

Constraint-based workflow management systems : shifting
control to users
Citation for published version (APA):
Pesic, M. (2008). Constraint-based workflow management systems : shifting control to users. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Industrial Engineering and Innovation Sciences]. Technische Universiteit
Eindhoven. https://doi.org/10.6100/IR638413

DOI:
10.6100/IR638413

Document status and date:
Published: 01/01/2008

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR638413
https://doi.org/10.6100/IR638413
https://research.tue.nl/en/publications/8ecff77b-d5be-41c7-9158-d746957a4cb4

Constraint-Based

Workflow Management Systems:

Shifting Control to Users

Copyright c© 2008 by Maja Pešić. All Rights Reserved.

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Pešić, Maja

Constraint-Based Workflow Management Systems: Shifting Control to
Users / by Maja Pešić.
- Eindhoven: Technische Universiteit Eindhoven, 2008. - Proefschrift. -

ISBN 978-90-386-1319-2

NUR 982

Keywords: Workflow Management Systems / Business Process Man-
agement / Flexibility / Declarative Process Models / Constraint-Based
Systems / Socio-Technical Systems

The work in this thesis has been carried out under the auspices of
Beta Research School for Operations Management and Logistics.

Beta Dissertation Series D106

Printed by University Press Facilities, Eindhoven

Constraint-Based

Workflow Management Systems:

Shifting Control to Users

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de

Technische Universiteit Eindhoven, op gezag van de

Rector Magnificus, prof.dr.ir. C.J. van Duijn, voor een

commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen

op woensdag 8 oktober 2008 om 16.00 uur

door

Maja Pešić

geboren te Belgrado, Servië

Dit proefschrift is goedgekeurd door de promotor:

prof.dr.ir. W.M.P. van der Aalst

Copromotor:
dr. F.M. van Eijnatten

To Boris.

vi

Contents

1 Introduction 1

1.1 Business Processes Management 2

1.2 Characterization of Business Processes 4

1.3 Characterization of Decision Making 6

1.3.1 Adjusting to the Environment 8

1.3.2 Combining Social and Technical Aspects 9

1.4 The Tradeoff between Flexibility and Support 11

1.5 Problem Definition and Research Goal 11

1.6 Contributions 13

1.6.1 Constraint-Based Process Models 13

1.6.2 Generic Constraint-Based Process Modeling Language 15

1.6.3 A Prototype of a Constraint-Based Workflow Management System . 16

1.6.4 Constraint-Based Approach in the BPM Life Cycle 16

1.6.5 Combining Traditional and Constraint-Based Approach 17

1.7 Road Map 18

2 Related Work 19

2.1 Workflow Flexibility 19

2.1.1 Taxonomy of Flexibility by Heinl et al. 21

2.1.2 Taxonomy of Flexibility by Schonenberg et al. 21

2.1.3 Flexibility by Design 23

2.1.4 Flexibility by Underspecification 26

2.1.5 Flexibility by Change 28

2.1.6 Flexibility by Deviation 30

2.2 Workflow Management Systems 32

2.2.1 Staffware 33

2.2.2 FLOWer 35

2.2.3 YAWL 37

2.2.4 ADEPT 38

2.2.5 Other Systems 40

2.3 Workflow Management Systems and the Organization of Human Work . . 41

2.3.1 Two Contrasting Regimes for the Organization of Work 41

2.3.2 Socio-Technical Systems 42

2.3.3 Workflow Management Systems and the Structural Parameters . . 42

2.3.4 Summary 45

2.4 Outlook . 45

viii Contents

3 Flexibility of Workflow Management Systems 47

3.1 Contemporary Workflow Management Systems 47
3.1.1 The Control-Flow Perspective 51
3.1.2 The Resource Perspective 56
3.1.3 The Data Perspective 66
3.1.4 Summary 68

3.2 Taxonomy of Flexibility 69
3.2.1 Flexibility by Design 69
3.2.2 Flexibility by Underspecification 72
3.2.3 Flexibility by Change 74
3.2.4 Flexibility by Deviation 76
3.2.5 Summary 77

3.3 A New Approach for Full Flexibility 79

4 Constraint-Based Approach 83

4.1 Activities, Events, Traces and Constraints 84
4.2 Constraint Models 89
4.3 Illustrative Example: The Fractures Treatment Process 94
4.4 Execution of Constraint Model Instances 98

4.4.1 Instance State 99
4.4.2 Enabled Events 101
4.4.3 States of Constraints 103

4.5 Ad-hoc Instance Change 106
4.6 Verification of Constraint Models 109

4.6.1 Dead Events 110
4.6.2 Conflicts 112
4.6.3 Compatibility of Models 114

4.7 Summary 117

5 Constraint Specification with Linear Temporal Logic 119

5.1 LTL for Business Process Models 119
5.2 ConDec: An Example of an LTL-Based Constraint Language 123

5.2.1 Existence Templates 125
5.2.2 Relation Templates 126
5.2.3 Negation Templates 129
5.2.4 Choice Templates 130
5.2.5 Branching of Templates 133

5.3 ConDec Constraints 134
5.3.1 Adjusting to Properties of Business Processes 136
5.3.2 Dealing with the Non-Determinism 137
5.3.3 Retrieving the Set of Satisfying Traces 139

5.4 ConDec Models 141
5.5 ConDec Model: Fractures Treatment Process 144
5.6 Execution of ConDec Instances 146

5.6.1 Instance State 146
5.6.2 Enabled Events 149
5.6.3 States of Constraints 150

5.7 Ad-hoc Change of ConDec Instances 150
5.8 Verification of ConDec Models 152
5.9 Activity Life Cycle and ConDec 155

5.9.1 Possible Problems 155
5.9.2 Available Solutions 157

5.10 Summary 160

ix

6 DECLARE: Prototype of a Constraint-Based System 163

6.1 System Architecture 163
6.2 Constraint Templates 165
6.3 Constraint Models 167
6.4 Execution of Instances 168
6.5 Ad-hoc Change of Instances 171
6.6 Verification of Constraint Models 173
6.7 The Resource Perspective 175
6.8 The Data Perspective 178
6.9 Conditional Constraints 180
6.10 Defining Other Languages 184

6.10.1 Languages Based on LTL 184
6.10.2 Languages Based on Other Formalizations 185

6.11 Combining the Constraint-Based and
Procedural Approach 187
6.11.1 Decomposition of declare and YAWL Processes 188
6.11.2 Dynamic Decompositions 192
6.11.3 Integration of Even More Approaches 194

6.12 Summary 195

7 Using Process Mining for the Constraint-Based Approach 197

7.1 Process Mining with the ProM Framework 198
7.2 Verification of Event Logs with LTL Checker 201

7.2.1 The Default LTL Checker 203
7.2.2 Combining the LTL Checker and declare 205

7.3 The SCIFF Language 207
7.3.1 Verification of Event Logs with SCIFF Checker 210
7.3.2 Discovering Constraints with DecMiner 211

7.4 Recommendations Based on Past Executions 212
7.5 Summary 216

8 Conclusions 219

8.1 Evaluation of the Research Goal 219
8.2 Contributions 220

8.2.1 Flexibility of the Constraint-Based Approach 220
8.2.2 Support of the Constraint-Based Approach 222
8.2.3 The Constraint-Based Approach and Organization of Human Work . 223
8.2.4 Combining the Constraint-Based Approach with Other Approaches . 226
8.2.5 Business Process Management with the Constraint-Based Approach . 226

8.3 Limitations 227
8.3.1 Complexity of Constraint-Based Models 227
8.3.2 Evaluation of the Approach 229

8.4 Directions for Future Work 230
8.5 Summary 231

Appendices 232

A Work Distribution in Staffware, FileNet and FLOWer 233

A.1 Staffware 233
A.1.1 Work Queues 234
A.1.2 Resource Allocation 236
A.1.3 Forward and Suspend 238

A.2 FileNet . 241

x Contents

A.2.1 Queues 241
A.2.2 Resource Allocation 242
A.2.3 Forward and Suspend 244

A.3 FLOWer . 244
A.3.1 Case Handling 245
A.3.2 Authorization Rights 245
A.3.3 Distribution Rights 245
A.3.4 Distribution of Instances 246
A.3.5 Distribution within an Instance 249

A.4 Summary 255

B Evaluation of Workflow Patterns Support 257

B.1 Control-Flow Patterns 258
B.2 Resource Patterns 259
B.3 Data Patterns 260

Bibliography 261

Summary 279

Samenvatting 283

Acknowledgements 287

Curriculum Vitae 289

Chapter 1

Introduction

An organization produces value for its customers by executing various business
processes. Due to complexity and variety of business processes, contemporary
organizations use information technology to support activities and possibly also
automate their processes. Business Process Management systems (or BPM sys-
tems) are software systems used for automation of business processes. Once a
BPM system is employed in a company, it has a significant influence on the way
business processes are executed in the company. Contemporary BPM systems
tend to determine the way companies organize work and force companies to ad-
just their business processes to the system. In other words, a company that uses
a BPM system is not likely to be able to implement its business processes in
the way that is most appropriate for the company. Instead, business processes
must be implemented such that they ‘fit the system’, which can cause various
problems. First, due to a mismatch between the preferred way of work and the
system’s way of work, companies may be forced to ‘run’ inappropriate business
processes. Second, two parallel realities may be created: the actual work is done
‘outside the system’ in one way, and later registered in the system in another
way. These problems may prevent a company from using a BPM system.

In this chapter we introduce the research presented in this thesis, which
aims at enabling a better alignment of BPM systems with business processes
in companies. We start by introducing business processes and BPM systems in
Section 1.1. The nature of contemporary business processes is described in Sec-
tion 1.2. Section 1.3 describes the way today’s organizations manage their work.
The tradeoff between flexibility and support in BPM systems is shortly discussed
in Section 1.4. Section 1.5 defines the problem addressed by this research and
the research goal. Finally, a short overview of research contributions is given in
Section 1.6 and the outline of the thesis is provided in Section 1.7.

2 Chapter 1 Introduction

1.1 Business Processes Management

A business process defines a specific ordering of activities that are executed by
employees, available input and required output, and the flow of information.
Business Process Management (BPM) is a method to continuously improve busi-
ness processes in order to achieve better results. BPM includes concepts, methods
and techniques to support the design, implementation, enactment and diagnosis
of business processes [93]. Figure 1.1 shows the BPM life cycle as a continuous
cycle consisting of four phases.

process
design

process
implementation

process
enactment

diagnosis

Figure 1.1: BPM life cycle [93]

The BPM life cycle starts with process design, where the business processes
are identified, reviewed, validated and finally represented as process models [266].
A process model describes (a part of) a business process by defining how doc-
uments, information, and activities are passed from one participant to another
[93, 266]. Process models are developed using a process modeling language, e.g.,
Business Process Modeling Notation (BPMN), Business Process Execution Lan-
guage (BPEL), Unified Modeling Language (UML), Event-driven Process Chains
(EPCs), etc. In some cases, process models can be verified against inconsistencies
and errors [89, 254]. Next, the process model is implemented in order to align
work of the employees with the prescribed process model. In the process en-
actment phase, the business process should be executed within the organization
in the way prescribed in the implemented process model. The process diagno-
sis phase uses information about the actual enactment of processes in order to
evaluate them. The results from the diagnosis phase are used to close the BPM
life cycle in order to continuously improve business processes, i.e., based on the
diagnosis, the processes are redesigned, etc.

Business processes can be supported by various types of software products.
BPM systems support collaboration, coordination and decision making in busi-
ness processes [93, 110, 266]. Various BPM systems provide for different degrees
of automation of ordering and coordination of activities. Figure 1.2 shows two
extreme types of BPM systems: groupware systems and workflow management
systems.

Groupware systems focus on supporting human collaboration, and co-
decision. Ordering and coordination of activities in these systems cannot be

Section 1.1 Business Processes Management 3

workflow
management

systems
groupware

systemusers

decisions about the
ordering and coordination of activities

Figure 1.2: BPM systems

automated [110]. Instead, users of groupware control the ordering and coordi-
nation of activities while executing the business process (i.e., ‘on the fly’) [110].
Groupware systems range from ‘enhanced’ electronic mail to group conferencing
systems.

Workflow management systems focus on the business process by explicitly
controlling ordering, coordination and execution of activities with possibly little
human intervention [110]. In general, humans merely influence the execution of
business processes by entering necessary data. A workflow management system
automates a set of business processes by the definition and execution of process
models [93, 266]. Moreover, most contemporary systems support three phases
of the BPM cycle, as shown Figure 1.3. First, process design is conducted by
defining process models, which define (1) the execution order of activities, (2)
which employees are allowed to execute which activities, and (3) which infor-
mation will be available during the execution. In addition, in some systems it
is possible to verify models against errors. Second, process models are imple-
mented thus allowing for the automatic enactment of process instances in the
system. A process model can be seen as a template that workflow management
systems use for execution of concrete process instances. Thus, by executing pro-
cess models, workflow management systems determine in which order activities
can be executed, which employee executes which activity and which information
is available.

WORKFLOW MANAGEMENT SYSTEMS

process
design

process
implementation

process
enactment

diagnosis

Figure 1.3: Workflow management systems and the BPM life cycle presented in Figure 1.1

4 Chapter 1 Introduction

1.2 Characterization of Business Processes

Not all business processes are the same. Even within one organization, business
processes can be very different in terms of their essential properties. Business
processes can be characterized based on various properties [110]. For example,
the nature of the business process depends on its complexity, predictability and
repetitiveness.

The complexity of a business process refers to the complexity of collaboration,
coordination, and decision making [110]. The more complex collaboration, coor-
dination, and decision making in the business process are, the higher the degree
of complexity of the process is. Figure 1.4 shows examples of several business
processes with various degrees of complexity. Simple business processes (e.g.,
exchanging personal email messages and handling travel requests) require trivial
collaboration, coordination and decision making. On the other hand, handling
medical treatments is a complex business process because it is non-trivial from
the view point of collaboration, coordination and decision making.

complexitylow
simple

high
complex

sa
le

s
pr

op
os

al
s

lo
an

 a
pp

lic
at

io
ns

pe
rs

on
al

 e
m

ai
l

 tr
av

el
 re

qu
es

ts

di
sa

st
er

 h
an

dl
in

g
m

ed
ic

al
 tr

ea
tm

en
ts

st
af

f e
va

lu
at

io
n

Figure 1.4: Complexity of business processes

The predictability of a business process depends on how easy it is to determine
in advance the way the process will be executed. The more predictable possible
future executions of the business process are, the more predictable the process
is. Figure 1.5 shows examples of several business processes with various degrees
of predictability. For example, handling travel requests has a high degree of

predictability high
predictable

sa
le

s
pr

op
os

al
s

lo
an

 a
pp

lic
at

io
ns

pe
rs

on
al

 e
m

ai
l

 tr
av

el
 re

qu
es

ts

m
ed

ica
l t

re
at

m
en

ts

di
sa

st
er

 h
an

dl
in

g

low
unpredictable

st
af

f e
va

lu
at

io
n

Figure 1.5: Predictability of business processes

Section 1.2 Characterization of Business Processes 5

predictability because it is quite certain how it will be executed. On the other
hand, it is hard to predict how personal email messages can be exchanged, i.e.,
this business process is unpredictable.

The repetitiveness of a business process refers to the frequency of process
execution. The more times the business process is executed, the higher degree
of the repetitiveness of the process is. For example, a business process that
is executed once per year has a lower degree of repetitiveness than a process
executed more that a thousand times per year. Figure 1.6 shows examples of
several business processes with various degrees of repetitiveness. For example,
disaster handling (e.g., floods, earthquakes, etc.) is a business process with a
low degree of repetitiveness because it does not happen frequently. On the other
hand, exchanging personal email messages is a frequent and, thus, repetitive
business process.

high
repetitive

low
non-repetitive

repetitiveness

sa
le

s
pr

op
os

al
s

lo
an

 a
pp

lic
at

io
ns

pe
rs

on
al

 e
m

ai
l

 tr
av

el
 re

qu
es

ts

m
ed

ic
al

 tr
ea

tm
en

ts

di
sa

st
er

 h
an

dl
in

g
st

af
f e

va
lu

at
io

n

Figure 1.6: Repetitiveness of business processes

Note that one business process can have different degrees of complexity, pre-
dictability and repetitiveness. Figure 1.7 shows that the nature of a business pro-
cess is determined by the degrees of complexity, predictability and repetitiveness.

predictability

re
pe

tit
iv

en
es

s

complexitylow high

low

high

lo
w

hi
gh

Figure 1.7: Complexity, predictability and repetitiveness determine the nature of business
processes

6 Chapter 1 Introduction

For example, medical treatments are very complex processes with a high degree
of repetitiveness and a low degree of predictability (cf. figures 1.4, 1.5 and 1.6).

BPM systems (cf. Section 1.1) aim at supporting complex and repetitive pro-
cesses, as Figure 1.8(a) shows. As described in Section 1.1, there are two extreme
types of BPM systems: groupware and workflow management systems. Because
in groupware systems users control the ordering and coordination of activities,
they are suitable for unpredictable processes [110], as shown in Figure 1.8(b).
Workflow management systems fully automate the ordering and coordination of
activities by executing predefined process models. Therefore, workflow manage-
ment systems support highly predictable business processes [110].

predictability
high

re
pe

tit
iv

en
es

s

complexitylow high

low

lo
w

hi
gh

BPM
SYSTEMS

(a) applicability of BPM systems

predictability
high

re
pe

tit
iv

en
es

s

complexity
low

lo
w

hi
gh

workflow
 management

systems

groupware

(b) available BPM systems

Figure 1.8: Automation of business processes with BPM systems

1.3 Characterization of Decision Making

Decision making determines to a great extent the way people work and influences
their productivity. If decisions about how to work are made centrally, then we
speak about centralized decision making. If the workers who do the work make
decisions themselves, then we speak of local decision making. At the middle of
the twentieth century, schools of organizational science were divided into two
groups that propagated two extreme styles of decision making. The so called

‘soft’ ‘hard’

locally centralizeddecision making

Figure 1.9: Two extreme styles of BPM

Section 1.3 Characterization of Decision Making 7

‘hard’ approaches propagated centralized decision making, while the so-called
‘soft’ approaches propagated local decision making, as shown in Figure 1.9.

A good illustration of the differences between the two extreme approaches
is given by the motivation theory of McGregor: Theory X and Theory Y [169].
Table 1.1 shows the main principles of the two basic modes.

Table 1.1: Theory X and Theory Y [169]

Theory X (‘hard’ approach) Theory Y (‘soft’ approach)

Humans inherently dislike work-
ing and will try to avoid it if they
can.

People view work as being as natural as play
and rest. Humans expend the same amount
of physical and mental effort in their work as
in their private lives.

Because people dislike work they
have to be coerced or controlled
by management and threatened
so they work hard enough.

Provided people are motivated, they will be
self-directing to the aims of the organiza-
tion. Control and punishment are not the only
mechanisms to make people work.

Average employees want to be di-
rected.

Job satisfaction is key to engaging employees
and ensuring their commitment.

People don’t like responsibility. People learn to accept and seek responsibility.
Average humans, under the proper conditions,
will not only accept but even naturally seek
responsibility.

Average humans are simple and
need security at work.

People are imaginative and creative. Their in-
genuity should be used to solve problems at
work.

Theory X characterizes authoritarian and repressive ‘hard’ approaches with
centralized decision making. This theory takes a pessimistic view on workers,
i.e., it is assumed that humans do not like to work, can’t be trusted, and need to
be closely supervised and controlled [169]. The result is a limited and depressed
culture of work and a constant decrease of worker’s motivation and productivity.
‘Hard’ approaches advocate detailed division and specialization of work, and cen-
tralized decision making at its extreme [105,114,242,262]. Workers are specialized
and prepared for the execution of small and monotonous tasks, and they do not
participate in decision making. This way of thinking emerged with the indus-
trialization. It was believed that the automation of business processes increases
productivity by minimizing participation of humans and, thus, minimizing hu-
man errors and throughput times. A worker was considered to be an extension
to the machine, which merely performs tasks that cannot be automatized.

Theory Y can be characterized by liberating and developmental ‘soft’ ap-
proaches with local decision making. This theory takes an optimistic view on
workers, i.e., it is assumed that humans enjoy working, may be ambitious, self-
motivated, anxious to accept greater responsibility, and exercise self-control, self-
direction, autonomy and empowerment [169]. ‘Soft’ approaches advocate local-

8 Chapter 1 Introduction

ized decision making where all relevant decisions about work are made directly
by people who actually do the work [168, 204]. In this way, workers are in a full
control and share responsibility for their work. Satisfaction of doing a good job is
a strong motivation and, therefore, will lead to constant increase of productivity.

The two extreme approaches to decision making were criticized and mostly
abandoned in the second half of the twentieth century. Relying on either a ‘soft’
or ‘hard’ manner seems to represent unrealistic extremes. In reality, companies
aim at achieving an optimal ratio between local and centralized decision making,
depending on the specific situation. Moreover, contemporary companies com-
monly place decision making somewhere between the ‘soft’ and ‘hard’ approach,
as Figure 1.10 shows.

decision making

optimal

common‘soft’ ‘hard’

locally centralized

Figure 1.10: Optimal decision making

New approaches consider multiple aspects of business processes. Each orga-
nization is seen as a unique open system with inputs, transformations, outputs
and feedback. Therefore, each company should consider the influence of the envi-
ronment and the integration of social and technical aspects of business processes
when choosing for the optimal style of decision making [69, 99, 102, 103, 128, 244,
246].

1.3.1 Adjusting to the Environment

Changes in the environment can have a major influence on an organization (e.g.,
change in customer requirements, appearance of new competitors, etc.). There-
fore, business processes must constantly be adjusted to the environment (cf.
Section 1.1) [65, 104]. Environments with a low degree of turbulency are stable
environments, and environments with a high degree of turbulency are turbu-
lent environments. The degree of turbulency of the environment influences the
predictability of business processes (cf. Figure 1.5 on page 4) and the nature of
decision making. The more turbulent the environment is, the more often it will be
necessary to adjust business processes to it and the more unpredictable business
processes are. For example, medical processes have a low degree of predictability
because each treatment must be adjusted to specific environment (e.g., available
medications, conditions of the patient, etc.), while handling travel requests has
a higher degree of predictability because traveling conditions do not change so
frequently.

Section 1.3 Characterization of Decision Making 9

‘Hard’ and ‘soft’ approaches advocate centralized and local decision making,
regardless the nature of the environment, as Figure 1.11(a) shows. However, the
need for localized decision making rises with the turbulency of the environment
and, thus, the unpredictability of business processes, as Figure 1.11(b) shows [65,
104]. In other words, unpredictable business processes require localized decision
making because decisions about how to adjust the process to new requirements
must be frequently made ‘on the fly’. For example, decisions about how to
adjust the medical treatment to the specific patient must be frequently made.
Therefore, these decisions should be made by the involved medical staff ‘on the
spot’. Because handling travel requests is a predictable process, decisions about
how to handle the process can be made ‘outside’ the process, i.e., in a centralized
manner.

lo
ca

l
ce

nt
ra

liz
edde

ci
si

on
 m

ak
in

g

business proccess
predictability

low

turbulent
environment

stable
environment

high

‘soft’

‘hard’

(a) ‘soft’ vs. ‘hard’

lo
ca

l
ce

nt
ra

liz
edde

ci
si

on
 m

ak
in

g

business proccess
predictability

low

turbulent
environment

stable
environment

high

optimal

(b) optimal

Figure 1.11: Influence of environment on decision making

1.3.2 Combining Social and Technical Aspects

Technology used for the automation of business processes influences the way of
work. While ‘hard’ approaches praise the automation for taking over the deci-
sion making from workers [105,114,242,262], ‘soft’ approaches see automation as
a means for suppressing the motivation and capabilities of people by imposing
a centralized decision making [58, 168, 204]. However, organizations can signif-
icantly benefit from using the best that both humans and technology have to
offer [246]. Table 1.2 shows a list of things that humans can do better than
machines and vice versa [96, 134].

Instead of being replaceable, humans and machines should complement one
another [142,224,229]. Moreover, both technical and social aspects of an organi-
zation must be optimized in order to achieve the best results [246]. For example,

10 Chapter 1 Introduction

Table 1.2: People versus machines [134]

people are better in: machines are better in:
Detection of certain forms of very low en-
ergy levels.

Monitoring (both men and machines).

Sensitivity to an extremely wide variety
of stimuli.

Performing routine, repetitive, or very
precise operations.

Perceiving patterns and making general-
izations about them.

Responding very quickly to control sig-
nals.

Ability to store important information for
long periods and recalling relevant facts
at appropriate moments.

Storing and recalling large amounts of in-
formation in long time periods.

Ability to exercise judgment where events
cannot be completely defined.

Performing complex and rapid computa-
tion with high accuracy.

Improving and adopting flexible proce-
dures.

Sensitivity to stimuli beyond the range of
human sensitivity (infrared, radio waves,
etc.),

Ability to react to unexpected low-
probability events.

Doing many different things at one time.

Applying originality in closing problems
(i.e., alternative solutions).

Exerting large amounts of force smoothly
and precisely.

Ability to profit from experience and alter
course of action.

Insensitivity to extraneous factors.

Ability to perform fine manipulation, es-
pecially where misalignment appears un-
expectedly.

Ability to repeat operations very rapidly,
continuously, and precisely the same way
over a long period.

Ability to continue to perform when over-
loaded.

Operating in environments that are hos-
tile to man or beyond human tolerance.

Inductive reasoning. Deductive reasoning.

technology can be used for decision making involving complex and rapid compu-
tation using large amounts of data, while humans can make decisions regarding
unpredicted and exceptional situations. Therefore, instead of replacing humans
and technology with each other, modern organizations strive to optimally benefit
from both aspects, as Figure 1.12 shows.

technology humans

‘hard’ ‘soft’

optimal

Figure 1.12: Technology and humans in decision making

Section 1.4 The Tradeoff between Flexibility and Support 11

1.4 The Tradeoff between Flexibility and Support

The flexibility that users have and the support that users get while working with
BPM systems (cf. Section 1.1) have a major influence on both satisfaction and
productivity. Figure 1.13 shows flexibility and support as two ‘opposed’ prop-
erties of business processes. Flexibility refers to the degree to which users can
make local decisions about how to execute business processes. Support refers to
the degree to which a system makes centralized decisions about how to execute
business processes. As discussed in Section 1.1, groupware and workflow manage-
ment systems are the two (extreme) types of BPM systems. The main difference
between the two types of systems is decision making, as shown in Figure 1.2 on
page 3. While users make decisions locally in groupware systems, the system
makes decisions centrally in workflow management systems. Thus, groupware
systems provide a high degree of flexibility and a low degree of support, while
workflow management systems provide a high degree of support and a low de-
gree of flexibility, as shown in Figure 1.13. In order to be able to align decision
making with the predictability of business processes (cf. Section 1.3.1), compa-
nies use groupware systems to automate highly unpredictable business processes,
and workflow management systems to automate highly predictable business pro-
cesses, as shown in Figure 1.8(b) on page 6.

low

high

w
or

kf
lo

w
 m

an
ag

em
en

t
sy

st
em

s

gr
ou

pw
ar

e

decision making

flexibility support

centralizedlocal

Figure 1.13: Tradeoff: flexibility or support in BPM systems [90]

1.5 Problem Definition and Research Goal

Companies rarely choose for extreme centralized or localized decision making,
as ‘hard’ and ‘soft’ approaches. Instead, a modern company constantly strives
towards an optimal balance between the two styles decision making (cf. Sec-
tion 1.3). The balance between centralized and local decision making must be
aligned with the specific situation, i.e., namely with the degree of the environ-

12 Chapter 1 Introduction

ment turbulency and the predictability of the business process, as described in
Section 1.3.1. The more unpredictable the business process is, the more localized
decision making should be, as shown in Figure 1.11(b).

The complexity of contemporary business processes raises the need for or-
ganizations to use technology for automation of supporting people in decision
making while executing business processes. Technology should not be seen as a
means that can and should replace humans completely (i.e., ‘hard’ approaches),
nor as an ultimate ‘evil’ which should be completely exterminated from busi-
ness processes (i.e., ‘soft’ approaches). Instead, the best results are achieved by
combining the expertise of both humans and technology (cf. Section 1.3.2).

BPM systems are software systems that aim at automating business processes
by supporting collaboration, coordination and decision making (cf. Section 1.1).
These systems can offer different degrees of flexibility and support in business
processes (cf. Section 1.4). Figure 1.13 shows two extreme types of BPM sys-
tems that offer either flexibility or support. First, groupware systems offer a
high degree of flexibility and a low degree of support by allowing users to make
all decisions about how to execute business processes. Second, workflow man-
agement systems make decisions about how to execute business processes, i.e.,
they offer a high degree of support but not enough flexibility 1.

Due to the typical complexity of contemporary business processes, companies
need BPM systems to support workers in difficult decision making. For exam-
ple, a workflow management system can provide support by centrally making
decisions involving complex manipulation of large amounts of data. However, a
workflow management system typically does not allow for flexibility, which dis-
ables users to make local decisions about exceptional situations in unpredictable
business processes. Thus, a workflow management system forces a company to
stick to centralized decision making and work according to the ‘hard’ approach.
A groupware system, on the other hand, provides for flexibility by allowing users
to make local decisions necessary to handle unpredictable business processes.
However, a groupware system does not provide for necessary support while han-
dling complex business processes. Therefore, a company that uses a groupware
system is forced to stick to local decision making, which is advocated by the
‘soft’ approaches. Because BPM systems do not offer an optimal ratio between
flexibility and support, companies that use these systems are not able to choose
an optimal balance between centralized and local decision making, as Figure 1.14
shows.

The research presented in this thesis is concerned with the following problem:
BPM systems force companies to implement either centralized or local decision
making, instead of allowing for an optimal balance between the two.

The goal of the research is to enable companies that use BPM systems to

1Note that in this context we have in mind mainstream commercial workflow management
systems.

Section 1.6 Contributions 13

w
or

kf
lo

w
 m

an
ag

em
en

t
sy

st
em

s

gr
ou

pw
ar

e flexibility support

optimal

common‘soft’ ‘hard’

Figure 1.14: Problem definition

achieve an optimal balance between local and centralized decision making. We
hope to achieve this (i.e., the goal in the research) (1) by proposing a new ap-
proach towards process support and (2) by developing a prototype of a workflow
management system that can offer an optimal ratio between flexibility and sup-
port, as described in Section 1.6.

1.6 Contributions

In this section we briefly describe contributions of this thesis. The three main
contributions are:

• The definition of a constraint-based approach to process modeling (cf. Sec-
tion 1.6.1).

• The definition of a modeling language for the development of constraint-
based process models (cf. Section 1.6.2).

• The development of a prototype of a constraint-based workflow manage-
ment system (cf. Figure 1.6.3).

Two additional contributions are:

• The application of the constraint-based approach to the whole BPM life
cycle (cf. Section 1.6.4).

• Showing that a combination of traditional and constraint-based approaches
is possible (cf. Section 1.6.5).

1.6.1 Constraint-Based Process Models

Starting point for our constraint-based approach is the observation that only
three types of ‘scenarios’ can exist in a business process : (1) forbidden scenarios

14 Chapter 1 Introduction

should never occur in practice, (2) optional scenarios are allowed, but should be
avoided in most of the cases, and (3) allowed scenarios can be executed without
any concerns. This is illustrated in Figure 1.15(a). As described in Section 1.1,
workflow management systems enable definition and execution of models of busi-
ness processes, which specify the ordering of activities in business processes. In
traditional workflow management systems process models explicitly specify the
ordering of activities, i.e., the control-flow of a business process. In other words,
during the execution of the model it will be possible to execute business process
only as explicitly specified in the control-flow, as Figure 1.15(b) shows. Due to the
high level of unpredictability of business processes, many allowed and optional
executions often cannot be anticipated and explicitly included in the control-flow.
Therefore, in traditional systems it is not possible to execute substantial subsests
of the allowed scenarios.

forbidden

optional

allowed

possible

(a) forbidden, optional and allowed
in business processes

(b) traditional approach

control-flow

(c) constraint-based approach

constraints constraints

constraints constraints

Figure 1.15: New constraint-based approach

We propose a constraint-based approach to process models, which makes it
possible to execute both allowed and optional scenarios in business processes.
Instead of explicitly specifying what is possible in business processes, constraint-
based process models specify what is forbidden, as shown in Figure 1.15(c). The
possible ordering of activities is implicitly specified with constraints, i.e., rules
that should be followed during execution. Moreover, there are two types of
constraints: (1) mandatory constraints focus on the forbidden scenarios, and (2)
optional constraints specify the optional ones. Anything that does not violate
mandatory constraints is possible during execution. In addition to execution,
our constraint-based process models also allow for verification against errors and
change during execution (i.e., the so called ad-hoc change).

Our constraint-based approach to process modeling enables flexibility with-
out sacrificing support. On the one hand, constraint-based models tend to offer

Section 1.6 Contributions 15

more possibilities for execution than the traditional models. This allows users to
make local decisions about how to execute business process. On the other hand,
a constraint-based process model supports users by being able to keep track of
multiple constraints in multiple business processes and preventing users from vio-
lating these constraints. In addition, it is also possible to distinguish between the
constraints that must be followed (i.e., mandatory) and constraints that should
be followed (i.e., optional). In the first case, users will be prevented from vi-
olating the constraints. In the second case, users can violate the constraints,
but they will be warned in advance about the ‘soft violation’. Moreover, our
constraint-based approach enables achieving a ratio between flexibility and sup-
port that is optimal for the situation at hand: more constraints in a model mean
less flexibility and more support, while less constraints mean more flexibility and
less support.

1.6.2 Generic Constraint-Based Process Modeling Language

Constraint-based process models are composed of constraints, which specify rules
that should be followed during execution of business processes. A process model-
ing language used by a workflow management system must fulfill two important
criteria. First, the process models developed in the language must be understand-
able for end-users. Second, process models developed in the language must have
formal semantics in order to be executable in a workflow management system.
We propose a new constraint-based process modeling language ConDec, which
fulfils both criteria. ConDec is based on constraint templates, i.e., types of con-
straints. Each template has (1) a graphical representation that will be presented
to users, and (2) Linear Temporal Logic (LTL) formula specifying the seman-
tics. Our approach and implementation are generic, i.e., templates can be easily
changed, removed from, or added to the language. Templates are used to create
constraints in ConDec process models. Each constraint inherits the graphical
representation and semantics (i.e., LTL formula) from its template. Figure 1.16
shows an example of a ConDec constraint, which specifies that activities A and
B should not be executed both in one instance of the business process. Users
see this constraint as a line with special symbols between two activities, while
the LTL semantics remains hidden. While the LTL semantics enable execution
of ConDec models, graphical representation makes models understandable by
non-experts.

A B

Activities A and B should not be executed
both in one instance of the business process.

Figure 1.16: A constraint

16 Chapter 1 Introduction

1.6.3 A Prototype of a Constraint-Based Workflow Management

System

We developed the declare system as a prototype of a constraint-based workflow
management system. This prototype can be downloaded from http://declare.

sf.net. declare can support different constraint-based modeling languages
and is grounded on our constraint-based approach, as Figure 1.17 shows. Al-
though the default version of the prototype includes the ConDec language, any
other constraint-based language based on LTL can easily be added. In addition,
constraint-based languages that use formalizations other than LTL can be added
by simple extensions of the prototype. Further, declare allows for definition,
verification, execution of constraint-based process models, and ad-hoc change of
running instances.

DECLARE

constraint-based process models

definition
definition

verification
execution

ad-hoc change

constraint-based languages

ConDec
...

Figure 1.17: The declare prototype

1.6.4 Constraint-Based Approach in the BPM Life Cycle

Workflow management systems can be used together with process mining tools
for support of all phases of the BPM life cycle shown in Figure 1.1 on page 2.
Figure 1.3 on page 3 shows that workflow management systems support design,
implementation, and enactment of business processes. Process mining tools sup-
port the diagnosis phase by using various process mining techniques for analysis
of executed business processes [28]. For example, ProM is a process mining tool
that can be used for many kinds of analysis of business processes executed in
various workflow management systems [28, 91].

Our constraint-based approach can be applied to all phases of the BPM life
cycle. On the one hand, declare is a prototype of a workflow management
system and, thus, supports design, implementation, and enactment of constraint-
based process models, as shown in Figure 1.18. On the other hand, declare

languages and models can be re-used in the diagnosis phase by the ProM tool
for the analysis of business processes already executed in declare. The results
of this analysis can be used for two purposes. First, the results can indicate
that process models should be changed, i.e., the cycle is re-entered. Second, de-

clare can use the analysis results during execution of constraint-based models,

Section 1.6 Contributions 17

as history-based recommendations. The recommendations generated from past
executions are presented to users executing declare models as additional infor-
mation that can help them deal with uncertain situations, i.e., recommendations
provide support for declare users without sacrificing available flexibility.

P
ro

M
pr

oc
es

s
m

in
in

g
to

ol

D
E

C
LA

R
E

w
or

kf
lo

w

m
an

ag
em

en
t s

ys
te

m process
design

process
implementation

process
enactment

diagnosis

Figure 1.18: Constraint-based approach in the BPM life cycle

1.6.5 Combining Traditional and Constraint-Based Approach

As described in sections 1.3 and 1.4, the level of flexibility and support that
users should get in workflow management systems depends on the nature of the
business process at hand. Contemporary BPM systems exclusively focus on one
type of business processes and offer either support or flexibility (cf. Figure 1.8(b)
on page 6 and Figure 1.13 on page 11). However, business processes of different
types are typically interleaved, even within the same organization. Consider for
example, business processes in the medical domain. Unpredictable medical pro-
cesses, like, e.g., treating urgent severe injuries, require a high degree of flexibility
in order for the staff involved to be able to make local decisions based on each
particular patient. This process is very complex and it consists of several other
business processes. For example, while treating the injury it might be necessary
to perform a blood analysis in the laboratory, which is another business process.
Laboratory tests are critical processes and, in order to guarantee reliability of
results, they must be executed exactly according to predefined procedures. In
other words, instead of flexibility, the blood analysis process requires a high de-
gree of support. The medical domain is one of many examples where a mixture
of processes requiring either a lot of support or a lot of flexibility is needed.
Therefore, it is important to support the full spectrum.

The declare prototype can be combined with the YAWL system [11, 23,
32,210,212] for defining arbitrary decompositions of constraint-based and tradi-
tional process models. YAWL is a traditional workflow management system de-
veloped at both Queensland University of Technology and Eindhoven University
of Technology. The service-oriented architecture of YAWL allows for arbitrary
decompositions of various process models. Figure 1.19 shows that the connection

18 Chapter 1 Introduction

between declare and YAWL models is twofold: (1) a YAWL model can be a
sub-model of a declare model and (2) a declare model can be a sub-model of
a YAWL model. Decomposition of YAWL and declare models allows for com-
bining different degrees of flexibility and support within one business process. In
this way, different parts of one business process can offer different degrees of flex-
ibility and support. Note that YAWL and declare are just two examples, i.e.,
using a service oriented architecture different styles of modeling can be combined.

DECLARE
constraint-based

YAWL
traditional

subprocess of

subprocess of

Figure 1.19: Combining different approaches

1.7 Road Map

The remainder of this thesis is organized as follows:

Chapter 2 provides an overview of the related work in the area of flexibility of
workflow management systems.

Chapter 3 explains in detail workflow management systems and factors that
determine the flexibility of these systems.

Chapter 4 formalizes our constraint-based approach to process modeling.

Chapter 5 presents the ConDec language as one example of a constraint-based
process modeling language, which uses Linear Temporal Logic for the for-
mal specification of constraints. The principles described in this chapter
can be applied to any other LTL-based language.

Chapter 6 describes the declare system as a prototype workflow management
system that supports the constraint-based approach. declare provides full
support the constraint-based approach and the ConDec language presented
in Chapters 4 and 5, respectively.

Chapter 7 describes how process mining techniques can be applied to the
constraint-based approach.

Chapter 8 concludes this thesis, discusses existing problems and proposed fu-
ture work.

In addition, two appendices are provided. Appendix A analyses work distri-
bution in three widely-used commercial workflow management systems, while
Appendix B presents evaluation results of the workflow pattern [10, 35] sup-
port in these three systems. These appendices provide details related to the
discussion of flexibility of workflow management systems in Chapter 3.

Chapter 2

Related Work

This chapter provides an overview of related work. Section 2.1 discusses the
various proposals to deal with flexibility described in literature. Section 2.2
introduces several workflow management systems that are interesting from the
viewpoint of flexibility. Section 2.3 discusses related work on the organization of
human work. Finally, Section 2.4 concludes the chapter with an outlook.

2.1 Workflow Flexibility

The importance of flexibility of workflow management systems has been acknowl-
edged by many researchers [66, 109, 125, 196]. The main problem regarding the
flexibility of workflow technology remains the requirement to specify business
processes in detail, although these processes cannot be predicted with a high
certainty [77, 109, 125, 143, 153, 166, 188, 233], and need to be constantly adapted
to changing environments [77, 188, 233].

Based on experiences from practice, Reijers provides a brief discussion about
the fact that workflow technology failed to bring the intended flexibility by
extracting the notion of the business process coordination logic from applica-
tions [196]. The paradigm of workflow management systems is based on ex-
tracting the business process logic from applications, which should provide for
flexibility by making it easier to change the model of the underlying business
process [159, 196]. In [196] Reijers argues that, instead of flexibility, workflow
management systems improved the logistical aspects of work: managers benefit
from decreased through-put times and workers from the fact that the system
provides automatically all relevant data and steers the business process.

In [64], Bowers at al. report on a case study conducted in a print industry
office that started using a workflow management system. This study revealed
that, instead of improving the work in the print office, workflow technology causes
serious interruptions in the work of employees because the system completely took
over the work and workers were no longer able to handle many unpredictable

20 Chapter 2 Related Work

situations.

In [125], Heinl et al. addressed the issue of flexibility in the context of a
case study conducted in a large market research company that uses workflow
technology for support of more than 400 processes. The case study showed
that inflexible workflow technology caused problems because: (1) it is almost
impossible to identify all steps in the business process in advance, (2) even if a
step is identified, it is not obvious whether it should be included in the process
model or not, (3) it is not always possible to predict the order of identified steps
in advance, and (4) mapping of business processes to process models is prone to
errors [125]. Moreover, the authors suggest concrete measures that can improve
the flexibility of systems. Namely, it is advocated that flexible systems should
allow users to select from multiple execution alternatives and change process
models at run-time [125].

Besides the above mentioned theoretical and practical approaches to the prob-
lem of flexibility of workflow technology, there have been several attempts to
classify flexibility.

Snowdon et al. identify three factors that motivate the need for different
types of flexibility [233]. First, the need for type flexibility arises from the variety
of different information systems. Second, volume flexibility is needed to deal
with the amount of information types. Third, structural flexibility is necessary
because of the need to work in different ways.

Soffer uses concepts from the Generic Process Model (GPM) and the theory
of coordination to classify flexibility into short-term flexibility and long-term flex-
ibility [234]. Short-term flexibility implies the ability to deviate temporarily from
a standard way of working, while the long-term flexibility allows for changing the
standard way of working.

In [232], Carlsen et al. propose a quality evaluation framework, which they
use to evaluate five workflow management products (including commercial sys-
tems and prototypes), and identify desirable flexibility features. The framework
is based on the quality of a process model and the quality of a modeling language.
Evaluation of workflow products identified a large set of desirable flexibility fea-
tures for workflow management systems (e.g., flexible error handling support,
quick turnaround for model changes, etc.). In addition, evaluation showed that
none of the five workflow products were flexible along all identified features, and
some of features were not covered by any product.

The first comprehensive taxonomy of concrete features that enhance flexibil-
ity of workflow management systems was given in 1999 by Heinl et al. [36, 125].
In 2007 Schonenberg et al. conducted a follow-up study and adjusted the orig-
inal taxonomy to recent developments in workflow technology [226–228]. The
remainder of this section is organized as follows. First, we present taxonomies
of Heinl et al. and Schonenberg et al. in sections 2.1.1 and 2.1.2, respectively.
Second, we present related work classified by flexibility types of Schonenberg et
al. in sections 2.1.3, 2.1.4, 2.1.5, and 2.1.6.

Section 2.1 Workflow Flexibility 21

2.1.1 Taxonomy of Flexibility by Heinl et al.

In [125], Heinl et al. use a case study conducted in a large marketing company as
an indication of the need for flexibility in workflow technology. This study showed
that serious problem arise due to the fact that it is hard to predict all alternatives
in business process execution when specifying a process model, and that flexibility
in the context of execution of instances of process models is needed to cope with
these problems. Flexibility of a workflow management system is seen as a degree
to which users can choose between various alternatives while executing process
models. Flexibility by selection and flexibility by adaptation are identified as two
concepts that should be supported by a flexible workflow management system,
as Figure 2.1 shows.

Objective

Concept

Method

flexibility

instance
adaptation

type
adaptation

advance
modeling

late
modeling

flexibility by adaptationflexibility by selection

Figure 2.1: Classification scheme for flexibility of workflow management systems by Heinl et
al. [125]

Flexibility by selection gives a user a certain degree of freedom by offer-
ing multiple execution alternatives. This type of flexibility can be achieved by
advance modeling and late modeling. Advance modeling means that multiple
execution alternatives are implicitly or explicitly specified in the process model.
When it comes to late modeling, parts of a process models are not modeled before
execution, i.e., they are left as ‘black boxes’, and the actual execution of these
parts is selected only at the execution time.

The limitation of flexibility by selection is that it has to be anticipated and
included in the process model. Flexibility by adaptation considers adding one
or more unforeseen execution alternatives to a process model while the model is
being executed. This can be achieved via type adaptation or instance adaptation.
In the case of type adaptation, a process model is changed while running instances
of that model are not affected by the change. In case of instance adaptation, the
change is applied to running instances.

2.1.2 Taxonomy of Flexibility by Schonenberg et al.

In [226–228], Schonenberg et al. revisited the issue of flexibility and extended the
original taxonomy by Heinl et al. [125]: the terminology changed, one flexibility

22 Chapter 2 Related Work

type is abandoned, and one flexibility type is added, as Table 2.1 shows. These
changes reflect the recent innovations in the area of workflow technology. In addi-
tion, Schonenberg et al. evaluated several state-of-the art workflow management
systems with respect to flexibility types support.

Table 2.1: Two taxonomies of flexibility

Heinl et al. [125] Schonenberg et al. [226–228]

flexibility by advance modeling flexibility by design
selection late modeling flexibility by underspecification

flexibility by type adaptation flexibility
adaptation instance adaptation by change

× flexibility by deviation

In [226–228], Schonenberg et al. propose four types of flexibility:

1. Flexibility by design is the ability to specify alternative execution alterna-
tives in the process model, such that users can select the most appropriate
alternative at run-time for each process instance. This type of flexibility
refers to advance modeling of Heinl et al.

2. Flexibility by underspecification is the ability to leave parts of a process
model unspecified. These parts are later specified during execution of pro-
cess instances. In this way, parts of the execution alternatives are left un-
specified in the process model, and are specified later during the execution.
This type of flexibility refers to late modeling of Heinl et al.

3. Flexibility by change is the ability to modify a process model at run-time,
such that one or several of the currently running process instances are
migrated to the new model. Change enables adding one or more execution
alternatives during execution of process instances. This type of flexibility
refers to instance adaptation of Heinl et al.

4. Flexibility by deviation is the ability to deviate at run-time from the ex-
ecution alternatives specified in the process model, without changing the
process model. Deviation enables users to ‘ignore’ execution alternatives
prescribed by the process model by executing an alternative not prescribed
in the model. This is a new type of flexibility introduced by Schonen-
berg et al. and is inspired by new approaches (cf. FLOWer [39, 180] and
declare [183])

Further in this section we present relevant research conducted in the area of
each of the four types of flexibility proposed by Schonenberg et al.: flexibility by
design in Section 2.1.3, flexibility by underspecification in Section 2.1.4, flexibility
by change in Section 2.1.5, and flexibility by deviation in Section 2.1.6.

Section 2.1 Workflow Flexibility 23

2.1.3 Flexibility by Design

Flexibility by design, as the ability to include multiple execution scenarios in pro-
cess models, has drawn much research attention in the area of workflow technol-
ogy. While some approaches advocate that flexibility by design can be increased
by adjusting the way existing technology is used [22,109,137,149,194,198], other
approaches propose radical innovations in the area [55, 56, 92, 115, 186, 187, 256].

‘Softening’ Traditional Approaches

Some researchers propose concrete methods for developing process models us-
ing existing modeling languages in a way that models offer as many execution
alternatives as possible [22, 137, 194, 198]. For example, in [194, 198], Reijers et
al. propose a set of heuristics (the so-called ‘best practices’) that can improve
flexibility by design. One of the proposed heuristics advocates that parallel ac-
tivities in process models imply more execution alternatives than sequential ac-
tivities. In [22], van der Aalst goes a step further and describes the applicability
of measures that can increase the number of available execution alternatives.
For example, this author suggests that “putting subsequent tasks in parallel can
only have a considerable positive effect if the following conditions are satisfied:
resources from different classes execute the tasks, the flow times of the parallel
subprocesses are of the same order of magnitude, ...” [22].

Other researchers propose ‘relaxing’ a process model by introducing optional
areas. In [149], Klingemann propose splitting up a process model into two parts.
First, the mandatory part consists of activities that must be executed in a pre-
defined order, i.e., this is the traditional notion of a process model. Second,
the flexible part consists of activities that can be selected depending on require-
ments at run-time. Similar concepts are proposed by Georgakopoulos in [109],
who claims that flexible processes “specify prescribed and optional activities...”.
During execution, prescribed activities are always required, while users decide
themselves whether and when to execute optional activities. Thus, optional ac-
tivities allow users to impose the process structure when it is necessary, i.e., they
allow for multiple execution alternatives.

Data-Driven Approaches

There are several approaches that focus on the data availability in order to im-
prove flexibility. In [117], Grigori et al. propose anticipation as a means for more
flexible execution of traditional process models. Anticipation allows an activity
to start its execution when all input data parameters are available, which may
be earlier then specified in the control-flow of the process model.

The idea to focus on the product data instead of the control-flow when de-
ciding the order of activities was introduced by van der Aalst in [15, 18]. Here
the author proposes the automatic generation of a process model (represented

24 Chapter 2 Related Work

as a Petri Net [29, 72, 93]) from a given Bill Of Materials (BOM). This method
was worked out in more detail by van der Aalst et al. in [197], where authors
propose a method called Product-Driven Workflow Design (PDWD) for deriving
a process model. PDWD takes a product specification in the form of BOM and
three design criteria (i.e., quality, costs and time) as a starting point for deriving
a favorable new design of the process model. In addition, the authors demon-
strate how the ExSpect tool [3] can support PDWD. The possibility to support
PDWD by case-handling systems [26, 39] was presented by Vanderfeesten et al.
in [249, 250].

While the approaches mentioned in the previous paragraph focus on deriving
a process model from a BOM, more advanced approaches advocate the direct
execution of the BOM. In [251,252], Vanderfeesten et al. present an implementa-
tion of a system for direct execution of Product Data Models (PDMs)1. Similarly,
in [257], Wang et al. present an execution framework for a document-driven work-
flow management system that does not require an explicit control-flow. Instead,
the execution of a process is driven by input documents.

Proposals for New Process Modeling Languages

In [66, 135], Jablonski et al. propose meta-modeling of workflows in the system
called MOBILE. In [135] authors distinguish between prescriptive and descrip-
tive workflows. In prescriptive workflows eligible instances are known a priori,
while in descriptive workflows instances are not known beforehand but are deter-
mined during processing. MOBILE supports meta-modeling of both prescriptive
and descriptive process models by means of control predicates [66], which are
internally presented by Petri Nets [29, 72, 93]. Moreover, this approach allows
for combining prescriptive and descriptive processes in the same framework by
decomposing the two types of models [135].

Several approaches propose using intertask dependencies for specification of
the process models. In [55, 56], Attie et al. propose using Computational Tree
Logic (CTL) [74] for the specification of intertask dependencies amongst different
unique events (e.g., commit dependency, abort dependency, conditional existence
dependency, etc.). Dependencies are transformed into automata, which are used
by a central scheduler to decide if particular events are accepted, delayed or re-
jected. In [186,187], Raposo et al. propose a larger set of basic interdependencies
and propose modeling their coordination using Petri Nets [29, 72, 93].

Another popular stream of research is applying rule-based or constraint-based
process modeling languages [92,115,256] that are able to offer multiple execution
alternatives and, therefore, can enhance flexibility by design.

In [115], Glance et al. use process grammars for definition of rules involving
activities and documents. Process models are executed via execution of rules

1Product Data Models are a special kind of BOM where the building blocks are data elements,
instead of physical parts.

Section 2.1 Workflow Flexibility 25

that trigger each other.

The Freeflow prototype presented in [92] uses constraints for building declar-
ative process models. Freeflow constraints represent dependencies between states
(e.g., inactive, active, disabled, enabled, etc.) of different activities, i.e., an ac-
tivity can enter a specific state only if another activity is in a certain state.

Plasmeijer et al. apply the paradigm of functional programming languages
embedded in the iTask system to workflow management systems [185]. On the
one hand, the iTask system supports all workflow patterns [10, 35, 208, 211, 213].
On the other hand, it offers additional features like suspending activities, pass-
ing activities to other users and continuing with a suspended activity. Another
interesting property of this approach is the possibility to automatically generate
a multi-user interactive web-based workflow management system.

Some approaches consider process models based on dependencies between
events involving activities [80, 256]. For example, the constraint-based language
presented in [256] uses rules involving (1) preconditions that must hold before an
activity can be executed, (2) postconditions that must hold after an activity is
executed and (3) “parconditions” that must hold in general before or after an ac-
tivity is executed. In addition, the Tucupi server is implemented in Prolog [239],
which is a prototype of a system supporting this approach. A similar idea is
presented in [141] by Joeris, who proposes flexible workflow enactment based on
event-condition-action (ECA) rules. In [162,163], a temporal constraint network
is proposed for business process execution. The authors use thirteen tempo-
ral intervals defined by Allen [50] (e.g., before, meets, during, overlaps, starts,
finishes, after, etc.) to define selection constraints (which define activities in a
process) and scheduling constraints (which define when these activities should
be executed). Moreover, using the notion of Business Process Constraint Net-
work (BPCN) ensures execution of process models that conforms to specified
constraints and detection of (possible) conflicting constraints. After a knowl-
edge worker invokes a special build function to dynamically adapt the instance
template (instance templates define total order of task execution), translation of
Interval Algebra (IA) network generated from constraints to Point Algebra (PA)
network [60] is used to validate whether the given instance template conforms
to given constraints. If this validation is satisfactory, the execution continues
according to the instance template.

New languages for specification of process models that offer flexibility by
design have also been proposed in the areas of web services and contracting. In
[78], CTR-S, an extended version Concurrent Transaction Logic [62], is proposed
for process modeling in the context of contracts in web services. The authors
propose using CTR-S for specifying contracts as formulas that represent various
choices that are available for the parties in the contract. This language allows
stating the desired outcomes of the contract execution and to verify that the
outcome can be achieved as long as all parties obey to the rules of the contract.

The declarative SCIFF language is developed for the specification, monitoring

26 Chapter 2 Related Work

and verification of interaction protocol of web services [48, 49]. SCIFF envisages
a powerful logic-based language with a clear declarative semantics. The SCIFF
language is intended for specifying social interaction, and is equipped with a proof
procedure capable to check at run-time or a-posteriori whether a set of interacting
entities is behaving in a conforming manner with respect to a given specification.
Due to its high abstraction level, SCIFF can be used for dependency specifica-
tions in various domains. For example, in the area of business processes, SCIFF
specifications can include activities (i.e., the control-flow), temporal constraints
(i.e., deadlines) and data dependencies. The possibility to learn SCIFF specifi-
cations from past executions is presented in [154, 155]. The SCIFF language is
described in more detail in Section 7.3 of this thesis.

In [269], Zaha et al. propose a language called Let’s Dance for modeling
interactions of web services. This language focuses on flexible modeling of mes-
sage exchange between services. A straight-forward graphical notation is used
to represent patterns in message exchange, while π -calculus [174] captures the
execution semantics [81].

Our approach is more comprehensive than the approaches discussed above:
it includes (1) a formal definition of a constraint-based approach on an abstract
(i.e., language-independent) level, (2) a concrete, formal constraint-based lan-
guage that enables deadlock-free execution, ad-hoc change and verification, (3)
a working ‘proof of concept’ prototype, (4) application of the constraint-based
approach to the whole BPM cycle, and (5) combining procedural and constraint-
based process models (cf. Section 1.6). To our knowledge, none of the new
languages discussed above include these five aspects together.

2.1.4 Flexibility by Underspecification

Underspecification in process models has been addressed by several researchers.
In [129, 130], Herrmann et al. advocate vagueness in models of socio-technical
systems. This approach proposes the semi-structured modeling language SeeMe
[129], which allows uncertain, questionable and unknown knowledge to be in-
cluded in models, as well as checked and committed. For example, SeeMe allows
for definitions about ordering of activities, process decomposition, role allocation,
etc. to be specified as uncertain, or even omitted from the model. The vagueness
allows knowledge workers to decide at later stages about the actual process.

Van der Aalst proposes enhancing flexibility of process models with generic
processes [16, 21]. Besides elementary activities and routing elements, processes
models can contain of non-atomic concrete processes and generic processes.
While activities are directly executed by users, non-atomic concrete and generic
processes decompose to process models. In the case of a non-atomic concrete
process, the process to be executed is already specified in the original model. In
the case of a generic process, the model to be executed must be selected at the
execution time, i.e., generic processes refer to unspecified placeholders that are

Section 2.1 Workflow Flexibility 27

specified only at the execution time.

In [167], Mangan and Sadiq propose building instances from partially de-
fined process models in order do deal with the fact that it is often not possible
to completely predefine business processes. The idea is that a partially defined
process model is only fully specified at run-time and may be unique for each
instance. Instances can be built of activities and subprocesses (i.e., modeling
fragments), ordered in sequences, parallel branches and as multiple executions
(i.e., modeling constructs). In addition, the building of instances is supported
by three groups of previously defined domain-specific constraints, as rules un-
der which valid instances can be built. First, selection constraints define which
fragments are available for the instance. Second, due to the lack of an explicit
termination activity, termination constraints are needed to define when an in-
stance is completed. Third, additional restrictions in an instance are imposed
by build constraints. An instance is dynamically built in a valid manner for
as long as all constraints are satisfied. In addition, Sadiq et al. propose using
this approach to build pockets of flexibility, which are (together with predefined
activities) components of process models [220].

Trajcevski et al. propose process model specification based on the known
effects of process activities [243]. In addition to the ‘known’, process models can
also contain the ‘ignorance’ (unknown values allow specifying situations of dealing
with incomplete information). In addition, the authors define an entailment
relation which enables verifying the correctness of process models (in terms of
achieving a desired goal).

The OPENflow system is an example of a system that directly supports flex-
ibility by underspecification [121]. This system allows for incorporating genesis
activities in process models. A genesis activity represents a placeholder for an
undefined subprocess. The actual structure of a genesis activity is determined at
run-time.

In [41, 44, 45] Adams et al. describe the Worklet Service as a means to dy-
namically build process instances based on the specific context. The idea is to
dynamically substitute an activity with a new instance of a contextually selected
process, i.e., a worklet. The decision about which worklet to select for a given
activity depends on the activity data and existing ripple down rules. In this
manner, worklet activities in process models represent unspecified parts of the
model, which are to be determined by the Worklet Service at run-time2.

Staffware [12,237] is a popular commercial workflow management system that
supports flexibility by underspecification via dynamic process selection [116].
Staffware process models consist of activities and subprocesses. Besides static
process selection, where subprocesses are already specified in the model, dynamic
process selection allows for selection of an appropriate sub-process at execution
time based on the instance data [116]. The idea is comparable to the worklets

2The Worklet Service is described in more detail in sections 2.2.3 and 6.11.3 of this thesis.

28 Chapter 2 Related Work

approach [41, 44, 45], i.e., subprocesses in Staffware instances are dynamically
selected based on the instance data (e.g., a specific data element may carry the
name of the subprocess to be launched)3.

2.1.5 Flexibility by Change

Flexibility by change is achieved when instances can be changed at run-time. This
topic has driven much research attention in two areas. First, we will describe the
research conducted in the area of adaptive systems (i.e., systems that enable run-
time change of instances). Second, we describe some examples of the research
in the area of ad-hoc systems (i.e., systems that enable run-time construction of
instances).

Adaptive Approaches

Run-time (i.e., dynamic) change of instances of process models has drawn much
attention amongst researchers [24,36,46,68,71,100,101,109,140,145,148,151,189,
219, 230, 265]. A comprehensive overview of the existing approaches to dynamic
change in the context of workflow technology is given by Rinderle et al. in [201].
The authors present a good classification of existing approaches and evaluate the
approaches against identified correctness criteria.

At the most advanced level, it might be necessary to change an instance in
an ad-hoc manner (i.e., ad-hoc change), which implies that the change is unpre-
dictable and often applied as a response to unforeseen situations [201]. Systems
like Breeze [219], WASA2 [265] and ADEPT [164,189,202] use advanced compli-
ance checks (i.e., to check whether the current execution can be applied to the
changed instance), correctness properties of the process model (e.g., regarding
data flow), etc., to support ad-hoc change [201]. Unfortunately, today’s commer-
cial systems do not provide sufficient support for ad-hoc change. Systems like
InConcert, SER Workflow and FileNet Ensemble are rare examples of commercial
systems that, to some extent, enable ad-hoc change of running instances [201].

Another important functionality when it comes to dynamic change is the so-
called migration, where a dynamic change is applied to multiple running instances
(e.g., due to a change in law regulations, all running instances must be migrated
from the old to the new process) [201]. Besides for the basic problems that
accompany change of a single instance, migration of multiple instances introduces
some additional difficulties. Namely, additional challenges emerge in systems
that aim at concurrently supporting both types of change, e.g., in cases when
conflicting changes must be resolved at different levels [203]. Unfortunately,
not many systems support this type of change. The ADEPT system has been

3The dynamic process selection in Staffware is explained in more detail in Section 2.2.1 of
this thesis.

Section 2.1 Workflow Flexibility 29

extended to support change of multiple instances of a process model, resulting
in the second version of the system, i.e., ADEPT2 [192, 193]4.

Some systems support pre-planned and automated instance changes, where
necessary changes and their scope are already known at the design phase (i.e.,
while the process model is developed) [201]. This type of change is supported by
ADEPT [164,189,191,202], WASA2 [265], InConcert [133], etc. [201]. In order to
support pre-planned instance changes, a system must be able to (1) detect failures
that cause the change, (2) determine necessary changes, (3) identify instances
that must be changed, (4) correctly introduce the change to those instances, and
(5) notify the users about the conducted change(s) [29, 201].

A problem that often arises during dynamic change is pointed out by Ellis
et al. as the “dynamic change bug” [101]. A dynamic change is preformed on
running instance, i.e., the instance already has a history that puts the instance
in a certain state when the change takes place. The complexity of the dynamic
change stems from the fact that for the current state of an instance, an appro-
priate state in the new model has to be found, and this is not always possible.
In [20], van der Aalst proposes an approach for dealing with this problem by cal-
culating the safe change region. A dynamic change is only allowed if an instance
is in this region.

As a means of comparing various approaches to process control-flow change,
Weber et al. [260] propose a set of seventeen change patterns and six change sup-
port features. First, change patterns are classified into adaptation patterns and
patterns for predefined change. While adaptation patterns cover unpredictable
changes, predefined patterns consider only the changes that are predefined in
the process model at the design time. Second, change support features of work-
flow management systems that are identified are, e.g., version control, change
correctness, change traceability, etc.

In [36], van der Aalst and Jablonski propose a scheme for classifying work-
flow changes in detail based on six criteria: (1) the reason for change can be a
development outside or inside the system, (2) the effect of change can be momen-
tary or evolutionary, (3) the effected perspectives can be process, organization,
information, operation or integration perspective, (4) the kind of change can be
extending, reducing, replacing or re-linking, (5) the moment at which change is
allowed can be at entry time or on-the-fly, and (6) the choice what to do with
running process instances can be to abort old instances, proceeded according to
the old model, etc.

Ellis and Keddara propose a Modeling Language to support Dynamic Evolu-
tion within Workflow Systems (ML-DEWS) as a means for modeling the process
of dynamic change [100]. The language supports a variety of predefined change
schemes, e.g., the abort scheme as a disruptive change strategy where the in-
stance is simply aborted, the defer scheme that allows the instance to proceed

4A more detailed description of ADEPT is given in Section 2.2.4 of this thesis.

30 Chapter 2 Related Work

according to the old process model, the ad-hoc scheme that supports changes
whose components are not fully specified at design time, etc.

In [118], Günther et al. apply process mining techniques [28] to change logs
created by adaptive systems. The authors propose using process mining to pro-
vide an aggregated view of all changes that happened so far in process instances.
The mining results can trigger various process improvement actions, e.g., a result
may indicate that, due to frequent changes, a process redesign is necessary.

Weber et al. introduce a framework for the agile mining of business processes
that supports the whole process life cycle by using Conversational Case-based
Reasoning (CCBR), adaptive business process management and process mining
[259]. Process mining techniques are used to extract and analyze information
about realized process adaptations. Integration of the ADEPT [164,189,191,202]
and CBRFlow [261] prototypes enables using CCBR to perform ad-hoc changes
of single process instances, to memorize these changes, and to support their
reuse in similar future situations. Collected information can be used by process
engineers to adapt process models and to migrate related process instances to
the new model.

Ad-Hoc Approaches

Ad-hoc approaches to workflow management systems provide a powerful mecha-
nism to increase flexibility by change by allowing users to build the process model
for each instance while executing the instance.

In [94], Dustdar investigates the relevant criteria for process-aware collabo-
ration and proposes an ad-hoc approach to workflow management systems im-
plemented in the system Caramba. Besides the traditional execution of process
models, this approach allows users to execute ad-hoc instances that are not based
on a predefined process model. Instead of the system, users coordinate activities
in ad-hoc instances.

InConcert is an example of a commercial ad-hoc workflow management sys-
tem, which allows users to design or modify process models [29, 133]. InConcert
allows for the creation of a new instance in four manners [29]. First, a new in-
stance can be created based on an existing process model. Second, it is possible
to create a new instance based on a previously changed existing process model.
Third, an ad-hoc instance can be initiated by specifying a sequence of activities.
Fourth, a new instance can be initiated as a ‘free routing process’, i.e., the in-
stance is created based on an empty process, and the actual process model is
created on the fly.

2.1.6 Flexibility by Deviation

Deviation from predefined process models is recognized as a means for increas-
ing flexibility in the workflow area [76, 264]. While some approaches propose

Section 2.1 Workflow Flexibility 31

methods for deviations from traditional process models [39, 76, 180, 264, 265],
other approaches focus on specialized mechanisms to handle unexpected situa-
tions [42, 98, 218, 241].

Deviation in Traditional Approaches

In [76], Cugola proposes deviating from process models when it comes to situ-
ations unforeseen in the design phase, i.e., not incorporated in the model. The
author describes two types of inconsistencies that may occur at unexpected situ-
ations. First, a domain-level inconsistency occurs when an actual instance does
not follow the process model. Second, an environment-level inconsistency occurs
when a business process is executed outside of the system, and the system has no
knowledge about how the process is executed. These inconsistencies are caused
by domain-level deviations and environment-level deviations, i.e., as actions that
system users undertake in order to deal with unforeseen situations. The author
describes the PROSYT system, which is able to tolerate domain-level deviations,
and, thus, minimize environment-level deviations. The PROSYT system deals
with unforeseen situations by allowing a deviation policy and a consistency han-
dling policy to be specified for a process model. A deviation policy identifies
which forms of deviation are tolerated, while a consistency handling policy en-
sures any allowed deviations do not impact the overall correctness of the system.

In the context of the WASA prototype [264, 265], Weske nominates three
user-initiated operations. These operations are: skip activity that has not been
started yet, stop activity that is currently being executed, and repeat activity that
has already been executed [264]. These three operations allow for deviations from
normal workflow execution, but do not change the original process model.

FLOWer [180] is an example of a commercial system that allows deviations
from process models. FLOWer is a case-handling system [39] that allows users
to open activities that are not supposed to be executed yet, skip activities that
should be executed, and redo an activity that has been executed before. FLOWer
allows for these deviations by applying a powerful mechanism that ensures con-
sistency of running instances (e.g., data elements are taken into account). A
more detailed description of FLOWer is given in Section 2.2.2.

Exception Handling

Another area of research that is concerned with deviations from what is specified
in process models is exception handling. Exception handling provides a means for
handling errors without explicitly including them in the process model. Excep-
tions are seen as errors/failures that can occur during execution of process mod-
els [42, 43, 98, 218, 241]. Although we consider exception handling as a technique
to handle (technical) problems rather than supporting flexibility, it is related to
the above approaches. Therefore, we mention some work on exception handling.

32 Chapter 2 Related Work

Strong et al. investigated exception handling of an operational process in one
organization. They suggested points for further research on the roles of people
in computerized systems and design of computer-based systems that can handle
multiple conflicting goals [241].

In [98], Eder et al. discuss advanced concepts concerning recovery from sys-
tem failures and semantic failures in the context of workflow transactions. The
authors identity different failure sources (i.e., workflow engine failures, activity
failures, and communication failures) and failure classes (i.e., system failures and
semantic failures) in process-oriented and document-oriented workflows.

Saastamoinen et al. propose using a set of (1) formal organizational rules, (2)
informal group rules, and (3) informal individual rules for handling exceptions
and assuring that the goal of the process is achieved after the change [218].

The work presented in [41–43,208,209] is a comprehensive attempt to provide
a concrete framework for exception handling in workflow management systems.
In [43], Adams et el. propose using the Worklet Service [41,44,45] for exception
handling of events that occur while executing process models. When such an
event occurs, a repository of rules is used to select the procedure that should
be used to handle the exception. In [208, 209], Russell et al. define a rigorous
classification framework for workflow exception handling independent of mod-
eling approaches and technologies, i.e., a set of workflow exception patterns is
identified. Based on these exception patterns, in [42] Adams et al. present their
implementation of a Exception Service, which provides a fully featured exception
handling paradigm for detecting, handling and incorporating exceptions as they
occur. Moreover, this implementation allows for handling both predicted and
unpredicted exceptions.

Various approaches to exception handling have been implemented in a number
of systems, e.g., WAMO [97], ConTracts [200], Exotica [51], OPERA [119, 120],
TREX [240], WIDE [67], etc.

2.2 Workflow Management Systems

Numerous workflow management systems are available on the market today in
addition to the open source products and academic prototypes [29]. In this
section we shortly present several workflow management systems that are able
to offer one or more types of flexibility. We start by presenting two popular
commercial systems. In Section 2.2.1 we present the traditional system Staffware
[238], which provides support for flexibility by underspecification and a limited
support for flexibility by change. In Section 2.2.2 we present the case-handling
system FLOWer [180], which provides flexibility by deviation. Then, we present
two academic systems (i.e., these systems are developed under the supervision of
academic workflow researchers). In Section 2.2.3 we present YAWL [23,210,212],
which supports flexibility by underspecification and exception handling. Finally,

Section 2.2 Workflow Management Systems 33

in Section 2.2.4, we present ADEPT [164,189,191,202], a workflow management
systems focusing on supporting flexibility by change.

2.2.1 Staffware

Staffware is one of the most used workflow management systems in the world. For
example, in 1998, it was estimated that Staffware had 25% of the world market.
Staffware consists of several components that are, in general, used to define
process models, users and their roles, and to execute instances of process models.
For example, Figure 2.2 shows one process model in the Staffware component for
model definition, i.e., the Graphical Workflow Definer, and Figure 2.3 shows the
Work Queue Manager - a client tool which is used by users to execute activities
of running instances.

Figure 2.2: A process model in Staffware

Figure 2.3: A work queue with a work item in Staffware

Despite its reputation of being an inflexible system, in recent years consider-
able efforts have been undertaken to enrich Staffware with features that enhance
its flexibility. Since recently, Staffware supports flexibility by underspecification
and, to a limited extent, flexibility by change.

34 Chapter 2 Related Work

Dynamic Process Orchestration in Staffware

The new paradigm of Dynamic Process Orchestration [116] introduces flexibility
by underspecification in Staffware. Staffware process models can be composed of
atomic activities and subprocesses. There are four ways in which subprocesses
can be invoked from their parent processes [116]: (1) static process selection,
(2) dynamic process selection, (3) multiple process selection, and (4) goal-driven
process selection.

Static process selection. In a conventional way, subprocesses are invoked
in a static manner. This means that the subprocess is known in advance and
explicitly specified in the process model. The result is that the same subprocess
will be invoked for all instances of the parent process model.

Dynamic process selection. Often it is the case that a range of subprocesses
can be invoked, the choice of which depends on specific circumstances. The names
of such subprocesses and the conditions of their usage is known in advance, and
specified in the parent process model. However, the circumstances are only know
at the execution time, and then it is decided which subprocess should be invoked.
The dynamic process selection is achieved by specifying in a process model a
range of possible subprocesses and conditions (involving data elements) for their
invocation. The result is that, each instance will decide, based on current values
of its data elements, which one of the available subprocesses to invoke.

Multiple process selection. This is an extension of the dynamic process
selection in a way that, instead of invoking only one subprocess, multiple subpro-
cesses can be invoked in a dynamic manner. The parent process will proceed to
the next activity only when all invoked subprocesses have completed successfully.

Goal-driven process selection. In some circumstances, the name(s) of sub-
processes might not be known in advance and, thus, cannot be specified in the
process model. Instead, only a goal (e.g., ‘examine patient’) that the subpro-
cess should achieve is know and specified in the parent process. Further, on the
system level each subprocess is tagged with the goal it achieves (e.g., ‘examine
patient’, ‘perform tests’) and the entry conditions (e.g., ‘age > 65’). The result
is that, for each instance, the system will automatically invoke a subprocesses
that achieves the given goal and satisfies the entry condition based on the current
instance data.

Change on the Instance Level in Staffware

Staffware does not support dynamic change in the ad-hoc manner described in
Section 2.1.5. This means that it is not possible to apply a dynamic change

Section 2.2 Workflow Management Systems 35

directly on a running instance. According to [201], a change of a process model
can trigger change of its running instances. However, there are several problems
arising when it comes to this kind of dynamic change in Staffware, as pointed
out by Rinderle et al. in [201]. First, it might happen that activities in running
instances are automatically deleted, without informing the users who are working
on these instances. Second, if a deleted activity has already been executed,
the results of this activity are lost. Third, Staffware suffers from the so-called
‘changing the past’ problem, i.e., some changes might influence the past of the
instance, which may lead to missing data values or even program failures. Finally,
dynamic changes in Staffware are too restrictive (e.g., if an activity is activated,
insertions before it are no longer possible).

2.2.2 FLOWer

FLOWer is a case-handling system [26, 39], i.e., there are two major differences
when compared with traditional workflow management systems. First, the exe-
cution order of activities is heavily influenced by data elements in case-handling
systems. Second, while traditional systems offer atomic activities from running
instances to users for execution, case-handling systems offer whole cases to users.

In traditional workflow management systems, the execution order of activities
in instances is explicitly defined by the control-flow definition of the underlying
process model. In FLOWer, users can follow the execution order of activities
defined in the control-flow of the instance. Figure 2.4 shows the control-flow
specification of one process model in FLOWer. However, in addition, the control-
flow ordering may as well be violated. On the one hand, FLOWer considers an
activity to be successfully executed as soon as all its mandatory data elements
become available. This means that, if all mandatory data elements of an activity
become available before the manual execution of this activity, the activity is
considered to be successfully completed, and a manual execution is no longer
necessary. On the other hand, an activity can be executed or skipped even if it
contradicts to the control-flow specification. In this way, FLOWer is one of the
rare commercial systems that offers flexibility by deviation.

Besides executing activities according to the control-flow specification (i.e.,
executing currently enabled activities), users of FLOWer can also [39, 180]:

• open an activity that is not enabled yet (i.e., disabled activity),

• skip an activity that has not been executed yet, i.e., not execute an activity
that should be executed according to the control-flow, and

• re-do an activity that has already been executed before, i.e., choose to
execute again an activity that has already been executed.

A major difference between traditional workflow management systems and
case-handling systems is how the work available in running instances is offered
to users. On the one hand, traditional systems typically offer work to users as

36 Chapter 2 Related Work

Figure 2.4: A process model in FLOWer

atomic activities, i.e., a user has access to a list containing all currently enabled
activities for all running instances (e.g., Figure 2.3 shows such a list in Staffware).
On the other hand, case-handling systems try to avoid the narrow view provided
by activities, and therefore present the whole instance to the user. Note that,
although a whole case is presented to a user, he(she) can only work with activi-
ties for which he(she) is authorized. In more detail, for each activity in FLOWer,
users can get authorizations to execute, skip and redo the activity. Figure 2.5
shows how FLOWer presents a whole instance to one user. In the instance shown
in this figure, activities Claim Start and Register Claim have already been suc-
cessfully executed (as indicated by the ‘check’ symbol). After that, activity Get
Medical Report was skipped (as indicated by the ‘skip arrow’ symbol). Currently,
activities Get Police Report, Assign Loss Adjuster and Witness Statements are
currently enabled, i.e., available for execution. The last two activities (i.e., Policy
Holder Liable and Close Case) are not enabled yet.

Figure 2.5: FLOWer Wave Front

Note that skipping, opening and redoing an activity in FLOWer may also
affect other activities. First, when a disabled activity is opened, all preceding

Section 2.2 Workflow Management Systems 37

not yet executed activities will automatically become skipped. For example,
if activity Close Case would be opened or skipped at the moment presented
in Figure 2.5, then activities Get Police Report, Assign Loss Adjuster, Witness
Statements, and Policy Holder Liable would automatically become skipped. If
activity Close Case was opened, then it can be directly executed. If activity
Close Case was skipped, then the case execution continues after this activity,
e.g., the instance presented in Figure 2.5 is completed. Second, if an activity is
re-done, all succeeding executed activities must also be re-done. For example, if
activity Claim Start would be re-done at the moment presented in Figure 2.5,
then activities Register Claim and Get Medical Report would also need to be
re-done after activity Claim Start. A drawback of the described side-effects is
that the deviation becomes more extensive than intended, e.g., while attempting
to re-do only one activity, a FLOWer user might end up being forced to also
re-do many preceding activities.

2.2.3 YAWL

YAWL is a workflow management system developed in a collaboration between
the Eindhoven University of Technology and the University of Queensland [11,
23, 32, 210, 212]. YAWL is developed in the context of the workflow patterns
initiative [10, 32, 35, 208] and aims at supporting all workflow patterns, i.e., it
aims at supporting various features offered by existing workflow management
systems. In simple words, YAWL is driven by the ambition to be able to provide a
comprehensive support for most patterns while using a relatively simple language.

In its essence, YAWL is built as a traditional workflow management sys-
tem, i.e., ordering of activities is defined in the traditional ‘control-flow’ manner.
While executing activities in running instances in YAWL, users must follow the
order strictly specified in the control-flow of the underlying process model. Fig-
ure 2.6 shows a process model in YAWL.

Figure 2.6: A process model in YAWL

YAWL’s architecture is based on the so-called service-oriented architecture,
and the systems can be easily extended by various functionalities5. Thanks to

5The architecture of the YAWL system is described in more detail in Section 6.11.

38 Chapter 2 Related Work

its service-oriented architecture, the YAWL system nowadays offers two impor-
tant features that enhance its flexibility to a great extent. These features are
YAWL Worklet Service [41, 44, 45], which directly provides for flexibility by un-
derspecification, and YAWL Exception Service [41–43,208,209], which represents
a powerful mechanism for exception-handling. Moreover, the approach presented
in these papers is also implemented into YAWL.

The Worklet Service

The main idea behind the Worklet Service [41, 44, 45] is to dynamically select
subprocesses (i.e., worklets) that should be invoked in YAWL instances. There
are two types of activities in YAWL process models. First, ‘atomic activities’ are
activities that should be executed by users. Second, instead of being executed by
a user as an atomic activity, an activity can refer to a subprocess (i.e., a ‘worklet
activity’). At the execution time, ‘worklet activities’ and relevant instance data
are delegated to the Worklet Service. The service then uses a predefined set of
ripple down rules and the received data to select the most appropriate YAWL
process model and automatically invoke it as the selected worklet. Ripple down
rules specify which YAWL process model should be invoked as a worklet, given
the actual data of the parent instance6. In other words, each worklet activity is
dynamically decomposed into a YAWL process, which enriches the YAWL system
with flexibility by underspecification.

The Exception Service

The worklet paradigm is reused in YAWL to enable a powerful exception handling
mechanism realized via the Exception Service [41–43, 208, 209]. The Exception
Service provides a fully featured exception handling paradigm for detecting, han-
dling and incorporating exceptions as they occur. This service operates similarly
like the Worklet Service, i.e., when an exception occurs in an instance, the Excep-
tion Service uses ripple down rules and instance data to select and automatically
invoke a YAWL process (i.e., exlet) that will be executed in order to handle the
exception. Moreover, this implementation allows for handling both predicted
and unpredicted exceptions. Unpredicted exceptions are especially interesting:
a YAWL user can, at any point during the execution of an instance, report the
occurrence of an exception and let the Exception Service invoke a suitable exlet.

2.2.4 ADEPT

ADEPT is a workflow management system that focuses on dynamic change.
ADEPT was developed at the University of Ulm [189,191–193,202]. This system
uses powerful mechanisms that allow users to change running instances of process

6The Worklet Service is described in more detail in Section 6.11.3.

Section 2.2 Workflow Management Systems 39

models by, e.g., adding, deleting or replacing activities or jumping forward in the
process [189]. Besides the dynamic change of instances, ADEPT also enables
definition of the control-flow, the data-flow, temporal constraints (i.e., minimal
and maximal duration of activities, deadlines, etc.) and preplanned exceptions
(e.g., forward and backward jumps [190]) in process models, etc. Moreover, the
system guarantees static and dynamic correctness properties (e.g., prevents miss-
ing input data, deadlocks, etc.) [191]. Therefore, ADEPT offers a comprehensive
support for flexibility by change.

Dynamic change is supported in two ways in ADEPT. First, the so-called
ad-hoc change relates to changing a single running instance [189,191]. Figure 2.7
shows a screen of ADEPT handling a dynamic change. The system offers a
complete set of operations for defining dynamic changes at a semantic level and
ensures correctness via pre- and post-conditions for changes. Complexity asso-
ciated with the change (e.g., missing data due to activity deletions) is hidden
from users. The second type of run-time change provided by ADEPT is the so-
called propagation of model changes to its running instances [191–193]. In case
of the model change propagation, the change will be applied only to its instances
for which the model change does not conflict with the current instance state or
previous ad-hoc changes.

Figure 2.7: Visualizing a dynamic change in ADEPT

Besides the support for dynamic change, ADEPT incorporates other useful
features. For example, it considers inter-workflow dependencies and semantical
correctness of dynamic change, as described in the following paragraphs.

Most of the workflow management systems do not consider inter-workflow de-
pendencies and allow instances to execute independently from each other. How-
ever, different instances are often semantically inter-related in some way [126].
ADEPT uses interaction expressions and interaction graphs to enable the speci-
fication and implementation of such dependencies [191].

40 Chapter 2 Related Work

Another useful feature of ADEPT is the semantic check of dynamic changes
[164, 165]. For example, in the medical domain it is often the case that cer-
tain medications should not be combined. Semantical constraints can be used
to define undesired combinations of medications, e.g., activities administer As-
pirin and administer Marcumar should not be executed both because these two
medicines are not compatible. Verification of semantic constraints (1) detects
situations where these two medications are used together and (2) alerts the user
performing the change about this problem. Note that semantic constraints are
not necessarily enforced. Instead, an authorized user can commit a change event
if it violates a constraint. In this case, the user needs to document the rea-
son for violating the constraint. This approach enables for more flexibility and
traceability in situations when problems indeed occur after the change.

2.2.5 Other Systems

There is a variety of workflow management systems available on the market.
Although all systems have the same aim, i.e., automating business processes,
each system has some unique features. For the purpose of illustration, in this
section we will briefly describe three more systems: FileNet, InConcert, and
COSA.

FileNet [107] is a conventional workflow management system. Despite its
traditional approach to process modeling and execution, FileNet offers the pos-
sibility of voting to its users, i.e., it is possible to specify in the model that
users should vote during the execution in order to decide the routing of the pro-
cess. FileNet Ensemble allows on-the-fly adaptations of running instances [201].
Another interesting feature of FileNet is the possibility to monitor states of run-
ning instances and perform extensive statistical analysis of past executions. In
addition, FileNet offers the possibility to evaluate process models by means of
simulation.

InConcert was a workflow management system7 built on the ‘workflow design
by discovery’ paradigm, which allows for the creation of templates based on the
actual execution of instances. The motivation behind InConcert was to tempt
the users to design the instance on-the-fly, i.e., while executing it. As an extreme,
InConcert allowed for ad-hoc building of instances via ‘free routing processes’,
where the created instance is initially empty, and its actual routing is created
on-the-fly (cf. Section 2.1.5).

COSA [235, 236] allows for definition of subprocesses and events that trigger
them. Process models can be modified at run-time, but the change is applied
only for future instances. COSA supports deadlines in a way that on a deadline
expiry a compensating activity can be launched. In addition, a compensating
activity can also be invoked manually. COSA also allows for run-time deviations
by reordering, skipping, re-doing, postponing or terminating activities.

7InConcert is not available anymore on the market.

Section 2.3 Workflow Management Systems and the Organization of Human Work 41

2.3 Workflow Management Systems and the Organi-

zation of Human Work

The related work discussed so far originates from the information systems field,
i.e., information technology is used to support business processes without much
consideration for the role of humans in these processes and the organizational
context. In this section we try to provide an overview of related work on the
organization of human work. In Section 2.3.1 we describe two contrasting regimes
for the organization of work: Autocratic Work Regime (AWR) and Democratic
Work Regime (DWR). In Section 2.3.2 we describe structural parameters for
AWR and DWR defined by the organizational theory of Socio-Technical Systems
(STS) [246]. In Section 2.3.3 we evaluate workflow management systems against
the structural parameters, and in Section 2.3.4 we summarize this overview.

2.3.1 Two Contrasting Regimes for the Organization of Work

An ‘autocracy’ is a form of government in which unlimited power is held by a
single individual. An Autocratic Work Regime is a practice of management in
which there is a strict division of labor by allocating control and execution to sep-
arate individuals, i.e., managers and workers. An AWR is further characterized
by a hierarchical organization with formal authority; an emphasis on formal,
standardized rules; fixed specialized tasks per position; an absolute split into
management and technical-support tasks (‘staff’ and ‘line’), and a fragmentation
of the executive work into multiple, short-cycled, tasks. In other words, decision
making is centralized (cf. Section 1.3) in an AWR. By far the best-known AWRs
are the approach to ‘Scientific Management’ [114, 242] and the Classical Orga-
nization or ‘Ideal Bureaucracy’ [105, 262]. Although their dominance is fading,
these two AWRs still serve as organizational archetypes for both industrial and
service organizations.

A ‘democracy’ is a form of government that aspires to serve under ‘the people’
rather than ruling over them. A Democratic Work Regime is defined as a man-
agement practice in which people actively take part in the actual decision-making
process. In other words, decision making is local (cf. Section 1.3) in a DWR. Two
ideal patterns can be distinguished: representative democracy and participative
democracy. In [102], Emery defines representative democracy as “choosing by
voting from among people who offer themselves as candidates to be our repre-
sentatives” (page 1). In [103], Emery and Emery define participative democracy
as “locating responsibility for coordination clearly and firmly with those whose
efforts require coordination” (page 100). In a representative democracy the influ-
ence of people on decision-making is rather indirect. This form, called ‘political
participation’, is defined by Abrahamsson [40] as “participation involving the
right to control organization’s executive (...) /involvement in high-level goal set-
ting and long-term planning” (pages 186-189) . In a participative democracy the

42 Chapter 2 Related Work

influence of people on decision making is direct. This form, called ‘socio-technical
participation’, is defined by Abrahamsson as “participation in the organization’s
production, i.e., in the implementation of decisions taken on higher levels” [40].
By far the best-known DWR is the team-based organization [99, 231, 244–246].

2.3.2 Socio-Technical Systems

Socio-Technical Systems (STS) [246] is an organizational theory that promotes a
Self-Managed Work Team (SMWT) as the prime organizational unit of analysis
and design. In STS, participative democracy is practiced by giving any potential
member of an SMWT the opportunity - as well as the authority - to perform
every single task, no matter whether it is executive, managerial, or supportive in
character [99,244–246]. As its name says, STS advocate optimizing benefits from
both social and technical aspects of work. We selected STS as a representative
organizational DWR theory because it, like workflow technology, extensively con-
siders the operational aspect of flexible work. Moreover, as its name says, STS
advocates benefiting from both social and technical aspects in human work [246].
Therefore, we will shortly describe STS and its relation with workflow technology.

Within the STS school, De Sitter et al. identified a set of structural pa-
rameters that can be used as a typology for the characterization of AWRs and
DWRs [231], as Table 2.2 shows. The semantics of each of the parameters will be
explained in Section 2.3.3. The structural parameters refer to the basic organi-
zation of production (e.g., number of parallel processes), and the various aspects
concerning the division of labor (e.g., performance and control). An AWR is
characterized by functional concentration, separation of performance and con-
trol, performance specialization, performance differentiation, division of control
functions, control specialization, and control differentiation [231]. This is best
typified by bureaucratic office work in which each employee is doing one single,
simple performance task only, for all sorts of different project assignments. Su-
pervisors allocate individual tasks on a daily basis, while specialized technical
staff members care for the planning of work and for the administering of quality
procedures. A DWR is characterized by functional deconcentration, integration
of performance and control, multiple performance integrations, and multiple con-
trol integrations. A typical representative of DWRs is self-managed office work,
in which teams of employees carry out whole projects by allocating, planning,
and controlling full project assignments without additional help of a supervisor
or technical specialist.

2.3.3 Workflow Management Systems and the Structural Pa-

rameters

To characterize the style of work imposed by workflow management systems,
we evaluate these systems against the structural parameters of De Sitter et al.

Section 2.3 Workflow Management Systems and the Organization of Human Work 43

Table 2.2: Evaluation of AWRs and DWRs with respect to the STS structural requirements
of De Sitter [231]

Socio-Technical requirements AWR DWR

1 functional deconcentration NO YES
(multiple parallel processes)

2 integration of performance and control NO YES
3 performance integration A NO YES

(whole tasks)
4 performance integration B NO YES

(prepare + produce + support)
5 control integration A NO YES

(sensing + judging +selecting + acting)
6 control integration B NO YES

(quality + maintenance + logistics + personnel, etc.)
7 control integration C NO YES

(operational + tactical + strategic)

[231], as shown in Table 2.3. The evaluation of workflow technology against
the structural parameters shows that workflow technology enforces an AWR (cf.
Table 2.2), and thus, prevents the functioning of DWRs (e.g., SMWTs).

Table 2.3: Evaluation of workflow management systems with respect to the STS structural
requirements of De Sitter [231]

Socio-Technical requirements workflow management systems

1 functional deconcentration NO: work is repeatedly executed
(multiple parallel processes) in the same manner.

2 integration of performance and control NO: people perform and the system
controls the work.

3 performance integration A NO: people execute specialized,
(whole tasks) small activities.

4 performance integration B NOT
(prepare + produce + support) APPLICABLE

5 control integration A NO: people cannot execute a
(sensing + judging +selecting + acting) selected control action.

6 control integration B NOT
(quality + maintenance + logistics +
personnel, etc.)

APPLICABLE

7 control integration C NO: the system is in charge
(operational + tactical + strategic) of the operational control.

Functional deconcentration. This parameter refers to grouping and cou-
pling of performance functions (process models) with respect to work orders [231].
If all orders undergo the same procedure, then we talk about function concentra-

44 Chapter 2 Related Work

tion [231]. If, due to their variety, orders undergo different procedures, then we
talk about functional deconcentration [231]. Traditional workflow management
systems lack flexibility and force people to repeatedly execute their work in the
same manner [77, 109, 125, 143, 153, 166, 188, 233]. Therefore, business processes
are constantly executed in the same way, regardless of the nature of work orders.

Integration of performance and control. In a DWR, the same people who
perform the work are also authorized and responsible for control [231]. This so-
called integration of performance and control is not possible in a conventional
workflow management systems because, due to lack of flexibility, system users
cannot influence the way they work. Instead, process models that prescribe the
way people execute their work is developed by external experts [77,109,125,143,
153, 166, 188, 233].

Integration into whole tasks. Instead of specialized, short-cycled tasks, STS
advocates whole tasks that form a meaningful unit of work [231]. When working
in DWRs, people deal with more variety in their work. However, in workflow
management systems, a business process is represented by a large process model
consisting of individual activities [29, 66, 93, 109, 110, 125, 266]. To this end, big-
ger, meaningful, units of work are divided into separate, short-cycled tasks that
should be executed by authorized individuals. Working with conventional work-
flow management systems implies performance specialization. So, any form of
performance integration is lacking.

Integration of preparation, production, and support. Preparation, pro-
duction and support functions must be integrated at the workplace level [231].
Workflow technology is used to support only the production function [29,93,266].
Preparation and support functions are allocated elsewhere within the company,
and workflow technology does not influence this integration. Therefore, this
parameter is considered to be not applicable in the evaluation of workflow tech-
nology.

Integration of control functions: sensing, judging, selecting, and act-
ing. The functions of a control cycle are: (1) sensing the process states, (2)
judging about the need for a corrective action, (3) selecting the appropriate cor-
rection action, and (4) acting with the selected control action [231]. In a DWR,
the four control functions should be integrated [231]. Although, when work-
ing with a workflow management system, people can sense the need for control
and are able to successfully judge any controls needed, they do not have the
authorizations and/or possibilities to select and execute the appropriate control
activities [109,125]. Due to lack of flexibility of workflow management systems, it

Section 2.4 Outlook 45

is not possible to successfully integrate the control functions when working with
such a system.

Integration of the control of quality, maintenance, logistics, personnel,
etc. Control of quality, maintenance, logistics, personnel, etc. should be con-
ducted at the workplace level [231]. Workflow technology is used to support only
the production function [29, 93, 266]. Control of quality, maintenance, logistics,
and personnel are allocated elsewhere within the company, and workflow technol-
ogy does not influence this integration. Therefore, this parameter is considered
to be not applicable in the evaluation of workflow technology.

Integration of operational, tactical and strategic controls. Operational,
tactical and strategic controls should be integrated at the workplace level [231].
Independently of the workflow technology, an organization can integrate (or not)
operational, tactical, and strategic controls. Although the use of a workflow
management system does not explicitly influence tactical and strategic control,
it prevents this control integration at the workplace level because workers are not
made responsible for the operational control [77, 109, 125, 143, 153, 166, 188, 233].
In this case, operational control is external - i.e., managers and business-process
modelers control the operational design of work. Therefore, this integration
cannot be established at the workplace level and this parameter is not supported
by conventional workflow management systems.

2.3.4 Summary

This section provided an overview of the work related to the requirements for
flexible style of human work in the organizational context. It showed that, despite
the fact that there is not much work that combines the fields of IT and organiza-
tional science, the lack of flexibility of workflow technology indeed disables DWRs
advocated by many organizational theories, like, e.g., STS and SMWTs [246].

2.4 Outlook

In this chapter we presented the research conducted in the area of flexibility
of workflow management systems. As indicated by many researchers, workflow
management systems lack flexibility due to the fact that users cannot adjust the
execution of processes to requirements imposed by specific situations. We also
described why inflexible systems prevent implementation of democratic regimes
of work in practice. We used a taxonomy of features that enhance flexibility
of workflow management systems to classify the relevant work in this field: (1)
design of flexible process models, (2) underspecification in process models, (3)
change of running processes, and (4) deviation from prescribed process models.

46 Chapter 2 Related Work

Although much research has been done in each of these areas, a unique approach
that unifies all relevant features is still lacking. In this thesis, we propose a new,
constraint-based, approach to workflow management systems which primarily
aims at enhancing flexibility by design, but also enables all other types of flex-
ibility (i.e., flexibility by underspecification, change, and deviation). First we
define the class of constraint-based process modeling languages on an abstract
level and one concrete formal language for constraint specification. Then we
present a ‘proof of concept’ prototype that shows how the proposed constraint-
based approach can be applied to workflow management systems.

Chapter 3

Flexibility of Workflow

Management Systems

Workflow management systems influence to a great extent the way employees
execute their work. As discussed in sections 1.3 and 2.3,, modern organizational
theories advocate democratic work regimes where people can control their work.
In order to be able to support this kind of work, workflow management systems
must offer a high degree of flexibility. Flexibility of workflow management systems
represents the degree to which users can choose how to do their work, instead
of having a workflow management system decide how to work [125, 226–228]. In
this chapter we describe contemporary workflow management systems and the
features that enhance flexibility of these systems.

The remainder of the chapter is structured as follows. First, in Section 3.1
we describe the functionality of contemporary workflow management systems
based on the three dominant workflow perspectives: the control-flow, the re-
source and the data perspective. Second, in Section 3.2 we illustrate the flexi-
bility of contemporary workflow management systems using simple, system and
language-independent examples. Finally, in Section 3.3 we conclude this chapter
by proposing a new approach to process modeling that is able to offer all types
of flexibility.

3.1 Contemporary Workflow Management Systems

Despite the complexity of workflow management systems and the high impact
they have on business processes, a good standardization is still lacking in the area
of workflow technology. Vendors of workflow management systems tend to offer
different functionalities in their systems. A standardization is also lacking with
respect to the terminology used in workflow technology. On the one hand, the
same concepts often have different names in various systems, which creates an
illusion that a particular functionality is different in systems. On the other hand,

48 Chapter 3 Flexibility of Workflow Management Systems

it might happen that systems use the same name for different concepts or func-
tionalities. In this section we describe in the main concepts and functionalities
of contemporary workflow management systems.

The Workflow Management Coalition (WFMC) [9] aims at standardizing
workflow technology. One of the efforts of the WFMC in the direction of stan-
dardization was proposing the reference model for general architecture of work-
flow management systems [75]. The WFMC’s reference model shows many pos-
sible components of workflow management systems. However, three of those
components are the core of every system: a process definition tool, a workflow
engine, and a workflow client application. These three components are shown in
Figure 3.1.

process
definition

tool

workflow
engine

process model
developer

workflow
client

application

enter
data

add
song

make
cover

record album

user

user

...- Metallica MOP: add song
- Madonna LV : add song

instance : activity instance : activity

- Usnija R. TBO: make cover

instance: Madonna LV
activity : add song

title Material Girl

duration 3:53

OK

creates
process models

creates/manages
 process instances

worklists

execution of
activities

enter
data

add
song

make
cover

Metallica: Master Of Puppets

enter
data

add
song

make
cover

Madonna: Like a Virgin

enter
data

add
song

make
cover

Usnija Redzepova: The Best Of

Figure 3.1: The three main components of a workflow management system

First, a process definition tool is used by process model developers to create
process models. For example, Figure 3.1 shows that a model for the record
album process can be developed using such a tool. Second, a workflow engine is
needed to manage the execution of instances of process models. In the example
presented in Figure 3.1, this ensures that each artist can record an album in the
way it is prescribed in the record album model. Based on the definition of a
process model, the workflow engine decides which activity(-ies) can be executed
by which users and at what point in time. Third, a workflow client application

Section 3.1 Contemporary Workflow Management Systems 49

presents the so-called worklist (i.e., a list of all activities that can be executed in
running instances) to each user. Using this tool each user can execute activities
available in the worklist. In Figure 3.1 we see two users: (1) the worklist of
the first user contains two activities add song (i.e., for two running instances),
(2) the worklist of the second user contains activity make cover for the third
running instance, and (3) the first user is currently executing activity add song
for one of the instances. Each time a user executes an activity in an instance,
the workflow engine decides, based on the process model and the current state
of the instance, which activities can be executed next, and updates the worklists
of all users with this information. For example, people working on any of the
three instances presented in Figure 3.1 will be able to execute activity add song
only after executing activity enter data.

Figure 3.2 shows the three main perspectives of process models: the control-
flow perspective, the resource perspective, and the data perspective. These three
perspectives determine the order in which activities will be executed, which users
can execute which activities, and which information will be available during ex-
ecution. The control-flow perspective of a process model defines in which order
activities can be executed [29,35,208,213]. For example, Figure 3.2(a) shows that
the control-flow perspective of the process model record album specifies that (1)
the process starts with activity enter data, (2) followed by an arbitrary number
of executions of activity add song, and (3) the process ends by executing activity
make cover.

activity
data element
role

enter
data

add
song

make
cover

(a) control-flow perspective

enter
data

add
song

make
cover

sound
technician

producer designer

(b) resource perspective

enter
data

add
song

make
cover

album artist

titleduration cover

(c) data perspective

Figure 3.2: The three perspectives of process models

The resource perspective defines which (human) resources are authorized to
execute each of the activities and how the actual resources are allocated to execute
the activities [10, 29, 35, 106, 208, 211, 216]. Figure 3.2(b) shows the resource
perspective of the process model record album with four users having three roles.
The producer can enter data, each of the two sound technicians can add song

50 Chapter 3 Flexibility of Workflow Management Systems

and the designer can make cover. If a user has the appropriate role to execute an
activity, then we say that the user is authorized to execute the activity. Naturally,
an activity that is supposed to be executed next will be offered only to the
worklists of authorized users.

The data perspective of a process model defines which data elements are
available in the process and how users can access them while executing activities
[29, 208, 210, 212]. Figure 3.2(c) shows the data perspective of the record album
process model. First of all, there are five data elements in this process, i.e.,
artist, album, song title, song duration and cover. Second, for each activity it is
defined (1) which data elements are available (e.g., album, artist, duration and
title are available in activity add song) and (2) how these data elements can be
accessed (e.g., data elements album and artist can be seen but not edited while
duration and title can be edited in activity add song). If the value of a data
element can be accessed but not edited in an activity, then we say that this is an
input data element for this activity. If the value of a data element can be edited
in an activity, then we say that this is an output data element for this activity.
Figure 3.2(c) shows that, for activity add song : (1) album and artist are input
data elements and (2) title and duration are output data elements.

In the remainder of this section each of the perspectives is discussed in de-
tail: the control-flow perspective in Section 3.1.1, the resource perspective in
Section 3.1.2, and the data perspective in Section 3.1.3. Each of these three
sections starts with a short description and it is organized as follows.

CPN models. First, we present the perspective in a system-independent way
using Colored Petri Nets (CPNs) models [1,138,139,152]. CPNs are an ex-
tension of classical Petri nets [199]. There are several reasons for selecting
CPNs as the language for modeling in the context of workflow management:
(1) CPNs have formal semantics and are independent of any workflow sys-
tem, (2) CPNs are executable and allow for rapid prototyping, gaming,
and simulation, (3) CPNs have a graphical representation and their nota-
tion is intuitively related to existing workflow languages, and (4) the CPN
language is supported by CPN Tools – a graphical environment to model,
enact and analyze CPNs.

Workflow management systems. Second, we present how the perspective is
realized in three commercial workflow management systems: Staffware
[238], FileNet [107] and FLOWer [180]. The goal is to provide insight into
the functionality and look-and-feel of contemporary systems. As discussed
in Section 2.2, Staffware and FileNet are two typical examples of tradi-
tional workflow management systems, while FLOWer is a case-handling
system [195]. As such, these three systems provide a good overview.

Workflow patterns. Third, several patterns are described for the perspective
in order to present the perspective in an system-independent way. In an
attempt to identify unified solutions of standard issues in workflow tech-

Section 3.1 Contemporary Workflow Management Systems 51

nology, the workflow patterns initiative [10, 35] identified many workflow
patterns [208, 211, 213]. In addition to the three basic perspectives (i.e.,
control-flow, resource and data) patterns are also identified for the excep-
tion handling perspective. Workflow patterns can be used for “examining
the suitability of a particular process language or workflow system for a
particular project, assessing relative strengths and weaknesses of various
approaches to process specification, implementing certain business require-
ments in a particular process-aware information system, and as a basis for
language and tool development” [10]. Note that a large number of patterns
is identified for each of the perspectives. However, due to page limits we
present only few of the patterns for the illustration purpose. However, in-
sights obtained through the complete set of patterns are used throughout
this thesis.

Overview. Finally, a summarized overview of the perspective is given.

3.1.1 The Control-Flow Perspective

Despite the different languages (i.e., notations) used in various commercial and
academic tools, the control-flow perspective plays an important role in process
models because it determines the order in which users can execute activities.

CPN Model(s)

For illustration purposes we will use a simple example of the Handle Complaint
process [29]. Figure 3.3 shows the CPN model of the Handle Complaint process.
A CPN model consists of places and transitions connected by arcs. Places (rep-
resented by ovals) are typed, i.e., the tokens in a place have values of a particular
type (or color in CPN jargon). These types are a subset of the default data types
in Standard ML such as integer and string and additional types can be composed
using constructs such as tuple, list and record. The number of tokens per place
can vary over time. The value of a token indicates the properties of the object
represented by this token. There are nine places in the CPN shown in Figure 3.3
and all of them are of the type ID, which stands for the complaint identification
number. Transitions (represented by rectangles) may consume tokens from places
may and produce tokens in places, as specified by inscriptions on arcs between
places and transitions. There are seven transitions in the CPN in Figure 3.3,
i.e., start, contact department, contact client, assess, pay, send letter and file. A
more detailed discussion of the CPN concepts is beyond the scope of this paper.
In the remainder, we assume that the reader is familiar with the CPN language
and refer to [1, 138, 152] for more details.

The CPN in Figure 3.3 defines the control-flow of the Handle Complaint
process. After receiving a complaint from a client and starting the process,
the officer can in parallel (i.e., in any order) contact the client and contact the

52 Chapter 3 Flexibility of Workflow Management Systems

department to collect information about the conforming. After gathering this
information, the officer assesses the complaint. If the assessment is positive, the
complaint is accepted and the department pays the client. If the assessment is
negative, a notification letter is sent to the client. At the end of the process, the
complaint and the assessment result are filed in the archive.

if accept
then empty
else 1`i

ii

i

i

i

i
if accept
then 1`i
else empty

i

i

i

i

i

i

SEND
LETTER

PAY

FILEASSESS

CONTACT
DEPARTMENT

CONTACT
CLIENT

START

p6

ID

p7

ID

o1

ID

p5

ID

p4

ID

p3

ID

p2

ID

p1

ID

ID

i

i

i
i1

Figure 3.3: CPN for the Handle Complaint process

Workflow Management Systems

Workflow management systems tend to use system-specific notations (i.e., lan-
guages) for specifying the control-flow perspective in process models. Figures
3.4, 3.5 and 3.6 show the control-flow perspective of the Handle Complaint pro-
cess in three commercial workflow management systems: Staffware, FileNet and
FLOWer, respectively. Indeed, this process is modeled differently in these three
systems: while Staffware and FileNet present the whole model on a single level,
modeling decisions in FLOWer (i.e., to execute activity pay or send letter) are
typically modeled on a separate level in the model. Also, the three systems
present the model using different graphical elements and styles.

Figure 3.4: Handle Complaint process in Staffware

Patterns

Control-flow patterns [35, 208, 213] represent typical constructs that can occur
in process models. The twenty initial patterns presented in [33–35] were revised
and extended with twenty three new patterns in [213]. For illustration purposes,

Section 3.1 Contemporary Workflow Management Systems 53

Figure 3.5: Handle Complaint process in FileNet

(a) main model

(b) decision

Figure 3.6: Handle Complaint process in FLOWer

we first describe four simple patterns and present them using CPN models in
Figure 3.7.

First, the sequence pattern is used to specify that an activity is enabled
after the completion of a preceding activity [213]. Figure 3.7(a) shows a CPN
model representing a sequence of two activities A and B [213]. Second, the
parallel split pattern represents the divergence of one control-flow thread into
two or more branches that execute concurrently [213]. Figure 3.7(b) shows a
CPN model representing a parallel split after activity A into parallel branches
with activities B and C [213]. For example, the Handle Complaint process
starts with a parallel split into two branches, i.e., contact department and contact
client. Third, the synchronization pattern represents the convergence of two or
more input branches into a single output thread only after the activities in all
input branches have been completed [213]. Figure 3.7(c) shows a CPN model
representing the synchronization of two branches containing activities A and

54 Chapter 3 Flexibility of Workflow Management Systems

iiii
BA o1

ID

p1

ID

i1

ID

(a) sequence

ii

i

ii

i

i

C

B

A

o2

ID

o1

ID

p2

ID

p1

ID

i1

ID

(b) parallel split

i

i

iii

ii

C

B

A

o1

ID
p2

ID

p1

ID

i2

ID

i1

ID

(c) synchronization

i

i

i

i

ii

C

B

A

o2

ID

o1

ID

p1

ID

i1

ID

(d) exclusive choice

Figure 3.7: CPN models of several control-flow patterns [213]

B into a single control-flow thread containing activity C [213]. For example,
activities contact department and contact client in the Handle Complaint process
are synchronized into one control thread containing activity assess. Finally, the
exclusive choice pattern represents divergence to two or more branches, where
the thread of control is passed to only one outgoing branch [213]. Figure 3.7(d)
shows a CPN model representing an exclusive choice between activities B and C
after activity A [213]. The Handle Complaint process contains exclusive choice
between activities pay and send letter after activity assess.

Some of the control-flow patterns are much more complex than the patterns
shown in Figure 3.7. Consider, for example, the blocking discriminator pat-
tern that represents a kind of the so-called 1-out-of-M join [213]. This pattern
represents a situation when two or more (i.e., M) branches join into a single
control-flow branch. For example, “when handling a cardiac arrest, the check
breathing and check pulse activities run in parallel. Once the first of these has
completed, the triage activity is commenced. Completion of the other activity is
ignored and does not result in a second instance of the triage activity” [213]. The
CPN model of this pattern is presented in Figure 3.8: here we can see how two
branches (i.e., transitions A1 and Am) are joined into one branch with transition
B.

In addition to identifying 43 control-flow patterns, several commercial work-
flow systems are evaluated in [35, 213] based on the pattern support. The eval-
uation results [213] of control-flow pattern support in Staffware, FileNet and
FLOWer is given in Appendix B.1 of this thesis. For example, each of the three
systems (i.e., Staffware, FileNet and FLOWer) supports sequence, parallel split,
synchronization and exclusive choice patterns (cf. Figure 3.7) and none of them
supports the blocking discriminator pattern (cf. Figure 3.8), as shown in Ta-
ble 3.1. Evaluation of systems shows that, although different systems tend to

Section 3.1 Contemporary Workflow Management Systems 55

p1

p2

A1

ID

ID

ID

INPUT

ID

ID

UNIT

ID

ID

i

i

i i

i i

i

i

1`i i

i

i

()

()

[]

p5

()

resetAmtmi2

i1 t1

p3

(m-1)`i
is

is

is

1::is

m::is

triggered
input

[not(elt(m,is))]

[not(elt(1,is))]

[]

B

p4

o1

Figure 3.8: CPN model of the blocking discriminator pattern [213]

support different patterns, older systems tend to support only approximately
half of identified patterns [35, 213]. For example, Staffware fully supports 14
patterns [35, 213]. FileNet fully supports 17 patterns and partially supports one
pattern [35,213]. FLOWer fully supports 16 patterns and provides partial support
for 8 additional patterns [35,213]. The fact that none of the systems supports all
patterns reflects the diversity of the way various workflow management systems
handle the control-flow perspective.

Table 3.1: Support for some control-flow patterns in Staffware, FileNet and FLOWer

Pattern Staffware FileNet FLOWer
sequence + + +
parallel split + + +
synchronization + + +
exclusive choice + + +
blocking discriminator - - -

(+ = support, - no support)

Introducing standards into the workflow technology remains an important
challenge in the field. For example, BPEL [53,54,178] is one of the most popular
initiatives to standardize in the workflow technology by proposing a standard
language and its execution framework. Although it is widely accepted as a stan-
dard by both industry and research, BPEL does not support all the control-flow
patterns. In fact, BPEL supports 17 patterns directly, 4 patterns only partially
and does not provide any support for 22 patterns [35, 213].

Overview

The control-flow perspective of current workflow management systems typically
has a procedural nature. In other words, process models are constructed using
control-flow patterns which specify in detail the exact procedure of how the work

56 Chapter 3 Flexibility of Workflow Management Systems

should be done. The procedural nature of process models is suitable for highly
structured processes with a high repetition rate, i.e., when the work is repeatedly
done in the same manner (cf. Section 1.2). However, when it comes to processes
that should be controlled by users (i.e., people can choose how to work), the
procedural process models become too complex. Consider, for example, the
branched discriminator pattern presented in Figure 3.8 Even though it is applied
in rather simple situations, many systems do not support this pattern.

The control-flow perspective of current systems implies detailed specification
of exactly how the control flows through the model. This makes it very hard
or even impossible to specify more ‘relaxed’ concepts that people use in their
work. For example, there is no control-flow pattern that would specify that two
(or more) activities should never be executed both in the same process instance,
regardless of how often and at which point of time one of them is executed. Con-
sider, for example, a medical process that contains (amongst others) activities
examine prostate and examine uterus. Regardless of the fact if these operations
are executed at all and how many times, they cannot be both executed for one
patient. In the best case, implementing this simple requirement in a procedu-
ral model using control-flow patterns would require an extensive ‘work-around’
resulting in a complex model.

3.1.2 The Resource Perspective

After the system makes a decision which activities are the next in line to be exe-
cuted based on the control-flow specification, the resources that can/will execute
these activities are selected based on the resource perspective. The resource per-
spective depends on (1) how resources and their roles are defined and classified
in the system and (2) how the system decides who and when can execute enabled
activities. We refer to the mechanism that handles the resource perspective in
a system as to the work distribution of the system. Just like it is the case with
the control-flow perspective, the resource perspective is handled differently in
different workflow management systems due to system-specific work distribution
mechanisms. Note that we present the resource perspective in a more detailed
manner than the control-flow perspective. The reason is that less attention has
been devoted to the resource perspective in workflow literature. Therefore, it is
worthwhile to discuss this perspective in more detail.

CPN Model(s)

We have developed a CPN model that represents a simple work distribution
mechanism of a generic and simple workflow management system. We refer to
this model as to the basic model. Colors presented in Table 3.2 are used in the
basic model to represent the main concepts of workflow management systems.
An activity is represented as a string carrying the name of the activity and an

Section 3.1 Contemporary Workflow Management Systems 57

instance as a number identifying the instance. A work item is a combination of
an instance identifier and activity name, i.e., it represents an activity that needs
to be executed for an instance. Each user, role and group is represented as a
string carrying the object name. While a role represents qualifications of users
(e.g., secretary), a group represents an organizational department (e.g., sales).

Table 3.2: CPN colors representing basic workflow concepts

colset ACTIVITY = string; colset USER = string;
colset INSTANCE = int; colset ROLE = string;
colset WI = product INSTANCE*ACTIVITY; colset GROUP = string;

A life cycle model of a work item shows how a work item changes states
during the work distribution [29, 91, 93, 136, 160, 175]. The basic model uses a
simple model of the life cycle of work items and it covers only the general, rather
simplified, behavior of workflow management systems (e.g., errors and aborts are
not considered). Figure 3.9 shows the life cycle of a work item in the basic model.
After the new work item has arrived, it is automatically also enabled and then
taken into distribution (i.e., state initiated). Next, the work item is offered to
the user(s). Once a user selects the work item, it is assigned to him/her, and
(s)he can start executing it. After the execution, the work item is considered
to be completed. This may trigger new work items based on the control-flow
perspective of the model and the user can begin working on the next work item.

new

assigned

enabled

initiated

offered

selected

started

executed

completed
removed from
the distribution

the user is
executing the

work item

waiting for the
preconditions

can not be
selected again
by other users withdrawn from the other queues

in the queues,
waiting to be selected

the distribution is
allocating users

ready to be
distributed

Figure 3.9: Basic model - work item life cycle

To simulate (execute) the work distribution model in the CPN tools, it is
necessary to initiate the model by defining input elements. Table 3.3 shows the
four input elements of the basic model. For every input element in Table 3.3 the
element name is shown (i.e., system users, new work items, activity maps and user
maps). Besides the name, there are a short description of the element, the CPN
color that represents the element and a simple example showing a possible initial
element value. Figure 3.10 shows input elements from Table 3.3 graphically.
First, there are two system users (i.e., Mary and Joe), two roles (i.e., secretary
and manager) and one group (i.e., sales). User maps define which users have

58 Chapter 3 Flexibility of Workflow Management Systems

which roles and to which groups they belong to. For example, in the user maps
it is specified that Mary has the role of the secretary in the sales department.
Activity maps define what role and group a user needs to have in order to be
able to execute an activity. For example, in the activity maps it is specified that
activity contact client can be only by users that have role secretary and belong
to group sales. Initial available work items are shown as new work items in
Table 3.3. For example, work items for activities contact department and contact
client from the instance with identification 1 are initially available in the work
distribution.

As a model of an abstract workflow management system, we have developed
the basic model on the basis of three simplifying assumptions: (1) we abstract
from the control-flow perspective (i.e., how the system decides which activities
are enabled and creates work items for them), (2) we only consider the ‘normal’
behavior (i.e., work items are completed successfully; errors and aborts are not
included), and (3) we abstract from the user interface.

The basic model is organized into two modules: the work distribution and the
work lists module, as shown in Figure 3.11. The CPN language allows for the
decomposition of complex nets into sub-pages, which are also referred to as sub-
systems, sub-processes or modules. By using such modules we obtain a layered
hierarchical structure. The two modules communicate by exchanging messages
via six places. These messages contain information about a user and a work
item, i.e., each place is of the type ‘user work item’ (colset UWI = product User
* WI).

Table 3.4 shows the description of the semantics of different messages that
can be exchanged in the model. For each message the name of the referring CPN
place is given in the first column and a short description in the second column.

The work distribution module manages the distribution of work items by
making sure that work items are executed correctly. This module allocates (iden-
tifies) users to whom the new work items should be offered, based on authoriza-
tion (AMap) and organization (UMap) data. Figure 3.12(a) shows the work
distribution module. The new work items are determined as input values (i.e.,
initial marking) generated based on the control-flow perspective in place new
work items. The first to fire is the transition offers, which uses the function offer
to decide to which user the work item should be offered and creates user work
items in place to be offered. For a given activity, this function first retrieves the
authorized role and group from amaps in place activity map and then retrieves
the authorized user(s) with this role and group from umaps in place user map.
As a result a message is sent to the work lists module to offer the work item
to selected users. Although in the basic model users authorized to execute an
activity are the users that have the role and are in the group specified in the
amaps for the activity, this criterion may vary from system to system. The work
lists module sends a message that a user wishes to select a work item by placing
a user work item token in place selected. The message (token) contains the infor-

Section 3.1 Contemporary Workflow Management Systems 59

Table 3.3: Input for the basic model

system users a set of available users;
CPN color: colset Users = list User;
example: iUser = 1‘Mary++1‘Joe;
user maps the organizational structure is used to map users to organiza-

tional entities such as roles and groups;
CPN color: colset UMap = product User * Roles * Groups; (where colset Roles

= list Role; colset Groups = list Group;)

example: iUMaps = [(Mary, [secretary], [Sales]),(Joe, [manager],
[Sales)];

activity maps for every activity authorization is defined with a role and a
group;

CPN color: colset AMap = product Activity * Role * Group;
example: iAMaps = [(contact department, secretary, Sales), (contact

client, secretary, Sales), (assess, manager, Sales),(send letter,
secretary, Sales),(pay, manager, Sales),(file, secretary, Sales)];

new work items work items that have arrived and are ready to be distributed
to users;

CPN color: colset WI = product Instance * Activity;
example: iWI = 1‘(1,contact department)++1‘(1,contact client);

system
users

roles

groups

USER
MAPS

ACTIVITY
MAPS

activities

Mary Joe

secretary salesmanager

contact
department

contact
client send letter payfile assess

Figure 3.10: Graphical illustration of the basic model input from Table 3.3

60 Chapter 3 Flexibility of Workflow Management Systems

to be offered

UWI
withdrawn offer

UWI

selected

UWI

approved

UWI
rejected

UWI
completed

UWI

work distribution

workdistribution

work lists

worklists

Figure 3.11: Basic model

Table 3.4: Exchange of messages between modules work distribution and work lists

place message

to be offered A work item is offered to the user.
withdrawn offer Withdraw the offered work item from the user.
selected The user requests to select the work item.
approved Allow the user to select the work item.
rejected Do not allow the user to select the work item.
completed The user has completed executing the work item.

mation about the work item and the user that requests to select it. If the related
work item already has been selected, transition reject cancels this request. If not,
transition selects transfers the user work item from place offered work items to
place assigned work items, approves the request from the work lists by putting a
token in place approved, and withdraws all the other offers for the related work
item via place withdrawn offer. Finally, when the user completes a work item,
the related token appears in place completed. Transition completes matches the
user work item tokens in places completed with tokens in place assigned work
items, removes them from those two places, and produces the referring user work
item token in place completed work items. This user work item is considered to
be completed by the user, and it is archived as a closed work item.

Figure 3.12(b) shows the work lists module. This module receives messages
from the work distribution module regarding work items that need to be offered
to specified users. The work lists module further manages events associated with
the activities of users. It is decomposed into three sub-modules, which correspond
to three basic actions users can perform: log on and off (cf. Figure 3.12(c)) in the
system, select work (cf. Figure 3.12(d)), start work (cf. Figure 3.12(e)), and stop
work (cf. Figure 3.12(f)). In the log on and off sub-module (cf. Figure 3.12(c))
every user can freely choose when to log ‘on’ (transition log on) to or ‘off’ from
(transition log off) the system. Users who are currently logged-on to the system
are represented as tokens in place logged on and users who are currently logged-

Section 3.1 Contemporary Workflow Management Systems 61

(* prevent users
to select
the work item again,
after someone
has selected it*)

(* allow user
to select
the work item *)

(* work item cannot
be selectd
more than once *)

(* input *)

(* input *)

(* input *)
(* function "offer" takes new work items,
and offers them to users,
based on task maps and user maps. *)

wi

wi::wis

del(wi,wis)

wis

wi

wis

wis

offer(wi,amaps,umaps)

amaps

umaps

offer(wi,amaps,umaps)

(u,wi)

amaps

(u,wi)

wi

umaps

wi

(u,wi)

uwi

(u,wi)

completes

reject

[not(elt(wi,wis))]

selects

[elt(wi,wis)]

offers

assigned work items

WI

offered work items

[]

WIs

completed
work items WI

withdrawn offer
Out

UWI

activity
map

iAMaps

AMaps

to be offered
Out

UWI

new work items
iWI

WI

selected
In

UWI

user map

iUMaps

UMaps

completed
In

UWI

approved
Out

UWI

rejected
Out

UWI
Out

Out

In

In

Out

Out

(a) work distribution

(* users that are
currently not
working/available *)

(* users that are
working/avalaible
at the moment *)

u u

u u

log onlog off

logged on
I/O

[]

USER

logged off

iUser

USER

I/O

(c) log on and off

(* send request
 for the work item *)

(* remove
 the offered
 work item *)

Text

(* offer work items
 to users *)

uwi

(u,wi)

u

uwi

(u,wi)

(u,wi)

uwi uwi

select

deleteinsert

to be offered
In UWI

requested

Out UWI

logged on
I/O

[]

USER

withdrawn offer
In

UWI

selected
Out UWI

active work items

UWI

Out

In

I/O

Out

In

(d) select work

rejected

UWI
In

completed

UWI
Out

approved

UWI
In

selected

UWI
Out

to be offered

UWI
In

withdrawn offer

UWI
In

logged on

User

in progress

UWI

requested

UWI

abort

select work

selectwork

logon and off

logonandoff

stop work

stopwork

start work

startwork

uwi

uwi

(* request has been sent,
wait for the response *)

(* the user is executing
 the work item *)

(* request approvement
 for executing the work item *)

(* the user has completed the work item *)

(* request approved *)

(* request rejected *)

(* only the user which is
logged on can work*)

(b) work lists

(* the user is currently
 executing
 the work item *)

(* the user is
logged on *)

(* the work item
is assigned to
the user *)

(* the request
is approved *)

uwi

(u,wi)

u

(u,wi)

startapproved
In UWI

requested

In UWI

logged on
I/O

[]

USER

in progress
Out UWIOut

I/O

In

In

(e) start work

(* when transition "complete"
fires, execution of a work
item is completed *)

(u,wi)

(u,wi)

u
complete

completed
Out UWI

in progress
In UWI

logged on
I/O

[]

USERI/O

In

Out

(f) stop work

Figure 3.12: Modules of the basic model

62 Chapter 3 Flexibility of Workflow Management Systems

off from the system are represented as tokens in place logged off. The select work
sub-module (cf. Figure 3.12(d)) automatically fires transition insert and moves
the user work item token from place to be offered to place active work items. If
the work item is withdrawn, the token is removed from place active work items.
When a user wishes to select a work item, transition select fires creating a token in
place selected (to send a request to the work distribution module) and archives
this request by creating a token in place requested. Note that only users that
are logged on to the system can select work items. The work lists module (cf.
Figure 3.12(b)) proceeds with the user work item in place requested following one
of the two alternative scenarios. First, if a message (user work item token) arrives
at place rejected, transition abort automatically fires and removes the token from
places rejected and requested. Second, if a message (user work item token) arrives
at place approved, the user can select the work item and further flow is directed
to the start work sub-module. In the start work sub-module (cf. Figure 3.12(e))
transition start removes the user work item token from places requested and
approved and creates a token in place in progress. Note that only users who are
currently logged-on to the system can start work items. Users that are logged-on
to the system can complete a work item that by removing a token from place in
progress and creating a token in place completed (cf. Figure 3.12(f)).

Workflow Management Systems

In order to analyze work distribution of Staffware, FileNet and FLOWer, we
have developed a CPN model of work distribution mechanism for each of them.
These three systems (and workflow management systems in general) tend to use
different work distribution concepts and completely different terminologies. To
maintain a common basis for the models of work distribution in Staffware, FileNet
and FLOWer, we have extended the basic model for the three specific systems.
Due to the size and complexity of work distribution models for Staffware, FileNet
and FLOWer [182], we present these models in Appendix A of this thesis. The
work distribution CPN models of these systems indeed show that, although some
concepts are represented and named differently in the systems, they are, actually,
very similar (cf. Appendix A). On the other hand, work distribution and the
related CPN model of FLOWer is more complex, due to the fact that users have
many more actions available (i.e., execute, open, skip, undo and redo work items)
when working with this case-handling system, as shown in Appendix A.3.

Patterns

The workflow resource patterns [10, 35, 208, 211, 216] capture the various ways
in which resources are represented and utilized in workflows. In this chapter we
do not elaborate on each of the 43 patterns described in [216], but we discuss
four of them for the purpose of illustration. None of the modeled systems (i.e.,

Section 3.1 Contemporary Workflow Management Systems 63

Staffware, FileNet and FLOWer) supports patterns round robin, shortest queue,
piled execution, and chained execution (cf. Appendix B.2). Round robin and
shortest queue are push patterns, i.e., a work item is offered to only one user who
has to execute it. As auto-start patterns, piled execution, and chained execution
enable the automatic start of the execution of the next work item once the
previous has been completed.

The round robin and shortest queue patterns push the work item to only
one user of all users that qualify. The round robin pattern allocates work on a
cyclic basis and the shortest queue pattern allocates to the user with the shortest
queue in his/her worklist. This implies that each user has a counter to: (1) count
the sequence of allocations in round robin and (2) count the number of pending
work items in shortest queue. Figures 3.13 shows that these two patterns can
be implemented in a similar way in the work distribution module of, e.g., the
basic model. The required changes to the basic model are minimal. A counter is
introduced for each user as a token in place available (colset UCounter = product
User * INT; colset UCounters = list UCounter) and functions round robin and
shortest queue are used to select one user from the set of possible users based
on these counters. These allocation functions are used in the inscription on the
arc(s) between the transition offers and place to allocate. Both functions take
two parameters: (1) user work items created by the ‘classical’ allocation function
offer from the basic model, and (2) appropriate counters. Both functions allocate
the work item to the right user via three steps: (1) take the set of user work items
created by the allocation function offer, (2) for every user work item search for
the value of the counter, and (3) select and return only the user work item where
the user has the smallest value of the counter. In this way, ‘push allocation
functions’ can be seen as a filter that selects only one allocation from of the
set of all possible allocations. The model for shortest queue has an additional
connection (i.e., the two arcs between the transition complete and place available)
that updates the counter when a work item is completed to remove it from the
queue (decrease the value of the counter for the referring user).

Piled execution and chained execution are auto-start patterns, i.e., when a
user completes the execution of current work item the next work item starts au-
tomatically. This prevents the user from repeatedly switching between worklist
and application for routine tasks. When working in chained execution, the next
work item will be for the same instance as the completed one – the user works on
different activities for one instance. Similarly, if the user works in piled execution
the next work item will be for the same activity as the completed one – the user
works on the same activity for different instances. Figures 3.14(a) and 3.14(b)
show that piled execution and chained execution are implemented similarly in
the stop work sub-module. Users can choose to work in the normal mode or in
the auto-start mode (which is represented by the token in place special mode).
A parameter x is passed via the arc between place ready and transition complete
special : parameter x carries activity name in piled execution or instance identi-

64 Chapter 3 Flexibility of Workflow Management Systems

(* counts the
 allocations *)

(* round_robbin selects one
 from all the offers on
the basis of couters *)

allocate(u,rrcs,count)

rrcs

count count + 1

rrcs

(u,wi)

(u,wi)

RR(offer(wi,amaps,umaps),rrcs)

wi::wiswis

umaps

amaps wi

allocate

offers

[not(RR(offer(wi,amaps,umaps),rrcs)=null)]

counter

1

INT

available

RRA available

[]

UCounters

to allocate

UWI

offered
work items

[]

WIs

activity
map

iAMaps

AMaps

to be offered
Out

UWI

new
work items

iWI

WI

user map

iUMaps

UMaps

OutRRA available

(a) round robin

(* when the work item is completed,
remove it from the users' queue *)

(* shortest_queue selects one
 from all the offers
on the basis of couters *)

wis

allocate(u,sqcs,(~1))

sqcs

allocate(u,sqcs,1)

sqcs

sqcs

(u,wi)

(u,wi)

SQ(offer(wi,amaps,umaps),sqcs)

wi

wi::wis

umaps

amaps

wi

wi

(u,wi)

allocate

complets

offers

[not(SQ(offer(wi,amaps,umaps),sqcs)=null)]

available

SQ available

[]

UCounters

to allocate

UWI

assigned
work items

WI

offered
work items

[]

WIs

closed
work items

WI

activity
 map

iAMaps

AMaps

to be offered
Out

UWI

new
work items

iWI

WI

user map

iUMaps

UMaps

completed
In UWIIn

Out

SQ available

(* ... *)

(b) shortest queue

Figure 3.13: Two push patterns - work distribution module

fication in chained execution. This parameter is used for a possible auto-start.
These two models show that transition complete special, besides the usual con-
nection to places completed and request, has connections to places active work
items, select and special mode. If the user is in the special mode, this transition
retrieves work items from place active work items, and produces items in places
request and select. The inscriptions on arcs leading to places request and select
first check if the user is working in the special (i.e., ‘auto-start’) mode. If this
is the case, the next user work item is auto-started, i.e., an appropriate token is
produced in places request and select. Function select is implemented to search
for the next matching work item based on the parameter x, i.e., (1) a work item
with the same activity in piled execution or (2) a work item for the same instance
in chained execution.

Overview

The CPN models of work distribution of Staffware, FileNet and FLOWer show
that there is no consensus on terminology and functionality among contemporary
systems (cf. Appendix A). For example, CPN models of work distribution in
Staffware and FileNet are remarkable similar. However, after using these two
systems one tends to have the impression that they handle work distribution in
distinctive manners. On the other hand, the CPN model of work distribution
in FLOWer shows that some systems can provide much quite different features
than other systems.

Various workflow management systems are evaluated based on the support
of resource patterns in [208, 211, 216]. Not only that this evaluation can serve

Section 3.1 Contemporary Workflow Management Systems 65

(* ACTIVITY IS THE AUTO-START CRITERIA
(u,(i,a)) -> (u,(i,x)) *)

(* function "select" picks
the next work item
with the activity "x" *)

(* automatically start
the next work item
for the same activity*)

us

if elt(u,us) andalso
not(select(u,x,uwis) = NoUWI)
then 1`select(u,x,uwis) else nil

if elt(u,us) andalso
not(select(u,x,uwis) = NoUWI)
then 1`select(u,x,uwis) else nil

(u,(i,x))

ready UWI

[]

Users

select
Out UWI

request
Out UWI

[]

completed
Out UWI

in progress
In UWI

logged on
I/O

[]

I/O In

Out

OutOut

complete
special

active
work items

I/OI/O

special
 modeI/OI/O

complete

(* check if there are
available work items
for the same activity *)

(u,(i,x))

(u,wi)

uwisUWIs

(* users can
choose
to be in the
"auto-start"
mode*)

User

u (u,wi)

(a) piled execution

(* function "select" picks
the next work item
for the instance "x" *)

(* automatically start
the next work item
for the same instance*)

(* users can
 choose
to be in the
"auto-start"
mode*)

(* check if there are
available work items
for the same instance *)

(u,(x,a))

(u,wi)

us

if elt(u,us) andalso
not(select(u,x,uwis) = null)
then 1`select(u,x,uwis) else nil

if elt(u,us) andalso
not(select(u,x,uwis) = null)
then 1`select(u,x,uwis) else nil

uwis

(u,wi)

u

complete
 special

complete

ready UWI

special
 mode

I/O

[]

Users

select
Out

UWI

request
Out UWI

active
work items

I/O

[]

UWIs

completed
Out UWI

in progress
In UWI

logged on
I/O

[]

UserI/O In

Out

I/O

OutOut

I/O

(* INSTANCE IS THE AUTO-START CRITERIA
(u,(i,a)) -> (u,(x,a)) *)

(u,(x,a))

(b) chained execution

Figure 3.14: Two auto-start patterns - stop work module

as comparison of systems, but the evaluation results indeed show that systems
support different patterns and, thus, handle the resource perspective in unique
ways. In Appendix B.2 of this thesis we show the evaluation results of the CPN
models of Staffware, FileNet and FLOWer, with respect to the patterns support.
In addition, in Appendix B.2 we also show the evaluation results of the pattern
support of our basic model : due to its simplicity, the basic model supports only
few resource patterns.

CPN models of the round robin, shortest queue, piled execution and chained
execution patterns show that it is remarkably simple to implement these patterns
‘on top’ of the work distribution of existing systems. Therefore, the lack of sup-
port for these patterns in Staffware and FileNet indicates the level of immaturity
of contemporary systems with respect to the resource perspective, and especially
when compared to the control-flow perspective.

Despite of the high impact that the resource perspective has on the way people
work, this perspective does not draw much attention in research and industry.
While there have been many attempts to improve the control-flow perspective
(e.g., many control-flow modeling languages like Petri Nets [29, 72, 93], EPCs,
BPEL [53, 54], etc. covering a wide range of application areas), there has been
less research and industry interest in the resource perspective. Research efforts
like [182,208,211,216] are rare examples of investigations in the area of resource
perspective. BPEL4People [150] and WS Human Task [47] are recent efforts
aiming at enriching the resource perspective of workflow technology. Together
with BPEL itself [53, 54, 178], BPEL4People is becoming a broadly recognized
standard recognized by the Organization for the Advancement of Structured

66 Chapter 3 Flexibility of Workflow Management Systems

Information Standards (OASIS) [7]. However, a pattern-based evaluation of these
two standards [213, 217] indicates the necessity of further improvements in the
area of the resource perspective.

3.1.3 The Data Perspective

The data perspective of a process model defines which data elements are available
in the process and how workflow participants can access data elements while
executing activities.

CPN Model(s)

Process models contain data elements of certain types (e.g., string, numeric, date,
etc.). Consider, for example, a process model from the medical domain contain-
ing several data elements: patient name, doctor name and description all of type
string, and appointment of type date. Once data elements have been defined on
a process level, their usage can be defined for each activity, i.e., whether a data
element is available and how it can be accessed and modified in an activity (cf.
Figure 3.2). However, this is only a simplified, basic, view at the data perspective
in workflow management systems. Real systems use powerful and very complex
mechanisms that handle data elements and their values on the process and ac-
tivity level. The complexity of these mechanisms yields complex CPN models of
the data perspective. For example, the CPN model of the newYAWL workflow
language 1, which aims at fully supporting the data perspective (and the other
workflow perspectives), contains 55 modules, over 480 places, 138 transitions and
over 1500 lines of ML code [208,210,212]. Therefore, we do not present the CPN
models of the data perspective in this thesis. Instead, we refer the interested
reader to the newYAWL CPN model presented in [208, 210, 212].

Workflow Management Systems

Staffware, FileNet and FLOWer each support the data perspective in a unique
way. Generally, data elements are first defined on the process level and then for
each activity it is defined which data elements are available and how users can
access them. Figure 3.15 shows how data elements can be defined on the process
level in Staffware, FileNet and FLOWer. Due to the complexity of the data
perspective, we do not present this perspective in detail for the three workflow
management systems in this thesis.

Patterns

Just like the control-flow and the resource perspective, various workflow manage-
ment systems tend to handle the data perspective differently. In order to be able

1The newYAWL CPN model can be downloaded from [6].

Section 3.1 Contemporary Workflow Management Systems 67

(a) FileNet

(b) Staffware (c) FLOWer

Figure 3.15: Defining data elements in a process model

to compare different systems with respect to the data perspective, a series of 40
workflow data patterns are identified in [214,215]. Data patterns aim to capture
the various ways in which data is represented and utilized in workflow manage-
ment systems and are classified into four groups. First, data visibility patterns
“relate to the definition and scope of data elements and the manner in which they
can be utilized by various components of a workflow process” [214,215]. Second,
data interaction patterns “focus on the manner in which data is communicated
between process components and describe the various mechanisms by which data
elements can be passed across the interface of a process component” [214, 215].
Third, data transfer patterns focus on the manner in which the actual transfer
of data elements occurs between workflow components. Finally, data-based rout-
ing patterns “capture the various ways in which data elements can interact with
other perspectives and influence the overall operation of the process” [214, 215].

Due to the complexity of the data perspective and data patterns, CPN models
representing these patterns are very large and complex. The CPN model of the

68 Chapter 3 Flexibility of Workflow Management Systems

newYAWL language supports most of the data patterns [208, 210, 212]. Due to
the complexity and size of this model, we do not present it in this thesis and
refer the interested reader to [6, 208, 210, 212].

The evaluation of the support of the 40 data patterns in various workflow
management systems [214, 215] shows that systems tend to support different
patterns. Roughly half of the patterns is supported in each of the evaluated
systems [214,215]. This indicates a serious lack of uniformity in the way how the
data perspective is handled amongst the systems. In Appendix B.3 of this thesis
we present the data pattern support evaluation results for Staffware and FLOWer
based on [208,214,215]. These results show that Staffware fully supports 13 and
partially supports 12 patterns, while FLOWer fully supports 20 and partially 12
patterns. Unfortunately, this evaluation did not include the third system we use
in this thesis, i.e., FileNet.

Overview

Although, at the first sight, the data perspective seems to be very simple, work-
flow management systems use very complex mechanisms to support this perspec-
tive. This yields complex data patterns [214, 215] and complex corresponding
CPN models [6, 208, 210, 212].

Just like it is the case with the control-flow and resource perspectives, various
workflow management systems tend to handle the data perspective in different
ways. Results of the evaluation of the data patterns support shows that systems
tend to support different patterns [214, 215].

Similarly like the resource perspective, the data perspective has also not
drawn as much research attention as the control-flow perspective in the workflow
area. Work presented in [208, 210, 212, 214, 215] is the first attempt to initiate
more investigation of the data perspective in research and industry.

3.1.4 Summary

Workflow technology lacks a unique taxonomy and standards. Workflow man-
agement systems tend to handle the control-flow, resource and data perspec-
tives in system-specific manners. The diversity of workflow patterns support
[211,213–216] in various systems indicates the diversity of functionalities offered
by workflow management systems.

The control-flow perspective is the dominant workflow perspective in workflow
technology research and industry. Despite of the high influence of the resource
and data perspectives on the way people work, these two perspectives did not
draw much attention in research and industry. While there have been many
attempts to improve the control-flow perspective, there has been little interest
in the other two perspectives. However, the data and resource perspectives have
started to draw more attention recently. Papers like [182, 208, 211, 214–216] are

Section 3.2 Taxonomy of Flexibility 69

first efforts in the direction of deeper investigations of the data and resource
perspectives of workflow technology.

Contemporary workflow management systems are of a procedural nature,
i.e., models are detailed specifications of exactly how processes can and will be
executed. Although this approach is suitable for highly-structured processes
with high repetition rates, it is not appropriate for processes with high variation
rate (e.g., processes that offer many execution alternatives to users). Already
single control-flow patterns that offer advanced execution options tend to be
very complex [213]. Thus, applying procedural models to processes that must
offer many execution options tends to result in very complex process models.

3.2 Taxonomy of Flexibility

There is a fundamental gap between the workflow management systems and
modern organizational science, as already indicated in Chapter 1. While mod-
ern organizational theories advocate more localized decision making, workflow
management systems tend to impose old-fashioned centralized decision making
due to their imperative procedural nature. In order to align themselves with the
contemporary democratic style of work, workflow management systems must be-
come more flexible by allowing users to make more decisions about how to work.
Flexibility is an important research topic in the field of workflow management
(cf. Chapter 2). In 1999, Heinl et al. [125] presented a classification scheme of
flexibility in the context of workflow management systems (cf. Section 2.1.1). In
2007, by Schonenberg et al. re-visited the taxonomy of flexibility by looking at
contemporary workflow management systems [226–228] (cf. Section 2.1.2). In
this thesis, we use the four types of flexibility identified in [226–228]: flexibility
by design, flexibility by underspecification, flexibility by change and flexibility by
deviation. In this section we will present these four types of flexibility: flexibility
by design in Section 3.2.1, flexibility by underspecification in Section 3.2.2, flex-
ibility by change in Section 3.2.3, and flexibility by deviation in Section 3.2.4.
Each type of flexibility is described with respect to the three workflow perspec-
tives i.e., the control-flow, resource and data perspectives, using simple, system
and language-independent illustrative examples.

3.2.1 Flexibility by Design

If a process model can be developed in a way that it allows for many alternative
executions (execution traces or paths), then we speak about flexibility by design.
In Figure 3.16 an execution alternative is represented with a directed arc from
the ‘start’ until the ‘end’ point. In other words, a degree of flexibility by design
is determined by the variety of alternatives available at run-time while executing
instances of process models. This type of flexibility is identified in both tax-
onomies: in [125] it is called flexibility by selection with advanced modeling and

70 Chapter 3 Flexibility of Workflow Management Systems

in [226–228] it is called flexibility by design.

start end

Figure 3.16: Flexibility by design [125,226–228]

The control-flow perspective. The control-flow perspective determines
which activities will be available for execution at run-time and in which or-
der these activities can be executed (cf. Section 3.1.1). Consider, for example,
the two process models presented in Figure 3.17. These models consist of ac-
tivities A, B, C and D and use the sequence, parallel split and synchronization
control-flow patterns (cf. Figure 3.7). The control-flow of the process model
in Figure 3.17(a) is defined as a sequence of activities A, B, C and D. Thus,
users have only one option while executing this model, i.e., to execute these
activities only in the following order: [A,B,C,D]. The control-flow perspective of
the process model shown in Figure 3.17(b) starts with activity A, after which a
parallel split to activities B and C follows. Finally, there is a synchronization
of activities B and C before activity D. Because activities B and C can be
executed in any order, users have two alternatives while executing this model:
(1) they can execute these activities in order [A,B,C,D] or (2) they can exe-
cute these activities in order [A,C,B,D]. Due to the fact that the process model
in Figure 3.17(a) has only one execution alternative (i.e., [A,B,C,D]) and the
process model in Figure 3.17(b) has two execution alternatives (i.e., [A,B,C,D]
or [A,C,B,D]), we say that the model in Figure 3.17(b) has a higher degree of
flexibility by design than the model in Figure 3.17(a).

A B C D

(a) less flexible

A

B

C

D

(b) more flexible

Figure 3.17: Flexibility by design and the control-flow perspective

The resource perspective. As discussed in Section 3.1.2, the resource per-
spective determines which users are authorized to execute activities and how
these resources are allocated to execute the activities. Consider, for example,

Section 3.2 Taxonomy of Flexibility 71

the simple illustrative example presented in Figure 3.18. This figure shows the
resource perspective of two hypothetical process models. Each of the models
consists of activities A, B and C, and considers two users. In the model in Fig-
ure 3.18(a) the first user is authorized to execute activities A and B and the
second user is authorized to execute activity C. Thus, this model offers only one
execution alternative, i.e., the first user will execute activities A and B and the
second user will execute activity C. In the model in Figure 3.18(b) both users are
authorized to execute each of the three activities. Therefore, this model offers
more (i.e., eight) execution alternatives and has a higher degree of flexibility by
design with respect to the resource perspective.

A B C

(a) less flexible

A B C

(b) more flexible

Figure 3.18: Flexibility by design and the resource perspective

The data perspective. The data perspective of a process model defines the
availability of data during the execution (cf. Section 3.1.3). Flexibility by design
is also influenced by the data perspective. Figure 3.19 shows the data perspective
of two process models. Each of the models consists of activities A, B and C and
uses two data elements. In the model in Figure 3.19(a) the first data element is
output for activity A and input for activity B, while the second data element is
output for activity B and input for activity C. The model in Figure 3.19(b) has
a higher level of flexibility by design because both data elements are input and
output elements for all three activities, i.e., all data elements can be accessed
and edited in all three activities. Consider, for example, the situation where
an incorrect value of the first data element is provided while executing activity
A. On the one hand, in the model in Figure 3.19(a) this mistake cannot be
corrected while executing activities B or C because the first data element is
not an output data element for these two activities. On the other hand, in the
model in Figure 3.19(b) this mistake can easily be corrected, because the first
data element is an output data element for activities B and C. The same holds
for input data elements: while the value of the first data element is presented
to users only while executing activity B in the model in Figure 3.19(a), in the
model in Figure 3.19(b) the value of this data element is presented to users while
executing all three activities.

72 Chapter 3 Flexibility of Workflow Management Systems

A B C

data element 1 data element 2

(a) less flexible

A B C

data element 1 data element 2

(b) more flexible

Figure 3.19: Flexibility by design and the data perspective

3.2.2 Flexibility by Underspecification

The possibility to only partially specify a process model, where certain parts of
the model are left undefined as ‘black boxes’ and will be defined later during
execution is called flexibility by selection with late modeling [125] or flexibility
by underspecification [226, 227, 227, 228]. In Figure 3.20 under-specified parts of
a process model are presented as partial dashed lines of execution alternatives.
An example of a system that allows for this type of flexibility is the worklet
extension of the YAWL system [23, 44]. Some of the activities in YAWL models
can be considered as unspecified parts of the model and during execution they
are assigned to the Worklet Service [44] that chooses the exact specification (of
a sub-process) that will be executed (cf. Section 2.2).

start end

pre-specified

under-specified

Figure 3.20: Flexibility by underspecification [125,226–228]

The control-flow perspective. An ‘under-specified’ control-flow perspective
of a process model is shown in Figure 3.21(a). This process starts with activity
A, followed by activity B and completes with an unspecified block. During each
execution of this model (i.e., for each instance), it is necessary to define explicitly
the unspecified block. For example, as Figure 3.21(b) shows, a possible execution
scenario could be that, after activities A and B were executed in an instance
(indicated by the special ‘check box’ symbols), activity D was selected for the
unspecified block. In another instance, some other activity (e.g., some activity G)
may be executed for the unspecified block. Not only single activities can replace
the unspecified blocks of the control-flow - an entire sub-process can be selected
for an unspecified block. Note that, each time the process is executed i.e., for

Section 3.2 Taxonomy of Flexibility 73

each process instance), it is possible to select a different activity or sub-processes
for the same unspecified block in the control-flow.

A B

(a) a model

A B D

(b) an execution scenario

Figure 3.21: Flexibility by underspecification and the control-flow perspective

The resource perspective. Figure 3.22 shows a simple example of under-
specification in the resource perspective. Two users are defined in the resource
perspective of a model presented in Figure 3.22(a). The first user is authorized to
execute activities A and B, while the authorization for activity C is intentionally
left unspecified. This underspecification leaves the opportunity to specify the
authorized user(s) for activity C later, during the execution of the model. Each
time this model is executed, another user(s) can be selected as authorized to
execute activity C. One of the possibilities is to authorize both users to execute
activity C after executing activities A and B, as shown in Figure 3.22(b).

A B C

(a) a model

A B C

(b) an execution scenario

Figure 3.22: Flexibility by underspecification and the resource perspective

The data perspective. Figure 3.23(a) shows underspecification of the data
perspective in a process model that uses two data elements. The first data
element is output for activity A and input for activity B, while the second data
element output for activity B. The data access for activity C is intentionally left
unspecified, i.e., a reference to the right data element can be specified each time
the process is executed. For example, it might be the case that, after activities A
and B were executed, it is specified that both data elements are input but only
the second data element is output for activity C, as shown in Figure 3.23(b).

74 Chapter 3 Flexibility of Workflow Management Systems

A B C

data element 1

data element 2

(a) a model

A B C

data element 1

data element 2

(b) an execution scenario

Figure 3.23: Flexibility by underspecification and the data perspective

3.2.3 Flexibility by Change

While an instance of a process model is being executed it may become necessary
to change the set of execution alternatives of the model, e.g., by adding alterna-
tive(s) that were not initially foreseen when the model was developed. Flexibility
by change [226–228] or flexibility by instance adaptation [125] allows for adding
execution alternatives to the model while executing the model, as Figure 3.24
shows. Ad-hoc (or run-time) change of models is an important property of so-
called adaptive workflow systems like, e.g., ADEPT [189,191–193,202]. Systems
like ADEPT are equipped with powerful mechanisms that enable ad-hoc change
of one or more instances by allowing adding, deleting and moving activities in
instances that are already being executed (cf. Section 2.1.5). Moreover, it is
possible to apply the ad-hoc change (a) to one instance or (b) to all instances of
the referring model, i.e., the so-called migration.

start end start end
adaptation added

Figure 3.24: Flexibility by change [125,226–228]

The control-flow perspective. An example of ad-hoc change in the control-
flow perspective is shown in Figure 3.25. As shown in Figure 3.25(a), the control-
flow perspective of the model is defined as a sequence of activities A, B and C.
Thus, according to the control-flow specification, this model will be executed
by first executing activity A, then activity B and finally activity C. However,
it is possible to add execution alternatives by ad-hoc change of the control-flow
perspective. Figure 3.25(b) shows an instance of this model where activities
A and B are executed and then, instead of executing activity C, activity D is
inserted before activity C in the control-flow specification. After this ad-hoc

Section 3.2 Taxonomy of Flexibility 75

change, the instance continues with an execution of activity D followed by an
execution of activity C.

A B C

(a) the original model

A B D C

(b) an ad-hoc change

Figure 3.25: Flexibility by change and the control-flow perspective

The resource perspective. Figure 3.26 shows an example of ad-hoc change
in the resource perspective. In the process model shown in Figure 3.26(a) the
first user is authorized to execute activities A and B and the second user is
authorized to execute activity C. However, it is possible that, in an execution
scenario where activities A and B were already executed, the authorization for
activity C is removed from the second user and assigned to the first user, as
shown in Figure 3.26(b). After this ad-hoc change, the first user will execute
activity C, instead of the originally authorized second user.

A B C

(a) the original model

A B C

(b) an ad-hoc change

Figure 3.26: Flexibility by change and the resource perspective

The data perspective. Flexibility by change can also be applied to the data
perspective, as shown in Figure 3.27. In the process model shown in Fig-
ure 3.27(a) the first data element is output for activity A and input for activity
B, while the second data element is output for activity B and input for activity
C. However, flexibility by change allows to change the data perspective in in-
stances of this model in an ad-hoc manner. For example it is possible that, after
activities A and B are executed in an instance, this specification is changed so
that the first data element is added as an input and output element for activity
B, as shown in Figure 3.27(b).

76 Chapter 3 Flexibility of Workflow Management Systems

A B C

data element 1 data element 2

(a) the original model

A B C

data element 1

data element 2

(b) an ad-hoc change

Figure 3.27: Flexibility by change and the data perspective

3.2.4 Flexibility by Deviation

Flexibility by deviation is the ability of a process instance to deviate from the ex-
ecution alternatives prescribed in the instance’s process model without changing
the model. A deviation from the specified execution alternatives is illustrated
with a thick line in Figure 3.28. FLOWer [180] is an example of a system that
allows for deviation from the process model by allowing users to skip an activity
that should be executed and redo or undo an activity that was already executed
before (cf. Section 2.2).

start end
devation

Figure 3.28: Flexibility by deviation [226–228]

The control-flow perspective. Figure 3.29 shows an example of deviation
from the control-flow perspective specified in a process model. The control-flow
perspective of the model presented in Figure 3.29(a) is specified as a sequence of
activities A, B and C. However, if deviation is applied during the execution of
this model, it becomes possible to execute the model in ways other that specified
(i.e., other than executing A, B and C in a sequence). For example, it is possible
to, after executing activity A, skip activity B and execute directly activity C, as
shown in Figure 3.29(b) by a thick line. Note that the corresponding model in
Figure 3.29(b) is not changed. Instead, the thick line represents the deviation
from the model, i.e., it represents the actual execution of the instance.

The resource perspective. An application of flexibility by deviation on the
resource perspective is presented in Figure 3.30. The resource perspective of

Section 3.2 Taxonomy of Flexibility 77

A B C

(a) a model

A B C

(b) a deviation

Figure 3.29: Flexibility by deviation and the control-flow perspective

a process model is shown in Figure 3.30(a): one user is authorized to execute
activities A and B and the other user is authorized to execute activity C. This
specification remains the same in the execution scenario (i.e., instance) shown in
Figure 3.30(b). However, this instance deviates from the original specification
because the first user executes activity C, although he/she is not authorized to
execute this activity. Thick lines represent the actual execution of the instance
shown in Figure 3.30(b), i.e., the first user executed all three activities in this
instance.

A B C

(a) a model

A B C

(b) a deviation

Figure 3.30: Flexibility by deviation and the resource perspective

The data perspective. Figure 3.31 shows how flexibility by deviation can be
achieved in the data perspective. The original specification of the data perspec-
tive, where the first data element is output for activity A and input for activity
B, is shown in Figure 3.31(a). Further on, the second data element is output for
activity B and input for activity C. An example of a deviating execution (i.e.,
instance)is shown in Figure 3.31(b). Here the actual execution is shown by thick
lines, i.e., the value of first data element is not provided while executing activity
A, and, despite the original specification, it is left ‘unspecified’.

3.2.5 Summary

As already discussed in Section 3.1, the control-flow perspective remains in the
focus of research and industry, while the resource and data perspectives tend
to get less attention. This is also the case with respect to flexibility of workflow

78 Chapter 3 Flexibility of Workflow Management Systems

A B C

data element 1 data element 2

(a) a model

A B C

data element 1 data element 2

(b) a deviation

Figure 3.31: Flexibility by deviation and the data perspective

management systems. Note that the examples we presented in this section for the
resource and data perspectives are hypothetical illustrative examples and, so far,
flexible workflow management systems do not focus on these two perspectives.
Instead, the control-flow perspective is dominant in the systems. For example,
the YAWL system with worklets [23,44], ADEPT [189] and FLOWer [180] directly
support flexibility by underspecification, change and deviation in the control-flow
perspective, respectively (cf. Section 2.2).

In sections 3.2.1, 3.2.2, 3.2.3 and 3.2.4 we deliberately use very simple ex-
amples of the control-flow, resource and data perspectives of process models to
illustrate how different types of flexibility can be applied for each of the three
workflow perspectives. In ‘real-life’ process models and workflow management
systems these three perspectives require much more advanced forms of flexibility,
resulting in much more complicated models. These models often use many work-
flow patterns [208,211,213–216] in order to offer multiple execution alternatives,
which often increases the complexity of models, as discussed in Section 3.1.

The control-flow perspective of current workflow management systems is of
procedural nature (cf. Section 3.1.4). Thus, all execution alternatives must be
explicitly specified in the process model. This has several consequences:

• Procedural models with multiple execution alternatives tend to be large
and complex, which makes it hard to understand and maintain these mod-
els. As discussed before, multiple execution alternatives with respect to
the control-flow perspective require usage of many complex control-flow
patterns [213].

• In a procedural approach all execution alternatives must be anticipated in
advance [77,109,125,143, 153, 166, 188, 233]. With respect to the flexibility
by design, this means that all execution alternatives must be anticipated
already in the development phase. With respect to the flexibility by un-
derspecification, this means that it must be anticipated in the development
phase exactly when the unspecified block should be executed. Flexibility
by change and deviation might lead to frequent ad-hoc changes and devia-
tions, i.e., each time a new alternative is identified a new ad-hoc change or

Section 3.3 A New Approach for Full Flexibility 79

deviation must be applied.

• Explicitly specifying the procedure in the model can result in over-
specifying the process [181]. To illustrate this, consider the case when
it is necessary to specify the requirement that in one instance of a process
model activities A and B cannot be executed both, i.e., it is possible to
execute A once or more times as long as B is not executed and vice versa.
It is also possible that none A nor B is executed at all. In a procedural
approach one tends to over-specify this as shown in Figure 3.32. A decision
activity X is introduced as an activity that needs to be executed at a
particular time and requires conditions c1 and c2 to make this decision.
Note that, although the requirement A and B exclude one another is very
simple, all kinds of questions are introduced: ‘When should X be exe-
cuted?’, ‘How many times should X be executed?’, ‘Who executes X ?’,
‘What are c1 and c2?’, etc.

A

B
X

c1

c2

Figure 3.32: Over-specification in procedural models [181]

In this chapter we used few languages/systems (i.e., CPNs, Staffware,
FLOWer, and FileNet) to describe how contemporary approaches specify the
control-flow perspective of business processes. However, a procedural approach
is dominant in the contemporary workflow technology, despite the variety of
existing process modeling languages. On the one hand, formal languages like,
for example, Petri nets [87, 177, 199], process algebras [57, 61, 127, 131, 173] and
state charts [267] use various formalisms to explicitly specify the procedure of
a processes. On the other hand, procedural approach is also adopted by lan-
guages that are frequently used in practice and by many available tools, like,
for example, Event-Driven Process Chains (EPCs) [146, 147, 225], Business Pro-
cess Execution Language for Web Services (BPEL) [54], and Business Process
Modeling Notation (BPMN) [179].

3.3 A New Approach for Full Flexibility

As discussed in Section 3.2.5, the fact that the procedural approach requires
all execution alternatives to be explicitly specified in the model causes some
problems with respect to flexibility of workflow management systems. Descriptive
or declarative languages are considered to be more suitable for achieving a higher
degree of flexibility because they do not require explicit specification of execution

80 Chapter 3 Flexibility of Workflow Management Systems

alternatives [48, 49, 55, 56, 80, 92, 115, 256, 269]. Instead, a declarative approach
allows for the implicit specification of execution alternatives. In this thesis we
propose a declarative approach for achieving a higher degree of flexibility in
workflow technology.

The proposed approach is based on using activities and constraints for declar-
ative specification of the control-flow perspective of process models. Constraints
are rules that should be followed during the execution. Note that constraints of
a model implicitly specify the possible execution alternatives: everything that
does not violate constraints is allowed. Figure 3.33 shows an example of a con-
straint. This constraint involves two activities (i.e., A and B) and it specifies
that these two activities cannot both be executed in the same process instance.
By using this constraint in a process model, we implicitly specify its execution
alternatives as all alternatives where (1) A is executed at least once and B is
never executed, (2) B is executed at least once and A is never executed and (3)
neither A nor B are executed. Execution of other activities does not influence
this constraint, e.g., any other activity can be executed at any point of time,
as long as activities A and B are not executed both. Note that, although the
constraint in Figure 3.33 represents a very simple and useful rule, there is no
control-flow pattern that represents it [213]. Instead, implementing such a rule
in the procedural manner requires over-specification, as shown in Figure 3.32.
Moreover, by over-specifying this rule in the procedural approach many of the
intended execution alternatives are discarded, i.e., either activity A or activity B
must be executed exactly once after activity X.

A B

Figure 3.33: A constraint: activities A and B should not be executed both

The difference between the procedural and our constraint-based declarative
approach to process modeling is shown in Figure 3.34. Procedural models take
an ‘inside-to-outside’ approach: all execution alternatives are explicitly specified
in the model and new alternatives must be explicitly added to the model. Declar-
ative models take an ‘outside-to-inside’ approach: constraints implicitly specify
execution alternatives as all alternatives that satisfy the constraints and adding
new constraints usually means discarding some execution alternatives.

Our approach focuses on the dominant workflow perspective, i.e., the control-
flow perspective, and it can support all types of flexibility, as Figure 3.35 shows.
In this approach we advocate using constraints for the specification of the control-
flow perspective of process models. Possible execution alternatives of a model
are implicitly derived from the constraints: any alternative that satisfies all con-
straints is possible. Thus, even simple constraint-based process models can offer
many execution alternatives, i.e., our approach is appropriate for achieving flexi-

Section 3.3 A New Approach for Full Flexibility 81

PROCEDURAL
MODEL

constraints constraints
constraints constraints

adding execution
alternatives

forbidden behavior

Figure 3.34: Declarative vs. procedural approach

bility by design. Moreover, other types of flexibility can also be supported. With
help of the YAWL system and its worklets [44] it is possible to create arbitrary
decompositions of procedural and declarative models and achieve flexibility by un-
derspecification. Flexibility by change can be achieved by ad-hoc change, which
can be easily applied to the constraint-based approach. The so-called optional
constraints allow for flexibility by deviation.

flexibility by
design

flexibility by
underspecification

flexibility by
change

flexibility by
deviation

control-flow
perspective

resource
perspective

data
perspective

Figure 3.35: A new approach for all types of flexibility

Note that it is possible to develop procedural models that allow for flexibility
by design. Consider, for example, a process model consisting of activities A, B
and C, where any execution alternative is possible. Figure 3.36 shows a CPN
representing this model. Between the initiation and termination of the process
(represented by transitions start and end, respectively) it is possible that (1)
each of activities A, B and C is executed zero or more times, (2) activities A, B
and C are executed concurrently and (3) activities A, B and C are executed in
any order. Thus, this model allows for infinitely many execution alternatives and
offer a high degree of flexibility by design (cf. Section 3.2.1). However, adding
some simple rules that should be followed during execution is often too costly

82 Chapter 3 Flexibility of Workflow Management Systems

in the procedural approach because models become to complex and large, a lot
of time and human efforts are needed, etc. Adding a simple rule, e.g., like the
one presented in Figure 3.33, would result in a very complex model. Adding
several similar rules might easily result in a model that is too large and complex
to understand and maintain.

i

ii

i

i

i

i

i

i

i

C

BA

endstart o1

INT

p3

INT

p2

INT

p1

INT

i1

INT

i

Figure 3.36: Any execution alternative of activities A, B, and C is possible between activities
start and end

The remainder of this thesis is organized as follows. In Chapter 4 we pro-
vide a formal foundation for a constraint-based language on an abstract level.
In Chapter 5 we present a language that can be used to specify constraints in
process models and in Chapter 6 we present a prototype of a workflow manage-
ment system implemented based on concepts presented in chapters 4 and 5. In
Chapter 7 we will show how popular techniques for process mining [8] can be
applied to the constrain-based approach both for analysis of past executions and
generating run-time recommendations for users. Finally, in Chapter 8 we discuss
and conclude the thesis.

Chapter 4

Constraint-Based Approach

A truly flexible approach to workflow management systems must provide for
several aspects of workflow flexibility [125, 226–228], as discussed in Chapter 2.
In Chapter 3 we showed that contemporary commercial tools use imperative
process models that explicitly specify how to execute the process. This requires
process model developers to predict all possible execution scenarios in advance
and explicitly include them in the model. However, it is often not the case that
all scenarios can be foreseen in advance [125]. Therefore, the procedural nature
of process models makes it very difficult for contemporary workflow management
systems to provide for a high degree of flexibility by design [125, 226–228].

In this chapter we present a formal foundation for a constraint-based approach
for business processes. Instead of explicitly specifying the control flow, constraint-
based process models focus on constraints as rules that have to be followed during
the process execution. Possible executions of constraint models are specified
implicitly as all executions that satisfy the model constraints, which makes it
not necessary to explicitly predict all possible executions in advance. Due to
the declarative nature of constraint models that offer a variety of possibilities
for execution, the constraint-based approach is flexible by definition [226–228].
Moreover, all other types of flexibility that were discussed in [226–228] can also be
achieved using this approach. First, while executing instances, people can violate
one type of constraints and achieve flexibility by deviation [226–228]. Second, it
is possible to change models of already running instances, which allows for the
flexibility by change [226–228]. Although the flexibility by underspecification
[226–228] is not explicitly built into the approach presented in this chapter, in
Section 6.11 we will show how this type of flexibility can be achieved with the
help of the YAWL system [23, 32, 210, 212] and its worklets [41, 44, 45].

We start this chapter by describing the notion of constraints in Section 4.1
and constraint models in Section 4.2. An illustrative example is presented in
Section 4.3. In Section 4.4 we describe how instances of constraint models are
executed. Ad-hoc change of already running instances is described in Section 4.5.

84 Chapter 4 Constraint-Based Approach

Section 4.6 presents how verification of constraint models can detect serious er-
rors and help develop correct constraint models. A summarized overview of the
chapter is given in Section 4.7.

4.1 Activities, Events, Traces and Constraints

Constraint-based models consist of activities and constraints. An activity is a
piece of work that is executed as a whole by a resource (e.g., one person, a
computer, etc.). A constraint specifies a certain rule that should hold in any
execution of the model. Consider, for example, a model without constraints that
contains only activities perform surgery and prescribe rehabilitation. Medical
staff members that execute this model have the ultimate freedom to execute
the two activities an arbitrary number of times and in any order. However,
if the constraint “if perform surgery, then eventually prescribe rehabilitation”
would be added to the model, this would limit (i.e., constrain) the possibilities
that resources have: if activity perform surgery is executed, this constraint will
demand to afterwards also execute activity prescribe rehabilitation.

The time needed for the resource to execute one activity can vary depend-
ing on the activity’s complexity, the resource capabilities, etc. For example, one
activity might take a few minutes to execute (e.g., prescribe rehabilitation) and
another might take several hours (e.g., perform surgery). One can imagine that
the execution of activities can overlap, that some executions might fail and oth-
ers might complete successfully. Resources execute models by triggering events
involving activities, i.e., transferring activities through various states in their life
cycles [29,91,93,136,160,175]. Figure 4.1 shows an example of a simple activity
life cycle. In this life cycle, an activity can be in one of the four states: initial,
execution, execution successful, and execution failed. At the beginning of its life
cycle, the activity is in the initial state. As shown in Figure 4.1, each event
triggers a state change. A resource starts to actively work on an activity by trig-
gering the event started . After the started event, the activity can be completed
(i.e., successfully executed) or cancelled (i.e., execution has failed).

execution
started

t

execution
successful

execution
failed

initial
s

completed

tc

cancelled

tx

Figure 4.1: Three event types - started (ts), completed (tc) and cancelled (tx)

Section 4.1 Activities, Events, Traces and Constraints 85

In the remainder, we will use the following terms (concepts):

• A is the set of all activities, i.e., a universe of activity identifiers,

• T is the set of all event types, and

• E = A × T is the set of all events.

Although the set of event types can by definition contain arbitrary types, for
the purpose of simplicity we adopt the three event types from the life cycle in
Figure 4.1. In other words, in the remainder of this thesis we will assume that T

contains three event types T = {ts , tc , tx}, such that ts = started , tc = completed
and tx = cancelled . Note that, however, the set of event types T is customizable,
i.e., the proposed constraint-based approach can be applied to any set of event
types T.

One execution of a model is defined as one trace, i.e., a sequence of events
that represents the chronological order of events that occurred and were recorded
during the execution (cf. Definition 4.1.1).

Definition 4.1.1. (Trace)
Trace σ ∈ E∗ is a finite sequence of events, where E∗ is the set of all traces
composed of zero or more elements of E. We use σ = 〈e1, e2, . . . , en〉 to denote a
trace.

• |σ| = n represents the length of the trace,

• Empty trace is denoted by 〈〉, i.e., |〈〉| = 0,

• σ[i] denotes the i-th element of the trace, i.e., σ[i] = ei,

• e ∈ σ denotes ∃1≤i<|σ|σ[i] = e,

• σi� denotes the suffix of σ starting at σ[i], i.e., σi� = 〈σ[i], σ[i +
1], . . . , σ[n]〉,

• We use + to concatenate traces into a new trace, i.e., 〈e1, e2, . . . , en〉 +
〈f1, f2, . . . , fm〉 = 〈e1, e2, . . . , en, f1, f2, . . . , fm〉,

• We use = to denote equal traces, i.e., if σ = γ then |σ| = |γ| and
∀1≤i≤|σ|σ[i] = γ[i]. We use 6= to denote non-equal traces, i.e., σ 6= γ
denotes that σ = γ does not hold.

2

Example 4.1.2 illustrates the concepts of activities, events and traces in a medical
department.

Example 4.1.2. (Activities, events and traces)
Consider an example of a medical department where staff members can execute
activities ae, as, ar, am ∈ A where ae = examine patient, as = perform surgery,
ar = prescribe rehabilitation, am = prescribe medication, ax = perform X ray.
These activities are executed by triggering events that can be of the three types
ts , tc , tx ∈ T where ts = started , tc = completed and tx = cancelled .

86 Chapter 4 Constraint-Based Approach

Staff of this department can trigger any of the event types on any of the
activities. Therefore, possible events in this example are: ees = (ae , ts), eec =
(ae , tc), . . ., exc = (ax , tc), where eij = (ai, tj) and eij ∈ E for all i ∈ {e, s, r,m, x}
and j ∈ {s, c, x}.

By triggering events, staff creates a trace for each patient as a sequence of
triggered events. Treatments of three patients refer to three traces σ1, σ2, σ3 ∈ E∗,
such that:

• σ1 = 〈ees, eec, ems, emc, ess, esc〉,
• σ2 = 〈ees, eec, ems, ess, esc, ems, emc, ers, erc〉, and

• σ3 = 〈ems, emc, ees, eec, ems, emc〉.
2

We introduce the trace projection as a preliminary operation on traces. Pro-
jection σ↓E of a trace σ ∈ E∗ on a set of events E ∈ E is specified in Defini-
tion 4.1.3. The projection σ↓E is a set of traces such that for each projection
trace γ ∈ σ↓E it holds that (1) γ is of the same length as σ, (2) events from E
are the same and exactly on the same positions in γ and σ, and (3) events not
contained in E do not have to be the same γ and σ, but need to fill the same
positions in γ and σ. In other words, the projection of a trace σ on a set of events
E depends on both occurrences and positions of events e ∈ E and only positions
of events e /∈ E in trace σ.

Definition 4.1.3. (Trace projection σ↓E)
Let σ ∈ E∗ be a trace and E ⊆ E be a set of events. The projection of trace σ
on a set of events E is the set of traces defined as follows:

σ↓E =

{〈〉} if σ = 〈〉;
{〈e1, e2, . . . , e|σ|〉 ∈ E∗ | ∀1≤i≤|σ|(σ[i] ∈ E ⇒ ei = σ[i])

∧

(σ[i] /∈ E ⇒ ei /∈ E))} otherwise.

Note that a trace is always an element of its projection, i.e., σ ∈ σ↓E . 2

Trace projection is used as a kind of trace equivalence regarding constraint
satisfaction and is used to decide whether a trace satisfies a constraint, as will
be specified later in Definition 4.1.4. Consider, for example, the three traces in
Figure 4.2 where we want to measure if they satisfy rule “Before the diploma is
issued, the student has to enroll and to pass one course by choice.”, i.e., “events
(enroll , tc) and (diploma , ts) cannot appear next to each other.”.

In this case, both (1) appearances and positions of events (enroll , tc) and
(diploma , ts) in the trace and (2) positions of other events (i.e., events (enroll , ts),
(courseA, ts), (courseA, tc), (courseB , ts), (courseB , tc) and (diploma , tc)) in the
trace are important when deciding if the trace satisfies the constraint. Con-
sider, for example, trace σ1 = 〈(enroll , ts), (enroll , tc), (courseA, ts), (courseA, tc),
(diploma , ts), (diploma , tc)〉 where the student enrolled and passed the courseA

Section 4.1 Activities, Events, Traces and Constraints 87

)},(),,{(
1

sc tdiplomatenroll↓∈σ2σ

3σ

1σ

enroll diploma
tctstcts

enroll course A diploma
tcts tcts tcts

enroll course B diploma
tcts tctstcts

time

)},(),,{(
1

sc tdiplomatenroll↓∉σ

Figure 4.2: Example illustrating trace projection: σ1 ∈ σ↓E
2

, σ2 ∈ σ↓E
1

, but σ3 /∈ σ↓E
1

, σ3 /∈ σ↓E
2

before the diploma was issued. Projection of this trace on the set of events E =
{(enroll , tc), (diploma , ts)} is a set σ↓E1 containing all traces from E∗ that have the
form of 〈e∗1 , (enroll , tc), e∗2 , e∗3 , (diploma , ts), e∗4〉, such that events e∗1 , . . . , e∗4 ∈
E are not contained in E (i.e., e∗1 , . . . , e∗4 /∈ E). For example, trace σ2 is in the

projection σ↓E1 because events (enroll , tc) and (diploma , ts) have exactly the same
positions relative to each other and events e∗ /∈ {(enroll , tc), (diploma , ts)} in σ1

and σ2. On the other hand, trace σ3 is not in the trace projection σ↓E
1 because

positions of events e∗ /∈ {(enroll , tc), (diploma , ts)} do not match positions of

such events in σ1. In other words, in σ↓E
1 it is not important which course the

student took, as long as the diploma was not issued directly after enrolling.

A constraint is a rule that should be followed during the execution. For
example, constraint “if perform surgery is completed , then afterwards eventu-
ally prescribe rehabilitation is completed” ensures that every patient who had a
surgery successfully completes the rehabilitation. Another example is the con-
straint “cannot start perform surgery before completing perform X ray”, which
makes sure that X rays of a patient are taken before surgery. As specified in
Definition 4.1.4, a constraint is defined by its namespace and a function that
evaluates to true or false for a given execution trace. The notion of namespace
plays an important role when deciding if a trace satisfies the constraint.

Definition 4.1.4. (Constraint)
A constraint is a pair c = (E, f), where:

• E = (A× T) is the namespace of c such that A ⊆ A, T ⊆ T. We say that
c is a constraint over E,

• f is a function f : E∗ → {true, false}. Let σ ∈ E∗ be a trace. We denote
f(σ) = true by σ � f and f(σ) = false by σ 2 f .

– If f(σ) = true, then we say that σ satisfies c, denoted by σ � c,

– If f(σ) = false, then we say that σ violates c, denoted by σ 2 c,

88 Chapter 4 Constraint-Based Approach

• it holds that ∀γ ∈ (σ↓E) : f(γ) = f(σ), i.e., satisfaction of a trace is
decidable on the appearances of elements from the namespace in that trace,

• We say that E∗
�c = {σ ∈ E∗ | σ � c} is a set of all traces that satisfy

constraint c.

Further on, we use the following shorthand notation ΠA(c) = A, ΠT (c) = T and
Πf (c) = f . We use C to denote the set of all constraints. 2

A constraint specifies a relation between events contained in its namespace.
Using events instead of plain activities in the constraint namespace enables defin-
ing more sophisticated rules. For example, constraints c1 =“cannot start perform
surgery before completing perform X ray” and c2 =“cannot start perform surgery
before starting perform X ray” are semantically different. In case of the first con-
straint c1, perform surgery can start only after completing the perform X ray.
In case of the second constraint c2, perform surgery can start immediately af-
ter starting the perform X ray, i.e., activity perform surgery can be started and
completed even if the X ray photo is not available yet or if the activity perform
X ray fails (does not complete).

Since an execution is represented by a trace, a constraint is a boolean expres-
sion that evaluates to true or false for every trace σ ∈ E∗. Because a constraint
defines a relation between elements in its namespace, trace satisfaction should
be decidable only on the occurrences and positions of namespace elements in the
trace, i.e., if a trace satisfies the constraint, then all traces in the projection of the
trace on the namespace also satisfy the constraint and vice versa. Example 4.1.5
illustrates the notions of a constraint, namespace and satisfaction of traces.

Example 4.1.5. (Constraints)
The medical department from Example 4.1.2 needs to follow two constraints
c1, c2 ∈ C where:

• c1 = (E1, f1) is a constraint over E1 = {esc, erc} specifying that f1=“If per-
form surgery is completed then, afterwards at some point in time, prescribe
rehabilitation is also completed .”1, i.e., f1=“event esc is eventually followed
by event erc”, and

• c2 = (E2, f2) is a constraint over E2 = {ees, eec, eex} specifying that
f2=“Cannot execute any other activity until completing examine patient.”,
i.e., f2=“only events ees and eex are possible before event eec.”

For the three traces (patients) σ1, σ2 and σ3 from Example 4.1.2 it holds that:

1. trace σ1 = 〈ees, eec, ems, emc, ess, esc〉
• violates c1 (i.e., σ1 2 c1) because event esc is not followed by event erc

in σ1, i.e., this patient had a surgery but did not have a rehabilitation
after the surgery; for all traces γ ∈ (σ↓E1

1) (i.e., all traces of form
〈e∗1 , e∗2 , e∗3 , e∗4 , e∗5 , esc〉, with ∀1≤i≤5e∗i

/∈ E1) it holds that γ 2 c1,

1The exact formal definition of constraints is not relevant at this point.

Section 4.2 Constraint Models 89

• satisfies c2 (i.e., σ1 � c2) because event eec is preceded only by
event ees in σ1, i.e., this patient was examined at the beginning
of the treatment; for all traces γ ∈ (σ↓E2

1) (i.e., all traces of form
〈ees, eec, e∗1 , e∗2 , e∗3 , e∗4〉, with ∀1≤i≤5e∗i

/∈ E2) it holds that γ � c2,

2. trace σ2 = 〈ees, eec, ess, esc, ems, emc, ers, erc〉
• satisfies c1 (i.e., σ2 � c1) because event esc is followed by event
erc in σ2, i.e., this patient had a surgery and a rehabilitation af-
ter the surgery; for all traces γ ∈ (σ↓E1

2) (i.e., all traces of form
〈e∗1 , e∗2 , e∗3 , esc, e∗4 , e∗5 , e∗6 , erc〉, with ∀1≤i≤6e∗i

/∈ E1) it holds that
γ � c1,

• satisfies c2 (i.e., σ2 � c2); for all traces σ ∈ (σ↓E2

2) (i.e., all traces of
form 〈ees, eec, e∗1 , e∗2 , e∗3 , e∗4 , e∗5 , e∗6〉, with ∀1≤i≤6e∗i

/∈ E2) it holds
that σ � c2,

3. trace σ3 = 〈ems, emc, ees, eec, ems, emc〉
• satisfies c1 (i.e., σ3 � c1) because there is no event esc in trace σ3 to

be followed by event erc, i.e., this patient did not have a surgery; for
all traces γ ∈ (σ↓E1

3) (i.e., all traces of form 〈e∗1 , e∗2 , e∗3 , e∗4 , e∗5 , e∗6〉,
with ∀1≤i≤6e∗i

/∈ E1) it holds that γ � c1,

• violates c2 (i.e., σ3 2 c2) because there are events other than ees

and eex in trace σ3 before event eec, i.e., medications were prescribed
before the examination for this patient; for all traces γ ∈ (σ↓E2

3) (i.e.,
all traces of form of 〈e∗1 , e∗2 , ees, eec, e∗3 , e∗4〉, with ∀1≤i≤4e∗i

/∈ E2) it
holds that γ 2 c2.

Note that the set of satisfying traces E∗
�c1

and E∗
�c2

of constraints c1 and
c2, respectively, are infinite sets, e.g., prescribe rehabilitation can be repeated
an arbitrary number of times. Also, a set of satisfying traces E∗

�c of constraint
c = (E, f) contains all sequences (traces) of all events e ∈ E that satisfy constraint
c, i.e., traces in the set of satisfying traces contain both events from the namespace
E and events not in the namespace E. 2

In this chapter we only provide informal constraint specification, i.e., a nat-
ural (i.e., English) language is used to specify the semantics of constraints. In
Chapter 5 we propose a formal language that can be used (1) to specify the
semantics of each constraint and (2) for retrieving a finite representation of the
set of all traces that satisfy such a constraint.

4.2 Constraint Models

As specified in Definition 4.2.1, a constraint model consists of activities, manda-
tory constraints and optional constraints. Each of the constraints is over names-

90 Chapter 4 Constraint-Based Approach

pace (A×T), i.e., constraints can only define relationships between events involv-
ing activities from the model. If a model activity is contained in the namespace
of any of the constraints, then we say that this activity is constrained by the
model.

Definition 4.2.1. (Constraint model cm)
A constraint model cm is defined as a triple cm = (A,CM ,CO), where:

• A ⊆ A is a set of activities in the model,

• CM ⊆ C is a set of mandatory constraints where every element (E, f) ∈ CM

is a constraint over E, such that E ⊆ (A × T),

• CO ⊆ C is a set of optional constraints where every element (E, f) ∈ CO is
a constraint over E, such that E ⊆ (A × T).

The set of constrained activities in cm is defined as ΠCA(cm) =
⋃

c∈CM∪CO
ΠA(c).

We use Ucm to denote the set of all constraint models. 2

The set of satisfying traces of a model contains all traces that satisfy the
model, i.e., traces that satisfy all mandatory constraints in the model (cf. Defini-
tion 4.2.2). If a trace is not in this set, that means that the trace violates at least
one mandatory constraint in the model. According to Definition 4.2.2, any trace
satisfies a constraint model without mandatory constraints. This means that
users can execute such a model in any way – they can execute any of the activi-
ties from the model an arbitrary number of times (including zero times) and they
can execute these activities in an arbitrary order. For example, every trace σ ∈ E∗

satisfies a constraint model cm = ({A,B,C}, ∅,CO), i.e., E∗
�cm = E∗. Note that

Figure 3.36 on page 82 shows a procedural version of model ({A,B,C}, ∅, ∅).

Definition 4.2.2. (Constraint model satisfying traces E∗
�cm)

Let cm ∈ Ucm be a constraint model where cm = (A,CM ,CO). The set of
satisfying traces for model cm is defined as

E
∗
�cm =

{
E∗ if CM = ∅;⋂

c∈CM
E∗

�c otherwise.

If for trace σ ∈ E∗ it holds that σ ∈ E∗
�cm , then we say that σ satisfies model

cm. If for trace σ ∈ E∗ it holds that σ /∈ E∗
�cm , then we say that σ violates model

cm. 2

As specified in Definition 4.2.2, the set of traces that satisfy a constraint
model is compositional [73, 205] with respect to traces that satisfy each of the
constraints in the model, i.e., if a trace satisfies each of the constraints, then the
trace also satisfies the model.

Note that the set of traces that satisfy a constraint model E∗
�cm can contain

many traces, which makes constraint models flexible by design [226–228]. The
set E∗

�cm can even contain infinitely many traces. To enable computer-supported

Section 4.2 Constraint Models 91

execution of constraint models, a finite representation of E∗
�cm is needed. In

Chapter 5 we present how this finite representation can be obtained and used in
the constraint-based approach.

While traces that violate mandatory constraints cannot satisfy the model,
traces that violate optional constraints can still be satisfying traces of the model
(cf. Definition 4.2.2). Optional constraints are used as guidelines for executions.
Their satisfaction can be measured and presented to users as additional informa-
tion, but it does not determine the satisfaction of the model. As their name says,
it is optional if an execution trace will satisfy them or not. In other words, when
it comes to optional constraints, users can deviate from the model if they prefer
to do so. Therefore, optional constraints enable flexibility by deviation [226–228]
in constraint models.

Note that the set of traces that satisfy a constraint model contains all traces
that satisfy mandatory constraints, i.e., all sequences of all events e ∈ E that
satisfy mandatory constraints of the model. For example, trace σ ∈ E∗

�cm that
satisfies model cm = (A,CM ,CO) can contain events involving activities that
are not in the model itself, i.e., it is possible that (a ′, t) ∈ σ where a′ /∈ A and
t ∈ T. This is due to the fact that traces that satisfy constraints can contain
events that are not in the namespace of the constraint (e.g., Example 4.1.5). This
might seem odd, but is an important property that enables changes of models
during execution. As it will be described in Section 4.5, it is possible to change
constraint models while they are being executed (the so-called ad-hoc instance
change). For example, consider model cm = (A,CM ,CO) and trace σ. It is
possible to, after executing activity a∗ ∈ A (i.e., (a∗, ts), (a∗, tc) ∈ σ), remove
this activity from the model. Although model cm does not contain activity a∗
anymore and trace σ does (i.e., a∗ /∈ A and (a∗, ts), (a∗, tc) ∈ σ), this trace can
still satisfy the model (i.e., σ ∈ E∗

�cm) if it satisfies all mandatory constraints
from the model. However, after removing a∗ from a model cm it will no longer
be possible to execute this activity, i.e., events involving activity a∗ cannot be
added to the trace σ in the future. The execution of instances of constraint
models and instance change is out of scope of this section and will be described
in detail in Sections 4.4 and 4.5.

A constraint-based approach to process modeling allows developing models
that offer a large number of possible executions to users while still enforcing
the users to follow a set of basic rules - constraints. It is often the case that
constraint models have an infinite set of satisfying traces, which allows people
to choose from a large number of traces that satisfy the model and to select the
trace that is the most appropriate for the specific situation people are working
in. Consider, for example, a simple constraint model presented in Example 4.2.3.
This model consists of three activities and one constraint. Due to this constraint,
only a trace where all events (curse, completed) are eventually followed by at least
event (pray , completed) satisfies this model.

92 Chapter 4 Constraint-Based Approach

Example 4.2.3. (A constraint model)
Let cmR ∈ Ucm be a constraint model where cmR = (AR,CR

M ,C
R
O) such that:

• AR = {pray , curse, bless} is a set of activities,

• CR
M = {c1} is a set of mandatory constraints where c1 = (E1, f1) such that

E1 = {(curse, completed), (pray , completed)} and f1 =“Every occurrence
of event (curse, completed) must eventually be followed by at least one
occurrence of event (pray , completed).”, and

• CR
O = ∅ is a (empty) set of optional constraints.

The set of accepting traces for this model is E∗
�cmR =

⋂
c∈CR

M

E∗
�c = E∗

�c1
.

Constrained activities in the model are ΠCA(cmR) = {curse, pray} because
ΠA(c1) = {curse, pray}. 2

The model cmR from Example 4.2.3 allows people who are executing this
model to choose from an infinite number of traces that satisfy this model. Ta-
ble 4.1 shows only a few examples of traces (i.e., σ1, σ2, . . ., σ7) that satisfy
the model cmR and one example of a trace (i.e., σ8) that does not satisfy this
model. Each column refers to a trace and the rows refer to events in particular
traces. For simplicity, we assume that activities do not overlap in these traces,
i.e., each listed activity refers to a subsequent starting and completing of the ac-
tivity. For example, each bless in the trace σ2 refers to a sequence of two events
(bless , started) and (bless , completed). The first seven traces satisfy the model.
First, the empty trace satisfies the model, i.e., σ1 ∈ E∗

�cmR , because there is no
event (curse, completed) in the empty trace σ1 = 〈〉. Second, any of the activities
can occur an arbitrary number of times in a satisfying trace (e.g., traces σ2, σ3,
σ4, σ5, σ6 and σ7). Third, it is possible that activities curse and pray do not oc-
cur at all (e.g., traces σ1 and σ2). Fourth, it is possible that activity pray occurs
an arbitrary number of times (1) without an occurrence of activity curse (e.g.,
traces σ3 and σ6) and (2) before the occurrence of activity curse (e.g., traces σ4

and σ7). Fifth, it is possible that activity curse occurs multiple times followed
by one occurrence of activity pray in order to satisfy constraint c1 (e.g., trace
σ5). Finally, it is also possible to first curse, then pray , and later again curse
and pray (e.g., trace σ7). The last trace, i.e., trace σ8 does not satisfy model
cmR because there is no occurrence of activity pray after the second occurrence
of activity curse in this trace.

Note that some of the traces in Table 4.1 satisfy the model cmR from Exam-
ple 4.2.3 although they contain events that involve activities that are not in the
model. Traces σ2 and σ6 satisfy model cmR although they contain events on ac-
tivity become holy ∈ A, which is not in the model cmR (i.e., become holy /∈ AR).
This property of satisfying traces enables easy adding and removing activities in
models that are already being executed (ad-hoc instance change), which will be
described in detail in Section 4.5. For illustration, assume that the original model
cmR ′

= (AR ∪ {become holy},CR
M ,C

R
O) contained activity become holy and that

Section 4.2 Constraint Models 93

Table 4.1: Examples of traces that (do not) satisfy the model cmR from Example 4.2.3

σi ∈ E∗
�cmR , i ∈ {1, . . . , 7} σ8 /∈ E∗

�cmR

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

1 bless pray pray curse bless pray pray
2 become holy curse pray bless curse curse
3 bless curse bless become holy bless bless
4 bless curse pray pray pray
5 pray bless bless curse curse
6 bless curse bless bless
7 pray pray
8 bless

users executed activities bless and become holy in the trace σ2 and then decided
to remove activity become holy from the model. At this point, the model did
not contain activity become holy anymore (model cmR), but the trace σ3 still
satisfies the new model cmR. However, after the activity become holy was re-
moved from the model it was no longer possible to trigger new events on activity
become holy .

Adding and removing activities and optional constraints to and from con-
straint models does not have any effect on the set of traces that satisfy the
model, because this set is not dependent on the activities in the model (cf. Def-
inition 4.2.2). Property 4.2.4 proves that the set of traces that satisfy the model
does not change when activities or optional constraints are added to or removed
from the model. Consider, for example the model cmR from Example 4.2.3 and
model cmR ′

= (AR ∪ {become holy},CR
M ,C

R
O ∪ {c}) where become holy ∈ A and

c ∈ C. Although model cmR ′
has more activities and optional constraints, the

same traces satisfy both models cmR and cmR ′
, because they have the same

set of mandatory constraints C R
M . For example, traces σ1, . . . , σ7 from Table 4.1

satisfy both cmR and cmR ′
while trace σ8 does not satisfy either cmR nor cmR ′

.

Property 4.2.4. (Activities and optional constraints have no effect on
E∗

�cm)
Let cm, cm ′ ∈ Ucm be constraint models where cm = (A,CM ,CO) and cm ′ =
(A′,CM ,C

′
O), then E∗

�cm = E∗
�cm ′ .

Proof.
If CM = ∅, then E∗

�cm = E∗
�cm ′ = E∗ (cf. Definition 4.2.2). If CM 6= ∅, the set

of traces that satisfy cm is E∗
�cm =

⋂
c∈CM

E∗
�c (cf. Definition 4.2.2) and the set

of traces that satisfy cm ′ is E∗
�cm ′ =

⋂
∀c∈CM

E∗
�c , i.e., E∗

�cm = E∗
�cm ′ . 2

Property 4.2.5 shows that, the more mandatory constraints the model has,
the fewer traces can satisfy the model. In other words, the more mandatory
constraints a model has, the less flexibility the users will have while executing
the model.

94 Chapter 4 Constraint-Based Approach

Property 4.2.5. (Mandatory constraints can influence E∗
�cm)

Let cm, cm ′ ∈ Ucm be constraint models where cm = (A,CM ,CO) and cm ′ =
(A′,C ′

M ,C
′
O) such that CM ⊂ C ′

M , then E∗
�cm ′ ⊆ E∗

�cm .

Proof. If CM = ∅ then E∗
�cm = E∗ and C ′

M 6= ∅. Further it holds that E∗
�cm ′ =⋂

c′∈C ′
M

E∗
�c′ and E∗

�cm ′ ⊆ E∗, i.e., E∗
�cm ′ ⊆ E∗

�cm .

If CM 6= ∅ then E∗
�cm =

⋂
c∈CM

E∗
�c and C ′

M 6= ∅. Further it holds
that E∗

�cm ′ =
⋂

c∈(CM∪(C ′
M
\CM)) E∗

�c =
⋂

c∈CM
E∗

�c ∩ ⋂
c∈(C ′

M
\CM) E∗

�c = E∗
�cm ∩⋂

c∈(C ′
M
\CM) E∗

�c , i.e., E∗
�cm ′ ⊆ E∗

�cm . 2

Consider, for example, the model cmR from Example 4.2.3 and a con-
straint c2 ∈ C where c2 = (E2, f2) such that E2 = {(pray , completed)} and
f2 =“Complete activity pray at least once.”. Let cmR ′

be a constraint model
where c2 is added as a mandatory constraint to model cmR, i.e., cmR ′

=
(AR,CR

M ∪ {c2},CR
O). The set of satisfying traces of model cmR contains all

traces σ ∈ E∗ that satisfy constraint c1, while the set of satisfying traces of
model cmR ′

contains all traces σ ∈ E∗ that satisfy both constraint c1 and con-
straint c2. In other words, the set of traces that satisfy cmR ′

is obtained by
removing all traces that do not satisfy constraint c2 from the set of traces that
satisfy model cmR. For example, although they satisfy model cmR, traces σ1

and σ2 from Table 4.1 do not satisfy model cmR ′
because they do not satisfy

constraint c2.
Understanding the effect of adding/removing mandatory constraints to/from

a constraint model change is important for several purposes. First, while creating
a model it is important to understand that the more mandatory constraints
the model has, the less freedom (options) the users will have while executing
the model and vise versa, i.e., fewer mandatory constraints mean more freedom
for users. Second, in case of ad-hoc instance change, only adding mandatory
constraints can cause errors and thus cause the instance change to fail, as it
will be discussed in Section 4.5. In order to successfully perform such a run-
time change after all, it is necessary to resolve (eliminate) this error, which
can be achieved only by removing mandatory constraints. Third, errors can
be introduced in models only by adding mandatory constraints and vice versa,
errors can be eliminated only by removing mandatory constraints, as it will be
described in Section 4.6.

4.3 Illustrative Example: The Fractures Treatment

Process

As opposed to traditional models where all possible executions have to be pre-
dicted in detail in advance (i.e., during modeling), developers of constraint models
need to specify a number of constraints (rules) that should be followed during
the execution. This set of constraints indirectly determines the set of possible

Section 4.3 Illustrative Example: The Fractures Treatment Process 95

executions of the constraint model – any execution that satisfies mandatory con-
straints is possible. Moreover, it is often the case that users can choose from an
infinite number of possible executions of the constraint model and, therefore, ad-
just each execution to the specific situation as long as all mandatory constraints
are satisfied. Consider the medical Fractures Treatment process described in
Example 4.3.1. Although it consists of several important rules that have to be
satisfied in order to prevent mistakes, the medical staff must make situation-
dependent decisions and treat each patient in a way that is the most suitable for
the specific patient’s fracture.

Example 4.3.1. (Fractures Treatment process definition)
A team of medical staff is in charge of treatment of patients with fractures. The
treatment of every patient begins with the examination of the patient, although
the patient can be examined (again) at multiple stages during the treatment.
Depending on the type(s) of the fracture(s), the staff can apply different types
of treatments:

• Applying cast is the most common treatment for fractures. The cast is
removed after the fracture has healed.

• Dislocations are treated by repositioning.

• A surgery can be performed for complex injuries.

• When none of the above mentioned treatments can be applied, the patient
uses a sling for a prescribed period of time.

In cases of complex fractures, the staff can decide to use an arbitrary combination
of the above mentioned treatment procedures.

It is obligatory to take X ray of the fracture(s) before applying of cast, repo-
sitioning or performing the reposition or surgery. If needed, X ray photos can
be taken several times during the treatment. Due to danger of X rays, it is im-
portant to avoid any mistakes and the staff needs to check risks of X rays (e.g.,
pregnancy) and to take these risks into consideration each time before taking an
X ray.

The staff can prescribe necessary medication or prescribe rehabilitation an
arbitrary number of times during the treatment. In general, the hospital has the
policy to send patients to rehabilitation at least once after a surgery. 2

When developing a constraint model for the process described in Exam-
ple 4.3.1, it is not necessary to predict all possible treatment tracks in advance.
Moreover, the medical staff that treats fractures can perform many different
treatments for different patients. Instead of predicting all possible treatments, it
is sufficient to detect the activities and the constraints that should be followed
during treatments. The constraint model for the Fractures Treatment process is
given below.

96 Chapter 4 Constraint-Based Approach

Example 4.3.2. (Fractures Treatment constraint model)
Recall that ts , tc , tx ∈ T are event types where ts = started , tc = completed and
tx = cancelled . Model cmFT ∈ Ucm , cmFT = (AFT ,CFT

M ,CFT
O) is a constraint

model for the Fractures Treatment process described in Example 4.3.1 such that

• AFT = {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10} is a set of activities where:

a1 = examine patient, a6 = prescribe sling,
a2 = apply cast, a7 = prescribe medication,
a3 = remove cast, a8 = check X ray risk,
a4 = perform reposition, a9 = perform X ray, and
a5 = perform surgery, a10 = prescribe rehabilitation,

• CFT
M = {c1, c2, c3, c4, c5} is a set of mandatory constraints where:

– c1 = (E1, f1) where E1 = {(a1 , ts), (a1 , tc)(a1 , tx)} and f1 =“Start
every treatment with an occurrence of the activity examine patient”,
i.e., f1 =“Before the first occurrence of event (a1 , tc), only occurrences
of events (a1 , ts) or (a1 , tx) are possible”,

– c2 = (E2, f2) where E2 = {(a2 , tc), (a4 , tc), (a5 , tc), (a6 , tc)} and
f2 =“Perform at least one of the procedures: apply cast,
perform reposition, perform surgery or prescribe sling”, i.e., f2 =“At
least one of the events (a2 , tc), (a4 , tc), (a5 , tc) or (a6 , tc) must occur”,

– c3 = (E3, f3) where E3 = {(a2 , tc), (a3 , ts), (a3 , tc)} and f3 =“Can
remove cast only after applying cast and always remove cast after
applying cast”, i.e., f3 =“Event (a3 , ts) can occur only after occurrence
of event (a2 , tc) and every occurrence of event (a2 , tc) must eventually
be followed by at least one occurrence of event (a3 , tc)”,

– c4 = (E4, f4) where E4 = {(a2 , ts) , (a4 , ts), (a5 , ts), (a9 , tc)} and
f4 =“Must perform X ray before applying cast, repositioning and per-
form surgery”, i.e., f4 =“Events (a2 , ts), (a4 , ts) and (a5 , ts) can occur
only after occurrence of event (a9 , tc)”,

– c5 = (E5, f5) where E5 = {(a8 , tc), (a9 , ts)} and f5 =“Check X ray risk
before each new occurrence of activity perform X ray”, i.e., f5 =“Each
new occurrence of event (a9 , ts) must be preceded by a at least one
new occurrence of (a8 , tc)”; and

• CFT
O = {c6} is a set of optional constraints where c6 = (E6, f6) such that

E6 = {(a5 , tc), (a10 , tc)} and f6 =“Eventually prescribe rehabilitation af-
ter perform surgery”, i.e., f6 =“Every occurrence of event (a5 , tc) must
eventually be followed by at least one occurrence of event (a10 , tc)”.

2

The Fractures Treatment model allows for an infinite number of different
treatments of patients, as long as all mandatory constraints are satisfied. For

Section 4.3 Illustrative Example: The Fractures Treatment Process 97

example, although every treatment has to start with the execution of the examine
patient activity (constraint c1), the staff can execute this activity multiple times
at later stages of the treatment. At least one of the four procedures (apply
cast, perform reposition, perform surgery, prescribe sling) has to be completed
(constraint c2), but it is always possible to combine several procedures during
the treatment of one patient. The activity remove cast can be started only
after the activity apply cast had been completed at least once and after activity
apply cast has be completed activity remove cast will be completed at least once
(constraint c3). This constraint still makes it possible to handle situations when
patients have two fractures both treated with cast for different periods of time.
Only after completing activity perform X ray the staff can apply one of the four
procedures (constraint c4). However, it is still possible to execute the perform X
ray activity several times if necessary in the treatment, as long as the check X
ray risk activity is completed before starting each new perform X ray activity
(constraint c5). Although it is hospital policy to send all patients to rehabilitation
after a completed surgery, it is possible to perform multiple surgeries and only
after them one or more activities prescribe rehabilitation (optional constraint c6).
Also, it is possible to execute the activity prescribe rehabilitation for patients that
did not undergo a surgery. Moreover, because c6 is an optional constraint, it is
also possible not to prescribe rehabilitation after a surgery.

Table 4.2 shows examples of six execution traces for different patients un-
dergoing the Fractures Treatment process according to the cmFT model from
Example 4.3.2 2. For reasons of simplicity, we assume that executions of activi-
ties did not overlap, i.e., each of the listed activities a ∈ AFT refers to executions
of two successive events: (a, started) and (a, completed). Each of the first five
traces satisfies the cmFT model (i.e., σ1 ∈ E∗

�cmFT , σ2 ∈ E∗
�cmFT , σ3 ∈ E∗

�cmFT ,
σ4 ∈ E∗

�cmFT and σ5 ∈ E∗
�cmFT , denoted by the X symbol) because each of these

five traces satisfies all mandatory constraints in the model cmFT . This means
that the first five patients were handled correctly according to the Fractures
Treatment model cmFT . Note that despite the fact that trace σ3 violates the
optional constraint c6 from the model (because the staff did not prescribe reha-
bilitation after the activity perform surgery was executed), this trace satisfies the
model cmFT because it satisfies all its mandatory constraints. The last trace,
trace σ6 violates the constraint model (i.e., σ6 /∈ E∗

�cmFT , denoted by the � sym-
bol) because it violates its mandatory constraint c5: for this patient the activity
check X ray risk was not executed before the activity perform X ray.

2For the purpose of simplicity we give examples of traces that contain only activities from
the cmFT model.

98 Chapter 4 Constraint-Based Approach

Table 4.2: Examples of traces for six patients in the Fractures Treatment model from Exam-
ple 4.3.2

σ1 - patient 1 X σ2 - patient 2 X σ3 - patient 3 X

1 examine patient examine patient examine patient
2 prescribe sling check X ray risk check X ray risk
3 check X ray risk prescribe medication perform X ray
4 perform X ray perform X ray prescribe sling
5 apply cast perform reposition examine patient
6 prescribe medication prescribe medication perform surgery
7 remove cast check X ray risk examine patient
8 examine patient perform X ray perform surgery
9 examine patient prescribe medication
10 prescribe rehabilitation

σ4 - patient 4 X σ5 - patient 5 X σ6 - patient 6 �

1 examine patient examine patient examine patient
2 prescribe sling check X ray risk perform X ray �

3 prescribe rehabilitation perform X ray
4 perform surgery
5 examine patient
6 prescribe medication

4.4 Execution of Constraint Model Instances

A constraint model can be executed an arbitrary number of times. We refer to
one execution of a constraint model as to a constraint model instance. Actions
that resources take while executing one instance form the execution trace of the
instance. A constraint model instance consists of a constraint model and the
instance trace, as specified in Definition 4.4.1. Consider, for example, the traces
presented in Table 4.2. These traces could belong to six instances of the Fractures
Treatment model cmFT : instance ci1 = (σ1, cm

FT) relates to treatment of the
“patient 1”, ci2 = (σ2, cm

FT) to “patient 2”, etc.

Definition 4.4.1. (Constraint model instance ci)
A constraint model instance ci is defined as a pair ci = (σ, cm), where:

• σ ∈ E∗ is the instance’s trace, and

• cm ∈ Ucm is a constraint model.

We use Uci to denote the set of all constraint instances. 2

Note that not all constraint models need to have related instances and that
there can be an arbitrary number of instances having the same constraint model,
where each instance has its own trace. For example, Figure 4.3 shows four
instances and four models. There are two instances of model cm 1 (i.e., instances
ci1 = (σ1, cm1) and ci2 = (σ2, cm1)), one instance of model cm3 (i.e., instance

Section 4.4 Execution of Constraint Model Instances 99

ci3 = (σ3, cm3)) and one instance of model cm4 (i.e., instance ci4 = (σ4, cm4)).
There are no instances of model cm2.

UCMUci

ci1

ci3

ci2

ci4

cm1

cm2

cm3

cm4

1σ
2σ

4σ
3σ

Figure 4.3: Constraint instances

In the remainder of this section we describe three important issues when it
comes to execution of instances of constraint-based models. First, in Section 4.4.1
we describe how state of an instance changes during execution. Second, in Sec-
tion 4.4.2 we describe how instances are executed by triggering the so-called
enabled events. Finally, in Section 4.4.3 we describe the relationship between the
state of an instance and states of its constraints.

4.4.1 Instance State

During execution, the state of an instance can change depending on the instance
trace. As specified in Definition 4.4.2, an instance is satisfied if the instance
trace satisfies the model of the instance. If the instance trace does not satisfy the
instance model, but there is a suffix that could be added to the trace such that
it satisfies the model, the instance is classified as temporarily violated . Finally,
if the trace does not satisfy the model and the trace cannot satisfy the model
whatever suffix would be added, then the instance is classified as violated .

Definition 4.4.2. (Instance state ω)
Let ci ∈ Uci be an instance where ci = (σ, cm). The function ω : Uci →
{satisfied , temporarily violated , violated} of instance ci is defined as:

ω(ci) =

satisfied if σ ∈ E∗
�cm ;

temporarily violated if (σ /∈ E∗
�cm) ∧ (∃γ ∈ E∗ : σ + γ ∈ E∗

�cm);
violated otherwise.

2

Table 4.3 shows four possible instances for the Fractures Treatment model
from Example 4.3.2 and their states. For each instance a sequence of events from
the instance trace is given. In addition, for each instance a state change is given
for each of event in the instance trace. For reasons of simplicity, we assume that
executions of activities did not overlap, i.e., each of the listed activities a ∈ AFT

refers to executions of two successive events: (a, started) and (a, completed). Due
to constraints c1 and c2, each instance is temporarily violated at the beginning

100 Chapter 4 Constraint-Based Approach

of the execution. After the execution of activities examine patient and prescribe
sling in the first instance ci 1, this instance is satisfied because its trace at that
moment satisfies all mandatory constraints. The state of the first instance re-
mained satisfied after performing the next two activities: check X ray risk and
perform X ray. However, after the activity apply cast was executed, the state of
the instance became again temporarily violated . This is because this partial trace
does not satisfy the model (does not satisfy mandatory constraint c3), but it was
possible to eventually execute activity remove cast and return the instance into
state satisfied . Optional constraints do not influence the state of the instance:
the state of the third instance is satisfied although the optional constraint c6 is
not satisfied, i.e., there is not prescribe rehabilitation after perform surgery. The
last instance (ci 4) ends in the state violated and it is not possible to extend this
trace with some suffix that would return the instance to the state satisfied be-
cause perform X ray was executed before check X ray risk despite the constraint
c5.

Table 4.3: States of four instances of the Fractures Treatment model from Example 4.3.2

ci1 = (σ1, cm
FT) - patient 1 ci2 = (σ2, cm

FT) - patient 2
σ1 ω(ci1) σ2 ω(ci2)

start tv tv
1 examine patient tv examine patient tv
2 prescribe sling sat check X ray risk tv
3 check X ray risk sat perform X ray tv
4 perform X ray sat perform surgery sat
5 apply cast tv examine patient sat
6 prescribe medication tv prescribe medication sat
7 remove cast sat
8 examine patient sat

ci3 = (σ3, cm
FT) - patient 3 ci4 = (σ4, cm

FT) - patient 4
σ3 ω(ci3) σ4 ω(ci4)

start tv tv
1 examine patient tv examine patient tv
2 prescribe sling sat perform X ray v
3 prescribe rehabilitation sat

(‘sat’=satisfied , ‘tv’=temporarily violated and ‘v’=violated)

An instance can be successfully closed (i.e., users can stop working on an
instance) if and only if the instance state is satisfied . For example, the medical
staff can successfully close the first instance from Table 4.3 only after activities
number two, three, four, seven or eight because the instance state is satisfied
after execution of these activities. Similarly, the second instance ci 2 can be
closed only after the fourth activity, the third instance ci 3 can be closed after
the second activity while the fourth instance ci 4 can never be successfully closed.

Section 4.4 Execution of Constraint Model Instances 101

4.4.2 Enabled Events

An instance changes state by adding events to its partial trace. If added to the
instance trace, some events would put the instance into the satisfied state, some
into the temporarily violated state and some into the violated state. As specified
in Definition 4.4.3, an event is enabled if and only if it refers to an activity
contained in the instance model and if adding this event to the instance trace
does not put the instance in the state violated . Hence, the declare prototype
presented in Chapter 6 does not allow instance ci 4.

Definition 4.4.3. (Enabled event ci [e〉)
Let ci ∈ Uci be an instance where ci = (σ, (A,CM ,CO)) and e ∈ E an event
where e = (a, t). Event e is enabled, denoted as ci [e〉, if and only if a ∈ A and
ω(σ + 〈(a, t)〉, (A,CM ,CO)) 6= violated . 2

Users execute instances by executing events. Each executed event is added
to the instance trace. By allowing users to execute only enabled events, the
execution rule from Definition 4.4.4 makes sure that users cannot execute events
that would bring the instance into the state violated . In other words, this rule
makes sure that users can eventually bring the instance to the state satisfied .
Also, by allowing users to execute only enabled events, the execution rule makes
sure that only activities belonging to the instance model can be executed and
added to the instance trace. Note that it is possible that the instance trace
already contains events involving activities that once were in the model, but no
longer are. The execution rule allows this, as long as the new event that is being
added to the trace refers to an activity that from the model at the moment of
execution.

Definition 4.4.4. (Execution rule [〉)
We define the execution relation [〉 ⊆ Uci × E × Uci as the smallest relation
satisfying ∀(σ,cm)∈Uci

∀e∈E : (σ, cm)[e〉 ⇒ (σ, cm)[e〉(σ + 〈e〉, cm). 2

Table 4.4 shows enabled and executed activities for one instance of the Frac-
tures Treatment model cmFT from Example 4.3.2. For the simplicity, we as-
sume that execution of activities do not overlap, i.e., each of the listed activities
a ∈ AFT in Table 4.4 refers to executions of two successive events: (a, started)
and (a, completed)3. At every moment during the execution of the instance some
activities were enabled (marked with symbol “◦”). For example, the first row in
Table 4.4 shows that only events related to activity examine patient are enabled
at the beginning of the execution. This is because the constraint c1 from the
model cmFT specifies that each instance has to start with examine patient. At
this point, events involving other activities are disabled because adding them to
the execution trace would put the instance in the state violated . The execution

3This assumption is taken in order to simplify the examples of traces presented in Table 4.4.
The same holds for traces that contain overlapping activities.

102 Chapter 4 Constraint-Based Approach

rule (cf. Definition 4.4.4) makes sure that users cannot bring instances to the
state violated while executing instances by only allowing execution of enabled
events. Table 4.4 shows that users can indeed execute (shown by the “•” sym-
bol) only enabled events. At the beginning of the instance examine patient was
executed, then check X ray risk, etc.

Table 4.4: Enabled (◦) and executed (•) events for instance ci = (σ, cmFT)

activities in the Fractures Treatment model

instance trace - σ ex
a
m

in
e

pa
ti
en

t

a
p
p
ly

ca
st

re
m

o
ve

ca
st

pe
rf

o
rm

re
po

si
ti
o
n

pe
rf

o
rm

su
rg

er
y

p
re

sc
ri

be
sl
in

g

p
re

sc
ri

be
m

ed
ic
a
ti
o
n

ch
ec

k
X

ra
y

ri
sk

pe
rf

o
rm

X
ra

y

p
re

sc
ri

be
re

h
a
bi

li
ta

ti
o
n

1 examine patient ◦•
2 check X ray risk ◦ ◦ ◦ ◦• ◦
3 prescribe medication ◦ ◦ ◦• ◦ ◦ ◦
4 perform X ray ◦ ◦ ◦ ◦ ◦• ◦
5 perform reposition ◦ ◦ ◦• ◦ ◦ ◦ ◦ ◦
6 prescribe medication ◦ ◦ ◦ ◦ ◦ ◦• ◦ ◦
7 check X ray risk ◦ ◦ ◦ ◦ ◦ ◦ ◦• ◦
8 perform X ray ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• ◦
9 examine patient ◦• ◦ ◦ ◦ ◦ ◦ ◦ ◦

Consider the violated instance ci 4 from Table 4.3. If users would execute
activities examine patient and perform X ray, this would bring the instance in
the state violated because it would not be possible to satisfy the mandatory
constraint c5 from the model cmFT anymore. The execution rule prevents this:
event (perform X ray, started) would not be enabled after the activity examine
patient is executed (cf. Table 4.4) and users will not be able to execute activity
perform X ray at this stage. Therefore, the violated instance (ci 4) in Table 4.3
is an example of an instance of the Fractures Treatment model that cannot be
executed in the declare prototype (cf. Chapter 6).

Note that some constraints from the Fractures Treatment model are the
so-called ‘safety’ constraints, i.e., they will prevent users to execute certain
events that would bring the instance to the violated state. For example,
constraint c4 specifies that events (apply cast, ts), (perform surgery, ts) and
(perform reposition, ts) can occur only after event (perform X ray, tc) has oc-
curred. A direct consequence of this is that events (apply cast, ts),
(perform surgery, ts) and (perform reposition, ts) will be disabled before the
execution of event (perform X ray, tc), as shown in Table 4.4. In other words,
it is not possible to execute activities apply cast, perform reposition and per-

Section 4.4 Execution of Constraint Model Instances 103

form surgery until activity perform X ray is executed. Other types of con-
straints represent some ‘expectation’ that has to be met in order to bring the
instance to the state satisfied . For example, constraint c2 specifies that “At least
one of the events (perform reposition, tc), (apply cast, tc), (prescribe sling, tc) or
(perform surgery, tc) must occur”. This type of a constraint will not influence
enabled events, but it will prevent closing an instance before the expectation is
met because the instance becomes satisfied only after the first occurrence of one
of the four events.

An event is enabled even if adding the event to the trace violates an optional
constraint, i.e., the execution rule allows triggering events that permanently vi-
olate optional constraints (cf. definitions 4.4.3 and 4.4.4). Although optional
constraints do not directly influence the enabled events of constraint instances,
they play an important role in the execution of instances. Optional constraints
represent ‘light’ rules that are used as guidance for users but users are not forced
to follow them. In Chapter 6 we will present the declare prototype where,
if the user is about to violate an optional constraint (by triggering an event), a
special warning is issued and the user can choose whether to proceed (i.e., trigger
the event and violate the optional constraint) or to abort (i.e., the event is not
triggered and the optional constraint is not violated). In other words, optional
constraints allow users to deviate from the constraint model and thus enable
flexibility by deviation [226–228] (cf. Section 3.2.4).

4.4.3 States of Constraints

Similarly like the instance itself, the instance’s constraints also change states
during execution. Definition 4.4.5 specifies that, given an execution trace, a
constraint can be in one of the three states: satisfied temporarily violated and
violated . During execution of each instance, the state of each constraint in the
instance can be presented to users as additional information that can help them
understand the instance they are working on.

Definition 4.4.5. (Constraint state ν)
Let c ∈ C be a constraint and σ ∈ E∗ an execution trace. The function ν :
(C × E∗) → {satisfied , temporarily violated , violated} is defined as:

ν(σ, c) =

satisfied if σ ∈ E∗
�c ;

temporarily violated if (σ /∈ E∗
�c) ∧ (∃γ ∈ E∗ : σ + γ ∈ E∗

�c);
violated otherwise.

2

Table 4.5 shows states of constraints during the execution of one instance
Fractures Treatment model from Example 4.3.2. At the beginning of the exe-
cution all constraints are in the state satisfied , except constraint c2, which is
temporarily violated because it specifies that at least one of the activities apply

104 Chapter 4 Constraint-Based Approach

cast, perform reposition, perform surgery or prescribe sling has to be executed.
Indeed, the constraint c2 becomes satisfied only after the activity prescribe sling
is executed. After the activity apply cast is executed, constraint c3 becomes
temporarily violated because this constraint requires that activity remove cast
has to be executed after activity apply cast. Therefore, this constraint remains
in the temporarily violated state until activity remove cast is executed. Exe-
cution of the activity perform surgery brings optional constraint c6 into state
temporarily violated . This constraint remains temporarily violated because ac-
tivity prescribe rehabilitation is never executed after activity perform surgery.

Table 4.5: Constraint states in an instance (σ, cmFT) of the Fractures Treatment model from
Example 4.3.2

instance instance constraints
instance trace σ state c1 c2 c3 c4 c5 c6

start tv sat tv sat sat sat sat

1 examine patient tv sat tv sat sat sat sat

2 prescribe sling sat sat sat sat sat sat sat

3 check X ray risk sat sat sat sat sat sat sat

4 perform X ray sat sat sat sat sat sat sat

5 perform surgery sat sat sat sat sat sat tv

6 examine patient sat sat sat sat sat sat tv

7 apply cast tv sat sat tv sat sat tv

8 prescribe medication tv sat sat tv sat sat tv

9 remove cast sat sat sat sat sat sat tv

10 examine patient sat sat sat sat sat sat tv
(‘sat’=satisfied and ‘tv’=temporarily violated)

Table 4.5 shows that there is a relation between the state of the instance
and states of its mandatory constraints and that optional constraint c6 has no
influence on the state of the instance. This is because the state of the instance
depends only on the sets of satisfying traces of all mandatory constraints (cf.
Definition 4.4.2). In some cases the instance state can be determined based on
the states of mandatory constraints: (1) all mandatory constraints are satisfied
in a satisfied instance, and (2) if at least one of the mandatory constraints in an
instance is violated , then the instance is also violated . In all other cases, as we
will show later, the instance state cannot always be derived from the states of
individual mandatory constraints.

As specified in Definition 4.2.2, the set of traces that satisfy a constraint model
is composed of traces that satisfy all constraints in the model. Compositionality
in this context means that it is enough to prove that a trace satisfies each of the
constraints in order to prove that the trace satisfies the model [73, 205].

Section 4.4 Execution of Constraint Model Instances 105

Property 4.4.6 shows that, if an instance trace satisfies each of the mandatory
constraints in the instance, then this trace also satisfies the instance and vice
versa, i.e., if a trace satisfies an instance, then it also satisfies all mandatory
constraints in the instance.

Property 4.4.6. (All mandatory constraints are satisfied in a satisfied
instance)
Let ci ∈ Uci be an instance where ci = (σ, (A,CM ,CO)). Then (∀c ∈ CM :
ν(σ, c) = satisfied) ⇔ (ω(ci) = satisfied).

Proof. (∀c ∈ CM : ν(σ, c) = satisfied) ⇔ (∀c ∈ CM : σ ∈ E∗
�c) ⇔ (σ ∈⋂

c∈CM
E∗

�c) ⇔ (σ ∈ E∗
�cm) ⇔ (ω(ci) = satisfied). 2

Property 4.4.7 shows that, if at least one of the mandatory constraints is
violated , then the instance is also violated . To prove this, Property 4.4.7 shows
that, if the instance trace does not and cannot (in the future) satisfy (at least) one
mandatory constraint in the instance, then this trace also does not and cannot
(in the future) satisfy the instance.

Property 4.4.7. (If at least one mandatory constraint in an instance is
violated then the instance is violated)
Let ci ∈ Uci be an instance where ci = (σ, (A,CM ,CO)). Then (∃c ∈ CM :
ν(σ, c) = violated) ⇒ (ω(ci) = violated).

Proof. (∃c ∈ CM : ν(σ, c) = violated) ⇒ (∃c ∈ CM : (σ /∈ E∗
�c ∧ @γ ∈ E∗ :

σ + γ ∈ E∗
�c)) ⇒ ((σ /∈ ⋂

c∈CM
E∗

�c) ∧ (@γ ∈ E∗ : σ + γ ∈ ⋂
c∈CM

E∗
�c)) ⇒ ((σ /∈

E∗
�cm) ∧ (@γ ∈ E∗ : σ + γ ∈ E∗

�cm)) ⇒ ω(ci) = violated . 2

Note that it might be the case that, although none of the mandatory con-
straints in an instance is violated but some are temporarily violated , the instance
itself is violated . Example 4.4.8 shows how an instance can be violated although
none of its mandatory constraints is violated .

Example 4.4.8. (A violated instance without violated constraints)
Recall that ts , tc ∈ T are two event types such that ts = started and tc =
completed . Let ci ∈ Uci , ci = (σ, cm) be a constraint instance where cm =
(A,CM ,CO) such that:

• A = {a1, a2} is a set of two activities a1, a2 ∈ A,

• CM = {c1, c2} is a set of two mandatory constraints c1, c2 ∈ C such that

– c1 = ({(a1 , tc)},“a1 has to be completed exactly once”);

– c2 = ({(a1 , tc)},“a1 has to be completed exactly twice”);

• CO = ∅ is an (empty) set of optional constraints, and

• σ = 〈(a1 , ts), (a1 , tc)〉 is the execution trace of the instance ci .

2

106 Chapter 4 Constraint-Based Approach

States of constraints in instance ci from Example 4.4.8 (given the instance
execution trace σ) are:

• ν(σ, c1) = satisfied because σ ∈ E∗
�c1

, and

• ν(σ, c2) = temporarily violated because it can be satisfied by executing a1

once more.

Constraint c1 is satisfied because trace σ satisfies c1 and constraint c2 is
temporarily violated because trace σ does not satisfy c2 but there is a suffix
(e.g., suffix 〈(a1 , ts), (a1 , tc)〉) that, when added to σ, satisfies c2. Although c1
is satisfied and c2 is temporarily violated , there is no suffix that, when added to
σ, satisfies both constraints c1 and c2, i.e., it is not possible to execute activity
a1 exactly once and twice at the same time. This means that the instance is
violated , i.e., (σ /∈ E∗

�cm ∧ (@γ ∈ E∗ : σ + γ ∈ E∗
�cm)) ⇒ ω(ci) = violated .

The instance presented in Example 4.4.8 cannot be satisfied because the in-
stance model contains an error. Two constraints that can never be satisfied at
the same time cause this error, i.e., there is no trace that satisfies both con-
straints. This type of error can occur in constraint models and is called conflict.
Verification of constraint models and how to detect errors like conflicts will be
described in Section 4.6.

The formal language for constraint specification that will be presented in
Chapter 5 enables execution of constraint instances because it is able to (1)
determine state of an instance (cf. Definition 4.4.2) and (2) determine which
events are enabled (cf. Definition 4.4.3). Moreover, it is possible to monitor states
of each constraint from the model. Because the prototype declare uses this
language for constraint specification, it enables execution of constraint models,
as will be described in Chapter 6.

4.5 Ad-hoc Instance Change

In some cases, it is necessary that the model of the instance changes (i.e., add
and remove activities, mandatory and optional constraints) although the instance
is already executing and the instance trace might not be empty. We refer to
such a change as to an ad-hoc instance change or instance change. Workflow
management systems that support ad-hoc change are called adaptive systems.
For example, ADEPT [189,191–193,202] is a workflow management system that
uses powerful mechanisms to support ad-hoc change of procedural process models
by allowing adding activities to the control-flow, removing activities from the
control-flow and moving activities in activities to the control-flow at run-time (cf.
Section 2.2). On the one hand, as we discussed in Section 2.1.5, various problems
can occur when it comes to ad-hoc change of imperative process models (e.g.,
the “dynamic change bug” [101] and other problems described in [201]). On
the other hand, the constraint-based approach offers a simple method for ad-hoc

Section 4.5 Ad-hoc Instance Change 107

change that is based in a single requirement: the instance should not become
violated after the change.

An instance of a constraint model refers to one execution of this model, i.e.,
the instance assigns one execution trace to the model. Due to the fact that, in ad-
hoc change the trace remains the same and the model changes, it might happen
that the instance state changes according to the new model (cf. Definition 4.4.2).
For example, it is possible that a satisfied instance would become violated if a
mandatory constraint would be added to the instance, which is an undesired
state of constraint instances (cf. Definition 4.4.4). Therefore, instance change
can be applied (i.e., is successful) if and only if the change does not bring the
instance into the violated state. After a successful change, the instance continues
execution with the original trace. In Definition 4.5.1 ad-hoc instance change is
defined as a function ∆ that changes the instance model and assigns the changed
model to the instance without changing the instance trace if and only this does
not bring the instance in the state violated .

Definition 4.5.1. (Ad-hoc instance change ∆)
Let ∆ : Uci × Ucm 9 Uci be a partial function with domain dom(∆) =
{((σ, cm), cm ′) ∈ Uci × Ucm | ω((σ, cm ′)) 6= violated}. For all ((σ, cm), cm ′) ∈
dom(∆) it holds that ∆((σ, cm), cm ′) = (σ, cm ′). 2

Figure 4.4 shows examples of a successful and unsuccessful ad-hoc instance
change. Originally, there are four instances in Figure 4.4(a): instances ci 1 =
(σ1, cm1), ci2 = (σ2, cm1), ci3 = (σ3, cm3), and ci4 = (σ4, cm4). The state of ev-
ery instance is represented by a special line: instances ci 1, ci2 and ci4 are satisfied
and instance ci3 is temporarily violated . Figure 4.4(b) shows that it is possi-
ble to change the model of instance ci 2 to model cm2, because ω((σ2, cm2)) =
temporarily violated . On the other hand, Figure 4.4(c) shows that it is not pos-
sible to change the model of instance ci 2 to model cm3 (indicated with the Ø
symbol on the arrow), because ω((σ2, cm3)) = violated .

Consider, for example an instance ci = (σ, cmFT) of the Fractures Treat-
ment model cmFT from Example 4.3.2 where the patient was first examined,
then the sling was prescribed and finally rehabilitation was prescribed. The
state of this instance is ω(ci) = satisfied because the trace satisfies all manda-
tory constraints, i.e., σ ∈ E∗

�cmFT . Assume now that users want to add a
mandatory constraint c ∈ C to instance ci where c = (E, f) such that E =
{(prescribe sling, tc), (perform X ray, tc)} and f =“Can not complete prescribe
sling before completing perform X ray”). This cannot be done because adding
c as a mandatory constraint to the instance would bring the instance into state
violated , i.e., the sling was already prescribed before the perform X ray was com-
pleted. On the other hand, adding activity consult external ∈ A to the instance
is allowed because it leaves the instance in the satisfied state.

Ad-hoc adding or removing activities and optional constraints to a satisfied
or temporarily violated instance will always be successful, i.e. this change always

108 Chapter 4 Constraint-Based Approach

UCMUci

ci1

ci3

ci2

ci4

cm1

cm2

cm3

cm4

UCMUci

ci1

ci3

ci2

ci4

cm1

cm2

cm3

cm4

instance satisfied

Instance violated
Instance temporarily violated

(b) successful instance change

(c) unsuccessful instance change

UCMUci

ci1

c3

ci2

ci4

cm1

cm2

cm3

cm4

(a) constraint instances

1σ1σ

1σ

2σ2σ

2σ

3σ3σ

3σ

4σ4σ

4σ

Figure 4.4: Instance change

results in a changed instance, as shown in Property 4.5.2. This is because these
types of model changes do not influence the set of traces that satisfy the model
(cf. Property 4.2.4), and, therefore, to not change the state of the instance (cf.
Definition 4.4.2). On the one hand, the only effect that adding an activity to
an instance model has it that this activity becomes available for execution (cf.
Definition 4.4.4). On the other hand, after an activity has been removed from
an instance, its users can no longer execute events involving this activity but the
activity might still be in the instance trace if it was executed prior to the change.

Property 4.5.2. (Ad-hoc adding and removing activities and optional
constraints cannot cause failure of ∆)
Let ci ∈ Uci be a constraint instance such that ω(ci) 6= violated where
ci = (σ, (A,CM ,CO)) and let cm ′ ∈ Ucm be a constraint model where cm ′ =
(A′,CM ,C

′
O), then it holds that ∆(ci , cm ′) = (σ, cm ′), i.e., the change is suc-

cessful.

Proof. It holds that E∗
�cm = E∗

�cm ′ (cf. Property 4.2.4). Therefore, it also
holds that ω(ci) = ω(σ, cm ′) (cf. Definition 4.4.2) and (ω(ci) 6= violated) ⇒
(ω(σ, cm ′) 6= violated), i.e. (ci , cm ′) ∈ dom(∆) and ∆(ci , cm ′) = (σ, cm ′). 2

Since mandatory constraints influence the set of traces that satisfy the model
(cf. Property 4.2.5) and state of an instance (cf. Definition 4.4.2), adding and
removing these constraints can have an effect on the ad-hoc instance change.
A mandatory constraint can always be successfully removed from a satisfied or
temporarily violated instance because this type of ad-hoc change will never cause
a violated state of the instance, as shown in Property 4.5.3.

Section 4.6 Verification of Constraint Models 109

Property 4.5.3. (Ad-hoc removing mandatory constraints cannot cause
failure of ∆)
Let ci ∈ Uci be a constraint instance such that ω(ci) 6= violated where
ci = (σ, (A,CM ,CO)) and let cm ′ ∈ Ucm be a constraint model where cm ′ =
(A,C ′

M ,CO) such that C ′
M ⊂ CM , then it holds that ∆(ci , cm ′) = (σ, cm ′), i.e.,

the change is successful.

Proof. Because ω((σ, cm)) 6= violated it holds that (σ ∈ E∗
�cm) ∨ (∃γ ∈ E∗ :

σ + γ ∈ E∗
�cm) (cf. Definition 4.4.2). Because it holds that E∗

�cm ⊆ E∗
�cm ′ (cf.

Property 4.2.5), it also holds that ((σ ∈ E∗
�cm) ∨ (∃γ ∈ E∗ : σ + γ ∈ E∗

�cm)) ⇒
((σ ∈ E∗

�cm ′) ∨ (∃γ ∈ E∗ : σ + γ ∈ E∗
�cm ′)), i.e., it holds that ω(cm ′) 6= violated .

Therefore, it holds that (ci , cm ′) ∈ dom(∆) and ∆(ci , cm ′) = (σ, cm ′). 2

As we showed in this section, the only requirement of ad-hoc change in con-
straint models is that the instance does not become violated after the change.
In Chapter 5 we will show a formal language for constraint specification that
offers a simple method for determining the state of a changed instance. Using
this language, the declare prototype supports ad-hoc change by accepting it if
the new state of the instance is not violated . If it is, the prototype reports this
error and the instance continues it execution based on the original model. The
ad-hoc change in declare will be described in Chapter 6.

4.6 Verification of Constraint Models

Verification of process models enables automated detection of possible errors in
models [89]. Many verification techniques for identifying possible errors in proce-
dural process models aim at detecting syntactical errors (e.g., deadlck and live-
lock) [221] and semantical errors (e.g., ‘can a process always lead to an acceptable
final state’) [89]. On the one hand, verification of models specified in languages
with a formal mathematical definition (e.g., Petri nets [87,177,199]) classifies the
model as a correct or incorrect [19,31,83,89,124,254,255]. On the other hand, var-
ious verification techniques have been proposed for informal process modeling lan-
guages that use graph reduction [30,86,161,170,177,222,223,268] or translation
of an informal model to a formal one, which is then verified [17, 82, 88, 157, 170].

Just like the procedural ones, constraint models can also contain errors. In
this section we describe verification of constraint models. While executing an
instance of a constraint model cm = (A,CM ,CO) users execute activities a ∈ A
by triggering events e ∈ A × T on these activities (cf. the execution rule in
Definition 4.4.4). During the execution the instance can change state depending
on the events that were triggered. At the end of the execution, an instance must
be satisfied , in order to satisfy all mandatory constraints (cf. Section 4.4.1).
Certain combinations of constraints can cause two types of errors in constraint
models that affect later executions of model instances: (1) dead events and (2)

110 Chapter 4 Constraint-Based Approach

conflicts. An event is dead in a model if none of the traces that satisfy the model
contains this event, i.e., a dead event cannot be executed in any instance of the
model. A model contains conflicts if there is no trace that satisfies the model,
i.e., instances of the model can never be satisfied .

4.6.1 Dead Events

An event is dead in a model if none of the traces that satisfy the model contains
this event, as specified in Definition 4.6.1. In other words, if a dead event would
be triggered and added to the execution trace of a model instance, the instance
would become violated . For example, it is possible that, due to the combination
of two mandatory constraints in model cm = (A,CM ,CO), event (a, started)
(where a ∈ A) is dead in the model, i.e., none of the traces that satisfy the model
contains event (a, started). The consequence of event (a, started) being dead
is that, during the execution of instances of this model, event (a, started) will
never be enabled (cf. Definition 4.4.3) and it will never be possible to start (and
execute) activity a from the model because adding this event to the instance trace
would cause the instance to become violated (cf. Definition 4.4.4). Although it
will be possible that users execute instances of the model in a way that instances
are satisfied by never executing activity a, it is important to verify the model
against this error and to issue a warning that, although activity a is in the model,
it will never be possible to execute it.

Definition 4.6.1. (Dead event)
Let cm ∈ Ucm be a constraint model. Event e ∈ E is a dead in model cm, if
and only if @σ ∈ E∗

�cm : e ∈ σ. The set of dead events of model cm is defined as
ΠDE(cm) = {e ∈ E | @σ ∈ E∗

�cm : e ∈ σ} 2

The composition of all mandatory constraints in the model determines which
traces satisfy the model (cf. Definition 4.2.2). Therefore, a combination of
mandatory constraints may cause an event to be dead. The smallest subset
of mandatory constraints for which an event is dead is called the cause of the
dead event.

Definition 4.6.2. (Cause of dead event)
Let cm ∈ Ucm be a constraint model where cm = (A,CM ,CO) and e ∈ ΠDE(cm)
be a dead event in cm. The set of constraints C ⊆ CM is a cause of the dead
event e if and only if it holds that (e ∈ ΠDE((A,C,CO)))

∧
(∀C ′ ⊂ C : e /∈

ΠDE((A,C ′,CO))).

We use Cdead
e (cm) to denote the set of all causes of dead event e in model

cm, i.e., .Cdead
e (cm) = {C ⊆ CM | (e ∈ ΠDE((A,C,CO)))

∧
(∀C ′ ⊂ C : e /∈

ΠDE((A,C ′,CO)))} 2

Consider the constraint model cmR from Example 4.6.3 containing four ac-
tivities and three constraints. Event (curse, completed) is dead in constraint

Section 4.6 Verification of Constraint Models 111

model cmR. Due to the constraint c2 all traces that satisfy model cmR must
contain event (become holy , completed). On the other hand, due to constraint
c3 all traces that satisfy model cmR and contain event (become holy , completed)
cannot contain event (curse, completed). Therefore, due to the combination of
constraints c2 and c3 event (curse, completed) is a dead event in this model, i.e.,
(curse, completed) ∈ ΠDE(cmR) and constraints {c2, c3} are the only cause of
this dead event (i.e., Cdead

e (cm) = {{c2, c3}}).
Example 4.6.3. (A constraint model with a dead event)
Recall that tc ∈ T is an event type where tc = completed . Let cmR ∈ Ucm ,
cmR = (AR,CR

M ,C
R
O) be a constraint model such that:

• AR = {pray , curse, bless , become holy} is a set of activities,

• CR
M = {c1, c2, c3} is a set of mandatory constraints where

– c1 = (E1, f1) such that E1 = {(curse , tc), (pray , tc)} and f1 =“Must
complete at least one occurrence of activity pray after every occurrence
of activity curse”,

– c2 = (E2, f2) such that E2 = {(become holy , tc)} and f2 =“Must
complete at least one occurrence of activity become holy”,

– c3 = (E3, f3) such that E3 = {(curse, tc), (become holy , tc)} and
f3 =“If completed an occurrence of activity curse then cannot com-
plete any occurrence of activity become holy and if completed an
occurrence of activity become holy then cannot complete any occur-
rence of activity curse”, and

• CR
O = ∅ is a (empty) set of optional constraints.

2

If there is a dead event in a model, then there must be at least one cause of the
dead event, i.e., then must be at least one combination of mandatory constraints
that causes this event to be dead. A dead event can be removed from a model if
all sets that cause the dead event are removed from the model. In other words,
it is necessary to remove at least one constraint from each of the sets that cause
the dead event in order for the dead event to become ‘alive’ again.

Property 4.6.4. (A dead event is removed from a constraint model if
and only if at least one mandatory constraint is removed from each of
the constraint sets that cause the dead event)
Let cm ∈ Ucm be a constraint model where cm = (A,CM ,CO) and e ∈ E an
event such that e ∈ ΠDE(cm). Let cm ′ ∈ Ucm be a constraint model where
cm ′ = (A′,C ′

M ,C
′
O) such that C ′

M ⊂ CM , then it holds that (∀C ∈ Cdead
e (cm) :

C * C ′
M) ⇔ e /∈ ΠDE(cm ′).

Proof. First, we prove that it holds that (∀C ∈ Cdead
e (cm) : C * C ′

M) ⇒ e /∈
ΠDE(cm ′). We will prove that this holds by showing that it does not hold that

112 Chapter 4 Constraint-Based Approach

(∀C ∈ Cdead
e (cm) : C * C ′

M) ⇒ e ∈ ΠDE(cm ′). If it holds that e ∈ ΠDE(cm ′),
then it also holds that ∀C ∈ Cdead

e (cm ′) : C ⊆ C ′
M . Because it holds that

∀C ∈ Cdead
e (cm ′) : C ⊆ C ′

M (cf. Definition 4.6.2) and C ′
M ⊂ CM , it also holds

that ∀C ∈ Cdead
e (cm ′) : C ⊂ CM and, therefore, it holds that ∀C ∈ Cdead

e (cm ′) :
C ∈ Cdead

e (cm). In other words, if there is a cause C ⊆ C ′
M of dead event e in

model cm ′, then this cause also exists in the original model cm , i.e., C ⊆ CM .
Therefore, it holds that ∃C ∈ Cdead

e (cm) : C ⊆ C ′
M , which is in contradiction

with the statement ∀C ∈ Cdead
e (cm) : C * C ′

M , and it does not hold that
(∀C ∈ Cdead

e (cm) : C * C ′
M) ⇒ e ∈ ΠDE(cm ′).

Second, we prove that it holds that (∃C ∈ Cdead
e (cm) : C ⊆ C ′

M) ⇒ e ∈
ΠDE(cm ′). If it holds that ∃C ∈ Cdead

e (cm) : C ⊆ C ′
M , then it holds that ∃C ⊆

C ′
M : e ∈ ΠDE(A′, C,C ′

O), i.e., it holds that ∃C ⊆ C ′
M : ∀σ ∈ E∗

�A′,C ,C ′
O

: e /∈ σ.

Because C ⊆ C ′
M it holds that E∗

�(A′ ,C ′
M

,C ′
O

) ⊆ E∗
�A′,C ,C ′

O

(cf. Property 4.2.5)

and, therefore, it holds that ∀σ ∈ E∗
�A′,C ′

M
,C ′

O

: e /∈ σ, i.e., it holds that e is dead

in cm ′ (i.e., e ∈ ΠDE(cm ′)). 2

A formal language for constraint specification will be presented in Chap-
ter 5. This LTL-based language enables a simple method for verification of
constraint models against dead events. This method is used in the declare

prototype (that will be presented in Chapter 6) to verify constraint models
against dead events and detect so-called dead activities. When verifying a model
cm = (A,CM ,CO), for each model activity a ∈ A declare tests if events
(a, started) and (a, completed) are dead. If at least one of these events is dead,
the dead activity verification error is reported and the smallest set(s) that cause
it. In this way, dead events can be easily detected and eliminated in declare by
removing at least one constraint from each of the sets of constraints that cause
this error.

4.6.2 Conflicts

If there exists no trace that satisfies a constraint model, then this model has
a conflict. Unlike models with dead activities, models with conflicts are not
executable because they can never be satisfied by any trace, i.e., instances of
models with conflicts are always violated .

Definition 4.6.5. (Conflict)
Model cm ∈ Ucm has a conflict if and only if E∗

�cm = ∅. 2

The composition of all mandatory constraints in a model determines which
traces satisfy the model (cf. Definition 4.2.2). A certain combination of manda-
tory constraints may cause a conflict in the model. The smallest subset of manda-
tory constraints that contains a conflict is called the cause of conflict.

Definition 4.6.6. (Cause of conflict)
Let cm ∈ Ucm be a constraint model with a conflict where cm = (A,CM ,CO).

Section 4.6 Verification of Constraint Models 113

The set of constraints C ⊆ CM is a cause of the conflict if and only if it holds
that (E∗

�(A,C ,CO) = ∅) ∧
(∀C ′ ⊂ C : E∗

�(A,C ′,CO) 6= ∅).
We use Cconf(cm) to denote the set of all causes of conflict in model cm, i.e.,

Cconf (cm) = {C ⊆ CM | (E∗
�(A,C ,CO) = ∅) ∧

(∀C ′ ⊂ C : E∗
�(A,C ′,CO) 6= ∅)} 2

Constraint model cmR from Example 4.6.7 has a conflict. Due to con-
straints c2 and c4 all traces that satisfy model cmR must contain events
(become holy , completed) and (curse, completed), respectively. On the other
hand, due to constraint c3 all traces that satisfy model cmR must not con-
tain both events (become holy , completed) and (curse, completed). Therefore,
due to the combination of constraints c2, c3 and c4 this model has a con-
flict, i.e., E∗

�cmR = ∅ and constraints {c2, c3, c4} are the cause of this conflict

(Cconf (cmR) = {{c2, c3, c4}}).
Example 4.6.7. (A constraint model with a conflict)
Recall that tc ∈ T is an event type where tc = completed 4. Let cmR ∈ Ucm ,
cmR = (AR,CR

M ,C
R
O) be a constraint model such that:

• AR = {pray , curse, bless , become holy} is a set of activities,

• CR
M = {c1, c2, c3, c4} is a set of mandatory constraints where:

– c1 = (E1, f1) such that E1 = {(curse , tc), (pray , tc)} and f1 =“Must
complete at least one occurrence of activity pray after every occurrence
of activity curse”,

– c2 = (E2, f2) such that E2 = {(become holy , tc)} and f2 =“Must
complete at least one occurrence of activity become holy”,

– c3 = (E3, f3) such that E3 = {(curse, tc), (become holy , tc)} and
f3 =“If completed an occurrence of activity curse then cannot com-
plete any occurrence of activity become holy and if completed an
occurrence of activity become holy then cannot complete any occur-
rence of activity curse”,

– c4 = (E4, f4) such that E4 = {(curse, tc)} and f4 =“Must complete at
least one occurrence of activity curse”, and

• CR
O = ∅ is a (empty) set of optional constraints.

2

If a model has a conflict, then there must be at least one cause of the conflict, i.e.,
then must be at least one combination of mandatory constraints that cause the
conflict. A conflict can be removed from a model if all sets that cause the conflict
are removed from the model, i.e., it is necessary to remove at least one constraint
from each of the sets that cause the conflict in order remove the conflict from the
model.

4For the simplicity we will assume in this example that an activity is successfully executed
when event of the type completed was triggered on this activity.

114 Chapter 4 Constraint-Based Approach

Property 4.6.8. (A conflict is removed from a constraint model if and
only if at least one mandatory constraint is removed from each of the
constraint sets that cause the conflict)
Let cm ∈ Ucm be a constraint model where cm = (A,CM ,CO) such that E∗

�cm =
∅. Let cm ′ ∈ Ucm be a constraint model where cm ′ = (A′,C ′

M ,C
′
O) such that

C ′
M ⊂ CM , then it holds that (∀C ∈ Cconf(cm) : C * C ′

M) ⇔ E∗
�cm ′ 6= ∅.

Proof. First, we prove that it holds that (∀C ∈ C conf(cm) : C * C ′
M) ⇒

E∗
�cm ′ 6= ∅. We will prove that it holds that E∗

�cm ′ 6= ∅ by showing that it does
not hold that (∀C ∈ Cconf(cm) : C * C ′

M) ⇒ E∗
�cm ′ = ∅. If it holds that

E∗
�cm ′ = ∅, then it also holds that ∀C ∈ C conf(cm ′) : C ⊆ C ′

M . Because it
holds that ∀C ∈ Cconf(cm ′) : C ⊆ C ′

M (cf. Definition 4.6.6) and C ′
M ⊂ CM ,

it also holds that ∀C ∈ Cconf(cm ′) : C ⊂ CM and, therefore, it holds that
∀C ∈ Cconf(cm ′) : C ∈ Cconf (cm). In other words, if there if there is a cause
C ⊆ C ′

M of dead event e in model cm ′, then this cause also exists in the original
model cm, i.e., C ⊆ CM . Therefore, it holds that ∃C ∈ C conf(cm) : C ⊆ C ′

M ,
which is in contradiction with the statement ∀C ∈ C conf (cm) : C * C ′

M , and it
does not hold that (∀C ∈ Cconf (cm) : C * C ′

M) ⇒ E∗
�cm ′ = ∅.

Second, we prove that it holds that (∃C ∈ C conf(cm) : C ⊆ C ′
M) ⇒ E∗

�cm ′ =
∅. If it holds that ∃C ∈ Cconf (cm) : C ⊆ C ′

M , then it holds that ∃C ⊆ C ′
M :

E∗
�A′,C ,C ′

O

= ∅. Because C ⊆ C ′
M it holds that E∗

�(A′,C ′
M

,C ′
O

) ⊆ E∗
�A′,C ,C ′

O

(cf.

Property 4.2.5) and, therefore, it holds that E∗
�cm ′ = ∅. 2

If a model contains a conflict, then its set of satisfying traces is empty and
therefore all events are dead in the model.

Property 4.6.9. (All events are dead in a model with conflict)
Let cm ∈ Ucm be a constraint model such that E∗

�cm = ∅, then it holds that
ΠDE(cm) = E.

Proof. If it holds that E∗
�cm = ∅, then ∀e ∈ E : @σ ∈ E∗

�cm : e ∈ σ, i.e.,
ΠDE(cm) = E. 2

A constraint model cm ∈ Ucm does not necessarily have a conflict even if all
events are dead in cm because, depending on the model, the empty trace could
satisfy the model.

In Chapter 5 we will show a formal language for constraint specification with
a simple method for detecting conflicts. This method is also used in the declare

prototype to verify constraint models against conflicts and detect the smallest
set(s) that cause this error, which enables easy detection and elimination of
conflicts.

4.6.3 Compatibility of Models

In some cases it is necessary to check if two or more processes are compatible
with each other. This can be checked by first merging the process (constraint)

Section 4.6 Verification of Constraint Models 115

models and then verifying the merged model for errors. Constraint models can
be merged together to create a new constraint model containing all activities and
constraints from the two or more original models.

Definition 4.6.10. (Merging constraint models ⊕)
Let cm1, cm2 . . . cmn ∈ Ucm be n constraint models where ∀1≤i≤ncmi =
(Ai,C i

M ,C
i
O). The merged model cm1, cm2 . . . cmn is a constraint model cm ′ =

cm1⊕cm2⊕. . .⊕cmn where cm ′ = (A′,C ′
M ,C

′
O) such that A′ = A1∪A2∪. . .∪An,

C ′
M = C 1

M ∪C 2
M ∪ . . .∪C n

M and C ′
O = C 1

O ∪C 2
O ∪ . . .∪C n

O . Note that by definition
E∗

�cm ′ = E∗
�cm1 ∩ E∗

�cm2 ∩ . . . ∩ E∗
�cmn . 2

Example 4.6.11 shows three constraint models cm 1, cm2 and cm3 and how
these models can be merged into cm 1 ⊕ cm2, cm1 ⊕ cm3, cm2 ⊕ cm3 and cm1 ⊕
cm2 ⊕ cm3.

Example 4.6.11. (Merging three constraint models)
Recall that tc ∈ T is an event type where tc = completed . Let cm1, cm2, cm3 ∈
Ucm be three constraint models where:

• cm1 = (A1,C 1
M ,C

1
O) such that:

– A = {pray , curse, bless , become holy} is a set of activities.

– CM = {c1, c2} is a set of mandatory constraints where

∗ c1 = (E1, f1) such that E1 = {(curse , tc), (pray , tc)} and
f1 =“Must complete at least one occurrence of activity pray
after every completed occurrence of activity curse”, and

∗ c2 = (E2, f2) such that E2 = {(become holy , tc)} and f2 =“Must
complete at least one occurrence of activity become holy”, and

– CO = ∅ is a (empty) set of optional constraints.

• cm2 = (A2,C 2
M ,C

2
O) such that:

– A2 = {curse, become holy} is a set of activities,

– C 3
M = {c3} is a set of mandatory constraints where c3 = (E3, f3) such

that E3 = {(curse , tc), (become holy , tc)} and f3 =“If completed oc-
currence of activity curse then cannot complete any occurrence of ac-
tivity become holy and if completed occurrence of activity become holy
then cannot complete any occurrence of activity curse”, and

– C 2
O = ∅ is a (empty) set of optional constraints.

• cm3 = (A3,C 3
M ,C

3
O) such that:

– A3 = {curse} is a set of activities,

– C 2
M = {c4} is a set of mandatory constraints where c4 = (E4, f4)

such that E4 = {(curse , tc)} and f4 =“Must complete at least one
occurrence of activity curse”, and

– C 2
O = ∅ is a (empty) set of optional constraints.

116 Chapter 4 Constraint-Based Approach

Merging models cm1 and cm2 yields the constraint model cm1⊕2 = cm1⊕cm2

where cm1⊕2 = (A1⊕2,C 1⊕2
M ,C 1⊕2

O) such that:

• A1⊕2 = A1 ∪ A2 = {pray , curse , bless , become holy},
• C 1⊕2

M = C 1
M ∪ C 2

M = {c1, c2, c3}, and

• C 1⊕2
O = C 1

O ∪ C 2
O = ∅.

Merging models cm1 and cm3 yields the constraint model cm1⊕3 = cm1⊕cm3

where cm1⊕3 = (A1⊕3,C 1⊕3
M ,C 1⊕3

O) such that:

• A1⊕3 = A1 ∪ A3 = {pray , curse , bless , become holy},
• C 1⊕3

M = C 1
M ∪ C 3

M = {c1, c2, c4}, and

• C 1⊕3
O = C 1

O ∪ C 3
O = ∅.

Merging models cm2 and cm3 yields the constraint model cm2⊕3 = cm2⊕cm3

where cm2⊕3 = (A2⊕3,C 2⊕3
M ,C 2⊕3

O) such that:

• A2⊕3 = A2 ∪ A3 = {curse, become holy},
• C 2⊕3

M = C 2
M ∪ C 3

M = {c3, c4}, and

• C 2⊕3
O = C 2

O ∪ C 3
O = ∅.

Merging models cm1, cm2 and cm3 yields the constraint models cm1⊕2⊕3 =
cm1 ⊕ cm2 ⊕ cm3 where cm1⊕2⊕3 = (A1⊕2⊕3,C 1⊕2⊕3

M ,C 1⊕2⊕3
O) such that:

• A1⊕2⊕3 = A1 ∪ A2 ∪ A3 = {pray , curse, bless , become holy},
• C 1⊕2⊕3

M = C 1
M ∪ C 2

M ∪C 3
M = {c1, c2, c3, c4}, and

• C 1⊕2⊕3
O = C 1

O ∪ C 2
O ∪ C 3

O = ∅.
2

Verification of a merged model can detect that the merging causes some events
to be dead. This type of incompatibility suggests that, even though the event
can be executed in individual models, if the two models (i.e., processes) would
be merged, the event would be dead in the resulting model.

Definition 4.6.12. (Dead event incompatibility)
Let cm1, cm2 . . . cmn ∈ Ucm be n constraint models and e ∈ E be an event that
is not dead in these models, i.e. ∀1≤i≤ne /∈ ΠDE(cm i). If e ∈ ΠDE(cm1 ⊕ cm2 ⊕
. . . ⊕ cmn), then we say that e is dead due to the incompatibility of models
cm1, cm2, . . . , cmn. 2

Consider the original models cm1, cm2 and cm3 from Example 4.6.11. There
are no dead events in the original models, i.e., ∀1≤i≤3ΠDE(cm i) = ∅. However,
event (curse, completed) is dead in the merged model cm 1⊕2 = cm1 ⊕ cm2, i.e.,
ΠDE(cm1⊕2) = {(curse , completed)} and the cause of this dead event are con-
straints Cdead

e (cm1⊕2) = {{c2, c3}} (note that the model cm1⊕2 is the same like
the model from Example 4.6.3). Therefore, event (curse, completed) is dead due
to incompatibility of models cm1 and cm2.

Section 4.7 Summary 117

An even more problematic type of incompatibility is conflict incompatibility,
where the merged process are fully incompatible with each other.

Definition 4.6.13. (Conflict incompatibility)
Let cm1, cm2, . . . , cmn ∈ Ucm be n constraint models without conflicts, i.e.,
∀1≤i≤nE∗

�cm i 6= ∅. If E∗
�cm1⊕cm2⊕...⊕cmn = ∅, then we say that cm1 ⊕ cm2 ⊕ . . .⊕

cmn has a conflict due to incompatibility of cm 1, cm2, . . . , cmn. 2

Consider the original models cm1, cm2 and cm3 from Example 4.6.11. There
are no conflicts in any of the original models, i.e., ∀1≤n≤3E

∗
�cm i 6= ∅. However, the

merged model cm1⊕2⊕3 = cm1⊕cm2⊕cm3 has a conflict, i.e., E∗
�cm1⊕2⊕3 = ∅ and

the cause of this conflict are constraints C conf(cm1⊕2⊕3) = {{c2, c3, c4}} (note
that the model cm1⊕2⊕3 is the same like the model from Example 4.6.7). There-
fore, the merged model cm1⊕2⊕3 has a conflict due to the full incompatibility of
models cm1, cm2 and cm3.

4.7 Summary

In this chapter we have presented a formal foundation for a constraint-based
approach to process models is based on models that consist of activities, optional
constraints and mandatory constraints. Mandatory constraints in the model
determine which are the possible executions of the model’s instances, i.e., they
determine the set of satisfying traces for the model5. The more mandatory
constraints the model has, the fewer possible executions there are likely to be.
The fewer mandatory constraints the model has, the more possible executions
there are likely to be. As an extreme example, any execution is possible if a
model does not have any mandatory constraints.

People execute instances of constraint models by triggering events on activi-
ties from the instances (e.g., started , completed , etc.). Events that users trigger
by executing activities are added to the instance trace. Each change of the in-
stance trace causes the instance to change state – given the instance trace, the
instance can be satisfied , temporarily violated or violated . The execution rule
makes sure that users execute each instance in a way that does not violate the
instance model. Users can decide to finish executing a constraint instance (i.e.,
to close the instance) only if the instance state is satisfied .

The constraint-based approach presented in this chapter offers all types of
flexibility identified by [226–228] (cf. Section 2.1.2). By allowing everything that
does not violate mandatory constraints, constraint models offer many possibilities
for execution of model instances while enforcing a number of basic rules expressed
as constraints. Constraint models are, therefore, flexible by design [226–228],
unlike traditional approaches which require much more effort in order to support

5Chapter 5 describes a formal specification of constraints and sets of satisfying traces for
constraint models.

118 Chapter 4 Constraint-Based Approach

this type of flexibility (cf. Chapter 3). Optional constraints make constraint
models flexible by deviation [226–228] because these constraints are used as a
guidance for execution and people can decide whether to violate them or not.
Although constraint models allow for many possible executions, sometimes it
might be necessary to change the model of an already running instance (i.e.,
an instance that is being executed). This type of change is referred to as to
ad-hoc change and it makes constraint models be able to offer flexible by change
[226–228]. Ad-hoc change can be applied on an instance if and only if this change
does not result in a violated instance. Finally, in Section 6.11 we describe how the
declare prototype offers flexibility by underspecification [226–228] by allowing
for model decomposition.

Two types of errors can occur in constraint models. First, some events can
be dead in the model, i.e., users can never trigger these events while executing
model instances. This can lead to situations where users can never execute an
activity, although the activity is in the model. Second, it might happen that some
mandatory constraints are conflicting in the model. Due to this error, it is never
possible for any model instance to become satisfied and users cannot execute
such instances in a correct way. Verification of constraint models against dead
activities and conflicts is necessary in order to support development of correct
models. Moreover, constraint model verification needs to detect the smallest
group of mandatory constraints that cause the error in order to help developers
to understand and eliminate the error.

In the remainder of this thesis we will present a formal language that can
be used for constraint specification (in Chapter 5) and the declare system -
a prototype of a workflow management system based on this language and the
constraint-based approach (in Chapter 6). Note that the proposed language
is one example of a formal language suitable for a constraint-based approach
and that other languages could be used for the same purpose. The prototype
declare is developed to support easy implementation of any other LTL-based
language that can be used for this purpose.

Chapter 5

Constraint Specification with

Linear Temporal Logic

In Chapter 4 we presented a formal foundation for constraint-based process mod-
els. However, so far we did not propose a formal language for constraint specifica-
tion and in all examples in Chapter 4 we used a natural language (i.e., English) to
specify constraints (e.g., Example 4.3.2 on page 96). In this chapter we propose
Linear Temporal Logic (LTL) [74] as a formalism for constraint specification.
We will show how LTL can be used to specify constraints and to retrieve a fi-
nite representation of the set of traces that satisfy a constraint and a model
(cf. sections 4.1 and 4.2). Using LTL makes it easy to determine states of in-
stances and their constraints (cf. Section 4.4), to change instances in an ad-hoc
manner (cf. Section 4.5) and to verify constraint models (cf. Section 4.6). In
this chapter we present one particular example of an LTL-based language – the
ConDec language. ConDec constraints and models are represented graphically
to users, while underlying LTL formulas are hidden. Therefore, users of ConDec
models do not need to have knowledge of LTL. Note that, although we will use
the ConDec language throughout this chapter, the principles presented in this
chapter can be applied to any other language based on LTL or similar temporal
logics. All principles that are presented in this chapter are implemented in the
DECLARE prototype, which is described in Chapter 6.

5.1 LTL for Business Process Models

LTL is a special kind of logic and is used for describing sequences of transitions
between states in reactive systems [74]. In LTL formulas time is not consid-
ered explicitly. Instead, LTL can specify properties like ‘eventually some state is
reached’ (cf. the so-called ‘expectation’ properties in Section 4.4) or ‘some error
state is never reached’ (cf. the so-called ‘safety’ properties in Section 4.4). This
type of logic is extensively used in the field of model-checking: systems can be

120 Chapter 5 Constraint Specification with Linear Temporal Logic

checked against properties specified in LTL [74]. For this purpose, many algo-
rithms that generate automata from LTL formulas have emerged in the model-
checking field [74,111,112]. Automata generated from properties specified as LTL
formulas can be used to check if a system satisfies the properties. For example,
the SPIN tool [132] can check a system model specified in PROMELA (Process
Meta-Language) against properties specified in LTL. In order to check a property
against a system modeled in PROMELA, the SPIN tool generates two automata:
one representing the system model and one representing the negation of the LTL
formula representing the property. If the intersection of the two automata is
empty, then the system satisfies the property.

Due to its declarative nature, LTL can be used for the formal specification of
constraints in constraint-based process models. Automata generated from LTL
formulas can be used for automated execution and verification of such models.
Automata generated from LTL are used to represent the constraint-based model
itself and regulate the execution of the model in a way that satisfies the con-
straints specified as LTL formulas. However, there are two differences between
the regular LTL and the LTL applied to business process models. The two special
properties of LTL for business processes are illustrated in Figure 5.1.

AABABB A . . .

e1 e5e4e3e2 e6 e7

(a) ‘’regular LTL’’ trace

(b) ‘’business process LTL’’ trace

Figure 5.1: LTL for business processes

The first difference between regular LTL and the business processes LTL is the
length of traces. On the one hand, the model-checking field is mostly concerned
with complex systems that are designed not to halt, e.g., schedulers, telephone
switches, power plants, traffic lights, etc. Therefore, regular LTL considers in-
finite traces (cf. Figure 5.1(a)). On the other hand, execution of each business
process models eventually terminates (cf. Section 4). Because of this, the infinite
semantics of regular LTL cannot be applied [74, 111, 112] to constraint models
and we need to adjust LTL to consider finite traces (cf. Figure 5.1(b)) in order to
apply LTL to constraint models. Note that it is possible to check a finite system
in the SPIN tool by using the Stuttering extension: the system is modeled in such
a way in PROMELA that the last state is repeated infinitely. However, in the
constraint-based approach the LTL formula represents the system itself, and the
finite trace semantics needs to be applied to LTL itself. In order to apply LTL to
the finite semantics of execution traces of constraint models, we use a simple and
efficient approach for applying LTL to finite traces presented by Giannakopoulou

Section 5.1 LTL for Business Process Models 121

et al. in [112]. Further in this section, we will consider the LTL for finite traces
presented in [112] in more detail.

The second difference between regular LTL and the business processes LTL
is the semantics of elements in a trace. Regular LTL assumes that one element
of the trace can refer to more than one property. For example, it is possible to
monitor two properties: (A) the motor temperature is higher than 80 degrees and
(B) the speed of the turbine is higher than 150 km/h. As Figure 5.1(a) shows,
each element of the trace could then refer to: (1) none of the two properties, i.e.,
neither A nor B hold, (2) only property A, i.e., A holds and B does not hold,
(3) only property B, i.e., B holds and A does not hold, or (4) properties A and
B, i.e., both A and B hold. In the case of execution traces of constraint models
(cf. Definition 4.1.1 on page 85) we assume that only one property holds at one
moment, i.e., each of the elements of the trace refers to exactly one event, as
shown in Figure 5.1(b).

In the remainder of this section we present how we adjust LTL itself and
automata generated from LTL to finite traces consisting of single events, as
shown in Figure 5.1(b). A well-formed LTL formula consists of classical logical
operators and several temporal operators, and it evaluates to true or false given
an execution trace (cf. Definition 5.1.1).

Definition 5.1.1. (Well-Formed LTL Formula)
Recall that E is the set of all possible events (cf. Section 4.1). Let E ⊆ E be
a set of events. Every e ∈ E is a well-formed formula over E . If p and q are
well-formed formulas, then also true, false, !p, p ∧ q, p ∨ q, 2p, 3p, ©p, pUq
and pWq are also well-formed formulas over E .

From a semantical point of view, a well-formed LTL formula p over E is a
function p : E∗ → {true, false}. Let σ ∈ E∗ be a trace. If p is a well-formed
formula and it holds that p(σ) = true then we say that p satisfies σ, denoted by
σ � p. If p(σ) = false then we say that p does not satisfy σ, denoted by σ 2 p.
Recall that σi� denotes the suffix of σ starting at σ[i] (cf. Definition 4.1.1 on
page 85). The semantics of LTL are defined as follows:

proposition: σ � e if and only if e = σ[1], for e ∈ E ,

not (!): σ �!p if and only if not σ � p,

and (∧): σ � p ∧ q if and only if σ � p and σ � q,

or (∨): σ � p ∨ q if and only if σ � p or σ � q,

next (©): σ � ©p if and only if σ2� � p,

until (U): σ � pUq if and only if (∃1≤i≤n : (σi� � q ∧ (∀1≤j<i : σj� � p)), and

Also, abbreviations are used:

implication (p⇒ q): for !p ∨ q,
equivalence (p⇔ q): for (p ∧ q) ∨ (!p∧!q),

true (true): for p∨!p,

122 Chapter 5 Constraint Specification with Linear Temporal Logic

false (false): for !true,

eventually (3): for 3p = trueUp,

always (2): for 2p =!3!p, and

weak until (W): for pWq = (pUq) ∨ (2p).

2

As specified in Definition 5.1.1, a well-formed LTL formula can use classical
logical operators (!, ∧ and ∨) and several additional temporal operators (©, U ,
W , 2 and 3). The semantics of operators !, ∧ and ∨ is the same like in the
classical logic, while operators ©, U , W , 2 and 3 have a special, temporal,
semantics:

• Operator always (2p) specifies that p holds at every position in the trace
(cf. Figure 5.2(a)),

• Operator eventually (3p) specifies that p will hold at least once in the trace
(cf. Figure 5.2(b)),

• Operator next (©p) specifies that p holds in the next element of the trace
(cf. Figure 5.2(c)),

• Operator until (pUq) specifies that there is a position where q holds and p
holds in all preceding positions in the trace (cf. Figure 5.2(d)),

• Operator weak until (pWq) is similar to operator until (U), but it does not
require that q ever becomes true.

(a) always - [] p

p p p p p p p p p p

p p p p p p q q qp

(b) eventually - <> p

(c) next - O p (d) until - p U q

]1[σ]2[σ]3[σ]4[σ]5[σ]6[σ]7[σ]8[σ]9[σ]1[σ]2[σ]3[σ]4[σ]5[σ]6[σ]7[σ]8[σ]9[σ

]1[σ]2[σ]3[σ]4[σ]5[σ]6[σ]7[σ]8[σ]9[σ]1[σ]2[σ]3[σ]4[σ]5[σ]6[σ]7[σ]8[σ]9[σ

Figure 5.2: Semantics of some LTL operators

The difference between the regular LTL and LTL in Definition 5.1.1 is two-
fold. First, the finite semantics is expressed in the until (U) operator [112]. In
regular LTL the until operator is defined as follows: σ � ϕUψ if and only if
(∃1≤i : (σi� � q ∧ (∀1≤j<i : σj� � p)). The fact that i does not have an upper
bound (i.e., ∃1≤i : . . .) reflects the infinite semantics of regular LTL. The finite
semantics of traces is reflected in the upper bound n of i in the until (U) operator
in Definition 5.1.1 (i.e., ∃1≤i≤n : . . . because |σ| = n). Second, the fact that one
element of a trace can refer to multiple properties in regular LTL and to one

Section 5.2 ConDec: An Example of an LTL-Based Constraint Language 123

property in LTL for business processes is expressed in the way the proposition
is defined. On the one hand, in regular LTL it is defined that σ � e if and only
if e ∈ σ[1], for e ∈ E , i.e., each element σ[i] of a trace is a set of properties. On
the other hand, in Definition 5.1.1 we consider a special case of this requirement
where each element of a trace refers to exactly one event, i.e., we check if the
event is the first element of the trace e = σ[1].

Because LTL formulas evaluate execution traces to true or false (cf. Defi-
nition 5.1.1), LTL can be used to formally specify the semantics of a constraint
c = (E, f) (cf. Definition 4.1.4 on page 87), i.e., LTL can be used to formally spec-
ify f . We refer to any constraint for which f is a well-formed LTL formula over
E as to a LTL constraint. Similarly, if all mandatory and optional constraints in
a constraint model are LTL constraints, then we say that the constraint model
is an LTL constraint model.

Note that LTL is not the only language that can be used for formal specifi-
cation constraints. Other declarative languages can be also used. For example,
Computation Tree Logic (CTL) [74] is another logic that can be used to spec-
ify the semantics of constraints. Although LTL and CTL are similar languages,
each of them has some advantages over the other. However, so far, the debate
about which of these two languages is ‘better’ remains unsolved [132, 253]. For
example, there are some properties that can be specified only in LTL or in CTL,
but not in both languages [132]. On the one hand, the fairness property (for
each execution, there is some state at which a property starts to hold forever)
can be expressed in LTL, but not in CTL. On the other hand, the reset property
(from every state there exists at least one execution that can return the system
to its initial state) can be expressed in CTL, but not in LTL. We chose LTL for
the specification of constraints for two reasons. First, we were inspired by the so
called LTL Checker plug-in [25] of the process mining tool ProM [8, 91], which
can be used for verification of past executions against properties specified in LTL
(the LTL Checker is described in more detail in Chapter 7). Second, as a simple
and straight-forward language, LTL seems to be be a good starting point for the
constraint-based approach.

5.2 ConDec: An Example of an LTL-Based Con-

straint Language

ConDec is a constraint-based language that uses LTL to formally specify the
semantics of constraints. Because LTL formulas can be difficult to understand
by non-experts, ConDec associates a graphical representation to each constraint.
By using this approach, users of ConDec models do not need to have knowledge
of LTL. Instead, they can learn the intuitive meanings of names and graphical
representations of constraints.

Traditional process modeling languages offer a small set of constructs that

124 Chapter 5 Constraint Specification with Linear Temporal Logic

can be used to model relationships between process activities (e.g., sequence,
choice branching, parallel branching and loops). Because it uses LTL for con-
straint specification, ConDec offers many constraint templates, i.e., types of
constraints that can be used to create constraints in ConDec models. Consider,
for example, the following two constraints: (1) the constraint c1 from the model
cmR in Example 4.2.3 on page 92 specifying that f1 = “Every occurrence of
event (curse, completed) must eventually be followed by at least one occurrence
of event (pray , completed).” and (2) the constraint c6 from model cmFT in
Example 4.3.2 on page 96, which specifies that f6 =“Every occurrence of event
(perform surgery, completed) must eventually be followed by at least one oc-
currence of event (prescribe rehabilitation, completed).” The first constraint
can be specified with formula 2((curse, completed) ⇒ 3(pray , completed))
and the second one with a similar formula 2((perform surgery, completed) ⇒
3(prescribe rehabilitation, completed)). Both constraints impose the same type
of relation, i.e., one event is a response of the other event, and their LTL spec-
ifications are similar: 2((A, completed) ⇒ 3(B , completed)). Instead of having
to individually specify formulas for these two constraints in their models, the
constraints can be created from the constraint template called response. Each
template in ConDec has (1) a name, (2) an LTL formula and (3) a graphical
representation. Figure 5.3 shows how templates are used to create constraints in
ConDec models.

prescribe
rehabilitation

perform
surgery

response

C
on

D
ec

TE

M
P

LA
TE

S
C

on
D

ec

M
O

D
E

LS

praycurse response

[] ((curse,completed) ->
<> (pray,completed))

name

graphical

LTL

semantics

graphicalC
on

D
ec

C

O
N

S
TR

A
IN

TS

BA response

[] ((A,completed) -> <> (B,completed))

response...

...

...

...

...

...

...

...

...

[] ((perform surgery,completed) ->
 <> (prescribe rehabilitation,completed))

Religion

Fractures Treatment

praycurse
response

bless

prescribe
rehabilitation

perform
surgery

responsecheck X
ray risk

perform X
ray reposition prescribe

sling

apply cast remove
cast

succession

alt precedence

1 of 4precedence

init

examine
patient

Figure 5.3: ConDec templates, constraints and models

Section 5.2 ConDec: An Example of an LTL-Based Constraint Language 125

Instead of specifying the LTL formula and graphical representation separately
for each constraint, a constraint is created based on a template: a constraint in-
herits the name, graphical representation and the LTL formula from its template.
Constraints are presented graphically in ConDec models, while the underlying
LTL formula remains hidden. For example, activities and constraints in the two
ConDec models in Figure 5.3 are represented graphically. Activities are presented
as rectangles and constraints as special lines between activities. The model cmR

from Example 4.2.3 on page 92 has three activities and one constraint and the
Fractures Treatment model cmFT from Example 4.3.2 on page 96 has nine ac-
tivities and six constraints. ConDec models for these two examples are shown
in Figure 5.3. Each of the constraints in these two models is created from a
ConDec template, i.e., the graphical representation of the template represents
the constraint while the underlying LTL formula remains hidden. Due to this
fact, users do not need to be LTL experts in order to develop and work with
ConDec models. Instead, it is enough to learn the graphical representation and
semantics of ConDec templates, e.g., the response template between activities A
and B is represented by the special line like in Figure 5.3 and it specifies that
every occurrence of A has to be eventually followed by at least one occurrence of
B. We refer to ‘imaginary’ activities of a template as to template’s parameters.
For example, the response template has two parameters, i.e., A and B.

The ConDec language is just one example of a language for constraint spec-
ification. Other languages can use different types of constraints depending on
the application area, e.g., the DecSerFlow language [37, 38] for web services do-
main, the CIGDec language [176] for medical processes, etc. We used property
specification patterns presented in [95] as an inspiration for developing ConDec
templates. ConDec has more that twenty templates, which structured into three
groups. First, there are existence templates that specify how many times or
when one activity can be executed. For example, the 1..* template specifies that
an activity must be executed at least once and the init template can be used
to specify that execution of each instance has to start with a specific activity.
Second, relation templates define some relation between two (or more) activi-
ties. For example, response is a relation template. Third, negation templates
define a negative relation between activities. For example, the responded absence
template defines that two activities cannot be executed both within the same
instance. Finally, choice templates can be used to specify that one must choose
between activities. An example of such a template is the 1 of 4 template, which
is used to specify that at least one of the four given activities has to be executed.

5.2.1 Existence Templates

Figure 5.4 shows the so-called existence templates. These templates involve only
one activity and they define the cardinality or the position of the activity in a
trace. For example, the first template is called existence and it is graphically

126 Chapter 5 Constraint Specification with Linear Temporal Logic

represented with the annotation “1..∗” above the activity. This indicates that A
is executed at least once. Templates existence2, existence3, and existenceN all
specify a lower bound for the number of occurrences of A. It is also possible to
specify an upper bound for the number of occurrences of A. Templates absence,
absence2, absence3, and absenceN are also visualized by showing the range above
the activity, e.g., “0..N” for the requirement absenceN+. Similarly, it is possible
to specify the exact number of occurrences as shown in Figure 5.4, e.g., template
exactlyN (A) is denoted by an N above the activity and specifies that A should be
executed exactly N times. Finally, the template init(A) can be used to specify
that activity A must be the first executed activity in an instance.

existence(A)

existence2(A)

existence3(A)

existenceN(A)

absence2(A)

absence3(A)

absenceN+1(A)

exactly1(A)

exactly2(A)

exactlyN(A)

A
1..*

A
2..*

A
N..*

A
3..* A

N..*

A
0..1

A
0..2

A
0..N

A
0..N

A
1

A
2

A
N

A
N

init(A) A
init

Figure 5.4: Notations for the existence templates

Table 5.1 provides the semantics for each of the notations shown in Fig-
ure 5.4, i.e., each template is expressed in terms of an LTL formula. Formula
for template existence(A) defines that event (A, tc) has to hold eventually which
implies that in any instance A has to be executed at least once1. Formula for
template existenceN (A) shows how it is possible to express a lower bound N
for the number of occurrences of A in a recursive manner, i.e., existenceN (A) =
3((A, tc) ∧ ©(existenceN−(A))). Formula for template absenceN (A) can be
defined as the negation of existenceN (A). Together they can be combined to
express that for any full execution, A should be executed a pre-specified number
N , i.e., exactlyN (A) = existenceN (A) ∧ absenceN+(A). Formula for tem-
plate init(A) defines that the only possible events before event (A, tc) are events
(A, ts) and (A, tx), i.e., events involving activities other that A can be executed
only after event (A, tc).

5.2.2 Relation Templates

Figure 5.5 shows the so-called relation templates. While an existence template
describes the cardinality of one activity, a relation template defines a dependency
between multiple activities. Figure 5.5 only shows binary relationships (i.e.,
between two activities), however, in ConDec there are also templates that can
involve generalizations to three or more activities. For simplicity however, we

1Recall that an event consists of an activity (e.g., A) and an event type (e.g., tc).

Section 5.2 ConDec: An Example of an LTL-Based Constraint Language 127

Table 5.1: LTL formulas for existence templates (recall that ts , tc , tx ∈ T are event types such
that ts = started , tc = completed and tx = cancelled)

name of formula LTL expression
existence(A) 3(A, tc)
existence(A) 3((A, tc) ∧ ©(existence(A)))
existence(A) 3((A, tc) ∧ ©(existence((A))))

.
existenceN(A) 3((A, tc) ∧ ©(existenceN−(A)))
absence(A) !existence(A)
absence(A) !existence(A)

.
absenceN(A) !existenceN(A)
exactly(A) existence(A) ∧ absence(A)
exactly(A) existence(A) ∧ absence(A)

.
exactlyN(A) existenceN(A) ∧ absenceN+(A)
init(A) ((A, ts) ∨ (A, tx))W (A, tc)

first focus on the binary relationships shown in Figure 5.5. All relation templates
have activities A and B as parameters. The line between the two activities in
the graphical representation is unique for the formula, and reflects the semantics
of the relation. The responded existence template specifies that if activity A is
executed, activity B also has to be executed (at any time, i.e., either before or
after activity A is executed). According to the co-existence template, if one of
the activities A or B is executed, the other one has to be executed as well.

responded existence (A, B)

co-existence(A, B)

response(A, B)

precedence(A, B)

succession(A, B)

alternate response(A, B)

alternate precedence(A, B)

alternate succession(A, B)

chain response(A, B)

chain precedence(A, B)

chain succession(A, B) BA

A B

BA

A B

A B

BA

A B

A B

A B

A B

A B

Figure 5.5: Notations for the relation templates

While the first two templates do not consider the order of activities, tem-
plates response, precedence and succession do consider the ordering of activities.
Template response requires that every time activity A executes, activity B has to
be executed after it. Note that this is a very relaxed relation of response, because

128 Chapter 5 Constraint Specification with Linear Temporal Logic

B does not have to execute straight after A, and another A can be executed be-
tween the first A and the subsequent B. The template precedence requires that
activity B is preceded by activity A, i.e., it specifies that activity B can be exe-
cuted only after activity A is executed. Just like in the response template, other
activities can be executed between activities A and B. The combination of the
response and precedence templates defines a bi-directional execution order of two
activities and is called succession. In this template, both response and precedence
relations have to hold between the activities A and B.

Templates alternate response, alternate precedence and alternate succession
strengthen the response, precedence and succession templates, respectively. In
the alternate templates activities A and B have to alternate. If activity B is
alternate response of activity A, then after the execution of an activity A activity
B has to be executed and the activity A can be executed again only after activity
B is executed. Similarly, in the alternate precedence every instance of activity
B has to be preceded by an instance of activity A and the activity B cannot
be executed again before the activity A is also executed again. The alternate
succession is a combination of the alternate response and alternate precedence.

Even more strict ordering relations are specified by the last three templates
shown in Figure 5.5: chain response, chain precedence and chain succession.
These templates require that the executions of the two activities (A and B)
are next to each other. In the chain response template activity B has to be
executed directly after activity A. The chain precedence template requires that
the activity A directly precedes each B. Since the chain succession template is
the combination of the chain response and chain precedence templates, it requires
that activities A and B are always executed next to each other.

Table 5.2 shows LTL formulas for the templates shown in Figure 5.5. The
formula for responded existence(A,B) indicates that an occurrence of (A, tc)
should always imply an occurrence of event (B , tc), either before or after (A, tc).
Formula for co existence(A,B) means that the existence of (A, tc) implies the
existence of (B , tc) and vice versa. The formula for response(A,B) specifies
that at any point in time when event (A, tc) occurs there should eventually
be an occurrence of event (B , tc). The formula for precedence(A,B) is similar
to response but now looking backwards, i.e., (B , ts), (B , tc) and (B , tx) can-
not occur before occurrence of event (A, tc). The formula for succession(A,B)
is defined by combining both into: response(A,B) ∧ precedence(A,B). The
alternate response(A,B) formula specifies that any occurrence of (A, tc) implies
that in the next state and onwards no (A, tc) may occur until a (B , tc) occurs.
The formula for alternate precedence(A,B) is a bit more complicated: it implies
that at any point in time where (B , tc) occurs and at least one other occur-
rence of (B , tc) follows, an (A, tc) should occur before the following occurrence of
(B , ts), (B , tc) or (B , tx). The formula for alternate succession(A,B) combines
both into alternate response(A,B) ∧ alternate precedence(A,B). The formula
for chain response(A,B) indicates that any occurrence of (A, tc) should be di-

Section 5.2 ConDec: An Example of an LTL-Based Constraint Language 129

rectly followed by (B , ts). The formula for chain precedence(A,B) is the logical
counterpart: it specifies that any occurrence of (A, tc) should be directly followed
by (B , ts) and any occurrence of (B , ts) should be directly preceded by (A, tc).

Table 5.2: LTL formulas for relation templates (recall that ts , tc , tx ∈ T are event types such
that ts = started , tc = completed and tx = cancelled)

name of formula LTL expression
responded existence(A,B) 3(A, tc) ⇒ 3(B, tc)
co existence(A,B) 3(A, tc) ⇔ 3(B, tc)
response(A,B) 2((A, tc) ⇒ 3(B, tc))
precedence(A,B) (!((B , ts) ∨ (B , tc) ∨ (B , tx)))W (A, tc)
succession(A,B) response(A,B) ∧ precedence(A,B)
alternate response(A,B) response(A,B) ∧

2((A, tc) ⇒ ©(precedence(B ,A)))
alternate precedence(A,B) precedence(A,B) ∧

2((B, tc) ⇒ ©(precedence(A,B)))
alternate succession(A,B) alternate response(A,B) ∧

alternate precedence(A,B)
chain response(A,B) response(A,B) ∧ 2((A, tc) ⇒ ©(B, ts))
chain precedence(A,B) precedence(A,B) ∧ 2(©(B, ts) ⇒ (A, tc))
chain succession(A,B) chain response(A,B) ∧ chain precedence(A,B)

5.2.3 Negation Templates

Figure 5.6 shows the negation templates, which are the negated versions of the
relation templates. (Ignore the grouping of constraints on the right-hand side
of Figure 5.6 for the moment. Later, we will show that the eight constraints
can be reduced to three equivalence classes.) The first two templates negate
the responded existence and co-existence templates. The not responded existence
template specifies that if activity A is executed activity B must never be exe-
cuted (not before nor after activity A). The not co-existence template applies
not responded existence from A to B and from B to A. It is important to note
that the term ‘negation’ should not be interpreted as the ‘logical negation’, e.g., if
activity A never occurs, then both responded existence(A,B) and not responded
existence(A,B) hold (i.e., one does not exclude the other). The not response
template specifies that after the execution of activity A, activity B cannot be
executed any more. According to the template not precedence activity B cannot
be preceded by activity A. The last three templates are negations of templates
chain response, chain precedence and chain succession. The not chain response
template specifies that A should never be followed directly by B and the not
chain precedence template specifies that B should never be preceded directly by
A. Templates not chain response and not chain precedence are combined in the
not chain succession template. Note that Figure 5.6 does not show negation
templates for the alternating variants of response, precedence, and succession.

130 Chapter 5 Constraint Specification with Linear Temporal Logic

The reason is that there is no straightforward and intuitive interpretation of the
converse of an alternating response, precedence, or succession.

not chain succession(A, B)

not chain precedence(A, B)

not chain response(A, B)

not succession(A, B)

not precedence(A, B)

not response(A, B)

not co-existence(A, B)

not responded existence(A, B) A B

A B

A B

A B

A B

A B

A B

A B

A B

A B

A B

Figure 5.6: Notations for the negations templates

Table 5.3 shows the LTL expressions of the templates shown in Figure 5.6.
Table 5.3 also shows that some of the templates are equivalent, i.e., not co-
existence and not responded existence are equivalent and similarly the next two
pairs of three formulas are equivalent. Note that a similar grouping is shown
in Figure 5.6 where a single representation for each group is suggested. The
formula for not responded existence(A,B) specifies that event (B , tc) cannot
occur if event (A, tc) occurs. However, since the ordering here does not mat-
ter, not responded existence(A,B) = not responded existence(A,B) and hence
coincides with not co existence(A,B). The formula for not response(A,B) de-
fines that after any occurrence of (A, tc), (B , ts) may never happen (or for-
mulated alternatively: any occurrence of (B , tc) should take place before the
first (A, tc)). The formula for not precedence(A,B) defines that, if (B , ts) may
occur in some future state, then (A, tc) cannot occur in the current state. It
is easy to see that not precedence(A,B) = not response(A,B) because both
state that no (B , tc) should take place after the first (A, tc) (if any). Since
the formula for not succession(A,B) combines both not response(A,B) and
not precedence(A,B), also not succession(A,B) = not response(A,B). The
last three formulas are negations of formulas chain response, chain precedence
and chain succession. It is easy to see that they are equivalent not chain
response(A,B) = not chain precedence(A,B) = not chain succession(A,B).

5.2.4 Choice Templates

Figure 5.7 shows the so-called choice templates, which specify that it is necessary
to choose between several activities. The 1 of 2 template specifies that at least
one of the two activities A and B has to be executed, but both can be executed
and each of then can be executed an arbitrary number of times. The 1 of 3
template specifies that at least one of the three activities A, B and C has to be
executed, but all three activities can be executed an arbitrary number of times as
long as at least one of them occurs at least once. Similarly, a template 1 of N can

Section 5.2 ConDec: An Example of an LTL-Based Constraint Language 131

Table 5.3: LTL formulas for negation templates (templates grouped together are equivalent)
(recall that ts , tc ∈ T are event types such that ts = started and tc = completed)

name of formula LTL expression
not responded existence(A,B) 3(A, tc) ⇒!(3(B , tc))
not co existence(A,B) not responded existence(A,B) ∧

not responded existence(B ,A)
not response(A,B) 2((A, tc) ⇒!(3((B , ts) ∨ (B , tc))))
not precedence(A,B) 2(3(B , ts) ⇒ (!(A, tc)))
not succession(A,B) not response(A,B) ∧

not precedence(A,B)
not chain response(A,B) 2((A, tc) ⇒ ©(!(B , ts)))
not chain precedence(A,B) 2(©(B , ts) ⇒!(A, tc))
not chain succession(A,B) not chain response(A,B) ∧

not chain precedence(A,B)

specify that at least one of the N activities has to be executed, but all activities
can be executed an arbitrary number of times. It is also possible to specify that
M of N activities has to be executed, but this has to be done explicitly, i.e., it is
not possible to specify this in a recursive way like in the existence templates. For
example, the 2 of 3 template specifies that at least two of the three activities A,
B and C have to be executed, but all three can be executed an arbitrary number
of times.

1 of 2 (A, B) A B
1 of 2

1 of 3 (A, B) A B
1 of 3

C

1 of N (A1,..,AN) A1 AN
1 of N

A2
...

exclusive 1 of 2 (A, B) A B
1 of 2

A B
1 of 3

C

A1 AN
1 of N

A2
...

exclusive 1 of 3 (A, B)

exclusive 1 of N (A, B)

2 of 3 (A, B) A B
2 of 3

C

A B
2 of 3

C

exclusive 2 of 3 (A, B)

Figure 5.7: Notations for the choice templates

The exclusive choice templates are stronger than the templates described
above. The exclusive 1 of 2 template specifies that one of the two activities A
and B has to be executed, while the other one cannot be executed at all. The
exclusive 1 of 3 template specifies that one of the three activities A, B and C
has to be executed one or more times, while the other two cannot be executed at

132 Chapter 5 Constraint Specification with Linear Temporal Logic

all. The exclusive 1 of N template specifies that one of the N activities has to
be executed one or more times, while the other N-1 cannot be executed at all.
More general exclusive templates must be specified explicitly, i.e., the exclusive
2 of 3 template specifies that two of the three activities A, B and C have to be
executed one or more times, while the remaining one cannot be executed at all.

Table 5.4 shows LTL formulas for each choice template from Figure 5.7.
Formula for 1 of 2 (A,B) specifies that either (A, tc) or (B , tc) has to occur
eventually. Formula 1 of 3 (A,B ,C) specifies that either (A, tc) or (B , tc) or
(C , tc) has to eventually occur. Similarly, formula 1 of N (A1 , . . . ,AN) spec-
ifies that one of the events (A, tc), . . ., (B , tc) has to eventually occur. The
formula for 2 of 3 (A,B ,C) specifies that two of the events (A, tc), (B , tc) or
(C , tc) has to eventually occur. Formulas for exclusive templates strengthen
the choice. Formula for exclusive 1 of 2 (A,B) specifies that either (A, tc) or
(B , tc) has to eventually occur, but they can occur both. The formula for
exclusive 1 of 3 (A,B ,C) specifies that one of the events (A, tc), (B , tc) or (C , tc)
has to eventually occur, but the other two cannot occur at all. The formula for
exclusive 1 of N (A1 , . . . ,AN) can be specified similarly so that it defines that
one of the events (A1 , tc), . . . or (AN , tc) has to eventually occur, but the other
N-1 events cannot occur at all. Finally, formula exclusive 2 of 3 (A,B ,C) spec-
ifies that two of the events (A, tc), (B , tc) or (C , tc) have to eventually occur and
the third one cannot occur at all.

Table 5.4: LTL formulas for choice templates (recall that ts , tc ∈ T are event types such that
ts = started and tc = completed)

name of formula LTL expression
1 of 2 (A,B) 3(A, tc) ∨ 3(B , tc)
1 of 3 (A,B ,C) 3(A, tc) ∨ 3(B , tc) ∨ 3(C , tc)
1 of N (A1 , . . . ,AN) 3(A1 , tc) ∨ . . . ∨ 3(AN , tc)
2 of 3 (A,B ,C) (3(A, tc) ∧ 3(B , tc))

∨(3(B , tc) ∧ 3(C , tc))
∨(3(A, tc) ∧ 3(C , tc))

exclusive 1 of 2 (A,B) (3(A, tc)∧!3(B , tc)) ∨ (!3(A, tc) ∧ 3(B , tc))
exclusive 1 of 3 (A,B ,C) (3(A, tc)∧!3(B , tc)∧!3(C , tc))∨

(!3(A, tc) ∧ 3(B , tc)∧!3(C , tc))∨
(3(A, tc)∧!3(B , tc)∧!3(C , tc))

exclusive 2 of 3 (A,B ,C) (3(A, tc) ∧ 3(B , tc)∧!3(C , tc))
∨(3(A, tc)∧!3(B , tc) ∧ 3(C , tc))
∨(!3(A, tc) ∧ 3(B , tc) ∧ 3(C , tc))

Graphical representations of ConDec templates presented in Figures 5.5, 5.6
and 5.7 are used to hide the (potentially) complex LTL formulas. Special sym-
bols in the graphical representation of a template should illustrate the template’s
semantics. Figure 5.8 shows explanations of intuition behind the graphical nota-
tions of ConDec templates.

Section 5.2 ConDec: An Example of an LTL-Based Constraint Language 133

N..M

A

On top the lower-bound (N) and
upper-bound (M) are specified.

A B

The dot shows how to read the constraint,
i.e., it means “suppose that A occurs”.

The type of connection describes the type of constraint (in
this case “existence response”) and should be interpreted
depending on the location of the dot.

If A occurs, then also B should occur (at any
time), i.e.,

A B

Two dots, i.e., read the “existence response” constraint
from both sides, i.e.,

A B

The arrow should be interpreted as “is followed
by” or “is preceded by” (in this case both).

A B

The negation symbol inverses the meaning of the
connection, i.e., in this case “is NOT followed by”
and “is NOT preceded by”.

A B
N of M

The empty diamond
symbol represents the
“choice” and the label the
kind of choice

A B
N of M

The filled diamond symbol
represents the “exclusive
choice” and the label the
kind of choice

<>(A,tc) => <>(B,tc)

<>(A,tc) <=> <>(B,tc)

Figure 5.8: Explanation of the graphical notation

5.2.5 Branching of Templates

Each of the ConDec templates involves a specific number of activities. For exam-
ple, templates existence(A), response(A,B) and 1 of 3(A,B,C) involve one, two,
and three activities, respectively. This means that, when a constraint is created
based on a template, the constraint will involve as many real activities as prede-
fined in the template. In Figure 5.3 we showed how a real activity replaces each
of the template’s parameters in a constraint. However, each constraint can easily
be extended to deal with more activities then defined by its template. Consider,
for example, the response template that involves two activities A and B in Fig-
ure 5.9. In the simplest case, a response constraint will involve two activities,
each of which will replace one of the template’s parameter. For example, ac-
tivities curse and pray simply replace parameters A and B, respectively, in the
graphical representation and LTL formula of the response template (cf. ‘plain’
constraint in Figure 5.9). In some cases it might be necessary to assign more
than two activities a parameter in a template. When a template parameter is re-
placed by more than one activity in a constraint, then we say that this parameter
branches. An example of a branched response constraint is shown in Figure 5.9:
the parameter A is replaced by the activity curse and parameter B is branched
on activities pray and confess. In case of branching, the parameter is replaced
(1) by a multiple arcs to all branched activities in the graphical representation
and (2) by a disjunction of branched activities in the LTL formula, as shown
in the branched constraint in Figure 5.9. The semantics of branching can vary
from template to template, depending on the LTL formula of the template. For

134 Chapter 5 Constraint Specification with Linear Temporal Logic

example, the branched constraint in Figure 5.9 specifies that each occurrence of
curse should eventually be followed by at least one occurrence of activity pray or
activity confess. Note that it is possible to branch all parameters, one parameter
or none of the parameters.

[] ((A,tc) => <> (B,tc))

[] ((curse,tc) => <> (pray,tc))

[] ((curse,tc) => <> ((pray,tc) \/ (confess,tc))

TEMPLATE

‘PLAIN’
CONSTRAINT

BRANCHED
CONSTRAINT

GRAPHICAL LTL FORMULA

A B

curse pray

curse
pray

confess

Figure 5.9: Branching the response template

The number of possible branches in ConDec constraints is unlimited. For
example, it is possible to branch the parameter B in theresponse template to N
alternatives, like shown inn Figure 5.10.

actB1

actB2

actBN

actA

...

[] (actA => <> (actB1 \/ actB2 \/ ... \/ actBN))

Figure 5.10: Branching the response template to multiple activities

5.3 ConDec Constraints

ConDec constraints are created from ConDec templates, such that the LTL for-
mula and graphical representation of the template are associated with the con-
straint, as shown in Figure 5.11. Template ‘parameters’ (i.e., A and B) are
replaced with ‘real’ activities (i.e., perform surgery and prescribe rehabilitation)
both in the graphical and LTL specification of the constraint.

A finite representation of the set of traces that satisfy a ConDec constraint
is retrieved from the LTL formula associated with the constraint. Every LTL
formula can be translated into a non-deterministic finite state automaton (cf.

Section 5.3 ConDec Constraints 135

prescribe
rehabilitation

perform
surgery

response

(c) graphical representation of the constraint

(b) semantics of the constraint

f = [] ((perform surgery,completed) -> <> (prescribe rehabilitation,completed))

E = {(perform surgery,completed),(prescribe rehabilitation,completed)}

c = (E, f)

BA response

(a) the response template

[] ((A,completed) ->
<> (B,completed))

Figure 5.11: A ConDec constraint and its template

Definition 5.3.1) that represents exactly all traces that satisfy the LTL formula
[74, 111–113, 158].

Definition 5.3.1. (Finite State Automaton FSA)
Finite state automaton FSA is a five tuple 〈E, S, T, S0, SF 〉 such that E is the
alphabet, S is the finite set of states, T ⊆ S × E × S it the transition relation,
S0 ⊆ S is the set of initial states, and SF ⊆ S is the set of accepting states. 2

Figure 5.12 shows graphical representation of automaton created for con-
straint in Figure 5.11. This automaton has two states s0 and s1 where s0 is
both an initial (marked with an incoming arrow without a source) and accepting
(marked with double border) state. Labeled directed arrows between states repre-
sent transitions. For example, transition (s0, (prescribe rehabilitation, tc), s0) ∈ T
denotes that, if event (prescribe rehabilitation, tc) occurs when the automaton is
in the state s0, then the automaton stays in state s0. In other words, we say that
event (prescribe rehabilitation, tc) triggers this transition. The special label “-”
denotes a transition that is triggered by any event e ∈ E. Each transition is an
output transition for the state from which it is triggered and an input transition
for the state to which it leads. For example, transition (s0,−, s1) ∈ T is an output
transition for state s0 and an input transition for state s1. We also say that s0

is the source and s1 is the target of this transition.

s0 s1

(prescribe rehabilitation,tc)
- -

(prescribe rehabilitation,tc)
!(perform surgery,tc)

Figure 5.12: A finite state automaton FSAf for constraint in Figure 5.11 (recall that tc ∈ T

is an event type such that tc = completed)

Labels on automata transitions are considered to be boolean values of propo-
sitions [112, 158]. Consider, for example, three propositions a, b and c. Label

136 Chapter 5 Constraint Specification with Linear Temporal Logic

!a∧!b ∧ c represents that (i.e., this transition will fire when) a and b do not hold
and c holds, regardless whether other propositions hold or not. A transition la-
beled with a∧!b will fire if a holds and b does not hold, regardless whether other
propositions hold or not. Label !a∧!b represents a transition that will fire if a
and b do not hold, regardless whether other propositions hold or not.

The remainder of this section is structured as follows. First, in Section 5.3.1
we describe how we adjust the automata generated from LTL to specific prop-
erties of business processes, which were described in Section 5.1. Second, in
Section 5.3.2 we describe how we deal with the fact that the generated automata
are non-deterministic automata. Finally, in Section 5.3.3, we describe how we
retrieve the set of all traces that satisfy a constraint (cf. Definition 4.1.4 in
page 87) from the automaton generated for the constraint.

5.3.1 Adjusting to Properties of Business Processes

In order to apply LTL to execution of business processes, we adjust the regular
LTL in two ways, as we described in Section 5.1: (1) we consider LTL for finite
traces, and (2) we consider LTL for traces of single events. These two adjustments
must also be reflected on the automata generated from LTL.

First, due to the finite semantics of execution traces of constraint models, we
use the algorithm presented in [112, 113] to create a finite state automaton FSA
from ConDec constraint c = (E, f). We will use FSAf to denote an automaton
(1) created for LTL formula f using the algorithm presented in [113], and (2)
adjusted for finite traces using the method presented in [112].

Second, due to the fact that classical LTL considers traces which can con-
tain an arbitrary number of propositions at each trace element, automata gen-
erated for LTL formulas in [112, 113] might contain transitions that refer to
such trace elements. For example, it is possible that a transition has label
“(perform surgery, ts) ∧ (perform reposition, ts)” because events are treated as
propositions. This transition is blocked (i.e., it will never fire) in the setting of
traces of business processes, because events are triggered one at a time. In other
words, a transition is blocked if and only if its label requires more than one event
to hold. Naturally, blocked transitions are ignored in the context of execution
traces of business processes because they can not be triggered by any element of
a trace (i.e., by any event). In order to use these automata for our approach, we
unblock them in such a way that: (1) all blocked transitions are removed from
the automaton, (2) all states that are unreachable from initial states are removed
from the automaton and (3) all states from which an accepting state is not reach-
able are removed from the automaton. Further in this thesis, we assume that
all automata are unblocked, unless denoted differently. Definition 5.3.2 gives a
formal specification of reachable states: the set of reachable states from state
s of the automaton contains all states that can be reached with an arbitrary
sequence of transitions from the state s. The unblocked version of an automaton

Section 5.3 ConDec Constraints 137

in specified in Definition 5.3.3.

Definition 5.3.2. (Reachable states RFSA
s)

Let FSA = 〈E, S, T, S0, SF 〉 be a finite state automaton and s ∈ S be one state
of FSA. State s′ ∈ S is reachable from state s if and only if it holds that
∃σ ∈ E∗ : (s, σ[1], s1) ∈ T ∧ (s1, σ[2], s2) ∈ T ∧ . . . ∧ (s|σ|−1, σ[|σ|], s′) ∈ T . The

set of states that are reachable from s is defined as RFSA
s = {s′ ∈ S | ∃σ ∈ E∗ :

(s, σ[1], s1) ∈ T ∧ (s1, σ[2], s2) ∈ T ∧ . . . ∧ (s|σ|−1, σ[|σ|], s′) ∈ T}. 2

Definition 5.3.3. (Unblocked finite state automaton)
Let FSA = 〈E, S, T, S0, SF 〉 be a finite state automaton and TB ⊆ T be a set
of all blocked transitions in T . Automata FSAUB = 〈E, SUB , TUB, SUB

0 , SUB
F 〉

where SUB ⊆ S, TUB ⊆ T , SUB
0 ⊆ S0 and SUB

F ⊆ SF is the unblocked version of
FSA if and only if it holds that

• all blocked transitions are removed, i.e., T UB = T \ TB, and

• all states are reachable from the initial state(s), i.e., SUB and SUB
0 are the

biggest subsets of S such that it holds that ∀s ∈ SUB \ SUB
0 : ∃s0 ∈ SUB

0 :

s ∈ RFSAUB

s0 , and

• form all states an accepting state is reachable, i.e., SUB and SUB
F are the

biggest subsets of S such that it holds that ∀s ∈ SUB \ SUB
F : RFSAUB

s ∩
SUB

F 6= ∅.
2

In addition to unblocking automata, when presenting automata in figures in
this thesis, we will simplify labels on transitions in the following manner: if, due
to its label, a transition can be triggered only by a single event, then its label
will be replaced by a label containing only that event. For example, a transition
with the label e1∧!e2 can be triggered only by event e1 and, therefore, in this
thesis we will label it only with e1. On the other hand, transition with the label
!e1∧!e2 can be triggered with multiple events (i.e., all events except e1 and e2),
and, therefore, its label will remain the same.

5.3.2 Dealing with the Non-Determinism

Automata created for LTL formulas are non-deterministic automata, i.e., one
state can have multiple output transitions that are triggered by the same event,
but that have different target states. Consider, for example, state s0 in the
automaton in Figure 5.12. If event (prescribe rehabilitation, tc) ∈ E occurs
at this state, all three output transitions (s0, (prescribe rehabilitation, tc), s0),
(s0, !(perform surgery, tc), s0) and (s0,−, s1) can be triggered. A run of a finite
trace on non-deterministic automata represents the execution of the trace on the
automata and it transfers automata form one set of possible states to another
set of possible states, as specified in Definition 5.3.4. We call such a run a
non-deterministic run or nd -run.

138 Chapter 5 Constraint Specification with Linear Temporal Logic

Definition 5.3.4. (Non-deterministic run (nd-run))
Let FSA=〈E, S, T, S0, SF 〉 be a finite state automaton and σ ∈ E∗ be a trace.

If finite sequence F̃SA(σ) = 〈(S0, σ[1], S1), (S1, σ[2], S2), . . . , (S|σ|−1, σ[|σ|], S|σ|)〉
such that ∀1≤i≤|σ| : Si = {s ∈ S | ∃s′ ∈ Si−1 : (s′, σ[i], s) ∈ T} and ∀1≤i≤|σ| : Si 6=
∅ exists, then we say that F̃SA(σ) is the nd -run of trace σ on the automaton

FSA. We use F̃SA to denote the set of all traces σ ∈ E∗ such that F̃SA(σ) exists.

If it holds that σ ∈ F̃SA, then we use SFSA
σ to denote the last set of states in

F̃SA(σ), i.e., SFSA
σ = S|σ|. 2

Table 5.5 shows the nd -run of a trace σ ∈ E∗ containing eight events on the
automaton FSA shown in Figure 5.12. The first row refers to the initial state of
the automaton, i.e., the empty trace, and each row underneath this row refers
to one element (i.e., event) of the trace. The first column contains events from
the trace σ. The second column shows all transitions that can be triggered by
the event given the current set of possible states (this set is shown in the third
column of the previous row). Finally, the third column shows the new set of
possible states after the event occurred. As Table 5.5 shows, the nd -runof trace
σ starts in the set of initial states S0 = {s0} and ends in the set of possible states
SFSA

σ = {s0, s1}.

Table 5.5: A non-deterministic run on the automaton FSA shown in Figure 5.12 (recall that
ts , tc ∈ T are event types such that ts = started and tc = completed)

examine=examine patient, surgery=perform surgery, rehabilitation=prescribe
rehabilitation.

σ ∈ E∗ transitions new states

initial state S0 = {s0}
σ[1] = (examine , ts) (s0, !(surgery , tc), s0) S1 = {s0, s1}

(s0,−, s1)
σ[2] = (examine , tc) (s0, !(surgery , tc), s0) S2 = {s0, s1}

(s0,−, s1)
(s1,−, s1)

σ[3] = (surgery , ts) (s0, !(surgery , tc), s0) S3 = {s0, s1}
(s0,−, s1)
(s1,−, s1)

σ[4] = (surgery , tc) (s0,−, s1) S4 = {s1}
(s1,−, s1)

σ[5] = (examine , ts) (s1,−, s1) S5 = {s1}
σ[6] = (examine , tc) (s1,−, s1) S6 = {s1}
σ[7] = (rehabilitation , ts) (s1,−, s1) S7 = {s1}
σ[8] = (rehabilitation , tc) (s1,−, s1) SFSA

σ = {s0, s1}
(s1, (rehabilitation , tc), s0)

If a trace brings the automata to an accepting state, then the automata
accepts this trace. In case of a non-deterministic run, we say that the automata
FSA accepts trace σ ∈ E∗ if and only if the non-deterministic run of σ leaves

Section 5.3 ConDec Constraints 139

FSA in a set of possible states S such that at least one of the possible states is
accepting, as specified in Definition 5.3.5.

Definition 5.3.5. (Acceptance)
Let FSA=〈E, S, T, S0, SF 〉 be a finite state automaton and σ ∈ E∗ be a trace. We

say that FSA accepts trace σ f and only if it holds that (σ ∈ F̃SA)∧(SFSA
σ ∩SF 6=

∅). The language of FSA, L(FSA) ⊆ E∗, consists of all traces accepted by FSA.

2

5.3.3 Retrieving the Set of Satisfying Traces

If FSAf is an automaton created for some well-formed LTL formula f , then the
language of this automaton L(FSAf) represents exactly all traces σ ∈ E∗ that
satisfy the formula f (i.e., σ � f) [74,111,112,158]. Hence all traces that satisfy
the LTL formula f are represented by the automaton FSAf generated from f
(cf. Property 5.3.6).

Property 5.3.6. (∀σ ∈ E∗ : (σ � f) ⇔ (σ ∈ L(FSAf)))
Let f be a well formed LTL formula and FSAf = 〈E, S, T, S0, SF 〉 be the au-
tomaton generated for formula f , then it holds that ∀σ ∈ E∗ : (σ � f) ⇔ (σ ∈
L(FSAf)).

Proof. The automaton FSA construction in [111, 112, 158]. 2

Due to the fact that the language L(FSAf) of automaton FSAf generated
from the LTL formula f of constraint (E, f) ∈ C accepts exactly the traces that
satisfy the LTL formula f , it holds that the automaton FSAf represents the set
of traces that satisfy the constraint (E, f), as shown in Property 5.3.7.

Property 5.3.7. (E∗
�(E ,f) = L(FSAf))

Let c ∈ C be a constraint where c = (E, f) such that f is a well formed LTL for-
mula over E. If FSAf = 〈E, S, T, S0, SF 〉 is an automaton generated for formula
f , then it holds that E∗

�c = L(FSAf).

Proof. It holds that ∀σ ∈ E∗ : (σ � f) ⇔ (σ ∈ L(FSAf)) (cf. Property 5.3.6),
i.e., ∀σ ∈ E∗ : (f(σ) = true) ⇔ (σ ∈ L(FSAf)) (cf. Definition 5.1.1). It
also holds that E∗

�c = {σ ∈ E∗ | σ � c} where (σ � c) ⇔ f(σ) = true (cf.
Definition 4.1.4). Therefore, it holds that E∗

�(E ,f) = L(FSAf). 2

Automata generated from LTL formulas are consistent with the two require-
ments of sets of accepting traces for constraints (and constraint models). First,
note that, although it is built for constraint on two particular activities (i.e.,
E = {(perform surgery, tc), (prescribe rehabilitation, tc)}), the automaton in Fig-
ure 5.12 can run traces that can contain events involving activities other than
perform surgery and prescribe rehabilitation, i.e., it can contain events e /∈ E
that are not in the namespace. Transitions (s0, !(surgery , tc), s0), (s0,−, s1) and

140 Chapter 5 Constraint Specification with Linear Temporal Logic

(s1,−, s1) can trigger other events like, for example, events (examine , ts) and
(examine , tc). Indeed, a trace constraining these two events can run on the au-
tomaton, as shown in Table 5.5. Moreover, these two events can be replaced by
any other event not involving activities perform surgery and prescribe rehabil-
itation, e.g., by events (drink coffee, ts) and (drink coffee, tc). As explained in
Chapter 4, this is an important property of sets of accepting traces that enables
easy ad-hoc change (cf. Section 4.5).

Second, trace σ from Table 5.5 is accepted by the automaton FSAf in Fig-
ure 5.12 for constraint c = (E, f) in Figure 5.11 because it leaves the automata in
the set of possible traces SFSA

σ = {s0, s1} where s0 is an accepting state. Trace σ
contains many events that are not in the namespace E of the constraint. In fact,
if any of the events in σ that are not in the namespace e /∈ E would be replaced
by other events not in the name space e′ /∈ E, the automaton would still accept
such changed trace. This is in line with the requirement of Definition 4.1.4 on
page 87, which says that if a trace σ satisfies the constants, then all traces from
the projection σ↓E satisfy the constraint and vice versa.

Figure 5.13 shows another example of a ConDec constraint c = (E, f). This
constraint is created from the precedence template (cf. Section 5.2.2), and, there-
fore, it has the template’s graphical representation and LTL formula. This con-
straint specifies that activity perform surgery cannot be executed before activ-
ity perform X ray, i.e., formula f specifies that events (perform surgery, ts) and
(perform surgery, tc) cannot occur before event (perform X ray, tc).

(c) graphical representation of the constraint

(b) semantics of the constraint

(a) the precedence template

(!((B.ts) \/ (B.tc))) W (A,tc)

perform
X ray

perform
surgery

precedence

A Bprecedence

f = (!((perform surgery,ts) V (perform surgery,tC))) W (perform X ray,completed))

E = {(perform X ray,tc),(perform surgery,ts),(perform surgery,tc)}

c = (E, f)

Figure 5.13: An example of a precedence constraint (recall that ts , tc ∈ T are event types such
that ts = started and tc = completed)

Figure 5.14 shows the finite state automaton FSAf generated from the LTL
formula for the precedence constraint c in Figure 5.13. Language L(FSAf)
of the automaton represents exactly all traces that satisfy constraint c. In-
deed, the automaton prevents occurrence of events (perform surgery, ts) and
(perform surgery, tc) before event (perform X ray, tc) since transition (s1,−, s1) is
the only transition that can trigger (perform surgery, ts) and (perform surgery, tc)
and state s1 can be reached only via transition (s,(perform X ray, tc), s1).

For illustration, in Table 5.6 we present non-deterministic runs (nd -run)
of two traces on the finite state automaton FSAf in Figure 5.14, which is
generated for the constraint c = (E, f) in Figure 5.13. Each trace starts at

Section 5.4 ConDec Models 141

-

s0

!(perform surgery,ts) /\
!(perform surgery,tc)

(perform X ray,tc)
s1

Figure 5.14: A finite state automaton FSAf for constraint in Figure 5.13 (recall that ts , tc ∈ T

are event types such that ts = started and tc = completed)

the initial state of the automaton. Further, for each event in the trace the
new set of possible states of the automaton is given. Trace σ1 is accepted by
the automaton FSAf and, therefore, σ1 satisfies constraint from Figure 5.13,
i.e., events (perform surgery, ts) and (perform surgery, tc) are preceded by event
(perform X ray, tc) in σ1. Trace σ2 is not accepted by the automaton FSAf

(i.e., it is not possible to trigger event (perform surgery, ts) from state s0)
and, therefore, σ2 does not satisfy constraint from Figure 5.13, i.e., event
(perform surgery, ts) is not preceded by event (perform X ray, tc) in σ2.

Table 5.6: Non-deterministic runs of two traces on automaton in Figure 5.14 generated for the
constraint c = (E, f) in Figure 5.13 (recall that ts , tc ∈ T are event types such that ts = started
and tc = completed)

examine=examine patient, surgery=perform surgery, X ray=perform X ray.
σ1 ∈ E∗

�c
σ2 /∈ E∗

�c

i σ1[i] new states σ2[i] new states

initial state S0 = {s0} initial state S0 = {s0}
1 (examine , ts) S1 = {s0} (examine , ts) S1 = {s0}
2 (examine , tc) S2 = {s0} (examine , tc) S2 = {s0}
3 (X ray , ts) S3 = {s0} (surgery , ts) {}
4 (X ray , ts) S4 = {s0, s1}
5 (examine , ts) S5 = {s0, s1}
6 (examine , tc) S6 = {s0, s1}
7 (surgery , ts) S7 = {s1}
8 (surgery , tc) SFSA

σ1
= {s1}

5.4 ConDec Models

ConDec constraint models are presented graphically to users: (1) activities are
presented as labeled rectangles and (2) ConDec constraints are presented as
graphical representations of their templates, i.e., special lines and symbols be-
tween activities. Figure 5.15 shows one ConDec model consisting of three activi-
ties (i.e., curse, pray and bless) and two mandatory constraints. The constraint
between activities curse and pray is based in the response template, i.e., it spec-
ifies that each occurrence of event (curse, tc) has to be eventually followed by

142 Chapter 5 Constraint Specification with Linear Temporal Logic

at least one occurrence of event (pray , tc). The constraint on the activity pray
is based on the 1..* template, i.e., it specifies that there has to be at least one
occurrence of event (pray , tc). As Figure 5.15 shows, LTL formulas are associated
to constraints but they are hidden in the model, i.e., each constraint is repre-
sented as the graphical representation of its template. Note that both constraints
in Figure 5.15 are mandatory, i.e., they are represented as full lines. Optional
constraints are also represented as graphical representations of their templates,
but as dashed lines. Further in this chapter, we will show a ConDec model with
an optional constraint.

curse response

bless

1..*

pray

<> (pray,tc)[] ((curse,tc) -> <> (pray,tc))

Figure 5.15: A ConDec model (recall that tc ∈ T is an event type such that tc = completed)

Due to the fact that all mandatory and optional constraints in a ConDec
model are ConDec constraints, i.e., LTL constraints, every ConDec model is an
LTL constraint model. The set of satisfying traces of any LTL constraint model
(e.g., a ConDec model) is determined based on the LTL formulas associated with
mandatory constraints from the model. The mandatory formula of such a model
is defined as a conjunction of LTL formulas for all mandatory constraints, as
specified in Definition 5.4.1. For example, the mandatory formula for ConDec
model cm in Figure 5.15 is fcm = (2((curse, tc) ⇒ 3(pray , tc))) ∧ (3(pray , tc)).

Definition 5.4.1. (Mandatory formula fcm)
Let cm ∈ Ucm be a constraint model where cm = (A,CM ,CO) such that all
mandatory and optional constraints are LTL constraints, then the mandatory
formula for model cm is defined as

fcm =

{
true if CM = ∅;∧

(E,f)∈CM
f otherwise.

2

Because the mandatory formula of a model corresponds to the conjunction
of all mandatory constraints, the language of the automaton generated for this
formula represents the set of satisfying traces for the model, as shown by Prop-
erty 5.4.2.

Property 5.4.2. (E∗
�cm = L(FSAfcm

))
Let cm ∈ Ucm be a ConDec constraint model such that cm = (A,CM ,CO) and

Section 5.4 ConDec Models 143

FSAfcm
be a finite state automaton such that fcm is a mandatory formula for

cm, then E∗
�cm = L(FSAfcm

).

Proof. If it holds that CM = ∅, then it holds that fcm = true (cf. Defini-
tion 5.4.1). Therefore, it holds that ∀σ ∈ E∗ : σ � fcm (cf. operator true in
Definition 5.1.1), i.e., L(FSAfcm

) = E∗ (cf. Property 5.3.6). Further, because it
holds that CM = ∅, it also holds that E∗

�cm = E∗ (cf. Definition 4.2.2 on page 90).
Therefore, it holds that E∗

�cm = L(FSAfcm
) = E∗.

If it holds that CM 6= ∅, then, on the one hand, it holds that fcm =∧
(E,f)∈CM

f (cf. Definition 5.4.1). Therefore, it also holds that (σ ∈ L(FSAfcm
))

⇔ (∀(E, f) ∈ CM : f(σ) = true) (cf. operator ∧ in Definition 5.1.1 and Defi-
nition 5.3.5). On the other hand, it holds that (σ ∈ E∗

�cm) ⇔ (∀(E, f) ∈ CM :
f(σ) = true) (cf. definitions 4.1.4 on page 87 and 4.2.2 on page 90). Therefore, it
holds that (σ ∈ L(FSAfcm

)) ⇔ (σ ∈ E∗
�cm), i.e., it holds that E∗

�cm = L(FSAfcm
).
2

The automaton FSAfcm
generated for the mandatory formula fcm for an LTL

constraint model cm ∈ Ucm (e.g., a ConDec model) is a finite representation
of the set of satisfying traces E∗

�cm of the model cm. This approach makes
checking if some trace σ ∈ E∗ satisfies model cm a trivial operation – it is
enough to check if automaton FSAfcm

accepts trace σ. Figure 5.16 shows the
automaton FSAfcm

generated for the mandatory formula fcm = (2((curse , tc) ⇒
3(pray , tc))) ∧ (3(pray , tc)) of the ConDec model cm in Figure 5.15.

s0 s1

(pray,tc)

(pray,tc)

-

-

!(curse,tc)

Figure 5.16: Automaton FSAfcm
that accepts the satisfying traces E

∗
�cm for ConDec model

cm in Figure 5.15 (recall that tc ∈ T is an event type such that tc = completed)

The automaton in Figure 5.16 has one initial (i.e., s0) and one accepting
(i.e., s1) state. The language of this automaton represents all traces that satisfy
the ConDec model cm in Figure 5.15, i.e., it represents all traces that satisfy
both mandatory constraints from the model. First, it is clear that only traces
that contain at least one occurrence of event (pray , tc) can satisfy cm, because
the accepting set of states {s0, s1} can be reached if and only if event (pray , tc)
occurs. Therefore, only traces that satisfy constraint 1..* can satisfy this model.
Second, if event (curse, tc) occurs, the automaton’s state is a non-accepting set
of states (i.e., {s0}), and the automaton will remain in this set of states until
the first occurrence of event (pray , tc). In other words, only traces that satisfy
constraint response can satisfy this model.

144 Chapter 5 Constraint Specification with Linear Temporal Logic

Table 5.7 shows three non-deterministic runs on the automaton FSAfcm
shown

in Figure 5.16, which is generated for the mandatory formula o the model cm in
Figure 5.15. On the one hand, traces σ1 and σ2 are accepted by this automaton,
and, therefore, these traces satisfy the model cm. In these two traces each oc-
currence of event (curse, tc) is followed by an occurrence of event (pray , tc) (i.e.,
constraint response is satisfied) and there is one occurrence of event (pray , tc)
(i.e., constraint 1..* is satisfied). Therefore, traces σ1 and σ2 satisfy the model
cm. On the other hand, trace σ3 is not accepted by the automaton, and, there-
fore, this trace does not satisfy the model cm. The occurrence of event (curse, tc)
is not followed by an occurrence of event (pray , tc) in trace σ3 (i.e., constraint
response is not satisfied) and there is one occurrence of event (pray , tc) (i.e.,
constraint 1..* is satisfied). Therefore, trace σ3 does not satisfy the model cm.

Table 5.7: Examples of (non-)accepting traces for automaton FSAfcm
in Figure 5.16 generated

for model cm in Figure 5.15 (recall that ts , tc ∈ T are event types such that ts = started and
tc = completed)

σ1 ∈ E∗
�cm

σ2 ∈ E∗
�cm

σ3 /∈ E∗
�cm

new new new
i σ1[i] states σ2[i] states σ3[i] states

initial {s0} initial {s0} initial {s0}
1 (bless , ts) {s0} (bless , ts) {s0} (pray , ts) {s0, s1}
2 (bless , tc) {s0} (bless , tc) {s0} (pray , tc) {s0, s1}
3 (curse, ts) {s0} (curse , ts) {s0} (curse , ts) {s0}
4 (curse, tc) {s0} (curse, tc) {s0} (curse , tc) {s0}
5 (bless , ts) {s0} (become holy , ts) {s0} (bless , ts) {s0}
6 (bless , tc) {s0} (become holy , tc) {s0} (bless , tc) {s0}
7 (curse, ts) {s0} (curse , ts) {s0}
8 (curse, tc) {s0} (curse, tc) {s0}
9 (pray , ts) {s0} (pray , ts) {s0}
10 (pray , tc) {s0, s1} (pray , tc) {s0, s1}

Note that trace σ2 is accepted by FSAcm (and satisfies cm) although σ2

contains events (become holy , ts) and (become holy , tc), i.e., it contains events
on activities that are not in the model cm (cf. Figure 5.15). As discussed in
Chapter 4, this is a desirable property of constraint languages, which facilitates
ad-hoc change. For example, if activity become holy was originally in the model,
it possible that it was executed and later removed from the model.

5.5 ConDec Model: Fractures Treatment Process

By using graphical notations of templates for representation of constraints, Con-
Dec models can be easily represented to people not familiar with LTL. Figure 5.17
shows a ConDec model cmFT for the Fractures Treatment process (cf. Exam-
ple 4.3.2 on page 96). Labels c1, . . . , c6 mark constraints from the model cmFT .

Section 5.5 ConDec Model: Fractures Treatment Process 145

All six constraints are created from ConDec templates. The first five constraints
are mandatory, i.e., presented as full lines. The sixth constraint is optional
and, therefore, presented as a dashed line. Constraint c4 is created from the
precedence template, but it is branched on several activities. This means that,
although the precedence template has two parameters A and B, in this model we
replace parameter A with activity perform X ray and we branch parameter B
with activities apply cast, perform reposition and perform surgery. By doing this,
we specify that none of the activities apply cast, perform reposition or perform
surgery can be executed before activity perform X ray is executed.

prescribe
rehabilitation

perform
surgery

responsecheck X
ray risk

perform X
ray reposition prescribe

sling

apply cast remove
cast

succession

 alternate precedence

precedence

init
examine
patient

1 of 4
c1

c2

c3c4

c5

c6

Figure 5.17: ConDec model for the Fractures Treatment

Although the ConDec model in Figure 5.17 presents constraints graphically,
each of these constraints has a hidden LTL formula that is inherited from the con-
straint’s template. As we explained before, when a constraint is created between
activities in a ConDec model, then these activities replace the formal parame-
ters in the template. Constraint c1 is created from the init existence template
(cf. Section 5.2.1) and constraint c2 is based on the 1 of 4 choice template
(cf. Section 5.2.4). Constraints c3, c4, c5 and c6 are created from succession,
precedence, alternate precedence and response relation templates, respectively
(cf. Section 5.2.2). Table 5.8 shows LTL formulas for all constraints in the Con-
Dec model in Figure 5.17. Constraint c4 is a special case, i.e., here the second
template parameter B is branched on activities apply cast, perform reposition
and perform surgery, i.e., event (B , ts) is replaced with the disjunction of events
(apply cast, ts), (perform reposition, ts) and (perform surgery, ts) and (B , tc) is
replaced with the disjunction of events (apply cast, tc), (perform reposition, tc)
and (perform surgery, tc).

146 Chapter 5 Constraint Specification with Linear Temporal Logic

Table 5.8: LTL formulas for constraints in ConDec model in Figure 5.17 (recall that ts , tc , tx ∈

T are event types such that ts = started , tc = completed and tx = cancelled)

constraint ci LTL formula fi

c1 = (E1, f1) f1 = ((examine patient, ts) ∨ (examine patient, tx))
U(examine patient, tc)

c2 = (E2, f2) f2 = (3(apply cast, tc)) ∨ (3(prescribe sling, tc))
∨(3(perform reposition, tc)) ∨ (3(perform surgery, tc))

c3 = (E3, f3) f3 = (2((apply cast, tc) ⇒ 3(remove cast, tc)))
∧!(((remove cast, ts) ∨ (remove cast, tc))W (apply cast, tc))

c4 = (E4, f4) f4 =!(((apply cast, ts) ∨ (perform reposition, ts)
∨(perform surgery, ts)) ∨ ((apply cast, tc) ∨ (perform reposition, tc)
∨(perform surgery, tc)))W (perform X ray, tc)

c5 = (E5, f5) f5 = ((!((perform X ray, ts) ∨ (perform X ray, tc))
W (check X ray risk, tc)) ∧ 2(((perform X ray, tc) ⇒
©((!((perform X ray, ts) ∨ (perform X ray, tc))
W (check X ray risk, tc))))))

c6 = (E6, f6) f6 = (2((perform surgery, tc) ⇒ 3(prescribe rehabilitation, tc)))

5.6 Execution of ConDec Instances

Execution of instances of LTL constraint models, and therefore ConDec instances,
is based on the LTL specifications of constraints and, more precisely, the automa-
ton generated from the mandatory formula of the model. In sections 5.6.1, 5.6.2,
and 5.6.3 we show how this automaton is used to determine the state of the
instance (cf. Section 4.4.1), enabled events (cf. Section 4.4.2), and states of
constraints (cf. Section 4.4.3), respectively.

5.6.1 Instance State

The automaton FSAfcm
generated for the mandatory formula of instance’s model

and the instance trace σ is used to easily determine the state of an instance ci =
(σ, cm) at any moment of execution. Property 5.6.1 shows that the instance is
satisfied if and only if the trace σ is accepted by the automaton FSAfcm

. In other
words, if the nd -run of σ on FSAfcm

leaves the FSAfcm
in a set of possible states

that contains an accepting state, then the instance state is satisfied . Recall that
ω(ci) = satisfied if σ ∈ E∗

�cm for some instance ci(σ, cm) (cf. Definition 4.4.2).

Property 5.6.1. (ω((σ, cm)) = satisfied if and only if σ ∈ L(FSAfcm
))

Let ci ∈ Uci be an instance of a LTL constraint model cm ∈ Ucm where ci =
(σ, cm) and let FSAfcm

be the automaton generated for the mandatory formula
fcm . It holds that ω(ci) = satisfied if and only if it holds that σ ∈ L(FSAfcm

).

Proof. Since (ω(ci) = satisfied) ⇔ (σ ∈ E∗
�cm) (cf. Definition 4.4.2) and

E∗
�cm = L(FSAfcm

) (cf. Property 5.4.2), we know that (ω(ci) = satisfied) ⇔
(σ ∈ L(FSAfcm

)). 2

Section 5.6 Execution of ConDec Instances 147

An instance ci = (σ, cm) is in the temporarily violated state if σ is not ac-
cepted by the automaton FSAfcm

generated for the mandatory formula but the
trace σ can be run on FSAfcm

, as Property 5.6.2 shows. In other words, if the
nd -run of σ on FSAfcm

leaves the FSAfcm
in a set of possible states that does

not contain an accepting state, then the instance state is temporarily violated .

Property 5.6.2. (ω((σ, cm)) = temporarily violated if and only if σ /∈
L(FSAfcm

) and σ ∈ F̃SAfcm
)

Let ci ∈ Uci be an instance of a LTL constraint model cm ∈ Ucm where
ci = (σ, cm). Let FSAfcm

= 〈E, S, T, S0, SF 〉 be the automaton generated for

fcm and F̃SAfcm
(σ) be the non-deterministic run of σ on FSAfcm

. It holds that
ω(ci) = temporarily violated if and only if it holds that σ /∈ L(FSAfcm

) and

σ ∈ F̃SAfcm

2.

Proof. If it holds that σ /∈ L(FSAfcm
), then it holds that σ /∈ E∗

�cm because
E∗

�cm = L(FSAfcm
) (cf. Property 5.4.2).

If it holds that σ ∈ F̃SAfcm
, then it holds that S

FSAfcm
σ 6= ∅ and it holds that

∀s ∈ S
FSAfcm
σ : R

FSAfcm
s ∩ SF 6= ∅ (cf. Definition 5.3.3). Therefore, it holds that

∃γ ∈ E∗ such that automaton FSAfcm
accepts trace σ + γ (cf. Definitions 5.3.5

and 5.3.5), i.e., ∃γ ∈ E∗ : σ+ γ ∈ L(FSAfcm
) and it holds that ∃γ ∈ E∗ : σ+ γ ∈

E∗
�cm (cf. Property 5.4.2).

Because it holds that σ /∈ E∗
�cm ∧ ∃γ ∈ E∗ : σ + γ ∈ E∗

�cm , it also holds that
ω(ci) = temporarily violated . 2

An instance ci = (σ, cm) is in the violated state if σ cannot be run on the
automaton FSAfcm

generated for the mandatory formula, as shown in Prop-
erty 5.6.3. In other words, if the nd -run of σ on FSAfcm

does not exist, then the
instance state is violated .

Property 5.6.3. (ω((σ, cm)) = violated if and only if σ /∈ F̃SAfcm
)

Let ci ∈ Uci be an instance of a LTL constraint model cm ∈ Ucm where ci =

(σ, cm). Let FSAfcm
be the automaton generated for fcm and F̃SAfcm

(σ) be the
non-deterministic run of σ on FSAfcm

. It holds that ω(ci) = temporarily violated

if and only if it holds that σ /∈ F̃SAfcm

Proof. If it holds that σ /∈ F̃SAfcm
, then it holds that σ /∈ L(FSAfcm

) and
@γ ∈ E∗ : σ+γ ∈ FSAfcm

(cf. definitions 5.3.4 and 5.3.5). Therefore, it also holds
that σ /∈ E∗

�cm and @γ ∈ E∗ : σ + γ ∈ E∗
�cm , i.e., ω(ci) = temporarily violated . 2

Figure 5.18 shows (a) a ConDec model cm and (b) the automaton cre-
ated for the mandatory formula fcm of the model cm. The model has four

2Recall that F̃SAfcm
uses the unblocked automaton from which “dead ends” are removed

(cf. definitions 5.3.2 and 5.3.3)

148 Chapter 5 Constraint Specification with Linear Temporal Logic

activities and three constraints. Constraint response specifies that every occur-
rence of event (curse, tc) has to be eventually followed by at least one occur-
rence of event (pray , tc). Constraint 1..* specifies that (pray , tc) has to occur
at least once. Constraint precedence specifies that events (become holy , ts) and
(become holy , tc) cannot occur before the first occurrence of event (pray , tc). In
other words, constraints in this model specify that (1) if one curses, then one has
to pray at least once afterwards, (2) one has to pray at least once, and (3) one
cannot become holy until one has prayed. Note that automaton in Figure 5.18(b)
is a simplified version of the original automaton generated for fcm using the al-
gorithm presented in [112,113]: for simplicity we show a smaller automaton with
the same language as the language of the original automaton.

(b) automaton for ConDec model(a) ConDec model

curse response

1..*

pray

[] ((curse,tc) -> <> (pray,tc)) <> (pray,tc)

become
holy

precedence

(!(become holy,ts) W (pray,tc))

(pray,tc)

(pray,tc)

-
!(curse,tc)

s2

-

(pray,tc)

s0

!(become holy,ts) /\
!(become holy,tc)

s1

Figure 5.18: A ConDec model (recall that ts , tc ∈ T are event types such that ts = started
and tc = completed)

Figure 5.19 shows how a satisfied instance ci = (σ, cm) of the ConDec model
cm in Figure 5.18(a) changes states depending on its execution on the automaton
FSAfcm

(cf. Figure 5.18(b)). This instance is correct because its state is never
violated . Initially, the automaton is in the set of possible states {s0} and, there-
fore the instance is temporarily violated . The state of the instance is initially
temporarily violated because none of the possible states is accepting (i.e., s0 is
not accepting) but an accepting state (i.e., s1) is reachable from one of the possi-
ble states (i.e., s1 is reachable from s0). On the other hand, the instance state is
satisfied every time when the set of possible states contains at least one accepting
state (i.e., s1). The states of the instance in Figure 5.19 reflect the mandatory
constraint of the model in Figure 5.18. The instance is temporarily violated un-
til the first occurrence of event (pray , tc) (the 1..* constraint). The instance
becomes temporarily violated again after the occurrence of event (curse , tc) and
becomes satisfied only after a new occurrence event (pray , tc) (the response con-
straint). The precedence constraint is fulfilled because events (become holy , ts)
and (become holy , tc) occur only after event (pray , tc).

Figure 5.20 shows how a violated instance ci = (σ, cm) of the ConDec model
cm in Figure 5.18(a) changes states depending on its execution on the automaton

Section 5.6 Execution of ConDec Instances 149

{S0} {S0}
(bless,ts)

{S0}
(bless,tc)

temporarily
violated

temporarily
violated

temporarily
violated

{S0}
(pray,ts)

{S0,S1}
(pray,tc)

temporarily
violated satisfied

{S0,S1,S2}
(curse,ts)

{S0,S2}
(curse,tc)

temporarily
violatedsatisfied

{S0,S2}

temporarily
violated

(become holy,ts)

{S0,S2}

temporarily
violated

(become holy,tc)
{S0,S2}

temporarily
violated

(pray,ts)
{S0,S1,S2}

satisfied

(pray,tc)
{S0,S1,S2}

satisfied

(pray,ts)
{S0,S1,S2}

satisfied

(pray,tc)

Figure 5.19: A satisfied instance of the model in Figure 5.18 (recall that ts , tc ∈ T are event
types such that ts = started and tc = completed)

{S0} {S0}
(bless,ts)

{S0}
(bless,tc)

temporarily
violated

temporarily
violated

temporarily
violated

(become holy,ts)
{S0} {S0}

(curse,ts) (curse,tc)

temporarily
violated

temporarily
violated

X

violated

Figure 5.20: A violated instance of the model in Figure 5.18 (recall that ts , tc ∈ T are event
types such that ts = started and tc = completed)

FSAfcm
(cf. Figure 5.18(b)). Execution of event (become holy , ts) brings this

instance to the violated state, because there is no non-deterministic run of this
trace on FSAfcm

. Therefore, the trace is not accepted by FSAfcm
and an accepting

state is not reachable anymore. The reason for the violation is the fact that
the precedence constraint cannot be fulfilled in the future, i.e., become holy is
executed before the activity pray .

5.6.2 Enabled Events

Enabled events are events that can be triggered during the executing of an in-
stance of a constraint model, such that the instance does not become violated , as
described in Section 4.4.2. Event e ∈ A×T is enabled in instance ci = (σ, cm) of
an LTL constraint model (e.g., a ConDec model) if in the current set of possible
states of the automaton generated for the mandatory formula fcm there exists
an output transition that can be triggered by the event e, as shown in Prop-
erty 5.6.4. Consider, for example, the model and its automaton in Figure 5.18.
Event (become holy , ts) is not enabled in instances of this model as long as the
instance’s automaton stays in the set of possible states {s0} because none of
the transitions “!(become holy , ts)∧!(become holy , tc)” or “(pray , tc)” can trigger
event (become holy , ts). On the other hand, all other events involving activities
in the model can be triggered via one or both transitions.

150 Chapter 5 Constraint Specification with Linear Temporal Logic

Property 5.6.4. (Enabled event)
Let ci ∈ Uci be an instance of a LTL constraint model cm ∈ Ucm where ci =
(σ, cm), cm = (A,CM ,CO). Let FSAfcm

= 〈E, S, T, S0, SF 〉 be the automaton
generated for fcm . Event e ∈ A × T is enabled in ci (denoted by ci [e〉) if and

only if it holds that σ ∈ F̃SAfcm
and ∃s ∈ S

FSAfcm
σ ∃s′ ∈ S : (s, e, s′) ∈ T .

Proof. If it holds that (s, e, s′) ∈ T , then it holds that σ + 〈e〉 ∈ F̃SAfcm
(cf.

definitions 5.3.3 and 5.3.4). Then, it either holds that σ + 〈e〉 ∈ L(FSAfcm
),

i.e., ω((σ + 〈e〉, cm)) = satisfied (cf. Property 5.6.1), or it holds that σ + 〈e〉 /∈
L(FSAfcm

), i.e., ω((σ + 〈e〉, cm)) = temporarily violated (cf. Property 5.6.2). In
other words, it holds that ω((σ + 〈e〉, cm)) 6= violated and it holds that ci [e〉. 2

5.6.3 States of Constraints

States of constraints in an instance can provide useful information for users who
are executing the instance (cf. Section 4.4.3). Properties 5.6.1, 5.6.2 and 5.6.3
can be used to monitor states of all constraints in and instance ci(σ, cm): for
LTL formula of each constraint an automaton is created and analyzed given the
trace σ to determine the state of the constraint. This method for monitoring
states of constraints is used in our declare system presented in Chapter 6.

5.7 Ad-hoc Change of ConDec Instances

As we discussed in Section 4.5, an ad-hoc change of constraint instances is suc-
cessful if the change does not bring the instance in the violated state (cf. Fig-
ure 4.4). Automata generated for ConDec models enable easy implementation of
ad-hoc change of ConDec instances. As shown in Property 5.7.1, ad-hoc change
of a ConDec instance is successful if the instance trace can be ‘replayed’ on the
mandatory automaton of the new model. Recall that ∆ is the ad-hoc instance
change function (cf. Definition 4.5.1 on page 107). Ad-hoc change of an instance
ci to model cm is successful (i.e., (ci , cm ′) ∈ dom(∆)) if and only if the changed
model does not bring the instance into the violated state.

Property 5.7.1. (Instance (σ, cm) is successfully changed to (σ, cm ′) if

and only if σ ∈ ˜FSAf
cm′)

Let ci ∈ Uci be an instance of a LTL constraint model where ci = (σ, cm) and
let cm ′ ∈ Ucm be a constraint model. Let FSAf

cm′ be the automaton generated
for fcm′ . It holds that ((σ, cm), cm ′) ∈ dom(∆) if and only if it holds that

σ ∈ ˜FSAf
cm′ .

Proof. If it holds that σ ∈ ˜FSAf
cm′ , then it holds that ω((σ, cm)) 6= violated

(cf. Property 5.6.3). Therefore, it holds that ((σ, cm), cm ′) ∈ dom(∆) (cf. Defi-
nition 4.5.1). 2

Section 5.7 Ad-hoc Change of ConDec Instances 151

Consider, for example, a temporarily violated instance ci = (σ, cm) in Fig-
ure 5.21. The instance model cm is shown in Figure 5.21(a). This model consists
of several activities and a response constraint between the activities curse and
pray . This constraint specifies that, if curse is completed, then pray has to be
also completed afterwards. The automaton FSAfcm

generated for the manda-
tory formula of this model is shown in Figure 5.21(b). Figure 5.21 (c) shows the
instance trace σ, i.e., it shows the nd -run of the trace on the automaton in Fig-
ure 5.21(b) and it shows the corresponding instance states. Next, we will show
two examples of ad-hoc change of the instance in Figure 5.21 – one example of
a successful ad-hoc change and one example of an impossible (i.e., unsuccessful)
ad-hoc change.

(b) automaton for ConDec model(a) ConDec model

(pray,tc)
(pray,tc)

!(curse,tc)
-

s1

-

s0

{S0} {S0,S1}
(curse,ts)

{S1}
(curse,tc)

{S1}
(become holy,ts)

{S1}
(become holy,tc)

satisfied satisfied
temporarily

violated
temporarily

violated
temporarily

violated

(c) states for instance trace

curse response pray

[] ((curse,tc) -> <> (pray,tc))

become
holybless

{S1}
(bless,ts)

{S1}
(bless,tc)

temporarily
violated

temporarily
violated

Figure 5.21: A ConDec instance ci = (σ, cm) (recall that ts , tc ∈ T are event types such that
ts = started and tc = completed)

Figure 5.22 shows an example of a successful ad-hoc change of the instance
ci = (σ, cm) in Figure 5.21. Figure 5.22(a) shows the new model cmS for the
instance ci : activity bless is removed from the original instance model instance
and constraint 1..* is added to the original instance model (cf. Figure 5.21(a)).
The new 1..* constraint specifies that activity pray has to be executed at least
once. Figure 5.22(b) shows the automaton FSAfcmS

generated for the mandatory
formula of the new model cmS . Figure 5.22(c) shows the nd -run of σ on the
automaton FSAfcmS

. In other words, the instance trace σ can be replayed on
the new automaton FSAfcmS

in Figure 5.22(b) and, although the instance is
temporarily violated , this is a valid ad-hoc change.

Note that, even though the activity bless is removed from the model after
it was executed (trace σ contains events (bless , ts) and (bless , tc)) the ad-hoc
change in Figure 5.21 is successful. This is due to the property that a set of
satisfying traces of a model can contain activities that are not in the model (cf.

152 Chapter 5 Constraint Specification with Linear Temporal Logic

(a) ConDec model

curse response

1..*

pray

[] ((curse,tc) -> <> (pray,tc)) <> (pray,tc)

become
holy

(pray,tc)

(pray,tc)

!(curse,tc)

-

s0 s1

-

{S0} {S0}
(curse,ts)

{S0}
(curse,tc)

{S0}
(become holy,ts)

{S0}
(become holy,tc)

temporarily
violated

temporarily
violated

temporarily
violated

(c) states for instance trace

{S0}
(bless,ts)

{S0}
(bless,tc)

temporarily
violated

temporarily
violated

(b) automaton for ConDec model

temporarily
violated

temporarily
violated

Figure 5.22: Ad-hoc change of ConDec instance ci in Figure 5.21 is successful (recall that
ts , tc ∈ T are event types such that ts = started and tc = completed)

Chapter 4). The only consequence of removing activity bless from the model
is the fact that it will not be possible to execute this activity in the future (cf.
enabled events in Definition 4.4.3 and execution rule in Definition 4.4.4).

Figure 5.23 shows an example of an impossible (unsuccessful) ad-hoc change
of the instance ci = (σ, cm) in Figure 5.21. Figure 5.23(a) shows the new model
cmF for the instance ci : activity bless is removed from the original instance
model instance and constraints 1..* and precedence are added to the original
instance model (cf. Figure Figure 5.21(a)). Constraint 1..* specifies that activity
pray has to be executed at least once while precedence specifies that activity
become holy can be executed only after the activity pray . Figure 5.22(b) shows
the automaton FSAfcmF

generated for the mandatory formula of the new model
cmF . Figure 5.23(c) shows that the nd -run of σ on the automaton FSAfcmF

does
not exist, i.e., this change would violate the instance. In other words, the instance
trace σ can not be replayed on the new automaton FSAfcmF

in Figure 5.22(b)
because it is not possible to execute event (become holy , ts) from the state s0.
Therefore, the ad-hoc change from Figure 5.23 is not possible.

5.8 Verification of ConDec Models

In Section 4.6 we described two errors that can occur in constraint models: dead
events and conflicts. These errors can be detected in ConDec and any other
LTL-based models by analyzing automata generated form LTL formulas.

An event is dead in ConDec model if none of the transitions of the automaton
generated for the mandatory formula of the model can trigger the event, as shown
in Property 5.8.1.

Section 5.8 Verification of ConDec Models 153

(b) automaton for ConDec model(a) ConDec model

curse response

1..*

pray

[] ((curse,tc) -> <> (pray,tc)) <> (pray,tc)

become
holy

precedence

(!((become holy,ts) V (become holy,tc)) W (pray,tc))

!(become holy,ts) /\
!(become holy,tc)

{S0} {S0}
(curse,ts)

{S0}
(curse,tc) X(become holy,ts)

satisfied satisfied
temporarily

violated violated

(c) states for instance trace

(pray,tc)

(pray,tc)

-

!(curse,tc)

s2

-

(pray,tc)

s0 s1

Figure 5.23: Ad-hoc change of ConDec instance ci in Figure 5.21 is not successful (recall that
ts , tc ∈ T are event types such that ts = started and tc = completed)

Property 5.8.1. (A dead event cannot be triggered by any transition)
Let cm ∈ Ucm be a constraint model and FSAfcm

= 〈E, S, T, S0, SF 〉 be the
automaton generated for fcm and e ∈ E be an event. It holds that e ∈ ΠDE(cm)
(i.e., e is a dead in model cm, cf. Definition 4.6.1), if and only if @s,s′∈S(s, e, s′) ∈
T .

Proof. If it holds that @s,s′∈S(s, e, s′) ∈ T , then it holds that ∀σ ∈ F̃SAfcm
: e /∈ σ

(cf. Definition 5.3.4). Therefore, it holds that ∀σ ∈ L(FSAfcm
) : e /∈ σ (cf.

Definition 5.3.5). Because E∗
�cm = L(FSAfcm

) (cf. Property 5.4.2), it further
holds that ∀σ ∈ E∗

�cm : e /∈ σ, i.e., e ∈ ΠDE(cm) (cf. Definition 4.6.1). 2

Figure 5.24(a) shows the ConDec model for the model in Example 4.6.3 on
page 111. Due to the fact that event (become holy , tc) has to occur at least once
(i.e., constraint 1..* on become holy) and events (become holy , tc) and (curse, tc)
cannot occur both (i.e., constraint not co-existence), event (curse, tc) is dead in
this model. This dead event can be easily detected by analyzing the automaton
in Figure 5.24(b), which is generated for the mandatory formula of the model:
none of the transitions in the automaton can trigger event (curse, tc).

A ConDec model has a conflict if the automaton generated for the manda-
tory formula of the model is empty. Property 5.8.2 shows that the automaton
generated for the mandatory formula of the model with a conflict has no states.

Property 5.8.2. (The automaton is empty for a model with a conflict)
Let cm ∈ Ucm be a constraint model and FSAfcm

= 〈E, S, T, S0, SF 〉 be the
automaton generated for fcm . It holds that E∗

�cm = ∅ (i.e., cm has a conflict), if
and only if S = ∅.
Proof. If it holds that S = ∅, then it holds that L(FSAfcm

) = ∅ (cf. Defini-
tion 5.3.5 and the algorithm to generate the automata [111, 112, 158]). Because

154 Chapter 5 Constraint Specification with Linear Temporal Logic

1..*

(b) automaton for ConDec model(a) ConDec model

curse response

bless

pray

[] ((curse,tc) -> <> (pray,tc))

become
holy

!(curse,tc)

s0

!(curse,tc)

s1

<> (become holy,tc)

not co-existence

!(curse,tc) /\ (become holy,tc) ! ((<> (curse,tc)) /\
(<> (become holy,tc)))

Figure 5.24: A ConDec model where event (curse , tc) is dead (recall that ts , tc ∈ T are event
types such that ts = started and tc = completed)

E∗
�cm = L(FSAfcm

) (cf. Property 5.4.2), it further holds that E∗
�cm = ∅ (cf.

Definition 4.6.1). 2

Figure 5.25(a) shows the ConDec model for the model in Example 4.6.7
on page 4.6.7. Due to the fact that each of the events (become holy , tc) and
(curse, tc) have to occur at least once (i.e., constraints 1..* on become holy and
curse) and events (become holy , tc) and (curse, tc) cannot occur both (i.e., con-
straint not co-existence) this model has a conflict. In other words, there is not
trace that can satisfy this model (i.e., even the empty trace does not satisfy the
model). The conflict in this model can be easily detected by analyzing the au-
tomaton generated for the mandatory formula of the model: the automaton has
no states (cf. Figure 5.25(b)).

1..*

(b) automaton for ConDec model(a) ConDec model

response

bless

pray

[] ((curse,tc) -> <> (pray,tc))

become
holy

<> (become holy,tc)

not co-existence

! ((<> (curse,tc)) /\
(<> (become holy,tc)))

1..*

curse

<> (curse,tc)

Figure 5.25: A ConDec model with a conflict (recall that ts , tc ∈ T are event types such that
ts = started and tc = completed)

The cause of an error (dead event or conflict) in a ConDec model cm =
(A,CM ,CO) can be found by searching through the powerset (all subsets) of
the mandatory constraints. For each subset C ⊆ CM an automaton FSAf is
generated for the conjunction of all constraints in the subset, i.e., f =

∧
(E,f)∈C f

and this automaton is analyzed for errors in the same way as for the whole model
(cf. Properties 5.8.1 and 5.8.2). The smallest subset of mandatory constraints
for which the error is detected is the cause of the error. Clearly, all verification

Section 5.9 Activity Life Cycle and ConDec 155

and ad-hoc change concepts presented in Chapter 4 can be realized for ConDec
and any other LTL-based language.

Sometimes it is necessary to check if models are compatible with each other.
For example, if two or more models share some activities but have different
constraints, it might happen that the composition of these models contains in-
consistencies, i.e., the models are incompatible. We showed in Section 4.6.3 that
constraints models can be incompatible with respect to a dead activity and with
respect to a conflict. Compatibility analysis is performed by verifying the original
and merged (combined) models against dead activities and conflicts. Compatibil-
ity of ConDec or any other LTL-based model can be analyzed using the merging
procedure described in Definition 4.6.10 and applying the verification techniques
for ConDec models presented in Section 5.8.

5.9 Activity Life Cycle and ConDec

ConDec templates do not consider any particular model of a life cycle of activi-
ties. Although the three event types (i.e., started , completed and cancelled) are
used in the templates, the actual life cycle model (cf. Figure 4.1 on page 84)
where activities are first started and afterwards completed or cancelled is not
considered in templates. In other words, LTL formulas for ConDec templates
allow for an arbitrary order of event types. Consequently, mandatory formu-
las (cf. Definition 5.4.1) do not consider the activity life cycle. This means
that the language of the automaton FSAfcm

generated for the mandatory for-
mula of model cm contains traces where activities can be, e.g., completed be-
fore they are started or even without ever being started . For example, trace
σ = 〈(curse, started), (curse , completed), (pray , completed)〉 is accepted by the
automaton in Figure 5.16 on page 143. This means that, event though trace σ
is not possible because activity pray is completed without being started before,
this trace will be contained in the set of traces that satisfy the ConDec model
presented in Figure 5.15 on page 142.

5.9.1 Possible Problems

The absence of an explicit activity life cycle in ConDec can lead to serious errors
in execution and verification of ConDec models. In particular, errors might oc-
cur when determining enabled events, constraint state and instance state during
execution and when discovering dead activities and conflicts during verification.
Moreover, the same holds for any LTL-based language because LTL itself does
not impose an activity life cycle. Figure 5.26 shows an illustrative example of
an LTL-based constraint model that can cause errors related to the activity life
cycle. This model consists of activities x and y and a constraint error speci-
fying that activity A cannot be started but it must be completed (i.e., formula

156 Chapter 5 Constraint Specification with Linear Temporal Logic

(!3(x , started)) ∧ (3(x , completed))). The automaton generated for the manda-
tory formula of this model is presented in Figure 5.26(b). Although none of the
transitions in the automaton can be triggered by event (x , started), the accepting
state can be reached only by triggering event (x , completed).

(a) a model (b) automaton for
(! <> (x,started)) /\ (<> (x,completed))

error

(! <> (x,started)) /\ (<> (x,completed))

x
y (x,completed)

s0 s1

!(x,started) !(x,started)

Figure 5.26: A ConDec model with a conflict

Four types of errors might occur in LTL-based languages: (1) while deter-
mining which events are enabled in an instance, (2) while determining instance
and constraint states, (3) during model verification against dead events, and (4)
during model verification against conflicts. Each of these problems is described
bellow using the example shown in Figure 5.26.

Enabled events: Events referring to completion or cancellation of an activ-
ity might be enabled (and available for execution) although the activ-
ity was not started yet. For example, as long as the automaton in Fig-
ure 5.26(b) remains in its initial state s0, events (x , completed), (y , started)
and (y , completed) will be enabled. In other words, events (x , completed)
and (y , completed) will be enabled at the beginning of the instance execu-
tion, i.e., before any of the two activities is started .

Constraint and instance state: The state of an instance or constraint might
be incorrect because an accepting state is reachable only by violating the
activity life cycle. For example, as long as an instance remains in the
initial state s0 of the automaton in Figure 5.26(b) the instance state is
temporarily violated , i.e., the accepting state s1 is reachable via transition
(s0, (x , completed), s1) (cf. Property 5.6.2). In other words, this automaton
can reach an accepting state only by triggering event (x , completed), while
event (x , started) can never be triggered. However, due to the activity life
cycle, an occurrence of event (x , completed) must be preceded by an oc-
currence of event (x , started). Therefore, transition (s0, (x , completed), s1)
will never be triggered and the accepting state s1 will never be reached,
i.e., the actual state of the instance is violated . Note that the same holds
for the state of the error constraint.

Dead events: Existing dead event might not be discovered because the event
can be triggered only by violating the activity life cycle. Only event
(x , started) will be discovered as a dead event in the model in Figure 5.26(a)

Section 5.9 Activity Life Cycle and ConDec 157

because this is the only event that cannot be triggered by any of the tran-
sitions of the automaton in Figure 5.26(b) (cf. Property 5.8.1). However,
due to the activity life cycle and the fact that event (x , started) is dead,
event (x , completed) can also never occur in traces that satisfy the model.
Thus, although none of the traces that satisfy the model and the activity
life cycle contains event (x , completed), verification procedure is not able
to discover this event as a dead event (cf. Definition 4.6.1).

Conflicts: Existing conflict might not be discovered because an accepting state
is reachable only by violating the activity life cycle. According to Prop-
erty 5.8.2, there is no conflict the model in Figure 5.26(a) because the
automaton in Figure 5.26(b) is not empty. However, each trace in the lan-
guage of the automaton contains event (x , completed) and does not contain
event (x , started). Therefore, none of these traces actually complies with
the activity life cycle model, i.e., there is no trace that satisfies the model
and the model actually has a conflict.

The first problem, i.e., enabling wrong events, can easily be solved by a cor-
rectly implemented workflow management system. For example, while executing
an instance ci = (σ, cm) of a model cm = (A,CM ,CO), the declare proto-
type (cf. Chapter 6) will enable events (a, completed) and (a, cancelled) if and
only if (1) a ∈ A, (2) there exists at least one occurrence of event (a, started)
that has not been completed or cancelled yet, and (3) events (a, completed) and
(a, cancelled) are enabled according to Property 5.6.4. Also, event (a, started)
will be enabled only if a transition that can be triggered by (a, completed) is
reachable from the current set of possible states of the mandatory automaton.
Problems referring to instance and constraint state, dead events and conflicts
can, to some extent, be ‘softened’ using one of the three approaches described in
the next section.

5.9.2 Available Solutions

In order to prevent violation of the activity life cycle in ConDec, for each activity
a ∈ A in a model cm = (A,CM ,CO) we would need to find a way to specify in the
mandatory automaton of the model that each occurrence of events (a, completed)
or (a, cancelled) must be preceded by an unique occurrence of event (a, started).
In other words, we would need to specify that an activity can be completed and
cancelled exactly as many times as it has been started before. For example, it
is not possible to start activity a once and then complete it twice, i.e., it is not
possible that one occurrence of event (a, started) is followed by two occurrences
of event (a, completed). Unfortunately, it is not possible to specify in LTL that an
event can occur exactly as many times as another event occurred before because it
is not possible to ‘count’ how many times an event (in this case event (a, started))
occurred [74]. Therefore, the activity life cycle cannot be fully integrated into

158 Chapter 5 Constraint Specification with Linear Temporal Logic

the ConDec language. Instead, three alternative partial solutions can be used
to minimize possible problems. The first two solutions aim at imposing the
precedence or alternate precedence activity life cycle requirements. These two
solutions integrate to some extent the activity life cycle into the model cm =
(A,CM ,CO) itself by (1) creating an additional ‘partial life cycle’ LTL formula
for each activity a ∈ A in the model, (2) adding these formulas to the mandatory
formula (as a conjunction) and (3) then generating the automaton for the model.
The same procedure must be applied when creating automata used to determine
state of each of the constraints. In the third solution we make sure that LTL
formulas for templates are specified carefully, so that errors are avoided as much
as possible. However, these three solutions are only partial, i.e., they do minimize
errors but do not guarantee that errors will be completely avoided. Moreover,
these solutions come at a cost: they use larger LTL formulas and, therefore, the
automata generation becomes less efficient [74, 111, 112, 158].

The precedence activity life cycle requirement. For each activity we can
specify a precedence life cycle requirement: the activity cannot be completed
or cancelled before it is started . For each activity a ∈ A in a model cm =
(A,CM ,CO) an LTL formula similar to the precedence template can be gener-
ated: (!((a, tc) ∨ (a, tx)))W (a, ts). These formulas are added as a conjunction
to the mandatory formula and formulas used to monitor states of constraints.
Figure 5.27 shows an example of the LTL formula for the precedence life cycle
requirement generated for some activity a ∈ A and the automaton generated for
this formula. It is clear that this solution only partially imposes the activity life
cycle, i.e., an activity must be started at least once before it can be completed or
cancelled , but once it was started it can be completed and cancelled an arbitrary
number of times. For example, it is possible to start the activity once (i.e., one
occurrence of event (a, ts)) and then complete it twice (i.e., two occurrences of
event (a, tc)).

 (! ((a,tc) V (a,tx))) W (a,ts)

(a,ts)

-

s0 s1

!(a,tc) /\ !(a,tx)

s0

Figure 5.27: The precedence activity life cycle requirement (recall that ts , tc , tx ∈ T are event
types such that ts = started , tc = completed and tx = cancelled)

The alternate precedence activity life cycle requirement. For each ac-
tivity we can specify an alternate precedence life cycle requirement: the activity

Section 5.9 Activity Life Cycle and ConDec 159

cannot be completed or cancelled before it is started and after the activity is
completed it cannot be completed or cancelled again until it is started again.
This requirement can be represented with LTL formula similar to the alternate
precedence template: ((!((a, tc) ∨ (a, tx)))W (a, ts)) ∧ (2((a, tc) ⇒ ©((!((a, tc) ∨
(a, tx)))W (a, ts)))). Such formulas are generated for all activities in the model
and added as a conjunction to the mandatory formula and formulas used to
monitor states of constraints. Figure 5.28 shows an example of the LTL formula
for the alternate precedence life cycle requirement generated for some activity
a ∈ A and the automaton generated for this formula. This solution overcomes
the shortcoming of the previous one (cf. Figure 5.27), i.e., it is not possible
to complete an activity more times that it was started. However, this solution
introduces another shortcoming: now it is not possible to concurrently execute
one activity multiple times for the same instance. For example, it is not possible
to first start an activity twice and then complete it twice (e.g., represented with
trace 〈(a, ts), (a, ts), (a, tc), (a, tc)〉).

(! ((a,tc) V (a,tx))) W (a,ts) /\ [] ((a,tc) -> O ((! ((a,tc) V (a,tx))) W (a,ts)))

(a,ts)

-

s0 s1

!(a,tc) /\ !(a,tx)

s0

(a,ts)

!(a,tc)

Figure 5.28: The alternate precedence activity life cycle requirement (recall that ts , tc , tx ∈ T

are event types such that ts = started , tc = completed and tx = cancelled)

Carefully defining templates. As the third alternative solution we propose
carefully defining templates. For example, the precedence template can be de-
fined with formula (!(b, ts))W (a, tc) to specify that activity b cannot be started
until activity a is completed . This formula is simple, but can cause problems be-
cause its automaton is generated such that completing and cancelling activity b
is possible while starting the same activity is prohibited, as Figure 5.29(a) shows.
To avoid this problem, we can use a safer (but larger) formula for the precedence
template to prevent starting, completing and cancelling activity b before com-
pleting activity a, i.e., we can use formula (!((b, ts)∨ (b, tc)∨ (b, tx)))W (a, tc) (cf.
Figure 5.29(b)). On the other hand, the existence template has formula 3(a, tc)
and it specifies that activity a has to be completed at least once. This allows for
situations where a is completed before being started (i.e., event (a, ts) does not
precede event (a, tc)), which also violates the activity life cycle. Clearly, formula
3((a, ts) ∧ 3(a, tc)) would be more appropriate for the existence template. In

160 Chapter 5 Constraint Specification with Linear Temporal Logic

general, it is advisable that all templates are defined such that (1) if starting an
activity is prohibited, then completing and cancelling the activity is also prohib-
ited, and (2) if completing or cancelling an activity is expected, then starting the
activity is expected before.

(! ((b,ts) \/ (b,tc) \/ (b,tx))) W (a,tc)

(b) safer version

(a,tc)

-

s0 s1

!(b,ts) /\ !(b,tc) /\ !(b,tx)

s0

(! ((b,ts))) W (a,tc)

(a) simple version

(a,tc)

-

s0 s1

!(b,ts)

s0

Figure 5.29: Two formulas for the precedence template (recall that ts , tc , tx ∈ T are event
types such that ts = started , tc = completed and tx = cancelled)

If the precedence or alternate precedence requirement is applied to a con-
straint model, then the requirement is also enforced in all constraints in the
model. However, relying on carefully defined templates does not enforce the
(alternate) precedence requirement. Consider, for example, the precedence tem-
plate presented in Figure 5.29 and the precedence requirement presented in Fig-
ure 5.273. The ‘safer’ formula indeed prevents starting, completing and cancelling
activity b before completion of activity a. However, it still allows for completing
activities a and b before starting them, i.e., the precedence requirement for ac-
tivities a and b is omitted. For example, trace 〈(a, tc), (b, tc)〉 is accepted by the
automaton in Figure 5.29(b) and, thus, satisfies this formula. Carefully defining
templates indeed requires attention when defining every template. For example,
using the ‘safer’ version of the precedence template only makes sense if, in all
other templates, whenever event (a, ts) is prohibited, event (a, tc) is also prohib-
ited. Having this in mind, the safer version of the not response template would
be 2((a, tc) ⇒!(3((b, ts) ∨ (b, tc) ∨ (b, tx)))).

5.10 Summary

In this chapter we showed how LTL can be used to specify constraints in con-
straint models. We presented an example of an LTL-based language called Con-
Dec. This language consists of a set of constraint templates - constructs that
are used to create constraints in ConDec models. Due to the fact that templates
are based on LTL formulas and graphical representation, it is easy to change or
remove existing and add new templates to the ConDec language. This makes

3The same holds for the comparison of the precedence template and the alternate precedence
requirement.

Section 5.10 Summary 161

ConDec an ‘open’ language that can evolve over time. Similar languages can be
created using different templates, which are specific to an application area (e.g.,
DecSerFlow [37,38] for process models of web services domain and CIGDec [176]
for medical processes). Graphical representation of templates and constraints
hides the underlying LTL formula and makes ConDec models easier to under-
stand.

The set of satisfying traces of ConDec constraints and ConDec models has
a finite representation – the automaton generated for the underlying LTL for-
mula(s). These automata enable execution of ConDec instances, i.e., the state of
the instance and enabled events are determined based on the run of the instance
trace on the automaton.

The generated automata are also used for ad-hoc change of ConDec instances.
If the trace can be replayed on the automaton for the new model, the change is
successful. Otherwise, the change is rejected. Note that many problems described
in literature (e.g., the “dynamic change bug” and other problems for procedural
languages [101, 201]) can be avoided, thus making “change easy” [184].

Finally, the generated automata are used for verification of ConDec models.
If an event cannot be triggered by any of the transitions, then this event is dead.
If the automaton is empty, i.e., it does not have any state, then the model has a
conflict. These verification techniques can also used of the compatibility analysis
of ConDec models.

Unfortunately, we were not able to find a way to fully incorporate the activity
life cycle model in ConDec and other LTL-based languages. This can cause
serious problems during execution of instances and verification of models. Three
available partial solutions can minimize the problems, but impose larger LTL
formulas. Larger LTL formulas decrease the efficiency of automata generation
[74,111,112,158] and negatively influence performance of a workflow management
system supporting the LTL approach.

Although we presented just one LTL-based language (i.e., ConDec) all the
techniques presented in this chapter rely on LTL specification of constraints and,
therefore, can be applied to any LTL-based language. In fact, the same ideas
could be applied to other temporal logics. This illustrates that the framework
presented in the previous chapter is truly generic.

The declare prototype presented in Chapter 6 supports LTL-based con-
straint language (e.g., ConDec). All principles presented in this chapter are
implemented in declare.

Note that LTL is just one example of a suitable language for the specification
of constraints. For example, other types of logics can also be used. As discussed
in Section 5.1, CTL can also be used for the constraint specification. Another
alternative is to use operators from Interval Algebra (IA) (i.e., before, meets,
during, overlaps, starts, finishes, after, etc.) [50] for constraint specification, and
translation of IA networks to Point Algebra (PA) networks [60] for verification
and execution of instances [162,163]. Note that LTL, CTL and IA consider time

162 Chapter 5 Constraint Specification with Linear Temporal Logic

implicitly (i.e., via their temporal operators) [50, 60, 74]. Using languages like,
e.g., Extended Timed Temporal Logic [63] and LogLogics [123], would enable
usage of explicit time in constraints (e.g., the response template can be extended
with a deadline: activity A must be executed after activity B within N time units).
While timed automata for can be used for verification and execution of constraints
specified in Extended Timed Temporal Logic, a mature efficient software support
of the LogLogics-based language would still need to be developed.

Chapter 6

DECLARE: Prototype of a

Constraint-Based System

In this chapter we introduce declare - a prototype based on the constraint-
based approach presented in Chapter 4. Although declare currently supports
LTL-based languages like, for example, the ConDec language (cf. Chapter 5), it is
possible to extend the prototype with other suitable constraint-based languages.
In fact, declare also supports DecSerFlow [37,38] and CIGDec [176]. declare

is an open-source tool implemented in Java [171], distributed under the GNU
General Public License [14], and it can be downloaded from http://declare.

sf.net.

The remainder of this chapter is organized as follows. In Section 6.1 the
prototype’s architecture is described. How to define constraint-based languages
and templates is described in Section 6.2 and the development of models in Sec-
tion 6.3. Section 6.4 describes instance execution and Section 6.5 ad-hoc change
in declare. Verification of declare models is described in Section 6.6. Tool’s
simple resource and data perspectives are described in sections 6.7 and 6.8, re-
spectively. Using data elements for defining conditions on constraints is described
in Section 6.9 and extending the tool to support other languages in Section 6.10.
Section 6.11 shows how declare can be combined with other approaches. Fi-
nally, Section 6.12 summarizes this chapter.

6.1 System Architecture

The architecture of the declare system is shown in Figure 6.1. The core of the
system consists of the following basic components: Designer, Framework and
Worklist. declare can be used in combination with two other tools. First,
by combining declare and the workflow management system YAWL [11, 23,
32, 210, 212] constraint-based models can be combined with procedural models.
Second, the ProM tool [8, 27] can be used for process mining [28] and run-time

164 Chapter 6 DECLARE: Prototype of a Constraint-Based System

recommendations for users [258].

constraint models

event logs of
executed instances

ProMYAWL

procedural models

Framework

Designer

Worklist

constraint templates organizational structure

Worklist

DECLARE

process
decomposition

instance
enactment and
ad-hoc change

model
development and

verification

language export
model export

 recommendation

...

...
access to instances
execution of activities

Figure 6.1: The architecture of declare

The Designer component is used for setting up the system level by creating
constraint templates and a simple organizational structure consisting of users
and roles representing their qualifications, as it will be explained in Section 6.7.
Constraint models are created and verified in the Designer, as described in Sec-
tions 6.3 and 6.6, respectively.

Instances of constraint models are enacted by the Framework tool. This tool
also allows selecting people that will work on each instance. One module of this
tool is the workflow engine that manages the execution of instances and creates
execution logs for all instances. Framework also contains a module for ad-hoc
change of running instances, which includes main change operations: ad-hoc
change of one instance, ad-hoc change of all instances of a given model (i.e., the
so called migration) and change of the model itself [202].

While Framework centrally manages execution of all instances, each user uses
his/her Worklist component to access active instances. Also, a user can execute
activities in active instances in his/her Worklist. The Worklist component will
be described in Section 6.4.

declare can be used together with the YAWL system [11,23,32,210,212] for
combining declare constraint and YAWL procedural models, as we will describe
in Section 6.11. With declare and YAWL, it is possible to define arbitrary
decompositions of constraint and procedural models, i.e., various constraint and
procedural models can be sub-processes of each other. Second, declare can
used in a combination with the process mining ProM tool [8, 27] for process

Section 6.2 Constraint Templates 165

mining and recommendations. The Framework component creates event logs
that contain information about instances (e.g., which activities were executed, by
whom, when, etc.). Constraint templates and constraint models can be exported
to ProM and used for verification of past executions recorded in these event
logs. Also, ProM can provide run-time recommendations for users (e.g., which
activity should be executed next) based on past executions. In Chapter 7 we will
describe in more detail how declare and ProM can be used for process mining
and recommendations.

6.2 Constraint Templates

An arbitrary number of constraint-based languages can be defined in declare.
For example, Figure 6.2 shows how the ConDec language (cf. Chapter 5) is
defined in the Designer tool. A tree with the language templates is shown under
the selected language. On the panel on the right side of the screen the selected
template is presented graphically.

Figure 6.2: Defining a language

An arbitrary number of templates can be created for each language. Fig-
ure 6.3 shows a screen-shot of the Designer while defining the response template.
First, the template name and additional display are entered. Next, it is possi-
ble to define an arbitrary number of parameters in the template. The response
template has two parameters: A and B. For each parameter it is specified if
it can be branched or not. When creating a constraint from a template in a
model, an activity replaces each of the template’s parameters. If a parameter is
branchable, then it is possible to replace the parameter with more activities. In
this case, the parameter will be replaced by a disjunction of selected activities

166 Chapter 6 DECLARE: Prototype of a Constraint-Based System

in the formula (cf. Section 5.2.5 on page 133). The graphical representation of
the template is defined by selecting the kind of symbol that will be drawn next
to each parameter and the style of the line. Figure 6.3 shows that the response
template is graphically represented by a single line with a filled circle next to
the first activity (A), and a filled arrow symbol next to the second activity (B).
Furthermore, a textual description and an LTL formula are given.

Figure 6.3: Constraint template “response”

declare uses the life cycle of activities presented in Figure 4.1 in Chap-
ter 4. The formula for the response template in Figure 6.3 is 2(“A.completed ′′ ⇒
3(“B.completed ′′)). Events (A, started), (A, completed) and (A, cancelled) are
denoted as “A.started”, “A.completed” and “A.cancelled” in declare tem-
plates, respectively. A shorter way to denote event (A, completed) in declare

is by using only “A”.

As we described in Chapter 4, a constraint model consists of mandatory
and optional constraints. Optional constraints are not obligatory, i.e., users can
violate them. However, allowing users to violate an optional constraint without
any warning would totally hide the existence of the constraint. Therefore, when
the user is about to violate an optional constraint, declare first issues a warning
about the violation to the user. Then, the user can decide to proceeded and
violate the optional constraint, or to abort and not to violate the constraint.
The violation warning contains some information about the constraint. A part
of this information is the group to which the optional constraint belongs to.
Groups that can be used for optional constraints are defined on the system level
in the Designer. Each group has a name and a short description, as illustrated
by Figure 6.4. For example, it should be easier to decide to violate a constraint
belonging to the Hospital Policy, then a constraint that belongs to the Medical
Policy.

Section 6.3 Constraint Models 167

Figure 6.4: Constraint groups

6.3 Constraint Models

Constraint models can be developed in the Designer tool for each of the languages
defined in the system. For example, we want to use ConDec templates described
in Section 5.2 for constraints in the Fractures Treatment model presented in
Figure 5.17 on page 145 and Table 5.7 on page 145, and, therefore, we create
this model in the declare Designer as a ConDec model. Figure 6.5 shows
the Fractures Treatment model in declare. Activities are presented as labeled
rectangles and constraints as special lines between activities.

Figure 6.5: The Fractures Treatment model in declare

Each constraint in the model in Figure 6.5 is created using a ConDec tem-
plate. For example, the constraint between activities perform surgery and pre-
scribe rehabilitation is created by applying the response template, as shown in
Figure 6.6. The template is selected in the top left corner of the screen. Un-
derneath the template all its parameters are shown. Activities are assigned to
parameters by selecting one or more (in case of branching) activities from the

168 Chapter 6 DECLARE: Prototype of a Constraint-Based System

model. On the right side of the screen some additional information can be given.
First, constraint can have an arbitrary name, although the constraint initially
gets its name from the template. Second, a constraint can have a condition in-
volving some data element from the model (the handling of data elements and
conditional constraints in declare will be explained in sections 6.8 and 6.9, re-
spectively). For example, condition “age < 80” on a constraint would mean that
the constraint should hold only if the data element age has a value less than 80.
Third, for each constraint it must be specified if the constraint is mandatory or
optional. If a constraint is optional, then some additional information has to be
provided: (1) a group (cf. Section 6.2), (2) the importance level on a scale from
1 (for low importance) to 10 (for high importance), and (3) some local message
that should be displayed. This additional information for an optional constraint
is presented in warnings when a user is about to violate this constraint.

Figure 6.6: Defining a constraint in declare

6.4 Execution of Instances

declare determines enabled events, the state of an instance and states of con-
straints using the approach presented in Section 5.6. Each instance is launched
(i.e., created) in the Framework tool and users can work on instances via their
Worklists (cf. Figure 6.1). All instances that a user can work on are presented
in the user’s Worklist. Figure 6.7 shows several screen-shots of a Worklist. All
available instances are shown in the list on the left side of the screen. In Fig-
ure 6.7, there are two instances of the Fractures Treatment model presented in
Figure 6.5 (the list with header ‘instances’ in the upper left corner): ‘2: Fractures
Treatment’ and ‘3: Fractures Treatment’. The model of the selected instance is
shown on the right side of the screen. After the user starts an activity by double-
clicking it, the activity will be opened in the ‘activity panel’ under the model (cf.
Figure 6.7(b)).

Section 6.4 Execution of Instances 169

(a) the initial state

(b) after starting examine patient

(c) after completing examine patient

(d) after starting and completing prescribe sling

Figure 6.7: Execution of a Fractures Treatment instance

170 Chapter 6 DECLARE: Prototype of a Constraint-Based System

Although the structure of the process model is the same as in the Designer
(cf. Figure 6.5), the Worklist uses some additional symbols and colors to present
to users the current state of the instance (cf. sections 4.4.1 and 5.6.1), en-
abled events (cf. sections 4.4.2 and 5.6.2), and states of constraints (cf. sec-
tions 4.4.3 and 5.6.3). First, each instance in Figure 6.7 has a color, which
represents the state of the instance: green for a satisfied instance, orange for
a temporarily violated instance and red for violated instance. Second, each ac-
tivity contains ‘start’ (play) and ‘complete’ (stop) icons, that indicate if users
can start/complete the activity at the moment by triggering events started or
completed . The initial state of the process instance in Figure 6.7(a) shows that it
is only possible to start activity examine patient, because the corresponding sym-
bol is enabled. Starting and completing any of the other activities is not possible,
as indicated by the disabled icons. In addition, all currently disabled activities are
colored grey 1. This initial state of the process instance is influenced by the init
constraint on the activity examine patient, i.e., this activity is the first activity to
be executed and, therefore, the only enabled event is (examine patient, started).
Third, each constraint is colored to indicate its state: (1) satisfied – the con-
straint is represented by a green color, (2) temporarily violated – the constraint
is represented by a orange color, and (3) violated – the constraint is represented
by a red color. Figure 6.7(a) shows the initial states of constraints in a Fractures
Treatment instance. Constraints init and 1 of 4 are temporarily violated (i.e.,
orange), while all other constraints in the instance are satisfied (i.e., green).

Figure 6.7(b) shows the instance after starting activity examine patient. This
activity is now “open” in the ‘activity panel’ on the bottom of the screen. Data
elements that are used in this activity are presented in the ‘activity panel’ (data
elements will be explained in Section 6.8). In this case, three data elements are
available – patient name, age and diagnosis. In this way, users can manipu-
late data elements while executing activities. The activity can be completed or
cancelled by clicking on the buttons complete or cancel on the ‘activity panel’,
respectively.

The state of the instance after completing activity examine patient is shown
in Figure 6.7(c). After the occurrence of the event (examine patient, completed)
the init constraint is satisfied . This has two consequences: (1) this constraint
becomes green and (2) it is now possible to start activities check X ray risk, pre-
scribe rehabilitation, prescribe medication and prescribe sling. Activity perform X
ray is still disabled due to the alternate precedence constraint, activities perform
reposition, perform surgery and apply cast are disabled due to the precedence
constraint and activity remove cast is disabled due to the succession constraint.

Figure 6.7(d) shows the state of the instance after starting and completing
activity prescribe sling. Execution of event (prescribe sling, completed) results in
a state that satisfies the 1 of 4 constraint and, therefore, this constraint becomes

1Note that we say that an activity a ∈ A is enabled if and only if event (a, started) is enabled.

Section 6.5 Ad-hoc Change of Instances 171

green. Because all mandatory constraints in the instance are now satisfied , the
instance itself also becomes satisfied (i.e., green).

In some cases, triggering an event or closing the instance can violate optional
constraint(s). For example, consider an instance of the Fractures Treatment
model where activity perform surgery was executed and the user tries to close the
instance without executing activity prescribe rehabilitation. Closing the instance
at this point would violate the optional constraint response (specification of this
constraint is shown in Figure 6.6). Instead of automatically closing the instance,
declare first issues a warning associated with the optional constraint, as shown
in Figure 6.8. The user can now decide based on the information presented in
the warning whether to close the instance and violate the constraint or not. Note
that, in case of mandatory constraints, this is not possible, i.e., if a mandatory
constraint would not be satisfied , the whole instance would not be satisfied , and
it would not be possible to close the instance.

Figure 6.8: Warning: closing the instance violates the optional constraint response

6.5 Ad-hoc Change of Instances

Instances in declare can be changed in an ad-hoc manner (cf. Section 4.5)
by adding and removing activities and constraints. declare fully supports the
approach for ad-hoc change described in Section 5.7. In other words, after the
change, declare creates an automaton for the mandatory formula of the new
model. If the instance trace can be ‘replayed’ on this automaton, the ad-hoc
change is accepted. If not, the error is reported and the instance continues its
execution based on the old model. Naturally, when applying an ad-hoc change,
it is also possible to verify the new model against dead activities and conflicts

172 Chapter 6 DECLARE: Prototype of a Constraint-Based System

but these errors will not prevent the change. Actually, the procedure for ad-hoc
change is very similar to the procedure for starting instances in declare, as
Figure 6.9 shows. It is possible to perform the basic model verification in both
cases. The only difference is in the execution of the automaton. When an instance
is started, the execution of the automaton begins from the initial state. In case of
an ad-hoc change, declare first makes an attempt to ‘replay’ the current trace
of the instance on the new automaton, i.e., the new model is verified against the
current trace. If this is possible, the ad-hoc change is successful and the execution
continues from the current set of possible states of the new automaton, i.e., the
instance state, enabled events, and states of constraints are determined based on
the new automaton and the current trace (cf. Section 5.6). If this is not possible,
the ad-hoc change failed and the instance must continue using the old model.

developing
model

changing
instance

starting
instance

create
mandatory
automaton

instance
verification

(replay trace)

start from
current state

set to
 initial state

X X

X XX ? ok

X

report error
cancel change

not ok

verify against
dead activities
and conflicts

?

?

report error

not ok

Figure 6.9: Procedure for starting and changing instances in declare

Besides changing an instance, declare offers two additional options: migra-
tion of all instances and changing the original constraint model (cf. Figure 6.9).
First, it is possible to request a migration of all instances, i.e., that the ad-hoc
change is applied to all running instance of the same constraint model [202]. de-

clare performs migration by applying the same procedure for ad-hoc change to
all instances of the same constraint model, i.e., only instances with traces that
can be replayed on the new automaton are changed. Second, it is possible to also
change the original constraint model. In this case, all instances created in the
future will be based on the new model.

Consider, for example, two Fractures Treatment instances ci 1 = (σ1, cm
FT)

and ci2 = (σ2, cm
FT) where σ1 = 〈(examine patient, ts), (examine patient, tc)〉

and σ2 = 〈(examine patient, ts), (examine patient, tc), (prescribe sling, ts),
(prescribe sling, tc)〉. Figure 6.10(a) shows a declare screen-shot of ad-hoc
change of instance ci 1 where activity prescribe sling is added as a new branch
in the precedence constraint. As a consequence of adding this branch, events
(prescribe sling, ts), (prescribe sling, tc), and (prescribe sling, tx) can now be ex-
ecuted only after the event (perform X ray, tc) (cf. Table 5.2 on page 129). In
addition, both the migration and the change of the model are requested. Fig-

Section 6.6 Verification of Constraint Models 173

ure 6.10(b) shows the declare report for the requested ad-hoc change. The
migration is applied to two currently running instances of the Fractures Treat-
ment model, i.e., to instances ci 1 and ci2. The change is successfully applied
to instance ci1 and the change failed for instance ci 2, due to the violation of
precedence constraint (because event (prescribe sling, tc) already occurs before
event (perform X ray, tc) in trace σ2).

added
branch

(a) changed instance

(b) declare report for ad-hoc change

Figure 6.10: Ad-hoc change in declare

6.6 Verification of Constraint Models

declare uses the methods presented in Section 5.8 to detect dead events and
conflicts (cf. Section 4.6) and their causes in models. Information about dead
events is used to detect the so-called dead activities. An activity in a model is
dead if this activity can never be started and/or completed .

Recall the example of a model with a dead event (curse, tc) from Figure 5.24
on page 154. Figure 6.11(a) shows this model in declare and Figure 6.11(b)

174 Chapter 6 DECLARE: Prototype of a Constraint-Based System

shows the declare verification report for the model: activity curse is dead due
to constraints 1..* and not co-existence.

(a) the model

(b) activity curse is dead

Figure 6.11: A declare model with a dead activity curse

The example in Figure 5.25 on page 154 has a conflict. Figure 6.12(a) shows
this model in declare. In Section 5.8 we presented one error in this model,
i.e., the conflict. However, this model also contains two dead events. Verification
in declare detects all errors in a model. figures 6.12(b), 6.12(c) and 6.12(d)
show the verification report in declare for the model in Figure 6.12, where
three errors are detected. First, Figure 6.12(b) shows that the conflict caused
by constraints 1..* on curse, 1.* on become holy and not co-existence. Second,
Figure 6.12(c) shows that activity become holy is dead due to constraints 1.* on
curse and not co-existence. Third, Figure 6.12(d) shows that activity curse is
dead due to constraints 1.* on become holy and not co-existence. The conflict in
this model is, actually, caused by forcing the execution of the two dead activities,
i.e., activities curse and become holy are dead and there is a 1..* constraint on
each of these activities.

Detailed verification reports in declare aim at helping model developers to
understand error(s) in the model. The goal is to assist the resolution of such
problems. As discussed in Section 4.6, errors can be eliminated from a model
by removing at least one constraint from the group of constraints that together
cause the error. For example, if one of the constraints 1..* on become holy or
not co-existence would be removed from the declare model in Figure 6.11(a),
activity curse would no longer be dead. Also, by removing at least one of the

Section 6.7 The Resource Perspective 175

(a) the model

(b) a conflict

(c) activity become holy is dead

(d) activity curse is dead

Figure 6.12: A declare model with a conflict

constraints 1..* on curse, 1.* on become holy or not co-existence from the model
in Figure 6.12(a) would remove the conflict in this model.

6.7 The Resource Perspective

The resource perspective specifies which users can execute which activities in
instances, as described in Section 3.1.2. The resource perspective of declare

is intentionally not designed to resemble the resource perspective of any of the
existing workflow management systems. Instead, it is inspired by self-managed
work teams, which are described in Section 2.3. A self-managed work team is

176 Chapter 6 DECLARE: Prototype of a Constraint-Based System

responsible for a meaningful piece of work, i.e., for the team’s assignment. This
style of work assumes that team members have a high degree of knowledge and
responsibility for their assignment. Therefore, the team is an autonomous unit
and its members are able to fully make their own (local) decisions about how to
execute the assignment.

The resource perspective is defined in four steps in declare. First, on the
system level, users and their system roles can be specified in the Designer com-
ponent. Figure 6.13(a) shows eight system roles and Figure 6.13(b) shows six
users. An arbitrary number of system roles can be assigned to each user. In Fig-
ure 6.13(b) we can see that system roles nurse and anesthesiologist are assigned
to user Marry Stone.

(a) system roles (b) users and their roles

Figure 6.13: Setting up the system level in declare

Second, in addition to system roles, model roles can be defined for each model.
Figure 6.14 shows five model roles in the Fractures Treatment model. Each of
the model roles is associated with one of the system roles. For example, an
orthopedist on the system level can have a leading role in one model, and an
advisory role in another model.

Figure 6.14: Roles in the Fractures Treatment model from Figure 6.5

Third, for each activity in a model, one or more model roles authorized to
execute this activity can be specified. For example, it might be the case that the
activity examine patient in the Fractures Treatment model should be executed

Section 6.7 The Resource Perspective 177

only by a leader, as shown in Figure 6.15. If several models roles are authorized
to execute an activity, then the activity can be executed by any user that has at
least one of the authorized roles. If authorized model roles are not defined for an
activity, then this activity can be executed by any instance participant.

Figure 6.15: Assigning model roles to activities

Finally, when an instance is launched (created) in declare, users that will
participate in the instance execution are selected, as shown in Figure 6.16. For
each model role an arbitrary number of users that have the system role associated
with the model role can be selected. For example, a surgery assistant can be any
user who has the nurse role on the system level (cf. Figure 6.14). Because
users Marry Stone and Lia Walters have the nurse system role, they can be
assigned as surgery assistants in this instance. Users assigned to model roles in
an instance are called instance participants. An instance can be accessed only by
its participants, i.e., an instance is shown only in Worklists of its participants.
Moreover, an activity in an instance can be executed only by participants that
have the role(s) authorized to execute this activity.

Figure 6.17 shows an illustrative example of how resource perspective of the
Fractures Treatment model is specified in declare. For the purpose of simplic-
ity, we use only a part of the Fractures Treatment model, i.e., only two model
roles (i.e., leader and radiologist) and two activities (i.e., examine patient and
perform X ray). The first three steps of defining resource perspective are shown
in Figure 6.17(a). First, two system roles (i.e., orthopedist and radiologist) are
assigned to four users, i.e., John Smith and Jimmy Travolta are orthopedists and
Jane Travic and Nick Bush are radiologists. Second, model roles leader and radi-
ologist are defined in the model, such that the model role leader can be assigned

178 Chapter 6 DECLARE: Prototype of a Constraint-Based System

Figure 6.16: Selecting participants for an instance

only to users with the system role orthopedist and the model role radiologist
only to users with the system role radiologist. Third, only model leaders are
authorized to execute activity examine patient and only model radiologists are
authorized to execute activity perform X ray. Figures 6.17(b), (c) and (d) show
three examples of instances with different users allocated to them. Only users
with corresponding system roles can be assigned to model roles in an instance as
participants. For example, participants of the instance in Figure 6.17(b) are or-
thopedists John Smith and Jimmy Travolta as instance leaders and radiologists
Jane Travic and Nick Bush as instance radiologists. An instance is accessible
only by its participants. For example, the instance in Figure 6.17(b) will be
shown in Worklists of all four users, the instance in Figure 6.17(c) will be shown
in Worklists of John Smith, Jane Travic and Nick Bush, and the instance in
Figure 6.17(d) will be shown in Worklists of John Smith and Jane Travic. An
activity can be executed only by instance participants with the model role au-
thorized for this activity. For example, only orthopedists John Smith and Jimmy
Travolta are allowed to execute activity examine patient in the instance in Fig-
ure 6.17(b) because they are leaders in this instance. This is not the case for
the instances in Figures 6.17(c) and (d): only John Smith is a leader in these
instances and, therefore, only he can execute activity examine patient in these
two instances.

6.8 The Data Perspective

The data perspective defines the way in which information is handled while exe-
cuting instances of process models. It defines which data elements are available
and how these data elements can be accessed, as described in Section 3.1.3.
Therefore, defining the data perspective in declare involves (1) defining avail-
able data elements on the model level and (2) defining available data elements
and their accessibility on the activity level.

Each instance in declare carries its own data. For example, an instance
of the Fractures Treatment model should contain the patient name, age and the
diagnosis. This kind of instance-related information is stored in data elements of

Section 6.8 The Data Perspective 179

John Smith Jimmy Travolta Nick BushJane Travic

orthopedist radiologist

leader radiologist

examine
patient

perform
X ray

SYSTEM
ROLES AND

USERS

MODEL ROLES

MODEL
ACTIVIES

(a) users, roles and a model

John Smith Jimmy Travolta Nick BushJane Travic

leader radiologist

examine
patient

perform
X ray

INSTANCE
PARTICIPANTS

INSTANCE
ROLES

INSTANCE
ACTIVIES

(b) instance ci1

John Smith Nick BushJane Travic

leader radiologist

examine
patient

perform
X ray

INSTANCE
PARTICIPANTS

INSTANCE
ROLES

INSTANCE
ACTIVIES

(c) instance ci2

John Smith Jane Travic

leader radiologist

examine
patient

perform
X ray

INSTANCE
PARTICIPANTS

INSTANCE
ROLES

INSTANCE
ACTIVIES

(d) instance ci3

Figure 6.17: The resource perspective in three instances

the instance’s process model and is clearly instance-specific. An arbitrary number
of data elements can be defined in each model in declare. A data element has
a name, type (e.g., string, integer, etc.) and possibly an initial value. Figure 6.18
shows three data elements in the Fractures Treatment model: patient name, age
and diagnosis. These data elements are exclusively owned by instances of the
model, i.e., each instance of the Fracture Treatment model will have its own
patient name, patient age and diagnosis.

Figure 6.18: Data elements in the Fractures Treatment model from Figure 6.5

As described above, each instance owns its own set of data elements defined
in instance’s model. Users can access values of instance’s data elements while
executing instance’s activities. Therefore, an arbitrary number of model’s data
elements can be available in each activity of the model. Figure 6.19 (the bottom

180 Chapter 6 DECLARE: Prototype of a Constraint-Based System

of the screen) shows how available data elements are assigned to an activity in
the Designer tool, while developing a process model. First, any of the data
elements defined in the model can be assigned to an activity. Figure 6.19 shows
that data elements name, age and diagnosis are available in activity examine
patient. Second, for each of the available data elements the type of accessibility
must be defined. Recall that, in Section 3.1, we presented the two types of
data accessibility: (1) the value of an input data element can be accessed but
not edited in the activity and (2) the value of an output data element can be
edited in the activity. declare uses a similar approach: data elements can
have input, output or input-output accessibility in activities. The first two types
of accessibility correspond to the two types described in Section 3.1, while an
input-output data element is both input and output in the activity. Note that
the definition of available data elements and their accessibility influences the way
users can manipulate data in instances. Users can manipulate the activity data
elements while executing an activity in a Worklist, as shown in Figure 6.7(b) on
page 169.

Figure 6.19: Adding an optional constraint

6.9 Conditional Constraints

A condition can be defined for any constraint in the special field on the screen
for defining a constraint, as shown in Figure 6.20. A condition is a an expres-
sion involving data elements from a process model. Consider, for example, data
elements in the Fractures Treatment process presented in Figure 6.18. These
data elements can be used to define conditions on any of the constraints in the

Section 6.9 Conditional Constraints 181

Fractures Treatment model. For example, it might be the case that the hospital
changed the policy about prescribing rehabilitation after performing surgery, and
that, from now on, rehabilitation must be prescribed after surgery to all patients
who are less than eighty years old 2. This would require the response constraint
between activities perform surgery and prescribe rehabilitation to be a mandatory
constraint with condition age < 80, as shown in Figure 6.20. If a constraint has
a condition, then this condition is displayed in the model above the constraint.
We refer to a constraint with a condition as to a conditional constraint.

Figure 6.20: Condition on a constraint

At any point during instance execution a condition value is either true (i.e.,
the related constraint is applicable) or false (i.e., the related constraint is not
applicable). The value of a condition depends on the value of data elements
involved in the condition. For example, if data element age has value 30 in an in-
stance, then the value of condition age < 80 is true, and the response constraint
between activities perform surgery and prescribe rehabilitation is applicable in
the instance (cf. Figure 6.20). If, on the other hand, age has value 82 in an
instance, then the value of this condition is false, and this constraint is not
applicable in the instance. If the condition on a constraint is false, then this
constraint is presented with a light gray color in Worklists (instead of the color
representing constraint’s state).

declare handles a conditional constraint in an instance in a special way,
depending on the value of the condition, as Table 6.1 shows. If the value of the

2Note that, originally, the response constraint between perform surgery and prescribe reha-
bilitation was defined as optional (cf. Figure 6.5 on page 167).

182 Chapter 6 DECLARE: Prototype of a Constraint-Based System

condition is true, then the related constraint is applicable, i.e., the state of the
constraint is monitored and presented with the right color in Worklists and, if
the constraint is mandatory, it is included in the mandatory formula/automaton
(cf. Definition 5.4.1 on page 142). If the value of the condition is false, then
the related constraint is not applicable, i.e., the state of the constraint is not
monitored, the constraint is ‘grayed-out’ in Worklists and, even if the constraint
is mandatory, it is discarded from the mandatory formula.

Table 6.1: Conditional constraints

condition constraint constraint state mandatory constraint

true applicable monitor (present state color) consider
false not applicable do not monitor (gray-out) discard

As users execute activities in their Worklists, instance’s data elements change
values (cf. Figure 6.7 on page 169). Thus, it might happen that a condition
changes its value several times during the execution of the instance. As Table 6.2
shows, declare handles a change of the value of a condition as a special type of
ad-hoc change (cf. Section 6.5). We refer to this kind of ad-hoc instance change
as to a conditional change. If the value of a condition changes from false to
true, then the related constraint is added to the instance. If the value of a
condition changes from true to false, then the related constraint is removed
from the instance.

Table 6.2: Conditional change as an ad-hoc change

condition value instance
old new ad-hoc change

false true add constraint
true false remove constraint

A conditional change can be handled in a similar manner like an ad-hoc
change, as Figure 6.21 shows3. However, conditional change can be handled
using two strategies: the unsafe or the safe strategy. Both strategies start with
creating a new mandatory automaton, setting it to its initial state and then
‘replaying’ the trace of the instance on the new automaton.

If the unsafe strategy is used, then the execution of the activity that causes
the conditional change is accepted, regardless the new state of the instance.
In other words, the unsafe strategy allows conditional changes that bring the
instance in the state violated . The violation of the instance can be caused when
the value of the condition on a mandatory constraint changes from false to
true. This is because the related mandatory constraint is added to the instance,

3See Figure 6.9 for a similar diagram explaining ad-hoc change.

Section 6.9 Conditional Constraints 183

UNSAFE
strategy

SAFE
strategy

instance
verification

(replay trace)

X XX ? ok

report error
reject activity execution

not ok

X XX

start from
current state

X

set to
 initial state

create
mandatory
automaton

Figure 6.21: Two strategies for conditional change

which might discard the current trace from the set of traces that satisfy the new
model of the instance (cf. Property 4.2.5 on page 94).

The safe strategy resembles the ad-hoc change more than the unsafe strategy,
because this strategy does not allow a conditional change that would bring the
instance into the violated state. If executing an activity would change value(s) of
data element(s) in such a way that the instance becomes violated , then this error
is reported (just like in the ad-hoc change) and the execution of this activity is
rejected.

Currently, declare uses the unsafe strategy for conditional change. How-
ever, the safe strategy can also be easily implemented using existing techniques
for ad-hoc change presented in Section 6.5.

Conditional mandatory constraints can cause problems during verification
of models in declare. This is because (1) conditions are independent from
the formal specifications of constraints and (2) the verification procedure in de-

clare does not take conditions on mandatory constraints into account, i.e., all
constraints are treated as unconditional during the verification. This can cause
declare to detect and report a verification error even if, due to condition(s),
the error does not exist. For example, consider a model where a set of manda-
tory constraints causes an verification error (i.e., a dead event or a conflict), and
two constraints c1 and c2 from this set with conditions age < 20 and age > 50,
respectively. declare will not take these conditions into account during veri-
fication, i.e., it will detect this error and the set of mandatory constraints that
causes it. However, because these two conditions can never evaluate to true at
the same time, at any point of time at least one of these two constraints will be
discarded from the instance. Therefore, the detected verification error does not
actually exist (cf. Property 4.6.4 on page 111 and Property 4.6.8 on page 114).
In order to overcome this problem to some extend, declare presents condi-
tions of all constraints that cause a detected error (cf. figures 6.11 and 6.12 on
pages 174 and 175, respectively).

184 Chapter 6 DECLARE: Prototype of a Constraint-Based System

6.10 Defining Other Languages

The ConDec language (cf. Section 5.2) is not the only language that can be
used in declare. In this section we show how another languages can be sup-
ported by declare. Section 6.10.1 describes how other LTL-based languages
can be defined (cf. DecSerFlow [37,38], CIGDec [176], etc.). Besides LTL-based
languages, the prototype can be extended to support languages based on other
formalizations, as described in Section 6.10.2.

For illustration purposes we use a simple, hypothetical, language called the
‘Simple Language’. This language uses several procedural control-flow patterns
[35, 213]. As Figure 6.22 shows, the ‘Simple Language’ has five templates, i.e.,
sequence, parallel split, synchronization, exclusive choice and simple merge, such
that each of them is illustrates a control-flow pattern [35, 213].

Figure 6.22: Defining the ‘Simple Language’

Templates from the ‘Simple Language’ can be used to specify relations be-
tween activities in models. For example, the Handle Complaint process (cf.
Figure 3.3 on page 52) can be modeled in the ‘Simple Language’, as Figure 6.23
shows. Note that, due to usage of identical control-flow patterns/templates, the
Handle Complaint models shown Figures 3.3 and 6.23 have identical semantics,
i.e., they represent the same process.

Parameters, graphical representation and formal specification must be spec-
ified for each of the templates in the ‘Simple Language’. In sections 6.10.1
and 6.10.2 we describe how the templates of the ‘Simple Language’ can be defined
using LTL or some other formalism, respectively.

6.10.1 Languages Based on LTL

Because declare is by default able to support LTL-based languages, defining
such a language is trivial in the prototype. This is done in two steps. First,
the name for the new language must be given. Second, all templates of the
new language must be added. Further, it is important to define the appropriate

Section 6.10 Defining Other Languages 185

Figure 6.23: A ‘Simple Language’ model

graphical representation and LTL formula for each template. Figure 6.24 shows
how the exclusive choice template of the ‘Simple Language’ can be defined in
LTL. Note that the given LTL formula specifies the semantics of the template.
In this case, the exclusive choice template specifies that (1) activities B and C
cannot be started before A is completed , (2) B or C must be completed after A
is completed and (3) B and C cannot both be completed . Note that we selected
a particular semantics for each of the five patterns. For simplicity, we did not
consider the more advanced use of these five patterns (loops, etc.)

Figure 6.24: The exclusive choice template in LTL

6.10.2 Languages Based on Other Formalizations

Although it currently uses LTL for constraint specification (cf. Chapter 8), the
declare prototype can be extended to support other languages. In this case,
defining the language, its templates and models remains the same like in the LTL
based languages, e.g., ConDec. The only difference is that, the new formalization
must be used when defining formulas of templates. This can be an arbitrary

186 Chapter 6 DECLARE: Prototype of a Constraint-Based System

textual formalization. For example, Figure 6.25 shows how the exclusive choice
template of the ‘Simple Language’ can be defined using a hypothetical formal
specification in the field formula.

Figure 6.25: The exclusive choice template in a hypothetical formalization

As shown in Figures 6.22, 6.25 and 6.23, declare already supports de-
veloping non-LTL-based languages and their models. However, in order to be
able to verify models and execute instances of a new language, some exten-
sions of the prototype are necessary. Implementing a non-LTL-based language
in declare requires extending the prototype with several Java classes [171],
as shown in Figure 6.26. Figure 6.26(a) shows classes LTLInstanceExecution-
Handler and SLInstanceExecutionHandler, which are responsible for execution
of LTL and the ‘Simple Language’ instances, respectively. These classes must
implement methods of the IInstanceExecutionHandler, which are responsible for
(1) execution of the next event (method next), (2) retrieving enabled events
(method enabled), (3) information about possible violation of optional constraints
(method violatesConstraints), (4) retrieving the state of constraints (method con-
straintState), (5) retrieving the instance state (method instanceState), and (6)
performing ad-hoc instance change (method reset). Figure 6.26(b) shows classes
that are used for the verification of models and traces in ad-hoc change of LTL
and the ‘Simple Language’ instances. Classes LTLVerification and SLVerifica-
tion extend ModelVerification and are responsible for verification of LTL and the
‘Simple Language’ models. Classes LTLHistoryVerification and SLHistoryVeri-
fication, which extend HistoryVerification, verify the new model against current
trace during ad-hoc change of LTL and the ‘Simple Language’ instances.

As Figure 6.26 shows, in order to implement a new language in declare, it
is necessary to create three classes: (1) a class that implements the IInstanceEx-
ecutionHandler is responsible for execution of instances, (2) a class that extends

Section 6.11 Combining the Constraint-Based and

Procedural Approach 187

next(in event : WorkItemEvent) : boolean
enabled(in event : AbstractEvent) : boolean
violatesConstraints(in event : AbstractEvent) : Collection<Constraint>
constraintState(in constraint : Constraint) : DefaultState
instanceState() : DefaultState
reset(in model : Model) : boolean

«interface»
IInstanceExecutionHandler

LTLInstanceExecutionHandler SLInstanceExecutionHandler

(a) execution

verify() : VerificationResult

«interface»
IVerification

LTLVerification

ModelVerification(in model : Model)

ModelVerification

SLVerification LTLHistoryVerification SLHistoryVerification

HistoryVerification(in instance : Instance, in trace : Trace)

HistoryVerification

(b) verification

Figure 6.26: Implementation of a new language in declare

ModelVerification for verification of models and (3) a class that extends Histo-
ryVerification that is responsible for the verification of ad-hoc instance change.
For example, classes SLInstanceExecutionHandler, SLVerification, and SLHisto-
ryVerification handle models and instances of the ‘Simple Language’. In addition
to the classes shown in Figure 6.26, it is advisable to also implement classes that
check syntax of the formal specification of templates in the new language, i.e.,
the content of the formula field shown in Figure 6.25.

6.11 Combining the Constraint-Based and

Procedural Approach

The nature of a business process determines the appropriate approach with
respect to workflow technology. On the one hand, flexible approaches (e.g.,
constraint-based approach), where users control the work, are appropriate for
turbulent business processes. For example, the right treatment for each patient
in the Fractures Treatment process (cf. Figure 6.5) depends on the specific injury.
Therefore, this process must be flexible enough to allow the medical staff to use
their expertise and experience and provide the best treatment for each patient.
On the other hand, some business processes might require that a strict procedure
is followed for each instance. For example, a blood analysis in a medical labo-
ratory must always be conducted following a prescribed procedure, in order to
deliver reliable results. The procedural approach where the system controls the
work is more appropriate for business processes that must strictly follow some
prescribed procedure.

As discussed in Chapter 1, none of the two approaches is sufficient in its own.
On the contrary, organizations often need to combine flexible and procedural
approaches because procedural processes (e.g., laboratory analysis) and flexible
processes (e.g., performing surgeries) are often integrated in organizations. In

188 Chapter 6 DECLARE: Prototype of a Constraint-Based System

other words, a business process is often composed of both flexible and procedural
subprocesses. Therefore, it is remarkable that commercial workflow management
systems tend to support either one or the other approach. Moreover, there are
many ICT approaches that use sophisticated methods for developing interfaces
between different systems (e.g., Service Oriented Architectures [52]). Similar
concepts can be applied to workflow technology in order to allow for arbitrary
decompositions of process models developed in various languages and enacted
by various systems. Figure 6.27 shows an illustrative example of how various
processes can be combined in arbitrary decompositions. Instead of being executed
as simple (manual or automatic) unit of work, an activity can be decomposed
into a process modeled in an arbitrary language.

...
A B Z

Figure 6.27: Decomposing processes using various modeling languages: A, B, . . . , Z

6.11.1 Decomposition of declare and YAWL Processes

YAWL is a workflow management system that supports the procedural approach
developed in a collaboration between the Eindhoven University of Technology
and the University of Queensland [11, 23, 32, 210, 212]. YAWL aims at support-
ing most of the workflow patterns [10, 35, 208] (cf. Section 3.1). The YAWL
system consists of three typical components of a workflow management system
(cf. Figure 3.1 on page 48), as Figure 6.28 shows. First, the YAWL Editor can
be used to create process models. Second, the YAWL engine manages execution
of instances. Finally, each user uses its YAWL Worklist to execute activities in
running instances.

YAWL
engine

YAWL
Worklist

process models

YAWL
editor

YAWL
Worklist

Figure 6.28: Workflow management system YAWL

The architecture of YAWL enables easy interaction between YAWL and other
applications, i.e., the so-called custom YAWL services. Figure 6.29(a) shows the

Section 6.11 Combining the Constraint-Based and

Procedural Approach 189

interface between YAWL and a custom service. First, YAWL can delegate an
activity to the service, instead of the YAWL Worklist (cf. activity marked with
letter S in Figure 6.29(a)). Second, a custom service can request launching
of a new instance in YAWL. In both cases relevant instance and activity data
elements are exchanged between YAWL and the service. The YAWL Worklist is
a custom YAWL service. By default, all activities in YAWL models are delegated
to the YAWL Worklist, i.e., all activities are by default executed by users in their
YAWL worklists. If an activity should be delegated to another custom service,
then this must be explicitly specified in the YAWL model.

S

Y
A

W
L

E
ng

in
e

custom
YAWL
service

start activity

completed activity

start instance

completed instance

(a) custom service interface

D

Y
A

W
L

E
ng

in
e D

E
C

LA
R

E

*

Y

(b) declare as a service

Figure 6.29: declare as a custom YAWL service

declare Framework can act as a custom YAWL service. This enables arbi-
trary decompositions of declare and YAWL models, as shown in Figure 6.29(b).
First, it is possible that a YAWL activity triggers execution of a declare in-
stance: when the YAWL activity becomes enabled declare will launch its in-
stance. YAWL will consider the completion of the launched declare instance
as a completion of its activity. Second, a declare activity can trigger execution
of a YAWL instance. Note that users execute ‘standard’ activities of declare

and YAWL instances in a default manner in declare and YAWL worklists, as
Figure 6.30 shows.

YAWL
Engine

Framework

YAWL
Worklist

Worklist

DesignerDECLARE

Figure 6.30: Interface between declare and YAWL

Arbitrary decompositions of declare and YAWL models allow for integrat-
ing the constraint-based and the procedural approach on different abstraction
levels within one business process. This way the designer is not forced to make

190 Chapter 6 DECLARE: Prototype of a Constraint-Based System

a binary choice between flexible and inflexible processes. Instead, an integration
can be achieved, where parts of the processes that need a high degree of flexibility
are supported by constraint-based declare models and parts of the processes
that need centralized control of the system are supported by YAWL models. Con-
sider, for example, the decomposition of a part of a health care process shown
in Figure 6.31. On the highest decomposition level, the main process is modeled
using a procedural YAWL model. Each visit starts with opening the file and a
quick preliminary examination. If the preliminary examination shows existence
of an injury, the patient is accepted for the fractures treatment. Finally, each visit
must be archived. On the second level, the declare Fractures Treatment model
(cf. Section 6.3) offers a high degree of flexibility to medical experts that treat
the injury. Finally, activity perform surgery is decomposed into another YAWL
model. Note that, further decomposition can also be achieved. For example,
activities prepare and schedule could consist of several smaller steps and, thus,
also need to be decomposed into YAWL or declare subprocesses.

YAWL

DECLARE

Figure 6.31: An example: decomposition into declare and YAWL process models in the
health care domain

In both YAWL and declare models activities are by default offered to users
to manually execute them. If an activity should be delegated to an external
application, then this must be explicitly defined in the process model. Figure 6.32
shows the definition of the perform surgery activity from the Fractures Treatment
model shown Figure 6.31: this activity is decomposed into the Surgery Procedure

Section 6.11 Combining the Constraint-Based and

Procedural Approach 191

YAWL model. Therefore, activity perform surgery is graphically presented with
a special “YAWL” symbol in the Fractures Treatment model in Figure 6.31.
Note that, although activity perform surgery will not be executed manually by a
user, model role leader is authorized for it. This means that instance participants
with the role leader are authorized to decide when this activity (i.e., the referring
YAWL model) can be executed. However, when an participant starts the activity,
it will not be opened in the ‘activity panel’ in the Worklist. Instead, it will be
automatically delegated to YAWL, which will launch a new instance of its Surgery
Procedure model.

Figure 6.32: declare activity perform surgery launches a YAWL instance

Similarly, in a YAWL process model it can be specified that activity should
be delegated to a custom YAWL service, e.g., declare. Figure 6.33 shows
a YAWL instance where activities D1, D2 and D3 are delegated to declare.
In the general scenario, declare users must manually select which declare

model should be executed for each YAWL request. For example, declare users
can select to execute Model B for activity D1. If the decomposed YAWL activity
contains an input data element with name ‘delaremodel’ (cf. sections 3.1 and 6.8),
then declare automatically launches a new instance of the referring model.
For example, activity D2 launches a new instance of Model A in declare. If
the specified model cannot be found, declare users must manually select a
declare process models to be executed. For example, users can select to execute
an instance of model Model C for activity D3. Because the ‘delaremodel’ data
element is also an output data element in activity D3, declare will return the
name of the executed model to YAWL. In this manner YAWL users are informed

192 Chapter 6 DECLARE: Prototype of a Constraint-Based System

about the subprocess that was executed for the decomposed YAWL activity.

D
E

C
LA

R
E

D2Y
A

W
L

E
ng

in
e declaremodel

“Model A”

? *

Model A

“M
od

el
 A

”

declaremodel
“unknown”

?

Model C

“u
nk

no
w

n”

“M
odel C

”

Model B

YAWL
Worklist

input input-output

D1 D3

Figure 6.33: YAWL activities D1, D2 and D3 launch declare instances

6.11.2 Dynamic Decompositions

Decompositions of declare and YAWL models are dynamic, i.e., the decom-
position structure can be changed at run-time. To some extent, this enables
building process models/instances ‘on the fly’.

As described in Section 6.5, declare models can be changed during exe-
cution. During the so-called ad-hoc change, constraints and activities can be
added or removed from an instance. Moreover, because altering definitions of
constraints and activities can be part of the change, this may influence the in-
stance decomposition in multiple ways. Examples of some possible scenarios are
shown in Figure 6.34. Manipulating constraints (cf. Figure 6.34(a)) may in-
fluence execution of activities in several ways: (1) execution of a decomposed
activity is no longer possible, (2) execution of a decomposed activity becomes a
necessity, or (3) the moment at which a decomposed activity can be executed
changes. Changes involving activities can also influence the decomposition of an
instance: (1) the YAWL subprocess can be changed for a decomposed activity
(cf. Figure 6.34(b)), (2) a decomposed activity can be removed from the instance
(cf. Figure 6.34(c)), (3) a decomposed activity can be changed into a ‘standard’
one (cf. Figure 6.34(d)), (4) a ‘standard’ activity can be changed into a decom-
posed one (cf. Figure 6.34(e)), and (5) a new decomposed activity can be added
to the instance (cf. Figure 6.34(f)).

YAWL also contributes to dynamic decompositions because decomposition
of a YAWL model might vary between instances of this model. As shown in
Figure 6.35, it is possible to request execution of an instance of a specific declare

Section 6.11 Combining the Constraint-Based and

Procedural Approach 193

DECLARE
*

Y Yad-hoc

YAWL

(a) constraint removed

DECLARE
*

Y ad-hoc *

Y

YAWL

(b) subprocess changed

DECLARE
*

Y ad-hoc

YAWL

(c) decomposed activity
removed

DECLARE
*

Y ad-hoc *

YAWL

(d) decomposed activity
changed into ‘standard’

DECLARE
* ad-hoc *

Y

YAWL

(e) ‘standard’ activity
changed into
decomposed

DECLARE
* ad-hoc

*

Y

YAWL

(f) decomposed activity
added

Figure 6.34: Ad-hoc change of decompositions in declare

model, by using the special ‘declaremodel’ data element. Depending on the value
of this data element, the activity can be decomposed into different declare

models, as Figure 6.35 shows. Although all three instances refer to the same
YAWL model, the activity D is decomposed into Model A, Model B or a manually
selected Model C. Thus, by assigning different values to the ‘declaremodel’ data
element, YAWL users can determine at run-time to which declare model an
activity should be decomposed.

Y
A

W
L

E
ng

in
e

D
E

C
LA

R
E

*

Model A

“M
od

el
 A

” “M
odel A

” “M
od

el
 B

” “M
odel B

” “u
nk

no
w

n” “M
odel C

”

D

declaremodel
“Model A”

D

declaremodel
“Model B”

D

declaremodel
“unnown”

Model B ?
Model C

Instance 1 Instance 2 Instance 3

Figure 6.35: Decompositions of three instances of one process model in YAWL

194 Chapter 6 DECLARE: Prototype of a Constraint-Based System

6.11.3 Integration of Even More Approaches

YAWL is a service oriented system and it allows for integration of an arbitrary
number of custom services [11,23,32]. For example, the Worklet Dynamic Process
Selection Service (Worklet Service) is also a custom YAWL service [41, 44, 45].
The Worklet Service dynamically substitutes a YAWL activity with a new in-
stance of a contextually selected YAWL process, i.e., worklet [41, 44, 45]. Fig-
ure 6.36 shows the architecture of the Worklet Service [41, 44, 45]. The decision
about which worklet to select for a YAWL activity is made based on the activ-
ity data and the worklet repository. The worklet repository consists of existing
YAWL process models that can be selected as worklets, ripple down rules (RDRs)
used to select a worklet based on the activity data, and process and audit logs.
The RDR Editor is used to create new or alter existing RDRs based on the
logs. The RDR editor may communicate with the worklet service in order to
override worklet selections based on the rule set additions. In this manner, the
Worklet Service allows for dynamic compositions of YAWL instances of various
YAWL process models based on the instance data and the rules induced from
past executions.

W

Y
A

W
L

E
ng

in
e

Worklet
Service

YAWL process models

ripple down rules
(RDRs)

YAWL
Editor

worklet

logs

RDR
Editor

Figure 6.36: The worklet service in YAWL

The service oriented architecture of the YAWL system enables integration of
multiple workflow approaches. Any application that can act as a YAWL custom
service can join the integration. For example, approaches of the procedural
YAWL, constraint-based declare and dynamic Worklet Service can easily be
combined, as Figure 6.37 shows. Thick lines represent activities delegated to
external applications and thin lines activities offered to users for execution. Due
to this integration, the selection of the appropriate approach is not an exclusive
choice. Instead, an organization can combine multiple approaches on various
abstraction (i.e., decomposition) levels. This way the initial idea expressed in
Figure 6.27 is realized.

Section 6.12 Summary 195

Y
A

W
L

E
ng

in
e

DW

Worklet
Service

YAWL
Worklist

DECLARE

Y
*

W
D

Worklist

Fram
ew

ork

Figure 6.37: The worklet service in YAWL

6.12 Summary

declare is a prototype of a workflow management system based on the con-
straint approach presented in Chapter 4. An arbitrary constraint-based lan-
guage can be defined by creating constraint templates. These templates are used
in declare models to create constraints. Instances of declare models can be
launched and executed. declare supports advanced features like model verifi-
cation and ad-hoc change of instances. Although it focuses on the control-flow
perspective (cf. Section 3.1.1), declare also provides a basic support for the
resource and data perspectives. Currently, declare supports LTL-based con-
straint languages (cf. Chapter 5). However, the tool is implemented in such a way
that it can be extended to support other languages suitable for the constraint-
based approach. This was demonstrated in Section 6.10.

Integration of declare and the YAWL system allows for combining of var-
ious approaches. For example, procedural YAWL processes can be combined
with constraint-based declare processes. In this manner, organizations do not
need to make a ‘binary choice’ and can combine different approaches. As shown,
various approaches can be integrated in a single business process. Dynamic
compositions of declare and YAWL processes allow for definition the exact
execution of an instance at run-time. This provides flexibility by underspecifica-
tion [125, 226–228] (cf. Section 3.2.2).

declare has more to offer than the features presented in this section. Chap-
ter 7 describes how declare templates and models can be used for process
mining [28] and generation of run-time recommendations [258] for users with the
help of the ProM tool [8, 27].

196 Chapter 6 DECLARE: Prototype of a Constraint-Based System

Chapter 7

Using Process Mining for the

Constraint-Based Approach

The idea of process mining is to discover, monitor and improve ‘real’ business
processes (i.e., not assumed processes) by extracting knowledge from event logs
[28]. Figure 7.1 shows the role of process mining in context of Business Process
Management. Process mining can provide different types of analysis, as shown
with thick lines in Figure 7.1. First, there are many process mining techniques
that enable discovery of process models from event logs. Second, techniques for
conformance checking aim at comparing a given process model with a given event
log and judging to which extent these two conform to each other. Third, process
mining techniques can be used for log-based verification of processes against some
(un)wanted properties by analyzing event logs. Fourth, execution of processes
can be supported with recommendations generated based on event logs.

(un)desired
properties

process
models

event
logs

operational process

workflow management
system

refers to models
configures

records

supports/
controls

conformance
checking

process
discovery

log-based verification

recom
m

endation

Figure 7.1: Process mining [89]

198 Chapter 7 Using Process Mining for the Constraint-Based Approach

In this chapter we will describe how process mining can be used in the context
of our constraint-based approach (cf. Chapter 4). In Section 7.1 we present
the ProM framework [8, 91], a process mining tool that includes a wide variety
of plug-ins that support various types of mining techniques. In Section 7.2 we
present the LTL Checker, which is a ProM plug-in able to verify event logs against
properties specified in LTL [74]. In Section 7.3 we present the SCIFF language as
a powerful declarative language that can be used for specification, verification,
monitoring, discovery, etc. Two ProM plug-ins use SCIFF language: SCIFF
Checker and DecMiner. First, the SCIFF Checker for verification of event logs
against properties specified in the SCIFF language is presented in Section 7.3.1.
Second, Section 7.3.2 presents the DecMiner, which is able to discover constraint-
based SCIFF models. In Section 7.4 we present how process mining techniques
can be used for generating recommendations that provide support for users during
execution of process instances. We also describe how declare uses the Log-
based Recommendations plug-in in ProM to provide run-time recommendations
for users. Finally, Section 7.5 summarizes this chapter.

7.1 Process Mining with the ProM Framework

The ProM framework [91] is an open-source infrastructure for process mining
techniques. ProM is available as open source software (under the Common Public
License, CPL [13]) and can be downloaded from [8]. It has been applied to
various real-life processes, ranging from administrative processes and health-care
processes to the logs of complex machines and service processes. ProM is plug-
able, i.e., people can plug-in new pieces of functionality. Some of the plug-
ins are related to model transformations and various forms of model analysis
(e.g., verification of soundness, analysis of deadlocks, invariants, reductions, etc.).
Most of the plug-ins, however, focus on a particular process mining technique.
Currently, there are more than 200 plug-ins of which about half are mining and
analysis plug-ins.

Event logs in MXML format are a starting point for ProM [90]. The MXML
format is system-independent and by using ProMimport it is possible to extract
logs from a wide variety of systems, i.e., systems based on products such as
Staffware [238], FLOWer [180], YAWL [11,23,32,210,212], etc. declare creates
event logs in MXML format, i.e., the execution of instances is recorded in the
standard format for ProM. As shown in Figure 7.2, the Framework tool logs all
events that users trigger while executing instances via their Worklists.

Table 7.1 shows a part of the MXML log file created by declare. This
MXML file contains information about executed instances of the Fractures Treat-
ment model (cf. Figure 6.5 on page 167). Each event that occurred in an instance
is recorded as an AuditTrailEntry, together with the time stamp, possible data
elements and the user who triggered the event. For example, the entry in line 16

Section 7.1 Process Mining with the ProM Framework 199

DECLARE

MXML event logs
of executed instances

Framework

Worklist

Worklist

Worklist

ProM

Figure 7.2: Event logs, declare and ProM

specifies that administrator completed activity examine patient at time 2007-12-
07T11:04:50.745+01:00 (cf. fields Originator, EventType, WorkflowModelEle-
ment and Timestamp, respectively). Values of data elements referring to patient
information (i.e., age, diagnosis and name) are also recorded.

Table 7.1: Part of an MXML log file created by declare

1 <?xml version="1.0" encoding="UTF-8" ?>

2 <WorkflowLog xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

3 xsi:noNamespaceSchemaLocation="WorkflowLog.xsd"><Source program="MXMLib"/>

4 <Process id="Fractures Treatment">

5 <ProcessInstance id="1">

6 <AuditTrailEntry>

7 <Data>

8 <Attribute name="workItemId">1</Attribute>

9 </Data>

10 <WorkflowModelElement>examine patient</WorkflowModelElement>

11 <EventType>start</EventType>

12 <Timestamp>2007-12-07T11:04:35.325+01:00</Timestamp>

13 <Originator>administrator</Originator>

14 </AuditTrailEntry>

15 <AuditTrailEntry>

16 <Data>

17 <Attribute name="age">9</Attribute>

18 <Attribute name="diagnosis">broken arm</Attribute>

19 <Attribute name="name">Joe Smith</Attribute>

20 <Attribute name="workItemId">1</Attribute>

21 </Data>

22 <WorkflowModelElement>examine patient</WorkflowModelElement>

23 <EventType>complete</EventType>

24 <Timestamp>2007-12-07T11:04:50.745+01:00</Timestamp>

25 <Originator>administrator</Originator>

26 </AuditTrailEntry>

27 <AuditTrailEntry>

28 <Data>

29 <Attribute name="workItemId">2</Attribute>

30 </Data>

31 <WorkflowModelElement>prescribe sling</WorkflowModelElement>

32 <EventType>start</EventType>

33 <Timestamp>2007-12-07T11:04:55.041+01:00</Timestamp>

34 <Originator>administrator</Originator>

35 </AuditTrailEntry>

36 ...

37 </ProcessInstance>

38 </Process>

39 </WorkflowLog>

200 Chapter 7 Using Process Mining for the Constraint-Based Approach

Because declare logs are stored in the MXML format, these logs can be
directly accessed by ProM. Figure 7.3 shows an MXML file (part of this file is
shown in Table 7.1) loaded into ProM. This event log contains three instances
of the Fractures Treatment model presented in Figure 6.5 on page 167. For
each instance, ProM presents the sequence of executed events, as stored in the
referring MXML file shown in Table 7.1.

Figure 7.3: declare event log loaded in ProM

One of the basic features in ProM is the process discovery, i.e., deriving a
model from some event log. This model is typically a process model. However,
ProM offers many more interesting process mining techniques [28,79,89,91,206,
207,263]. For example, there are also techniques to discover organization models,
social networks, more data-oriented models such as decision trees, etc. Figure 7.4
shows the result of three alternative process discovery algorithms: (1) the αminer
shows the result in terms of a Petri net, (2) the multi-phase miner shows the result
in terms of an EPC, and (3) the heuristics miner shows the result in terms of a
heuristics net.

Section 7.2 Verification of Event Logs with LTL Checker 201

Figure 7.4: The output of three process discovery algorithms supported by ProM when ana-
lyzing the event log shown in Figure 7.3

7.2 Verification of Event Logs with LTL Checker

One of the plug-ins offered by ProM is the so-called LTL Checker [25]. The
LTL Checker offers an environment to check (verify) predefined properties with
respect to some event log in MXML format. For each process instance, it is
determined whether the given property holds or not, i.e., given a property all
process instances are partitioned in two classes: conforming and non-conforming.
If the property holds in an instance, then this instance is classified as a conforming
one. If the property does not hold in an instance, then this instance is classified
as a non-conforming one.

A-posteriori verification of properties can be particularly useful in the cons-
traint-based approach. Because, generally, this approach allows for more flexi-
bility and users can execute instances in various ways, a-posteriori verification
can provide insights into the exact way the processes are being executed in prac-
tice. For example, while executing instances of the Fractures Treatment model
presented in Section 5.5, users have a lot of freedom to decide which activity to
execute and when to execute it. A-posteriori analysis of the Fractures Treat-

202 Chapter 7 Using Process Mining for the Constraint-Based Approach

ment instances can provide many useful information. Consider, for example, the
verification of the Fractures Treatment instances processed in the past against
the following two properties: (1) ‘activity perform surgery was executed in the
instance’, and (2) ‘activity prescribe rehabilitation was executed after activity
perform surgery in the instance’. On the one hand, the verification could show
that the first property holds in 80% of the instances processed in the previous
year, while it holds in only 40% of the instances processed in the year before.
This can be an indication that the hospital should hire more surgeons. On the
other hand, the verification could show that the second property does not hold
in 90% of the instances, i.e., the medical staff violated the optional constraint
from the Fractures Treatment model in 90% of the instances. This result might
indicate that this constraint should either be removed from the model or made
mandatory.

Properties are specified as predefined parameterized LTL [74] expressions
in the LTL Checker. If the instance trace satisfies the LTL formula, then this
instance is classified as conforming. If the instance trace does not satisfy the LTL
formula, then this instance is classified as non-conforming. Recall that we defined
an instance as a pair of a trace and a model in Definition 4.4.1 on page 98. The
LTL Checker considers only the instance trace stored in an MXML log file, while
the instance model remains irrelevant (or even unknown). Consider, for example,
the two instances ci 1 and ci2 presented in Table 7.2. The first property (of the two
properties) mentioned in the previous paragraph can be specified with the LTL
formula f = 3(perform surgery, tc) specifying that event (perform surgery, tc)
must occur at least once (cf. Section 5.1). On the one hand, instance ci 1 is
conforming to formula f because its trace σ1 satisfies formula f , i.e., σ1 � f
because σ1[4] = (perform surgery, tc). On the other hand, instance ci 2 is non-
conforming to formula f because its trace σ2 does not satisfy formula f , i.e.,
σ2 2 f because (perform surgery, tc) /∈ σ2. Note that instance models cm1 and
cm2 do not influence the classification and, thus, do not have to be known when
determining if traces σ1 and σ2 satisfy formula f .

Table 7.2: A conforming and a non-conforming instance for formula f = 3(perform surgery, tc)

ci1 = (σ1, cm1), ci1 ∈ Uci ci2 = (σ2, cm2), ci2 ∈ Uci

σ1[1] = (examine patient, ts) σ2[1] = (examine patient, ts)
σ1[2] = (examine patient, tc) σ2[2] = (examine patient, tc)
σ1[3] = (perform surgery, ts) σ2[3] = (apply cast, ts)
σ1[4] = (perform surgery, tc) σ2[4] = (apply cast, tc)
σ1[5] = (examine patient, ts) σ2[5] = (remove cast, ts)
σ1[6] = (examine patient, tc) σ2[6] = (remove cast, tc)
σ1[7] = (prescribe rehabilitation, ts) σ2[7] = (examine patient, ts)
σ1[8] = (prescribe rehabilitation, tc) σ2[8] = (examine patient, tc)

ci1 is conforming, i.e., σ1 � f ci2 is non-conforming, i.e., σ2 2 f
recall that ts , tc ∈ T are event types such that ts = started and tc = completed

Section 7.2 Verification of Event Logs with LTL Checker 203

The LTL Checker is currently the most important ProM plug-in for the de-

clare prototype (cf. Chapter 6) because both applications use LTL. The LTL
Checker can be used for verification of (declare) instances against properties
specified in terms of constraint templates (e.g., the ConDec templates presented
in Section 5.2) or constraints (e.g., the six constraints from the Fractures Treat-
ment model presented in Section 5.5). The remainder of this section is organized
as follows. In Section 7.2.1 we shortly describe the default LTL Checker as a
‘stand-alone’ application and in Section 7.2.2 we present how the LTL Checker
and declare can be used together.

7.2.1 The Default LTL Checker

The default version of the LTL Checker contains 60 predefined typical properties
one may want to verify using the LTL Checker (e.g., the so-called 4 eyes principle)
[25]. These can be used without any knowledge of the LTL language. In addition
the user can define new sets of properties. Each property is specified in terms
of an LTL expression. Formulas may be parameterized, are reusable, and carry
explanations in HTML format. This way both experts and novices may use the
LTL Checker.

LTL used in the LTL Checker has more expressive power than in the ConDec
language and the declare prototype (cf. Chapters 5 and 6). While ConDec
and declare use LTL to specify relations between activities and event types,
the LTL Checker allows referring to activities, event types, users, time stamps
and data elements. In fact, in the LTL Checker, it is possible to refer to any
element of audit trail entries appearing in MXML logs [25] (see, e.g., the MXML
log presented in Table 7.1). Moreover, it is possible to parameterize properties,
which enables reusability.

Properties can be loaded into the LTL Checker via plain text files. Table 7.3
shows a part of such a file. Each property is specified as a formula. For example,
formula for the person P executed activity A property in line 11 has two param-
eters: parameter P represents a user and parameter A represents an activity.
After that, some information about the formula (i.e., a short description and a
list of parameters) and the LTL formula are given. This formula can be used to
check if a user (P) executed an activity (A) in an instance.

The LTL Checker presents the description and parameters of loaded formulas,
while the LTL expression remains hidden from the users. Figure 7.5 shows how
the LTL Checker presents formulas from the file shown in Table 7.3. A value
for each parameter of the selected formula must be manually specified. In this
manner, formulas can be reused for the verification of event logs using various
parameter settings. In the example shown in Figure 7.5, the parameters for
the selected person P executed activity A property are set to John Smith and
approve transaction. However, any other person and activity could have been
selected (e.g., user Mary Jones and activity perform surgery).

204 Chapter 7 Using Process Mining for the Constraint-Based Approach

Table 7.3: A formula involving users in the LTL Checker

1 # version : 0.1

2 # date : 21-01-2008 10:58:30:112

3 # author : Manually

4 set ate.EventType;

5 set ate.WorkflowModelElement;

6 set ate.Originator;

7 rename ate.EventType as event;

8 rename ate.WorkflowModelElement as activity;

9 rename ate.Originator as person;

10 ###

11 formula person_P_executed_activity_A(P: person, A: activity) :=

12 { <h2>Did person P execute activity A?</h2>

13 <p> Arguments:

14

15 P of type set (<i>ate.Originator</i>)

16 A of type set (<i>ate.WorkflowModelElement</i>)

17

18 </p> }

19 <>(((person == P /\ activity == A) /\ event == "complete"));

20 ###

21 formula activity_A_executed(A: activity) :=

22 { <h2>Was activity A successfully executed?</h2>

23 <p> Arguments:

24

25 A of type set (<i>ate.WorkflowModelElement</i>)

26

27 </p> }

28 <>((activity == A /\ event == "complete"));

29 ...

Figure 7.5: LTL Checker: ‘Did John Smith execute activity approve transaction?’

Section 7.2 Verification of Event Logs with LTL Checker 205

7.2.2 Combining the LTL Checker and declare

declare allows for an automatic export of its LTL formulas to the LTL Checker
in two ways, as Figure 7.6 shows. Templates belonging to a language or con-
straints from a model can be exported to a file that can be loaded into the LTL
Checker. In this manner, declare templates and constraints can be reused as
verification properties in the LTL Checker. Moreover, the LTL Checker can use
declare templates and constraints for the verification of either MXML log files
created either by declare (and thus containing information about instances
executed in declare) or by any other system.

LTL
Checker

DECLARE ProM

MXML event logs

templatesmodel

LTL Checker files

Figure 7.6: Combining declare and the LTL Checker

Table 7.4 shows a part of the LTL Checker file that declare created for all
templates in the ConDec language. When exporting templates, declare creates
parameterized formulas that can be loaded into the LTL Checker. One formula is
created for each template. Each parameter in the created formula refers to one of
the template’s parameters (cf. sections 5.2 and 6.2). For example, the response
formula in line 22 refers to the response template presented in Section 5.2.2.
Therefore, this formula contains two parameters referring to activities A and B.
After that, some information about the formula (i.e., a short description and a
list of parameters) and the template’s LTL formula are given. Note that the
LTL Checker and declare use slightly different syntaxes for LTL expressions.
During the export, declare automatically converts template’s formulas into the
syntax recognized by the LTL Checker.

Figure 7.7 shows how the LTL Checker presents formulas from the file shown
in Table 7.4. In the LTL Checker, the parameters for the response template
can be set to perform surgery and prescribe rehabilitation, or for any other two
activities. For example, it can be also used to verify the response formula be-
tween activities curse and pray on event logs containing instances of the model
presented in Figure 6.11(a) on page 174.

Besides constraint templates, declare can also export constraints from mod-
els to files that can be loaded into the LTL Checker. Table 7.5 shows a part of the
LTL Checker file that declare created from constraints in the Fractures Treat-
ment model presented in Figure 6.5 on page 167. While exporting templates cre-

206 Chapter 7 Using Process Mining for the Constraint-Based Approach

Table 7.4: A part of the file generated by declare while exporting ConDec templates to
ProM

1 # version : 0.1

2 # date : 07-12-2007 11:35:46:414

3 # author : DECLARE

4 set ate.EventType;

5 set ate.WorkflowModelElement;

6 rename ate.EventType as event;

7 rename ate.WorkflowModelElement as activity;

8 ###

9 formula init (A: activity) :=

10 {

11 <h2>init</h2>

12 <p> A has to be the first activity.</p>

13 <p> Arguments:

14

15 A of type set (<i>ate.WorkflowModelElement</i>)

16

17 </p>

18 }

19 (((activity==A /\ event=="start") \/ (activity==A /\ event=="ate_abort"))

20 _U (activity==A /\ event=="complete"));

21 ###

22 formula response (A: activity, B: activity) :=

23 {

24 <h2>response</h2>

25 <p> Whenever activity B is executed,

26 activity A has to be eventually executed afterwards.</p>

27 <p> Arguments:

28

29 A of type set (<i>ate.WorkflowModelElement</i>)

30 B of type set (<i>ate.WorkflowModelElement</i>)

31

32 </p>

33 }

34 [](((activity==A /\ event=="complete") -> <>((activity==B /\ event=="complete"))));

35 ###

36 ...

ates parameterized formulas, exporting constraints creates formulas without pa-
rameters. For example, formula response performsurgery prescriberehabilitation
in line 19 in Table 7.5 does not have any parameters. Instead of the parameters,
it uses the actual activities involved in the constraint, i.e., perform surgery and
prescribe rehabilitation.

Figure 7.8 shows how the LTL Checker presents constraints from the Fractures
Treatment model presented in Figure 6.5 on page 167 in the file presented in
Table 7.5. Formulas in the generated LTL Checker file do not have parameters
because constraints involve real activities from the model. Therefore, this type
of declare export can not be reused in verification and can only be used to
verify event logs against specific constraints.

Section 7.3 The SCIFF Language 207

Figure 7.7: ConDec templates in LTL Checker

Figure 7.8: Constraints from the Fractures Treatment model in LTL Checker

7.3 The SCIFF Language

The SCIFF framework [48, 49] is based on abductive logic programming [144].
SCIFF is originally thought for the specification and verification of global interac-
tion protocols in open multi-agents systems, which share many aspects with the
service-oriented computing setting [59]. SCIFF envisages a powerful logic-based
language, with a clear declarative semantics, for specifying social interaction, and
is equipped with a proof procedure capable to check at run-time or a-posteriori
whether a set of interacting entities is behaving in a conforming manner with
respect to a given specification. The SCIFF language is another language that

208 Chapter 7 Using Process Mining for the Constraint-Based Approach

Table 7.5: A part of the file generated by declare while exporting the Fractures Treatment
model to ProM

1 # version : 0.1

2 # date : 07-12-2007 11:35:46:414

3 # author : DECLARE

4 set ate.EventType;

5 set ate.WorkflowModelElement;

6 rename ate.EventType as event;

7 rename ate.WorkflowModelElement as activity;

8 ###

9 formula init_examinepatient () :=

10 {

11 <h2>init</h2>

12 <p> A has to be the first activity.</p>

13 <p> parameter(s) [A] ->examine patient</p>

14 <p> type: mandatory </p>

15 }

16 (((activity=="examine patient" /\ event=="start") \/ (activity=="examine patient" /\

17 event=="ate_abort")) _U (activity=="examine patient" /\ event=="complete"));

18 ###

19 formula response_performsurgery_prescriberehabilitation () :=

20 {

21 <h2>response</h2>

22 <p> Whenever activity B is executed,

23 activity A has to be eventually executed afterwards.</p>

24 <p> parameter(s) [A] ->perform surgery</p>

25 <p> parameter(s) [B] ->prescribe rehabilitation</p>

26 <p> type: optional </p>

27 }

28 [](((activity=="perform surgery" /\ event=="complete") ->

29 <>((activity=="prescribe rehabilitation" /\ event=="complete"))));

30 ###

31 ...

can be used for process mining in the context of the constraint-based approach.
SCIFF is used in ProM to verify and discover constraints. It provides an alter-
native for LTL with different capabilities.

SCIFF abstracts from the notion of event. Instead of using variables directly
referring to events, it uses the more generic notion of a predicate. For exam-
ple, in the context of workflow management systems, we can define events as a
fact that user Originator performed event of the type Type on activity Activ-
ity, denoted by perform(Activity,Type,Originator). Using this notation, the fact
that John Smith started activity examine patient is denoted by perform(examine
patient,started ,John Smith). Note that it is also possible to leave some param-
eters unspecified, i.e., perform(examine patient,started ,Originator) denotes that
some user started activity examine patient.

There are three basic operators that can be used in SCIFF. First, operator
H(Event, T ime) denotes that Event happened at time Time. Second, expec-
tation that Event should happen at time Time is denoted by E(Event, T ime).
Finally, negative expectation EN(Event, T ime) denotes that Event is ex-

Section 7.3 The SCIFF Language 209

pected not to happen at time Time. Note that Event and Time can be
variables, or they could be grounded to a specific value. For example, expres-
sion H(perform(examine patient, completed ,Originator), Te) ∧ Te > 10 matches
with any completion of activity examine patient at a time greater that 10
units, performed by a whatsoever Originator. On the other hand, expression
E(perform(decide, completed ,Originator), Te)∧ Te < 100 represents that activity
decide must be completed within 100 time units.

The three basic operators can be used to specify SCIFF integrity con-
straints, i.e., rules that relate events that already happened and events that
are expected to happen in the future. These rules are represented as for-
ward rules of the form Body ⇒ Head [49]. Consider, for example, the re-
sponse constraint between activities perform surgery and prescribe rehabilitation
from the Fractures Treatment model shown in Figure 5.17 on page 145 and
Table 5.8 on page 146. This constraint can be denoted as SCIFF formula
H(perform(perform surgery, completed , Originator), TS) ⇒
E(perform(prescribe rehabilitation, completed , Originator), TR) ∧ TR > TS . In
fact, all ConDec templates (cf. Section 5.2) can be specified in the SCIFF
language [70]. Note that [70] presents the mapping between SCIFF and the
DecSerFlow language [37, 38]. DecSerFlow is a constraint-based language based
on LTL and is very similar to ConDec and also supported by declare

1.

Although both SCIFF and LTL-based ConDec are both suitable for declar-
ative specifications, there are some differences between these languages. First,
while automata generated from LTL [74,111,112,158] provide a deadlock-free ex-
ecution mechanism for ConDec models (cf. Chapter 5), there exists no method
for a deadlock-free execution of SCIFF models. Second, the SCIFF language
is more expressively powerful than ConDec with respect to the data and time
related aspects. Consider, for example, the aspect of time. While LTL implicitly
models the concept of time via its temporal operators, SCIFF specifies time by
explicitly constraining time variables. This allows for the specification of com-
plex time constraints. Consider, for example, the ConDec response template (cf.
Section 5.2.2), which specifies that activity B has to be completed after activity
A without considering time interval between executions of activities A and B.
The SCIFF formulas in Table 7.6 show several examples of how the response tem-
plate can be extended with different deadlines and Figure 7.9 shows illustrations
of these deadlines. The first formula represents the classical response template
without a deadline, i.e., it is important only that B is completed at any moment
after A. The following three formulas extend the ‘plain’ response template with
three different deadlines. The second formula requires that B is completed not
earlier than N time units after A is completed. The third formula specifies that
B has to be completed not later than N time units after A is completed. Finally,
the last formula requires B to be completed not earlier than N and not later than

1DecSerFlow is tailored towards the specification of web-services and their choreographies.

210 Chapter 7 Using Process Mining for the Constraint-Based Approach

M time units after A is completed.

Table 7.6: Deadlines in the response template in SCIFF

1. no deadline:
H(perform(A, tc, Originator), TA) ⇒ E(perform(B, tc, Originator), TA)∧
TB > TA

2. after N time units:
H(perform(A, tc, Originator), TA) ⇒ E(perform(B, tc, Originator), TA)∧
TB > TA +N

3. within N time units:
H(perform(A, tc, Originator), TA) ⇒ E(perform(B, tc, Originator), TA)∧
TB > TA ∧ TB < TA +N

4. between N and M time units:
H(perform(A, tc, Originator), TA) ⇒ E(perform(B, tc, Originator), TA)∧
TB > TA +N ∧ TB < TA +M

Recall that tc ∈ T is an event type such that tc = completed .

deadline interval for
execution of activity B (TB)

1. no deadline

time

3. within N

4. between N and M

2. after N

MN

TB > TA + N
TB > TA /\

TB < TA + N
TB > TA + N /\
TB < TA + M

0

execution of
activity A

TA

Figure 7.9: Deadlines in SCIFF formulas from Table 7.6

Similarly like LTL, the SCIFF language can be used for process mining in
the constraint-based approach. There are two plug-ins in the ProM framework
that use SCIFF. First, the SCIFF Checker presented in Section 7.3.1 can be
used to verify event logs against SCIFF formulas. Second, DecMiner presented
in Section 7.3.2 can be used to learn SCIFF formulas from event logs.

7.3.1 Verification of Event Logs with SCIFF Checker

The SCIFF Checker plug-in in ProM is similar to the LTL Checker plug-in both
in design and functionality. The SCIFF Checker can verify event logs against
properties specified as SCIFF formulas. After an MXML file storing logs of
events is loaded into ProM, a SCIFF property that should be verified is selected

Section 7.3 The SCIFF Language 211

in the SCIFF Checker. For example, formula existence of activity A can be
selected, as shown in the middle screen in Figure 7.10. The verification procedure
classifies instances from the referred event log into conforming (i.e., correct) and
non-conforming (i.e., wrong), as shown in the bottom screen in Figure 7.10.
In addition, instances for which exceptions occurred during the verification are
classified as exceptional.

Figure 7.10: The SCIFF Checker plug-in in ProM

Manipulation of parameters in SCIFF Checker is more sophisticated than
in the LTL Checker, where for each parameter in the LTL Checker a specific
value must be explicitly given (cf. Figure 7.5). In the SCIFF Checker it is, e.g.,
possible to set the value for the activity name to be equal to or different from
a given value, as shown in the top screen in Figure 7.10. The available options
depend on the parameter type. For example, the set-up for time parameters is
even more elaborate, i.e., it is possible to specify that a time variable is equal,
greater or less than a given (absolute or relative) time stamp value.

7.3.2 Discovering Constraints with DecMiner

DecMiner is a ProM plug-in that is able to learn SCIFF formulas from event logs.
This plug-in uses a modified algorithm from the field of inductive logic program-
ming for learning models from examples and background knowledge [154–156].
In this approach SCIFF formulas are learned from event logs, which are previ-
ously labeled as conforming and non conforming. For example, a hospital can
label executed instances of patient’s treatments as normal or too long and then
learn a model that discriminates these two classes. The learned model must
consist of formulas that all hold for conforming instances. Formulas that do not
hold in at least one of the conforming instances are discarded from the learned
model [154–156].

212 Chapter 7 Using Process Mining for the Constraint-Based Approach

After an MXML event log file is loaded in ProM, DecMiner learns a model
from this file via three steps, as Figure 7.11 shows. First, all instances from
the MXML file must be classified or as conforming or non conforming. This
classification can be done manually or by previously executing analysis with the
SCIFF Checker or the LTL Checker. Second, relevant activities are selected.
Finally, templates (i.e., formulas) that should be considered are selected from a
predefined collection. Note that the mapping between the SCIFF language and
ConDec and DecSerFlow is already integrated in DecMiner. An existing manual
mapping between ConDec templates and SCIFF integrity constraints allows auto-
matic generation of learned models in declare format. In Figure 7.11 DecMiner
presents the learned model in the Designer component of the declare prototype
(cf. Chapter 6). This shows the true integration of the various approaches.

Figure 7.11: The DecMiner plug-in in ProM

7.4 Recommendations Based on Past Executions

While traditional workflow management systems tend to enforce a particular
way of working to users, flexible approaches to workflow management systems
(e.g., adaptive systems (cf. Section 2.1.5), case-handling systems [195], or our
constraint-based approach) aim at shifting the decision making from the system
to users. As discussed in Chapter 1, a flexible style of work assumes that end
users are both allowed and capable to make good decisions about how to work.
However, flexibility usually comes at a cost, i.e. the more flexible a workflow
management system is, the less support it provides to its users and hence the
more knowledge these users need to have about the process they are a part of.

Section 7.4 Recommendations Based on Past Executions 213

Also, full support in a workflow management system usually comes at a cost of
loosing flexibility, as shown in Figure 7.12.

decission making

low

high

systemusers

su
pportflexibility

Figure 7.12: Tradeoff: flexibility vs. support [90, 258]

Although users of flexible systems have the option to make their own decisions
while working, a certain level of support is still necessary. Reasons for this can
be various: inexperienced users, exceptional situations, personal preferences, etc.
Traditionally, this problem is solved by educating workers (e.g. by making them
more process aware), or by having a workflow management system restricting the
user and thus sacrificing flexibility. Obviously, both options are costly. Moreover,
they both require a process specialist to gain insights in the process supported
by the system, either to educate the workers about these processes or to change
them into more restrictive ones.

Process mining is by origin a stand-alone application performed after the
execution, i.e. an event log is taken and used to produce a model (e.g., a process
model or social network), to check whether reality fits with the model (cf. the
LTL Checker, the Conformance Checker in ProM [25, 206]), or to extend an
existing model (e.g., building a process model into a simulation model). However,
process mining techniques can also be applied to provide recommendations to
users, while they are executing process instances. A recommendation service
more or less applies process mining on-the-fly, i.e. by looking at an event log
(set of completed executions) and a current partial execution, predictions can be
made about the future of the current (partial) instance [258].

Recommendations can be considered as predictions about a current instance,
conditioned on the next step that has not been performed yet [258]. For exam-
ple, given the partial execution of the current Fractures Treatment instance (cf.
Figure 6.5 on page 167) and the completed executions of similar instances of the
Fractures Treatment model in an event log, it is predicted that this instance will
take 90 days if the next step is activity prescribe sling. However, if the next step
is activity apply cast, it will last only 60 days.

Figure 7.13 shows an overview of a recommendation service as it is imple-

214 Chapter 7 Using Process Mining for the Constraint-Based Approach

mented in the ProM framework and the declare prototype (cf. Chapter 6).
However, the same architecture can be achieved by any other process mining tool
and any other workflow management system providing some degree of flexibility.
The workflow engine creates event logs for executed instances. The recommen-
dation service bases its recommendations on the information in this log. At the
moment when the recommendation for an instance is needed, the workflow en-
gine sends the partial log of the instance, i.e., a record of all events performed in
the instance up to this moment. The recommendation service then answers by
sending a recommendation to assist users in choosing the next step(s). Such a
recommendation consists of a list of advised next steps (e.g. ‘examine patient ’)
combined with a number of quality attributes (e.g. following this recommenda-
tion will lead to a quicker recovery).

recommendation
service workflow engine

process mining
toolset

information
system

partial log

recommendationanalyst end user

e.g. ProM e.g. DECLARE

event log

Figure 7.13: An overview of the recommendation service [258]

To decide what the next step in an instance should be, the recommendation
service compares the partial log of the instance to completed instances in the
event log and searches for similar instances. As one can imagine, there can
be many criteria for similarity of instances. Figure 7.14 shows several types
of simple instance abstractions that can be used as criteria for comparison of
instances [258]. If prefix abstraction is used, then two instances are similar if their
activities are executed in the same order. The multi-set abstraction considers
instances where the same activities are executed the same number of times in any
order as similar instances. Similar instances in the set abstraction are instances
where the same activities are executed, regardless of how many times and in
which order.

Another important concept in the recommendation service is the goal of the
recommendations. For example, the recommendation can be generated to steer
the execution towards the shortest throughput time, towards avoiding executions
of a critical activity, minimizing costs, etc.

The Log-Based Recommendations plug-in in ProM is a recommendation ser-
vice (cf. Figure 7.13). This plug-in allows for selection of a preferred scale and

Section 7.4 Recommendations Based on Past Executions 215

Prefix abstraction:

current state

Multi-set abstraction:
Set abstraction:

<A,B,C,D,C,D,C,D,E>
{A,B,C3,D3,E}
{A,B,C,D,E}

Partial instance:
 A B C D C D C D E ...

Figure 7.14: Possible abstractions of instances [258]

contributor, as Figure 7.15 shows. The scale refers to the recommendation goal,
i.e., the recommendation service in Figure 7.15 generates recommendations that
will lead to short execution times of instances because Duration scale is selected.
The contributor refers to the criteria of instances similarity, i.e., in this case prefix
abstraction is selected (cf. Figure 7.14). Further on, some additional settings are
available for managing and monitoring the performance of the service.

Figure 7.15: The Log-Based Recommendations plug-in in ProM

The declare prototype uses the Log-Based Recommendations plug-in in
ProM for providing recommendations to users. In fact, recommendations are
optional in declare, i.e., this option can be either turned-on or switched-off
in the prototype. The Framework component of declare communicates with
the Log-Based Recommendations plug-in as its recommendation service. Each
time when a user triggers a new event in an instance (by starting, completing,

216 Chapter 7 Using Process Mining for the Constraint-Based Approach

or cancelling an activity), a new recommendation for that instance is requested
from ProM and presented to all users working on that instance. The Worklist
component presents recommendations in a special panel next to the instance, as
Figure 7.16 shows. The recommendation shown in Figure 7.16 is generated for an
instance of the Fractures Treatment model (cf. Figure 6.5 on page 167) using the
Log-Based Recommendations plug-in and settings shown in Figure 7.15, i.e., the
recommendation service scale is duration (i.e., the goal is to minimize flow time)
and the contributor is prefix abstraction (i.e., the recommendation is based on
instances with a similar prefix). The current recommendation suggests that the
next step in this instance should be starting activity check X ray risk. Moreover,
the recommendation specifies that if activity check X ray risk is started next, the
expected average execution duration for this instance is 34.06 time units. Also,
not starting activities examine patient, prescribe medication, prescribe rehabili-
tation and prescribe sling will cause the instance to be completed within 34.06
time units. In other words, instances with a similar prefix where activity check X
ray risk was started at this point had a short execution time, and their average
execution time was 34.06 time units.

Figure 7.16: declare: presenting recommendations to users

Note that declare presents recommendations purely as additional informa-
tion in a Worklist, i.e., users are not forced to follow recommendations. Instead,
they can freely decide what to do, even if this means acting against what is
recommended. In this manner, declare offers a significant level of support to
its users, without sacrificing the flexibility. It also nicely illustrates that process
mining and flexibility fit well together. Allowing for a lot of freedom, but at the
same time monitoring and supporting, seems to combine the best of two worlds.

7.5 Summary

Process mining [28] can be applied to the constraint-based approach. The de-

clare prototype, which can be used for execution and verification of constraint

Section 7.5 Summary 217

models, stores information about executed instances in ProM readable MXML
files. This is the first necessary step towards the integration of process mining
and the constrain-based approach. Moreover, several plug-ins that use techniques
tailored towards the constraint-based approach are already available in the ProM
framework [91]. While the declare prototype can execute and verify constraint
models, these plug-ins offer other useful capabilities, as Table 7.7 shows.

Table 7.7: Capabilities of declare and the four ProM plug-ins

ProM plug-ins
LTL SCIFF Log-Based

declare Checker Checker DecMiner Recommendations

enactment
√

verification
√

conformance
√ √

discovery
√

support
√

The LTL Checker plug-in offers verification of event logs against properties
specified in LTL [25]. Moreover, this plug-in can be easily used to verify past exe-
cutions recorded in event logs against ConDec templates and constraints because
the declare prototype offers automatic export of templates and constraints to
LTL Checker files.

The SCIFF Checker plug-in uses the powerful SCIFF language [48, 49] for
advanced verification of event logs. This plug-in allows for the use of time and
data variables in a more sophisticated way than the LTL Checker. Moreover, the
DecMiner plug-in is able to learn SCIFF formulas from event logs and to auto-
matically generate a model containing these formulas as constraints [154–156].
Thanks to the mapping between ConDec and SCIFF [70], DecMiner automati-
cally generates a ConDec model from the learned formulas.

Process mining can also be useful during the execution of instances. Analysis
of past executions can serve as basis for generating recommendations for users
that are currently executing process instances [258]. By using the Recommenda-
tions plug-in in ProM, declare is able to overcome the flexibility vs. support
tradeoff, i.e., declare users can get support from the system without sacrificing
the flexibility.

Process mining techniques provide a powerful complement for the constraint-
based approach. Moreover, the flexible style of work supported by declare can
benefit from the true integration of the two approaches, as Figure 7.17 shows.

Accountability, which is addressed by monitoring of executed instances with
the LTL Checker, SCIFF Checker and DecMiner, plays an important role in
flexible processes. On the one hand, flexibility allows people to work in various
ways, i.e., people working with systems like declare are more likely to be able
to work in their own preferable way. The traditional procedural approach, on

218 Chapter 7 Using Process Mining for the Constraint-Based Approach

flexibility

DECLARE

support

ProM: Log-Based
Recommendations

accountability

ProM: LTL Checker, SCIFF
Checker, DecMiner

Figure 7.17: Integration of various approaches

the other hand, tends to force people to work in a pre-defined way and people
have much less choice. Thus, monitoring the actual execution of processes can
be considered as more important in the constraint-based than in the procedural
approach. Consider, for example, the subway systems in Paris and Amsterdam.
The Paris subway relates to the procedural approach, i.e., one must have a ticket
in order to enter the subway. Therefore, frequent ticket controls are no longer
necessary once the passenger is in the subway. Amsterdam’s subway is more
flexible, i.e., anyone can enter it. Due to this fact, random ticket controls are
often conducted within the subway system in Amsterdam.

Flexibility can sometimes come at a cost. When multiple options are avail-
able, making the right decision might be difficult (e.g., inexperienced users, un-
usual situations, etc.). Therefore, providing an adequate support for users is
crucial in flexible processes. The Log-Based Recommendations plug-in in ProM
can offer support to users working with flexible systems like declare. Moreover,
the provided support does not sacrifice the intended flexibility at all. Moreover,
the support provided by this plug-in is customizable and adjustable, e.g., based
on the information retrieved during analysis of past executions (e.g., the LTL
Checker, SCIFF Checker and DecMiner). Moreover, these four plug-ins enable
a-posteriori analysis of the effects of the provided support. For example, if the
effects are not satisfiable, the recommendation service (i.e., Log-Based Recom-
mendations plug-in) can be adjusted.

Chapter 8

Conclusions

In this chapter we summarize our findings: in Section 8.1 we describe how we
addressed our research goal, in Section 8.2 we summarize the contributions, in
Section 8.3 we describe the limitations of our work, and in Section 8.4 we propose
directions for future work.

8.1 Evaluation of the Research Goal

The goal of the research presented in this thesis is to enable companies that
use BPM systems to achieve an optimal balance between local and centralized
decision making. In order to achieve this (i.e., the goal in the research), we (1)
proposed a comprehensive constraint-based approach towards process support
and (2) developed the declare prototype of a workflow management system
that can offer an optimal ratio between flexibility and support (cf. Section 1.5).
declare can be downloaded from http://declare.sf.net. The problem with
current systems for the automation of business processes is that they either focus
on providing flexibility or support. The drawback of such systems is that users
who work with flexible systems (e.g., groupware systems) do not get sufficient
support from the systems, and users who work with systems that do provide
support (e.g., workflow management systems) do not have enough flexibility in
their work (cf. Chapter 1). In this thesis, we presented a constraint-based
approach to workflow management systems that is able to combine flexibility
and support. Moreover, besides the theoretical definition of the language in
chapters 4 and 5, in Chapter 6 we also present the ‘proof of concept’ prototype
declare [2, 183]. We hope that enriching workflow management systems with
flexibility will encourage organizations to combine workflow technology on the
one hand and democratic work regimes with a high degree of localized decision
making on the other. This way, organizations can benefit from the automated
support that these systems offer.

220 Chapter 8 Conclusions

8.2 Contributions

We believe that our approach is comprehensive in more aspects that just com-
bining flexibility and support. First, in Section 6.11, we have showed that it is
possible to combine multiple approaches into a federated workflow management
system. This is a particulary interesting finding from a practical point of view be-
cause contemporary organizations implement multiple business processes, which
can have different characteristics. Moreover, it is often the case that some parts
of a business process require a high degree of support, while other parts of the
same process must be flexible. Second, in Chapter 7, we showed that existing
process mining techniques can support our constraint-based approach in the di-
agnosis phase of the BPM cycle (cf. Figure 1.1 on page 2), which proves that
our approach can be applied to all phases of the cycle.

This section summarizes our contributions. In Section 8.2.1 we describe how
our approach allows for different kinds of flexibility of workflow management
systems. In Section 8.2.2 we summarize the different types of support that our
approach provides. Section 8.2.3 discusses how our approach can help apply
workflow technology in organizations that use democratic regimes of work with a
high degree of localized decision making. In Section 8.2.4 we briefly describe the
possibility to combine various approaches to business processes. The applicability
of our approach to the full BPM life cycle is described in Section 8.2.5.

8.2.1 Flexibility of the Constraint-Based Approach

As pointed out in [226–228], there are several types of flexibility when it comes
to workflow management systems: (1) flexibility by design, (2) flexibility by
underspecification, (3) flexibility by change, and (4) flexibility by deviation. In
Chapter 2 we presented many approaches and systems that aim at improving the
flexibility of workflow technology, but none of these approaches covers all types
of flexibility. In the context of flexibility, the most important contribution of our
approach is the fact that it is able to support all types of flexibility. Actually,
despite the fact that the primary motivation of our research is enabling a high de-
gree of flexibility by design, it is remarkably easy to also provide for all other types
of flexibility using our constraint-based approach (cf. sections 3.2.5 and 3.3).

Flexibility by Design

Flexibility by design is achieved in a workflow management system when its
process models cover many execution alternatives [125, 226–228]. In general,
constraint-based approaches are obvious candidates for offering a high degree
of flexibility by design because execution alternatives are implicitly specified in
constraint models, i.e., all execution alternatives that do not violate constraints
are possible [226–228]. When it comes to our constraint-based approach, we
allow for all execution alternatives that do not violate any mandatory constraint.

Section 8.2 Contributions 221

Moreover, with our approach it is possible to easily develop process models that
offer a wide range of execution alternatives. For example, both models presented
in figures 5.17 on page 145 and 5.18 on page 148 allow for infinite number of
execution alternatives.

Flexibility by Underspecification

Flexibility by underspecification is achieved in a workflow management system if
it is possible to design process models that have unspecified parts, which will be
determined at run-time [125,226–228]. This type of flexibility is offered with dy-
namic decomposition of constraint-based models and YAWL models, as described
in Section 6.11. Flexibility by underspecification in our approach can be achieved
in a dynamic way, where the user at the latest moment during the execution of
instances decides (1) whether to invoke a subprocess, (2) which subprocess to
invoke, and (3) with which parameters.

Flexibility by Change

Flexibility by change is achieved in a workflow management system when it is pos-
sible to change models of running instances during their execution [125,226–228].
Our constraint-based approach and the declare prototype offer flexibility by
change by allowing for a comprehensive change of running instances: activities
and constraints in instances can be easily added, removed, and changed. Consid-
ering the problems that traditional approaches face when it comes to run-time
change (cf. Section 2.1.5), our constraint-based approach uses a remarkably sim-
ple method to handle this kind of change [184]. On the one hand, it is straight-
forward to check if a specific ad-hoc change is applicable to the state of the
current instance by simply checking if the referring change permanently violates
a mandatory constraint. On the other hand, in case of an invalid change, it is
possible to produce a detailed diagnostics pinpointing the reason for the change
failure (cf. sections 4.5, 5.7, and 6.5).

Flexibility by Deviation

Flexibility by deviation is achieved in a workflow management system if it is
possible to deviate from a process model during execution, without having to
change the model [226–228]. Our constraint-based approach allows for optional
constraints in process models (besides mandatory constraints). While manda-
tory constraints must be fulfilled during execution, optional constraints can be
violated (cf. sections 4.2 and 5.4). Moreover, the declare prototype will pro-
vide an informative warning to users each time when they are about to violate
an optional constraint, as shown in Figure 6.8 on page 171. In this manner, users
can make decisions whether or not to violate the constraint and to deviate from
the constraint-based model.

222 Chapter 8 Conclusions

8.2.2 Support of the Constraint-Based Approach

Besides allowing for a high degree of flexibility, our constraint-based approach and
the declare prototype support various types of user assistance. In this section
we briefly summarize the various types of support that can be provided by our
approach and the declare prototype: verification of models to detect errors,
monitoring states of constraints and instances, enforcing the correct execution of
instances, run-time recommendations based on past executions, and analysis of
instances executed in the past.

Verification of Models

Constraint-based models can contain an arbitrary number of constraints that in-
terfere in subtle ways. This can cause errors in models. Verification of constraint-
based models provides an automated mechanism for detecting two types of errors,
as described in sections 4.6 and 5.8. First, it is possible to automatically detect if
a constraint-based model contains an event/activity that can never be executed,
i.e., the so-called dead event/activity. Second, it is possible to detect that in-
stances of a constraint-based model can never be executed correctly because it
is not possible to satisfy all mandatory constraints from the model, e.g., there
is a conflict in the model. In addition to automated verification of constraint-
based models, it is also possible to detect the exact combination of constraints
that causes (each of) the error(s). Reporting both the error and its direct cause
(e.g., Figure 6.11 on page 174 and Figure 6.12 on page 175) helps developers of
constraint-based models to understand the problem and eliminate errors.

Monitoring States of Instances and Constraints

Execution of instances of constraint-based models is driven by constraints. In
order to execute an instance in a correct way, it is necessary that, at the end
of the execution, all mandatory constraints are satisfied , i.e., that the instance
is satisfied . Executing activities in an instance may change the state of one or
more constraints, and the instance itself (cf. sections 4.4 and 5.6). Therefore, it is
important that the instance state and states of all its constraints are presented to
users throughout the execution of the instance. The insight into the state of the
instance and its constraints helps users of the declare prototype to understand
what is going on and which actions are necessary in order to execute the instance
in a correct way (cf. Figure 6.7 on page 169).

Enforcing Correct Execution of Instances

Some actions of users might cause an instance (and its constraints) leave the
satisfied state. In some of such cases it is possible to take some actions that
will eventually lead to a correct, i.e., satisfied , instance. We refer to this type

Section 8.2 Contributions 223

of violations as to temporary violations. In other cases, the instance becomes
permanently violated, i.e., it becomes impossible to satisfy the instance in the
future. Especially in instances with multiple constraints, it is very difficult for
users to be aware of actions that will permanently violate the instance. Therefore,
as described in sections 4.4, 5.6, and 6.4, the declare prototype prevents users
from taking actions that lead to permanent violation of instances.

Recommending Effective Executions

While executing constraint-based models, users typically have many alternatives
available, i.e., the constraint-based approach offers a high degree of flexibility.
In some situations, it might be difficult for users to decide themselves which al-
ternative is the most appropriate one. Simultaneous run-time recommendations
about which action leads to which result can help users in these situations. As
described in Section 7.4, the declare prototype provides run-time recommen-
dations generated by the ProM tool [8, 91, 258] to its users. The architecture
of the recommendation service in ProM allows for generation of various kinds
of recommendations. In general, recommendations are generated based on past
executions and are tailored towards a specific goal. For example, one recommen-
dation strategy could be recommending actions that, in the past, led to quick
instance completion. By presenting recommendations as additional information
on the screen (cf. Figure 7.16 on page 216), declare allows its users to choose
whether to follow the recommendations or not.

Analysis of Past Executions

Workflow management systems support the execution of vast numbers of in-
stances. Often, it is hard to keep track of all instances that were executed
in the past. However, the information about past executions can be very use-
ful in practice. Process mining techniques focus on various types of analysis
of past executions, which can help to improve business processes (e.g., by re-
designing process models) [28]. Although initially motivated by traditional ap-
proaches, existing process mining techniques can also be applied in the context
of our constraint-based approach, as described in Chapter 7. Moreover, several
mining techniques tailored towards the constraint-based paradigm are already
available (e.g., the LTL Checker, SCIFF Checker and DecMiner presented in
sections 7.2, 7.3.1 and 7.3.2, respectively). This is promising as processes that
require a lot of flexibility typically benefit most from the results of process mining.

8.2.3 The Constraint-Based Approach and Organization of Hu-

man Work

Due to the lack of flexibility, procedural workflow management systems are un-
able to support Democratic Work Regimes (DWRs), as shown by the evalua-

224 Chapter 8 Conclusions

tion with respect to structural requirements of De Sitter [231] in Table 2.3 on
page 43. Enhancing flexibility of workflow technology allows users to make deci-
sions about how to work, i.e., flexibility enables local decision making in business
processes (cf. Chapter 1). Due to a higher degree of flexibility, our constraint-
based approach an the declare prototype enable the implementation of orga-
nizational styles that advocate local decision making in business processes, e.g.,
Socio-Technical Systems (STS) (cf. Section 2.3). STS advocate organization of
work into Self-Managed Work Teams (SMWTs), where a meaningful piece of a
business process (i.e., a subprocess instead of a single activity) is allocated to a
SMWT as their assignment. Within one assignment, decisions are made locally
by the SMWT, i.e., the SMWT controls the execution of the assignment.

The declare prototype supports the style of work advocated by STS in
two ways. First, work can be structured into meaningful pieces via the possibil-
ity to create arbitrary decompositions of declare constraint-based models, as
described in Section 6.11. Second, a high degree of flexibility allows declare

users to choose between multiple execution alternatives within instances they are
working on. These two factors enable our approach to fulfil the requirements for
a socio-technical style of work specified by De Sitter [231], as shown in Table 8.1.

Table 8.1: Evaluation of declare with respect to the STS structural requirements of De
Sitter [231]

Socio-Technical requirements declare

1 functional deconcentration YES: multiple execution alternatives
(multiple parallel processes) allow users to choose the most appropriate al-

ternative for each work order.
2 integration of performance

and control
YES: flexibility allows people who execute an
instance to control how the instance is exe-
cuted.

3 performance integration A YES: model decomposition allows structuring
(whole tasks) processes into meaningful pieces of work.

4 performance integration B NOT
(prepare + produce + sup-
port)

APPLICABLE

5 control integration A YES: flexibility allows people to select the
(sensing + judging +selecting
+ acting)

appropriate corrective alternative and execute
it.

6 control integration B NOT
(quality + maintenance + lo-
gistics + personnel, etc.)

APPLICABLE

7 control integration C YES: because people control the operational
(operational + tactical +
strategic)

aspect of their work, operational, tactical and
strategic control can be integrated at the
workplace level.

Section 8.2 Contributions 225

Functional deconcentration. In a functional deconcentration different
groups of work orders have different executions [231]. Constraint-based models
allow for many execution alternatives as long as the main rules (i.e., constraints)
are followed. This allows declare users to choose the most appropriate execu-
tion alternative for each (group of) work order(s), i.e., functional deconcentration
can easily be achieved with declare.

Integration of performance and control. The same people who perform
the work should also be authorized and responsible for control of work [231].
Flexibility and decomposition of business processes in declare allows for the
integration of performance and control, i.e., users can control the piece of a
business process that they are executing.

Integration into whole tasks. Instead of specialized, short-cycled tasks,
tasks should form a meaningful unit of work allocated to a group of people for
execution [231]. Decomposition of declare models allows for structuring a large
business process into subprocesses, which are allocated to a group for execution.
Therefore, integration into whole tasks is possible in declare.

Integration of preparation, production and support. Preparation, pro-
duction and support functions must be integrated at the workplace level [231]. As
discussed in Section 2.3, workflow management systems support the production
function only, and therefore this parameter is not applicable. This also applies
for declare.

Integration of control functions: sensing, judging, selecting, and act-
ing. The functions of a control cycle are: (1) sensing the process states, (2)
judging about the need for a corrective action, (3) selecting the appropriate cor-
rection action, and (4) acting with the selected control action [231]. All control
functions should be integrated at the workplace level [231]. Because declare

allows people to control their work, they can sense, judge, select, and finally act
based on the selected control action. Hence, this requirement of De Sitter [231]
is also supported.

Integration of the control of quality, maintenance, logistics, personnel,
etc. Control of quality, maintenance, logistics, personnel, etc. should be con-
ducted at the workplace level by people who are performing the work [231]. As
discussed in Section 2.3, workflow management systems support the production
function only, and therefore this parameter is not applicable. This also applies
for declare.

226 Chapter 8 Conclusions

Integration of operational, tactical and strategic controls. Operational,
tactical and strategic controls should be integrated at the workplace level [231].
Thanks to the flexibility provided by declare, people executing the work con-
trol the operational aspect of their work. This makes it possible to integrate
operational, tactical and strategic control at the workplace level.

If we compare Table 8.1 to the earlier analysis of contemporary workflow
management systems (cf. Table 2.3 on page 43), then it becomes apparent that
declare provides much more support for the style of human work advocated by
STS.

8.2.4 Combining the Constraint-Based Approach with Other

Approaches

Different types of business processes must often be combined in practice. On
the one hand, a company can run various types of business processes. On the
other hand, a business proces itself can consist of subprocesses with different
characteristics. Therefore, workflow technology should be able to support various
types of processes. The declare prototype can support mixtures of various
processes via the decomposition of constraint-based declare and procedural
YAWL processes (cf. Section 6.11). Moreover, the same principle can be applied
to other systems in order to enable combining even more approaches (e.g, worklets
[41, 44, 45]).

8.2.5 Business Process Management with the Constraint-Based

Approach

The Business Process Management (BPM) life cycle consists of several phases:
design, implementation, enactment and diagnosis of business processes. Work-
flow management systems and process mining tools are two types of software
products that can, combined, support the whole BPM cycle. As a workflow man-
agement system, the declare prototype supports the first three phases: design,
implementation and enactment phases. Process mining tools, e.g., the ProM
tool, aim at supporting the diagnosis phase by allowing for automated analysis
of executed business processes. Although not tailored for our constraint-based
approach, existing process mining techniques can be used to diagnose executions
of constraint-based processes. Moreover, some of the existing techniques (e.g.,
the LTL Checker, the SCIFF Checker, and the DecMiner) are fully applicable to
the constraint-based approach. This shows that the constraint-based approach
can be applied to the whole BPM cycle, as shown in Figure 8.1.

Section 8.3 Limitations 227

P
ro

M
pr

oc
es

s
m

in
in

g
to

ol

D
E

C
LA

R
E

w
or

kf
lo

w

m
an

ag
em

en
t s

ys
te

m process
design

process
implementation

process
enactment

diagnosis

Figure 8.1: Constraint-based approach in the BPM life cycle

8.3 Limitations

Besides the problem of a missing activity life-cycle in the proposed ConDec lan-
guage, which is described in detail in Section 5.9, the research presented in this
thesis has two further limitations. First, in Section 8.3.1, we describe prob-
lems related to the complexity of models with many constraints. Second, in
Section 8.3.2 we describe problems related to the absence of a proper empirical
evaluation of our approach.

8.3.1 Complexity of Constraint-Based Models

There are two problems related to the complexity of models with a large number
of constraints. The first problem is of the technical nature: due to the use of LTL
for constraint specification, efficiency dramatically decreases when the number
and complexity of mandatory constraints rises. The second problem is related to
the human capacity to deal with information.

Efficiency-Related Problems

As described in Section 5.4, an automaton is generated for a conjunction of for-
mulas of all mandatory constraints in an LTL-based constraint model, i.e., for
the so-called mandatory formula (cf. Definition 5.4.1 on page 142). The manda-
tory formula is used for (1) execution, (2) ad-hoc change and (3) verification
of constraint models based on LTL. Since the automata generated for an LTL
formula is exponential in the size of the formula [74,84,85,108,111,112,158], the
time needed for generating these automata becomes very long for big mandatory
formulas. This can cause problems. For example, generating the automaton for
an instance with a big mandatory formula may be extremely slow.

There are two possible causes of this problem. First, the more mandatory
constraints there are in a model, the larger the mandatory formula for the model

228 Chapter 8 Conclusions

will be. Second, as shown in Section 5.2, various constraint templates have dif-
ferent LTL formulas. For example, the LTL formula for the alternate precedence
template presented in Table 5.2 on page 129 is significantly more demanding
from a computational point of view than the formula for the existence template
presented in Table 5.1 on page 127.

Consider the Fractures Treatment model presented in Figure 6.5 on page 167
as an illustrative example. Loading a new instance of this model in declare

takes approximately 12 seconds on a computer with a Pentium 4 processor [4] of
2.80 GHz and 0.99GB of RAM using Microsoft Windows XP Professional version
2002 [5]. If the alternate precedence constraint between activities check X ray
risk and perform X ray is removed from the original Fractures Treatment model,
then staring an instance in declare on the same computer takes approximately
1 second. Obviously, the size of the LTL formula for the alternate precedence
constraint dramatically increases the time to construct the automaton for the
mandatory formula of the instance, i.e., it may take too long to create and start
a new instance of this model in declare.

The efficiency problem described above can occur at several points in de-

clare. First, when creating a new instance, an automaton is generated for
the mandatory formula, which can cause the instance creation to take a long
time. Second, when applying an ad-hoc change an automaton is generated for
the mandatory formula of the changed instance, which can cause the application
of the ad-hoc change to last too long. Third, whenever a condition on a manda-
tory constraint changes (i.e., after completion of an activity in the instance), a
new automaton is generated for the mandatory formula, which can cause the
processing of a completed activity to take too long (cf. Section 6.9). Fourth,
during verification, i.e., analyzing dead activities, conflicts and history violations
during ad-hoc change (cf. sections 5.8 and 5.7), an automaton is generated for
combinations of mandatory constraints in order to identify the cause of error,
which can cause the verification to be too time-consuming.

Note that, in case of models that contain dead activities and conflicts, the
‘plain’ detection of errors might take take less time than finding the set of con-
straints that causes the error. This is because the original model has a smaller set
of satisfying traces than its ‘submodels’, i.e., models where some of the manda-
tory constraints are removed (cf. Property 4.2.5). Therefore, the automaton
generated for the whole model contains less traces than the automata created for
the subsects of mandatory constraints. As a consequence, the generation of the
automaton for the whole model might be considerably faster than the generation
of the automata for subsets of mandatory constraints.

Capacity of Humans to Deal With Information

Constraints represent rules that should be followed while executing instances of
constraint-based models. Therefore, it is important that people who are exe-

Section 8.3 Limitations 229

cuting an instance are aware of states of constraints in the instance throughout
the whole execution. In this manner, people can understand what can or cannot
be done in an instance and why, and what should be done in order to satisfy
constraints and execute the instance correctly. Because of this, the declare

prototype presents whole instances and states of all constraints (by means of
different colors) to its users (cf. Section 6.4).

Because people must keep track of states of all constraints while executing
instances, instances with many constraints can easily become too complex for
people to cope with. The fact that the different types of constraints have differ-
ent semantics and the fact that constraints can interact in various ways makes
handling instances with many constraints even more complex. On the one hand,
an instance with many constraints contains a high degree of variance and the
amount of information that people must handle. On the other hand, there are
severe limitations on the amount of information people are able to receive, process
and remember [172]. For example, research shows that it is difficult for people to
deal with (approximately) more than seven chunks of varying information at a
time [122, 172]. Therefore, models with many constraints can easily become too
complex for humans to cope with.

Process Decomposition as a Solution

At the moment, the only possible solution that can solve the two problems de-
scribed above seems to be using the constraint-based approach to model business
processes with a moderate number of constraints. To achieve this, we recommend
decomposing large processes into small units of work, preferably modeled using
our constraint-based approach. This will increase the efficiency on the one hand,
and make it easier for people to execute their work on the other hand.

8.3.2 Evaluation of the Approach

Another limitation of the work presented in this thesis is the lack of a proper
empirical evaluation of the proposed constraint-based approach and the declare

prototype. An empirical test is missing due to the time limitations. However, we
did consider the available options for an evaluation. We see three possibilities for
an evaluation: (1) evaluation by experts, (2) conducting laboratory experiments,
and (3) testing in practice.

Evaluation by Experts

Evaluation by experts is not an uncommon practice in the area of workflow
technology [247, 248]. This type of tests can be performed by, e.g., means of
conducting a survey or conducting interviews with experts in the field. These
experts can come from academia and industry and the evaluation is based on
their knowledge and professional opinion about the evaluated approach. The

230 Chapter 8 Conclusions

advantage of this kind of evaluation is that experts already have the knowledge
about the state-of-the-art in the field, and can easily judge the advantages and
disadvantages of our approach. A drawback of this type of evaluation is that the
evaluation is conducted by experts, who may have different opinions than the
end-users.

Laboratory Experiments

Our approach can also be evaluated with experiments conducted in laboratory
conditions. For example, a group of participants (e.g., students) can act as end-
users and work with the declare prototype on some imaginary scenarios. The
advantage of experiments is that the approach is evaluated by people who acted
as end-users and used the declare tool for a while. The main drawback of
experiments as an evaluation method is related to the fact that flexibility ‘comes
into play’ when unexpected (exceptional) scenarios occur. On the one hand,
waiting for ‘spontaneous’ exceptions usually takes a lot of time, and can make
experiments too costly. On the other hand, prescribing exceptional situations
and causing them on purpose during experiments is not a good solution, because
prescribed situations cannot be considered unpredicted and exceptional.

Testing in Practice

The most desirable manner of evaluation seems to be testing the approach in
practice. This would solve the problems imposed with the previous two meth-
ods: (1) end-users are the ones who evaluate the approach, and (2) practice
can offer realistic unpredictable situations where flexibility and support are both
needed. However, practice tests are also the most difficult type of evaluation to
conduct. There are several reasons for this. First, declare is only a prototype
of a workflow management system and would need a lot of further product devel-
opment in order to be suitable for use in practice. Second, it is not likely that an
organization would be willing to abandon using a commercial workflow system
and commit execution of its business processes to the testing of a prototype.
Third, in order to evaluate our approach, it is necessary that end-users also have
knowledge about (many) other approaches, which is not likely in practice.

8.4 Directions for Future Work

The work presented in this thesis represents an initiative to increase flexibility of
workflow management systems, without sacrificing the support. We hope to have
shown that a constraint-based approach is applicable to workflow management
systems, and that workflow technology can benefit from the proposed approach.
However, the current approach and the declare tool can be improved in various
ways, as indicated below.

Section 8.5 Summary 231

In Chapter 5 we propose ConDec as a constraint-based language. ConDec
focuses only on relations between activities in constraint models (cf. Section 5.2).
However, business processes can often also depend on rules that include other
perspectives of processes, like, e.g., data, resource and time perspective. In
the future, it would be interesting to extend the ConDec language with other
perspectives. For example, the time perspective would enable the use of deadlines
(e.g., the response template can specify that ‘activity A must be followed by
activity B within 5 days’). This can be achieved by, e.g., using the so-called
Extended Timed Temporal Logic and timed automata [63] or LogLogics [123].

In Chapter 5 we propose LTL for specifying constraint templates and con-
straints. As described in Section 5.9, using LTL for this purpose introduces
the problem of a rather artificial activity life cycle. Moreover, as discussed in
Section 8.3, specifying constraints with LTL seriously decreases efficiency of the
approach. Therefore, it would be interesting to also use other languages than
LTL as a basis in order to identify the most suitable language. Moreover, us-
ing other languages for the constraint specification may reveal other possibilities
with respect to possible constraint templates (i.e., maybe different templates can
be specified using some other language).

The proposed approach should also be evaluated in a proper way. An appro-
priate evaluation can reveal both strong and weak points of the approach and
indicate directions for further improvement.

As described in Chapter 1, workflow management systems are not the only
type of systems that are used for business process support in practice. Groupware
systems also can perform this function. However, these two types of systems
focus on different aspects of business processes: while workflow technology aims
at automating the operational aspect of processes, groupware is mostly used to
support human collaboration. As a workflow management system, the declare

prototype focuses on introducing flexibility with respect to the operational aspect
of work. However, flexibility implies a deeper involvement of people in work and,
therefore, a more intensive collaboration. Therefore, we also propose extending
our approach with ‘groupware-like’ functionality in order to be able to support
both operational and collaborative aspects of the flexible work style.

8.5 Summary

In this thesis we presented a new approach to workflow management systems that
is able to achieve a better balance between flexibility and support. We hope that,
by optimizing flexibility and support, workflow technology will provide sufficient
support for handling complex situations and, at the same time, enable people
to control their work. As a result, people who work with workflow management
systems will be more satisfied and achieve better results while performing their
daily work.

232 Chapter Conclusions

Appendix A

Work Distribution in

Staffware, FileNet and

FLOWer

In order to gain insight into how workflow management systems distribute work
to people, we have modeled the work distribution mechanisms of three commer-
cial workflow management systems: Staffware [238], FileNet [107] and FLOWer
[180]. Staffware and FileNet are examples of two widely used traditional work-
flow management systems. FLOWer s is based on the case-handling paradigm,
which can be characterized as a more flexible approach [26,39]. Each of the mod-
els is built as a CPN model [138,139,152] and is an extension of the basic model
presented in Section 3.1.2. In the remainder of this chapter we present each of
the developed CPN models: Staffware in Section A.1, FileNet in Section A.2,
and FLOWer in Section A.3. Finally, Section A.4 concludes the chapter.

A.1 Staffware

We extended the basic model to represent the work distribution of Staffware. The
way of modeling the organizational structure and resource allocation algorithm
are changed, while the concept of work queues and the possibility of the user to
forward and suspend a work item are added to the model. In this section we first
describe the organizational structure of Staffware. Second, we describe the work
queues and the two level distribution that accompanies them. Third, we explain
the resource allocation of Staffware and its allocation function. Finally, we show
which features have to be added to the basic model to implement the suspension
and forwarding of work.

Simple organizational structure can be created in Staffware using the notions
of groups and roles. The notion of group is defined as in the basic model, i.e.,
one group can contain several users, and one user can be a member of several

234 Chapter A Work Distribution in Staffware, FileNet and FLOWer

groups. However, specific in Staffware is that a role can be defined for only one
user. This feature does not require any changes in the model structure or color
sets. However, it changes the way the initial value for the user maps should be
defined – one role should be assigned to only one user.

A.1.1 Work Queues

Groups are used in Staffware to model a set of users that share common rights.
If a whole group is authorized to execute a work item, then each member of the
group is authorized to execute the work item. Staffware introduces a work queue
for every group. The work queue contains work items that group members can
execute and it is accessible to all members of the group. Single users can be
considered to be groups that contain only one member. Thus, one work queue is
also created for every user and this personal queue is only accessible by a single
user. Each user has access to the personal work queue and to work queues of all
the groups the user is a member of.

While the basic model offers a work item directly to users, Staffware offers
items in two levels. First, a work item is offered to work queues (colset WQ =
string) in the work distribution module (cf. Figure A.1). We refer to this kind
of work items as to queue work items (colset QWI = product WI * WQ). Second,
every queue work item is offered to all members of a group (i.e., work queue) in
the offering sub-module (cf. Figure A.1). Only one member will execute the
queue work item once. We refer to a queue work item that is offered to a member
(of a work queue) as to user work item (colset UWI = product User * QWI).

Figure A.1 shows the first level of distribution in the work distribution module
of Staffware. The transition offers to work queues removes a work item token
from the place new work items and offers it to work queues by producing queue
work item tokens in place to offer to work queues. To do this, it retrieves activity
maps, user maps and field maps as input elements. It also produces a work item
token in the place offered work items. The queue work item tokens in the place to
offer to work queues are produced by the allocation function offer qwi in the arc
inscription between the transition offers to work queues and the place to offer to
work queues. This function takes a work item, activity maps, user maps and field
maps1 as parameters. The effects of this function are explained in Section A.1.2.
The transition offers to work queues produces a queue work item token in the
place offered work items to store the information about which work items are
expected to be completed by work queues. A token in the place to offer to work
queues sends a message to the offering sub-module that the queue work item
should be further distributed to the work queue members. After the completion
of a queue work item, the offering sub-module creates a queue work item in the

1The fifth parameter is an empty list and is used as aid to perform calculations in the
function. This parameter should always be left empty and does not influence the function
results.

Section A.1 Staffware 235

place completed queue work items. The transition completes work item considers
a work item to be completed when all queue work items that originate from
that work item are completed. This transition retrieves a work item from the
place offered work items and waits until all queue work items that originate from
(that were offered to work queues based on) the referring work item. For this
reason, the allocation function offer qwi is called on the arc inscription between
the place completes work item and the transition completes work item with the
same parameters like in the arc inscription between the transition offers to work
queues and the place to offer to work queues.

(* a work item is complete
when every queue, to which it was offered,
has executed the work item *)

(* work item is first offerd to work queues
on the basis of tmaps, umaps and fmaps *)

(* only umaps are
necessary as input
for offering queue work
items to users *)

Text

fmaps

fmaps

wi

amaps

umaps

offer_qwi(wi,amaps,umaps,fmaps)

wi

offer_qwi(wi,amaps,umaps,fmaps)

wi

umaps

amaps

wi

offering

offering

completes
work item

offers to
work queues

fields

iFMaps

FMaps

forwarded
In UWIxWQ

suspended
In UWI

WI

offered
work items

WI

to offer
to work queues

QWI

completed
queue work items

QWI

withdrawn offer
Out UWI

activity map

iAMaps

AMaps

to be offered
Out UWI

new work items iWI

WI

selected
In UWI

user map

iUMaps

UMaps

completed
In UWI

approved
Out UWI

rejected
Out UWIOut

Out

In

In

Out

Out

In

In

offering

completed work items

Figure A.1: Staffware - work distribution

Distribution to work queues in Staffware follows a similar logic like the distri-
bution in the basic model, but also introduces some changes. A difference between
these two distribution models is that, instead of distributing work directly to the
work lists module (users) like in the basic model, the Staffware work distribution
module hands-off the distribution to users to is sub-module offering. While a
work item is the object of distribution in the basic model, the Staffware work
distribution module distributes queue work items.

Figure A.2 shows the second level of distribution in Staffware within the
offering sub-module. The first transition to fire here is the transition offers to
work queues, when the message about the new queue work item is received from
the work distribution module as a new queue work item token at the place to offer
to work queues. This transition (1) removes the queue work item from the place
to offer to work queues and produces it in the place offered work queues, and (2)
retrieves user maps and creates new user work items in the place to be offered.
The offers for users are created by the allocation function offer uwi, which takes

236 Chapter A Work Distribution in Staffware, FileNet and FLOWer

a queue work item that is to be offered and the user maps as parameters. This
function searches in user maps for all members of the work queue and creates a
user work item for each member that was found.

(* every queue work item
is offered to members
of the queue *)

(u,qwi)

(u,qwi)

(u,qwi)

qwi

qwi

offer_uwi(qwi,umaps)

qwis
qwi::qwis

qwi

(u,qwi)

offer_uwi(qwi,umaps)

qwis

qwi

(u,qwi)

offers

selects

[elt(qwi,qwis)]

forwarded
In

UWIxWQ

suspended
In UWI

completed
In UWI

QWI

UWI

rejected
Out UWI

QWI

approved
Out

UWI

UWI

iUMaps []

QWIs

assigned
work items

QWI

selected
In UWIIn

Out

Out

In

In

In

to offer
to work queues

I/OI/O

completed
queue work items

OutOut

user map
I/OI/O

umaps

(* use umap to
offer qwi to
queue
members *)

umaps
UMaps

offered queue
 work items

Reject

[not(elt(qwi,qwis))]qwis

to be offered
OutOut

withdrawn offer
OutOut

(* a queue work item will be executed
only once, by one user/queue member *)

(* withdraw all offers
for this queue work item *)

del(qwi,qwis)

completes

forward and
suspend

forwardandsuspendforwardandsuspend

Figure A.2: Staffware - offering

The offering sub-module follows the logic of the basic model work distribu-
tion module. For a detailed description of this kind of distribution we refer the
reader to the Section 3.1.2. However, instead of starting with work items like
the basic model, the offering sub-module starts with available queue work items.
An addition to the Staffware model was the possibility to suspend and forward
work. These mechanisms were added in the suspend and forward sub-module,
which will be explained Section A.1.3.

A.1.2 Resource Allocation

The resource allocation of Staffware is captured in the two level distribution
mechanism with two allocation functions: (1) function offer qwi (cf. Figure A.1)
takes a new work item, activity maps, user maps and field maps as parameters
and allocates work queues that are authorized to execute the work item; (2)
function offer uwi (cf. Figure A.2) takes a queue work item and user maps as
parameters and allocates all users that are members of the referring queue.

Just like the basic model, Staffware searches for possible users based on roles
and groups. In addition to this, in Staffware users can be allocated by their user
names and data fields in the process. Thus, activity maps in the Staffware model

Section A.1 Staffware 237

assign a list of users, roles, groups and fields to each activity (TMap = product
Task * Users * Roles * Groups * Fields). Figure A.3 shows how an activity
map is specified in Staffware. Based on activity maps, function offer qwi (cf.
Figure A.1) allocates work queues that are authorized to execute the work item:
(1) when a user name is provided in a activity map, the work item is offered to
personal work queue of the referring user; (2) for every role in the activity map,
this function offers the work item to the personal work queue of the user with
that role (note that one role can be assigned to only one user); (3) a work item is
offered to the work queue of every group that is stated in the activity maps; and
(4) for authorizations via fields, allocation is executed at the run-time following
the three above described allocation strategies. The allocation at run-time is
referred to as a dynamic work allocation. Every field has a unique name (colset
Field = string), e.g., ‘next user’. During the execution of the process, every
field is assigned a value, and this value changes (e.g., users can assign values to
fields). Staffware assumes that the value of the assigned data field can be a group
name, a role name or a user name. If the field ‘next user’ (which for example has
the value of Joe Smith assigned) is specified in the activity map of an activity,
then the actual value of the field is assigned to the activity map entry at the
moment when the activity becomes enabled. Thus, Joe Smith will be used in the
allocation.

Figure A.3: Staffware - an activity map

Figure A.4 shows Staffware Process Client tool, where users can access their
work queues and process the work items. In this case, there are two work queues:
(1) the work queue for the group “Information Systems”, and (2) the personal
work queue of the user Joe.

When all the properties of the Staffware work distribution are merged to-
gether, unexpected scenarios might happen. In the example shown in Table 3.3
on page 59 activity read article should be allocated to users which are from the
group Information Systems and have the role professor. The basic model allo-
cates this activity to users that are from the group Information Systems and
have the role professor, i.e., to the user Joe. Unlike the basic model, Staffware
allocates this activity to: (1) the work queue of the group Information Systems
(which members are Mary and Joe), and (2) the personal queue of the user who

238 Chapter A Work Distribution in Staffware, FileNet and FLOWer

Figure A.4: Staffware - a work queue with a work item

has the role professor (with one member Joe). A work item is completed in
Staffware when all its queue work items are completed (cf. Figure A.1). Thus,
the activity read article will be execute two times: (1) once by a member of the of
the group Information Systems – Mary or Joe, and (2) once by the user who has
the role professor – Joe. As the result of Staffware work distribution, the work
item read article has two possible scenarios of the execution. This activity will
be executed either once by Mary and once by Joe, or two times by Joe. Which
one of these two scenarios will take place, depends only on which user is faster,
i.e., on which users select the activity before the others do.

A.1.3 Forward and Suspend

When the user selects a work item in the basic model, the work item is assigned
to him/her, and (s)he can start the work item and execute it. Figure A.5 shows
that Staffware offers a more realistic and somewhat more complex model of the
life cycle of a work item than the basic model (cf. Figure 3.9 on page 57). After
a user selects the work item, it is assigned to him/her, and then the user can
either start the work item or forward it to another user. Forwarding transfers
the work item to the state offered, because it is automatically offered to the new
user. If the user chooses to start the work item, (s)he can execute it or suspend
it. When a work item is suspended, it is transferred back to the state initiated.
After this, the system offers the work item again to all authorized users.

Forwarding and suspending of work items adds two messages that are ex-
changed between work distribution and work lists modules in Staffware model.
Figures A.1 and A.2 show two new places – forward and suspend. Users trigger
these two new actions in the start work and stop work sub-modules of the work
list module (cf. Figure 3.12(b) on page 61).

Figure A.6(a) shows that in the Staffware sub-module start work the user
can choose to select or forward (to another work queue) the work item. To
enable forwarding, we add the transition forward to the start work sub-module
in Staffware model. The request to select a work item is represented with a user
work item in the place requested. After this request, the start work sub-module

Section A.1 Staffware 239

new

assigned

enabled

initiated

offered

seleceted

started

executed

completed

suspend

forward

Figure A.5: Staffware - work item life cycle

waits until the work distribution module approves the request, by creating a
user work item token in the place approved. When the request is approved the
transitions start work and forward can fire depending on the user decision. Both
transitions consume the two matching user work item tokens from the places
requested and approved. The transition start work has the same effect as the
basic model (cf. Figure 3.12(e) on page 61). The transition forward matches
the user token in the place logged on with the referring user work item, retrieves
a work queue token from the place work queues and produces a token in the
place forwarded. The initial marking for the place work queues consists of all
group names and all user names registered in the system. This is straightforward
because Staffware creates group work queues for all groups and personal work
queues for all users. The place forwarded is of the color set type that combines
a user work item and a work queue to which the work item should be forwarded
(colset UWIxWQ = product UWI*WQ). The transition forward produces a token
in the place forwarded with the arc inscription ((u,qwi),wq). This token is sends
the message to the work distribution module that the referring user (u) wants to
forward the referring queue work item (qwi) to the referring work queue (wq).

Figure A.6(b) shows that in the sub-module stop work the user can choose
to complete or suspend the work item. The transition suspend is added to the
sub-module. While a user is executing a queue work item, a referring user work
item token is in the place in progress. At any time during the execution of a
work item, one of the transitions complete and suspend can fire. While transition
complete has the same effects as in the basic model (cf. Figure 3.12(f) on page 61),
transition suspend is new in Staffware model. This transition matches the user
token in the place logged on with the user work item in the place in progress.
It consumes the user work item from the place in progress and produces the
referring user work item token in the place suspended. A user work item token
in the place suspended sends the message to the work distribution module that
the referring user wishes to suspend the referring queue work item.

The work distribution module (cf. Figure A.1) handles forwarding and sus-

240 Chapter A Work Distribution in Staffware, FileNet and FLOWer

work queue

WQ

iUser ++ iGroup

logged on

User

[]

I/O

in progress

UWI
Out

requested

UWI
In

approved

UWI
In

forwarded

UWIxWQ
Out

forwardstart work
wqu

(u,qwi)

u

(u,qwi)

(u,qwi) (u,qwi)

((u,qwi),wq)

(u,qwi)

(* a work queue
is created
for every group
and for every user *)

(* the user can choose to execute or forward the work item *)

(a) start work

completed

UWI
Out

in progress

UWI
In

suspended

UWI
Out

logged on

User

[]

I/O

suspend

complete
(u,qwi)

(u,qwi)

(u,qwi)

(u,qwi)

u

u

(* the user can
choose to
complete
or suspend
the work item *)

(b) stop work

Figure A.6: Staffware - sub-modules start work and stop work

pending in a new sub-module: the suspend and forward sub-module shown in
Figure A.7. On the one hand, in case of forwarding the work item is automat-
ically cancelled for the current work queue and offered to the new work queue.
On the other hand, in case of suspending the work item is cancelled for the cur-
rent work queue and re-offered as a new work item. When a message that a
user wishes to forward a queue work item to a work queue from the work lists
module arrives, a token is produced in the place forwarded. The forward and
suspend sub-module then automatically fires the transition forward. This tran-
sition consumes the token from the place forwarded and produces two different
tokens in places to re-offer and to cancel. The queue work item token that is
forwarded is produced in the place to cancel. A new queue work item, which
consists of a referring work item and a new work queue, is produced in the place
to re-offer. When the message that a user wishes to suspend a user work item
a token is produced in the place suspended. The transition suspend fires auto-
matically when the message arrives, consumes the user work item token from
the place suspended and produces two identical referring queue work item tokens
in the places to cancel and to re-offer. The transitions re-offer and cancel fire
automatically when tokens are produced in places to re-offer and to cancel, re-
spectively. Transition cancel consumes matching queue work item tokens from
the places to cancel and selected work items. In this way the queue work item
is removed from the model. The transition re-offer consumes a queue work item
token from the place to re-offer and produces one in the place to offer to work
queues. In this way, the offering sub-module can offer the queue work item to
the members of the work queue again.

Section A.2 FileNet 241

(wi,wq)

qwi

qwi

((u,(wi,wq)),wq1)

(u,qwi)qwi

qwi
forward

cancel suspend

re-offer

QWI

QWI UWIxWQQWI

QWI UWI

to offer to
work queues

OutOut
to re-offer

to cancelselected
work items

InIn
suspended

InIn

forwarded
InIn

qwi (wi,wq1)

qwi

(* when suspending a "user work item":
1. cancel this "user work item" and 2. offer it again like before *)

(* when forwarding a "user work item":
1. cancel this "user work item" and 2. offer this work item to the specified user *)

Figure A.7: Staffware - forward and suspend

A.2 FileNet

Like Staffware, FileNet is a widely used traditional process-oriented workflow
management system. In this section we will describe the FileNet CPN model
that we develop by extending the basic model.

Unlike the basic model and Staffware, FileNet does not allow for modeling
roles of users. The organizational structure in FileNet can be modeled via two
types of groups. First, administrators of the FileNet system can define work
queues (colset WQ = string) and assign their members by selecting users of the
FileNet system. Work queues are defined on the global level of the FileNet system
– they are valid for every process (workflow) definition. Second, process modelers
can define workflow groups (colset WG = string) in every process model. Thus,
workflow groups belong to and are valid only in the process (workflow) model
in which they are defined. Workflow groups represent teams in FileNet. While
executing an activity of a process definition, users have the possibility to change
the structure of workflow groups of the referring process.

A.2.1 Queues

Work queues and personal queues are two types of queues (colset Q = string) in
FileNet. Queues are pools from which users can select and execute work items. A
work queue can have a number of members while a personal queue has only one
member. When a work item is offered to a queue, one of the queue members can
select and execute the work item. FileNet distributes work in two levels using
queues. First, the work item is offered to queues as a queue work item (colset
QWI = product WI * Q). Second, the queue work item is offered to the members
of the queue as a user work item (colset UWI = product User * QWI).

Figures A.8 and A.9 show that the model of the two-level work distribution
in FileNet is similar to the Staffware model. For more detailed description of this
kind of distribution we refer the reader to the Staffware description in Section A.1.

242 Chapter A Work Distribution in Staffware, FileNet and FLOWer

(* a work item is complete
when every queue, to which it was offered,
has executed the work item *)

(* work item is first offerd to queues
on the basis of tmaps and umaps *)

wi

amaps

umapswi

wi

umaps

amaps

wi

offering

offering

offers to
queues

forwarded
In UWIxQ

UWI

WI

WI

QWI

QWI
UWI

UWI

iWI

WI

selected
In UWI

iUMaps

UMaps

completed
In

UWI

approved
Out UWI

rejected
Out UWIOut

Out

In

In

In

offering

activity map

AMaps

iAMaps
offered

work items

completes
work item

completed
queue work items

user map

(* only umaps are
necessary as input
for offering queue work
 items to users *)

offer_qwi(wi,amaps,umaps)

offer_qwi(wi,amaps,umaps)

withdrawn offer
OutOut

to be offered
OutOut

suspended
InIn

to offer
to queues

completed
work items

new
 work items

Figure A.8: FileNet - work distribution

(* every queue work item
is offered to members of the queue *)

(u,qwi)

(u,qwi)

qwi

qwi

offer_uwi(qwi,umaps)

qwis
qwi::qwis

qwi

(u,qwi)

qwis del(qwi,qwis)

qwi

(u,qwi)

forward
and

suspend

forwardandsuspend

offers

selects

iUMaps

UMaps
UWIxQ

suspended
In UWI

completed
In UWI

QWI

to be offered
Out UWI

UWI

QWI

UWI

UWI

[]

QWIs

QWI

selected
In UWIIn

Out

In

In

(* use umap to
offer qwi to
queue
members *)

umaps

umaps

user map
I/OI/O

[elt(qwi,qwis)]

offered queue
 work items

assigned
work items

completes

completed
queue work items

OutOut

withdrawn offer
OutOut

forwardandsuspend

Reject
qwis

[not(elt(qwi,qwis))](u,qwi)
forwarded

InIn

rejected
OutOut

approved
OutOut

(* a queue work item will be executed only once,
by one user/queue member *)

offer_uwi(qwi,umaps)

(* withdraw all offers
for this queue work item *)

to offer
to queues

I/OI/O

Figure A.9: FileNet - offering

A.2.2 Resource Allocation

FileNet allocates work using work queues and lists of participants. Figure A.10
shows that an activity in FileNet can be allocated to either a work queue or to
a list of participants. In this figure we can see that the activity read article has

Section A.2 FileNet 243

been allocated to the participants that belong to the workflow group Information
Systems. Users and workflow groups can be entries of a list of participants. In
the FileNet model, activity maps are defined as a combination of an activity, a
list of work groups, and a work queue (colset AMap = product Activity * WGs *
WQ, cf. Section 3.1.2). When defining the input value for a activity map, either
a work queue or a list of workflow groups should be initiated, but not both.

Figure A.10: FileNet - allocation for work queues or participants

If the activity is allocated to a work queue, FileNet offers the referring work
item to the work queue. If the activity is allocated to a list of participants,
then it is offered to personal queues of all users that are given as individual
participants or are members in participating workflow groups. Allocation via
participants is introduced to support team work in FileNet, via the so-called
‘process voting’. During the execution of an activity, all participants vote for
the specified decision. The work distribution mechanism uses their decisions to
determine which work items will be executed next. Since our models abstract
from the process perspective, we did not model process voting in the FileNet
model.

The allocation function offer qwi allocates queues that are authorized to ex-
ecute the referring activity. Figure A.8 shows this function in the inscription on
the arc between the transition offers to queues and the place to offer to queues.
This function takes four parameters: (1) the referring work item, (2) activity
maps, (3) user maps, and (4) an empty list – used as an utility for calculations.
This function first searches the activity maps for the map of the activity that is
specified in the work item. The referring activity map will point to either a work
queue or to a list of participants. In case of a work queue the function produces
a queue work item token for the referring work queue. The situation is slightly
more complex in the case of a list of participants, because this list may contain
users and workflow groups as elements. For each user in the list of participants
a queue work item token is produced for the personal queue of the user. For

244 Chapter A Work Distribution in Staffware, FileNet and FLOWer

each workflow group in the list of participants queue work items are produced
for personal queues of all group members.

A.2.3 Forward and Suspend

Users can forward and suspend work items in FileNet. When the user selects a
work item (s)he can start working on it or forward it to another user. In this
case FileNet automatically offers the work item to the new user. When the user
is executing a work item s(he) can complete or suspend the work item. In this
case FileNet needs to apply the distribution mechanism again, and offer the work
item to all allocated users. Figure A.11 shows the life cycle of a work item in
FileNet. When the life cycle models of FileNet and Staffware (cf. Figure A.5)
are compared, it can be seen that they are identical. Therefore, we use the
same adjustments in FileNet like in Staffware models to implement forwarding
and suspension: modules start work and stop work are changed and sub-module
suspend and forward is added in the work distribution module. For detailed
description of these sub-modules we refer the reader to Staffware description in
Section A.1.3.

new

assigned

enabled
initiated

offered

seleceted

started

executed

completed

suspend

forward

Figure A.11: FileNet - work item life cycle

A.3 FLOWer

FLOWer is a case-handling system. Case-handling systems differ in their per-
spective from traditional process-oriented workflow management systems because
they focus on the instance, instead of the process [26,39]. FLOWer offers a whole
instance to a user by offering all available work items from the instance. When
working with FLOWer, the user does not have to follow the predefined order
of activities in the process definition, i.e., this system offers flexibility by devia-
tion [226–228].

To model FLOWer, we extend the basic model in such a way that (1) it han-
dles case-handling distribution instead of the process-oriented one, (2) it enables
the complex authorization and distribution specifications that FLOWer has, and
(3) it enables users to execute, open, skip and redo work items.

Section A.3 FLOWer 245

A.3.1 Case Handling

To model a case-handling system like FLOWer, a number of color sets are in-
troduced. Every process definition in FLOWer is referred to as an instance type
(colset InstanceType = string). Thus, every instance type refers to a list of activ-
ities (colset Activities = list Activity), which form the process definition (colset
Process = product InstanceType * Activities) for that instance type. One instance
(colset Instance = product InstanceID* InstanceType) represents an instance of
an instance type and is identified by an instance identification (colset InstanceID
= INT).

FLOWer distributes work in two levels. First, an instance is distributed
to users (colset UInstance = product User * Instance). Only one user can select
and open the instance at one moment. Unlike the distribution in the basic model,
where distributed work items refer to single activities, FLOWer distributes whole
instances on its first level of distribution. Second, the selected instance is opened
for the user. Work items (colset WI = product Instance * Activity) from the
instance are offered to the user, based on the authorization and distribution
rules. In the second level of FLOWer distribution users can execute, open, skip
and redo work items from the selected instance, instead of only executing work
items from multiple instances like in the basic model, Staffware and FileNet.

A.3.2 Authorization Rights

Authorization rights are defined for every instance type. First, process-specific
roles are defined within an instance type (colset PRole = product Role * Instance-
Type). Second, to make authorization rights, roles are assigned to activities
within the instance type. These authorization rights are stored in activity maps
(colset AMap = product Activity * Role * InstanceType). The authorization
rights determine what users can do and are applied by the distribution mecha-
nism when opening the instance for the user. The user is allowed to work only
on activities for which (s)he has the authorized roles. Although authorization
exists in the basic model, Staffware and FileNet, in these models it is defined on
the global (system) level, instead of embedding roles in process models. Rather,
roles are defined in the global organizational model.

A.3.3 Distribution Rights

Distribution rights define what users should do. Unlike authorization rights, dis-
tribution rights are defined on the global level of the FLOWer system, and are
valid for all instance types. These rights can be used to model the organizational
structure and to assign authorization rights from the process definitions (instance
types) to users. Function profiles and work profiles define distribution rights.
Function profile has a unique function name (colset FN = string) and a list of

246 Chapter A Work Distribution in Staffware, FileNet and FLOWer

instance type authorization roles (colset FP = product FN * PRoles). If, for ex-
ample, there are two instance types (two processes) – one with “secretary1” and
the other with “secretary2” as an authorization role, the function profile “secre-
tary” could include both authorization roles. When we would assign the function
profile “secretary” to a user, we would indirectly assign both authorization roles
from two processes.Work profiles assign function profile(s) to users and they can
be used to structure organization into groups, departments or units. One work
profile consists of a unique name (colset WN = string), a list of users and a list of
function profiles (colset WP = product WN * Users * FNs). Distribution rights
are used to define the organizational model in FLOWer. While this model is
independent of the authorizations in the basic model, Staffware and FileNet, in
FLOWer it has to be related to special authorization roles form instance types.
In this way, FLOWer creates two-layered organization specification: one part of
it is in the distribution rights and the other in the authorization rights.

A.3.4 Distribution of Instances

Figure A.12 shows the work distribution module of FLOWer. In this module,
FLOWer model distributes new instances to users, instead of distribution work
items like the basic model. When a new instance token is available in the place
new instances, the transition offers instance fires. This transition consumes the
instance token from the place new instance and retrieves activity maps, work
profiles and function profiles from places activity map, work profile and function
profile, respectively. It adds a token to the list of instances in the place offered
instances. This place stores a list of instances that were offered to users but not
yet selected by any user. The most important effect of this transition is that
it produces a user instance token in the place offer instance, via the instance
allocation function offerinstance in the arc inscription. A user instance token
in the place offer instances sends a message to the work lists module to offer
the referring instance to the referring user. The allocation function offerinstance
takes four parameters: (1) instance that will be allocated, (2) activity maps to
find the mapping of the referring instance type activity to the instance type role,
(3) a list of function profiles to find the ones that contain the instance-type-
specific role from the activity maps, and (4) a list of work profiles to find the
users that are assigned to the appropriate function profiles.

Next, the work distribution module waits for the message from the work lists
module that a user wants to select an instance. This message arrives with a
user instance token in the place selected instance. Only one user can select an
instance at the same time in FLOWer. The work distribution module responds to
this message accordingly to this rule by checking if the instance has already been
selected, i.e., if the referring instance is contained in the list of offered instances
in the place offered instances. Transitions selects instance and reject instance
are the two alternative transitions that can respond to the new user instance

Section A.3 FLOWer 247

wps

fps

wps

fps

del((u,i),uis)

i::is

is

is

is

amaps

(u,i)

i

i

(u,i)

instance
distribution

instance distribution

reject
instance

[elt(((cid,ct)),is)]

iWPs

WPs

iFPs

FPs

open
In

OpenInstanceXUWI

redo
In OpenInstanceXUWI

execute
In OpenInstanceXUWI

skip
In OpenInstanceXUWI

tprocess

iProcess

Process

[]

[]

Instances

UInstance

iAMaps

iInstances

Instance

UInstance

UInstance

OpenInstance

UInstance

In

In

In

In

AMaps

amaps

UInstance

(u,i)

instance distribution

[not(elt(i,is))]

OpenInstance

Instance

offerinstance(i,amaps,fps,wps)

closed
instances

activity map

function
 profile

work
profile

offers
instance

new instances

offer
instance

OutOut

rejected
instance

OutOut

offered
instances

selected
 instance

InIn

approved
 instanceOutOut

withdraw
instance offer

OutOut

instance
in progressOutOut

completed
instance

InIn

completes
instance

assigned
 instances

selects
instance

(* when the user
has selected the instance,
the instance is opened
for the user *)

UInstances

(u,(cid,ct))

(* the whole instance is offered to users
based on the tmaps, function profiles
and work profiles *)

(ct,ts)

openinstance((cid,ct),
ts,u,amaps,fps,wps)

offerinstance(((cid,ct)),
amaps,fps,wps)

del(((cid,ct)),is)

[(u,((cid,ct)))]^^uis

uis

uis

Figure A.12: FLOWer - work distribution

token in the place selected instance. The transition selects instance will fire if
the referring instance is contained in the list of instances in the place offered
instances, which can be seen in the guard of the transition. This transition will
consume the user instance token from the place selected instance, remove the
referring instance from the list of instances in the place offered instances and
produce the user instance token in the place assigned instances. By removing
the token from the place offered instance, we assure that the instance cannot be
selected again. The transition selects instance also sends two messages to the
work lists module. First, since the instance has just been selected, a message is
sent to the work lists module to withdraw all offers of the referring instance. The
transition selects instance sends this message by producing all previous offers of
the referring instance in the place withdraw instance offer. Second, the approval
message for the selection of the instance (for the user) is sent by producing the
referring open instance token in the place approved instance.

The function openinstance in the arc inscription between the transition se-

248 Chapter A Work Distribution in Staffware, FileNet and FLOWer

lects instance and the place approved instance produces an open instance token.
This function takes six parameters: (1) the identification and the type of the
instance to be open, (2) the activities that are contained in the process definition
of the instance type, (3) the user for whom the instance is open, (4) a list of
activity maps to find instance type authorized roles for every activity, (5) a list
of function profiles to search for the ones that contain the authorization roles
for the activities, and (6) a list of work profiles to determine which of the se-
lected function profiles are assigned to the user. The open instance token (colset
OpenInstance = product UInstance*InstanceState) that is produced stores the
information about the user, instance and the state of the instance (colset In-
stanceState = product WIs*WIs*WIs*WIs). The instance state consists of four
lists of work items that are: (1) waiting to be enabled, (2) active (i.e. they are
enabled and can be executed), (3) finished (executed), and (4) skipped. When
the instance is opened for the first time, the list of active items contains the first
work item in the instance, the list of waiting items all the other authorized work
items, and the lists of executed and skipped items are empty.

After the work distribution module opens the instance for the user, the in-
stance distribution sub-module handles the distribution within the instance. This
sub-module manages events when users work on activities within the instance.
We refer to this part of the FLOWer work distribution as to the distribution
within the instance and describe it Section A.3.5.

The last message that arrives from the work lists module is that the user
has finished working with the instance. This message arrives with a new user
instance token in the place completed instance. The transition completes instance
consumes this token, removes the referring user instance token from the list of
assigned instances in the place assigned instances and produces the referring in-
stance token in the place closed. Although, in FLOWer system, after the instance
has been closed it is possible to be offered again, we do not model this in the
FLOWer CPN model due to the complexity and size of the model. However,
it is possible to include this behavior in the model by: (1) returning the closed
instance token to the place new instance, and (2) storing permanently the state
of every instance, similarly like activity maps, function profiles, work profiles and
process definitions.

Figure A.13 shows the work lists module of the FLOWer model. Generally,
the functionality of the part of this module that deals with the distribution
of instances is the same as the work lists module of the basic model shown in
Figure 3.12(b) on page 61. However, there are some differences between these two
modules. First, the places are named differently to match the context. There are
two kinds of places in the FLOWer model: (1) names of the places and transitions
that deal with the instance distribution contain word ‘instance’ (e.g., the place
offer instance), and (2) names of the places that deal with the distribution within
the instance do not contain the word “instance” (e.g., place execute). Second,
the places that deal with the distribution are of the user instance type, instead

Section A.3 FLOWer 249

of the user work item type. Finally, the sub-module action deals with actions
of users in the context of the distribution within an instance. The action sub-
module is described in Section A.3.5. Because the distribution of the instances
in the FLOWer work lists module is similar to the distribution of work items in
the work lists module of the basic model, for a detailed description we refer the
reader to Section 3.1.2.

(* after selecting the case,
the user can work on the work items
from that case, or close the case*)

ui ui

action

action

stop
instance

stop instance

select
instance

select instance

open
Out

redo
Out

execute
Out

skip
Out

OpenInstance

User

UInstance

UInstance

UInstance

OpenInstance

UInstance

UInstance

Out

Out

Out

Out

stop instance

action

UInstance

request
instance

abort
instance

offer instance
InIn

withdraw
instance offer

InIn

selected instance
OutOut

rejected instance
InIn

approved instance
InIn

completed instance
OutOut

instance
in progressInIn

logged on logon
and off

logon and offlogon and off

OpenInstanceXUWI

OpenInstanceXUWI

OpenInstanceXUWI

OpenInstanceXUWI

start
instance

start instancestart instance

select instance

Figure A.13: FLOWer - work lists

A.3.5 Distribution within an Instance

When working with traditional, process-oriented, systems users can mostly ex-
ecute or cancel work items. This property of such systems can be found in the
basic model, Staffware model and FileNet model. Unlike these process-oriented
systems (models), a case-handling system FLOWer allows users to perform four
actions on work items: open, execute, skip and redo. Figure A.14 shows that
the life cycle of a work item in FLOWer is somewhat more complex that the life
cycles of the other models. Because a user selects a whole instance, work items
are assigned to the user before they are enabled. Following the process definition
of an instance type (because of the complexity we assume this to be a sequence
of activities) the FLOWer systems enables the next work item in the sequence.
After the user selects an enabled work item, (s)he starts with its execution and
the work item is transferred to the state execute. Once the execution stops, the
work item becomes completed. It is possible to skip an enabled work item and

250 Chapter A Work Distribution in Staffware, FileNet and FLOWer

transfer it without the execution to the state completed. Besides enabled items,
the user can also skip work items that are assigned. The user can open and start
an assigned work item. By redoing a completed work item, the user transfers the
work item to the state enabled.

new

assigned

enabled

initiated

offered

seleceted

started

executed

completed

(*
op

en
*)

, s
ki

p

op
en

sk
ip

redo

(*redo*)

Figure A.14: FLOWer - work item life cycle

The state of the instance plays an important role in the distribution within
the instance from two perspectives: First, which of the four actions are possible
depends on the state of the instance. For example, it is only possible to execute
the work items that are contained in the list of active work items in the instance
state. Second, each of the four actions changes the state of the instance. For
example, if a work item was executed, it is removed from the list of active items
and added to the list of finished items in the instance state. We use Table A.1
to explain the role of the instance state in the distribution within the instance.
Each of the four rows refers to one of the four actions – the name of the action is
stated in the column action. The first column (“work item was”) is a precondition
that states from which list in the instance state the work item has to be selected
in order to undergo the referring action (e.g., the action open can be applied
only to waiting work items). The column work item becomes is a postcondition
that states to which list the selected work item will be moved after the action
(e.g., after opening, the work item is moved to the list of active items in the
instance state). Finally, the postcondition column side effects states what are
the possible side effects of the action. For example, when opening an work item,
other (if any) waiting and/or active items after the opened item are moved to
the list of skipped items in the instance state.

When a user selects an instance, FLOWer continues work distribution within
that instance – the work items of the instance are distributed to the user. Before
this distribution can start, the work distribution module (cf. Figure A.12) opens
the instance by sending the appropriate message to the work lists module (cf.
Figure A.13) with an open instance token in the place approved instance. After
the work lists module receives this message, its transition start instance auto-
matically fires by consuming the open instance token from the place approved
instance and producing one in place instance in progress. Once the open in-

Section A.3 FLOWer 251

Table A.1: Four actions in FLOWer

preconditions action postcondition
work item work item side
was becomes effects

waiting open active Waiting and active items that
succeed become skipped.

active execute finished The direct successor becomes ac-
tive.

active or waiting skip skipped Succeeding waiting and active
items become skipped. The di-
rect predecessor becomes active.

finished or skipped redo active Preceding finished and skipped
items become waiting.

stance token is produced in place instance in progress, the distribution within
the instance starts and the user can work on the work items in that instance.

Figure A.15 shows the action sub-module, which is a new sub-module in the
FLOWer work lists module (cf. Figure A.13). This sub-module handles the
actions of a user when s(he) works within an instance and makes sure that the
preconditions (cf. Table A.1) are met before each of the four actions can take
place. The action sub-module can be seen as an extension of the start work
sub-module of the basic model, which is shown in Figure 3.12(e) on page 61. In
the start work sub-module the user can only start the work item in progress.
However, when an open instance is in progress in the action sub-module the user
can: (1) execute the work item which is next in the process definition of the
instance type – an item contained in the list of active items in the instance state;
(2) open for executing a work item that is still not ready for execution according
to the process definition of the instance type – an item contained in the list
of waiting items in the instance state; (3) skip a work item that is currently
enabled or waiting to be enabled – an item contained in the lists of active or
waiting items in the instance state, or (4) redo a work item and execute again a
work item which has already been executed – an item contained in the lists of
finished or skipped items in the instance state.

Four transitions in the action sub-module refer to the four actions of users
– open, execute, skip, and redo. All transitions retrieve an user token from the
place logged on, to make sure that only the users who are currently logged on can
perform these actions. Also, all transitions consume the open instance token from
the place instance in progress. The open instance token stores the information
about the user, instance, and instance state (i.e., lists of waiting, active, finished
and skipped work items for that instance). It is necessary to consume(remove)
the open instance token from the place instance in progress because after every
action, the work distribution module (more specifically – its instance distribution

252 Chapter A Work Distribution in Staffware, FileNet and FLOWer

u

((u,i),(w,a,f,s))

((((u,i),(w,a,f,s))),select_random(a))

u (((u,i),(w,a,f,s)),select_random(w))

u

((u,i),(w,a,f,s))

((u,i),(w,a,f,s))

((u,i),(w,a,f,s))

skip

[not(a^^w=[])]

redo

[not((f^^s)=[])]

open

[not(w=[])]

execute

[not(a=[])]

execute Out

OpenInstanceXUWI

open Out

OpenInstanceXUWI

redo Out

OpenInstanceXUWI

skip Out

OpenInstanceXUWI

instance
in progress

In
OpenInstance
In

Out

Out

Out

Out

(((u,i),(w,a,f,s)),select_random(a^^w))

(((u,i),(w,a,f,s)),select_random(f^^s))

logged on
I/OI/O User

u

Figure A.15: FLOWer - action

sub-module) changes the state of the instance, which is stored in the open in-
stance token in the place instance in progress. After performing one action, the
user cannot perform the next action before the instance distribution sub-module
updates the instance state and produces the referring open instance token in
the place instance in progress. The transition open can fire only if the list of
waiting items in the instance state is not empty, as can be seen in the guard of
this transition. The transition open produces a token in the place open. This
place is of a complex type, which consist of an open instance and an user work
item. When a token is produced in this place, the message is sent to the instance
distribution sub-module that the referring user work item should be open in the
referring open instance. Although a user who works with FLOWer can freely
choose which item should be open, for the simplicity we use an random func-
tion to select an item from the list of waiting items. The inscription on the arc
from the transition open produces a token from the current open instance and
the (randomly) selected waiting item in the place open. Similarly, according to
the preconditions (cf. Table A.1), guards on transitions execute, skip, and redo
ensure that they fire only when lists of active, active and waiting, and finished
and skipped items are not empty, respectively. Places execute, skip and redo are
of the same type as the place open, and a token in each of those places sends
a message to the instance distribution module that the referring user work item
should be executed, skipped or redone, respectively. Following the preconditions
(cf. Table A.1), the inscriptions on the arcs between the (1) transition and place
execute, (2) transition and place skip and (3) transition and place redo each cre-
ate a token containing the open instance and the randomly selected (1) active,
(2) active or waiting, and (3) finished or skipped work item in the places (1)
execute, (2) skip and (3) redo, respectively.

Section A.3 FLOWer 253

When working on an instance in the FLOWer system, users work with the
interface tool Wave Front [180] where they can see the state of the open instance.
Users can see which work items are waiting, active, finished and skipped. Fig-
ure A.16 shows one example of an open instance in the Wave Front. The first
two activities (Claim Start and Register Claim) are finished work items and they
are marked with a ‘check’ symbol. The third work item (Get Medical Report)
was skipped, as can be seen from the ‘arrow’ symbol. Thus, finished and skipped
work items are presented after the Wave Front line. The three active work items
on the Wave Front line are Get Police Report, Assign Loss Adjuster and Witness
Statements. Finally, the two last work items (Policy Holder Liable and Close
Instance) are waiting before the Wave Front line to become active.

Figure A.16: FLOWer wave front

Instance distribution is a sub-module of the FLOWer work distribution mod-
ule (cf. Figure A.12). This sub-module responds to user’s requests to open,
execute, skip or redo work items in the distribution within the instance. The
task of the instance distribution sub-module is to respond to the actions of users
by changing the state of the instance accordingly to the postcondition of every
action (cf. Table A.1). Figure A.17 shows the instance distribution sub-module
of the FLOWer model. The requests (messages) for actions are received via to-
kens in places open, execute, skip and redo. These places are of the type which
stores the information about the open instance (the user instance and the in-
stance state) and the user work item to which the action (open, execute, skip or
redo) should be applied. Due to delays, it is possible that a message to execute a
work item from the instance arrives after the instance had been closed, the tran-
sition ignore behaves as a ‘garbage collector’ of such requests. This transition
retrieves user instance token from the place assigned instances and consumes a
token from the places open, execute, skip and redo. Thus, when the transition
ignore fires, the message to perform an action is ignored and removed from the
model. The guard on this transition makes sure that the transition will fire only
if the instance is not closed, i.e., the appropriate user instance token is not found
in the list in place assigned instances. Transitions open, execute, skip and redo

254 Chapter A Work Distribution in Staffware, FileNet and FLOWer

fire when tokens arrive to places open, execute, skip and redo, respectively. Each
of these transitions consumes the arrived token from the appropriate place (e.g.,
transition open consumes the arrived token from the place open) and retrieves
the list of user instances from the place assigned instances. Guards on transi-
tions open, execute, skip and redo show that they will fire if the request is valid,
i.e., if the appropriate user instance token is found in the list in the place as-
signed instances. The result of each of those four transitions is a produced open
instance token in the place instance in progress. The inscriptions on the arcs
between these transitions and the place instance in progress change state of the
instance, accordingly to the postcondition of each action. More specifically, the
new instance state is created by four functions in the inscriptions on the arcs be-
tween transitions open, execute, skip and redo, and the place instance in progress.
These functions take three parameters: (1) user work item to which the action
should be applied, (2) the old instance state that should be changed, and (3) the
instance process definition – the activities of the instance type. The third pa-
rameter is retrieved from the place tprocess, which stores process definitions for
all instance types. Functions open item, execute item, skip item and redo item
create the new instance state accordingly to the postcondition of the referring
action, as shown in Table A.1. When a token is produced in the place instance
in progress, a message is sent to the action sub-module that the user can select
the next action for the referring open instance.

(ct,ts)

(ct,ts)

((ui,state),uwi)

((ui,state),uwi)

((ui,state),uwi)

uis

uis

uis

((ui,state),uwi)

(ct,ts)

((ui,state),uwi)

((ui,state),uwi)

((ui,state),uwi)

open

ignore

[not(elt(ui,uis))]

redo

skip

execute

assigned cases
I/O

[]

UInstances

tprocess
I/O

iProcess

Process

skip
In

execute
In

open
In

instance
in progress

Out OpenInstance

redo
InIn

In

In

In

I/OI/O

uis

((ui,state),uwi)

(ui,(open_item(uwi,state,ts)))

uis

[elt(ui,uis)]

[elt(ui,uis)]

[elt(ui,uis)]

[elt(ui,uis)]

OpenInstanceXUWI

OpenInstanceXUWI

OpenInstanceXUWI

OpenInstanceXUWI

(ct,ts)

(ui,(execute_item(uwi,state,ts)))

(ui,(redo_item(uwi,state,ts)))

(ui,(skip_item(uwi,state,ts)))

Out

Figure A.17: FLOWer - instance distribution

The FLOWer CPN model implemented significant changes to the basic model.
Because of its case-handling nature, the FLOWer model differs the most from
the other work distribution CPN models presented in this thesis. The greatest
differences are caused by the fact that the system distributes the instances and

Section A.4 Summary 255

the work items within the instances, instead of only work items. The start
work module of the basic model was significantly extended because users can
open, execute, skip and redo work items in FLOWer. Regardless the differences
between FLOWer and process-oriented systems (modeled by the basic model,
Staffware model and FileNet model), it was possible to extend the basic model
to the FLOWer work distribution model.

A.4 Summary

Workflow management systems should provide flexible work distribution mech-
anisms for users. This will increase the work satisfaction of users and improve
their ability to deal with unpredictable situations at work. Therefore, work dis-
tribution is investigated as the functionality provided for the user – workflow
management systems are tested in laboratories [211, 216] or observed (in empir-
ical research) in practice [64]. This kind of research observes systems externally
and provides insights into what systems do. Analysis of the systems from an in-
ternal perspective can explain how systems provide for different work distribution
mechanisms. Due to the complexity of workflow management systems as software
products, internal analysis starts with developing a model of the system. Unlike
the mostly used static models (e.g., UML class diagrams, entity-relationship dia-
grams), dynamic models (e.g., CPN models) provide for interactive investigation
of work distribution as a dynamic feature. CPN models can be used for the
investigation of both what systems do and how they do it.

Workflow management systems often provide for different features or use dif-
ferent naming for the same features. Investigation of work distribution requires
analysis, evaluation and comparison of models of several systems. In order for
models of different systems to be comparable, it is necessary to start with de-
veloping a common framework – a reference model. We use the basic model
presented in Section 3.1.2 as a reference model for work distribution mechanisms
in workflow management systems. The models of Staffware, FileNet, FLOWer
are comparable because all models are developed as extensions of the same model
– the basic model.

The model of a workflow system is structured into two modules. The work
distribution module represents the workflow engine (cf. Figure 3.1 on page 48).
The work lists module represents the workflow client application ,which serves as
an interface between the workflow engine and users (cf. Figure 3.1 on page 48).
The interface between the two modules (i.e., the messages that are exchanged
between them) should contain as little information as possible about the way work
items are managed in modules. The work lists module should abstract from the
way the work items are created, allocated and offered in the work distribution
module. The reverse also holds: how work items are actually processed by users
is implemented in the work lists module. Once a proper interface is defined, it is

256 Chapter A Work Distribution in Staffware, FileNet and FLOWer

easy to implement various ways of work distribution by adding/removing simple
features in either one of the modules.

Work distribution mechanism determines what users can do with work items.
Users of Staffware and FileNet models have the freedom to forward and suspend
work. In FLOWer, as the most flexible system, users have four possibilities:
execute, open, skip and redo work. Our models show that a more complex model
work distribution adds messages between the work distribution and work lists
modules. These new messages correspond to new actions (operations) that users
can do.

Both the system-based and the patterns-based CPN models showed that one
of the core elements of work distribution is the ‘allocation algorithm’. This
algorithm includes rules of a specific work distribution. It is implemented in the
work distribution module as the function offer, which allocates work based on (1)
new work items, (2) process definition, and the (3) organizational model. This
function should be analyzed further in order to discover an advanced allocation
algorithm, which should be more configurable and less system-dependent.

Every system has its own method of modeling organizational structure.
Staffware models groups and roles. In FileNet the organizational model includes
groups of users and teams, but does not model roles. FLOWer groups users
based on a hierarchy of roles, function profiles and work profiles. Thus, each
of the system offers a unique predefined type of the organizational structure.
Since every allocation mechanism uses elements of the organizational model,
limitations of the organizational model can have a negative impact on the work
distribution in the system. For example, because in Staffware one role can be
assigned to only one user, it is not be possible to offer a work item to a set of
call center operator-s.

Each of the three models of workflow management systems distributes work
using two hierarchy levels. Staffware and FileNet use two levels of work distribu-
tion: queue work items are first distributed to work queues, and then work items
are distributed within each of the work queues. The FLOWer model starts with
the instance distribution and then distributes work items of the whole instance.
Although all three systems distribute work at two levels, they have unique distri-
bution algorithms (the set of allocation rules implemented in the function offer)
and objects of distribution (work items, queue work items, instances).

Appendix B

Evaluation of Workflow

Patterns Support

258 Chapter B Evaluation of Workflow Patterns Support

B.1 Control-Flow Patterns

Table B.1: Support for control flow patterns in Staffware (SW), FileNet (FN) and FLOWer
(FW) [211,213]

(+ = direct support, – = no direct support, +/– = partial support)

Nr Pattern SW FN FW

1 sequence + + +
2 parallel split + + +
3 synchronization + + +
4 exclusive choice + + +
5 simple merge + + +
6 multi-choice – + +
7 structured synchronizing merge – + +
8 multi-merge – + +/–
9 structured discriminator – – –
10 arbitrary cycles + + –
11 implicit termination + + +
12 multiple instances without synchronization + + +
13 multiple instances with a priori design-time knowledge + – +
14 multiple instances with a priori run-time knowledge + – +
15 multiple instances without a-priori run-time knowledge – – +
16 deferred choice – +/– +
17 interleaved parallel routing – – +/–
18 milestone – – +/–
19 cancel task + + +/–
20 cancel case – + +/–
21 structured loop – + +
22 recursion + – –
23 transient trigger + – –
24 persistent trigger – + +
25 cancel region – – –
26 cancel multiple instance task + – –
27 complete multiple instance task – – +/–
28 blocking discriminator – – –
29 cancelling discriminator – – –
30 structured partial join – – –
31 blocking partial join – – –
32 cancelling partial join – – –
33 generalized and-join – + –
34 static partial join for multiple instances – – –
35 cancelling partial join for multiple instances – – –
36 dynamic partial join for multiple instances – – –
37 acyclic synchronizing merge – – +
38 general synchronizing merge – + –
39 critical section – – +/–
40 interleaved routing – – +/–
41 thread merge – – –
42 thread split – – –
43 explicit termination – – –

Section B.2 Resource Patterns 259

B.2 Resource Patterns

Table B.2: Support for resource patterns in Staffware (SW), FileNet (FN), FLOWer (FW)
and basic model (BM) [182,211,216]

(+ = direct support, - = no direct support, +/– = partial support, o = out-of-scope)

Nr Pattern SW FN FW BM

1 direct allocation + + + +/–
2 role-based allocation + +/– + +
3 deferred allocation + + – –
4 authorization – – + –
5 separation of duties – – + –
6 case handling – – + –
7 retain familiar – – + –
8 capability-based allocation – – + –
9 history-based allocation – – – –
10 organizational allocation +/– +/– +/– +/–
11 automatic execution + + + o
12 distribution by offer - single resource – – – –
13 distribution by offer - multiple resources + + + +
14 distribution by allocation - single resource + + + –
15 random allocation – – – +
16 round robin allocation – – – –
17 shortest queue – – – –
18 early distribution – – + –
19 distribution on enablement + + + +
20 late distribution – – – –
21 resource-initiated allocation – – + +
22 resource-initiated execution - allocated Work Item + + + +
23 resource-initiated execution - offered Work Item + + – –
24 system-determined work list management + + + o
25 resource-determined work list management + + + o
26 selection autonomy + + + +
27 delegation + + – –
28 escalation + + – –
29 deallocation – – – –
30 stateful reallocation +/– + – –
31 stateless reallocation – – – –
32 suspension/resumption +/– +/– – –
33 skip – – + o
34 redo – – + o
35 pre-do – – + o
36 commencement on creation – – – –
37 commencement on allocation – – – –
38 piled execution – – – –
39 chained execution – – + –
40 configurable unallocated work item visibility – – – o
41 configurable allocated work item visibility – – + o
42 simultaneous execution + + +/– +
43 additional resources – – – –

260 Chapter B Evaluation of Workflow Patterns Support

B.3 Data Patterns

Table B.3: Support for data patterns in Staffware (SW) and FLOWer (FW) [214,215]

(+ = direct support, - = no direct support, +/– = partial support)

Nr Pattern SW FW

1 task data – +/–
2 block data + +
3 scope data – +/–
4 folder data – –
5 multiple instance data +/– +
6 case data +-/ +
7 workflow data + –
8 environment data + +
9 data interaction between tasks + +
10 data interaction - block task to Sub-workflow + +/–
11 data interaction - Sub-workflow to block task + +/–
12 data interaction - to multiple instance task – +
13 data interaction - from multiple instance task – +
14 data interaction - case to case +/– +/–
15 data interaction - task to environment - push + +
16 data interaction - environment to task - pull + +
17 data interaction - environment to task - push +/– +/–
18 data interaction - task to environment - pull +/– +/–
19 data interaction - case to environment - push – +
20 data interaction - environment to case - pull – +
21 data interaction - environment to case - push +/– +
22 data interaction - case to environment - pull – +
23 data interaction - workflow to environment - push – –
24 data interaction - environment to workflow - pull +/– –
25 data interaction - environment to workflow - push – –
26 data interaction - workflow to environment - pull + –
27 data transfer by value - incoming – –
28 data transfer by value - outgoing – –
29 data transfer - copy in / copy out – +/–
30 data transfer by reference - unlocked + +
31 data transfer by reference - locked – +/–
32 data transformation - input +/– +/–
33 data transformation - output +/– +/–
34 data precondition - data existence + +
35 data precondition - data value + +
36 data postcondition - data existence +/– +
37 data postcondition - data value +/– +
38 event-based task trigger + +
39 data-based task trigger – +
40 data-based routing +/– +/–

Bibliography

[1] CPN Tools. http://wiki.daimi.au.dk/cpntools/cpntools.wiki.

[2] DECLARE. http://declare.sf.net.

[3] ExSpect. http://www.exspect.com.

[4] Intel. http://www.intel.com.

[5] Microsoft Corporation. http://www.microsoft.com.

[6] newYAWL. http://www.yawl-system.com/newYAWL.

[7] Organization for the Advancement of Structured Information Standards (OASIS).
http://www.oasis-open.org.

[8] Process Mining. http://www.processmining.org.

[9] Workflow Management Coalition. http://www.wfmc.org.

[10] Workflow Patterns. http://www.workflowpatterns.com.

[11] YAWL. http://www.yawl-system.com/.

[12] TIBCO Staffware Process Monitor (SPM). http://www.tibco.com, 2005.

[13] Common Public License, Version 1.0. http://www.opensource.org/licenses/cpl1.0.php, 31
October 2006.

[14] GNU General Public License, Version 3. http://www.gnu.org/copyleft/gpl.html, 29 June
2007.

[15] W.M.P. van der Aalst. Designing Workflows Based on Product Structures. In K. Li,
S. Olariu, Y. Pan, and I. Stojmenovic, editors, Proceedings of the ninth IASTED In-
ternational Conference on Parallel and Distributed Computing Systems, pages 337–342.
IASTED/Acta Press, Anaheim, 1997.

[16] W.M.P. van der Aalst. Flexible Workflow Management Systems: An Approach Based
on Generic Process Models. In T. Bench-Capon, G. Soda, and A. Min-Tjoa, editors,
Proceedings of the 10th International Conference on Database and Expert Systems Appli-
cations (DEXA’99), volume 1677 of Lecture Notes in Computer Science, pages 186–195.
Springer-Verlag, Berlin, 1999.

[17] W.M.P. van der Aalst. Formalization and Verification of Event-driven Process Chains.
Information and Software Technology, 41(10):639–650, 1999.

[18] W.M.P. van der Aalst. On the Automatic Generation of Workflow Processes Based on
Product Structures. Computers in Industry, 39:97–111, 1999.

[19] W.M.P. van der Aalst. Workflow Verification: Finding Control-Flow Errors using Petri-
net-based Techniques. In W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors,
Business Process Management: Models, Techniques, and Empirical Studies, volume 1806
of Lecture Notes in Computer Science, pages 161–183. Springer-Verlag, Berlin, 2000.

262 Bibliography

[20] W.M.P. van der Aalst. Exterminating the Dynamic Change Bug: A Concrete Approach
to Support Workflow Change. Information Systems Frontiers, 3(3):297–317, 2001.

[21] W.M.P. van der Aalst. How to Handle Dynamic Change and Capture Management In-
formation: An Approach Based on Generic Workflow Models. International Journal of
Computer Systems, Science, and Engineering, 16(5):295–318, 2001.

[22] W.M.P. van der Aalst. Reengineering Knock-out Processes. Decision Support Systems,
30(4):451–468, 2001.

[23] W.M.P. van der Aalst, L. Aldred, M. Dumas, and A.H.M. ter Hofstede. Design and
Implementation of the YAWL System. In A. Persson and J. Stirna, editors, Advanced
Information Systems Engineering, Proceedings of the 16th International Conference on
Advanced Information Systems Engineering (CAiSE’04), volume 3084 of Lecture Notes in
Computer Science, pages 142–159. Springer-Verlag, Berlin, 2004.

[24] W.M.P. van der Aalst and T. Basten. Inheritance of Workflows: An Approach to Tackling
Problems Related to Change. Theoretical Computer Science, 270(1-2):125–203, 2002.

[25] W.M.P. van der Aalst, H.T. de Beer, and B.F. van Dongen. Process Mining and Verifica-
tion of Properties: An Approach based on Temporal Logic. In R. Meersman and Z. Tari
et al., editors, On the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and
ODBASE: OTM Confederated International Conferences, CoopIS, DOA, and ODBASE
2005, volume 3760 of Lecture Notes in Computer Science, pages 130–147. Springer-Verlag,
Berlin, 2005.

[26] W.M.P. van der Aalst and P.J.S. Berens. Beyond Workflow Management: Product-
Driven Case Handling. In S. Ellis, T. Rodden, and I. Zigurs, editors, International ACM
SIGGROUP Conference on Supporting Group Work (GROUP 2001), pages 42–51. ACM
Press, New York, 2001.

[27] W.M.P. van der Aalst, B.F. van Dongen, C.W. Günther, R.S. Mans, A.K. Alves de
Medeiros, A. Rozinat, V. Rubin, M. Song, H.M.W. Verbeek, and A.J.M.M. Weijters.
ProM 4.0: Comprehensive Support for Real Process Analysis. In J. Kleijn and A.
Yakovlev, editors, Application and Theory of Petri Nets and Other Models of Concur-
rency (ICATPN 2007), volume 4546 of Lecture Notes in Computer Science, pages 484–
494. Springer Verlag, Berlin, 2007.

[28] W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data and
Knowledge Engineering, 47(2):237–267, 2003.

[29] W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods, and
Systems. MIT press, Cambridge, MA, 2004.

[30] W.M.P. van der Aalst, A. Hirnschall, and H.M.W. Verbeek. An Alternative Way to
Analyze Workflow Graphs. In A. Banks-Pidduck, J. Mylopoulos, C.C. Woo, and M.T.
Ozsu, editors, Proceedings of the 14th International Conference on Advanced Information
Systems Engineering (CAiSE’02), volume 2348 of Lecture Notes in Computer Science,
pages 535–552. Springer-Verlag, Berlin, 2002.

[31] W.M.P. van der Aalst and A.H.M. ter Hofstede. Verification of Workflow Task Structures:
A Petri-net-based Approach. Forschungsbericht Nr. 380, Universität Karlsruhe, Institut
AIFB, Karlsruhe, 1998.

[32] W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow Language.
Information Systems, 30(4):245–275, 2005.

[33] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow
Patterns. BETA Working Paper Series, WP 47, Eindhoven University of Technology,
Eindhoven, 2000.

263

[34] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow
Patterns. QUT Technical report, FIT-TR-2002-02, Queensland University of Technology,
Brisbane, 2002.

[35] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow
Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

[36] W.M.P. van der Aalst and S. Jablonski. Dealing with Workflow Change: Identification
of Issues and Solutions. International Journal of Computer Systems, Science, and Engi-
neering, 15(5):267–276, 2000.

[37] W.M.P. van der Aalst and M. Pesic. DecSerFlow: Towards a Truly Declarative Service
Flow Language. In M. Bravetti, M. Nunez, and G. Zavattaro, editors, International
Conference on Web Services and Formal Methods (WS-FM 2006), volume 4184 of Lecture
Notes in Computer Science, pages 1–23. Springer-Verlag, 2006.

[38] W.M.P. van der Aalst and M. Pesic. Specifying and Monitoring Service Flows: Making
Web Services Process-Aware. In L. Baresi and E. Di Nitto, editors, Test and Analysis of
Web Services, pages 11–56. Springer-Verlag, 2007.

[39] W.M.P. van der Aalst, M. Weske, and D. Grünbauer. Case Handling: A New Paradigm
for Business Process Support. Data and Knowledge Engineering, 53(2):129–162, 2005.

[40] B. Abrahamsson. Bureaucracy or Participation: The Logic of Organization. Sage, Beverly
Hills, CA, USA, 1977.

[41] M. Adams. Facilitating Dynamic Flexibility and Exception Handling for Workflows. PhD
Thesis, Queensland University of Technology, Brisbane, Australia, 2007.

[42] M. Adams, A.H.M. ter Hofstede, W.M.P. van der Aalst, and D. Edmond. Dynamic,
Extensible and Context-Aware Exception Handling for Workflows. In F. Curbera, F.
Leymann, and M. Weske, editors, Proceedings of the OTM Conference on Cooperative
information Systems (CoopIS 2007), volume 4803 of Lecture Notes in Computer Science,
pages 95–112. Springer-Verlag, 2007.

[43] M. Adams, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Facilitating
Flexibility and Dynamic Exception Handling in Workflows through Worklets. In O. Belo,
J. Eder, O. Pastor, and J. Falcao e Cunha, editors, Proceedings of the 17th Conference
on Advanced Information Systems Engineering Forum (CAiSE05 Forum), pages 45–50.
Springer-Verlag, 2005.

[44] M. Adams, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Worklets: A
Service-Oriented Implementation of Dynamic Flexibility in Workflows. In R. Meersman
and Z. Tari, editors, Proceedings of 14th International Conference on Cooperative Infor-
mation Systems (CoopIS 2006), volume 4275 of Lecture Notes in Computer Science, pages
291–308. Springer-Verlag, 2006.

[45] M. Adams, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Dynamic
and Extensible Exception Handling for Workflows: A Service-Oriented Implementation.
Technical Report BPM Center Report BPM-07-03, BPMcenter.org, 2007.

[46] A. Agostini and G. De Michelis. Improving Flexibility of Workflow Management Sys-
tems. In W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors, Business Process
Management: Models, Techniques, and Empirical Studies, volume 1806 of Lecture Notes
in Computer Science, pages 218–234. Springer-Verlag, Berlin, 2000.

[47] A. Agrawal, M. Amend, M. Das, M. Ford, C. Keller, M. Kloppmann, D. Knig, F. Ley-
mann, R. Mller, G. Pfau, K. Plsser, R. Rangaswamy, A. Rickayzen, M. Rowley, P.
Schmidt, I. Trickovic, A. Yiu, and M. Zeller. Web Services Human Task (WSHuman-
Task), version 1.0, 2007.

264 Bibliography

[48] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, M. Montali, and P. Tor-
roni. Web Service Contracting: Specification and Reasoning with SCIFF. In E. Franconi,
M. Kifer, and W. May, editors, Proceedings of the 4th European Semantic Web Confer-
ence (ESWC’06), Innsbruck, Austria, Lecture Notes in Computer Science, pages 68–83.
Springer-Verlag, 2007.

[49] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Verifiable
Agent Interaction in Abductive Logic Programming: the SCIFF proof-procedure. Tech-
nical Report DEIS-LIA-06-001, DEIS, Bologna, Italy, 2006.

[50] J.F. Allen. Maintaining Knowledge About Temporal Intervals. Communications of the
ACM, 26(11):832–843, 1983.

[51] G. Alonso, D. Agrawal, A. El Abbadi, M. Kamath, G. Gunthor, and C. Mohan. Advanced
Transaction Models in Workflow Contexts. In S.Y.W. Su, editor, Proceedings of the 12th
International Conference on Data Engineering, pages 574–581, New Orleans, USA, 1996.

[52] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web services: Concepts, Architectures,
and Applications. Springer-Verlag, 2003.

[53] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D.
Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process Exe-
cution Language for Web Services, Version 1.1. Standards proposal by BEA Systems,
International Business Machines Corporation, and Microsoft Corporation, 2003.

[54] A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kartha, C.K. Liu, S. Thatte,
P. Yendluri, and A. Yiu. Web Services Business Process Execution Language Version 2.0.
WS-BPEL TC OASIS, 2005.

[55] P.C. Attie, M.P. Singh, E.A. Emerson, A. Sheth, and M. Rusinkiewicz. Scheduling Work-
flows by Enforcing Intertask Dependencies. Distributed Systems Engineering Journal,
3(4):222–238, December 1996.

[56] P.C. Attie, M.P. Singh, A. Sheth, and M. Rusinkiewicz. Specifying and Enforcing Intertask
Dependencies. In 19th International Conference on Very Large Data Bases (VLDB), pages
134–145, San Francisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc.

[57] J.C.M. Baeten. A Brief History of Process Algebra. Theoretical Computer Science, 335(2-
3):131–146, 2005.

[58] L. Bainbridge. Ironies of Automation. In J. Rasmussen, K. Duncan, and J. Leplat, editors,
New Technology and Human Error, New York, NY, USA, 1987. John Wiley and Son.

[59] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella. Verifying the Confor-
mance of Web Services to Global Interaction Protocols: A First Step. In M. Bravetti and
L. Kloul and G. Zavattaro, editor, International Workshop on Web Services and Formal
Methods, WS-FM 2005, Versailles, France, September 1-3, 2005, Proceedings, volume
3670 of Lecture Notes in Computer Science, pages 257–271. Springer, 2005.

[60] P. van Beek. Exact and Approximate Reasoning about Qualitative Temporal Relations.
PhD thesis, University of Waterloo, Canada, 1990.

[61] J.A. Bergstra and J.W. Klop. Process Algebra for Synchronous Communication. Infor-
mation and Control, 60(”1/3”):109–137, 1984.

[62] A.J. Bonner and M. Kifer. Concurrency and Communication in Transaction Logic. In
Proceedings of the Joint International Conference and Symposium on Logic Programming,
pages 142–156, Bonn, Germany, 1996. MIT Press.

[63] A. Bouajjani, Y. Lakhnech, and S. Yovine. Model-checking for extended timed temporal
logics. In FTRTFT ’96: Proceedings of the 4th International Symposium on Formal
Techniques in Real-Time and Fault-Tolerant Systems, pages 306–326, London, UK, 1996.
Springer-Verlag.

265

[64] J. Bowers, G. Button, and W. Sharrock. Workflow From Within and Without: Technology
and Cooperative Work on the Print Industry Shopfloor. In The Fourth European Confer-
ence on Computer-Supported Cooperative Work (ECSCW 95), pages 51–66, Stockholm,
September 1995. Kluwer Academic Publishers, Dordrecht, The Netherlands.

[65] T. Burns and G.M. Stalker. The Management of Innovation. Tavistock Publications,
London, UK, 1961.

[66] C. Bussler, S. Jablonski, and H. Schuster. A New Generation of Workflow Management
Systems: Beyond Taylorism with MOBILE. ACM SIGOIS Bulletin archive, 17(1):17–20,
1996.

[67] F. Casati, S. Ceri, S. Paraboschi, and G. Pozzi. Specification and Implementation of
Exceptions in Workflow Management Systems. ACM Transations on Database Systems,
24(3):405–451, 1999.

[68] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow Evolution. Data and Knowledge
Engineering, 24(3):211–238, 1998.

[69] A.B. Cherns. The Principles of Socio-Technical Design. Human Relations, 8(29):783–792,
1976.

[70] F. Chesani, P. Mello, M. Montali, and S. Storari. Towards a DecSerFlow Declarative
Semantics Based on Computational Logic. Technical Report DEIS-LIA-07-002, DEIS,
Bologna, Italy, 2007.

[71] V. Christophides, R. Hull, A. Kumar, and J. Simeon. Workflow Mediation Using Vor-
texml. IEEE Data Engineering Bulletin, 24(1):40–45, 2001.

[72] P. Chrzastowski-Wachtel. A Top-down Petri Net Based Approach for Dynamic Work-
flow Modeling. In W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske, editors,
International Conference on Business Process Management (BPM 2003), volume 2678 of
Lecture Notes in Computer Science, pages 336–353. Springer-Verlag, Berlin, 2003.

[73] E. Clarke, D. Long, and K. McMillan. Compositional Model Checking. In Proceedings of
the Fourth Annual Symposium on Logic in Computer Science, pages 353–362, Piscataway,
NJ, USA, 1989. IEEE Press.

[74] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The MIT Press, Cambridge,
Massachusetts and London, UK, 1999.

[75] Workflow Management Coalition. Terminology and Glossary. WFMC-TC-1011 Issue 3.0,
Workflow Management Coalition, February 1999.

[76] G. Cugola. Tolerating Deviations in Process Support Systems via Vlexible Enactment of
Process Models. IEEE Transactions on Software Engineering, 24(11):982–1001, 1989.

[77] F. Daoudi and S. Nurcan. A Benchmarking Framework for Methods to Design Flexible
Business Processes. In Software Process Improvement and Practice, volume 12, pages
51–63. Wiley & Sons, 2007.

[78] H. Davulcu, M. Kifer, and I.V. Ramakrishnan. CTR-S: A Logic For Specifying Contracts
in Semantic Web Services. In Proceedings of the 13th international World Wide Web
conference on Alternate track papers & posters (WWW Alt. ’04), pages 144–153. ACM
Press, New York, NY, USA, 2004.

[79] A.K. Alves de Medeiros. Genetic Process Mining. PhD Thesis, Eindhoven University of
Technology, Eindhoven, The Netherlands, November 2006.

[80] G. Decker, A. Grosskopf, and A. Barros. A Graphical Notation for Modeling Complex
Events in Business Processes. In Proceedings of the 11th IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2007), pages 27–36. IEEE Computer
Society, 2007.

266 Bibliography

[81] G. Decker, J.M. Zaha, and M. Dumas. Execution Semantics for Service Choreographies.
In M. Bravetti, M. Núñez, and G. Zavattaro, editors, Proceedings of the 3rd Workshop
on Web Services and Formal Method (WS-FM 2006), volume 4184 of Lecture Notes in
Computer Science, pages 163–177. Springer-Verlag, 2006.

[82] J. Dehnert and W.M.P. van der Aalst. Bridging the Gap Between Business Models
and Workflow Specifications. International Journal of Cooperative Information Systems,
13(3):289–332, 2004.

[83] J. Dehnert and P. Rittgen. Relaxed Soundness of Business Processes. In K.R. Dittrich,
A. Geppert, and M.C. Norrie, editors, Proceedings of the 13th International Conference
on Advanced Information Systems Engineering (CAiSE’01), volume 2068 of Lecture Notes
in Computer Science, pages 157–170. Springer-Verlag, Berlin, 2001.

[84] S. Demri, F. Laroussinie, and Ph. Schnoebelen. A Parametric Analysis of the State-
Explosion Problem in Model Checking. Journal of Computer and System Sciences,
72(4):547–575, 2006.

[85] S. Demri and Ph. Schnoebelen. The Complexity of Propositional Linear Temporal Logics
in Simple Cases. In G. Goos, J. Hartmanis, and J. van Leeuwen, editors, Proceedings
of 15th Annual Symposium on Theoretical Aspects of Computer Science (STACS 98),
volume 1373/1998 of Lecture Notes in Computer Science, pages 61–72, Paris, France,
1998. Springer-Verlag.

[86] J. Desel. Reduction and Design of Well-behaved Concurrent Systems. In J.C.M. Baeten
and J.W. Klop, editors, Proceedings of CONCUR 1990, volume 458 of Lecture Notes in
Computer Science, pages 166–181. Springer-Verlag, Berlin, 1990.

[87] J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, Cambridge, UK, 1995.

[88] R.M. Dijkman, M. Dumas, and C. Ouyang. Formal Semantics and Analysis of BPMN
Process Models. Technical Report QUT Preprint 7115, Queensland University of Tech-
nology, 2007.

[89] B.F. van Dongen. Process Mining and Verification. PhD Thesis, Eindhoven University of
Technology, Eindhoven, The Netherlands, July 2007.

[90] B.F. van Dongen and W.M.P. van der Aalst. A Meta Model for Process Mining Data.
In J. Casto and E. Teniente, editors, Proceedings of the CAiSE’05 Workshops (EMOI-
INTEROP Workshop), volume 2, pages 309–320. FEUP, Porto, Portugal, 2005.

[91] B.F. van Dongen, A.K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and
W.M.P. van der Aalst. The ProM Framework: A New Era in Process Mining Tool
Support. In G. Ciardo and P. Darondeau, editors, Application and Theory of Petri Nets
2005, volume 3536 of Lecture Notes in Computer Science, pages 444–454. Springer-Verlag,
Berlin, 2005.

[92] P. Dourish, J. Holmes, A. MacLean, P. Marqvardsen, and A. Zbyslaw. Freeflow: Mediating
Between Representation and Action in Workflow Systems. In Proceedings of the CM
Conference on Computer Supported Cooperative Work (CSCW ’96), pages 190–198. ACM
Press, New York, NY, USA, 1996.

[93] M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware Information
Systems: Bridging People and Software through Process Technology. Wiley & Sons, 2005.

[94] S. Dustdar. Caramba - A Process-Aware Collaboration System Supporting Ad Hoc and
Collaborative Processes in Virtual Teams. Distributed and Parallel Databases, 15(1):45–
66, 2004.

[95] M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. Patterns in Property Specifications for
Finite-State Verification. In Proceedings of the 21st International Conference on Software

267

Engineering (ICSE ’99), pages 411–420, Los Alamitos, CA, USA, 1999. IEEE Computer
Society Press.

[96] P.M. Fitts (Ed.). Human Engineering for an Effective Air-navigation and Traffic-control
System. National Research Council Committee on Aviation Psychology, Washington, DC,
USA, 1951.

[97] J. Eder and W. Liebhart. The Workflow Activity Model (WAMO). In S. Spaccapietra
and T. Yokoi, editors, Proceedings of the Third International Conference on Coopera-
tive Information Systems (CoopIS-95), pages 87–98, Vienna, Austria, 1995. University of
Toronto Press.

[98] J. Eder and W. Liebhart. Workflow Recovery. In Proceedings of the First IFCIS In-
ternational Conference on Cooperative Information Systems (CoopIS96), pages 124–134,
Brussels, Belgium, 1996. IEEE Computer Society.

[99] F.M. van Eijnatten and A.H. van der Zwaan. The Dutch IOR Approach to Organi-
zation Design. An Alternative to Business Process Re-Engineering? Human Relations,
3(51):289–318, 1998.

[100] C.A. Ellis and K. Keddara. A Workflow Change Is a Workflow. In W.M.P. van der Aalst,
J. Desel, and A. Oberweis, editors, Business Process Management: Models, Techniques,
and Empirical Studies, volume 1806 of Lecture Notes in Computer Science, pages 201–217.
Springer-Verlag, Berlin, 2000.

[101] C.A. Ellis, K. Keddara, and G. Rozenberg. Dynamic Change within Workflow Systems.
In N. Comstock, C. Ellis, R. Kling, J. Mylopoulos, and S. Kaplan, editors, Proceedings of
the Conference on Organizational Computing Systems, pages 10 – 21, Milpitas, California,
August 1995. ACM SIGOIS, ACM Press, New York, NY, USA.

[102] F.E. Emery. Toward Real Democracy. Ontario Quality of Working Life Centre/ Ministry
of Labor, Toronto, Ontario, Canada, 1989.

[103] F.E. Emery and M. Emery. Participative Design: Work and Community Life. pages
94–113, 1989.

[104] F.E. Emery and E.C. Trist. The Causal Texture of Organisational Environments. Human
Relations, 18(1):21–32, 1965.

[105] H. Fayol. General and Industrial Management. Pitman, London, UK, 1949. Translated
from the French edition (Dunod, 1925) by Constance Storrs.

[106] J. Ferber and O. Gutknecht. Aalaadin: A Meta-Model for the Analysis and Design of
Organizations in Multi-Agent Systems. In Proceedings of the International Conference on
Multi Agent Systems (RR-LIRMM 97189), pages 128–135, Montpellier, France, 1998.

[107] FileNET. FileNet Business Process Manager 3.0. FileNET Corporation, Costa Mesa,
CA, USA, June 2004.

[108] J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer
Science. An EATCS Series. Springer-Verlag, 2006.

[109] D. Georgakopoulos. Teamware: An Evaluation of Key Technologies and Open Problems.
Distributed and Parallel Databases, 15(1):9–44, 2004.

[110] D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workflow Management:
From Process Modeling to Workflow Automation Infrastructure. Distributed and Parallel
Databases, 3:119–153, 1995.

[111] R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple On-The-Fly Automatic Verifica-
tion of Linear Temporal Logic. In Proceedings of the Fifteenth IFIP WG6.1 International
Symposium on Protocol Specification, Testing and Verification XV, pages 3–18, London,
UK, 1996. Chapman & Hall, Ltd.

268 Bibliography

[112] D. Giannakopoulou and K. Havelund. Automata-Based Verification of Temporal Prop-
erties on Running Programs. In ASE ’01: Proceedings of the 16th IEEE international
conference on Automated software engineering, page 412, Washington, DC, USA, 2001.
IEEE Computer Society.

[113] D. Giannakopoulou and F. Lerda. From States to Transitions: Improving Translation of
LTL Formulae to Büchi Automata. In Proceedings of the 22nd IFIP WG 6.1 Interna-
tional Conference Houston on Formal Techniques for Networked and Distributed Systems
(FORTE ’02), volume 2529 of Lecture Notes in Computer Science, pages 308–326, Lon-
don, UK, 2002. Springer-Verlag.

[114] F. Gilbreth. Primer of Scientific Management. D. Van Nostrand Co., New York, NY,
USA, 1914.

[115] N. Glance, D. Pagani, and R. Pareschi. Generalised Process Structure Grammars (GPSG)
for Flexible Representations of Work. In Proceedings of the Conference on Computer-
Supported Cooperative Work (CSCW96), pages 190–198. ACM Press, New York, NY,
USA, 1996.

[116] M. Goergeff and J. Pyke. Staffware White Paper: Dynamic Process Orchestration. Prece-
dence research, Staffware Plc, March 2003. Version 1.

[117] D. Grigori, F. Charoy, and C. Godart. Anticipation to Enhance Flexibility of Workflow
Execution. In H.C. Mayr, J. Lazanskỳ, G. Quirchmayr, and P. Vogel, editors, Proceed-
ing of the 12th International Conference on Database and Expert Systems Applications
(DEXA 2001), volume 2113 of Lecture Notes in Computer Science, pages 264–273, Mu-
nich, Germany, 2001. Springer-Verlag.

[118] C.W. Günther, S. Rinderle, M. Reichert, and W.M.P. van der Aalst. Change Mining in
Adaptive Process Management Systems. In R. Meersman and Z. Tari, editors, Proceedings
of 14th International Conference on Cooperative Information Systems (CoopIS 2006),
Lecture Notes in Computer Science, pages 309–326. Springer-Verlag, 2006.

[119] C. Hagen and G. Alonso. Flexible Exception Handling in the OPERA Process Support
System. In International Conference on Distributed Computing Systems, pages 526–533,
1998.

[120] C. Hagen and G. Alonso. Exception Handling in Workflow Management Systems. IEEE
Transactions on Software Engineering, 26(10):943–958, 2000.

[121] J.J. Halliday, S.K. Shrivastava, and S.M. Wheater. Flexible Workflow Management in
the OPENflow System. In Proceedings of the 5th IEEE International Conference on
Enterprise Distributed Object Computing (EDOC 01), pages 82–98, Washington, DC,
USA, 2001. IEEE Computer Society.

[122] G. Hart. The Mythical, Magical Number 7. Intercom, April:38–39, 2006.

[123] K. van Hee, O. Oanea, A. Serebrenik, N. Sidorova, and M. Voorhoeve. LogLogics: A
Logic for History-Dependent Business Processes. Science of Computer Programming,
65(1):30–40, 2007.

[124] K. van Hee, N. Sidorova, and M. Voorhoeve. Soundness and Separability of Workflow
Nets in the Stepwise Refinement Approach. In W.M.P. van der Aalst and E. Best, editors,
Application and Theory of Petri Nets 2003, volume 2679 of Lecture Notes in Computer
Science, pages 335–354. Springer-Verlag, Berlin, 2003.

[125] P. Heinl, S. Horn, S. Jablonski, J. Neeb, K. Stein, and M. Teschke. A Comprehensive
Approach to Flexibility in Workflow Management Systems. In Proceedings of the Interna-
tional Joint Conference on Work Activities Coordination and Collaboration (WACC ’99),
pages 79–88. ACM Press, New York, NY, USA, 1999.

269

[126] C. Heinlein. Workflow and Process Synchronization with Interaction Expressions and
Graphs. In Proceedings of the 17th International Conference on Data Engineering, pages
243–252, Heidelberg, Germany, 2001. IEEE Computer Society.

[127] M. Hennessy. Algebraic Theory of Processes. MIT Press, Cambridge, MA, USA, 1988.

[128] P.G. Herbst. Socio-Technical Design: Strategies in Multi-Disciplinary Research. London
Tavistock Publications, London, UK, 1974.

[129] T. Herrmann, M. Hoffmann, G. Kunau, and K.-U. Loser. A Modeling Method for the
Development of Groupware Applications as Socio-Technical Systems. Behaviour and In-
formation Technology, 18(8):313–323, 1999.

[130] T. Herrmann and K.-U. Loser. Vagueness in Models of Socio-Technical Systems. Be-
haviour and Information Technology, 23(2):119–135, 2004.

[131] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs,
1985.

[132] G.J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley, Boston, Massachusetts, USA, 2003.

[133] InConcert. InConcert Process Designer’s Guide. InConcert Inc., Cambridge, Mas-
sachusetts, 1997.

[134] Institute of Transportation Engineers. Freeway Management and Operations Handbook.
ITE Journal, Washington, DC, USA, 2004.

[135] S. Jablonski. MOBILE: A Modular Workflow Model and Architecture. In Proceedings of
4th International Working Conference on Dynamic Modelling and Information Systems,
Nordwijkerhout, The Netherlands, 1994.

[136] S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture,
and Implementation. International Thomson Computer Press, London, UK, 1996.

[137] M.H. Jansen-Vullers, P.A.M. Kleingeld, M.W.N.C. Loosschilder, and H.A. Reijers. Per-
formance Measures to Evaluate the Impact of Best Practices. In B. Pernici and J.A.
Gulla, editors, Proceedings of Workshops and Doctoral Consortium of the 19th Interna-
tional Conference on Advanced Information Systems Engineering (BPMDS workshop),
volume 1, pages 359–368, Trondheim, 2007. Tapir Academic Press.

[138] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.
Volume 1. EATCS monographs on Theoretical Computer Science. Springer-Verlag, Berlin,
1997.

[139] K. Jensen, L.M. Kristensen, and L. Wells. Coloured Petri Nets and CPN Tools for
Modelling and Validation of Concurrent Systems. International Journal on Software
Tools for Technology Transfer (STTT), 9(3–4):209–414, 2007.

[140] G. Joeris. Defining Flexible Workflow Execution Behaviors. In P. Dadam and M. Reichert,
editors, Workshop Informatik 99: Enterprise-wide and Cross-enterprise Workflow Man-
agement: Concepts, Systems, Applications, volume 24 of CEUR Workshop Proceedings,
pages 49–55, Paderborn, Germany, 1999.

[141] G. Joeris. Decentralized and Flexible Workflow Enactment Based on Task Coordination
Agents. In B. Wangler and L. Bergman, editors, Proceedings of the 12th International
Conference on Advanced Information Systems Engineering (CAiSE00), volume 1789 of
Lecture Notes in Computer Science, pages 41–62, Stockholm, Sweden, September 2000.
Springer-Verlag.

[142] N. Jordan. Allocation of Functions Between Man and Machines in Automated Systems.
Journal of Applied Psychology, 47(3):161–165, June 1963.

270 Bibliography

[143] J.J. Kaasbøll and O. Smørdal. Human Work as Context for Development of Object
Oriented Modelling Techniques. In Proceedings of the Working Conference on Method
Construction and Tool Support (IFIP TC8, WG8.1/8.2), pages 111–125, London, UK,
1996. Chapman & Hall, Ltd.

[144] A.C. Kakas, R.A. Kowalski, and F. Toni. Abductive Logic Programming. Journal of
Logic and Computation, 2(6):719–770, 1993.

[145] P.J. Kammer, G.A. Bolcer, R.N. Taylor, A.S. Hitomi, and M. Bergman. Techniques for
Supporting Dynamic and Adaptive Workflow. Computer Supported Cooperative Work,
9(3-4):269–292, 2000.

[146] G. Keller, M. Nüttgens, and A.W. Scheer. Semantische Processmodellierung auf der
Grundlage Ereignisgesteuerter Processketten (EPK). Veröffentlichungen des Instituts für
Wirtschaftsinformatik, Heft 89 (in German), University of Saarland, Saarbrücken, 1992.

[147] G. Keller and T. Teufel. SAP R/3 Process Oriented Implementation. Addison-Wesley,
Reading MA, 1998.

[148] M. Klein, C. Dellarocas, and A. Bernstein, editors. Adaptive Workflow Systems, volume 9
of Special issue of the journal of Computer Supported Cooperative Work, 2000.

[149] J. Klingemann. Controlled Flexibility in Workflow Management. In B. Wangler and
L. Bergman, editors, Proceedings of the 12th International Conference on Advanced In-
formation Systems Engineering (CAiSE00), volume 1789 of Lecture Notes in Computer
Science, pages 126–141, Stockholm, Sweden, September 2000. Springer-Verlag.

[150] M. Kloppmann, D. Koenig, F. Leymann, G. Pfau, A. Rickayzen, C. von Riegen,
P. Schmidt, and I. Trickovic. WS-BPEL Extension for People BPEL4People. IBM Corpo-
ration, http://www-128.ibm.com/developerworks/webservices/library/specification/ws-
bpel4people/, 2005.

[151] M. Kradolfer and A. Geppert. Dynamic Workflow Schema Evolution Based on Workflow
Type Versioning and Workflow Migration. In Proceedings of 4th International Conference
on Cooperative Information Systems (CoopIS 1999, pages 104–114, Edinburgh, Scotland,
1999. IEEE Computer Society.

[152] L.M. Kristensen, S. Christensen, and K. Jensen. The Practitioner’s Guide to Coloured
Petri Nets. International Journal on Software Tools for Technology Transfer, 2(2):98–132,
1998.

[153] A. Kumar and J.L. Zhao. A Framework for Dynamic Routing and Operational Integrity
Controls in a Workflow Management System. In Proceedings of the 29th Annual Hawaii
International Conference on System Sciences (HICSS 1996), volume 3, pages 492–501.
IEEE Computer Society, 1996.

[154] E. Lamma, P. Mello, M. Montali, F. Riguzzi, and S. Storari. Inducing Declarative Logic-
Based Models from Labeled Traces. In Proceedings of the 5th International Conference
on Business Process Management, number 4714 in Lecture Notes in Computer Science,
pages 344–359. Springer, 2007.

[155] E. Lamma, P. Mello, F. Riguzzi, and S. Storari. A Methodology for Learning Social
Integrity Constraints from Labeled Service Interaction Logs. Technical Report DEIS-
LIA-07-001, DEIS, Bologna, Italy, 2007.

[156] E. Lamma, P. Mello, F. Riguzzi, and S. Storari. Applying Inductive Logic Programming
to Process Mining. In Proceedings of the 17th International Conference on Inductive Logic
Programming (ILP 2007), volume 4894 of Lecture Notes in Computer Science, pages 132–
146. Springer-Verlag, 2008.

[157] P. Langner, C. Schneider, and J. Wehler. Petri Net Based Certification of Event Driven
Process Chains. In J. Desel and M. Silva, editors, Application and Theory of Petri Nets

271

1998, volume 1420 of Lecture Notes in Computer Science, pages 286–305. Springer-Verlag,
Berlin, 1998.

[158] T. Latvala. Efficient Model Checking of Safety Properties. In Proceedings of the 10th SPIN
Workshop on Model Checking of Software, volume 2648 of Lecture Notes in Computer
Science, pages 74–88. Springer Verlag, Berlin, 2003.

[159] F. Leymann and D. Roller. Workflow-based applications. IBM Systems Journal, 36(1):102
– 123, 1997.

[160] F. Leymann and D. Roller. Production Workflow: Concepts and Techniques. Prentice-Hall
PTR, Upper Saddle River, New Jersey, USA, 1999.

[161] H. Lin, Z. Zhao, H. Li, and Z. Chen. A Novel Graph Reduction Algorithm to Identify
Structural Conflicts. In Proceedings of the Thirty-Fourth Annual Hawaii International
Conference on System Science (HICSS-35). IEEE Computer Society Press, 2002.

[162] R. Lu. Constraint-based Flexible Business Process Management. PhD thesis, University
of Queensland, Brisbane, Australia, May 2008.

[163] R. Lu, S. Sadiq, V. Padmanabhan, and G. Governatori. Using a temporal constraint net-
work for business process execution. In In proceedings of the 17th Australasian Database
Conference (ADC ’06), pages 157–166, Darlinghurst, Australia, 2006. Australian Com-
puter Society, Inc.

[164] L. Thao Ly, S. Rinderle, and P. Dadam. Semantic Correctness in Adaptive Process
Management Systems. In S. Dustdar, J.L. Fiadeiro, and A.P. Sheth, editors, Proceedings of
the 4th International Conference (BPM 2006), volume 4102 of Lecture Notes in Computer
Science, pages 193–208. Springer Verlag, Berlin, 2006.

[165] L. Thao Ly, S. Rinderle, and P. Dadam. Integration and Verification of Semantic Con-
straints in Adaptive Process Management Systems. Data & Knowledge Engineering,
64(1):3–23, 2008.

[166] T.W. Malone, K. Crowston, J. Lee, B. Pentland, C. Dellarocas, G. Wyner, J. Quimby,
C.S. Osborn, A. Bernstein, G. Herman, M. Klein, and E. O’Donnell. Tools for Inventing
Organizations: Toward a Handbook of Organizational Processes. Management Science,
45(3):425–443, 1999.

[167] P. Mangan and S. Sadiq. On Building Workflow Models for Flexible Processes. In Pro-
ceedings of the 13th Australasian Database Conference (ADC 02), pages 103–109, Dar-
linghurst, NSW, Australia, 2002. Australian Computer Society, Inc.

[168] E. Mayo. The Human Problems of an Industrialised Civilization. Macmillian, New York,
NY, USA, 1933.

[169] D. McGregor. The Human Side of Enterprise. McGraw-Hill, New York, NY, USA, 1960.

[170] J. Mendling. Detection and Prediction of Errors in EPC Business Process Models. PhD
thesis, Vienna University of Economics and Business Administration, Austria, 2007.

[171] Sun Microsystems. Java Programming Languge. http://java.sun.com.

[172] G.A. Miller. The Magical Number Seven, Plus or Minus Two: Some Limits on our
Capacity for Processing Information. Psychological Review, 63(2):81–97, 1956.

[173] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Com-
puter Science. Springer-Verlag, Berlin, 1980.

[174] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes. Information and
Computation, 100(1):1–40, 1992.

[175] M. zur Muehlen. Workflow-based Process Controlling: Foundation, Design and Applica-
tion of workflow-driven Process Information Systems. Logos, Berlin, 2004.

272 Bibliography

[176] N. Mulyar, M. Pesic, W.M.P. van der Aalst, and M. Peleg. Declarative and Procedural
Approaches for Modelling Clinical Guidelines: Addressing Flexibility Issues. In A. ter
Hofstede, B. Benatallah, and H.Y. Paik, editors, Business Process Management Work-
shops, BPM 2007 International ProHealth Workshop, volume 4928 of Lecture Notes in
Computer Science, pages 335–346, Brisbane, Australia, 2008. Springer-Verlag.

[177] T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE,
77(4):541–580, April 1989.

[178] OASIS. Web Services Business Process Execution Language for Web Services, version
2.0. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf, 2007.

[179] Object Management Group (OMG). Business Process Modeling Notation (BPML), Ver-
sion 1.1, 2008. OMG Avaiable Specification.

[180] Pallas Athena. Flower User Manual. Pallas Athena BV, Apeldoorn, The Netherlands,
2002.

[181] M. Pesic and W.M.P. van der Aalst. A Declarative Approach for Flexible Business Pro-
cesses. In J. Eder and S. Dustdar, editors, Business Process Management Workshops,
Workshop on Dynamic Process Management (DPM 2006), volume 4103 of Lecture Notes
in Computer Science, pages 169–180. Springer-Verlag, 2006.

[182] M. Pesic and W.M.P. van der Aalst. Modelling Work Distribution Mechanisms Using
Colored Petri Nets. International Journal on Software Tools for Technology Transfer
(STTT), 9(3–4):327–352, 2007.

[183] M. Pesic, M.H. Schonenberg, and W.M.P. van der Aalst. DECLARE: Full Support
for Loosely-Structured Processes. In Proceedings of the 11th IEEE International En-
terprise Distributed Object Computing Conference (EDOC), pages 287–298, Washington,
DC, USA, 2007. IEEE Computer Society.

[184] M. Pesic, M.H. Schonenberg, N. Sidorova, and W.M.P. van der Aalst. Constraint-Based
Workflow Models: Change Made Easy. In R. Meersman and Z. Tari, editors, Proceedings
of the 15th International Conference on Cooperative Information Systems (CoopIS 2007),
volume 4803 of Lecture Notes in Computer Science, pages 77–94. Springer-Verlag, 2007.

[185] R. Plasmeijer, P. Achten, and P. Koopman. iTasks: Executable Specifications of Interac-
tive Work Flow Systems for the Web. ACM SIGPLAN Notices, 42(9):141–152, 2007.

[186] A.B. Raposo and H. Fuks. Defining Task Interdependencies and Coordination Mecha-
nisms for Collaborative Systems. In M. Blay-Fornarino, A.M. Pinna-Dery, K. Schmidt,
and P. Zaratè, editors, Cooperative Systems Design, volume 74 of Frontiers in Artificial
Intelligence and Applications, pages 88–103, Amsterdam, The Netherlands, 2002. IOS
Press.

[187] A.B. Raposo, L.P. Magalhaes, I.L.M. Ricarte, and H. Fuks. Coordination of Collaborative
Activities: A Framework for the Definition of Tasks Interdependencies. In Proceedings of
the 7th International Workshop on Groupware (CRIWG), pages 170–179. IEEE Computer
Society, 2001.

[188] G. Regev and A. Wegmann. A Regulation-Based View on Business Process and Support-
ing System Flexibility. In CAiSE05 Workshop on Business Process Modeling, Design and
Support (BPMDS05), pages 35–42, Porto, Portugal.

[189] M. Reichert and P. Dadam. ADEPTflex: Supporting Dynamic Changes of Workflow
without Loosing Control. Journal of Intelligent Information Systems, 10(2):93–129, 1998.

[190] M. Reichert, P. Dadam, and T. Bauer. Dealing with forward and backward jumps in
workflow management systems. Software and Systems Modeling, 2(1):37–58, March 2003.

273

[191] M. Reichert, S. Rinderle, and P. Dadam. ADEPT Workflow Management System: Flex-
ible Support for Enterprise-Wide Business Processes. In W.M.P. van der Aalst, A.H.M.
ter Hofstede, and M. Weske, editors, Business Process Management 2003, volume 2678
of Lecture Notes in Computer Science, pages 370–379. Springer-Verlag, 2003. Tool pre-
sentation.

[192] M. Reichert, S. Rinderle, U. Kreher, H. Acker, M. Lauer, and P. Dadam. ADEPT - Next
Generation Process Management Technology. In Proceedings of the 18th Conference on
Advanced Information Systems Engineering (CAiSE Forum ’06), volume 231 of CEUR
Workshop Proceedings. CEUR-WS.org, 2006. Tool Demonstration.

[193] M. Reichert, S. Rinderle, U. Kreher, and P. Dadam. Adaptive Process Management
with ADEPT2. In Proceedings of the 21st International Conference on Data Engineer-
ing (ICDE 2005), pages 1113–1114, Tokyo, Japan, 2005. IEEE Computer Society. Tool
Demonstration.

[194] H. Reijers. Design and Control of Workflow Processes: Business Process Management for
the Service Industry. PhD thesis, Eindhoven University of Technology, Eindhoven, The
Netherlands, 2002.

[195] H. Reijers, J. Rigter, and W.M.P. van der Aalst. The Case Handling Case. International
Journal of Cooperative Information Systems, 12(3):365–391, 2003.

[196] H.A. Reijers. Workflow Flexibility: The Forlorn Promise. In 15th IEEE Interna-
tional Workshops on Enabling Technologies: Infrastructures for Collaborative Enterprises
(WETICE 2006), pages 271–272, Manchester, United Kingdom. IEEE Computer Society.

[197] H.A. Reijers, S. Limam, and W.M.P. van der Aalst. Product-based Workflow Design.
Journal of Management Information Systems, 20(1):229–262, 2003.

[198] H.A. Reijers and S. Limam Mansar. Best Practices in Business Process Redesign: An
Overview and Qualitative Evaluation of Successful Redesign Heuristics. Omega: The
International Journal of Management Science, 33(4):283–306, 2005.

[199] W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models, volume
1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

[200] A. Reuter and F. Schwenkreis. ConTracts A Low-Level Mechanism for Building General-
Purpose Workflow Management Systems. Data Engineering Bulletin, 18(1):4–10, 19995.

[201] S. Rinderle, M. Reichert, and P. Dadam. Correctness Criteria For Dynamic Changes in
Workflow Systems: A Survey. Data and Knowledge Engineering, 50(1):9–34, 2004.

[202] S. Rinderle, M. Reichert, and P. Dadam. Flexible Support of Team Processes by Adaptive
Workflow Systems. Distributed and Parallel Databases, 16(1):91–116, 2004.

[203] S. Rinderle, M. Reichert, and P. Dadam. On Dealing with Structural Conflicts between
Process Type and Instance Changes. In Proceedings of the 2nd International Conference
on Business Process Management (BPM 2004), volume 3080 of Lecture Notes in Computer
Science, pages 274–289. Springer-Verlag, 2004.

[204] F. Roethlisberger and W. Dickson. Management and the Worker: An Account of a
Research Program Conducted by the Western Electric Company, Chicago. Harvard Uni-
versity Press, Cambridge, 1939.

[205] W.P. de Roever. Concurrency Verification: Introduction to Compositional and Noncom-
positional Methods. Cambridge University Press, New York, NY, USA, 2001.

[206] A. Rozinat and W.M.P. van der Aalst. Conformance Testing: Measuring the Fit and
Appropriateness of Event Logs and Process Models. In C. Bussler et al., editor, BPM
2005 Workshops (Workshop on Business Process Intelligence), volume 3812 of Lecture
Notes in Computer Science, pages 163–176. Springer-Verlag, Berlin, 2006.

274 Bibliography

[207] A. Rozinat and W.M.P. van der Aalst. Decision Mining in ProM. In S. Dustdar, J.L.
Faideiro, and A. Sheth, editors, International Conference on Business Process Manage-
ment (BPM 2006), volume 4102 of Lecture Notes in Computer Science, pages 420–425.
Springer-Verlag, Berlin, 2006.

[208] N. Russell. Foundations of Process-Aware Information Systems. Phd thesis, Queensland
University of Technology, June 2007.

[209] N. Russell, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Workflow Exception Patterns.
In Proceedings of the 17th Conference on Advanced Information Systems Engineering
Forum (CAiSE05 Forum), volume 4001 of Lecture Notes in Computer Science, pages
288–302. Springer-Verlag, 2006.

[210] N. Russell, W.M.P. van der Aalst, and A.H.M. ter Hofstede. newYAWL: Specifying a
Workflow Reference Language using Coloured Petri Nets. In K. Jensen, editor, Eighth
Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools (CPN
2007), volume 584 of DAIMI, pages 107–127, Aarhus, Denmark, October 2007. University
of Aarhus.

[211] N. Russell, W.M.P.van der Aalst, A.H.M. ter Hofstede, and D. Edmond. Workflow Re-
source Patterns: Identification, Representation and Tool Support. In O. Pastor and
J. Falcao e Cunha, editors, Proceedings of the 17th Conference on Advanced Information
Systems Engineering (CAiSE’05), volume 3520 of Lecture Notes in Computer Science,
pages 216–232. Springer-Verlag, Berlin, 2005.

[212] N. Russell, A.H.M. ter Hofstede, W.M.P. van der Aalst, and D. Edmond. newYAWL:
Achieving Comprehensive Patterns Support in Workfow for the Control-Flow, Data and
Resource Perspectives. Technical Report BPM Center Report BPM-07-05, BPMcen-
ter.org, 2007.

[213] N. Russell, A.H.M. ter Hofstede, W.M.P. van der Aalst, and N. Mulyar. Workflow Control-
Flow Patterns: A Revised View. Technical Report BPM Center Report BPM-06-22,
BPMcenter.org, 2006.

[214] N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Workflow Data
Patterns. QUT Technical report, FIT-TR-2004-01, Queensland University of Technology,
Brisbane, 2004.

[215] N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Workflow Data
Patterns: Identification, Representation and Tool Support. In L. Delcambre, C. Kop,
H.C. Mayr, J. Mylopoulos, and O. Pastor, editors, 24nd International Conference on
Conceptual Modeling (ER 2005), volume 3716 of Lecture Notes in Computer Science,
pages 353–368. Springer-Verlag, Berlin, 2005.

[216] N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Workflow
Resource Patterns. BETA Working Paper Series, WP 127, Eindhoven University of Tech-
nology, Eindhoven, 2005.

[217] N.C. Russell and W.M.P. van der Aalst. Evaluation of the BPEL4People and WS-
HumanTask Extensions to WS-BPEL 2.0 using the Workfow Resource Patterns. Technical
Report BPM Center Report BPM-07-11, BPMcenter.org, 2007.

[218] H. Saastamoinen and G.M. White. On Handling Exceptions. In N. Comstock and C.
Ellis, editors, Proceedings of the ACM Conference on Organizational Computing Systems
(COCS95), pages 302–310, Milpitas, CA, USA, 1995. ACM Press, New York, NY, USA.

[219] S. Sadiq, O. Marjanovic, and M.E. Orlowska. Managing Change and Time in Dynamic
Workflow Processes. International Journal of Cooperative Information Systems, 9(1-
2):93–116, 2000.

[220] S. Sadiq, W. Sadiq, and M.E. Orlowska. Pockets of Flexibility in Workflow Specification.
In Proceedings of the 20th International Conference on Conceptual Modeling (ER 01),
pages 513–526, London, UK, 2001. Springer-Verlag.

275

[221] W. Sadiq and M.E. Orlowska. Modeling and Verification of Workflow Graphs”, address
=.

[222] W. Sadiq and M.E. Orlowska. Applying Graph Reduction Techniques for Identifying
Structural Conflicts in Process Models. In M. Jarke and A. Oberweis, editors, Proceed-
ings of the 11th International Conference on Advanced Information Systems Engineering
(CAiSE ’99), volume 1626 of Lecture Notes in Computer Science, pages 195–209. Springer-
Verlag, Berlin, 1999.

[223] W. Sadiq and M.E. Orlowska. Analyzing Process Models using Graph Reduction Tech-
niques. Information Systems, 25(2):117–134, 2000.

[224] M.W. Scerbo. Adaptive Automation. In W. Karwowski, editor, International Encyclope-
dia of Ergonomics and Human Factors, pages 1077–1079, London, UK, 2001. Taylor and
Francis, Inc.

[225] A.W. Scheer. Business Process Engineering, Reference Models for Industrial Enterprises.
Springer-Verlag, Berlin, 1994.

[226] M.H. Schonenberg, R.S. Mans, N.C. Russell, N. Mulyar, and W.M.P. van der Aalst. Tax-
onomy of process flexibility. Technical Report BPM Center Report BPM-06-22, BPM-
center.org, 2007.

[227] M.H. Schonenberg, R.S. Mans, N.C. Russell, N. Mulyar, and W.M.P. van der Aalst.
Process Flexibility: a Survey of Contemporary Approaches. In To appear in CIAO!
workshop proceedings, Lecture Notes in Business Information Processing. Springer-Verlag,
2008.

[228] M.H. Schonenberg, R.S. Mans, N.C. Russell, N. Mulyar, and W.M.P. van der Aalst.
Towards a Taxonomy of Process Flexibility. In To appear in Proceedings of CAiSE08
Forum, 2008.

[229] P. Schutte. Complementation: An Alternative to Automation. Journal of Information
Technology Impact, 1(3):113–118, 1999.

[230] A. Sheth. From Contemporary Workflow Process Automation to Adaptive and Dynamic
Work Activity Coordination and Collaboration. In R. Wagner, editor, Database and
Expert Systems Applications, 8th. International Workshop, DEXA’97, Proceedings, pages
24–27, Toulouse, France, September 1997. IEEE Computer Society Press, Los Alamitos,
California, 1997.

[231] L.U. de Sitter, J.F. den Hertog, and B. Dankbaar. From Complex Organiations with
Simple Jobs to Simple Organizations wiht Complex Jobs. Human Relations, 510(5):497–
534, 1997.

[232] S. Carlsen J. Krogstie A. Slvberg and O.I. Lindland. Evaluating Flexible Workflow Sys-
tems. In Proceedings of the Thirtieth Hawaii International Conference on System Sciences
(HICSS-30), volume 2, pages 230–239, Wailea, HI, USA, 1997. ieeecs.

[233] R.A. Snowdon, B.C. Warboys, R.M. Greenwood, C.P. Holland, P.J. Kawalek, and D.R.
Shaw. On the Architecture and Form of Flexible Process Support. In Software Process
Improvement and Practice, volume 12, pages 21–34. Wiley & Sons, 2007.

[234] P. Soffer. On the Notion of Flexibility in Business Processes. In Workshop on Business
Process Modeling, Design and Support (BPMDS05), Proceedings of CAiSE05 Workshops,
pages 35–42, 2005.

[235] Software-Ley. COSA 3.0 User Manual. Software-Ley GmbH, Pullheim, Germany, 1999.

[236] Software-Ley. COSA Activity Manager. Software-Ley GmbH, Pullheim, Germany, 2002.

[237] Staffware. Staffware 2000 / GWD User Manual. Staffware plc, Berkshire, United King-
dom, 2000.

276 Bibliography

[238] Staffware. Using the Staffware Process Client. Staffware, plc, Berkshire, United Kingdom,
May 2002.

[239] L. Sterling and E. Shapiro. The Art of Prolog: Advanced Programming Techniques. The
MIT Press, second edition, 1994.

[240] R. van Stiphout, T.D. Meijler, A. Aerts, D. Hammer, and R. Le Comte. TREX: Work-
flow Transaction by Means of Exceptions. In H.J. Schek, F. Saltor, I. Ramos, and G.
Alonso, editors, Proceedings of the Sixth International Conference on Extending Database
Technology (EDBT98), pages 21–26, Valencia, Spain, 1998.

[241] D.M. Strong and S.M. Miller. Exceptions and exception handling in computerized in-
formation processes. ACM Transactions on Information Systems (TOIS), 13(2):206–233,
1995.

[242] F.W. Taylor. The Principles of Scientific Management. Harper Bros, New York, NY,
USA, 1911.

[243] G. Trajcevski, C. Baral, and J. Lobo. Formalizing (and Reasoning about) the Specifica-
tions of Workflows. In O. Etzion and P. Scheuermann, editors, Proceedings of the OTM
Conference on Cooperative information Systems (CoopIS 2000), volume 1901 of Lecture
Notes in Computer Science, pages 1–17. Springer-Verlag, 2000.

[244] E.L. Trist and K.W. Bamforth. Some Social and Psychological Consequences of the
Longwall Method of Coal-Getting. Human Relations, 1(4):3 – 38, 1951.

[245] E.L. Trist, G.W. Higgin, H. Murray, and A.B. Pollock. Organizational Choice: Capabilities
of Groups at the Coal Face Under Changing Technologies; The Loss, Re-Discovery and
Transformation of a Work Tradition. Travistock Publications, London, UK, 1963. reissued
Garland New York, NY, USA, 1987.

[246] F. M. van Eijnatten. The Paradigm that Changed the Work Place. Van Gorcum, Assen,
The Netherlands, 1993.

[247] I. Vanderfeesten. Designing Workflow Systems. An Algorithmic Approach to Process De-
sign and a Human Oriented Approach to Process Automation. Master’s thesis, Eindhoven
University of Technology, August 2004.

[248] I. Vanderfeesten and H.A. Reijers. A Human-Oriented Tuning of Workflow Management
Systems. In W.M.P. van der Aalst, B. Benatallah, F. Casati, and F. Curbera, editors,
Proceedings of the 3rd International Conference on Business Process Management (BPM
2005), volume 3649 of Lecture Notes in Computer Science, pages 80–95. Springer Verlag,
September 2005.

[249] I. Vanderfeesten, H.A. Reijers, and W.M.P. van der Aalst. Product Based Workflow
Design With Case Handling Systems. BETA Working Paper Series, WP 189, Eindhoven
University of Technology, Eindhoven, 2006.

[250] I. Vanderfeesten, H.A. Reijers, and W.M.P. van der Aalst. An Evaluation of Case Han-
dling Systems for Product Based Workflow Design. In J. Cardoso, J. Cordeiro, and J.
Filipe, editors, Proceedings of the 9th International Conference on Enterprise Informa-
tion Systems (ICEIS 2007), volume Information Systems Analysis and Specification of
Volume on, pages 39–46, Medeira, Portugal, 2007. Institute for Systems and Technologies
of Information, Control and Communication, INSTICC.

[251] I. Vanderfeesten, H.A. Reijers, and W.M.P. van der Aalst. Product Based Workflow
Support: A Recommendation Service for Dynamic Workflow Execution. BPM Center
Report BPM-08-03, BPM Center, 2008. http://www.BPMcenter.org.

[252] I. Vanderfeesten, H.A. Reijers, and W.M.P. van der Aalst. Product Based Workflow Sup-
port: Dynamic Workflow Execution. In Proceedings of the 20th International Conference
on Advanced Information Systems Engineering (CAiSE ’08), Montpellier, France, 2008.

277

[253] M.Y. Vardi. Branching vs. Linear Time: Final Showdown. In Proceedings of the 7th
International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2001), volume 2031 of Lecture Notes in Computer Science, pages 1–22,
London, UK, 2001.

[254] E. Verbeek. Verification of WF-nets. PhD Thesis, Eindhoven University of Technology,
Eindhoven, The Netherlands, June 2004.

[255] H.M.W. Verbeek and W.M.P. van der Aalst. Woflan 2.0: A Petri-net-based Workflow
Diagnosis Tool. In M. Nielsen and D. Simpson, editors, Application and Theory of Petri
Nets 2000, volume 1825 of Lecture Notes in Computer Science, pages 475–484. Springer-
Verlag, Berlin, 2000.

[256] J. Wainer and F. de Lima Bezerra. Constraint-based flexible workflows. In Proceed-
ings of the 9th International Workshop on Groupware: Design, Implementation, and Use
(CRIWG 2003), volume 2806, pages 151 – 158. Springer-Verlag, 2003.

[257] J. Wang and A. Kumar. A Framework for Document-Driven Workflow Systems. In
W.M.P. van der Aalst, B. Benatallah, F. Casati, and F. Curbera, editors, Proceedings of
the 3rd International Conference on Business Process Management (BPM 2005), volume
3649 of Lecture Notes in Computer Science, pages 285–301. Springer-Verlag, September
2005.

[258] B. Weber, B.F. van Dongen, M. Pesic, C.W. Günther, and W.M.P. van der Aalst. Sup-
porting Flexible Processes Through Recommendations Based on History. BETA Working
Paper Series, WP 212, Eindhoven University of Technology, Eindhoven, 2007.

[259] B. Weber, M. Reichert, S. Rinderle, and W. Wild. Towards a Framework for the Agile
Mining of Business Processes. In C. Bussler and A. Haller, editors, In proceedings of the
1st Workshop on Business Process Intelligence (BPI 2005), volume 3812 of Lecture Notes
in Computer Science, pages 191–202. Springer-Verlag, 2005.

[260] B. Weber, S. Rinderle, and M. Reichert. Change Patterns and Change Support Features
in Process-Aware Information Systems. In J. Krogstie, A.L. Opdahl, and G. Sindre,
editors, Proceedings of the 19th International Conference (CAiSE 2007), volume 4495 of
Lecture Notes in Computer Science, pages 574–588. Springer-Verlag, 2007.

[261] B. Weber, W. Wild, and R. Breu. CBRFlow: Enabling Adaptive Workflow Management
Through Conversational Case-based Reasoning. In Proceedings of European Conference
on Casebased Reasoning (ECCBR04), volume 3155 of Lecture Notes in Computer Science,
pages 434–448, Madrid, Spain, 2004. Springer-Verlag.

[262] M. Weber. The Theory of Social and Economic Organization. The Free Press, 1947.
Translated from the German edition by A.M.Henderson and Talcott Parsons.

[263] A.J.M.M. Weijters, W.M.P. van der Aalst, and A.K. Alves de Medeiros. Process Mining
with the Heuristics Miner-algorithm. BETA Working Paper Series, WP 166, Eindhoven
University of Technology, Eindhoven, 2006.

[264] M. Weske. Flexible Modeling and Execution of Workflow Activities. In Proceedings of the
31st Annual Hawaii International Conference on System Science (HICSS-314), volume 7,
pages 713–722. IEEE Computer Society, 1998.

[265] M. Weske. Formal Foundation and Conceptual Design of Dynamic Adaptations in a
Workflow Management System. In R. Sprague, editor, Proceedings of the Thirty-Fourth
Annual Hawaii International Conference on System Science (HICSS-34). IEEE Computer
Society Press, Los Alamitos, California, 2001.

[266] M. Weske. Business Process Management: Concepts, Languages, Architectures. Springer-
Verlag Berlin Heidelberg, 2007.

[267] D. Wodtke and G. Weikum. A Formal Foundation for Distributed Workflow Execution
Based on State Charts.

278 Bibliography

[268] M.T. Wynn, W.M.P. van der Aalst, and A.H.M. ter Hofstede D. Edmond. Verifying
Workflows with Cancellation Regions and OR-Joins: An Approach Based on Reset Nets
and Reachability Analysis. In S. Dustdar, J.L. Fiadeiro, and A.P. Sheth, editors, Pro-
ceedings of the 4th International Conference (BPM 2006), volume 4102 of Lecture Notes
in Computer Science, pages 389–394. Springer-Verlag, 2006.

[269] J.M. Zaha, A.P. Barros, M. Dumas, and A.H.M. ter Hofstede. Let’s Dance: A Language
for Service Behavior Modeling. In R. Meersman and Z. Tari, editors, Proceedings of
the 14th International Conference on Cooperative Information Systems (CoopIS 2006),
volume 4275 of Lecture Notes in Computer Science, pages 145–162. Springer-Verlag, 2006.

Constraint-Based Workflow

Management Systems:

Shifting Control to Users

Summary

Many organizations use information technology to support various aspects of
their business processes: the operational aspect, collaboration between employ-
ees, etc. Workflow management systems aim at supporting the operational aspect
of complex business processes by using process models to automate the ordering
of activities (i.e., flow of work). The term ‘support’ here relates to the ability of
workflow management systems to control the execution of business processes.

Contemporary workflow management systems lack flexibility, i.e., the system
controls in detail how employees should execute business processes. While work-
flow management systems deal well with predictable business processes, they are
not able to handle unforeseen situations, which occur often in real-life business
processes. Although employees mostly have the knowledge and experience that
enables them to deal with exceptional situations, they are not able to apply the
right action because the system enforces the standard procedure of work. This of-
ten has various undesired consequences: work is done ‘outside’ the system, work
cannot be done in the appropriate way, dissatisfaction of employees, resistance
towards the system, etc. As a result, workflow management systems cannot be
used properly if it is necessary that employees control the execution of business
processes.

This thesis proposes a new approach to workflow management systems that
can facilitate contemporary business processes in a better way by enabling a bet-
ter balance between flexibility and support. As opposed to traditional approaches
which use procedural process models to explicitly (i.e., step-by-step) specify the
execution procedure, the proposed approach aims at the specification of business
processes using constraints, i.e., processes are modeled by rules that should be

280 Summary

followed while executing business processes. Constraint-based models implicitly
specify the execution procedure by means of constraints: any execution that
does not violate constraints is possible. In addition to proposing a constrain-
based approach, a concrete language for specification of constraints is given and
the proof-of-concept prototype declare is described.

On the one hand, constraint-based management systems are flexible, which
allows employees to deal with specific (e.g., unpredicted) situations in the most
adequate way. On the other hand, constraint-based management systems can
support employees when it comes to aspects of business processes that are too
complex for humans to handle. There are several ways in which constraint-
based management systems can provide both flexibility and support. We classify
flexibility into flexibility by design, change, underspecification and deviation.

Design Constraint-based workflow management systems allow any execution of
business processes that does not violate specified constraints. In this way,
business processes do not have to be explicitly specified at the procedu-
ral level. Instead, it is enough to predefine a set of general rules (i.e.,
constraints). The execution procedure is implicitly derived from these con-
straints: employees can execute business processes in any way within the
boundaries set up by constraints.

Change By adding or removing constraints or activities at runtime, the ap-
proach proposed in this thesis provides a simple method for changing
constraint-based process models during execution and migrating instances
from an existing process to a new process.

Underspecification Underspecified process models contain unspecified parts
that can be seen as ‘black boxes’ that allow employees to decide during
execution what to do. This type of flexibility is often supported by work-
flow management systems and our declare prototype supports it as well
through a connection with the YAWL system.

Deviation The constraint-based process models we propose can contain both
mandatory constraints (i.e., constraints that must be fulfilled) and optional
constrains (i.e., constraints that can be violated). Optional constraints rep-
resent rules that are advised but not enforced during execution of business
processes. Therefore, our approach supports flexibility by deviation, as
long as no mandatory constraints are violated.

The flexibility provided by our constraint-based approach offers a wide range
of possibilities for execution of business processes. Therefore, constraint-based
workflow management systems should offer sufficient support when it comes to
issues that are too complex for humans to deal with. A workflow management
system, based on our constraint-based approach, offers support for the design,
execution and diagnosis of business processes.

Design Constraint-based models can contain an arbitrary number of constraints

281

that interfere in subtle ways, which can cause errors in models. For exam-
ple, it might be the case that some of the constraints are contradictory to
each other. The variety of constraints and their semantics makes it hard
for humans to detect possible errors by means of reasoning. Therefore, this
thesis presents a method for the automated verification of constraint-based
models at design time.

Execution During execution, support is provided by enforcing correct execu-
tion, constraint state monitoring and recommendations.

As stated before, the approach proposed in this thesis enables constraint-
based workflow management systems to enforce a correct execution of a
business process, i.e., an execution that satisfies all constraints from the
model.

Furthermore, in order to execute a business process in a correct way, users
must keep track of the states of all constraints during the execution. For
example, some constraints might already be satisfied, while others still need
to be satisfied in the future. The diversity and complexity of constraints
makes it difficult for humans to constantly keep track of all constraints
in all business processes that are being executed. Therefore, the approach
presented in this thesis enables constraint-based workflow management sys-
tems to constantly monitor states of constraints and present these states
to users in an intuitive manner.

Finally, since the flexibility of the constraint-based approach gives users
many possibilities when executing business processes, deciding on how ex-
actly to execute a business process can sometimes be too difficult. For
example, it might be the case that the user is inexperienced, it is not clear
what is the most appropriate execution for given situation, etc. Therefore,
users of constraint-based workflow management systems can make use of
run-time recommendations. These recommendations are generated based
on the experiences from past executions of business processes and can be
tuned towards achieving a certain goal (e.g., minimize through put times).
The declare prototype uses the recommendation service of the ProM
tool to provide run-time recommendations for the execution of constraint-
based models. These recommendations are intended to help declare users
when choosing how to execute processes, but users can as well choose to
act against the recommendations, i.e., the support is not enforced.

Diagnosis When it comes to workflow management systems, diagnosis of these
systems is performed after the execution of business processes. The inherent
flexibility of constraint-based workflow management systems may allow for
a wide variety of business process executions. Therefore, a-posteriori anal-
ysis of executed business processes is particularly interesting for these sys-
tems. The declare prototype creates logs containing information about
executed processes. These logs can be used for various types of analysis, all

282 Summary

supported by the process mining tool ProM. For example, analysis results
can show how the processes were actually executed and indicate how to
improve constraint-based process models.

The constraint-based approach and all principles related to it that are pre-
sented in this thesis are implemented in the declare prototype. This prototype
shows that the ideas presented can be turned into in a fully functional workflow
management system. In order to keep the prototype as flexible as possible, we
support several constraint languages, such as ConDec, DecSerFlow and CIGDec.

Constraint-Based Workflow

Management Systems:

Shifting Control to Users

Samenvatting

Organisaties gebruiken vaak informatietechnologie om verschillende aspecten van
hun bedrijfsvoering, zoals de operationele bedrijfsprocessen en de samenwerking
tussen medewerkers, te ondersteunen. Workflowmanagementsystemen proberen
met name het operationele aspect van de bedrijfsvoering te ondersteunen, door
gebruik te maken van procesmodellen. Met ondersteuning wordt hier dus het
afdwingen van de volgorde waarin taken uitgevoerd worden, bedoeld.

De workflowmanagementsystemen van tegenwoordig bieden weinig tot geen
flexibiliteit, want deze systemen bepalen tot in detail hoe medewerkers opera-
tionele processen uit moeten voeren. Hoewel dit goed werkt in situaties waar
deze processen voorspelbaar verlopen, presteert een dergelijke aanpak erg slecht
als onvoorziene situaties steeds meer voor blijken te komen. Dit komt, door-
dat medewerkers vaak wel de ervaring en kennis hebben om met dergelijke on-
voorziene situaties om te gaan, maar het systeem hun daartoe niet in staat stelt.
Dit leidt vaak tot vervelende consequenties: werk dat “buiten het systeem om”
gedaan wordt, werk dat niet op de juiste manier afgehandeld kan worden, on-
tevredenheid van medewerkers, verzet tegen het gebruik van computersystemen,
enzovoorts. Hieruit blijkt dat, als medewerkers controle moeten houden over de
uitvoering van bedrijfsprocessen, workflowmanagementsystemen niet op de juiste
manier gebruikt kunnen worden.

In dit proefschrift wordt een nieuwe aanpak voorgesteld om workflowman-
agementsystemen te ontwerpen die, door middel van een betere balans tussen
flexibiliteit en ondersteuning, medewerkers wel de mogelijkheid biedt om cont-
role te houden over de uitvoering van bedrijfsprocessen. Traditionele aanpakken
leggen door middel van procedurele procesmodellen expliciet (stap voor stap) vast

284 Samenvatting

hoe de operationele procedures eruitzien. Dit proefschrift stelt echter voor om
de operationele processen te specificeren aan de hand van regels. Deze regels
leggen de grenzen vast waarbinnen bedrijfsprocessen uitgeverd moeten worden;
alles mag, zolang de regels gevolgd worden. In die zin specificeren zij de te vol-
gen procedures impliciet. Naast een op regels gebaseerd systeem, presenteert dit
proefschrift een concrete taal om die regels in te specificeren en een prototype van
een, op die taal gebaseerde, implementatie van zo’n systeem, genaamd declare.

Aan de ene kant zijn op regels gebaseerde workflowmanagementsystemen flex-
ibel, zodat medewerkers zo adequaat mogelijk kunnen reageren op specifieke (on-
voorspelbare) situaties. Aan de andere kant moeten dergelijke systemen onderste-
uning bieden op die aspecten die te complex zijn om door gebruikers afgehandeld
te worden. Die flexibiliteit en ondersteuning worden, door de aanpak van dit
proefschrift, op verschillende manieren geboden. Flexibiliteit kan geclassificeerd
worden in vier categorieën: Ontwerp, Verandering, Onderspecificatie en Variatie.

Ontwerp Op regels gebaseerde workflow management systemen laten toe dat
processen uitgevoerd worden, zolang de regels gevolgd worden. Daardoor
hebben deze processen geen expliciete specificatie nodig. In plaats daarvan
is het genoeg om een verzameling van generieke regels te specificeren. De
operationele procedure van een process wordt dan impliciet afgeleid van de
regels: medewerkers kunnen hun taken in willekeurige volgorde uitvoeren,
binnen de grenzen van de gegeven regels.

Verandering Doordat tijdens de executie van processen regels en activiteiten
kunnen worden toegevoegd en verwijderd, biedt deze aanpak een simpele
methode om processen aan te passen. Eventuele lopende zaken kunnen
worden aangepast aan de nieuwe situatie terwijl er nog aan gewerkt wordt.

Onderspecificatie Ondergespecificeerde modellen bevatten ongespecificeerde
delen, die gezien kunnen worden als “black boxes”. Zulke “black boxes”
laten de medewerker op het laatste moment beslissen hoe een bepaalde
activiteit eruitziet. Een dergelijke mate van flexibiliteit wordt vaak on-
dersteund door workflowmanagementsystemen en het prototype declare

ondersteunt dit dan ook, door samen te werken met het YAWL systeem.

Variatie De modellen in de aanpak uit dit proefschrift bieden naast de bindende
regels (regels die per sé gevolgd moeten worden) ook de mogelijkheid tot het
specificeren van facultatieve regels. Facultatieve regels zijn regels waarvan
wel geadviseerd wordt om ze te volgen, maar waarvan het mogelijk is ze
tijdens de executie van de bedrijfsprocessen te overtreden. Op die manier
wordt variatie in het operationele process toegestaan, zolang bindende
regels niet overtreden worden.

De flexibiliteit van de in dit proefschrift voorgestelde aanpak biedt veel mo-
gelijkheden tijdens de executie van bedrijfsprocessen. Daarom is het van belang
dat aan medewerkers voldoende ondersteuning geboden wordt op die punten

285

waar het voor mensen te moeilijk wordt. Een workflowmanagementsysteem dat
gebaseerd is op deze aanpak biedt ondersteuning tijdens het ontwikkelen, uitvo-
eren en de diagnose van bedrijfsprocessen.

Ontwikkelen Modellen die op regels gebaseerd zijn, bevatten mogelijk vele
regels die elkaar op subtiele wijze bëınvloeden. Dit kan gemakkelijk tot
foute modellen leiden, bijvoorbeeld omdat sommige regels elkaar tegen-
spreken. De grote variëteit aan regels en hun betekenis zorgen ervoor dat
het voor mensen lastig is om dergelijke conflicten te ontdekken. Daarom
stelt dit proefschrift een methode voor om modellen automatisch te ver-
ifiëren tijdens het ontwikkelen ervan.

Uitvoeren Tijdens het uitvoeren van processen wordt ondersteuning aan
medewerkers geboden door middel van drie mechanismen: het opleggen
van de regels, het inzichtelijk maken van de regels, en aanbevelingen.

De aanpak uit dit proefschrift stelt de op regels gebaseerde systemen in
staat om de bindende regels op te leggen, zodat alle zaken correct afgehan-
deld worden.

Daarnaast moet, omdat de gebruiker zelf de volgorde van zijn werk kan
bepalen, inzichtelijk gemaakt worden wat de toestand van alle regels is tij-
dens de executie van een proces. Zo kan aan sommige regels al voldaan zijn,
terwijl dat voor andere nog niet het geval is. De variëteit en complexiteit
van de regels zorgen ervoor dat het vrijwel onmogelijk is voor mensen om
dit handmatig te doen. Daarom kan de toestand van iedere regel continu
en intüıtief inzichtelijk gemaakt worden.

Een gevolg van de grote flexibiliteit van deze aanpak, is dat medewerkers
moeite kunnen hebben met het beslissen welke activiteiten in welke volgorde
uitgevoerd moeten worden. Dit kan bijvoorbeeld gebeuren bij medewerkers
zonder ervaring, of wanneer niet duidelijk is wat de beste actie is in een
bepaalde situatie. Daarom biedt deze aanpak de medewerkers de mogeli-
jkheid tot het vragen van aanbevelingen tijdens de behandeling van zaken.
Deze aanbevelingen worden gegenereerd op basis van ervaringen uit het
verleden en kunnen geoptimaliseerd zijn voor een bepaald doel (bijvoor-
beeld het minimaliseren van de doorlooptijd van zaken). Het declare

prototype gebruikt de “recommendation service” van het “process mining
tool” ProM om deze aanbevelingen te leveren. Dergelijke aanbevelingen
zijn bedoeld als hulpmiddel om zaken tot een goed einde te brengen, maar
worden nooit opgelegd door declare. De gebruiker heeft dus altijd de
mogelijkheid om de aanbevelingen naast zich neer te leggen.

Diagnose Nadat een workflowmanagementsysteem een tijd gebruikt is, ligt het
voor de hand om te zoeken naar mogelijke verbeteringen. De inherente flex-
ibiliteit van op regels gebaseerde systemen maakt dat er een grote variatie
bestaat in het aantal mogelijkheden om zaken af te handelen. Daarom is
het des te meer interessant om dergelijke systemen achteraf te analyseren.

286 Samenvatting

Om dit mogelijk te maken, kan het declare prototype logs produceren.
Deze logs bevatten informatie over de behandelde zaken en kunnen voor
verschillende typen analyse gebruikt worden in ProM. De resultaten van de
analyse kunnen gebruikt worden om inzicht te krijgen in het gebruik van
het systeem en in mogelijke verbeteringen.

De bovengenoemde, op regels gebaseerde, aanpak en alle principes uit dit
proefschrift die daarmee samenhangen zijn gëımplementeerd in het prototype
declare. Dit prototype laat zien dat de aanpak inderdaad geı̈mplementeerd
kan worden in een workflowmanagementsysteem. Om dit prototype zo flexibel
mogelijk te houden, ondersteunt het verschillende talen waarin regels opgesteld
kunnen worden, zoals ConDec, DecSerFlow en CIGDec.

Acknowledgements

First of all, I would like to thank my supervisors prof.dr.ir. Wil van der Aalst and
dr. Frans van Eijnatten for giving me the opportunity to work on this project.
I am very grateful to them for sharing their knowledge and experience with me
during the last four years. I also thank prof.dr. Christel Rutte for supervising
me in the first three years of this PhD and making me aware of the multidisci-
plinary aspects of consequences of my research, namely with respect to the field
of organizational psychology and the satisfaction of end-users.

Although only the names of my promotor prof.dr.ir. Wil van der Aalst and
copromotor dr. Frans van Eijnatten are mentioned in the first pages of this
thesis, more people were involved in the process of writing the manuscript. I
thank all members of my examination committee, i.e., prof.dr. Paola Mello,
prof.dr. Manfred Reichert, prof.dr. Paul de Bra, prof.dr. Stefan Jablonski, and
prof.dr.ing. Thomas Andreas Herrmann, for their comments/suggestions for im-
proving the thesis and the time they invested in the examination.

I would also like to thank all my colleagues from the Information Systems
group at the department of Technology Management. They all helped me count-
less times with solving daily work-related problems. Moreover, I have enjoyed
the pleasant social environment in our group. To be honest, I have never seen
such a pleasant work environment, and I hope that, in the future, I will have as
nice colleagues as they are! I would also like to thank colleagues at the depart-
ment of Mathematics and Computer Science: Helen Schonenberg for sharing her
experience in radiology to help me with the illustrative example and for reading
the thesis and giving me useful feedback; and dr.ir. Boudewijn van Dongen for
his help with the cover page, formalizations in Chapter 4, and translating the
summary to Dutch (i.e., the Samenvatting of this thesis).

In the year before starting my work on this PhD, I did internship in Tilburg,
the Netherlands. The internship was a part of an international exchange program,
so I met many nice people from all around the world who also came to Tilburg. In
particular, I would like to thank two of them: Moise Komlan Egoh for discussions
about our mutual dilemma about whether to work in industry or in academia
after our internships; and Amar Sahoo for informing me about the possibilities
to do a PhD as a foreigner in the Netherlands and many nice hours of tasting
special Belgium beers (Amar) and eating peanuts (I) at Kandinsky on Sunday

288 Acknowledgements

afternoons. I would also like to thank Milica Kovačević-Milivojević for supplying
me with an enormous amount of useful advices about how to search for a PhD
position in the Netherlands.

Last, but definitely the most, I thank my family. First, I thank Boris for
being a good ‘sport’ in my belly and not making it difficult for me while writing
this thesis; handling ‘occasional’ periods of my stress so well; and keeping me
company in, what would otherwise be, endless lonely hours of writing the thesis.
Second, I thank my mother Radosna for believing in me every single day since
28th of May 1977, no matter what; my father Zoran for calling me almost every
day during my first ‘homesick’ year in Tilburg; my brother Djordje for making me
laugh so often; and the lovely Boudewijn for showing me the right way whenever
I couldn’t see the way out.

Maja Pešić
Eindhoven, August 11, 2008

Curriculum Vitae

Maja Pešić was born on 28th of May 1977 in Belgrade, nowadays Serbia. From
1992 to 1996 she attended high school at the First Belgrade Gymnasium (Prva
Beogradska Gimnazija).

After finishing high school, she studied at the Department of Organizational
Sciences at the University of Belgrade, where she graduated in 2002 in the In-
formation Systems group with the thesis entitled “Software Development Using
Craig Larman’s Method in C++ Environment”.

After graduation, Maja did an internship until 2004 as a software engineer
in Smits Info Systems, a software company in Veldhoven, the Netherlands. Her
internship was part of the AIESEC1 international exchange program.

In June 2004 Maja started her doctoral studies in the area of user-centric
workflow management systems at the Technology Management department of
Eindhoven University of Technology, under the supervision of prof.dr.ir. Wil van
der Aalst, prof.dr. Christel Rutte and dr. Frans van Eijnatten. She completed
her doctoral studies in October 2008 with the thesis “Constraint-Based Workflow
Management Systems: Shifting Control to Users”.

At the moment, she is working as a Postdoc at the Mathematics and Com-
puter Science department of the Eindhoven University of Technology, within the
STW project “Controlling Dynamic Real Life Workflow Situations with Demand
Driven Workflow Systems”.

1http://www.aiesec.org

	Contents
	1. Introduction
	2. Related work
	3. Flexibility of workflow management systems
	4. Constraint-based approach
	5. Constraint specification with linear temporal logic
	6. DECLARE: prototype of a constraint-based system
	7. Using process mining for the constraint-based approach
	8. Conclusions
	Appendices
	Summary
	Samenvatiing

