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Abstract

Let f be a real function defined on the interval [O,IJ and let B (f;x) de-n
note its n-th order Bernstein polynomial. The object of this paper is to

study the exact degree of approximation with Bernstein polynomials for func

tions in CI[O,IJ. We estimate the difference IB (f;x) - f(x) I in terms ofn
w(f';c), the modulus of continuity of ff, with c = 1- . Starting-point of

~
our considerations is a theorem of Lorentz ([5J, p. 21). Similar work on

the degree of approximation with Bernstein polynomials for functions in

C[O,IJ has been done by Sikkema ([IOJ,[IIJ) and Esseen [IJ. Results for

functions in CI[O,IJ and 6 = l may be found in [8J.
n

AMS Subject Classification:4lA25
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1. Introduction and summary

Let C[O.IJ be the set of real continuous functions defined on [O.lJ. The ex

pression

where f € C[O.lJ and

(x,y € [O,lJ; a > 0) •

(x € [O.IJ; n = 1.2 •••• ; k=O.I ••••• n) •

(n -+ co) •

4306 + 83716 *)
5832 = 1.089887 ,

B (f;x) -+ f(x)
n

K =

w(f;o) = max If(x) - fey) I
Ix-ylsa

(1 .4)

(l .1)

n
Bn(f;x) := L f(~)p k(x) •

k=O n n.

(l.3)

*)
Here and elsewhere the numbers are rounded to the last digit shown.

(1. 2)

is called the Bernstein polynomial of order n of the function f. Bernstein

proved as early as 1912 that

where

uniformly on [O.lJ. For a proof of this result the reader is referred to [5J.

pp. 5-6. We note that B is a positive linear operator. Le. f ~ a on [O.IJ
n

implies B f ~ a on [O.lJ. This property can be used to give an elegant proofn
of (1.1) (cf. [3J. pp. 28-30). There is an extensive literature on the rapid-

ity with which Bn(f;x) tends tof(x) as n -+ co. As an illustration we cite

here a result of Popoviciu [6J. who proved that

A refinement of (1.2) can be found in [5J, p. 20. There also the problem was

raised of determining the best constant in the right-hand side of (1.2). This

problem was solved by Sikkema in a couple of papers ([10J, [I1J). He proved

that for all f € C[O.lJ and all n E ~

for all f € C[O.lJ and all n €~. Here w(f;a) denotes the modulus of conti

nuity of f, Le.
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and that K ~n (1.3) cannot be replaced by any number smaller than the one

given in (1.4) without invalidating the inequality.

Esseen [IJ proved that for all f € C[O,IJ

IB (f;x) - f(x) In
(I. 5)

with

(1. 6)

where

I ~ A ,
w(f ;-)

Iii

OQ

A = 2 L (j + 1){~(2j + 2) - lP(2j)} = 1.045564 ,
j=O

(I. 7) Hx) I
=-

12;
-OQ

and he showed that the number A in (1.5) cannot be replaced by any number

smaller than the one given in (1.6).

This paper deals with similar problems. Here the setting is the space CI[O,I)

of real functions that have a continuous derivative on [O,IJ. Starting-point

of our considerations is a result of Lorentz ([5J, p. 21) concerning the de

gree of approximation with Bernstein polynomials for this class of functions.

His theorem reads as follows.

ITheorem 1.1 (Lorentz). Let f € C [O,IJ and let wI (f;o) := w(f';o) be the mo-

dulus of continuity of f', then for n € ~ one has

(1.8)

with C = 3/4.

As ~n the case of f € CeO,IJ, one may ask for the best constant in (1.8). To

be more precise, for each fixed n € ~ let (cf. remark 1.2 on p. 4)

(I .9) c
n

:= sup
f€CleO,IJ

In max IB (f;x)
O~x~1 n

- f(x) I
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The problem then is to determine

(I. 10) cO) := sup
n~I

c '.n

To this end we introduce the functions c (x) defined by
n

In IB (f;x) - f(x)\
nc (x) =

n 1
WI(f ;j;>

W hlld ' ,. , '() ,(1) k'e s a er~ve expl~c~t express~ons for the c x, and obta~n c , ma ~ng
n

use of the obvious equality

(1.11)

(I • 12) sup sup
feCI[O,IJ O:S;x:S;I

IB (f;x) - f(x)1
n------:-1--- =

WI(f;j;>
sup sup

OSx:S;I feCI[O,IJ

IB (f;x) - f(x) In

where, in fact, on both sides of (1.12) sup may be replaced by max.
O:S;x:S;1 O:S;x:S;1

We now give a sketch of the contents of the various sections of this report.

tain

c forn= 1,2, ••• ,5. An
~n section 6, using the

Section 2 contains some preliminary results that will be needed later. In or

der to make the paper reasonably self-contained, we start section 3 with

Lorentz's proof of theorem 1.1. By a slight modification of this proof we

obtain a small improvement of the estimate (1.8). Then it is shown by ele

mentary means that c(I) < ~. In section 4 the so-called extremal functions

are introduced; these play a fundamental role in determining c (x) as defined
n

in (1.11), and hence in determining c and c(I). In section 5 we calculate
n

simple proof of the fact that c(I) = c 1 = ! is given

positivity of the operators B • In section 7 we ob
n

(I .13)
(2)

c := sup c
n~2 n

and, finally, in section 8 we derive lim cn(x) and lim cn ' and we give some
n~ n-+oo

numerical information concerning the numbers c •
n

1Remark 1.1. In [8J similar problems are treated for functions f e C [0,1 J norm-

d b (f 1) . (f 1) " d h f ~T the y wI ;n ~nstead of wI ;--. There ~t ~S prove t at or n e ~ e
Iii

smallest constant d satisfying the inequality
n

(1.14) max IB (f;x) - f(x)! :s; d wI(f ;2..)
O:S;x:s;I n n n
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for all f E
1

is givenC [O,IJ, by

(~ + 8(n + 1) if n is even ,

d =n 1 1
8'+- if n is odd •8n

-a.
It 1.S, of course, possible to consider norming by (iJl(f;n ) for, say, O<a.~l.

It seems, however, that the case a. = ! is the most interesting, and the most

natural from an asymptotic point of view. The case a. = 1 is by far the most

tractable.

are satisfied by Zine
positive values of the

no interestconstant C or d • It follows
n

for the problem we are concerned with. As the right-hand side of (1.9), and

similar expressions elsewhere, are undefined for linear functions, in the

remaining part of this report we shall often disregard these functions, with-

Remark 1.2. Inequalities of the type (1.8) and (1.14)

ar functions (which are left unchanged by B ) for all
n

that the linear functions are of

out explicitly indicating this in our notation.

2. Preliminary results

This section contains three lemmas, the contents of which will be needed la

ter. We start out with a well-known result that may be found in [4J, p. 122

or [5J, p. 14.

Lemma 2.1. Let

(2.1)
n

T (x):= I (k - nx)sp k(x)
n,s k=O n,

(n = I ,2, ••• ; s = 0 , I ,2, ••• ) •

Then one has the following recursion formula

(2.2) T +1(x) = x(l-x){T' (x) + nsT I (x)} ,n,s n,s n,s-

where

(2.3) T O(x)n, 1, T lex) = 0 •n,
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Coro 11 ary 2.1. If x (I - x) is denoted by X, then in particular

(2.4)

(2.5)

2 2T 2(x) = nX, T 4(x) = 3n X + nX(1 - 6X) ,n, n,

The proof of lemma 2.1 is omitted. Corollary 2.1 is a straightforward conse

quence of (2.2), using (2.3).

The next lemma deals with a particular sum that plays a prominent role in

the calculation of the functions c (x) as defined in (1.11); we list some of
n

its properties.

Lemma 2.2. Defining

(2.6)

one has

s (x)
n

n
= lin L

k=O
I~ - xlp (x)n n,k

(x € [0,1 J; n = 1,2, ••• ) ,

s (x) = S (I - x) •
n n

If [aJ denotes the largest integer not exceeding a and if II s II :=
n

then

max Is (x) I,
nxdO, 1J

(2.7) s (x)
n

(r = [nxJ) ,

(2.8) max 1 S (x) < max 2 S (x) < ••• <
xdO ,-J n xd1 ,-J n

n n n

max

* *r r +1
xd-,-Jn n

S (x) =
n

= max S (x) = II s IIn n
r* 1

xdn'ZJ

{
i = II SIll > II S3 1I > II S5 II > ••• ,

(2.9)

trfi = II S2 II > II S4 II > II S6 II > ••• ,

(2.10) lim Sn (x) ~ x(I 2~ x) I. =: S(x) ,
n-?<X>
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1=---- = 0.19947114
212";

(n -+ co) •

Proof. We shall first establish formula (2.7). Let x € [0,1 J and let r = [nxJ.

Taking into account the second part of (2.3) we have

n

~ I
k=O

k r k
I--xlp (x) = ~ L (x--)p (x) + ~
n n,k k=O n n,k

n

I
k=r+1

k(--x)p (x) =n n,k

r
= I

k=O

k
(x --)p (x) =:

n n,k f (n,x) •r

In order to evaluate the fr(n,x) we consider r to be independent of n and x

for the moment, and we take generating functions. Changing the order of sum

mation and using (2.3) again it is easily verified that one has

n

I
r=O

n k n n
f (n,x)zr = I (x --)p (x) L zr = I
r k=O n. n,k r=k k=O

k n+l
(x _~)p (x)z - z

n n,k 1 - z
=

1 n=----{x(xz + 1 - x) - xz
1 - z

1 n n-I n-I=-{x(xz + 1 -x) -xz(xz + 1 -x) } =x(l-x) (xz+l-x) •
1 - z

Expanding the last expression in powers of z we obtain

n-]
x(l -x)(xz + 1 _x)n-I = x(l -x) L (n-I)(xz)r(l _x)n-l-r =

r=O r

r
= L

r=O
(n-I )xr +1(I _ x) n-rzr

r

Equating the coefficients of zr, and taking into account the definitions of

fr(n.x) and 8n (x), it follows that (with r = [nxJ again)

8 (x)
n

1
=-

Iii'
nr+1 n-r(n-r)()x (I -x)
r
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This proves (2.7). We omit verification of S (x) .. S (1 - x); it is an easy
n n

consequence of (2.7). We note that a ·different proof of (2.7) can be given by

making use of Hilfssatz I in [IOJ.

The monotonicity of the various maxima of S (x) on the interval [a.!] can be
n

shown as follows. Obviously, for fixed r the maximum of S (x) on the interval
n

[ r r+I J .. r + 1 [nxJ + 1 (2 8)' .Ii' --n 1.S atta1.ned at x .. n + 1" n + I • In order to prove • 1.t 1.8

therefore sufficient to show that this maximum, i.e.

(2.12)

n-Iis an increasing function of r on {0,I.2""'[-Z-J}.

The quotient of two successive maxima is equal to

(n)(r + I)r+l(n - r)n-r+I
r n+I n+1

( n ) ( r ) r (n - r + 1) n-r+2 ..
r-l n + I n + 1

)n-r+1
(l-n-r+1

.. --(""';;;'-';;""l---';)-r-+":'"I
1 - --.;~

r + 1

As (1 _~)x is an increasing function for x > I. this ratio is at least onex
as long as n - r + 1 2: r + 1, l..e. r ~ %• Taking into account the range ofr,

it thus follows that for n even the largest maximum of S (x) is attained whenn
r .. I-I. In case n is odd Sn(x) attains its largest maximum when r .. n; 1

This proves (2.8). As a consequence we have

(2.13)

if n is even

if n is odd •

We proceed with the proof of (2.9). As for the first part of it. this amounts

to showing (ef. (2.12) and (2.13» that for n .. 2m + 1 we have

2m + 2 (2m+l)(~)2m+3 2m + 4 (2m+3) (l)2m+5 (m .. 0.1.2 •••• )> .
12m + 1 m 2 hm + 3

m+l 2

This inequality is equivalent to

2(m + 1) > 1(2m + 1)(2m + 3)

which I.S apparently true.

(m .. O. 1.2 , ••• ) ,
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The verification of the second part of (2.9) is more tedious. Assuming n=2m

and taking into account formulae (2.12) and (2.13). it is easily verified

that we have to show that

(m = 1.2•••• ) •

Taking logarithms of both sides we have to es~ablish that for m = 1.2••••

(2.14) ~ log m(m+ 1) +m log m+ (2m+3)log(2m+3) -log 2- (2m+2)1og(2m+ 1)+

- (m + 2)1og (m + 2) > 0 •

which is easily seen to be true for m = 1 and m = 2. It can be shown that

the derivative of the left-hand side of (2.14) is negative for m;;:: 2. This

observation, together with the fact that (2.14) holds for large m (as can

be seen from its expansion in powers of l). assures that the second assertion
m

of (2.9) holds. We omit all computational details. Finally, an application

of the central limit theorem easily yields (2.10). Assertion (2.11) then is

an immediate consequence. For details we refer to section 8. where similar

limits are computed. This completely proves lemma 2.2. •
In table 2.1 we show the numerical values of II Sn II. n = 1,2 •••• ,30, together

with the corresponding values of x, where the maxima are attained.

We proceed with a simple lemma that will be used in sections 3 and 6.

Lemma 2.3. If c is defined as in (1.9), thenn

c 1 = 1/4 •

Proof. Using the mean value theorem and the definition of the modulus of con~

tinuity we have

Taking f(x) = ~Ix - !I, 0 ~ x ~ 1, it follows that c 1 = i. The fact that f is

not differentiable at x = ! does not, of course. affect the argument. •



- 9 -

n xmax II S II n xmax 11 S IIn n

1 0.500000 0.250000 16 0.470588 0.202246

2 0.333333 0.209513 17 0.500000 0.202425

3 0.500000 0.216506 18 0.473684 0.201969

4 0.400000 0.207360 19 0.500000 0.202112

5 0.500000 0.209631 20 0.476190 0.201743

6 0.428571 0.205586 21 0.500000 0.201859

7 0.500000 0.206699 22 0.478261 0.201554

8 0.444444 0.204419 23 0.500000 0.201650

9 0.500000 0.205078 24 0.480000 0.201394

10 0.454545 0.203614 25 0.500000 0.201475

11 0.500000 0.204050 26 0.481481 0.201256

12 0.461538 0.203031 27 0.500000 0.201326

13 0.500000 0.203340 28 0.482759 0.201137

14 0.466667 0.202590 29 0.500000 0.201198

15 0.500000 0.202821 30 0.483871 0.201033

Table 2.1

3. An upper bound for c(l)

In the introductory section we have formulated theorem 1.1 of Lorentz. As

theorems of this type are the central theme of this report, for the sake of

completeness, we here reproduce the proof of Lorentz' theorem as given by

him in [5J, p. 21.

Proof of theorem 1.1. We have

(3.1) f(x 1) - f(x 2) = (XI - x2)f'(~) =

= (Xl -x2)f'(x
l

) + (XI -x2){f'(f,;) -f'(x l )} (XI <t <x2) •

Let X € [O,IJ be arbitrary and fixed, and let 0 be an arbitrary positive

number. In view of (3.1) and the second part of (2.3), we deduce, using a

well-known property of the modulus of continuity, that we have
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n
IBn(f;x) - f(x)1 = I L {f(x) - f(~)}p k(x) I ~

k=D n n,

n k n k I k 2
::; I L (x --)f' (x)p k(x) I +w I (f;o){ L I--xlp k(x) +T I (--x) p k(x)}::;

k=D n n, k=D n n U k n n,
lii-xl>o

n kIn k 2
::; wl(fjo){L I--xlp k(x) +T L (-.-x) p k(x)} ~

k=D n n, 0 k=D n n,

in k 2 \ Ink 2
~ WI (fjo){Y L (--x) p k(x) +-r I (--x) p k(x)} ,

k=D n n, v k=O n n,

by Schwarz' inequality. By the first part of (2.4) we have

(3.2)

and hence

n
L (~_x)2p (x) = x(l - x) <.!... (x € [D,IJ) ,

k=D n n,k n - 4n

I I .
IB (fjx) - f(x) I ~ WI (fjo){--- +~} •

n 2~ qM

IPutting 0 = -- here, we obtain theorem 1.1 •
/Ii

We next show that by a slight modification of the above proof it is possible

to improve on the constant I.

Theorem 3.1.

(I)
c :K sup sup

n~I f€CI[D,IJ

In max IB (f;x) - f(x)1
n

Q::;x::;1 II
< T6 •

Proof. Proceeding as in the proof of theorem 1.1 one has

IB (fjx) - f(x)! ::;wI(f;o){ I I~-xlp k(X) +1. L (~_x)2p k(X)} ~n n non n,
k=O ' I~ - x I>' 0

n

(3.3)
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Using (2.4) and taking into account that T 4(x) is maximal at x = ~ for all
n.

n ~ 2. it follows that

(3.4)
n

L
k=O

k 4
(--x) p (x)
n n.k

2 2
= 3x (l -x) + x(1 ; x){1 _ 6x(l - x)} ~

n2 n

3 I
<---<
- 16n2 an3

(n = 1.2•••• ) •

where the case n = 1 has to be verified separately. Using this and (3.2) we

obtain

IB (fix) - f(x)1 ~wl(f;6){--!-+ 3·}
n 2~ 16n203 •

I
Taking <5 = -- it follows that for all x € [O.IJ

~

IB (f ;x) - f(x) I ~ *1..- w (f ; 1..-)
n vn I ~

This proves theorem 3.1.

(n = 1.2•••• ) •

•
Remark 3.1. As is obvious from the considerations above. we also have

n kIn k 6IB (f;x)-f(x)l~wl(f;<5){ L l--xlp k(x)+-S L (--x) p k(x)}.
n k=O n n. 0 k=O n n.

The second sum ~n the right-hand side can be evaluated by using (2.5). How

ever, it turns out that this yields a constant that is worse than the con

stant of theorem 3.1.

Remark 3.2. Instead of applying Schwarz' inequality to the first sum in the

right-hand side of (3.3) one can use the estimates (2.9) of lemma 2.2. In

this way, treating the case n = 1 separately (cf. lemma 2.3), one can improve

slightly further on the upper bound for c(I). We shall not pursue this, but

instead improve on this upper bound by a more effective method.

We have
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Theorem 3.2.

~ max IB (f;x) - f(x) I
(1) O~x~1 n 1

c :=sup sup -----~·O;_I---- < '2 •
n~1 fECI [0, I J WI (f ;-)

Iii

Proof. Let n ~ 2, let x E [O,IJ and let 0 be positive. In view of (2.3) and

using a well-known property of the modulus of continuity it is easil~ veri

fied that one has

kIn
n k n IIB (f;x) -f(x)1 = I L {f(-) -f(x)}p k(x)1 = I L p k(X) {f'(t) -f'(x)}dtl ~

n k=O n n, k=O n,
x

kIn kIn

::; I I J (f'(t)-f'(x))dtlp k(x)+ I I J (f'(t)-f'(x))dtlp k(x)~
k n, k n,

I--xl::;o x I--xl>o x
n n

kIn 3

::;wl(f;o) L I~-xlp k(x)+wI(f;o) L I J (It-~I +I)dtlp k(x) =
k n n, k 0 n,

I--xl::;o I--xl>o xn n

n
= W (f;o) L

I k=O

(3.5)

n k I k 4
= w1(f;o){ L I--xlp k(x) + - L (--x) p k(x)}::;

k=O n n, 403 k n n,
I--xl>o
n

n kIn k 4
::; WI (f;o){ L I--xlp k(x)+~ I (--x) p k(x)}.

k=O n n, 40~ k=O n n,

tain

1Putting 0 = -- and taking into account definitions (2.1) and (2.6), we ob-
;n

(3.6) IB (f;x) - f(x) I ::;.L wI (f ; !-){2S (x) +~ T 4(x)} •
n ;n;n n 4nol:. n,

The expression between brackets in (3.6) can be evaluated by means of the

second part of (2.4) and formulae (2.7), (2.9) of lemma 2.2. Using these re

sults and observing (3.4), by straightforward calculation one has
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(n = 2.3 •••• ) •

•
Consequently. in view of (3.6) and lemma 2.3 for the case n =

(1) Ir.::- 3 1
that c < ~3 + 64 < 2 ·

(n = 2.3•••• ) •

1, it follows

Remark 3.3. Considering the proof of theorem 3.2, the following inequality

apparently also holds:

where s is an arbitrary positive number. It turns out that s = 2 is a suit

able choice when one sets out to prove that c (I) < ~. Taking's = 1 gives rise

to simpler calculations. but then a few cases corresponding to small values

of n have to be treated separately. Choosing s = 3. one can use (2.5). but

the calculations become somewhat more intricate.

4. The extremal functions

Up to now we have not made use of the functions c (x) defined in section 1.
n

formula (1.11). but instead we have obtained a (rather crude) upper bound

for c(I). In this section we derive an explicit expression for c (x), which
n

will be used in the following sections to determine the quantities cn
(n = 1.2••••• 5). c(l) and c(2) as defined in (1.9). (1.10) and (1.13).

We first slightly simplify the notation and define

(4.1) ~ (f;x) = B (f;x) - f(x) •
n n

We shall make use of the representation (d. (3.5»

(4.2) ~ (f;x) =
n

kin

I P k(X) J f'(t)dt
k=O n.

x
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and of the fact that for every linear function ~ we have

(4.3) b. (f+R.,x) =b. (f;x).n n

The main object of this section is to prove the following theorem.

sup
f€ Cl [0, I J

Theorem 4.1. For each n € E, for each Xo € [O,IJ and each 0 > 0

lb.n(f;xO)\ ~
WI(f;~) = b.n(f;xO) ,(4.4)

where f, which depends on Xo and 0, is defined for all real x by the condi

tions

o ,
(4.5)

j + ! (j 0 < X - Xo :s; (j + I) 0; j = O.±1,±2, ••• ) •

The functions f will be called extremal functions. We shall prove theorem

4.1 in a number of small steps, stated as lemmas, which gradually narrow

down the class of functions to be considered. We first slightly widen the

class CI[O,IJ to the class Ko of functions on (-m,m) defined as follows:

(4.6)
f is continuous, f' is bounded, f' has finitely many }

jump discontinuities on finite intervals and no other

discontinuities, a < WI (f;o) :s; I • •

The restriction WI (f;o) > a excludes the linear functions (cf. remark 1.2

on p. 4), and the restriction WI (f;o) :s; 1 is simply a matter of scaling.

We might, in fact, restrict ourselves to functions with wI(f;o) = I, but

this is not practical for our purposes.

In order to avoid trivial, but troublesome, difficulties at the boundary

points 0 and I, we continue all functions to the interval (-m,m), in such

a way that their essential properties, e.g. convexity, extend to this in

terval.

We now state and prove our lemmas.

Lennna 4.1.

(4.7)
!b.n(f;xO)I
WI (f;o)

Ib.n (f;xO) I
w

I
(f;5)
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Proof. On [O,lJ every f ~ Ko is the pointwise limit of functions in CI(O,I]

with the same value of w1(·;o), as is easily seen by approximating f' by con

tinuous functions. The result then follows from the continuity of B with
n

respect to pointwise convergence.

Lemma 4.2.

•

=

f convex

lin(f ;xO)

WI (f;6)

Proof. Without loss of generality we take, here and in the sequel, f ~ Ko
such that lin(f;xO) ~ O. We define a function ~ by (see figure 4.1)

inf f' (u) if x s
X o '

f' (x)

xsusxO
= f' (u)sup if x ~ X o •

xOsusx

Figure 4.1.

Clearly ~' is nondecreasing, i.e. ~ is convex. As ~' s f' on (-~,xOJ and

i' ~ f' on [xO'~), it follows from (4.2) that lin(f;xO) ~ lin(f;xO)' Moreover,

W1(f,o) S W1(f;C). This can be seen as follows: if on [x,x+oJ the deriva-
• V'. • v

I
( 1> VI) df'"

t~ve f var~es by E, i.e. ~f f x + u) - f (x = E, then by the e ~n~t~on

v'
of f , for each n > 0, there exist Y1 and Y2 with x s Y1 < Y2 s x + C such

that f'(Y2) -f'(Yl) > E - n. This proves that wt(f;O) S wj(f;O). It is easi-
v

ly verified that f satisfies the remaining conditions for Ke, and the lemma

is proved. •
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For arbitrary f on (-m,oo) we define f* by

* . .f ~s cont~nuous

(4.8) f*(xO + jo) = f(xO + jo) (j = O,±I,±Z, ••• )

f* is linear on each interval (xO+ jo, X o+ jo + 0) •

- f'(x +t-o)}dto

Lemma 4.3. If f is convex and f € Ko' then f* is convex and f* € Ko•

Proof. The function f* is trivially convex: its graph is a polygon inscribed

* *in the graph of f. In order to prove that f € Ko' we show that wI (f ;0) ~

*~ wI (f;o) and hence WI (f ;0) ~ I; the other conditions are easily checked.
*'We proceed as follows. If t is not of the form xO+jo, then f (t) is well

defined. For t = xO+jo we define f*'(t) by continuity from the left. Now,

for any two points t
l

and t z with t
l

< t z ~ t
l

+ 0 we have for some integer j

*' *' *' *'0 ~ f (t2) - f (t I ) ~ f (t
l

+ 0) - f (t
l

) =

f(xO + jo + 0) - f(xO + jo) f(xO + j 0) - f(xO + jo - 0)
= S (ij =

(j+I)o jo

=} J f' (xO+ t)dt -~ J f' (xO+ t)dt =

jo (j-I)o

(j + t )0

= ~ J {f'(xO+t)
jo

From this inequality it follows that wI(f*;o) ~ WI(f;O) ~ 1, and the lemma

is proved. •

lin(f;xOJ

wt (f;o)

_L_e_rnm__a_4__.4_. If f € Ko is convex,

*lin(f ;xO)
-------- ;:::

*WI (f ;0)

then

*Proof. As f (x) ;::: f(x)

*the fact that f (xO) =

of the preceding lemma

follows.

for all x, by the positivity of the operator Bn and

*f(xO)' we have An(f ;xO) ;::: An(f;xO). From the proof

*we conclude that WI (f ;0) ~ wt(f;o), and the lemma

•
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*We now define a class Ko of piecewise linear functions by

* *Ko = {f;f ~ Ko' f convex, f = f , f(xO) • 0, f'(x) • i for Xo < x S Xo + o} ,

where the restrictions on f(xO) and f'(x) are inessential because of (4.3).

From the preceding four lemmas we now obtain

Lemma 4.5.

It.n(f;XO)I
wI (£;6)

We are now ready for the proof of the main result of this section.

Proof of theorem 4.1. For f E K~ we have in view of (4.2)

f' (t)
wI (f;o) dt ,

kin

J=
t.

n
(f ;x

O
)

wI (f;o)
(4.9)

where f' is a nondecreasing stepfunction with largest step equal to wI (f;o).

It follows that f'!wl(f;o) is a nondecreasing stepfunction with largest step

equal to 1, i.e. with modulus of continuity equal to I. As is obvious from

(4.9), t.n(f;xO)/wl(f;o) is maximal if all jumps of f'/wl(f;o) are equal to I,

i.e. if f/wl(f;o) = f as defined in (4.5). This proves the theorem. •

We conclude this section by giving explicit expressions for f and t.n(f;xO).

From (4.5) we have far x > Xo

..... 'f (x) =

co

! + L H(x - Xo - jo) ,
j=1

where H denotes the unit stepfunction. taken to be continuous from the left •
.....

Hence, because f is symmetric with respect to xo'

(4.10)
co

f(x) = !Ix - xol + 2 (Ix - xol - jo)+ '
j=1

where a+ :. max (a, 0). As f (xO) = 0 we have
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and therefore

or

(4.11)
n 00

f:. (f;xO) =! I I~-xolp k(xO) + I
n k=O n n. j=l

I (1~-xol-jo)P·k(xO)·
k . n n.
I--x l2:jon 0

"'"From a graph of f (see figure 4.2) one easily obtains

where t = [Ix - xol/oJ. Hence we have

f:. cf;xO) =B cf;xO) = r p k(xO){(~ + !) I~-xol - !~(~ + 1)0} •
n n k=O n. n

with ~ = [1* - X o I/oJ. This can be rewritten as

(4.12)
n k

= L p k(xO){,Q,(-n - xO) - !,Q,(J/, - 1)0}
k=O n

with J/, = [(* - xO)/oJ + 1. Formula (4.12). with 0

the computer calculations (cf. table 8.1, p. 37).

1=-,
Iii

has been used for

Figure 4.2.
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5. Calculation of c for some small values of n
n';;;";'~';;"";;'';';;;';;;''''';;'';;;;;';;;';;;';;;''''';'';;;';;;';;;';;;';'''';;;'';;--

The object of this section is to determine the first few constants c by
n 1

using the results of the preceding section. For that purpose we take 0=--
Iz1

and we write f instead of t. Furthermore. we shall restrict ourselves here
n

to the cases n = 1.2.3.4.5. It turns out that for these small values of n

the calculations involved to determine c are still manageable; for n = 5.
n

however, the computational effort is already considerable. As will be clear

from theorem 7.1 of section 7. the constant cs is the one we are particular

ly interested in. The exact determination of the constants c for n ~ 6 doesn
not seem to be easy, in particular when n is even. In principle, it can be

done in the same way as we are proceeding in this section. Ultimately. it

amounts to determining the absolute maximum of a piecewise polynomial func

tion an [O,~J, but for n ~ 6 the calculations involved become rather intri

cate. Therefore, in section 7 we use a method that yields estimates for the

constants c (n ~ 6). that are sufficiently sharp for our purposes. The vaI-
n

ues of c can also be obtained numerically; for these results we refer to
n

table 8.1.

In order to determine ct •••• ,cS we recall that in section 4 we proved that

(s.l) ~ (f ;xO) = B (f ;xO)n n n n

where, according to formula (4.]0),

with

""
~(x) = L <Ix - xol - .L)

j =1 Iii +

- 1 have (cL (l.11), (4.1) and (4.S»As w1(f ;--) = 1, we
n Iii

(5.2) c (xO) = In ~ (f ;xO) = Iii B (f ;xO) ,n n n n n

and hence by (4.11), writing x instead of Xo

(5.3)

or

n ""
c (x) =!Iii L I~-xlp k(x) + Iii L
n k=O n n, j=J

k .(1- - x I -1-)p (x).
n /Ii n,k
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with

= S (x) + R (x) ,
n n

R (x) =~ B (0 ;x)
n n 'n
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and S (x) as defined in (2.6).
n

A precise evaluation of R (x) is only feasible for small values of n. Togeth
n

er with lemma 2.2, formula (5.4) then allows one to determine the maximum

c of c (x) without lengthy calculations, say for n ~ 5. In section 7 wen n
shall obtain upper bounds for R (x).

n
The calculation of the constants c rests completely upon the representation

n
for cn(x) as given in (5.3). (We recall that c1 was already determined in

lemma 2.3.) In what follows, we shall consider the cases n = 1, ••• ,5. Because

of symmetry we restrict ourselves to 0 ~ x ~ ~.

n = 1. In this case the second contribution of (5.3) to c1(x) is zero, and

in view of formula (2.7) we have

Hence

c I (x) = x( 1 - x) (0 ~ x ~ D .

n = 2. There are two cases to be considered, viz. 0 ~ x ~ 1 - ~12 and

- !1:2 ~ x ~ ~. According to (5.3) and using (2.7) we have

(0 ~ x ~ 1 - !12) ,

One easily verifies that

max c 2(x) =
O~x~l-!12

12
2 = 0.207107 t

Hence
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n = 3. In view of (5.3) and (2.7) one has

~ 2 2 ~ 1~ 3
= 2v3 x (I - x) +v3(l-x--y3)x

Again, one easily verifies that

max c3(x) < 0.120955, max c
3

(x) < 0.213834 ,

0~x4-~ t-~~x4

and thus

n = 4. Obviously, there are two cases to be considered, viz.O ~ x ~ ! and

i ~ x ~ ~. Taking into account (5.3) and (2.7) we find

234c4 (x) = 6x (1 -x) + (1 -2x)x <! ~ x ~ D .

Elementary calculations show that

Consequently,

664
c 4 = "3i'E •

(0 ~ x ~ 0 ,
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n = 5. A close examination of (5.3) (cf. figure 5.1) shows that one has to

deal with the following expressions for cs(x).

r: 3 2 2r: 5+ (6-10x-2v5)x (I -x) +(I -x-s+'S)x } (0 ~ x ~ I -}Is) .

r: 3 2+ (6-10x-2v5)x (I-x)}

r: 2 4 r: lr: 5c5(x) =4v5 x (I -x) +v5{(I -x-Sv5)x }

r: 3 3 r: lr: 5c5(x) =6vS x (I -x) + v5{(I -x--.sv5)x }

4 I r: 2
("5 - SV 5 ~ x ~ "5) •

2 lr:
("5~x=:;'fS) •

3 1 2 15- sl/5 5 2
! ! , I ,

1-~VS 1 ~_1V5 lv'S 1 4
0 "5 5 55 5 5 5

Figure 5.1.

For our purposes it is not necessary to determine the maxima of cS(x) on all

the respective intervals; estimates will be sufficient. Elementary calcula

tions show that the maximum of c5(x) on the interval [~/5. tJ is attained at

x = ~ and cS(~) = 2~i I = .217008. Once this number is available we can

compare it with (upper bounds for) the maxima of cS(x) on the remaining in

tervals. Proceeding in this way we arrive at the following results.
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max cS(x) < 0.1368, max cS(x) < 0.IS42 ,

O~x~1 -tIS I -f"S~~3-:S

max cS(x) < 0.1989, max cS(x) = 0.2069 •4-ftS; d. 2 ,I ~
x S ~xSSVS

In view of these results we conclude that

(S. S)

The graph of the extremal function corresponding to the constant Cs is shown

in figure S.2.

Figure S.2.

Remark S.I. As will be clear from the example treated above, the method with

which the constants c can be determined, is straightforward and simple in
n

principle. However, it is also obvious that the amount of computational work

involved grows quite rapidly. Furthermore, certain numerical complications

arise when determining the absolute maximum of the piecewise polynomial func

tion cn(x) for large values of n. Most of these complications can be avoided,

however, by using suitable estimates for c (x) and R (x) (cf. remark 6.3 and
n· n

the contents of section 7).
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The results of this section are collected in the following theorem.

Theorem 5.1. For c defined as in (1.9). we haven

1 1c 1 = c 1(2") = '4 = 0.250000

1 =~=c2 = c2('3) 0.209513 •27

= 0.217008 •c =
5

2 664
c4 = c 4(S) = 3125 = 0.212480

2/5 
16

6 A . 1 f of c (I) = 1/4• s1mp e proo

In theorem 4.1 we obtained the extremal function f. depending on an arbitrary

positive number O. Since we wish to sharpen Lorentz' theorem 1.1. we take

a = _1_ and again write f instead of f. In view of (4.1) one has
v;- n

(6. 1)

where a+ = max(a.O).
~

Using the functions f we shall prove in an elementary way
n

cn ~ ! for all n €~. To this end we introduce a quadratic

fined by

(cf. [9J) that

function q de
n

(6.2)

~

The graph of q is a parabola that is tangent to the graph of f in the mid-n n
points of each of the linear pieces of that graph (cf. figure 6.1).

The properties of the function q are formally stated in the following lemma.
n
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Figure 6.1.

'"Lemma 6.1. Let qn be defined by (6.2) and let f n be the extremal function

defined by (6.1). then we have

i)

ii)

iii)

iv)

qn(xO + 2k + 1) = fn(xO + 2k + 1) 2kZ
+ Zk + 1 (k =O.±I.±Z•••• )= •2/i Z{; 4Iii'

Zk + 1)
",I Zk + 1)

q~(xO + = fn(xO + = k + ~ (k = O.±I.±Z•••• ) •Z{; z/i

qn(x) ~ f (x) (x € [O,IJ) ,n

Proof. In view of the second part of (4.5) it follows by integration from XoZk + 1
to Xo + ------ that for k ~ 0 we have

2/i

"'f ( Zk + 1) 1 ( 1 3 Zk - 1 Zk + 1) ZkZ + Zk + I = q (x
O

+ Zk + 1) •
n Xo + = - -Z + -Z +•• •+ Z + 4 =

z/i Iii' 4{; n zITi

By symmetry we obtain i) also for k < O. From (6.1) and (6.Z) we immediately

have ii). Taking into account that q (xO) > f (xO) and the fact that q is an n n
convex function, property iii) now follows from i) and ii). Finally, iv) is

an easy consequence of the first part of (2.4). This proves the lemma. •
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We are now in a position to prove one of the main results of this report

(cf. remark 1.2).

Theorem 6. I •

(I)
c := sup sup

112:1 f€CI[O,IJ

10 max IB (f;x) - f(x)1
0:5x:51 n I

-""';"";';;"'''';''''--':''"1---- = "4 •
wl(f ;-)

~

.Proof. Noting that B is a positive operator, it follows from properties iii)
n

and iv) of lemma 6.1 that for all Xo € [O,IJ one has in view of (5.2)

(6.3) cn(xO) =~ B (f ·x )
n n' °

Hence, c :5! for n = 1,2,3, •••• Taking into account lemma 2.3 and observ
n

ing definition (1.10) of c(l) we obtain c(l) = c
I

= 1. •

Remark 6.1. In order to get a lower bound for cn(xO) we consider the function

qn defined by

It is easily verified that one has (cf. figure 6.1)

(k = 0,±1,±2, ••• ) ,

q (x) :5 f (x)n n (x € [O,IJ) •

Proceeding in the same way as in the proof of theorem 6.1 we deduce

(6.4)

,...,
Remark 6.2. The estimate (6.3) can be improved by using a function qn' that

differs slightly from the function qn appearing in lemma 6.1. This function

is chosen to be of the form

... a blii
qn(x) = - + - (xIii 2

wnere the parameters a and b are chosen such that the graph of qu is tangent
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to the two linear p1eces of fn adjacent to x = xo' and such that In Bn(qn;XO)

1S minimal.

One finds

the graph of this function is slightly steeper than that of qn. As

q (x) ~·f (x) for all x € [O,IJ, one derives in a similar way as in the proof
n n

of theorem 6. I

.(6.5)

~

We note that the functions qn and qn are identical if Xo = ~.

Corollary 6.1. For all x € [O,IJ and all n € ~

!x(1 - x) ~ c (x) ~ !/x(I - x) •n

Proof. This 1S an immediate consequence of (6.4) and (6.5). •

= 0.217008 •

Corollary 6.2. If 0 ~ x ~ 0.2517 or 0.7483 ~ x ~ 1, then

215 
16

(6.6)

Proof. Using (5.5) the inequality in (6.6) easily follows from (6.5). •

Remark 6.3. We note that corollaries 6.1 and 6.2 are of some relevance for

the numerical investigation of max c (x): small values of x need not be
xdO, D n

taken into consideration. For instance, when n = 5 the first three cases of

p. 22 can be disposed of immediately.

7. Determination of c(2)

Having the extremal functions available, it is a comparatively simple matter

to obtain the best constant in Lorentz' theorem 1.1, when n runs thraugh

the set of aZl positive integers. This was done in the preceding section.

The simplicity of this problem is mainly due to the fact that sup cn = cI'
~I
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and also to the fact that estimate (6.3) becomes an equality if n • 1.

Thus, case n = I can be regarded as rather special, and it seems natural to

ask for c(2) = sup c , c being defined as in (1.9). This question will be
n~2 n n

answered in the present section. We recall that i~ section S, formula (S.2),

we established that

(7. I) c (xO) = In B (f ;xO) ,n n n

where, according to theorem 4.1, for all x

f (x) = !Ix - xol + Q (x) ,n n

with

Q (x) =
n

00

L (Ix - XoI -.L)
r"n +j=1 l'n

In what follows we shall obtain upper bounds for Rn(xO) =
together with lenma 2.2 and some numerical results, yield

theorems of this report. We have

Theorem 7.1.

In B (Q ;xO), which,n n
one of the main

(2)
c := sup sup

n~2 f€CICO,I]

In max IB (f;x) - f(x)1
O~x~1 n 2/5 -

------...,1=------ = Cs = 16
wI (f ;-)

In

= 0.217008497 •

Proof. In order to prove this theorem we use (7.1) and we write, replacing

x by Xo in (S.4),

(7.2)

In lemma 2.2 it was proved that Sn(xO) has on CO,!] a unique absolute maxi

mum, denoted by II S II. For I ~ n ~ 30, the values of \I S II are given in table
n n

2.1, p. 9. We now proceed to obtain upper bounds R: for Rn(XO). To this end

we approximate Qn by polynomials, Pn s' of the form,

P (x)
n, s

2s
a (x - x O)n,s (s = 1,2,3, ••• ) •

These polynomials are chosen ~n such a way that the graph o~ Pn s touches,
the (non-horizontal) linear pieces of the graph of ~, nearest to Xo (see

figure 7.1).
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Figure 7. I.

(7.3)
2s-1

P (x) = (2s - 1) S-~( )2s
n,s (2s)28 n x - Xo •

It is easily verified

the positivity of the

bounds for Rn(xO).

that P (x) ~ Q (x) for all x. Taking into accountn,s n
Bernstein operator B , we have the following upper

n

(7.4)

The best bound is obtained for s = 3, and using formulae (2.1) and (2.5) we

get

(7.5)
55

~ 66 n3 Tn,6(xO) =

55 3 5 2 I 2
= ?{I5Xo + n Xo(5 - 26XO) +~ Xo(l - 30XO+ 120XO)}

where Xo = xO(1 - xO).

As the last expression in (7.5) is increasing in Xo for all n ~ 4, it8maxi

mum is attained at Xo = i, 1.e. at Xo = !. It follows that

(7.6) * 56 2 16
Rn(xO) ~ R.n := 212 35{1 - - + ~} < 0.015699

n 15n
(n ~ 4) •

Taking into account formulae (7.1), (7.2), (7,4), to prove theorem 7.1 it is

sufficient to show that for all n :f: 5 we have lis iI + R* ~ 0.217008, or, equi-n n
valently, that
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n
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56 2 16
12 S{I - - + ~} =: a

2 3 n 1~ n

Theorem 5.1 takes care of the cases n = 2,3,4. In table 7.1 the values of

II Sn II and an are given for 6 ::;; n :;; 29, and it turns out that inequality (7.7)

does indeed hold for all these values, with the exception of n = 7,9,11.

n II 5 II a n II 5 II a
n n n n

6 0.205586 0.206077 18 0.201969 0.203002

7 0.206699 0.205453 19 0.202112 0.202916

8 0.204419 0.204973 20 0.201743 0.202838

9 0.205078 0.204591 21 0.201859 0.202767

10 0.203614 0.204282 22 0.201554 0.202702

1I 0.204050 0.204026 23 0.201650 0.202643

12 0.203031 0.203810 24 0.201394 0.202589

13 0.203340 0.203626 25 0.201475 0.202539

14 0.202590 0.203467 26 0.201256 0.202492

15 0.202821 0.203328 27 0.201326 0.202450

16 0.202246 0.203207 28 0.201137 0.202410

17 0.202425 0.203099 29 9.201198 0.202372

Table 7. I •

As

115 28 11 < 0.217008 - 0.015699

and

115 29 11 < 0.217008 - 0.015699 ,

the values of n <:: 30 are taken care of by the monotonicity of IIS 2m ll and

II 52m+ l II, cf. (2.9). 50, what remains to be done is a separate treatment of

the cases n = 7,9,11.

n = 7. In order to show that c7 (x) < c
5

for all x E [O,IJ, it is sufficient

to restrict x to the interval [0.48, 0.50J. This can be seen as follows.

From (7.6) and table 7.1 it follows that

(7.8) *R7 = 0.011555 •
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The behaviour of the sum S7(x) can be dealt with by noting that it

imum 0.199588 at x = i and, moreover, that S7(x) is decreasing on
3 1and increasing on [r'2J (cf. figure 7.2 and also (2.8».

has a ma:K
3 3
[~ 'rJ

1
2'

3 3
8' '7

1 2
7; '7

1 1
87o

0.206699 ---------.,..-.
0.199588 ---------::;;00..--..

Figure 7.2.

As 87(0.48) = 0.205380, one thus has in view of lemma 2.2 and (7.8) that for

all x E [0,0.48J

(7.9) *S7(x) + R7 ~ 0.21693S < Cs = 0.217008 •

To evaluate c7(x), 0.48 ~ x ~ 0.50, we use formula (S.3). It is easily veri

fied that for this range of x one has

c7(x) =2017x4(l-x)4 + 17{(l-x)7(x-tn) + x7(l-x-+17)} ,

1117-2which is maximal for x = ~, with c7(~) = 128 = 0.211744 < c5• This, to-

gether with (7.9), proves that c7 < cS•

4 1n = 9. Similarly, restricting x to [9"'2J, we have in view of (5.3)

5 5c 9(x) = 21 Ox (l - x) +

9 1 8 8 9 2+3{(l-x) (x-'3)+(I-x) x(9x-4)+x (l-x)(S-9x)+x ('3- x)},

109which is again maximal for x = ~, with c9(!) = S12 = 0.212891 < cS. This es-

tablishes that c9 < c5•
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n = II. This case can be covered in an analogous way as n = 7, n = 9. How

ever, the expression for c 11 (x) as given by formula (S.3) becomes somewhat

awkward to deal with, as there are contributions for k = 0,1,2,9,10,11.

Case n = 11 can also be handled by improving slightly on the estimate (7.4).

Considering the difference PII 3(x) - Qll(x), we find, now restricting x to,
the interval [0.49,0.SOJ that P 11 ,3(0) - Ql1(0) > 0.17, and P 11 ,3(l) -Qll(l) >

> 0.20. It follows that the estimates (7.S) and (7.6) can be improved by

1i1{0.17(1 - x)11 + 0.20x 11 } > O.OOOSSO (0.49 ~ x $ O.SO) •

*As SI1(!) = 0.2040S0 and Rl1 = 0.012982 (cf. table 7.1), this suffices to

prove that c 11 < cS' This concludes the proof of theorem 7.1. •

Remark 7.1. We recall that by a considerable amount of computation we proved
. . S h (1) 215 - 1. f h' .1n sect10n t at cs = Cs 2 = 16 • US1ng the methods 0 t 1S sect10n

this result can be deduced in a much easier way. In fact, in examining cS(x)

it is sufficient to restrict xto the interval [0.46,0.SOJ, as it is easily

verified that one has

SS(x) $ 0.20S632

*RS = 0.010089 •

Consequently,

(0 ~ x ~ 0.46) ,

(7.10) cS(x) < 0.215721 (0 ~ x ~ 0.46) •

Using (5.3) and (2.7) we have on [0.46,0.SOJ

r.:' 3 3 r::' ) r.:' S .!.oR ScS(x) =6vS x (I - x) + 1'5{(l-x-SvS)x + (x- S S)(l-x) } ,

215- 1which attains its maximum at x = !, with cS(!) = 16 = 0.217008. Because

of (7.10) it then follows that Cs = cS(!).

Remark 7.2. It is perhaps appropriate to note that in dealing with the

cases n = 7,9,11 as above, we have not shown that c7 = c7(!), cg = c9(!),

c l1 = cl1 (!), though this can be proved by carefully applying the method

of section S.
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B. The limiting behaviour of c (x)
- n

As we remarked in the introductory section 1. Esseen [IJ • complementing part

of the work of Sikkema [I OJ. determined the constant

max
~ O~x~I
11m sup ------:-1----
n~ f € C [0,. 1J w(f ; -)

Iii'

whereas earlier Popoviciu [6J and then Sikkema [10J had given estimates for

this quantity. In view of this it seems natural to put the analogous problem

here. i.e. to ask for

lim sup
n~ f€CI[O.IJ

~ max
O$x~1

IB (fjx) - f(x)1n

This section will be concerned with this kind of problem. In fact. using the

central limit theorem we shall prove the following result. which is of a more

detailed character.

Theorem B.I. For c (x) defined as in (1.11). we have
n

(8.1) c(x) := lim c (x) = \If;; + 21X I
n -,7T • 1

n~ J=

00

J
j/n

(0 < x < 1).

(8.2)

where

lim max
n~ xdO.IJ

c (x)=cO) =2...+ I I
n 2/2';" j=I 2j

00

(u - 2j)<p(u)du = 0.20796899 •

(B.3) x(l - x) •

In order to prove this theorem we need two lemmas.
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Lemma 8.1. If U ~s a nonnegative random variable with distribution function

F, then for a ~ 0

<Xl

E(U - a)+ = f (I - F(u»du ,

a

where E denotes expectation.

Proof.
<Xl

(8.4)

E(U - a)+ = f (u - a)dF(u)

a

and the assertion of the lemma follows on integration by parts.

Lemma 8.2. If V is a binomial random variable with expectation nx and va-
• ~ Vn - nx

r~ance nX, and ~f we put U = , then for the distribution function
n ~

Fn of Iunl one has for all u ~ 0 and all x € (0,1)

I - F (u) ~ 2e-u2x (I-X) •
n

•

Proof. Following Lorentz ([5J, pp. 18 -19) and Rathore ([7J, p. 123) one has

n
4i
n

(v,x) := L p k(x)eV(k-nx) = {xev(l-x) + (I _x)e-vx}n •
k=O n,

v(l-x) -vx I I 3Expanding xe + (l - x)e in powers of v, one obtains for v ~ '2 the

inequality

2
I 0 221 2 0.221v

~ +. v ~e

Defining

= I p (x)evlk-nxl
k=O n,k

we therefore have

(8.5)
2

~ (v,x) ~ 4i (v,x) + 4i (-v,x) ~ 2eO.221nv
n n n
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Now. by a Chebyshev-type argument, one has

::?F p k(x) ~ l (c > 0) ,
exp(v~ )2:clji (v x) n, c

n

and therefore. by inequality (8.5)

Pn k(x) ~.!.
) , c

2
3 9Putting c = ~eno and v = '20 we have, as '4 0.221 = 0.49725 < ~ •

(8.6) :::?; p k(x)
Ik-nxl2:on n,

~:>
tl k-nx I02:n0

2
(l + 0.49725)

2
-0 n

p k(x) ~ 2en,

which yields (8.4) if we take 0 = ~X(I ~ x)' • This proves the lemma. •

Remark 8.1. Inequality (8.6) is contained in the "Stellingen" section of Van

de Vents dissertation ([12J, stelling X).

Proof of theorem 8.1. Using the notation of lemma 8.1. we have in view

of (5.3)

n k 00 n k .
= ~;n l j--xlp k(x) +In l l <l--xl-L ) p (x) =

k=O n n. j=1 k=O n ;;+ n,k

(8.7)
00

= IX{!E(junl) + L E(U - L) }
j=1 n. IX +

An application of lemma S.1 yields

00

E( IU I) = f ( 1 - F (u»du ,n n
0

(8.8) 00

E( 1U I - .L) = J (l - F (u» du •
n ;x+ n

j(lx

Introduce
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u

~(u) = I ~(v)dv ,
-co
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where ~(v) is given by (8.3). Then by the Berry-Esseen theorem (cf. [2J,

p. 542) 1 -F (u) tends to 2{l -~(u)} as n -+ co, uniformly in u ~nd uniformly
n

in x, with x € [0, 1 - oJ, for any 0 > O. By lemma 8.2 the integrals in (8.8)

converge uniformly in n, j and x € [0, 1 - oJ. It follows that

co co

E(lunl) -+ 2 I (1 - ~(u»du = 2 J u~(u)du
o 0

uniformly in x € [0, 1 - oJ, and that

co

2
=-

;z:;

co

E(I u I -.L) -+ 2 f
n IX +

j/iX'

(l - Hu) )du (u -L)<p(u)du
IX

uniformly in j and x € [0, I-oJ.

As, also by lemma 8.2, the sums in (8.7) converge uniformly in nand

x € [0, 1 - 0J, it follows that c (x) -+ c (x) for all x, and uniformly for
n

x € [0, I-oJ for any 0 > O. This proves (8.1).

In order to prove (8.2), we note that from c (x) ~ !/x(1 - x) (cf. (6.5»
n

it easily follows that max c (x) = c (x ), with x bounded away from 0 and 1.n n n n
x

As cn(x) -+ c(x), uniformly in x, and as max c(x) = c(!), it follows that
x

lim max c (x) =cO), because for' large nand arbitrary € > 0 we haven
n~ x

c (x ) ~ c (!) ~ c(!) - € ,n n n

whereas on the other hand

c (x ) = c (x ) - c(x ) + c(x ) - c(!) + c(!) ~ € + c(!) • •n n n n n n

Remark 8.2. The expression for c(!) occuring in (8.2) can be rewritten as

co 2·2 00

c(D
1 I L=-+ e- J - 2 HI - ~(2j)} ,

2127T j=1 j=l

where ~ is defined by (8.9). This formula has been used to compute c(!).
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n xmax max c (x) n xmax max c (x) n xmax max c (x)n n n

1 0.5000 0.250000 35 0.5000 0.209205 69 0.5000 0.208501
2 0.3333 0.209513 36 0.4865 0.209125 70 0.4929 0.208404
3 0.5000 0.216506 37 0.5000 0.209193 71 0.5000 0.208344
4 0.4000 0.212480 38 0.4872 0.209040 72 0.4946 0.208289
5 0.5000 0.217008 39 0.5000 0.209016 73 0.4985 0.208289
6 0.4403 0.210300 40 0.4878 0.208793 74 0.4933 0.208311

7 0.5000 0.211744 41 0.5000 0.208685 75 0.5000 0.208386
8 0.4452 0.210940 42 0.4908 0.208501 76 0.4935 0.208408

9 0.5000 0.212891 43 0.5000 0.208506 77 0.5000 0.208465
10 0.4541 0.211364 44 0.4889 0.208562 78 0.4937 0.208472

1I 0.5000 0.211496 45 0.5000 0.208723 79 0.5000 0.208512
12 0.4689 0.209518 46 0.4894 0.208740 80 0.4938 0.208504

13 0.5000 0.209928 47 0.5000 0.208851 81 0.5000 0.208526

14 0.4670 0.209821 48 0.4898 0.208827 82 0.4940 0.208502

15 0.5000 0.210687 49 0.5000 0.208889 83 0.5000 0.208507
16 0.4706 0.210304 50 0.4902 0.208825 84 0.4941 0.208468

17 0.5000 0.210635 51 0.5000 0.208837 85 0.5000 0.208455

18 0.4735 0.209934 52 0.4906 0.208732 86 0.4942 0.208401

19 0.5000 0.209778 53 0.5000 0.208698 87 0.5000 0.208372
20 0.4810 0.209001 54 0.4909 0.208554 88 0.4944 0.208303
21 0.5000 0.209136 55 0.5000 0.208475 89 0.5000 0.208258

22 0.4784 0.209173 56 0.4931 0.208375 90 0.4957 0.208227

23 0.5000 0.209619 57 0.4981 0.208376 91 0.4988 0.208227

24 0.4800 0.209526 58 0.4915 0.208412 92 0.4946 0.208239

25 0.5000 0.209766 59 0.5000 0.208519 93 0.5000 0.208294

26 0.4815 0.209532 60 0.4918 0.208542 94 0.4947 0.208314

27 0.5000 0.209572 61 0.5000 0.208620 95 0.5000 0.208357

28 0.4827 0.209196 62 0.4921 0.208619 96 0.4948 0.208367

29 0.5000 0.209053 63 0.5000 0.208669 97 0.5000 0.208399

30 0.4872 0.208693 64 0.4923 0.208643 98 0.4950 0.208398

31 0.5000 0.208734 65 0.5000 0.208665 99 0.5000 0.208419

32 0.4849 0.208795 66 0.4925 0.208615 100 0.4950 . 0.208408

33 0.5000 0.209051 67 0.5000 0.208609 1000 0.4995 0.207998

34 0.4857 0.209043 68 0.4927 0.208534 1001 0.5000 0.208000

Table 8.1.
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We conclude this section with table 8.1, containing the numerical values of

the coefficients c = max c (x), and the points where these maxima aren n
xdO,IJ

attained, for n = 1,2, ••• ,100,1000,1001. These data were computed on the

Burroughs 6700 of the Computing Centre of the Eindhoven University of Tech

nology. In computing these numbers use was made of formulae (4.12) and (5.3).

Taking into account theorem 5.1 (where it was proved that c l = cl(~)'

c 3 = c 3(D, Cs = cSO)), remark 7.2 (containing the assertion that c7 =c70),

c9 = c9(D, c ll = cII(D), and examining the first part of the table, one is

led to the conjecture that ifn is odd, c = c 0). For n = S7, however, then n
computer indicates that cS7 > c

S7
(D. A similar phenomenon takes place for

n = 73 and n = 91.
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