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ABSTRACT
In this paper we present an efficient method for calculating

the friction factor for forced laminar flow in arbitrary axially
symmetric pipes. The approach is based on an analytic expres-
sion for the friction factor, obtained after integrating the Navier-
Stokes equations over a segment of the pipe. The friction factor is
expressed in terms of surface integrals over the pipe wall, these
integrals are then estimated by means of approximate velocity
and pressure profiles computed via the method of slow variations.
Our method for computing the friction factor is validated by com-
paring the results, to those obtained using CFD techniques for a
set of examples featuring pipes with sinusoidal walls. The am-
plitude and wavelength parameters are used for describing their
influence on the flow, as well as for characterizing the cases in
which the method is applicable. Since the approach requires only
numerical integration in one dimension, the method proves to be
much faster than general CFD simulations, while predicting the

∗Address all correspondence to this author.
†Centre for Analysis, Scientific Computing and Applications.

friction factor with adequate accuracy.

1 INTRODUCTION
The effect of wall shape on the friction factor of forced flow

through pipes and hoses is of interest in many applications such
as LNG transfer hoses [1]. Several numerical and experimental
studies have shown that the contribution of wall shape is not triv-
ial, even in the laminar case. If wall shape of corrugated pipes is
translated into an equivalent wall roughness, it is found that the
friction factor differs considerably from the values obtained from
the classical Moody diagram [2].

Despite the wide use of corrugated pipes or hoses, the effects
of wall shape on the flow are commonly obtained from one-phase
flow pressure drop experiments or CFD computational experi-
ments. For optimization of flow paths however, both methods
soon become non affordable and faster calculation methods are
required. The study of flow in non-straight pipes dates back to
Nikuradse’s experiments [3], whose results obtained from arti-
ficially roughened pipes, were later arranged in the more well-
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known form of the Moody Diagram [2]. In the Moody diagram,
the friction factor for laminar flow appears as independent of wall
roughness, but in general the friction factor for laminar flow in
corrugated pipes has been found to be dependent on the specific
wall shape [4–6].

Several approaches for the calculation of flow in corrugated
pipes have been suggested, among the ones based on CFD, we
mention the publications by Mahmud et al. [7] and Blackburn
et al. [6] for the case of laminar flow, and the publications by
Pisarenco et al. [8] and Van der Linden et al. [9], for turbulent
flow. Still, even after reducing the domain of calculation to one
single period in two dimensions, the computational costs can still
be high for certain situations, for instance, when one is interested
in optimization of flow paths, or in performing calculations for a
large network of interconnected hydraulic components.

In this paper we develop a method for estimating the Darcy
friction factor in axially symmetric pipes of arbitrary shape. The
method is accurate and very efficient because it only requires nu-
merical integration in one dimension. The range of applicability
of the method is discussed and presented via a comparison with
a set of numerical examples. The paper is organized as follows.
We start by presenting the governing equations and geometry.
Directly from the governing equations, we derive an analytical
expression for the friction factor in terms of surface integrals
over the pipe wall. In order to compute or approximate these
integrals, we require the solution for the pressure and the axial
velocity component at the wall of the pipe. We solve this problem
by using approximate solutions for the pressure and the velocity,
obtained via the method of slow variations. For completeness we
include the derivation of this asymptotic expansions. Based on
this expansion we finally obtain approximate formulas for esti-
mating the friction factor. Finally the accuracy of the method is
studied and discussed.

2 GOVERNING EQUATIONS
We consider the Navier-Stokes equations for steady, incom-

pressible, axially symmetric, laminar flow in cylindrical coordi-
nates

UUX +VUR = ν
(

UXX +URR +
1
R

UR

)
− 1

ρ
PX , (1a)

UVX +VVR = ν
(

VXX +VRR +
1
R

VR− 1
R2 V

)
− 1

ρ
PR, (1b)

UX +VR +
1
R

V = 0, (1c)

where the corresponding variables are the axial coordinate X , the
radial coordinate R, the axial velocity U , the radial velocity V ,
and the pressure P. The constants ν and ρ represents the kine-
matic viscosity and the density of the fluid, respectively. The

R̃(X)Γin
Γout

Ω X

R

X = 0
X = L

Γ

FIGURE 1. Axisymmetric pipe with center line along the X-axis. Γ
stands for the wall of the pipe, Γin for the cross section at X = 0 and Γout

the cross section at X = L

angular component does not play a role due to the assumption of
axially symmetric flow.

The geometry under consideration is an axially symmetric
pipe, depicted as in Figure 1. The location of the wall of the
pipe, can be described in terms of the cylindrical basis vectors
eR, eΘ, eX , via the parametrization X(Θ,X) = R̃(X)eR + XeX ,
with parameters 0 ≤ Θ < 2π , 0 ≤ X ≤ L . We assume R̃ to be
smooth, consequently, the outer unit normal vector n, and the
surface element dS can be expressed as

n =
eR− R̃′(X)eX√

1+ R̃′(X)2
, (2a)

dS = R̃(X)
√

1+ R̃′(X)2dΘdX. (2b)

As boundary conditions we consider no-slip at the wall of
the pipe, and a prescribed constant flow rate Q̃, i.e.,

U(X , R̃(X)) = V (X , R̃(X)) = 0, 0≤ X ≤ L (3a)

Q̃ =
∫

Γin

UdS = 2π
∫ R̃(0)

0
RU(X ,R)dR. (3b)

2.1 The Darcy Friction Factor
A quantity of interest in the analysis of pipe flow is the pres-

sure drop. The pressure drop is directly related to the mean flow
rate, and it determines the power requirements of the device to
maintain the flow. In practice, for straight pipes, it is convenient
to express the pressure loss as follows [10]

∆P = f
L
D

ρŪ2
0

2
, (4)

where, ∆P = Pin −Pout is the pressure drop over a segment of
length L, f is the Darcy friction factor, D is the diameter of the
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pipe, ρ is the density and Ū0 is the average of the velocity over
the cross section. In the case of laminar flow, i.e., for Poiseuille
flow, the friction factor takes the form

f =
64
Re

, (5)

where Re is the Reynolds number, defined as

Re :=
Ū0D

ν
. (6)

When the radius of the pipe is not constant, one needs to choose a
characteristic radius and average velocity, in this paper we select
the respective values at the inlet of the pipe, i.e. D = 2R̃(0) and,

Ū0 =
1

πR̃2(0)

∫

Γin

UdS. (7)

The expression in (4) can be used as a lumped model for
describing the flow in any kind of pipe. The main difficulty is to
efficiently determine a friction factor that accurately predicts the
pressure drop.

2.2 Integral Expression for the Friction Factor
By integrating the axial momentum equation (1a) we can

obtain an expression for the pressure loss in terms of surface in-
tegrals over the pipe wall Γ. To this purpose, we first rewrite (1a),
in the following form

∇ · (UV) =− 1
ρ

∇ · (PeX )+ν∇ · (∇U), (8)

where V = UeX +V eR, and where we used PX = ∇ · (PeX ), and
V ·∇U = ∇ · (UV). Integrating over the domain Ω, see Figure 1,
and applying the divergence theorem we get

∮

∂Ω
UV ·ndS =− 1

ρ

∮

∂Ω
PnX dS+ν

∮

∂Ω

∂U
∂n

dS, (9)

where nX = n ·eX . Next, we split the surface of integration ∂Ω =
Γin ∪Γout ∪Γ, as sketched in Figure 1. After using the no-slip
condition (3a), and rearranging terms we get

∫

Γin

PdS−
∫

Γout
PdS =ρ

[∫

Γout
U2dS−

∫

Γin

U2dS
]
+

+
∫

Γ
PnX dS−µ

∮

∂Ω

∂U
∂n

dS.

(10)

In the following, we restrict ourselves to the case of periodic
pipes, i.e., R̃(X) = R̃(X + L). In this particular case the expres-
sion for the pressure loss derived above simplifies greatly. Since
the flow is steady, we can conclude that the velocity field V is pe-
riodic as well, from which it follows that the integrals over Γin,
cancel with the ones over Γout. In the end, we are left with the
following expression for the pressure drop over one period, i.e.,
from section X = 0 to X = L,

∆P =
1
|Γin|

∫

Γ
PnX dS

︸ ︷︷ ︸
∆PP

− µ
|Γin|

∫

Γ

∂U
∂n

dS
︸ ︷︷ ︸

∆PS

, (11)

where nX is the X-component of the normal vector to the surface,
and Γ is the wall of the pipe between X = 0 and X = L. This
formula also tells us that the pressure drop consists of two parts,
one due to skin friction, ∆PS , and one due to the pressure forces
acting on the wall of the pipe, ∆PP. In the particular case of a
straight pipe, i.e., for Poiseuille flow, nX = 0 and consequently
(11) only contains the integral due to skin friction ∆PS. After
substituting the parabolic profile for U , we recover the result (5),
for the laminar friction factor in a straight pipe.

In order to be able to use (11) for computing the friction
factor, we need to approximate the normal derivative ∂U/∂n,
and the pressure P at the wall of the pipe. We do this via the
method of slow variations.

3 METHOD OF SLOW VARIATIONS
The method of slow variations exploits the geometric char-

acteristics of boundaries that vary more slowly in some direction
than others. The key of the method is to rescale the geometry
in such a way that the variations become of the same order. This
crucial step, enables us to take a geometrical parameter and trans-
fer it as a coefficient in to the scaled equations, which allows us
to write the solution as an asymptotic expansion. One of the re-
markable properties of the method is that it can handle arbitrarily
large variations, provided that they take place slowly [11].

Asymptotic solutions for flow in axially symmetric pipes
have been derived in several papers [11–13]. The derivation we
present here follows the line of the paper by Kotorynski [13].
Before starting with the method of slow variations, we need to
rewrite the Navier-Stokes equations (1) in dimensionless form,
by defining the following variables

u∗ =
U
Ū0

, v∗ =
V
Ū0

, x∗ =
X
D

, r∗ =
R
D

, p∗ =
P

ρŪ2
0
. (12)

Substituting these variables in (1) and applying the chain rule we
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obtain

Re(u∗u∗x∗ + v∗u∗r∗) = u∗x∗x∗ +u∗r∗r∗ +
1
r∗

u∗r∗ −Re p∗x∗ , (13a)

Re(u∗v∗x∗ + v∗v∗r∗) = v∗x∗x∗ + v∗r∗r∗ +
1
r∗

v∗r∗ −
1

r∗2 v∗−Re p∗r∗ ,

(13b)

u∗x∗ + v∗r∗ +
1
r∗

v∗ = 0. (13c)

3.1 Reformulation in slowly varying variables
Now we proceed to rescale (13), by using the assumption

that the radius of the pipe varies slowly in the axial direction.
This means that the radius of the pipe R̃(X) can be written as

Dh
( ε

D
X

)
= R̃(X), (14)

where h is the scaled radius of the pipe, and ε is a small dimen-
sionless parameter characterizing the slow variation of the radius
in the axial direction. Such parameter can be taken directly from
the expression for the radius if available. For instance if the pipe
radius is of the form R̃(X) = (1 + ε2X2)1/2, the parameter can
be identified. In the case of a periodic pipe one can consider the
maximum variation of the radius a, and compare it to the pe-
riod of the pipe L, i.e., we define ε := a/L. Then, by applying
a proper scaling, we can obtain a domain in which the period is
comparable to the variation of the radius. Formally this is done
by defining the new variables

x = εx∗, r = r∗, u = u∗, εv = v∗, ε−1 p = p∗. (15)

Substituting these variables in (13) and multiplying the second
and third equations by ε and ε−1, respectively, we obtain

εRe(uux + vur) = ε2uxx +urr +
1
r

ur−Re px, (16a)

ε3Re(uvx + vvr) = ε4vxx + ε2
(

vrr +
1
r

vr− 1
r2 vr

)
−Re pr,

(16b)

ux + vr +
v
r

= 0. (16c)

As it can be noticed, the parameter ε is transferred from the ge-
ometry into the equation, where it appears as a coefficient, which
allows us to vary this parameter, while keeping the domain fixed.
Formally this means that we can write an asymptotic expansion
for the functions in (16), as follows

g(x,r;ε) =
∞

∑
i=0

gi(x,r)ε i, (17)

where g is a generic variable, g = u,v, p. By substituting these
expressions into (16), and grouping the variables with respect to
their order in ε , we can get a set of equations for each of the
orders in the asymptotic expansion. The boundary conditions for
the resulting systems are

ui(x,h(x)) = vi(x,h(x)) = 0, 0≤ x≤ a
D

, (18)

and for the scaled fluxes Qi, defined as

Qi := 2π
∫ h(x)

0
rui(x,r)dr. (19)

which due to continuity is independent of x, and thus constant.
The dimensionless flux Q, can be split as Q = Q0 +εQ1 +ε2Q2 +
.... Since this equation must hold for arbitrary ε , it follows that

Q0 = Q, Qi = 0 for i = 2,3, . . . . (20)

Furthermore, the scaled flux can be written as

Q0 = Q = 2π
∫ h(0)

0
ru(x,r)dr =

2π
Ū0

∫ h(0)

0
rU(0,Dr)dr, (21)

and substituting Ū0 from (7), we get

Q0 =
πR̃2(0)

∫ R̃(0)
0 RU(0,R)dR

∫ Dh(0)

0

η
D2 U(0,η)dη =

π
4

. (22)

3.2 Solving for the leading term
The equations for the leading term can be obtained from

(16), by setting ε = 0. The equations read

u0rr +
1
r

u0r−Re p0x = 0, (23a)

Re p0r = 0, (23b)

u0x + v0r +
v0

r
= 0. (23c)

From (23b), we conclude that p0 is only function of x, and after
multiplying (23a) by r and integrating with respect to r we get

ru0r = Rep0x
r2

2
+ c1(x). (24)

4 Copyright c© 2010 by ASME



By evaluating the previous expression at r = 0 we find c1(x)≡ 0,
and integrating once more with respect to r we get

u0 = Rep0x
r2

4
+ c2(x). (25)

Finally, using the no-slip condition at the wall of the pipe, we can
determine the function c2(x), and we obtain

u0 =
Rep0x

4
(
r2−h2(x)

)
. (26)

In order to determine the pressure p0, we need to use (22), by
substituting u0, we find the following expression for the pressure
gradient p0x

p0x =− 2
Re

1
h(x)4 . (27)

Consequently, u0 takes the form

u0(x,r) =
1

2h(x)4

(
h(x)2− r2) . (28)

Finally, from (23c), we can determine the radial velocity compo-
nent v0. First from (28) we derive

u0x =

(
2r2−h(x)2

)
h′(x)

h(x)5 . (29)

Substituting this expression in (23c), integrating w.r.t. r and us-
ing the no-slip condition we get

v0 =
r
(
h(x)2− r2

)
h′(x)

2h(x)5 =
rh′(x)
h(x)

u0(r,x). (30)

Summarizing, the 0th order terms of the asymptotic expansion
are

u0(x,r) =
1

2h(x)4

(
h(x)2− r2) ,

v0(x,r) =
h′(x)r
2h(x)5

(
h(x)2− r2) ,

p0(x,r) =− 2
Re

∫ x

0

1
h(ξ )4 dξ .

(31)

This particular expression for p0 considers setting a reference
pressure p0(0,0) = 0. These expressions can be rewritten in
terms of the original variables U ,V and P, as follows

U(X ,R) =2Ū0
R̃(0)2

R̃(X)2

(
1− R2

R̃(X)2

)
, (32a)

V (X ,R) =
R̃′(X)
R̃(X)

RU(R,X), (32b)

P(X ,R) =− 16ρŪ2
0 R̃(0)3

Re

∫ X

0

1
R̃(ξ )4 dξ . (32c)

3.3 Estimation of the Friction Factor
In this section we consider two different ways of using the

asymptotic solution derived above, in order to find the pressure
drop. Naturally the first idea that comes in mind is to directly use
expression (32c) and evaluate it at X = 0 and X = L, thus find-
ing the correspondent pressure drop. The other possibility we
consider, is to use the leading terms of the asymptotic expansion
(32) for computing the integrals in (11). The second option is
able to extend the region of applicability of the method as it will
be shown later. Now we proceed to obtain the two approxima-
tions.

Following the first idea, using that p0 is constant over cross
sections, and evaluating (32c), the total pressure loss becomes

∆P =
16ρŪ2

0 R̃(0)3

Re

∫ L

0

1
R̃4(X)

dX . (33)

The Darcy friction factor can be obtained by solving for f in (4),
this yields

f =
64
Re

R̃(0)4

L

∫ L

0

1
R̃(X)4 dX

︸ ︷︷ ︸
CF1

, (34)

where CF1 can be interpreted as a correction factor, which when
multiplied with the friction factor for laminar flow in straight
pipes 64/Re, gives us an approximation to the friction factor of
an arbitrarily shaped axially symmetric periodic pipe, described
by the function R̃(X). Moreover, since this approximation re-
quires only the calculation of a one dimensional integral, we get
a huge reduction in computation time, changing from the order
of 102 seconds, for CFD type methods, to the order of 6×10−3

seconds.
In order to analyze how this method performs, we com-

pare our results to those obtained with the CFD methodology
described in Section 4. For the simulations we consider a sinu-
soidal pipe depicted as in Figure 4. In Figure 2 we show the
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FIGURE 2. Friction factor (solid lines) and approximation obtained
with correction factor CF1 (34)(dotted lines), as function of the
Reynolds number, for a sinusoidal pipe depicted as in Figure 4. Pa-
rameter values are D = 2, and a = 1.

10
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Re

f

 

 

L=5

L=10

L=50

64/Re

FIGURE 3. Friction factor (solid lines) and approximations obtained
with correction factor CF2 (41) (dotted lines), as function of the
Reynolds number, for a sinusoidal pipe depicted as in Figure 4. Pa-
rameter values are D = 2, and a = 1.

variation of the friction factor with Reynolds number for a sinu-
soidal pipe with amplitude a = 2, at different values of L. We first
can notice the deviation of the friction factor computed with CFD
(solid lines), from the friction factor for straight pipes 64/Re (in
dotted line). The friction factor obtained when using our correc-
tion factor (34), turns out to be independent of L for this set of
examples. Still, the results obtained with CFD, approach the val-
ues obtained with our approximation when the period of the pipe

L, increases. Thus (34) gives a value independent of L, which
matches the simulations with L À 1. In order to alleviate this
problem, we now proceed with our second alternative.

Instead of using the asymptotic solution directly, we can
substitute (32) into the integral expression for the pressure drop
(11), and perform the correspondent integrations. First we derive
the pressure loss due to pressure forces on the wall ∆PP. Using
the expressions for the normal vector (2a) and the surface ele-
ment (2b), we obtain

∆PP :=
1
|Γin|

∫

Γ
PnX dS

=
32ρŪ2

0 R̃(0)
Re

∫ L

0

(∫ X

0

1
R̃(ξ )4 dξ

)
R̃(X)R̃′(X)dX .

(35)

Changing the order of integration we get

∆PP =
16ρŪ2

0 R̃(0)
Re

[
R̃(L)2

∫ L

0

1
R̃(X)4 dX −

∫ L

0

1
R̃(X)2 dX

]
.

(36)
In the same way, using (32) and (2a), we can obtain the pressure
loss due to skin friction. First we compute

∂U
∂R

=−4Ū0R̃(0)2 R
R̃(X)4 ,

∂U
∂X

= 4Ū0R̃(0)2 R̃′(X)
R̃(X)3

[
2

R2

R̃(X)2 −1
]
.

(37)

Then we can evaluate ∇U ·n at the wall Γ and get

∆PS :=− µ
|Γin|

∫

Γ

∂U
∂n

dS

=8µŪ0

∫ L

0

1
R̃(X)2

[
1+

(
R̃′(X)

)2
]

dX .

(38)

Adding the pressure loss due to forces on the wall (36) with the
pressure loss due to skin friction (38), we get the following ap-
proximation for the total pressure loss

∆P =
16ρŪ2

0 R̃(0)
Re

[
R̃(L)2

∫ L

0

1
R̃(X)4 dX −

∫ L

0

1
R̃(X)2 dX

]
+

+8µŪ0

∫ L

0

1
R̃(X)2

[
1+

(
R̃′(X)

)2
]

dX .

(39)
Grouping terms and using ρDŪ0/µRe = 1, we finally get

∆P =
16ρŪ2

0 R̃(0)
Re

∫ L

0

R̃′(X)2

R̃(X)2 +
R̃(0)2

R̃(X)4 dX , (40)
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which in terms of a friction factor yields

f =
64
Re

R̃(0)2

L

∫ L

0

R̃′(X)2

R̃(X)2 +
R̃(0)2

R̃(X)4 dX
︸ ︷︷ ︸

CF2

. (41)

This gives us an alternative expression for approximating the
friction factor, which has basically the same computational cost
as (34), but that in contrast with it, is no longer independent of
L. In Figure 3 we can observe the performance of our new ap-
proximation. The estimations obtained with (41) are displayed
in doted lines, and the results obtained with CFD in solid lines,
the line corresponding to 64/Re is displayed for reference. As
it can be observed from the figure, the new approximation (41)
is able to follow the behavior of the friction factor for different
values of L. The natural question is to know more precisely how
accurate this estimation works, and in which cases the method is
applicable.

4 VALIDATION OF THE METHOD
Above it was shown that (41) provides better approximations

than (34). In order to analyze the accuracy of our method for
estimating the friction factor, we compare the results obtained
using (41), with the results obtained with CFD computations. To
this extend we consider pipes with sinusoidal walls depicted as
in Figure 4, where a and L, are the amplitude and period of the
sinusoidal function, respectively. The geometry is chosen in such
a way that the radius is 1 at the inlet. The radius can be written
as

R̃(X) = 1+
a
2

(
1+ sin

(
2π
L

X − π
2

))
, (42)

which translates into

h(x) =
1
2

+
a
4

(
1+ sin

(πx
a
− π

2

))
. (43)

4.1 CFD Methodology
The computation domain can be reduced to just one period,

when the flow is fully developed, due to the following argument.
Since the geometry under consideration is periodic, it is plausible
to assume that all velocity components are periodic as well. The
pressure can be split as follows

P(X ,R) = P̃(X ,R)+ f X , (44)

1

L

a

X

R

FIGURE 4. Sinusoidal pipe with center line along the X-axis, a and
L stands for the amplitude and period of the sine function, respectively.

(a) (b)

(c) (d)

FIGURE 5. Pressure fluctuations P̃, and velocity streamlines for a si-
nusoidal pipe with radius at inlet R̃(0) = 1, amplitude a = 1, period
L = 10, and different Reynolds numbers.

where P̃(X ,R) represents the fluctuations due to the presence of
the corrugation, and f is the Darcy friction factor. This transfor-
mation is also used in the papers by van der Linden, et.al. [9],
and Pisarenco, et.al. [8].

The main advantage of this reformulation is that P̃ is also
periodic, thus allowing to reduce the domain to just one period.
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The implementation works as follows, first we prescribe a pres-
sure gradient (friction factor) f , which is included as a force term
in the Navier-Stokes equations, with variables U , V and P̃. We
notice that we solve for the pressure fluctuation P̃, instead of for
the original pressure P. This is valid, because the Navier-Stokes
equations only involve the gradient of the pressure.

In other words, we first prescribe a friction factor f , second
we solve the periodic Navier-Stokes equations, then we compute
the average velocity Ū0, by integrating the axial velocity com-
ponent U over the inlet of the pipe, and finally we compute the
resulting Reynolds number Re according to Re = Ū0a/ν . The
Navier-Stokes equations are solved with a finite element soft-
ware (Comsol Multiphysics [14]).

In Figure 5 we show the fluctuation of the pressure P̃, and
the velocity streamlines obtained for a sinusoidal pipe with am-
plitude a = 1 and period L = 10. Due to axial symmetry, it is
enough to solve just one of the symmetric sides of the pipe. The
center line is located at R = 0, the wall of the pipe appears on
the right side of the picture, and the flow direction is upwards.
For the small Reynolds number Re = 57.6, one can observe, sig-
naled by an arrow, the onset of a small vortex close to the deep-
est part of the protrusion. In this case, our approximation to the
friction factor delivers a relative error of 10%. For Re = 187.8
we can observe a vortex completely filling the protrusion of the
pipe, but the center of the vortex coincides with the center of
the corrugation and our approximation delivers a relative error
of about 20%. For higher Reynolds numbers, Re = 625.8,943.5,
the center of the vortex shifts towards the upper part, and then
formula (41) losses precision, yielding 30% relative error for the
case in Figure 5(c), and 40% relative error for the case in Figure
5(d). For the pressure fluctuations, we can observe that, for mod-
erate Reynolds number, the pressure is constant over the cross
sections, and it starts to vary over the cross section X = 8.5 at
Re = 943.5 Figure 5(d). The method provides good approxima-
tions provided that the flow stays laminar, and the size of the
vortices are small, or are centered around the middle point in the
axial direction, in this particular case X = 5.

4.2 Applicability of the method
In order to investigate the accuracy and range of applicabil-

ity of our approximation to the friction factor (41) systematically,
we considered the case of sinusoidal pipes, and varied the geom-
etry parameters, ranging from 0 to 2 for the amplitude of the pipe
a, from 0 to 80 for the period of the pipe L, where the geometry
had been previously rescaled for having a reference radius at the
inlet of R̃(0) = 1. Then we compared these estimations to the re-
sults obtained using the CFD approach, as described above, and
computed the respective relative error Err as

Err :=
| f − f̃ |
| f | , (45)

FIGURE 6. Isosurfaces for the relative error at values Err = 1%,
Err = 10%, and Err = 20%. The surfaces appear in the parameter space
determined by Re, L, and a.

with f being the friction factor obtained from the steady numer-
ical solver, and f̃ our estimation to the friction factor calculated
from (41).
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FIGURE 7. Contours of the relative error Err, for a sinusoidal pipe
with amplitude a = 0.2 as function of the Reynolds number Re, and the
period of the pipe L.

The results from these test are shown in Figure (6). The
regions in the parameter space, were the method delivers ap-
proximations with relative errors Err = 1%, Err = 10%, and
Err = 20% are presented as isosurfaces. The zones below each
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FIGURE 8. Contours of the relative error Err, for a sinusoidal pipe
with amplitude a = 0.5143 as function of the Reynolds number Re, and
the period of the pipe L.

of the isosurfaces, constitute a region where our approximation
yields a relative error smaller than the corresponding error of the
isosurface. For instance, if the period of the pipe is L = 80, and
the Reynolds number Re = 50, our approximation yield and error
smaller than Err = 1%, for any amplitude 0≤ a≤ 1.

In order to give a more clear impression of the regions of
accuracy of the method, we show cross sections of the error for
some fixed values of the amplitude a, as function of Re and L.
The results are displayed in terms of contour lines of the error.
Figure 7 shows the results for the case a = 0.2. Some remarkable
property, is the fact that the maximum error in the whole region
is only 8%. Of course this accuracy can not be attained for all pa-
rameter values. When one increases the size of the amplitude, the
accuracy of the method decreases, for instance when a = 0.5143,
Figure 8, there are still some regions where the accuracy is of
the order of 5%, but in other regions the error increases up to
25%. For the case a = 1, Figure 9, the region of 5% accuracy is
reduced, and some zones with error of up to 30% appear.

5 CONCLUSIONS
Based on asymptotic solutions obtained from the method of

slow variations, and on an integral expression for the friction fac-
tor, in this paper we derived approximate expressions for the fric-
tion factor in axially symmetric pipes. Estimating the friction
factor with these expressions, requires only numerical integra-
tion in one dimension, and consequently the method is extremely
efficient.

From the validation with sinusoidal pipes, we can conclude
that our method yields an error smaller than 10%, for amplitude
values up to a = 0.2. For larger amplitudes, we additionally re-
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FIGURE 9. Contours of the relative error Err, for a sinusoidal pipe
with amplitude a = 1 as function of the Reynolds number Re, and the
period of the pipe L.

quire, roughly speaking, either a small Reynolds number Re, or a
large value of L, for keeping the error below 10%. The maximum
error in the range of parameters investigated here, is about 25%,
and 30%, for amplitudes a = 0.5143, and a = 1, respectively.
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