). In the rest of this paper we will assume that the beads are highly aligned by
the nematic interaction in a given direction referred to as nematic director n and hence that the
orientation of the individual beads will only slightly deviate from this direction. This assumption
is valid in a so-called monodomain nematic phase. Hairpins in this model are described as flipped
configurations of nematogens (see fig. 2, b, c). As nematogens have a so-called fore-aft or head-tail
symmetry, the nematic interaction energy does not distinguish between a nematogen oriented along
u or along −u. It is clear however that the elastic energy associated with hairpin configurations
(see fig. 2, b, c) is larger than that associated with a normal configuration (see fig. 2, a). Finally,
we will assume that the chains are unentangled with one another. In that case it suffices to restrict
the description to the behavior of a single chain.

We are interested in the behavior on timescales of the order of the relaxation time for a
whole chain configuration. This timescale is much greater then the timescale associated with the
orientation relaxation of single beads. The angular variables u are therefore socalled fast variables
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and in the further analysis of the model we discard intermediate configurations of the nematogen
between the hairpin and the normal state. The potential energy of a polymer chain consists of
two parts, an elastic and a nematic contribution.

U = Uelastic + Unematic (1)

The nematic interaction will be considered in the usual mean field way. The minimum of the
nematic energy, taken to be zero, is when a bead is oriented along the director. This means that
the expansion of the nematic potential energy in small deviations of the bead orientation δu from
the director n should be quadratic in δu. So

Unematic ≈
H0|δu|

2

2
(2)

For small deviations it holds that δu ⊥ n. The coefficient H0 acts as the strength of the nematic
field. This result can easily be derived from the fact that the orientations of the nematogens only
slightly deviate from the director and by taking the nematic interaction to be of the Maier-Saupe
form. The elastic energy of a polymer chain is given by

Uelastic =
1

2
k0

N−1
∑

m=1

|b(m)|2 (3)

where k0 is the stiffness of the springs and b(m) is the vector connecting the end of m-th bead to
the beginning of the (m+1)-th bead. This connector vector can be expressed in terms of the unit
orientation vectors u(m) and u(m + 1) of the m-th and (m + 1)-th bead, respectively, via

b(m) = r(m + 1) − r(m) −
1

2
l(u(m + 1) + u(m)) (4)

In a strong nematic field 1
2 (u(m + 1) + u(m)) will take up only three values.

1

2
(u(m + 1) + u(m)) =







u, case a

0, case b

−u, case c

(5)

with u ≈ n. The corresponding configurations of the beads are shown in figure 2. In that figure
the normal configuration corresponds to case a), the single hairpin to case b) and the ”double-
hairpin” to case c). To further simplify the model we will assume that case c) does not occur. The
argument for this choice is that, if the density of the hairpins is low, the probability for a double
hairpin to occur is much smaller than that of a single hairpin. We therefore assume

1

2
(u(m + 1) + u(m)) =

{

u, case a

0, case b
(6)

Figure 2: Three types of possible configurations of the neighboring nematogens. a). 1
2 (u(m+1)+

u(m)) = n; b). 1
2 (u(m + 1) + u(m)) = ~0; c). 1

2 (u(m + 1) + u(m)) = −n.

In view of expression (6) it is convenient to introduce a new stochastic variable s, that can only
have two values and indicates the presence or absence of a hairpin, i.e.

s =

{

1, case a

0, case b
(7)
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Let’s further introduce ∆r(m) = r(m + 1) − r(m). Then (4) becomes

b(m, s(m)) = ∆r(m) − ls(m)u(m) (8)

The distribution function for this variable s will be taken to be a Gibbs distribution. This is
justified by the assumption that u is a fast variable, because on the timescale in which the orien-
tation of the beads equilibrates, the center of mass positions of the beads almost will not change.
Therefore the following derivation is valid if the angular relaxation times of the beads are much
smaller then the longest conformational relaxation time of the chain as a whole, the so-called
(longest) Rouse time. If we now denote the energy to form a hairpin by Eh, then the expression
for the distribution function of s becomes

w(s) =







1

1+exp(−
Eh
T

)
, s = 1

exp(−
Eh
T

)

1+exp(−
Eh
T

)
, s = 0

(9)

To simplify the notation we will write ws instead of w(s). The hairpin energy follows from the
difference between the elastic energy of a spring in the presence of a hairpin and a spring in a
normal configuration. From (3) we easily obtain

Eh =
k0

2

(

|b(m, s = 0)|2 − |b(m, s = 1)|2
)

= k0l (∆r(m) · u(m)) −
k0l

2

2
(10)

This result shows that in general the energy of a hairpin depends on the vector that connects the
centers of mass of the neighboring nematogens that are involved in the hairpin. Such a dependence
will introduce a nonlinearity into the stochastic formulation of the problem in terms of a Langevin
equation (see next section). This is why we will treat Eh, instead, in a self-consistent way, i.e. we
will consider Eh to be a constant that follows from the consistency condition

Eh = k0l 〈∆r(m) · u(m)〉 −
k0l

2

2
(11)

If hairpins are only built into the polymer at the stage of polymerization, i.e. when the flow is not
strong enough to create new hairpins or destroy existing ones, then Eh is the difference in chemical
interaction energy between the hairpin state and the normal configuration. T in expression (9)
will then be given by the temperature at which polymerization takes place. By combining (2),
(3), (8) with u(m) = n(m) + δu(m) the expression for the total potential energy of a single chain
can be written as

U =
N
∑

m=1

[

H0

2
|δu(m)|2 +

k0

2
(∆r(m) − ls(m)n(m) − ls(m)δu(m))2

]

(12)

From this potential energy we can calculate the Helmholtz free energy per chain, via

F = −T ln

(

∫ N
∏

m=1

du(m) exp

(

−
U

T

)

)

(13)

If we now substitute (12) into (13) and use the result that exp(
∑

m

am) =
∏

m

exp(am) we obtain

F = −T

N
∑

m=1

ln

∫

du(m) exp

(

−
1

T

(

H0

2
|δu(m)|2 +

k0

2
(∆r(m) − ls(m)n(m) − ls(m)δu(m))2

))

(14)
The integral should be taken over the unit sphere, as u(m) is a unit vector. However, in the limit
of strong nematic order, the integration over the unit sphere can be replaced by an integration
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over the two-dimensional vector δu that lies in the tangent plane orthogonal to n. Of course for
large δu this tangent plane deviates considerably from the unit sphere, but due to the fast decay
of the exponential integrand those regions hardly make a contribution to the integral. Performing
this integration then leads to

F =
1

2

N
∑

m=1

(

k0

(

∆r‖(m) − ls(m)
)2

+
k0H0

H0 + k0l2s2
(∆r⊥(m))

2

)

(15)

It is convenient to introduce the following two elastic constants

k‖ ≡ k0 (16)

k⊥(s) ≡
k0H0

H0 + k0l2s2
(17)

or, by making use of s2 ≡ s, rewrite this last expression as

1

k⊥(s)
=

1

k0
+ s

1

H0l−2
(18)

Notice that k⊥(0) = k‖. For later use we will denote k⊥(1) by k⊥. From (18) it immediately
follows that k‖ ≥ k⊥(s). (15) can thus be written as

F [∆r,n, s] =
1

2

N
∑

m=1

(

k‖
(

∆r‖(m) − ls(m)
)2

+ k⊥(s(m)) (∆r⊥(m))
2
)

(19)

Finally, to obtain the free energy that only depends on the slow variables we have to average
over the set of fast variables {s(m), 1 ≤ m ≤ N}. Notice that we may take each ∆r(m) to be
a constant when we perform this average and that each term in (19) can be averaged separately.
The fact that each s(m) is a fast variable means that during the interval τfast ≪ t ≪ τRouse each
spring will switch many times between a normal and a hairpin state. Hence, if we average the
contribution to the free energy from the m-th spring over this time interval we get

〈Fm [∆r,n, s]〉τfast≪t≪τRouse
= w1Fm [∆r(m), 1] + w0Fm [∆r(m), 0] (20)

By the ergodic hypothesis this time average is equal to an average over the ensemble generated
by the set {s(m), 1 ≤ m ≤ N}. Thus, after summing over all the springs we find

〈F [∆r,n, s]〉s = w1F [∆r(m), 1] + w0F [∆r(m), 0] (21)

which in a continuous formulation becomes

〈F [r,n, s]〉s = w0
1

2
k‖

N
∫

0

dm

(

∂r

∂m

)2

+ w1
1

2

N
∫

0

dm

(

k‖

(

∂r‖

∂m
− l

)2

+ k⊥

(

∂r⊥

∂m

)2
)

(22)

In the sequel we will denote 〈F [r,n, s]〉s by F [r,n]. The resulting Rouse-like free energy (22)
describes a chain containing hairpins in the limit of strict nematic order. The hairpins are thereby
accounted for in an averaged manner. One readily recognizes that this free energy interpolates
between the free energy of a directed LCP and that of a anisotropic Gaussian chain.

In the next section we will formulate the dynamics of such a chain because it is the rheolog-
ical behavior that we are ultimately interested in. For this we will use the language of Langevin
equations as the remaining slow variables characterising the configurations of the chain are subject
to noise originating from the solvent degrees-of-freedom and the chain’s fast variables that were
eliminated from the description. Also we will derive an expression for the stress tensor on the
basis of the well-known Kramers-Kirkwood formula.
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2.2 Derivation of the Langevin equation

We will assume that the chains are subject to an imposed homogeneous flow field whose local
velocity is described by a possibly time-dependent rate-of-deformation or velocity gradient tensor
κ, i.e.

v(r) ≡ κ · r (23)

The Langevin equation describing the dynamics of a chain on the so-called Brownian time-scale
follows from a balance between frictional drag, entropy elasticity and noise. The frictional drag
force acting on bead m of the chain is given by

fdrag(m) ≡ −ζ(n) ·

(

∂r(m)

∂t
− κ · r(m)

)

(24)

where
ζ(n) = ζ‖nn + ζ⊥ (I− nn) (25)

is an anisotropic friction tensor. The frictional drag on a chain is anisotropic because the beads
are modeled by rigid rods, which themselves have anisotropic frictional properties. The elastic
force on bead m is related to the elastic free energy F [r,n] (22) via

felas(m) ≡ −
δF [r,n]

δr(m)
(26)

On the Brownian time-scale the sum of both these forces will be balanced by a force f(m, t) related
to the noise in the system. From this balance we obtain the following Langevin equation

ζ(n) ·

(

∂r(m)

∂t
− κ · r(m)

)

= −
δF [r,n]

δr(m)
+ f(m, t) (27)

This Brownian stochastic force f(m, t) is assumed to have white noise characteristics, i.e.

〈f(m, t)〉 = 0 (28)

〈f(m, t)f(m′, t′)〉 = 2ζ(n)Tδ(m − m′)δ(t − t′) (29)

where T is the temperature in energy units.
In the previous section we found that this elastic free energy F [r,n] appearing in in (26)

consists of two contributions

F [r,n] = w0F0 [r,n] + w1F1 [r,n] (30)

with

F0 [r,n] =
1

2
k‖

N
∫

0

dm

(

∂r(m)

∂m

)2

(31)

and

F1 [r,n] =
1

2

N
∫

0

dm

(

k‖

(

∂r‖(m)

∂m
− l

)2

+ k⊥

(

∂r⊥(m)

∂m

)2
)

(32)

If we now introduce the following two auxilliary elasticity tensors

K0 = k‖I (33)

K1 = k‖nn + k⊥(I − nn) (34)
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we can write these two contributions as

F0 [r,n] =
1

2

N
∫

0

dm
∂r(m)

∂m
· K0 ·

∂r(m)

∂m
(35)

and

F1 [r,n] =
1

2

N
∫

0

dm

(

∂r(m)

∂m
− ln

)

· K1 ·

(

∂r(m)

∂m
− ln

)

(36)

To evaluate the variational derivative of F [r,n] consider first the variation of F1 [r,n], i.e. δrF1 [r,n] ≡
F1 [r + δr,n] − F1 [r,n]

δrF1 [r,n] =
1

2

N
∫

0

dm

(

∂δr(m)

∂m
· K1 ·

(

∂r(m)

∂m
− ln

)

+

(

∂r(m)

∂m
− ln

)

· K1 ·
∂δr(m)

∂m

)

(37)

Because of the symmetry of K1 both terms in the variation are equal, hence

δrF1 [r,n] =

N
∫

0

dm

((

∂r(m)

∂m
− ln

)

· K1 ·
∂δr(m)

∂m

)

(38)

If we now integrate by parts we obtain

δrF1 [r,n] =

(

∂r(m)

∂m
− ln

)

·K1 · δr(m)

∣

∣

∣

∣

N

0

−

N
∫

0

dm

(

∂2
r(m)

∂m2
· K1 · δr(m)

)

(39)

From this last expression we immediately obtain the variation of F0 [r,n] by changing K1 to K0

and putting l to 0, i.e.

δrF0 [r,n] =
∂r(m)

∂m
· K0 · δr(m)

∣

∣

∣

∣

N

0

−

N
∫

0

dm

(

∂2
r(m)

∂m2
·K0 · δr(m)

)

(40)

The variation of F [r,n] therefore becomes

δrF [r,n] =

(

w0
∂r(m)

∂m
· K0 + w1

(

∂r(m)

∂m
− ln

)

·K1

)

· δr(m)

∣

∣

∣

∣

N

0

−

−

N
∫

0

dm
∂2

r(m)

∂m2
· (w0K0 + w1K1) · δr(m) (41)

The boundary terms must vanish because if they would be present then the force on bead m due
to entropy elasticity and nematic interactions would depend on the positions of the chain ends
and hence be non-local. Therefore this gives rise to the following two conditions for ∂r

∂m
at each

end of the chain

w0
∂r(0)

∂m
·K0 + w1

(

∂r(0)

∂m
− ln

)

·K1 = 0 (42)

w0
∂r(N)

∂m
·K0 + w1

(

∂r(N)

∂m
− ln

)

· K1 = 0 (43)
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and hence to

∂r(0)

∂m
= lw1 (w0K0 + w1K1)

−1
·K1 · n

=
w1

w0 + w1
ln

≡ l′n (44)

and similarly
∂r(N)

∂m
= l′n (45)

These boundary conditions can easily be understood in the limit of w0 −→ 0. In that case when
there are no hairpins present, the nematogens at the chain ends will be completely oriented along

the director, i.e. ∂r(0)
∂m

= ∂r(N)
∂m

= ln. However, in the more general case when the chain contains
hairpins, in particular near the chain ends, this apparently leads to a kind of partial orientation

of these end nematogens, i.e. ∂r(0)
∂m

= ∂r(N)
∂m

= l′n with l′ < l.

Now, as the variational derivative δF
δr(m) is defined through δrF [r,n] ≡

N
∫

0

dm δF
δr(m) · δr(m),

we readily obtain from (41) that

δF

δr(m)
= − (w0K0 + w1K1) ·

∂2
r(m)

∂m2

≡ −K ·
∂2

r(m)

∂m2
(46)

With the help of (33) and (34) this effective elasticity tensor K ≡ K(n) can be written in the
form

K(n) ≡ k′
‖nn + k′

⊥(I − nn) ≡ k‖nn + (k⊥ + w0(k‖ − k⊥))(I − nn) (47)

This all leads to the following explicit Langevin equation for the chain dynamics including the
appropriate boundary conditions and characteristics of the stochastic force



























ζ(n) ·
(

∂r

∂t
− κ · r(m)

)

= K(n) · ∂2
r(m)

∂m2 + f(m, t)
∂r(0)
∂m

= l′n
∂r(N)

∂m
= l′n

〈f (m, t)〉 = 0
〈f(m, t)f(m′, t′)〉 = 2ζ(n)Tδ(m − m′)δ(t − t′)

(48)

To conclude, the presence of hairpins leads in the model to a modification of the entropy elastic
constants and the persistence length of the chain in comparison to the case without hairpins.
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2.3 Solution by normal mode expansion

The Langevin equation we derived in the previous section (48) is in fact a stochastic partial
differential equation. In general such equations are difficult to analyse and ”exact” solutions or
”exact” methods to obtain such solutions are very rare. However, if we assume that the director n

is fixed in space and time, as is the case for instance in a homogeneous elongational (see furtheron),
then this Langevin equation is linear in r and it is possible to construct an ”exact” solution in
the form of a normal mode expansion. The idea behind this method is that any motion of the
chain can be described as a superposition of independent motions of a particular form, the so-
called normal modes. Let φp be the function corresponding to the p-th normal mode. To find the
explicit form of this function we multiply the Langevin equation (48) by φp(m) and integrate over
m along the entire chain. If we now introduce the following quantities

rp(t) ≡

N
∫

0

dm r (m, t)φp (m) (49)

fp(t) ≡

N
∫

0

dm f (m, t)φp (m) (50)

τ−1(n) ≡ ζ−1(n) ·K(n) (51)

τ−1(n) ≡
1

τ‖
nn +

1

τ⊥
(I− nn) (52)

we readily obtain

∂rp

∂t
= κ · rp + τ−1(n) ·



φp

∂r

∂m

∣

∣

∣

∣

N

0

− r
∂φp

∂m

∣

∣

∣

∣

N

0

+

N
∫

0

dmr (m)
∂2φp

∂m2



+ ζ−1(n) · fp(t) (53)

In order for the normal modes to be independent, it is necessary that the functions φp are a
solution of the following eigenproblem











∂2φp

∂m2 = −k2
pφp

∂φp(m=0)
∂m

= 0
∂φp(m=N)

∂m
= 0

(54)

These solutions or eigenfunctions are given by

φp(m) = cos (kpm) (55)

with
kp ≡

πp

N
(56)

and p ∈ (1, 2, 3, ..., N). N is the number of nematogens in the chain. So here the normal mode
expansion coincides with the (cosine) Fourier series of the function r(., t). Formally the number of
eigenfunctions is infinite, but the eigenfunctions φp for p > N correspond to deformations of the
chain on scales smaller than l the size of the rigid nematogens. From the mathematical perspective
these modes are inconsistent with the assumptions of the model and hence they should be absent
in the description. From the point of view of physics, however, they are not forbidden but they
will typically be too energetic to be excited during flow. Therefore we will represent r(m, t) by a
normal mode expansion with a finite number of terms, i.e.

r(m, t) = l′mn +
1

N
r0(t) +

2

N

N
∑

p=1

rp(t) cos (kpm) (57)
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The unperturbed chain with a uniform distribution of bead centers.

mode p = 1.

mode p = 2.

mode p = 3.

Figure 3: Configuration of the bead centers corresponding to modes p = 1, 2, 3

It is instructive to show which bead configuration correspond to a given normal mode. In fig.3
some of these configurations are shown.

Substituting now (44), (45), (54) and (55) into (53) gives the following Langevin equation
for the p − th normal mode:

∂
∂t

rp +
(

k2
pτ−1(n) − κ

)

· rp = − (1 − (−1)p) l′τ−1(n) · n + ζ
−1(n) · fp(t) (58)

The properties of the random force fp(t) in (58), in particular its time average and its two-time
correlation function, can be easily obtained from its definition (50), the orthogonality of the {φp}
and the properties of the real-space Brownian force f(m, t), (28) and (29).

〈fp(t)〉 =

〈 N
∫

0

dm φp(m)f (m, t)

〉

=

N
∫

0

dm φp(m) 〈f (m, t)〉 = 0 (59)

〈fp(t)fp′(t′)〉 =

〈 N
∫

0

dm

N
∫

0

dm′ φp(m)φp′ (m′)f (m, t) f (m′, t′)

〉

=

N
∫

0

dm

N
∫

0

dm′ φp(m)φp′ (m′) 〈f (m, t) f (m′, t′)〉

=

N
∫

0

dm

N
∫

0

dm′ φp(m)φp′ (m′)2ζ (n) Tδ (m − m′) δ (t − t′)

=

N
∫

0

dm φp(m)φp′ (m)2ζ (n)Tδ (t − t′) = Nζ (n)Tδ (t − t′) δpp′ (60)

Now we will make the assumption that the director n is to be considered as a parameter
in this last equation. In that case (58) becomes a linear inhomogeneous first order stochastic

11



ordinary differential equation. If the operator τ p(t) commutes with itself for all moments of time,
then the solution can formally be written as

d

dt
rp + τ−1

p rp = v
∗
p (61)

where v
∗
p - is an additional rate of change of rp due to the action of the stochastic force and the

mean-field nematic and elastic interactions. The formal solution of this equation, subject to the
initial condition rp(0) = Cp, is given by

rp(t) = exp
(

−τ−1
p (t, 0)t

)

·Cp +

t
∫

0

dt′ exp
(

−τ−1
p (t, t′)(t − t′)

)

v
∗
p (t′) (62)

where
τ−1

p (t, t′) ≡ k2
pτ−1(n) − κ∗(t, t′) (63)

and

κ∗(t, t′) ≡
1

t − t′

t
∫

t′

κ(t∗)dt∗ (64)

By directly inverting (63) we obtain

τ p(t, t
′) =

τ (n)

k2
p

·

[

I −
κ∗(t, t′) · τ (n)

k2
p

]−1

(65)

Substituting
v
∗
p (t′) ≡ − (1 − (−1)p) l′τ−1(n) · n + ζ−1(n) · fp (t′) (66)

into (62) gives

rp(t) = exp
(

−τ−1
p (t, 0)t

)

·Cp +

t
∫

0

dt′ exp
(

−τ−1
p (t, t′) (t − t′)

)

·
[

− (1 − (−1)p) l′τ−1(n) · n + ζ−1(n) · fp (t′)
]

(67)

From equation (67) it immediately follows that the average of rp(t) is given by

〈rp(t)〉 = exp
(

−τ−1
p (t, 0)t

)

· Cp −

t
∫

0

dt′ exp
(

−τ−1
p (t, t′) (t − t′)

)

· (1 − (−1)p) l′τ−1(n) · n (68)

Important remark should be made at this point. The solution can be represented this way
only if τ−1

p (t, t′) commutes with itself for different moments of time t, t′. This might not be the
case for shear flow, because the orientation of director changes. But for elongational flow director
aligns along the direction of elongation. For this case the exponent of operator τ−1

p (t, t′) makes
sense and (68) represents the solution of (58).
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2.4 Derivation of the equation for director

In this section we derive the equation for the director dynamics. This equation is needed to close
the set of equations of motion of a chain. The idea in the ground of this derivation is next: the
free energy of the entire system should be minimized with respect to variations δn orthogonal to
n, i.e. δn · n = 0. The free energy of the system can be computed as the product of number of
chains times the average free energy per chain. The function F [r,n] discussed above gives the
free energy per chain for a given configuration of chains backbone. To get average free energy per
chain we should average this function with respect to all possible backbone configurations. The
minimization should be done under the condition that average configuration of the backbone of
the chains is fixed. If we will take into account that F0[r,n] is completely isotropic, then instead
of F [r,n] we can consider F1[r,n] from (30)

δn 〈F1〉 = 〈F1 [r,n + δn]〉 − 〈F1 [r,n]〉 =

=

N
∫

0

dm

〈

−lδn · K1(n) ·

(

∂r

∂m
− ln

)〉

+
1

2

N
∫

0

dm

〈(

∂r

∂m
− ln

)(

∂r

∂m
− ln

)

: δK1(n)

〉

Here we used that the tensor of elasticity is symmetrical. Now we employ next two relations to
get the equation for n.

δK1 =
(

k‖ − k⊥
)

(nδn + δnn) (69)

δn ·K1 = k⊥δn (70)

Then,

δn 〈F1〉 =

N
∫

0

dm

〈

−lk⊥δn ·
∂r

∂m

〉

+
1

2

N
∫

0

dm

〈(

∂r

∂m
− ln

)(

∂r

∂m
− ln

)

: δK1(n)

〉

(71)

(

∂r

∂m
− ln

)(

∂r

∂m
− ln

)

: δK(n) =

(

∂r

∂m
− ln

)(

∂r

∂m
− ln

)

: (k‖ − k⊥) (nδn + δnn) =

= 2(k‖ − k⊥)

(

∂r

∂m

∂r

∂m
: nδn − l

∂r

∂m
· δn

)

(72)

Finally we get the expression for δnF1 (with the use of δn ·n = 0). The condition for director is:

δn 〈F1〉 = (k‖ − k⊥)

N
∫

0

dm

〈

∂r

∂m

∂r

∂m

〉

: nδn − lk‖

N
∫

0

dm

〈

∂r

∂m

〉

· δn = 0 (73)

This equation is the same as (~s · δn) = 0. Comparing it with the condition for variations to be
orthogonal to n we come to a conclusion, that ~s ‖ n. Consequently,

(k‖ − k⊥)

N
∫

0

dm

〈

∂r

∂m

∂r

∂m

〉

· n − lk‖

N
∫

0

dm

〈

∂r

∂m

〉

= λn (74)

This is an eigenvector problem for nonlinear operator A (n)

A (n) · n = λn (75)

where

A (n) = (k‖ − k⊥)

N
∫

0

dm

〈

∂r

∂m

∂r

∂m

〉

− lk‖

N
∫

0

dm

〈

∂r

∂m

〉

n (76)
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For further use it would be convenient to write the derivative of r(m) in terms of normal modes
expansion

∂r(m)

∂m
= −

2

N

N
∑

p=1

kprp sin (kpm) (77)

Therefore
N
∫

0

dm
∂r(m)

∂m
= −

2

N

N
∑

p=1

(1 − (−1)p) rp (78)

N
∫

0

dm
∂r(m)

∂m

∂r(m)

∂m
=

2

N

N
∑

p=1

k2
prprp (79)

Previous two results allow to simplify the expression for operator A (n)

A (n) =
2

N

N
∑

p=1

[

(k‖ − k⊥)k2
p 〈rprp〉 + (1 − (−1)p) lk‖ 〈rp〉n

]

(80)

This equation describes the dynamics of the director. For example, in the instance of the elongation
flow it claims that the director should align along the eigen direction of flow gradient operator
with the maximum eigenvalue.
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2.5 Derivation of the stress tensor

The stress tensor σ in the solutions of the liquid crystalline polymers (LCP) consists of two parts:
the stress tensor of the solvent σ̂s and the stress tensor of the polymer beads σ̂b in the solution.
In the concentrated regime the main input in the stress tensor is due to the second term. In this
section we will to calculate it by Kramers-Kirkwood formula

σb = −
1

V

∑

s

〈Fsrs〉 (81)

here summation is done by the beads inside the volume V , fs is the force acting on the bead with
number s by other beads without the hydrodynamic force, rs is the position of bead s. Averaging
is made by all realizations of the process. In the case of continuous Rouse-like model formula (81)
transforms into

σb = −
Nch

V

N
∫

0

dm 〈F(m)r(m)〉 (82)

where Nch is the number of chains in volume V . The force F(m) is the righthand-side of the
Langevin equation (48)

ζ(n) ·

(

∂r

∂t
− κ · r(m)

)

= K(n) ·
∂2

r(m)

∂m2
+ f(m, t) (83)

So

F(m) = K(n) ·
∂2

r(m)

∂m2
+ f(m, t) (84)

This force F(m) includes two terms. First is the force, which acts from the neighboring beads and
the second one is a stochastic force.

When calculating the stress tensor it is also, as in previous subsections, better to use normal
modes expansion.

r(m) =
1

N
r0 +

2

N

N
∑

p=1

rp cos (kpm) (85)

F(m) =
1

N
F0 +

2

N

N
∑

p=1

Fp cos (kpm) (86)

where

Fp =

N
∫

0

dm F(m) cos (kpm) = −k2
p K (n) · rp − (1 − (−1)p) l′k‖ · n + fp (87)

Notice that it is incorrect to substitute the expansion of r(m) in form (85) into (84), in spite
of converging of the series (85) to r(m), the second derivative of the series (85) by m does not

converge to ∂2
r

∂m2 . The correct expansion for Fp can be obtained by (87).
Expression for rp can be taken from (67) (it is recapitulated here)

rp(t) =

t
∫

−∞

dt′ exp
(

−τ−1
p (t, t′) (t − t′)

)

·
[

− (1 − (−1)p) l′τ−1 · n + ζ−1 · fp (t′)
]

(88)

Substitution (85) and (86) into (82) gives

σb = −
Nch

V

(

1

N
〈F0r0〉 +

2

N

N
∑

p=1

〈Fprp〉

)

(89)
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To use this formula it is necessary to calculate 〈F0r0〉 and 〈Fprp〉:

〈F0,α(t)r0,β(t)〉 = 〈f0,α(t)r0,β(t)〉 =

〈

t
∫

−∞

dt′
[

exp(−τ−1
0 (t, t′)(t − t′))ζ−1

]

β,µ
fα(t)fµ(t′)

〉

=

= NT
t
∫

−∞

dt′
[

exp(−τ−1
0 (t, t′)(t − t′))ζ−1

]

β,µ
ζα,µδ(t − t′)

(90)
The use of symmetry property ζαµ = ζµα gives

〈F0(t)r0(t)〉 =
1

2
NT I (91)

Similarly,
〈Fp(t)rp(t)〉 = −k2

p K (n) · 〈rprp〉 − (1 − (−1)p) l′k‖n 〈rp〉 + 〈fprp〉 (92)

〈fp,α(t)rp,β(t)〉 =

〈

t
∫

−∞

dt′
[

exp(−τ−1
p (t, t′)(t − t′))ζ−1

]

β,µ
fα(t)fµ(t′)

〉

=

= NT
t
∫

−∞

dt′
[

exp(−τ−1
p (t, t′)(t − t′))ζ−1

]

β,µ
ζα,µδ(t − t′) = 1

2NTδα,β

(93)

Here we take into account that the delta-function has singularity on the upper limit.

〈fp(t)rp(t)〉 =
1

2
NT I (94)

〈Fp(t)rp(t)〉 = −k2
p K (n) · 〈rprp〉 − (1 − (−1)p) l′k‖n 〈rp〉 +

(N + 1)

2
T I (95)

Substitution (95) and (91) into (89) leads to

σb = −
Nch

V

(

(N +
1

2
)T I−

2

N

N
∑

p=1

k2
pK (n) · 〈rprp〉 −

2

N

N
∑

p=1

(1 − (−1)p) l′k‖n 〈rp〉

)

As N ≫ 1, we can neglect 1
2 compared to N . Introducing the new notation

pid =
NchNT

V

gives

σb = −pidI +
2Nch

NV

N
∑

p=1

(

k2
pK (n) · 〈rprp〉 + (1 − (−1)p) l′k‖n 〈rp〉

)

(96)

To calculate correlation matrix at arbitrary moment of time it is useful to notice, that

rp = 〈rp〉 +

t
∫

0

dt′ B(t, t′) · fp(t
′) (97)

where
B(t, t′) = exp

(

−τ−1
p (t, t′)(t − t′)

)

· ζ−1 (98)

Therefore
〈rprp〉 = 〈rp〉 〈rp〉 + Gp (99)

where

Gp =

〈 t
∫

0

dt′
t
∫

0

dt′′ (B(t, t′) · fp(t
′)) (B(t, t′′) · fp(t

′′))

〉

(100)
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and

〈rp(t)〉 = −

t
∫

−∞

dt′ exp
(

−τ−1
p (t, t′) (t − t′)

)

· (1 − (−1)p) l′τ−1 · n (101)

Expression for Gp is next:

Gp = NT

t
∫

0

dt′
[

ζ−1
⊥ exp

(

−
(

τ−1
p (t, t′) + τ−1T

p (t, t′)
)

t′
)

+

+
(

ζ−1
‖ − ζ−1

⊥

)

(

exp
(

−τ−1
p (t, t′)t′

)

· n
) (

exp
(

−τ−1
p (t, t′)t′

)

· n
)

]

(102)

The formulas (96), (99), (101) and (102) give the stress tensor at any arbitrary moment.
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3 The elongation flow

3.1 The stress tensor for non-steady elongation flow

In this section we will derive explicit expression for the stress tensor in the instance of the simple
elongation flow. In this case the direction of elongation remains constant, but the rate of elongation
κ may vary in time.

κ(t) =
κ(t)

2





−1 0 0
0 −1 0
0 0 2



 (103)

It is assumed here that κτN2 < 1, where τ - is the longest relaxation time. In the opposite case
this model can not be applied, because the equilibrium state disappears. For polymers we are
interested in N ≫ 1, therefore κτ ≪ 1. This allows to make further derivation by expansion
with respect to κτ‖ and κτ⊥. The essential value, that characterizes anisotropy of stresses in the
elongation flow, is, so called, tensile stress σT = σzz − σ − xx. We will focus on calculation of
this quantity. Also we assume that initial moment of motion was infinite time ago. If we want
to consider situation, when polymer starts to move at some moment of time t and before that
moment it was at rest, then we can put velocity gradient to zero before moment t. So we can
extend integration by time in expressions for the stress tensor till minus infinity and forget about
initial conditions. Let’s choose Oz axis along the direction of elongation. Then

rp(t) =

t
∫

−∞

dt′ exp
(

−τ−1
p (t, t′) (t − t′)

)

· v∗
p (t′) (104)

where
v
∗
p (t′) = − (1 − (−1)p) lτ−1 · n + ζ−1 · fp (t′) (105)

Expression for stress tensor is (96). Also we will omit the isotropic component of the stress tensor,
which corresponds to the ideal gas pressure. Thus, we get

σ∗
b =

Nch

V

2

N

N
∑

p=1

(

k2
pK (n) · 〈rprp〉 + (1 − (−1)p) l′k‖n 〈rp〉

)

(106)

To obtain a tensile stress we have to calculate σ∗
b,zz and σ∗

b,xx

σ∗
b,zz = nn : σ∗

b =
Nch

V

2

N

N
∑

p=1

(

k2
pk‖ 〈(n · rp) (n · rp)〉 + (1 − (−1)p) l′k‖ 〈n · rp〉

)

(107)

(n · rp) =

t
∫

−∞

dt′ exp
(

−τ−1
p,‖ (t, t′) (t − t′)

)

(

n · v∗
p (t′)

)

(108)

(

n · v∗
p (t′)

)

= − (1 − (−1)p) l′τ−1
‖ + ζ−1

‖ (n · fp (t′)) (109)

Thus,

k‖ 〈(n · rp) (n · rp)〉 = NT

t
∫

−∞

dt′

τ‖
exp

(

−2k2
p

(t − t′)

τ‖

)

exp



2

t
∫

t′

dt∗κ(t∗)



+

+ (1 − (−1)p)
2
k‖l

′2





t
∫

−∞

dt′

τ‖
exp

(

−k2
p

(t − t′)

τ‖

)

exp





t
∫

t′

dt∗κ(t∗)









2

(110)
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Let’s integrate by parts the first term in (110), and assume that κτ‖ ≪ 1 and
t
∫

t′
dt∗κ‖(t

∗) ≪ 1.

t
∫

−∞

dt′

τ‖
exp

(

−2k2
p

(t − t′)

τ‖

)

exp





t
∫

t′

dt∗2κ‖(t
∗)



 =
1

2k2
p



1 + 2

t
∫

−∞

dt′ exp

(

−2k2
p

(t − t′)

τ‖

)

κ(t′)





Similar treatment is applicable to the second term in (110) and to the expression for σ∗
b,xx

σ∗
b,xx = nn : σ∗

b =
Nch

V

2

N

N
∑

p=1

k2
pk′

⊥ 〈(n⊥ · rp) (n⊥ · rp)〉 (111)

where n⊥ · n = 0 and

(n⊥ · rp) =

t
∫

−∞

dt′ exp
(

−τ−1
p,⊥(t, t′) (t − t′)

)

ζ−1
⊥ (n⊥ · fp (t′)) (112)

k′
⊥ 〈(n⊥ · rp) (n⊥ · rp)〉 = NT

t
∫

−∞

dt′

τ⊥
exp

(

−2k2
p

(t − t′)

τ⊥

)

exp



−

t
∫

t′

dt∗κ(t∗)



 (113)

Finally we will get expression for σT = σb,zz − σb,xx = σ∗
b,zz − σ∗

b,xx,

σT =

t
∫

−∞

dt′G(t − t′)κ(t′) (114)

where

G(t) =
NchT

V

N
∑

p=1

[

2e
−2k2

p
t

τ‖ + e
−2k2

p
t

τ⊥ +
k‖l

′2

T

4 (1 − (−1)p)

Nk2
p

e
−k2

p
t

τ‖

]

(115)

The expression for the stress tensor is found. The function G(t) is a linear response function. In
order to simplify further analysis of the resulting expression we will make it dimensionless.

G̃(t̃) =
G̃(t̃ τ‖)

Pid

(116)

where

t̃ =
t

τ‖
(117)

τ̃ =
τ‖

τ⊥
(118)

q̃ =
k‖l

′2

T
(119)

Then

G̃(t̃) =
1

N

N
∑

p=1

[

2 e−2k2

p t̃ + e−2k2

pτ̃ t̃ + q̃
4 (1 − (−1)p)

Nk2
p

e−k2

pt̃

]

(120)

The response function depends only on one argument t̃ and three parameters: the length of the
chain N , the ratio of parallel and orthogonal relaxation times τ̃ (which can vary only from 0 to 1)
and the ratio of elastic energy to the thermal energy q̃. The graph for G̃(t̃) for different amount of
beads in the chain is shown on figure (4). From this figure we see that the longer the chains are,
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Figure 4: The response function G̃(t̃) on time for t̃ different amount of beads in the chain. N =
10 for the lowest curve, next are N = 20, N = 40, and N = 80 for the highest one. q̃ = 1, τ̃ = 1

2

the slower the decay of response. This result is in good agreement with common sense, because
the relaxation of the longer chain should take more time, then a relaxation of the shorter one.

If we want to consider the dependence of elastic properties on the amount of hairpins, then
we have to express the parameters τ̃ and q̃ by original parameters of the model: k0 - ”entropy”
elasticity of the springs, l - length of the beads, H0 - strength of the nematic interaction, w0 -
fraction of the hairpins, ζ‖ and ζ⊥ - media friction coefficients to the motion along the bead and
in orthogonal direction.

τ̃ =
ζ‖

ζ⊥

1 + w0
k0l2

H0

1 + k0l2

H0

(121)

q̃ = (1 − w0)
2 k0l

2

T
(122)

Let’s introduce the set of the original dimensionless characteristics of the system.

ζ =
ζ‖

ζ⊥
(123)

This parameter can change only from 0 to 1, because the resistance to the motion of the bead
along itself is always less than in the orthogonal direction.

ǫ =
k0l

2

T
(124)

This parameter seems to be dependent on temperature, but if we recall that the elastic constant k0

corresponds to the ”entropy” springs and itself is proportional to T , then we can conclude that ǫ

is a parameter describing the structure of the chain. It gives the ”ratio” between rigid and flexible
parts of the polymer. Increase of ǫ corresponds to increase persistence length of the chains.

And the last dimensionless parameter is temperature expressed in values of H0. It gives
the ratio between characteristic energies of thermal motion and energy of nematic ordering.

Θ =
T

H0
(125)

Now we see, that originally in our model there are five dimensionless parameters: N , w0,
ζ, ǫ and Θ. But the macroscopic behavior of the system depends only on number of beads in the
chain N and two combinations:

τ̃ (ζ, w0, ǫ, Θ) = ζ
1 + w0ǫΘ

1 + ǫΘ
(126)

20



q̃(ǫ, w0) = ǫ(1 − w0)
2 (127)

0.2 0.4

0.5

1.0

1.5

2.0

w0

G̃

Figure 5: The response function G̃(t̃, w0) on fraction of hairpins w0 for different moments of time.
Starting from the upper curve t̃ = 1

3 , 1, 3, 9, 27 Here N = 50, ζ = 1
2 , Θ = 1, ǫ = 1.

On figure (6) the influence of hairpins on elastic properties is shown. From this graph we
can conclude, that small fraction of hairpins makes the response function decay faster. So the
material becomes softer.

Next we compute the elongtion viscosity:

η̃
E

=

∞
∫

0

dt̃ G̃(t̃) (128)
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w0

Figure 6: The elongation viscosity of the solution depending on the amount of hairpins. The
elasticity of the springs starting from the lowest curve takes values: ǫ = 1

2 , 1, 2. Here N = 50,
ζ = 1

2 , Θ = 1.

On the basis of (120) we get the explicit expression for the tensile viscosity.

η̃
E

=
1

N

N
∑

p=1

[(

1 +
1

2τ̃

)

1

k2
p

+
4q̃

N

(1 − (−1)p)

k4
p

]

(129)
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3.2 The storage and loss moduli

In the case of oscillatory flow important characteristics of the linear response of the material are
storage G̃′ and loss moduli G̃′′. On the basis of the the expression for response function (120) from
the previous section we may easily compute G̃′ and G̃′′ by making sin- and cos-Fourier transform:

G̃′(ω̃) = ω̃

∞
∫

0

dt̃ G̃(t̃) sin(ω̃t̃) =

∞
∫

0

dφ̃ G̃(
φ̃

ω̃
) sin(φ̃) (130)

G̃′′(ω̃) = ω̃

∞
∫

0

dt̃ G̃(t̃) cos(ω̃t̃) =

∞
∫

0

dφ̃ G̃(
φ̃

ω̃
) cos(φ̃) (131)

where ω̃ = ωτ‖. Readily we obtain

G̃′(ω̃) =
1

N

N
∑

p=1

[

2
ω̃2

ω̃2 + 4k4
p

+
ω̃2

ω̃2 + 4k4
pτ̃

2
+

4q̃(1 − (−1)p)

Nk2
p

ω̃2

ω̃2 + k4
p

]

(132)

G̃′′(ω̃) =
1

N

N
∑

p=1

[

2
2k2

pω̃

ω̃2 + 4k4
p

+
2τ̃k2

pω̃

ω̃2 + 4k4
p τ̃2

+
4q̃(1 − (−1)p)

Nk2
p

k2
pω̃

ω̃2 + k4
p

]

(133)
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Figure 7: The storage module G̃′(ω̃, w0) on frequency ω̃ for different fractions of hairpins. Starting
from the upper curve w0 = 0, 0.1, 0.2, 0.4 Here N = 50, ζ = 1

2 , Θ = 1, ǫ = 1.
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Figure 8: The loss module G̃′′(ω̃, w0) on frequency ω̃ for different fractions of hairpins. Starting
from the upper curve w0 = 0, 0.1, 0.2, 0.4 Here N = 50, ζ = 1

2 , Θ = 1, ǫ = 1.

From graphs (7) and (8) we see that as the amount of hairpins increases the material
becomes less elastic and less viscous. In other words it becomes softer.

22



4 Summary

A model of the Rouse-like chain with hairpins has been presented here to describe the rheological
properties of the highly-ordered LCP’s. From the analysis of nematic and ”entropic” interactions
the equation for director orientation have been established. From this equation dynamics of the
director can be found. It occurred that in the case of elongation flow the dynamics of the director
is more simple. The director tends to align along the direction of elongation. This fact allowed
to obtain the explicit expression for the tensile stress induced in material by the elongation flow.
On the basis of the tensile stress the linear response modulus, storage and loss moduli and tensile
viscosity have been computed. The main interest was directed on the influence of hairpins on the
macroscopic mechanical properties. The plots from sections 3.1 and 3.2 show that the higher the
fraction of the hairpins the weaker the response of the material to the external influences. In other
words the material becomes softer.

The next aim is to investigate shear flow. The shear flow is more rich on non-trivial
evolution of the director. The nematogens can have tumbling or flow-aligning behavior. Proposed
here model has problems with describing tumbling of the nematogens, because in this case an
assumption about high-ordering of the nematogens is not valid any more. Therefore for analysis
of shear flow will be necessary either to improve somehow the approach by taking into account
large deviations of nematogens from orientation of director, either to develop more suitable model.

Another weak point of this model is the absence of entanglements between the chains. But
it is not a crucial factor in the highly-ordered regime.
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