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Abstract

We develop the Lyapunov exponent of (max,+)-linear systems into a Taylor series. To
this end, we extend the theory of weak differentiation of matrices in the (max,+) semiring
to higher-order weak differentiation. This leads to conditions for the analyticity of matrices
in the (max,+) semiring. Elaborating on the ergodic theory for (max,+)-linear stochastic
systems, we establish conditions for the analyticity of the Lyapunov exponent of (max,+)
linear systems. Moreover, we derive lower bounds for the radius of convergence of the Taylor
series. The two main ingredients are: (1) the radius of convergence of the Taylor series of
matrices in the (max,+)-semiring, and (2) the coupling time of the system, that is, the time
it takes an arbitrarily started trajectory of the system to couple with a stationary version.
We illustrate our results by applying it to a simple sample system and thereby improving the
results on the domain of convergence of the Taylor series of the Lyapunov exponent for this
particular system known in the literature so far.

1 Introduction

In this paper we study Taylor series expansions of the Lyapunov exponent of (max,+)-linear
stochastic systems, the class of systems which can be described by a certain class of Petri nets,
called stochastic event graphs. More specifically, we consider (max,+)-linear stochastic systems
depending on a parameter, say B. The Lyapunov exponent is then developed into a Taylor series
with respect to B. For example, B may be a parameter of one of the firing time distributions of the
event graph. In a queueing application, this refers to B being e.g. the mean service time at one of
the queues. However, more general dependencies of the system dynamic on B may be modelled as
well. For example, Baccelli and Hong give in [2] an example from computer science: they model a
window flow control mechanism and let B be the probability that the window flow operates with
nominal window size and 1 - B the probability that a reduced window size is used.

We apply the technique of weak differentiation, a technique first introduced by Pflug for gradi
ent estimation for Markov chains, see [11] and the references therein. In [6], weak differentiation of
random matrices in the (max,+)-semiring has been introduced, and analytic expansions of n-fold
products in the (max,+) semiring have been given in [7]. In our paper, we extend these results to
finite horizon products, that is, we consider the case when n is a stopping time. This extension
allows us to develop the Lyapunov exponent of (max,+)-linear systems into a Taylor series. This
approach has the following benefits:

• The Taylor series can be developed at any point of analyticity, which is in contrast to the
results known so far, where only Maclaurin series have been studied.

*This research is supported by Deutsche Forschungsgemeinschaft under grant He3139/1-1. Part of this work was
done while the author was with the Faculty of Information Technology and Systems, Delft University of Technology,
the Netherlands, where he was supported by the EC-TMR project ALAPEDES under grant ERBFMRXCT960074.
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• The radius of convergence of the Taylor series of the Lyapunov exponent is deduced from
more elementary properties of the system, which allows us to predict the radius of conver
gence in a very simple manner.

We illustrate our approach with a simple system following a Bernoulli scheme, like the window
flow example mentioned above. More specifically, we show that the Lyapunov exponent of the
Bernoulli scheme can to any point 8 E [0,1) be developed into a Taylor series that converges at
least on [8 - (2C)-1, 8 + (2c)-1] n [0,1), where c 2: 1 denotes the coupling times of one of the
matrices of the Bernoulli scheme (for a definition ofthe coupling time see Section 3.1 or [1]). This
implies that the Lyapunov exponent can be extended to a complex function that is analytical on
a strip around the real interval [0,1) with width (2c)-1, which extends the results in [2] and [3].

The paper is organised as follows. In the next section, we introduce the (max,+)-semiring.
In Section 3 we show that the Lyapunov exponent can be represented by the difference between
two finite horizon experiments. Section 4 establishes conditions that imply the analyticity of finite
products in the (max,+)-semiring. In Section 5, we extend the results of the previous section to
random horizon experiments. Then we combine these results with the finite horizon representation
of the Lyapunov exponent as est~blished in Section 3, which subsequently will provide the desired
Taylor series of the Lyapunov exponent. We conclude the section with an illustrating example.

2 (Max,+)-linear Stochastic Systems

In this section we introduce the (max,+)-semiring. This structure was first introduced in [5]. For
an extensive discussion of the (max,+)-algebra and similar structures we refer to [l].

2.1 The (Max,+ )-Semiring

Let f = -00 and denote by IRE the set IR U {f}. For elements a, b E lR: we define the operations
EB and Q9 by

a EB b=max(a, b) and a Q9 b= a + b,

where we adopt the convention that for all a E IR max(a,-oo) = max(-oo,a) = a and a +
(-00) =-00 + a = -00. The set lR: together with the operations EB and Q9 is called the (max, +)
semirinl and is denoted by IRmax • In particular, f is the neutral element for the operation EB and
absorbing for Q9, that is, for all a E IRE a Q9 f = L The neutral element for Q9 is e := O. Moreover,
lR: is idempotent, that is, for all a E IRE a EB a = a. Idempotent semirings are called dioids in [1].
The structure IRmax is richer than that of a semiring since Q9 is commutative and has an inverse.
However, in what follows we will work with matrices over IRE and thereby lose, like in conventional
algebra, commutativity and general invertability of the product.

We extend the (max,+)-semiring to matrices in the following way. For A, B E IR;XJ, we define
A EB B as follows

(A EB B)ij = Aij EB Bij , 1 ::; i, j ::; J .

For A E IR!XJ and BE IR;XK, we define A Q9 B by

J

(A Q9 B)ik = EBAij Q9 Bjk , 1::; i::; I, 1::; k::; J{ •

j=l

(1)

The matrix t: with all elements equal to f is the zero element of the EB matrix operation. On
IR;XJ, the matrix E with diagonal elements equal to e and f elsewhere is the neutral element
of the Q9 matrix operation. We de~ote the i x J-di~ensional matrices over lR: equipped with
the operations EB and Q9 defined as above by ~~; = (IR;xJ , EB, Q9,t:, E). Observe that ~~;

1 A semiring is a set R endowed with two binary operations, Ell and 129, so th'atEll is associative and commutative
with zero-element E, 129 is associative and has zero-element e, 129 distributes over Ell and E is absorbing for 129.
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is again a semiring. To simplify notation, we write IR; for IR;XI, that is, IR; denotes the set of
J -dimensional vectors over IRe.

Some of the statements to be presented below hold for general matrices in rn;,~;, whereas
others only hold for a restricted class of matrices. For example, there are statements that are only
true for matrices with at least one entry in each row different from f.. Furthermore, sometimes
we do assume that (initial) vectors are different from f.. However, these assumptions impose no
restriction on the class of systems that can be treated.

Let some probability space (0, F, P) be given on which all random variables introduced below
are defined. We say that a random matrix has fixed support if the probability that Aij = f is either
zero or one. We call A integrable if A has fixed support and if E[Aij] < 00 for all non-f entries of
A.

A (random) matrix A E IR;XJ is said to be irreducible if A has fixed support and iffor all i, j
a sequence i = io, ... ,im = j exists such that Ail i,+1 > f for 0 ::; l < m.

2.2 Examples of (Max,+)-linear Stochastic Networks

In the following we give examples of (max,+)-linear queueing networks. For a necessary and
sufficient condition for the (max,+)-linearity of a queueing network, we refer to [8].

Example 1 Consider a closed system of J single-server queues in tandem, with infinite buffers.
In the system, customers have to pass through the queues consecutively so as to receive service at
each server. After service completion at the Jth server, the customers return to the first queue for
a new cycle of service.

For the sake of simplicity we assume that there are J customers circulating through the network
and that initially there is one customer at each queue. Let (Jj (k) denote the k th service time at
queue j and let xj(k) be the time of the k th service completion at node j, so that the time evolution
of the system can be described by a J -dimensional vector x(k) = (Xl (k), ... ,xJ(k)) following

x(k + 1) = A(k) ® x(k) ,

where the matrix A(k) looks like

A(k - 1)

ITI(k) f

1T2(k) 1T2(k)
ITI (k)

ITJ-I(k) ITJ-I(k) f

f ITJ(k) ITJ(k)

(2)

for k 2: 1. For more examples of this kind we refer to [9].

Suppose that one of the service time distributions depends on a parameter, say, 8. For example,
8 may be the mean of one of the service times. In this case, the (max,+)-linear recursion describing
the system dynamics depends on () through these service times. The following example is of a
different kind: here the distribution of the transition matrix as a whole depends on 8.

Example 2 (BacceIIi & Hong, [2]) Consider a cyclic tandem queueing network consisting of a
single-server and a multi-server, each with deterministic service times. Service times of the single
server station equal IT, whereas service times at the multi-server station equal IT' . Two customers
circulate in the network. The time evolution of this network is described by a (max, +)-linear
sequence x(k) = (xt{k), ... ,x4(k)), where xI(k) is the eh begin of service at the single-server
station and x2(k) its k th departure epoch; x3(k) is the kth begin of service at the multi-server
station and x4(k) its kth departure epoch. The system then follows

x(k + 1) = D I ® x(k) ,

3



where

D
j ~ [~ ~ l~]

Consider the cyclic tandem network again, but with one of the servers of the multi-server broken
down. This system follows

x (k + 1) = D2 ® x (k) ,

where

[
afaff]

D- afff

2- fea'f
f f a f

f

Assume that such a breakdown occurs after service completion with probability 1 - e. Let Ae(k)
have distribution

P(Ae(k) = D 1 ) = e
and

then

xe(k + 1) = Ao(k) ® xo(k)

describes the time evolution of the system with random breakdowns.

2.3
A IxJ

The Space IRE
The aim of our analysis is to study (max, +)-linear stochastic systems. More specifically, we
are interested in (max, +)-linear models of stochastic networks such as queueing systems. These
models have in common that the entries of the corresponding transition matrices are either non
negative or equal to f. Therefore, it suffices for our purpose to restrict our analysis to the semiring

IRmax = (IRE = [0, (0) U {-oo}, EB = max, ® = +, f = -00, e = 0) .

Moreover, (IRE' EB, f) is a monoid and with quasi norm2

Ilxll := Ilxll~ = max (x: l'x+ 1) ,
that is, (a) Ilxll ~ 0 for all x, (b) Ilxll = 0 if and only if x = f, and (c) Ilx EB yll :s Ilxll + lIyll for

all x, y. The quasi norm II x II is extended to IR:x! by

" Jx!
for A E !R, . Observe that for every integrable A, E[IIAIIJ < 00.

On IR" we introduce a metric d{-,.) as follows. For x, y E IR, we set d(x, y) = Ix - yl, d(x, f) =
00 = d(f, x), and d(f, f) = O. This metric is extended to IR: X

! by

2It is possible to equip IRmax with the metric d(x, y) = emax(x,y) - emin(x,y). Hence, IIxll := d(x, f) would
be a natural choice for II· II. But later in the text we will study functions of the type 9 : Rmax -+ IR such that
Ig(x)1 =:; C1 + c211xllk for constants Cl,C2 and. k. A key condition for analysis will be that Elllxllk] < 00. Hence,
taking IIxll = eX imposes a severe restri~tion,which is the reason why we work with Ilxll =max(I/(x +1), x +1).
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, JxI
for A, B E IRE .

The space (IR~XI, d) is a separable metric space. In addition to that, each continuous mapping
J I ' JxI

g: [0, (0) x -+ IR can be extended to a continuous mapping 9 : IRE -+ IR through g(x) = g(x)
for all x E [0, oo)JXI and otherwise zero, see Lemma 2 in [7]-

One of the corner stones of our analysis is to establish a kind of generalised non-expansiveness
of the ®-product. More precisely, let the mapping D(., .) be such that

, J ' IxJ
Vx, Y E IRE VA, BE IRE : D(A ® x, B ® y) ~ D(A, B) + D(x, y) . (3)

Then we call a mappingg : IR~XJ -+ IR non-expansive with respect to D(.,.) iffor all A, B E IR~XJ

Ig(A) - g(B) I ~ D(A, B) .

Put another way, the non-expansiveness of a mapping 9 allows us to switch from distances between
performance measures of trajectories of (max,+)-linear systems to distances between matrices and
vectors, respectively, in IR~XJ, for which we can establish upper bounds by applying Inequality (3).
Of course, the above introduced metric d(.,.) is the first candidate for D(.,.) in (3). Unfortunately,
Inequality (3) does not hold for d(-,.), which will become clear in the proof of the following lemma.

In what follows we introduce a different way of measuring distances in IR~XI. To this end, we
define for x, Y E IRE

8(x, y) = Illxll - Ilylll
, JxI

and for A, B E IRE

8(A, B) := 8rn.;XI(A, B) = max (8(Aji ,Bkl) : V(i,j), (k,l) E J x I) .
We obtain 8(A, E) = IIIAII - 11 and 8(A, E) = IIAII if A -=F E and otherwise zero.

, IxJ
Lemma 1 Let A, B E IRE be such that each row of A and B contains at least one element
different from f, then it holds for x, y E IRJ that

8(A®x,B®y) ~ 8(A,B) + 8(x,y).

Proof: Let j A (i) be such that

J

AijA(i) ® XjA(i) = EBAij ® Xj E IR
j=l

and jB (i) such that
J

BijB(i)®YjB(i) = EBBij®Yj EIR.
j=l

Straightforward calculation yields

8(A®x, B ® y)

=~fx{ IIIAijA(i) ® XjA(i)11 - IIBljB(l) ® YjB(l) II I}
=~fx{ IAijA(i) ® XjA(i) - BljB(l) ® YjB(l) I}
~~fx{ IAijA(i) - BljB(l) I} + ~fx{ IXjA(i) - YjB(I) I}
~8(A, B) + 8(x, y) ,

which concludes the proof of the first part of the lemma. Note that the last inequality fails for
d(., ·).0
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A IxJ
In what follows we call 9 : IR, -+ IR non-expansive if 9 is non-expansive with respect to

8(., .), in formula:

VA, B E IR~XJ: Ig(A) - g(B) I :s 8(A, B) . (4)

Examples of non-expansive maps are the coordinate-wise projection onto IR, that is, for fixed
i, j we set g(A) = Ai j if Ai j E IR and otherwise zero, and the maximum operator, that is,
g(A) = max(A;j).

A IxJ
We conclude this section with the remark that 8(.,.) is a metric on IR, but that the topology

induced by 8(-, .) is too weak for any practical purpose, that is, if we extend a continuous mapping

9 : [0, 00 )1 x J -+ IR to a mapping 9 : IR~ x J -+ IR, usually 9 is not continuous with respect to 8(" .),
which is in contrast to the metric d(.,·) as mentioned earlier.

3 Ergodic Theory

Ergodic theory for (max,+)-linear studies the asymptotic behaviour of the sequence

x(k+l) = A(k)0x(k), k~O,

with x(O) = XQ. One distinguishes between two types of asymptotic results:
(i) first-order limits

r x(k)
k~~-k-'

(ii) second-order limits

lim (x;(k) - xj(k))
k-too

and lim (xj(k + 1) - xj(k))
k-too

Note that, in contrast to first-order limits, second-order limits are random variables and one has
to consider carefully in which sense these limits are justified.

In this paper, we study type second-order limits of the type limk-too(xj(k + 1) - xj(k)). As
we will explain below, many interesting performance characteristics can be described through this
type of difference.

A first-order limit is an inverse throughput. For example, the throughput of station j in
Example 1 can be obtained from

1
. k
1m -

k-too Xj(k) .

Second-order limits are related to waiting times and cycle times. Consider the closed tandem
network in Example 1. There are J customers circulating through the system. Thus, the kth and
the (k + J)th departure from queue j refer to the same (physical) customer and the cycle time of
this customer equals

Xj(k + J) - xj(k) .

Hence, the existence of the second-order limit x j (k + 1) - x j (k) implies limit results on cycle
times of customers. For more details on the modelling of performance characteristics of queueing
systems via first-order and second-order expressio~s we refer to [9] and [10].

3.1 First-Order Limits

We now state the celebrated cyclicity theorem for deterministic matrices, which is of key impor
tance for our analysis.
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Theorem 1 (Baccelli et al. [1]) For each irreducible matrix A E IR;XJ, uniquely defined inte
gers c(A), O"(A) and a uniquely defined real number'). = )'(A) exist such that for all n ~ c(A)

An+CT(A) = ).CT(A) 0 An ,

which implies that for all initial vectors the sequence x(k + 1) = A 0 x(k), k ~ 0, satisfies

lim x(k) = )..
k-+oo k

The number c(A) is called the coupling time of A, O"(A) is called the cyclicity of A and), is the
unique eigenvalue of A.

Let V(A) be the eigenspace of A, it holds for all n ~ c(A) and all x E IR;XJ

An 0 X E V(A).

A sufficient condition for A to be of cyclicity one is that the critical graph of A has a single
strongly connected subgraph with cyclicity one (see [1] for the definition of the critical graph and
for that of its cyclicity). This property will be referred to as scsl-cyc1 below.

Theorem 2 (Theorem 7.27 in [1.]) Assume that {A(k)} is a stationary and ergodic sequence
of random matrices in IR;xJ, and that A(O) is irreducible and integrable. Then for the sequence
x(k + 1) = A(k) 0 x(k), with x(O) = Xo, the following limits exist with probability one and are
independent of the initial vector Xo

The constant). is referred to as the (max, +)-Lyapunov exponent of the sequence of random
matrices {A(k)}. There is no ambiguity in denoting the Lyapunov exponent of {A(k)} and the
eigenvalue ofa matrix A by the same symbol, since for A(k) = A, for all k, the Lyapunov exponent
of {A(k)} is just the eigenvalue of A.

Consider for example the system in Example 1. If we assume that the service times O"j(k)
are i.i.d. with finite mean for each j and that the sequences {O"j(k)} (1 :::; j :::; J) are mutually
independent, then Theorem 2 applies. This is in contrast to the situation of Example 2. Here, A(k)
has no fixed support (and is therefore not integrable) and the theorem does not apply. In order to
obtain an ergodic theorem for sequences with no fixed support, we restrict ourselves to sequences
satisfying the following two conditions:

(C1) The sequence {A(k)} is i.i.d. with a countable state space A.

(C2) Each A E A has at least one entry different from (; on each line.

We have the following

Theorem 3 Under assumptions (C1) and (C2), if A contains at least one irreducible scsl-cyc1
matrix, then the following limit exists with probability one for all initial vectors Xo E IRJ and is
independent of Xo

1 k-l

lim -k@A(i)0xo=)..
k-+oo

;=0

Proof: We sketch the proof. Let c denote the coupling time of A, with A E A a scsI-eye!
matrix. With positive probability, we observe the event {A(i) = A: 0 :::; i :::; c - I}. On this event
x(c) E V(A), see Theorem 1. Since V(A) is a single point in the projective space and, therefore,
compact, Theorem 2.10 in [4] applies and we obtain that for all j with probability one
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which proves the theorem. 0

The above theorem applies to the system in Example 2, and it applies to the system in Exam
ple 1 if we assume that the service times tJ'j(k) are i.i.d. for each j and have discrete support.

3.2 Second-Order Limits

Mairesse introduced in [10] the concept of a "pattern" of a sequence of matrices in order to study
second-order limits. In the following we combine his results with results on first-order limits in
order to represent second-order limits by finite horizon experiments. We follow theline ofargument .
of Baccelli and Hong in [2].

Let A = {a (i)} be a finite or countable collection of J x J-dimensional irreducible matrices.
We think of A as the state space of the random sequence {A(k)} following a discrete law. We
say that {A(k)} admits a pattern if a matrix A and a finite number N exist such that (1) A =
aN ® aN-l ® ... ® al and ~(A(k+ n) = an : 1 ~ n ~ N) > 0 for all k, and (2) A is an irreducible
scsI-cyc1 matrix. We call A the matrix associated with the pattern of {A(k)}. For easy reference,
we introduce the following condition.

(C3) The sequence {A(k)} has a pattern with associated matrix A such that A is irreducible and
scsI-cyc!. An eigenvector of A will be denoted by X o.

The fact that {A(k)} admits a pattern resembles a sort of memoryless property of (max,+)-linear
systems. To see this, let x(k + 1) = A(k) ® x(k) be a stochastic sequence defined via {A(k)} and
assume that {A( k)} has a pattern with associated matrix A. For vectors x, Y E IR;, let x - Y
denote the component-wise difference, that is, (x - Y)j = Xj - Yj, where we adopt the convention
that f - x = f and x - f = 00 for x #. f, and f - f = O. In what follows we consider the limit
of x(k + 1) - x(k) for k towards 00, where the limit has to be understood component-wise. In
order to prove the existence of this limit we will work with a backward coupling argument. For
this reason it is more convenient to let the index k run backwards. More precisely, we set

o

A~m = Q9 A(k)
k=-m

and

o
x~m =A~m ® Xo = Q9 A(k) ® XO,

k=-m

with xg = xo, that is, x~m is the state of the sequence {x(k)}, started at time -m in Xo, at time
o. The sequence {x~m : m ~ O} evolves backwards in time according to

X~(m+l) = A~m ® A(-(m + 1» ® Xo .

Note that x(k) and X~k are equal in distribution. With this notation the second-order limit reads

o °
lim A(I) ® X~k - x~k=A(I) ® 101 A(k) ® Xo - Q9 A(k) ® Xo.k-,>oo 'C:J

k=-oo k=-oo

Suppose that, going backwards in time, after TJ steps we observe for the first time c(A) times the
pattern of {A(k)} in a row. More precisely, let a denote the c(A)-fold concatenation of the string
(aN, aN-l, ... ,ad, which implies that ahas M = c(A) . N components. Then TJ is defined by

. I, r' '

TJ = inf{k ~ 0 IA(-k) =al, A(-k + 1) =a2, ... ,A(-k + (M - 1» =aM} ,

and we obtain in accordance with Theorem 1 that, independent of the sequence {X~k : k > TJ},

the random variable x~1) is an eigenvector of A, in formula: x~1) E V(A).

8



For v E IR;, we define multiplication by a scalar I E IR.o by component-wise multiplication:
(; 0 u) j = I 0 U j' It can be easily checked that

(5)

A IxJ
for all B, C E IR, . We now use the fact that eigenvectors of a scsI-cyc1 matrix are equal up to
scalar multiplication: if u, v E V(A), then a'Y E IR, exists such that v = 'Y0 U (see Theorem 3.101
in [1]). Hence, (5) implies

'Vv, U E V(A) B0v-C0v=B0u-C0u, (6)

for matrices A, B, C E IR; xJ. Combining the above arguments, we obtain

Q Q

= A(I) 0 Q9 A(k) 0 XQ - Q9 A(k) 0 XQ

k=-oo k=-oo

Q -~-1

= A(I) 0 Q9 A(k) 0 Ac(A) 0 Q9 A(k) 0 XQ

k=-~+M-1 k=-oo

=:XoEV(A)

Q -~-1

Q9 A(k) 0 Ac(A) 0 Q9 A(k) 0 XQ

k=-~+M-1 k=-oo

=:XoEV(A)

Q Q

~ A(I) 0 Q9 A(k) 0 XQ - Q9 A(k) 0 XQ

k=-~ k=-~

= A(I) 0 A~~ 0 XQ - A~~ 0 XQ < 00,

Hence, the second-order limit can be represented by a (random) finite horizon experiment.
Next we will show that the above limit representation also holds if we consider expectations.

To this end, we assume that the entries of A(k) are either positive or f, that is, we assume
A JxJ

A(k) E IR, . Furthermore, we assume that

(C4) For all k, each row of A(k) has at least one element different from zero and XQ E [O,oo)J.

Condition (C4) implies that x(k) E IRJ for all k. Let (-)j denote the projection on the lh
component and recall that (')j is non-expansive. This makes it possible to apply Lemma 1 and
we obtain for all m E IN and all j

(A(1) 0k~m A(k) 0.0); - (E0 k~mA(k) 0.0);
(4) (Q Q)
::; 0 A(I) 0 k~m A(k) 0 XQ, E 0 k~m A(k) 0 XQ

L.1
::; o(A(I), E)

= IIA(I)II·

Integrability of A(I) implies E[IIA(I)IIJ < 00 and applying the dominated convergence theorem

9



to the above second-order limit, we obtain

lim E[x(k + 1) - x(k)]
k--+oo

= lim E [A(l) ® X~k - X~k]
k--+oo

= E [ lim A(l) ® X~k - X~k]
k--+oo

=E [k~' A(k) 0'0 - k~' A(k) 0 Xo] < co.

The main result of this section can now be stated as follows.

(7)

Theorem 4 Under assumptions (Cl) to (C4), an almost surely finite stopping time 'TJ E IN exists,
such that for all XQ E IRJ

A= lim E[x(k + 1) - x(k)]
k--+oo

=E [k~'A(k) 0 Xo k~' A(k) 0 '0] < co.

Proof: It remains to be shown that

A= lim E[x(k + 1) - x(k)] .
k--+oo

The limit on the right-hand side of the above formula exists, and, applying a Cesaro averaging
argument, we obtain

lim E[x(k + 1) - x(k)]= lim -k
1

E[x(k)] .
k--+oo k--+oo

In Lemma 1 in [2] Baccelli and Hong showed that under the conditions of the theorem it holds
that

lim -k
1

E[x(k)] = A,
k--+oo

which concludes the proof of the theorem. 0

Remark 1 If we apply a Cesaro averaging argument, the second-order limit in Theorem 4 yields
that, under the assumptions (Cl) to (C4), the limit in Theorem 3 also holds for the expected value
of xj(k)/k for all j.

3.3 Problem Statement

Let (J E e be a real-valued parameter, e being an interval. We shall take (J to be a variational
parameter of the sequence {Au(k)} of square matrices in IR;XJ and study sequences {xu(k)}
following

with xu(O) = XQ for all (J.

The aim of this paper is to develop the second-order limit

(8)

into a Taylor series. This will then.lead to Taylor series expansions of the Lyapunov exponent of
{Au (k)}. Moreover, we obtain Taylor series expansions of many performance measures of interest,
like waiting times or mean queue lengths.

To avoid an inflation of subscripts, we will in what follows suppress the subscript (J when this
causes no confusion.

10



4 Weak Derivatives of Random Matrices
A JxI A JxI A JxI

We denote by Cp(ffi€ ):= Cp(ffi€ ,dffiJxr(.,.)) the set of all functions g: ffi€ -t ffi such

that Ig(x)1 :s Cl + c211xW for all x E ffi~XI ~nd alll with 0 :s l :s p, for p ~ O. In addition to that
A JxI A JxI

we assume that the set of bounded continuous mappings from ffi€ to ffi is a subset of Cp(ffi€ )
for all p > O.

- A JxI A JxI
The set of all measures on (ffi€ , .1") is denoted by M = M (ffi€ ), where .1" denotes the Borel

field of ffi~XI. Moreover, the n-fold product field will be denoted by .1"n. The set of probability

measures on (ffi~XI,.1") is denoted by M 1 eM. For p"v E M, we say that p, is v-continuous, in
symbols v » p" if v(A) = 0 implies p,(A) = 0 for all A E .r. The v-continuity of p, implies that
the Radon-Nikodyn derivative of p, with respect to v exists. Put another way, if v » p" then the
v-density of p" denoted by f(p"v) exists. If p,» P,e for all 0 E 0, we write fe(x) = f(p,e,p,)(x).
In what follows we let dnfe/don denote the nth derivative of fe, provided that it exists, and set
fe = dO fe/dOD.

Definition 1 Let v, P,e E M 1 be such that v » P,e for all 0 E 0. We call P,e n times v-Lipschitz

differentiable at 0 with respect to Cp(ffi~X\ or n times Lipschitz differentiable for short, if

• fe(x) = f(p,e,p,)(x) is (n + l)times differentiable with respect to 0 on 0 for v almost all x;

• for all m :s n + 1 mappings Kj exist, such that

:~~ l:o:fe(x)1 :s Kj(x),

v almost surely, and

• for all m :s n + 1

/ Ilxllk Kj(x) v(dx) < 00.

Let P,e be n times Lipschitz differentiable, then probability measures p,~n,+), p,~n,-) E M 1 and
a constant c(n) > 0 exist such that

:;n / gdp,e = c(n) (/ gdp,~n,+) - / 9dP,~n,-») , (9)

for all 9 E Cp(ffi~XI). The triple (c(n), p,~n,+), p,~n,-») is called the nth order weak derivative of P,e,

the measure p,~n,+) is called the positive part and p,~n,-) is called the negative part of the weak
derivative, and the constant c(n) is called the normalisation constant. If the right-hand side in

(9) equals zero for all 9 E Cp(ffi~XI), we say that the nth weak derivative of P,e is not significant,
whereas we call it significant otherwise. If the nth weak derivative of P,e is not significant, we take
(0, P,e, p,e) as the nth order weak derivative. We denote by s(P,e) the supremum over the set of all
orders n such that the nth order weak derivative of P,e is significant. If s(p,e) = 00, we say that P,e
is 00 times weakly differentiable.

Weak differentiability of a random variable is defined by the same property of the induced
measure. Let (Xe : 0 E 0) be defined on the common probability space (n, F, P) such that
pXs = P,e. We call (c(n), X~n,+), X~n,-») an nth order weak derivative of Xe if the distribution of

Xe denoted by P,e has an nth order weak derivative, and X~n,+) is distributed according to p,~n,+),

and X~n,+) according to p,~n,+), respectively. Hence, the nth order weak derivative satisfies

(10)

A JxI
for all 9 E Cp(ffi€ ). If the nth order weak derivative of p,e is not significant, we take (0, Xe, Xe)
as the nth order weak derivative of Xe. We set s(Xe) = s(p,e).
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Example 3

1. Let X e be exponentially distributed with Lebesgue density f(x) = ()e-eX for x ~ 0 and
() E e = [()t, ()r] C (0,00). Then Xe is 00 times weakly differentiable with respect to Cp (rR€)
for all p. Moreover, the Lipschitz constants are

I<J(x) = e-e, x

and for n > 0
I<j(x) = (()r x + n) x n- l e-e, x .

for n ~ 1. For the normalisation constant of the nth derivative of Xe we obtain

c(n) = (()nef .
All higher-order weak derivatives are significant, that is, s(Xe) = 00.

, JxI
2. Let Xe be Bernoulli distributed on E= {D I , D 2 } C lR€ with P(Xe = Dd = () =

1 - P(Xe = D 2). Let v be the uniform distribution on E and denote the Radon-Nikodyn
derivative of pXe (-) with respect to v by

P(Xe = x)
fe(x) = f(p,e, v) = v({x}) = ID,(x)2() + ID 2 (x)2(1-()) ,

then Xe is 00 times Lipschitz differentiable on [0,1] with respect to Cp(S) for all p. Moreover,
the Lipschitz constants are

I<j(x) = 2

for n = 0,1 and the normalisation constant of the first-order weak derivative of Xe is 1.
Since the second-order and all higher-order weak derivatives of Xe are not significant, we
obtain c(n) = 0 for n > 1 and s(Xe) = 1. Moreover, we obtain X~l) = (1, D I , D 2 ).

In what follows w: }r1at random vectors and random matrices. The nth weak derivative of a
random matrix A E lR€ X is a triple (c(n), A (n,+), A (n,-)). Matrices as a whole can be viewed as
random variables, like in Example 2, or they can be viewed as constituted out of more elemen
tary random variables, like matrix A(k) in Example 1, which is determined through the (random)
.. II ' ,JxI 'f h . f AserVIce tImes. We ca Xl, ... , X m E lR€ the input of A E lR€ I t e entrIes 0 are mea-

surable mappings of (Xl,'" ,Xm ). For example, the input of the transition matrix A(k) of a
J-dimensional (max,+)-linear stochastic system, as described in Section 2, is the vector of service

times (lTj(k) : j ~ J). Let the matrix A E rR:
X1

depend on () only through an input variable

Xe E rR€ and let X e be stochastically independent of all other input variables of A, then the n

times weak differentiability of Xe with respect to Cp (rR:
X1

) implies that A is n times weakly

differentiable on e with respect to Cp(rR:
X1

).

5 The Extended State-Space M JxI

, JxJ
The basic property of weakly differentiable random variables is that if A, B E lR€ are stochas-
tically independent and n times weakly differentiable, then A 0 B and A EB Bare n times weakly
differentiable. Unfortunately, the state-space of the weak derivative of A EB B is different from the

A JxI J I .
state-space of A and B. Therefore, we extend the space lR€ to a space, called M x , III such a
way that higher-order weak derivatives of general (max, +) expressions are elements of M JxI .

, JxI
The set M Jx I is the set of all finite sequences of triples (c, A, B) with c E lR and A, B E lR€

A generic element 0: E M 1xJ is therefore given by

0: = ((el' AI, Bd, (C2' A 2 , B 2 ), •.. ,(cn"" An"" B n",)) ,
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where no: < 00 is called the length of a. If 0' is of length one, that is, no: = 1, 0' is called elementary.
Observe that the nth weak derivative (c(n), A(n,+), A(n,-)) of a matrix A is an elementary element

of M1xJ. We embed ffi: X1
via a monomorphism r into M JxI through r(A) = (1, A, A) for all

A E ffi: X1
. On M1xJ we introduce the binary operation "+" as the concatenation of strings: for

0',13 E MIx J, application of the "+" operator yields

0' + 13 = (0'1, ... ,an""f31,'" ,f3np).

For 0' = (cO:, A 0: ,BO:) and 13 = (cfJ , AfJ, BfJ) elementary we set

0' EB 13 = (cO: . cfJ , A0: EB AfJ , B a EB BfJ)

and
0' 0 13 = (ca . cf3 , Aa 0 AfJ, BO: 0 BfJ) ,

where x . y denotes the conventional multiplication in IR. These definitions are extended to general
0' = (0'1, ... an,,), 13 = (131, ... f3np), with aj,f3; elementary, as follows. The EB-sum is given by

nO' nfJ

0' EB 13 = L L 0'; EB f3j ,
;=1 j=l

for 0',13 E M 1XJ , that is, 0' EB 13 is the concatenation of all elementary EB-sums, which implies
na El7fJ = no: . nfJ. For the 0-product we set

nO' np

0' 0 13 = L L 0'; 0 f3j ,
;=1 j=l

for 0' E M1xJ and 13 E MJXK, that is, 0' 0 13 is the concatenation of all elementary 0-products,
which implies n0:0fJ = no:·nfJ. In particular, for 0' E M 1xJ and x E M J := M JXl the matrix-vector
product 0' ® x is defined.

,IxJ
The performance functions 9 : IR, --t IR are extended to M JxI as follows. For 0' =

((Cl' AI, Bd, ... ,(cn"" An"" Bn,,}) E M1xJ we set

n",

gT (0') = L c; (g(A;) - g(B;)) .
;=1

(11)

The mapping gT (-) is called the r-projection of 0' with respect to 9 onto IR U {-oo}, or the (r, g)
projection for short.

The definition of gT resembles the structure of the formula on the left-hand side of (9). More

precisely, let A(n) E M JxI be a nth derivative of A E ffi: X1
, then evaluating gT for A(n) yields

gT(A(n)) = c(n)(g (A(n,+)) _ 9 (A(n,-))) .

On the other hand, every triple (c, B, C) with dnE[g(A)]jdOn = c(E[g(B)] - E[g(C)]) for all
, JxI

9 E Cp(IR, ) is an nth order weak derivative of A. We now say that 0',13 E M JxI are weakly

equal (with respect to Cp (ffi: x I )) if

in symbols: 0' == 13. Hence, we obtain

For ease of notation, we suppress the superscript r where this causes no confusion and write, for
example, g(.) instead of gT(.).
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6 The "Halted" (max,+) System

The Lyapunov exponent can be represented by the difference between two products of matrices,
where the number of matrices for each product is given by the stopping time "7, see Section
3.2. Hence, the analyticity of the Lyapunov exponent can be deduced from the analyticity of the
product E[@2=-71 A(k)0xo]. In [7], sufficient conditions for the analyticity of E[@2=-m A(k)0xo]
were given, for m E IN. Unfortunately, the situation we are faced with here is more complicated,
since "7 is random and depends on O. To deal with the situation, we borrow an idea from the theory
of Markov chains. There, the expectation over a random number of transitions of a Markov chain
is analysed by introducing an absorbing state. More precisely, a new Markov kernel is defined, such
that, once the chain reaches a specified criterion, like entering a certain set, the chain is forced
to go to the absorbing state and remains there forever. Following a similar train of thoughts,
we introduce in this section a "halted" version of A(k), denoted by Aii(k), where Aii(k) will be
constructed in such a way that it equals A(k) as long as the pattern ii, defined in Section 3.2,
has not occurred in the sequence A(O),A(-l), ... ,A(-k). Once the pattern ii has occurred, the
operator Aii (k) is set to E, the identity matrix. In other words, Aii (k) "halts" the backward
evolution of the system dynamics as soon as the sequence ii occurs.

In what follows we describe the construction of Aii(k) in more detail. Let y( -k) = 0 if ii hasn't
occurred in A(O),A(-l), ... ,A(-k) and y(-k) = 1 otherwise.

For k < 0, we now set Aii(k) as follows

Aii(k) := {A(k) , y(k) = 0
E, y(k) = 1.

(12)

Analogously to x~m we now consider the backward evolution of a system driven by Aii(k) (instead
of A(k)). More precisely, we set

o
~~m := Q9 Aii(k) 0 Xo ,

k=-m

with e8 := Xo· The value of y(k) changes at -"7, because at this time we observe the pattern a
for the first time. Going backwards in time beyond -"7, the matrix Aii(k) equals E, that is, the
variable ~~m doesn't change its value after -"7, or, more formally

~o _{x~m,m~"7
'>-m - 0x- 71 ,m> "7,

and

o 0

lim 10\ Aii (k)0 xo = 10\ Aii(k)0 xo
m-+ 00 'C>' 'C>'

k=-m k=-oo
o

= Q9 A(k)0 xo.
k=-71

If A(k) has an nth order weak derivative, then we define for i E {+1, -I}

(A- )(n,i)(k) ._ {A(n,i)(k) ,y(k) = 0 (that is, k ~ "7)
a .- E,y(k)=l(thatis,k>"7),

with A(n,O)(k) := A(k), and

c(n) :~ {c~) ,y(k) = 0 (that is, k ~ "7)
Aa(k) 0, y(k) = 1 (that is, k > "7) .

14
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In what follows we establish a Leibniz rule for higher-order Lipschitz differentiation which resem
bles the classical Leibniz rule of higher-order differentiation of products of real-valued functions.
However, before we can state the Leibniz rule we have to introduce the following multi-indices.
In order to mimic the backward evolution in time we number the multi-indices by indices out of
{k ; k :::; O}. For n, mE IN and measures J-lk EM (02:: k 2:: -m), we set

£(m, n) = £(/lo, ... /lm)(m, n)

,= {(lo,l-" ... ,Lm ) E {O, ... ,n}m+' II, <; s(",) and ,tm I, = n} ,
and for I E £(m, n) we introduce the set

I(m,l) :=

{(io,L1, ... ,Lm) E {-1,0,+I}m+11 ik = °iff Ik = °and II ik = +1}.
i o,... ,i_ m

ik;CO

Moreover, we introduce for i E I(m, I), with m, n 2:: °and I E £(m, n), the multi-index i- as
follows. Let k* = k* (i) be the last position of a non-zero entry in i, that is, ik =°for all IkI< Ik* I,
and set

i-:= (iO,-l , ... ,i-k)- = (i0, ... i-k.+1,-Lk.,i_k.-1, ... ,i_m ),
~ --..........-

=0 =0

that is, the multi-index i- is generated out of i be changing the sign of the last non-zero entry of
1.

Theorem 5 Let A(k), for °2:: k 2:: -m, be mutually stochastically independent and n times
Lipschitz differentiable, then it holds that

with

(

0 ) (n)

k~mAii(k) (

0 ) (I,i)n!
L lo!L

1
! .. .L

m
! L ® Aii(k)

IEC(m,n) iEI(m,l) k=-m

A(m)

Proof: Let v be a probability measure on ffi: XJ
, such that the v-density Ie of A exist.

Furthermore, let f~m,i) denote the v-density of A(m,i) for all m:::; nand i E {-1,0,+1}. Recall
that M denotes the length of a. For M - 1 :::; -j < m, let A(j) be the set of all (m + 1) tuples of

matrices in ffi: XJ
, such that the entries -j + M - 1 to -j equal a, or, more formally

A(j) := {(ao, a-1, ... , a_ m ) E ffi: XJ
: j = min{k : a-k-i = aM -

i for 0:::; i :::; M - I}} ,
and set A(j) := 0 for -j > -M. The set A(m) is defined as follows

o

(IR
" :xJ)m+1 U

c \ A(j) .
j=-(m-1)

" JxJ
Then for all 9 E Cp(IR, )

(16)
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We prove the theorem in three steps: (a) we show that we may interchange the order of integration
and n-fold differentiation for (16), (b) we calculate the nth order derivative of the product of the
densities and split up the derivatives in their positive and negative parts, and (c) we show that
the resulting integral can be written as the expected value of the random variable given in the
statement of the theorem.

Step (a): Under the conditions of the theorem, it follows from Lemma 5 in [7] that we may

interchange n-fold differentiation and integration over the set (ffi:
XJ

)j+l. Since AU) is a measur
able subset of this set, we may interchange the order of integration over the set AU) and n-fold
differentiation, as well.

Step (b): In order to calculate the positive and negative part of the n-fold derivative of the
product density, we proceed as for the proof of Lemma 5 in [7]: (i) we calculate the derivative of
the product of the densities via the Leibniz rule of classical analysis, (ii) we split up the individual
derivatives into their positive and negative parts, and (iii) we regroup these terms. This procedure
is independent of the particular set AU) and we refer to the proof of Lemma 5 in [7] for details.

A J
Step (c): We have already shown that for all 9 E Cp(IR£)

o
IT fJlk,ik)(ak) lI(dao, ... ,da_j)

k=-j

Let aE (x) be equal to one if x = E and zero otherwise. The measure JE (.) is independent of ()

which implies a~,i)O = aE(') for alIi ~ °and i E {+I,O,-I}. We now "fill up" the missing

densities with aEO in order to obtain an (m + I)-fold product on the sets AU) x (ffi:XJ)m+j ,

for j < 0. More precisely, we write

dn 0 r (0 ) 0
d()n j~mJA(j/ k~j ak0 xo k!!jfe(ak)lI(dao, ... ,da_j)

= ~ '" n! '" ITO C(lk) r 9 (~ ak 0 Em+j 0 xo)
LJ LJ io!L1! ... L·! LJ JJ' . JXJ)m+ j \(Yj=-m IEt:(j,n) J iEI(j,l) k=-j A(J)x(IR, k=-j

(

0 -(j+l) 0 -(j+l))

k!!j fJlk,ik)(ak) kgm JE(ak) - k!!j f~lk,i;)(ak)kgm aE(ak)

lI(dao, ... , da_j)da_j_l" ·da_m .

Using our definition of Ark,ik)(k), see (14), we obtain

which concludes the proof of the theorem. 0
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A JxJ A J
Remark 2 If A E IRE is n times weakly differentiable and Xo E IRE is independent of (), then
(A Q9 xo)(n) =A(n) Q9 xo. Under the conditions of the above theorem this implies the following rule
of computation

(

0 ) (n)

k?!?m A a(k)Q9 xo = (

0 ) (n)

k?!?m Aa(k) Q9 Xo .

The intuitive explanation for the above formula is that, since Xo does not depend on (), all (higher
order) weak derivatives of Xo are "zero".

We now turn to the pathwise derivatives. From the above theorem it follows for the first-order
weak derivative that

o 0 j-l
2: 0 Aa(k) Q9 A~I)(j) Q9 0 Aa(k) Q9 Xo .

(

0 ) (1)

k?!?m Aa(k) Q9 Xo
j=-m k=j+l k=-m

o

=2:

In accordance with (15), the summands on the right-hand side of the above equation are equal to

zero for Ijl > ", (this follows from the fact that A~I) (k) = (0, E, E) for Ijl > ",). Hence, taking the
limit for m towards infinity yields

o 0 j-l
~ lim to\ Aa(k) Q9 A~I)(j) Q9 to\ Aa(k) Q9 XoL...J nl-+OO '0' VY

j=-TJ k=j+l k=-m
o 0 j-l

=2: 0 Aa(k) Q9 A~I)(j) Q9 0 Aa(k) Q9 Xo .
j=-TJ k=j+l k=-oo

The above formula actually describes the difference between two processes, where for one process
we replace A~I) by A~I,+) and for the other version by A~I,-). Following the same line of thought
as in Section 3.2, we see that the sequence {Aa(k) : k < -j - I} only contributes as long as
the pattern ahasn't been observed. Put another way, we can cut off the backward recursion after
having observed a. Let ",(1) be the number of transitions in {A(k) : k < -",} until we have observed
the pattern again, and to unify notation set ",(0) := ",. Then the expression on the right-hand side
of the above equivalence reads

o j-l -'1(0)-1o Aa(k) Q9 A~I)(j) Q9 0 Aa(k) Q9 0 Aa(k) Q9 Xo
j=-1/(O) k=j+l k=-1/(O) k=-1/(l)

The above formula illustrates an important phenomena: the range of the product changes with
the order of differentiation. More precisely, suppose we want to weakly differentiate the above
expression in order to calculate iteratively the second-order weak derivative of the ",(0) product
of A(k). This procedure has two steps. First, we take the first-order weak derivative of the ",(0)

products, which yields the above product of ",(1) matrices, with ",(1) > ",(0). Secondly, we weakly
differentiate this product again. However, by taking the first-order weak derivative, we increased
the product by the term

-1/(0)-1

o Aa(k).
k=_"1/(l)
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B(1],n) =

Using finite induction, we see that taking the sample limit of the nth order weak derivative yields

~i,"", C~mA, (k) 0 Xo) ('1

(

0 ) (I,i) _1/(n-l)_l
n!L lo!LI! ... 1 (n-')! L 0 Aa(k) ® 0 Aa(k) ® Xo

IE.c(1/(n-l) ,n) -1/ iEI(1/(n-l),I) k=_1/(n-l) k=-1/(n)

(

0 ) (n) _1/(n-l)_l

. == k=~-l) Aa(k) ® k=~n) Aa(k) ® Xo· (17)

The following lemma shows that the above expression is indeed an unbiased estimator for the nth

order derivative of E[®~=_1/A(k) ® xo]. To abbreviate the notation, we set

'TIo ( (Ik) 1)n. k=_1/(n-l) max c ,

lo! L I !·· ,C1/(n-l)!

o

L
_1/(n-l)_1

(1IA(lk,ik)(k)11 + IIA(lk,ik)(k)ll) + L IIA(k)ll·
k=_1/(n-l) k=-1/(n)

Lemma 2 Under assumption (C4), let A(k) (0 ~ k) be mutually stochastically independent and
A J A J

n times Lipschitz differentiable with respect to Cp (IR.{ ). Then it holds for all 9 E Cp (IR.{) such
that 9 is non-expansive and for all m with probability one that

9 ( C~/'(k)) (.10XO) <; B(.,n).

Moreover, if E[B(1], n)] < 00, then

:;.E Hk~/'(k10xo)]

= E [9 (C~L Ao(k1) ('1 0 k~~'» A,(kl 0xo) ]

Proof: We prove the first part of the lemma. For m ~ 1, let I E £(m, n) and i E I(m, I),
then

9 ( C~m A,(k1) (I,;) 0XO)

=kQm C(lk) 9 C~m Ark,ik)(k) ® xo) - 9 C~m A~k,i;;)(k) ® xo)

~ kQm c(lk)8 C~m A~k,ik)(k) ® XO, k~m A~k,i;;)(k)® xo) ,

where the inequality follows from the non-expansiveness of g. Applying Lemma 1 yields that the
last formula is smaller than or equal to

o 0II C(lk) L 8(A~k,ik)(k), A~k,i;;)(k)) .
k=-m k=-m

18



Using the fact that for matrices A, B of the same size it holds that

0::; 8(A, B) ::; IIAII + IIBII

we obtain

For the nth order weak derivative we have

A~k,ik)(k) = A~k,i;;)(k) = Aa(k) , for Ikl > 1](n-l) ,

where Aa(k) is either equal to A(k) or to E, that is, for Ikl > 1](n-l) it holds that

For Ikl > 1](n), we have Aa(k) = E with probability one. This yields

9 (C~rnA,tkl) (1,1) 0 XO)

a a
< II c(lk) E (1IA~k,ik)(k)11 + IIA~k,i;;)(k)ll)

k=- min(m,1)(n-l)) k=- min(m,1)(n-l))

- min(m,1)(n-'))-l

+ E IIA(k)11
k=- min(m,1)(n))

a a _1)(n-l)_l

< II max(c(lk), 1) E (1IA~k,ik)(k)11 + IIA~lk,i;;)(k)ll) + E IIA(k)ll·
k=_1)(n-l) k=_1)(n-l) k=-1)(n)

Taking the sum over alII E £(m, n) and i E I(l, n) and extending m to 1](n-l) concludes the proof
of the first part of the lemma.

We now turn to the proof of the second part of the lemma. Theorem 5 (the Leibniz rule for
the operator Aa) implies

In accordance with the first part of the lemma, B(1], n) is a dominating function for the sample
weak derivatives of the m-fold product. Furthermore, the sample limit of the weak derivative, see
(17), exists and is bounded by B(1], n) as well. Hence, the dominated convergence theorem applies,
which concludes the proof of the lemma. 0

Example 4 Let {A(k)} be a sequence of i.i.d. Bernoulli distributed matrices with state space
o JxI

{D1 , D2} C IR, with parameter 0, cf Example 2. We assume that assumptions (Cl) to (C4)
hold and that D2 is the matrix associated with the pattern of {A(k)} (indeed, D2 is a scsi-cyel
matrix); we denote the coupling time of D2 by c = c(D2). We split up the sequence {A(k)} into
blocks of length c. The probability that all elements of such a block equal D2 is 0= OC. We denote
the number of c blocks until we observe the first block that is completely constituted out of D2
matrices by 1]c, that is, P(1]c = m) = (0)m-l(1 - 0). Note that 1] ::; C1]c with probability one.
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Only the first-order weak derivative of A(k) is significant with A(1,+1)(k) = D1, A(1,-1)(k) =
D2 and c(1) = 1. Applying Lemma 2 yields for any non-expansive g and Xo E IRJ

B(TJ, n)::; L n! L TJ(n)(IID1 11 + IID2 11) .
IE'c(1/(n-l) ,n) iEI(1/(n-l),l)

The set .c(TJ(n-1), n) has
TJ(n-1)! (TJ(n-1»)n

----:-:---+----:~-:-:- < ..:....:....----,;--'--
n!(TJ(n-1) - n)! - n!

. elements. For I E .c (TJ( n-1) , n), the set I (TJ(n-1) ,I) has 2n-1 elements, which stems from the fact
that we place either a "+1" or a "-1" on one of the n places except for the last place, here we
have to chose a value such that the overall product is positive. This yields

E[B(TJ, n)]::; 2n- 1(IID1 11 + IID2 11)E [TJ(n) (TJ(n-1)t]

::; 2n- 1(IID1 11 + IID2 11)E [(TJ(n)t+1]

::;2n- 1(IID1 11 + IID2 11)E [(cTJ~n»)n+l]

(

, ) n+1
=c2 (2c)n-1 ~ (11Dlll + IID2 11),

1-0

which is finite for all (j = oe E [0, 1).

7 Weak Analyticity of Random Matrices

We now introduce the concept of weak analyticity.

fi . . ' Jx! ( 'JX!) fDe mtlOll 2 We call A E IR, weakly analytical on e with respect to Cp IR, Z

• all higher-order weak derivatives of A exist on e with respect to Cp(ffi:
X
!), and

• there exists a measure v E M 1(ffi:
X
!) such that the v-density of A, say fe, is analytical on

e ( that is, for all 00 E e there exists an interval Deo' with 00 E Deo' such that the Taylor
series of fe(x) developed at 00 converges v-almost-surely to fe(x)), and in addition to that

• for all 00 E e, there exists rfa (x) such that the v-density of A satisfies for all 0 E Deo

00 d
n I 1' Jx! '"""

Vx E IR, : ~ dOnfe(x) e=e
o

n!(O - oat ::; rfa(x)

with ! IlxWrfa(x) v(dx) < 00.

If A E ffi:
X
! is weakly analytical on e with respect to Cp (ffi:x! ), then E[g(A)] is analytical

on e for all Cp(ffi:
X
!). In particular, if, for 00 E e, the domain of convergence of the Taylor series

of A is Deo, then the domain of convergence of the Taylor series of E[g(A)] is also Deo'

Example 5 1. Let A be exponentially distributed with Lebesgue density fe(x) = 0 exp(-Ox)
, Jx!

and let e = (0,00), so that A is weakly analytical on e with respect to Cp(IR, ) for all p.

For 00 E (0,00), set Deo{l5) = [15,200 -15] for 00 > 15 > 0. Then it can be shown that the
Taylor series of E[g(A)] developed at 00 has at least Deo(15) as domain of convergence.
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2. Let A be Bernoulli distributed on {D1 , D 2 } c ffi: X1
• Then /1e is 00 times weakly differentiable

and the derivative of the density of /1e with respect to a uniform distribution is uniformly
, JxI

bounded in 8 by 1. Therefore, A is weakly analytical on [0,1] on Cp(IR, ).

, JxI '
Let A E IR, depend on 8 only through an input variable Xe E IR, and let Xe be stochastically

independent of all other input variables of A. If X e is analytical on 0 with respect to Cp(ffi:
X

\

then A is weakly analytical on 0 with respect to Cp (m: X1
) and the domains of convergence of

the Taylor series coincide.
The most important property of weak analyticity is that it is preserved under the (max,+)

operations.

, JxJ
Theorem 6 If A, B E IR, are stochastically independent and weakly analytical on 0, then
A 0 B and A EEl B are weakly analytical on 0. In particular, if, for 80 E 0, the Taylor series of A
has domain of convergence Dto and the Taylor series of B D:a, then the domain of convergence

of the Taylor series of A EEl B, respectively A ® B, is Dfa n D:a.
Moreover, weak analyticity of A and B implies that of Ali 0 Bli and Ali EEl B li .

Proof: The first part of the theorem is Theorem 2 in [7] and we omit the proof.
We now turn to the proof of the second part of the theorem. Let /1e denote the distribution

function of A and ve the distribution function of Be. The weak analyticity of the product measure
, JxJ ' JxJ

/1e x ve over the set IR, x IR, was established in Theorem 2 in [7]. All arguments used in this
proof remain valid when we integrate over a measurable subset of the state space. Hence, if we
split up the state space in disjunct set representing the possible outcomes of Ali 0 Bli (cf. equation
(16) in the proof of Theorem 5), then the proof of the second part of the theorem reduces to that
of the first part. 0

An immediate consequence of Theorem 6 is that if A(k) E m: XJ
is an i.i.d. sequence of random

matrices weakly analytical on 0, then

x(k + 1) = A(k) 0 x(k) , k 2:: 0,

with x(O) = Xo is weakly analytical on 0 for all k. In particular, E[g(x(k + 1)] is analytical on 0
, J

for all 9 E Cm(IR,) and m E IN.
If, for 80 E 0, A(O) has domain of convergence Dt

o
' then x(k + 1) has domain of convergence

Dto '

Example 6

1. Consider the situation of Example 1 {1J. In accordance with Example 5 (1J, the transition
matrix A(k) is analytical on (0,00). Moreover, x(k + 1), with x(k + 1) = A(k) ® x(k) for

k 2:: 0, is analytical on (0,00) and for 9 E Cp(m:) the term E[g(x(k + 1))] can be developed
at any 80 E (0,00) into a Taylor series which has Deo (8), with 80 > 8 > 0, as domain of
convergence.

2. In the Bernoulli case, A(k) is weakly analytical on [0,1] for k E IN. Moreover, x(k + 1), with
, J

x(k+ 1) = A(k) 0x(k) for k 2:: 0, is analytical on [0,1] and for 9 E Cp(IR,), p E IN, the term
E[g(x(k + 1))] can be developed at any 80 E [0,1] into a Taylor series which has Deo = [0,1]
as domain of convergence.

8 Analytic Expansions

In this section we develop the Lyapunov exponents of (max,+)-linear systems into a Taylor series.
More specifically, we study sequences {A(k)} = {Ae(k)} with 8 E 0, see Section 3.3, and the
assumptions (Cl) to (C4) have to be understood to hold for {Ae(k)} for all 8 E 0.
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The Lyapunov exponent can be represented through products of a random number of matrices,
see Section 3.2. Combining this representation with the above results, we obtain the following
theorem.

Theorem 7 Under assumptions (Cl) to (C4). If A(O) is weakly analytical on 0 with respect to

Ct{IR~XJ) with domain of convergence D(Bo), for Bo E 0, and if E[B(7], n)] is finite for all nand

00 1L ,E[B(7], n) HB - Bot < 00 ,
n.

n=O

then
lim E[x(k + 1) - x(k)] = 'x(B)k-+oo

exists and is analytical on 0. For Bo E 0, the domain of convergence is D(Bo). Moreover, the nth
derivative of the Lyapunov exponent is given by

Proof: Theorem 4 implies

A=E [A(J) 0 k~' A(k) 0xo k~/(k) 0 xo]

=E [A(I) 0 k~oo Aii(k)0 x o - k~oo Aii(k)0 XO]

Hence, for the proof it suffices to show the analyticity of

E [k~' A(k)0 XO] =E l~=A'(k)0XO]

= E [.J~moo k~m Aii(k) 0 x o]

= .J~oo E [k~m Aii(k) 0 xo] ,

where the last equality follows from the monotone convergence theorem. In accordance with The
orem 7, the finite products on the right-hand side of the above formula are analytical and we
obtain

(18)
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We now show that we may interchange the order of limit and summation. As a first step, we
calculate the limit of

, J J ' J
for m towards 00. Take 9 as the projection of IR{ onto IR , then 9 E C1 (IR{). Moreover, 9 is
non-expansive and it follows from Lemma 2 that for all m

(19)

v

=:h(m)

Furthermore, the sample limit of h(m) exists, see Equation (17), and is bounded by B(TJ, n) (for a
proof use Lemma 1). Under the conditions of the theorem, B(TJ, n) has a finite mean and we may
apply the dominated convergence theorem. This yields

(20)

We now show that we may interchange limit and summation in (18). By Inequality (19) it
holds for all m that

E [C~mA(klrn) <'hO] :; EIB(q,n)]

and from (20) we get that the limit on the left-hand side of the above inequality exists. Under the
conditions of the theorem it holds that

00 (B-Bo)nL E[B(TJ, n)] I < 00 .
n=O n.

Hence, we may apply the dominated convergence theorem to obtain the following

~~n;,~E [C~m A'(k)) In) 0'0] (9-n~0)n

~ ~~~E [C~mA'(k») In) 0XO] (9-n~0)n

I~) ~E [ C~, A'(k») In) 0 ::~~>'(k)0XO] (9-n~0)n

We have calculated the right-hand side of (18), which concludes the proof of the theorem. 0
In the following subsection we illustrate the above theorem with a simple example.

23



8.1 The Bernoulli Scheme

We revisit the situation in Example 2. We have already shown that

for {} E [0, 1). Choose 00 E [0,0) and take Deo = {O :s {} : 10 - 00 I :s fc-} n [0, 1). This implies that

(2ct-1(O - Oo)n :s 1

and we obtain

This means that the Lyapunov exponent of the Bernoulli scheme can be developed into a Taylor
series at any point 00 on [0,1) and that the domain of convergence of the Taylor series of the
Lyapunov exponent developed at 00 E [0,1) is at least {O : 10 - 00 I :s 2~} n [0, 1). Hence, the
Lyapunov exponent of the Bernoulli experiment can be extended to a complex function that is
analytical on the strip of width 1/2c around the interval [0,1).

Conclusion

We developed the Lyapunov exponent of (max,+)-linear stochastic systems into a Taylor series.
Moreover, we established lower bounds for the radius of convergence of the Taylor series. The two
main ingredients were: (1) the radius of convergence of the Taylor series of the matrix A(k), and
(2) coupling time of the system. We applied our results to a simple system and showed that we
could improve the results known so far on the domain of analyticity of the Lyapunov exponent.
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Appendix

The coefficients of the Taylor series are combinatorially complex and can be represented in various
ways; see for example the representations in [2]. Our analysis leads to yet another way of repre
senting the coefficients of the Taylor series and in what follows we illustrate for the first-order
derivative of the Lyapunov exponent of the Bernoulli system that the expression in Theorem 7
can indeed be algebraically manipulated in order to resemble the coefficients in Theorem 1 in [2].

We calculate the first-order derivative of A at 00 = O. This implies that A(k) = D1 for all k.
Furthermore, the coupling time of D2 equals c and since at 00 the sequence {A(k)} is deterministic,
we obtain TJ = c - 1. In accordance with Theorem 7, we obtain

d [ (1)(I ,i) -c ]

dO
A

=E IE~l)iE~,l) k=~+lA(k) 0 k=~+l A(k) 0 Xo

[ (

0 ) (I,i) -c ]

- E IE.c~l,l)iEI~l'l) k=~+l A(k) 0 k=~+l A(k) 0 XO

The first-order weak derivative of A(k) is (1, D1 , D2 ) and all higher-order weak derivatives are
not significant, see Example 4. Furthermore, let I E £(m, 1), then I is a vector of length m that
has one component, say k*, equal to one and all others equal to zero, and X(l, 1) contains only one
element i, with ik =0 for k i= k* and ik. =+1. From this it follows that

c~+,A(k)) (I,') = (1,b~+' D, 0D, 0k~¥:' D" v, )

In accordance with Theorem 7, we obtain

d c C

\ ""' Dc-j D lLi DC ""' Dc+1 DCdO A =LJ 2 0 1 0 JJ2 0 2 0 Xo - LJ 2 0 2 0 Xo

j=O j=O

c-l c-l

- LD~-l-j 0 D 1 0IX 0 D~ 0 Xo + LD~ 0D~ 0 x o·

j=O j=O

We set X o =D~ 0 Xo and, since c is the coupling time of D 2 , it follows that X o is an eigenvector
of D 2 . In accordance with (6), the D2 terms cancel out and we obtain

c

d \ ""' (DC-j c+l-j X)dOA=LJ 2 0D1 0Xo - D 2 0 0

j=O

c-l

- L (D~-l-j 0D1 0Xo - D~-j 0Xo).
j=O
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Rearranging terms yields

c c-l

:O>'=D~(9Dl(9XO+ LD~-j(9Dl(9XO - LD~-l-j(9Dl(9XO
j=l j=O

c c-l

- LD~+l-j (9Xo + LD~-j (9Xo
j=O j=O

c c-l

=D~ (9 D 1 (9 Xo .- L D~+l-j (9 Xo + L D~-j (9 Xo .
j=O j=O

Recall that
>'(0) = D 2 (9 Dr; (9 Xo - Dr; (9 Xo

for all m 2: O. This implies for the summations in (21)

c c-l

- LD~+l-j (9Xo + LD~-j (9Xo
j=O j=O

c-l c-l

-D2 (9Xo - LD~+l-j (9Xo + LD~-j (9Xo
j=O j=O

- D2 (9 X o - c>.(O) .

Inserting the above equality into (21) we obtain

~>'=D~ (9 D 1 (9 Xo - D 2 (9 Xo - c>.(0).

Using the fact that D2 (9 Xo = ->'(0) - Xo, we obtain

~>. =D~ (9 D 1 (9 Xo - Xo - (c + 1)>.(0) ,

(21)

which is the explicit form of the first-order derivative of the Lyapunov exponents at 00 = 0 as
given in [2].
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