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Similarities and Differences Between Warped Linear
Prediction and Laguerre Linear Prediction

Albertus C. den Brinker, Senior Member, IEEE, Harish Krishnamoorthi, Student Member, IEEE, and
Evgeny A. Verbitskiy

Abstract—Linear prediction has been successfully applied in
many speech and audio processing systems. This paper presents
the similarities and differences between two classes of linear pre-
diction schemes, namely, Warped Linear Prediction (WLP) and
Laguerre Linear Prediction (LLP). It is shown that both systems
are closely related. In particular, we show that the LLP is in fact
a WLP system where the optimization procedure is adapted such
that the whitening property is automatically incorporated. The
adaptation consists of a new linear constraint on the parameters.
Furthermore, we show that an optimized WLP scheme where
whitening is achieved by prefiltering before estimating the optimal
coefficients results in a filter having all except the last reflection
coefficient equal to those of the optimal LLP filter.

Index Terms—Audio coding, frequency warping, linear predic-
tion, speech coding.

I. INTRODUCTION

L INEAR prediction is a simple and popular technique used
in the coding of speech signals. Here, an input signal is

modeled such that the current sample is predicted from a linear
combination of past samples [1]. Usually, a mean-squared-error
optimization criterion is used to define the optimal predictor pa-
rameters, which results in the well-known Yule–Walker equa-
tions. Moreover, the technique of linear prediction is associ-
ated with a number of desirable properties that can be of benefit
in many applications. For example, the reflection coefficients
that are obtained as a by-product of solving the normal equa-
tions ensure simple control of the stability of the synthesis filter
when quantizing these parameters. Additionally, the whitening
property associated with the minimization process ensures a
spectrally flat error signal. This implies that the error signal is
restricted to a particular class of signals, and this knowledge
can be exploited in coding by constructing an appropriate code
book. A comprehensive overview of linear prediction can be
found in [2] and [3].

Manuscript received April 24, 2009; revised August 24, 2009; accepted Jan-
uary 13, 2010. Date of publication March 15, 2010; date of current version Oc-
tober 01, 2010. The associate editor coordinating the review of this manuscript
and approving it for publication was Dr. Patrick A. Naylor.

A. C. den Brinker is with Philips Research, NL-5656 AE Eindhoven, The
Netherlands (e-mail: bert.den.brinker@philips.com).

H. Krishnamoorthi was with the Signal Processing Group, Eindhoven
University of Technology, 5612 AZ Eindhoven, The Netherlands. He is now
with Arizona State University, Tempe, AZ 85287 USA (e-mail: harish.krish-
namoorthi@asu.edu).

E. A. Verbitskiy was with Philips Research, NL-5656 AE Eindhoven, The
Netherlands. He is currently with the Mathematical Institute, Leiden University,
2300 RA Leiden, The Netherlands (e-mail: evgeny@math.leidenuniv.nl).

Digital Object Identifier 10.1109/TASL.2010.2042130

Several variants of linear prediction based on warped signal
processing concepts [4], such as WLP [5]–[7] and LLP [8]–[11]
have been reported. The primary motivation behind employing
warped processing is its ability to process acoustic signals
according to the frequency resolution of the human auditory
system [12].

This paper aims at clarifying the relations between these dif-
ferent systems. Section II introduces warping, the two known
variants of WLP (WLP-A and WLP-B), and the Laguerre linear
prediction system (LLP). Section III gives some experimental
observations, leading to the conclusion that the WLP-A system
has to be very closely related to the LLP system. This is fur-
ther explored from a theoretical point of view. Section IV shows
that the LLP system is in fact a third variant of WLP where the
optimization corresponds to minimization of the output signal
energy of a warped predictor under a linear constraint on the
parameters that ensures whitening. Section V proofs that for
systems of order , the first reflection coefficients of the
WLP-A and LLP systems are identical. The last section contains
the conclusions.

As a vehicle to compare the two adaptive filter systems, we
use minimization of the output power as the optimization crite-
rion. There are many other ways of defining an optimal filter,
e.g., discrete all-pole modeling [13], minimum variance distor-
tionless response [14], or least absolute error. A comparison of
some of these criteria can be found in [15]. In this paper, we stick
to minimum output power since this is mathematically tractable
and we will argue that the conclusions that we draw from this
specific choice carry over to other optimization criteria.

II. LINEAR PREDICTION BASED ON WARPING

A. Frequency Warping

As a formal definition of a warping function which is broad
enough for the current purpose we will use the following.

Definition: A function is a warping function if it is a
continuous, monotonically increasing function mapping the in-
terval onto itself.

A very convenient warping function is given by

(1)

with and . The convenience stems from
the fact that it is related to a realizable filter: a first-order allpass
section. We denote this specific warping as .

A frequency-warped signal can now be defined as follows.

1558-7916/$26.00 © 2010 IEEE
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Fig. 1. Equivalence between frequency warping� , time-invariant linear pro-
cessing� , and de-warping� and warped time-invariant linear processing.

Definition: Suppose is a signal with -transform . The
signal with -transform is the frequency-warped signal
with warping function if .

Determining a warped signal from is not very practical: in
principle, one needs to know the entire signal from to .
However, one can make a warped signal from a causal signal as
described in [4]. There, the warped signal is obtained by propa-
gating an input signal through a chain of first-order allpass filters
preceded by certain prefilters. The pole-zero location associated
with the allpass filter can be set to obtain the desired frequency
mapping.

A much easier thing is to apply warping to processing.
Consider the following setup. First, we warp the signal: .
Next, we filter the warped signal by a linear time-invariant
system with transfer function which produces the output
signal . Lastly, we perform an inverse warping on to obtain

. We have

(2)
In particular, if we are warping according to the warping func-
tion (1), it means that we can directly absorb the warping and
de-warping into the filter operation by replacing in the filter

all delay operators by a first-order allpass section
with

(3)

This idea is also shown in Fig. 1.
The possibility of incorporating the warping and de-warping

into the processor block in the middle (as shown in Fig. 1)
holds for linear time-invariant systems. If, however, the middle
block is a nonlinear or time-variant system, this approach of re-
placing the delays from the middle block by allpasses
does not, in general, lead to identical behavior. This also holds
for adaptive filtering. In that case, we are working with sto-
chastic signals described by power spectral density functions.
The warping changes the frequency axis and therefore changes
the shape of the density function as well. We will see this effect
in warped linear prediction (next section) in the form that the
equivalence between error energy minimization and whitening
(as we know it from conventional linear prediction) no longer
holds.

B. Warped Linear Prediction

The idea of linear prediction on a warped frequency scale was
first introduced by Strube in [5]. Here, the unit-delay elements

in the conventional predictor structure are replaced with
allpass sections with

(4)

where the parameter can be chosen to obtain the
desired frequency warping. Hence, the warped linear prediction,

, of is given by

(5)

where , represents the inverse
-transform of , the ’s represent the filter coefficients,

and “ ” denotes the convolution operation. The error signal
is obtained as

(6)

The prediction error filtering can be expressed as

(7)

The optimal parameters for the predictor of (5) can be
found in a number of different ways. Typically, a mean-squared
error criterion is taken to determine the ’s. The mean-squared
error can be formally expressed as

(8)

where denotes the expectation operator and represents the
residual error energy. We assume a wide-sense stationary signal

in which case does not depend on time.
Minimization of (8) leads to the following set of equations:

for

(9)
Equation (9) is widely referred to as the normal or Yule–Walker
(YW) equations and represents a set of linear equations
in unknowns. It relates an autocorrelation sequence

, to a minimum-phase
filter defined by the coefficient sequence , (with

).
Eq. (9) can also be symbolically represented as

(10)

where is a autocorrelation matrix, ,
and are vectors. It can be easily verified that the matrix

is symmetric and Toeplitz (see the Appendix) and that the
right-hand side vector is structurally related to the matrix .
For solving this type of equation, efficient algorithms such as
the Levinson–Durbin algorithm [16] can be employed. In addi-
tion to the filter coefficients, reflection coefficients are obtained
during the recursive solution in the Levinson–Durbin algorithm.
The minimum-phase property of the filter restricts the reflection
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coefficients to have an absolute value less than 1. The reflection
coefficients can also be found from the polynomial coefficients

by the backward recursion algorithm [2]. We also note that
the th reflection coefficient is uniquely defined by with

.
Although the steps involved in warped linear prediction

scheme are similar to the conventional linear prediction
scheme, several differences exist between the two schemes.
In the next subsection, differences in terms of the spectral
characterization and synthesis filter realizations are presented.

1) Spectral Characterization: For the warped linear pre-
dictor, a mean-squared error minimization procedure results in
the set of normal equations as described in (9). Here, the auto-
correlation terms are obtained from .
The index in refers to the difference in number of allpass sec-
tions used between and and does not, as in conventional
linear prediction, refer to a time-lag. A consequence is that the
mean-squared error criterion (8) minimizes the error on the
warped frequency axis. Therefore, the resultant residual error
energy is also whitened on the warped frequency axis [5]. In
many cases, it is preferred to have all correlations removed in
the residual, i.e., to have a flat spectrum for the output signal.
Two techniques have been proposed in the literature to achieve
this.

WLP-A In [5], a prefilter, ,
is introduced during the minimization procedure. This re-
sults in a new set of normal equations that are now solved
to obtain the optimal coefficients. The optimal coefficients
defined in this way are denoted as , . The
predictor filter formed with these coefficients now attains
minimum error energy and spectral flatness. We stress that
the prefilter is only employed during the minimiza-
tion process and is not present in the actual predictor filter.
This means we have signals defined as
with the -transform of being

for (11)

being used in the optimization. The optimal coefficients are
defined according to (9) but with the replacement of signals

and by and , respectively. The WLP filter that
is actually used, however, still uses the signals and to
produce the output signal. We will call this output signal
the residual (i.e., not the error signal which is minimized)
and denote it as . This is depicted in Fig. 2.
WLP-B As an alternative to prefiltering, the input signal
before determining the optimal coefficients, it is also pos-
sible to apply a postfilter
on the error signal in order to obtain a spectrally flat signal
[5], [6]. Thus, we use the optimal coefficients as de-
fined by the YW equations (9) and add a postfilter; this is
depicted in Fig. 3.

We note that both systems do not directly minimize the output
error signal on the normal frequency scale. Instead, this is mim-
icked by the pre- or postfilter. In that sense they are presum-
ably suboptimal to a system which is inherently whitening and
has the output power as optimization target; this is shown in

Fig. 2. WLP-A scheme consisting of the prefilter� , two allpass lines (APL),
a coefficient determiner (CD), and a linear combiner (LC).

Fig. 3. WLP-B scheme consisting of two allpass lines (APL), a coefficient de-
terminer (CD), a linear combiner (LC), and the postfilter� .

Section III. We also note that both approaches do not yield ex-
actly the same filter. In the first case, the designed filter is of the
form

(12)

while in the second case we have

(13)

In general, given a set , there does not exist a set such
that and are equal.

Note also that in case that the input signal is a white signal, we
have (i.e., for WLP-A). This is obviously not the case
for the second procedure (WLP-B); there we have that the nor-
malized sequence equals and thus that the optimal
predictor coefficients are , for . In
fact, now the are actually used to compensate the postfilter.

2) Synthesis Filter Realizations: The behavior of the syn-
thesis filter represents another important difference between
the conventional linear prediction and warped linear prediction
schemes. The transfer function of the synthesis filter is obtained
by taking the reciprocal of the transfer function of the anal-
ysis filter. In the warped linear prediction scheme, the allpass
sections in the analysis filter introduce delay-free loops in the
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Fig. 4. Analysis and synthesis filter realization with the predictor � in a feed-
forward and feedback loop, respectively.

synthesis filter. Therefore, the synthesis filters are not directly
realizable. To overcome this limitation, Strube proposed an
alternate filter structure for the synthesis filter that avoids the
delay-free loops [5]. Furthermore, he developed a mapping
procedure to obtain the coefficients associated with the alternate
filter structure from that of the predictor filter. Although this
mapping procedure overcomes the issue of delay-free loops, it
demands additional computational complexity and is ill-con-
ditioned [8]. This issue was further addressed in [17] where
two techniques are considered. The first technique consists of
switching to a different filter structure such that the delay-free
loops are eliminated. The second technique concerns direct
implementation of the delay-free loops. Although in the latter
case, the predictor structure in encoder and decoder can be
identical, this is not true for the signals within the network.
In both cases, the straightforward predictor implementation

typically used in the analysis filter
and shown in Fig. 4 can not be maintained in the same form
in the synthesis filter. Only if the predictor is a cascade of
a delay and a causal second filter, then we can realize the
predictors in the encoder and decoder as shown in Fig. 4 while
guaranteeing exact equal behavior (i.e., including identical
states, identical signals at corresponding nodes and identical
multipliers in the analysis and synthesis predictor ). This is
important for perfect reconstruction (e.g., lossless coding) in
actual implementations where finite word-length arithmetic is
used.

C. Pure Linear Prediction

Pure linear prediction considers prediction of an input signal
from its infinite impulse response (IIR) filtered versions of one
sample delayed input signal [8]. This scheme is associated with
a number of desirable properties; it ensures 1) spectral flatness
of the residual signal, and 2) the prediction filter in the analysis
and synthesis filters can be taken identically. In [8], a class of
filter transfer functions for which stability of synthesis filters is
guaranteed is further highlighted. The set of discrete Laguerre
functions [18], [19] is one such example that belongs to this
class. The transfer function of the Laguerre-based prediction
(LLP) scheme can be expressed as

(14)

The Laguerre-based pure linear prediction scheme combines
the advantages associated with both warped and conventional
linear prediction schemes. The optimal coefficients for are
denoted as , and are defined by minimum mean-
squared error of the output signal. More details are provided
later on in this paper.

Fig. 5. Analysis filter in the LLP system.

Fig. 6. Example of the amplitude responses of the synthesis filters of a WLP-A
and an LLP system. The order was set to � � ��.

III. PROBLEM STATEMENT

In this section, several differences and similarities between
the WLP and the Laguerre Linear Prediction (LLP) scheme
are given. In particular, we compare the WLP-A with the LLP
system. The WLP-A and LLP schemes are illustrated in Figs. 2
and 5, respectively. The results of these comparisons is what ac-
tually motivated us to consider the systems more closely from a
mathematical point of view as is done in Sections IV and V.

A. Transfer Functions

To start with, the analysis filters are different. We have

(15)

and

(16)

Therefore, we expect that both systems have a different transfer
characteristic even though the optimization is defined in a sim-
ilar way, namely minimal energy and a spectrally flat output
signal of the filter. In practice however, the transfer functions
are nearly identical. This is shown in the following example.

In Fig. 6, we have plotted an example of the amplitude char-
acteristics of the transfer functions of the synthesis filters of the
WLP-A and LLP system. The order of both systems was set
to 20. The input was a signal sampled at 48 kHz. To calculate
the optimal parameters, we used a pole and segments
of 1024 samples ( 21 ms), which are windowed by a Hanning
window. We observe a close match between the two responses.
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In general, the WLP-A system delivers slightly smoother re-
sponses (slightly less pronounced peaks). The differences de-
crease with increasing order.

We note that, in order to facilitate the comparison, we recalcu-
lated the transfer function of the WLP-A system to that having a
mean 0-dB amplitude transfer. Later on it is shown that this can
be achieved by dividing the transfer function by with

(17)

with (see also [6]). Furthermore, we note that
which is close to the optimal warping factor for modeling the
frequency resolution of the human auditory system [12]. For
the purposes of revealing similarities and differences, the exact
value of is irrelevant as long as it is not 0 since then we re-
turn to conventional linear prediction case. Our results will carry
over to any other as will become clear from the theoretical
analysis.

B. Spectral Flatness

The question that the previous example may raise is how gen-
eral the conclusions drawn from a particular example are. In
order to get more grip on the issue of difference in spectral re-
sponse, we consider the spectral flatness measure of the error
signals. We take the definition of the spectral flatness measure

[3] as

(18)

where is the power spectral density function of the considered
signal and the integral is taken over the interval .

We consider the residual signals from the WLP-A system,
scaled WLP-A system and LLP system and denote these as ,

, and . The associated spectral flatness measures
are denoted as , , and . We note that the spectral flatness
is independent of amplitude scaling and thus . Further-
more, it is easy to show (see the Appendix) that

(19)

where and are the output signal powers of warped and La-
guerre system, respectively. Thus, the ratio of the output powers
immediately reflects the ratio of the residual spectral flatness
measures.

C. Output Power

Since warping has been proposed as a tool for full-band audio
coding, we took a collection of short excerpts containing music
and speech to measure the output powers of the WLP-A system
and the Laguerre system. In total, we used 43 excerpts sampled
at 48 kHz, each excerpt of about 10-s duration. We took seg-
ments of 1024 samples ( 21 ms) with an update of 512 samples.

In Fig. 7, we have plotted the power difference (in dB) of the
residuals in the form of a histogram for two different prediction
orders, i.e., we plotted the histogram of

(20)

Fig. 7. Estimated probability density function (pdf) of the residual energy dif-
ference � after optimization per frame for prediction orders 15 and 30.

We observe that the distribution is zero for negative values
meaning that the Laguerre system always yields a lower energy
of the signal after optimization. In principle, this means that
the Laguerre system is doing a better job but, to be fair, this
difference is rather small. We will explain the finding that the
Laguerre system always gives less energy later on. As expressed
in (19), the lower output power of the Laguerre system implies
a residual signal with a higher spectral flatness.

D. Spectral Differences

Additionally, we repeated the experiment shown in Fig. 6 for
each frame. The difference between the two amplitude re-
sponses (in dB) was calculated, i.e.,

(21)

and from this difference characteristic the standard deviation
and the largest difference over the frequency axis was deter-
mined. This leads to a standard deviation and a largest difference
per frame. In Fig. 8, we have plotted these data in the form of
a probability density function (pdf) derived from the histogram
for . From the pdf of the standard deviation, we see that
its mean is about 0.5 dB, which is somewhat larger than that
of the residual energy difference. It shows that in the amplitude
transfer the differences are somewhat larger than one might ex-
pect from the energy difference as measured from the residual
signal. Inspection of the results per frame indicate that the syn-
thesis filter of the Laguerre system gives slightly more resonant
peaks compared to the WLP-A case. This is also in line with
the results of the measurements of the largest difference (either
positive or negative) and its histogram as is also incorporated
in Fig. 8. A positive value on the horizontal axis indicates that
at the maximum difference, the synthesis filter of the Laguerre
system has a larger amplitude than that of the WLP-A system.
If, generally speaking, the Laguerre transfer functions are some-
what more peaky, one would indeed expect the mean of the esti-
mated probability density functions to be positive. Note however
that in practical settings where we would use spectral smoothing
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Fig. 8. Estimated pdf of largest difference and standard deviation of the spectral
curves per frame for prediction order 30.

Fig. 9. Reflection coefficients associated with the WLP-A and the LLP system.
The reflection coefficients of the WLP-A system are defined in the ordinary way;
here shown as a mapping (br; backward recursion) from the set of polynomial
coefficients � to the set � . For the LLP system, the reflection coefficients
� are derived via a two-stage mapping.

(bandwidth expansion) as postprocessing on the optimal coef-
ficients, the differences will presumably become considerably
less.

E. Reflection Coefficients

The fact that the spectral flatness of the Laguerre system is
always larger than that of the WLP-A system seems peculiar.
More surprising is the following. In [20], a mapping was pro-
posed of the optimal Laguerre filter to a warped filter. For this
mapped filter, it was experimentally found [21] that all the re-
flection coefficients except the last one are exactly equal to those
of the optimal WLP-A solution. Obviously, this immediately ex-
plains the earlier finding that the transfer functions of these sys-
tems are so remarkably similar (Fig. 6) and the small differences
as shown in Fig. 7.

The situation is depicted in Fig. 9. The reflection coeffi-
cients associated with the WLP-A scheme are called ,

and can be derived from the -coefficients using
the backward recursion (br) algorithm. The reflection coeffi-
cients associated with the LLP scheme are denoted as ,

and are derived from the -coefficients which
result from a mapping of the -coefficients. The experimental
finding can now be expressed as

for

We will prove the equivalence between the reflection coef-
ficients associated with the two schemes, but before doing so,
we will first take a closer and slightly more general look at the
warped and Laguerre filters. In this way, we can explain the
mapping shown in Fig. 9 and introduced in [20] for the purpose
of quantization of the Laguerre prediction parameters. Further-
more, this general look reveals that the LLP is actually a WLP
system with a very logical optimization criterion.

IV. WARPED AND LAGUERRE FILTERS

We will present some definitions which will serve us later.
Note that we return to the definition of warped and Laguerre
filters where the parameters of these filters are not necessarily
defined by some minimization criterion.

Definition: A th-order warped feed-forward filter is defined
as a filter with transfer function

(22)

with being a first-order allpass section as defined in (4) and
, denoting the filter coefficients.
Similarly, we define for our context the Laguerre filter as fol-

lows.
Definition: A th-order Laguerre filter is defined as a filter

with transfer function

(23)

with being a first-order allpass section as defined in (4) and
, denoting the filter coefficients.
The class of th-order warped feed-forward filters is equiv-

alent to that of the th-order Laguerre filters. This means that
given a set of coefficients , we can find a set of coefficients

such that . The relation between the ’s and ’s is
given by

for

(24)

where .
The proof is straightforward. We note that

Therefore, (23) becomes

From this, (24) is obvious.
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We note that the definition of these functions is slightly more
general than those used in the linear prediction schemes; there
we use and . We therefore introduce the following
terminology.

Definition: A normalized th-order warped feed-forward
filter is a th-order warped feed-forward filter with .

The set of parameters of this normalized warped filter is as-
sociated with a monic polynomial.

Definition: A normalized th-order Laguerre filter is a
th-order Laguerre filter with .
We note that these two classes of normalized filters are not

equivalent. When we map the normalized th-order Laguerre
filter to the th-order warped feed-forward filter we have a linear
constraint on the warped filter coefficients, namely

(25)

Conversely, when we map the normalized th-order warped
feed-forward filter to the th-order Laguerre filter we have a
linear constraint on its coefficients, namely

(26)

From the foregoing, we infer the following. The design of a
normalized th-order Laguerre by minimization of the output
error energy is equivalent to the design of a th-order warped
feed-forward filter using minimization of the output signal en-
ergy where the coefficients of the warped filter adhere to the
constraint (25) instead of .

We call this scheme WLP-C since it is clearly an alternative
to the schemes WLP-A and WLP-B. The WLP-C scheme is thus
defined as follows.

WLP-C An optimal warped linear predictor is defined as
a warped feed-forward filter where the coefficients are op-
timized according to minimization of the criterion

under the linear constraint

The optimal coefficients of the filter are called ,
.

The filter resulting from the optimization defined by WLP-C
is identical to the optimal LLP; i.e., instead of solving the
WLP-C optimization, the ’s can be obtained by calculating
the ’s from the LLP system and substituting these in (24) for
the ’s.

Since the result of this optimization is identical to the LLP op-
timization in terms of the obtained filter, we conclude that the
WLP-C system has the whitening property [8], that an average
spectral amplitude transfer of 0 dB is inherently incorporated in
the optimization procedure and that it results in minimum-phase
filters (when using the autocorrelation method). This explains
why, in the experimental comparison discussed in Sections III-B

and III-C, it was found that the Laguerre system always yielded
a lower residual energy and a higher spectral flatness; WLP-C
attains by definition the minimum output signal power of any
warped feed-forward system restricted by an average 0-dB spec-
tral amplification. In fact, the WLP-A system with rescaling in
order to obtain the average spectral amplification of 0 dB is a
(in practice slightly) suboptimal way of doing the same.

Note that in the conventional linear prediction case we
have to ensure whitening; in WLP-C this constraint
is changed to incorporate the whitening as a feature of the
optimization. This is why we consider WLP-C/LLP as the
logical extension of the conventional LP definition. It can also
be observed that for the above constraint reduces to the
conventional linear prediction constraint.

We now consider the proposed mapping in [20]. We have
seen that we can map a normalized th-order Laguerre filter to
a th-order warped feed-forward filter constrained by (25). This
is a linear mapping of the coefficients. Next we can map the

th-order warped feed-forward filter with said constraint onto
the normalized th-order warped feed-forward filter by normal-
ization of the coefficients according to

for (27)

Obviously, when we would have a problem. However, in
the case that the normalized th-order Laguerre filter is a min-
imum-phase filter (which is the case if we design it as outlined
in Section V-B), the whole mapping
forms an invertible operation [20]. The explicit expression for
the -coefficients in terms of the ’s reads

for
for

for
(28)

V. EQUIVALENCE OF REFLECTION COEFFICIENTS

In this section, we will give the normal equations for the
WLP-A system (Section V-A), the LLP system (Section V-B)
and finally prove the equivalence of the reflection coefficients
(except the last one) of both systems (Section V-C).

A. Warped Linear Prediction (WLP-A)

As suggested by Strube in [5], the warped linear predictor
filter is supplemented with a prefilter to minimize the
error on the nonwarped frequency axis. The input, , is pre-
filtered by and the resulting signal is now denoted by

. Similarly, the observed signal at the output of the th
allpass section in the filter structure is denoted by . This is
illustrated in Fig. 2. The error signal, , can be written as

(29)

The optimal parameters for are denoted as and are ob-
tained by minimizing a mean squared-error criterion. The mean
squared-error criterion, , is defined as

(30)
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Minimization of (30) leads to the optimal parameters given
by

(31)

for . The only difference between (9) and (31) is
that the observed cross-powers in (9) are now derived from sig-
nals which have been subject to an additional prefiltering by

.
With the definition of according to

(32)

(33)

and due to the fact that

(34)

(assuming real-valued signals; see Appendix), we arrive at the
YW equations

(35)

Equation (35) can be expressed in shorthand notation as

(36)

where is the Gram matrix, and
are vectors.

Due to the symmetry and Toeplitz structure of , this
system of equations can be solved in a computationally effi-
cient manner using the Levinson–Durbin algorithm [16]. The
set of reflection coefficients is obtained as a by-product
during the Levinson–Durbin recursive procedure. These reflec-
tion coefficients represent the parameters associated with the
lattice filter realization of the above predictor.

B. Laguerre Linear Prediction (LLP, WLP-C)

The transfer function of the LLP scheme is expressed as

(37)

From Fig. 5, it can be seen that the LLP is made of the same
filter sections as those used in the definition of the optimal co-
efficients according to the WLP-A scheme (Fig. 2) except for
an additional delay element . For convenience, we there-
fore assume that if we have the sequence as input to the
WLP-A scheme, we have as input to the LLP scheme.
If is a stationary stochastic signal, then both signals have the

same stochastic properties. Using as input to the LLP
scheme, we have exactly the same signals at the output of the
allpass line in the LLP system as appeared in the top branch of
the WLP-A scheme.

The optimal filter coefficients are obtained by minimizing
the following mean-squared error with respect to the ’s

(38)

A set of normal equations similar to (31) can be obtained
by minimizing (38). The normal equations in this case are
expressed as

for . As a shorthand notation we use

(39)

where and . It can
be observed that is identical to , i.e., . However,
the elements of are different from those of since

. However, the elements in and are not
unrelated; in fact we have (see the Appendix)

(40)

In [20], it was proposed to map the set to a set as-
sociated with a normalized th order warped feed-forward filter.
We have discussed this mapping in (28)
in Section IV. A consequence of this mapping is that the param-
eters of an LLP can consequently be quantized similar to those
of an WLP which in turn can be quantized like those of a con-
ventional tapped-delay-line (e.g., log area ratios, line spectral
frequencies).

As mentioned in Section III-E, experimental observations in
[21] have shown that reflection coefficients associated with the
set from the LLP scheme are identical to those associated
with the set of the WLP-A scheme except for the last one.
We are now ready to prove this.

C. Proof of the Equivalence

In this section, we prove the equivalence of the first re-
flection coefficients associated with the optimal coefficients
and those associated with (and thus with the LLP/WLP-C
system). In view of the one-to-one relationship between reflec-
tion coefficients and the YW equations, we can translate the
experimental finding on the reflection coefficients directly into
YW equations to which the set has to adhere. This is stated
in the Lemma below.
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Lemma 1: The set of coefficients is the solution of

. . .
...

. . .
. . .

...
...

...

(41)
for some , i.e., they are the solution of YW
equations corresponding to the autocorrelation sequence

.
It is clear that if this Lemma holds, then the reflection co-

efficients and are equal for since
the th reflection coefficient depends only on the autocorrela-
tion sequence up to and including index . That is an auto-
correlation sequence stems from the fact that represents a
minimum-phase filter [20]. We will now prove the Lemma.

Proof of Lemma 1: We show (41) by a direct computation
using (28) and (40). Consider the th equation in (41), where

VI. CONCLUSION

We have analyzed the warped linear prediction (WLP) and
Laguerre linear prediction (LLP) schemes. In order to have
the whitening property in the WLP schemes, two alternatives
were known. The first one (WLP-A) prefilters the signal before
calculation of the optimal coefficients to achieve whitening.
The second one (WLP-B) resorts to postfiltering of the output
signal. We have shown that there is a third alternative to in-
corporate whitening (WLP-C), namely by invoking a different
linear constraint [(25)] on the parameters than the standard
one (i.e., ). Furthermore, we have shown that this latter
procedure (WLP-C) is identical to LLP. Finally, we have shown
that the optimal filter defined by the WLP-A scheme is almost
identical to that of the LLP scheme: all associated reflection
coefficients except the last one are identical.

Our theoretical analysis reveals that there are very tight links
between the WLP and LLP system. It explains and underpins

what was already known from practice: for a sufficiently high
order the WLP and LLP system produce almost identical results
when considering, e.g., their transfer characteristics. We now
can more firmly state that experimental results (e.g., the perfor-
mance in terms of flattening, quality in coding, parameter bit
rate) of one of the cases (i.e., WLP-A, WLP-B, WLP-C/LLP)
will carry over to the other cases. The difference between the
cases for prediction orders used in practice is more in the im-
plementation. The structure associated with LLP system lends
itself immediately for an identical implementation of the pre-
dictor in the analysis and synthesis filter. This guarantees per-
fect reconstruction even in case of finite word-length arithmetic.

All of the experimental and theoretical results were obtained
for output power minimization. As shown in Section IV, the sub-
spaces associated with a th order WLP-A and LLP systems are
nearly identical and thus the information contained in the re-
gressor signals is almost identical. Therefore, we argue that the
main conclusion will remain the same for other optimization cri-
teria, i.e., the WLP and LLP systems produce almost identical
results for sufficiently high order and in that case the actual dif-
ference is more of an implementation issue.

APPENDIX

Here, we give the straightforward proofs of symmetric and
Toeplitz character of the matrix in (10), of (40), and of (19).
The proof of (34) is completely analogous to that regarding the
properties of the entries of and is therefore omitted. We as-
sume real-valued, wide-sense stationary signals. All integrals
are taken over the interval , , and is the
power spectral density function of .

We start with the properties of . For the entries of we have

from which immediately follows the symmetric and Toeplitz
character of .

Next, we prove (40) as follows:
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The proof (19) follows from the following equalities. First,
we have the equivalence from the definition (18)

Thus, we have . Next, we have

since the averages of the logarithm of the amplitude transfers of
and are 0. Lastly,

and, similarly, .
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