

Specification and analysis of Internet applications

Citation for published version (APA):
Beek, van, H. M. A. (2005). Specification and analysis of Internet applications. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR589889

DOI:
10.6100/IR589889

Document status and date:
Published: 01/01/2005

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR589889
https://doi.org/10.6100/IR589889
https://research.tue.nl/en/publications/4f92497e-f89f-4afb-800f-68f81d629013

Specification and Analysis of
Internet Applications

Harm van Beek

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Beek, Henricus M.A. van

Specification and Analysis of Internet Applications /

by Henricus M.A. van Beek. -

Eindhoven : Technische Universiteit Eindhoven, 2005.

Proefschrift. - ISBN 90-386-0564-1

NUR 993

Subject Headings : computer networks ; protocols / Internet / semantics /

process algebra / programming languages /

software ; specifications / software verification

CR Subject Classification (1998) : F.4.3, D.3.1, F.3.2, D.2.4

Printed by University Press Facilities, Technische Universiteit Eindhoven

Cover design by ISAAC Web Solutions

Copyright c© 2005 by H.M.A. van Beek, Eindhoven, The Netherlands.
All rights reserved. No part of this publication may be stored in a retrieval system, transmitted, or reproduced, in
any form or by any means, including but not limited to photocopy, photograph, magnetic or other record, without
prior agreement and written permission of the author.

Specification and Analysis of
Internet Applications

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
Rector Magnificus, prof.dr.ir. C.J. van Duijn, voor een

commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen
op donderdag 9 juni 2005 om 14.00 uur

door

Henricus Martinus Adrianus van Beek

geboren te Westerhoven

Dit proefschrift is goedgekeurd door de promotor:

prof.dr. J.C.M. Baeten

Copromotor:
dr. S. Mauw

The work in this thesis has been carried out under the auspices of the research
school IPA (Institute for Programming research and Algorithmics).

IPA dissertation series 2005-05

Preface

Until the end of my graduation I had never considered doing a Ph.D. However,
when prof.dr. Jos Baeten and dr. Sjouke Mauw offered me this chance I did not have
to think about it for too long. There was only one issue, namely that I was also work-
ing for my company, which was hard to combine with a full-time Ph.D. position.
The opportunity to have a part-time position, three days a week for five years, was
a perfect combination with my work for ISAAC.

Right now, you are reading the result of this five-year period, which would never
have been accomplished without the help of many people, all of whom I would like
to thank.

First of all, I would like to thank my supervisors Jos and Sjouke, without whom I
would not even have thought of writing a Ph.D. thesis, let alone finishing it.

Furthermore, I would like to thank my colleagues at the formal methods group,
Louis in particular, with whom I had many discussions and, not to forget, played
many games of table-tennis which gave us time to relax. I thank the (Eindhoven)
Embedded Systems Institute for offering me a very nice place of work and my col-
leagues over there for the nice working atmosphere. Furthermore, I thank Tim and
Cas for their valuable comments on previous versions of this thesis.

Of course I thank prof.dr.ir. Loe Feijs, dr. Rob van Glabbeek and prof.dr. Wim Hes-
selink for taking part in the core committee and ms.prof.dr. Lynda Hardman and
prof.dr. Martin Rem for joining the doctorate committee.

Apart from them, special thanks go to my colleagues at ISAAC, especially Mark and
Max, for giving me the time to work on this thesis and for having the patience in
busy times when I had to finish my thesis. Fortunately, their planning made the
combination with my Ph.D. position possible. Of course, I also thank Max and Mark
for being my paranimphs.

Finally, I would like to thank all my friends and relatives for supporting me during
my Ph.D. period and for giving me enough distraction outside working hours.

Harm van Beek
Eindhoven, April 2005

Contents

Preface v

Contents vii

1 Introduction 1
1.1 Trends on the Internet . 1
1.2 Programming Internet Applications . 3
1.3 Using Formal Methods . 3
1.4 Goal of this Thesis . 4
1.5 Outline . 5

I Domain Analysis 7

2 Introduction to Domain Analysis 9
2.1 Introduction . 9
2.2 Language-Driven System Design . 10

2.2.1 Identification of the Problem Domain 11
2.2.2 Identification of the Problem Space 11
2.2.3 Formulation of the Language Definition 12

3 Domain Identification 13
3.1 Internet Applications for Distributed Consensus 13
3.2 The Hypertext Transfer Protocol . 14
3.3 Web-Based versus Window-Based Applications 15
3.4 Example Applications . 18

3.4.1 Sinterklaaslootjes . 18
3.4.2 Meeting Scheduler . 20
3.4.3 Internet Vote . 22
3.4.4 Internet Auction . 24

3.5 Security Considerations . 26

viii Contents

3.6 Access Control . 30
3.6.1 Role Based Access Control . 30
3.6.2 Task Based Authorisation Control 32

4 Concepts 33
4.1 Introduction . 33
4.2 Processes . 35

4.2.1 Transactions . 36
4.3 User Interaction . 38

4.3.1 Level of Abstraction . 38
4.3.2 The Interaction Primitives . 40

4.4 Users . 42
4.4.1 Client Identification . 42
4.4.2 Access Control . 44

4.5 Types and Calculations . 45
4.6 Time . 45
4.7 Overview . 46

II Modelling Internet Applications 47

5 Process Algebra 49
5.1 Alphabet . 49
5.2 Operators . 50
5.3 Axioms . 50
5.4 Deadlock . 52
5.5 The Empty Process . 52
5.6 Semantics . 53
5.7 Additional Operators . 54

5.7.1 Conditional Branching . 54
5.7.2 Conditional Repetition . 54
5.7.3 Conditional Disrupt . 56

6 Modelling States and Time 57
6.1 Introduction . 57
6.2 States . 58
6.3 Scope Operator . 60

6.3.1 Semantics . 62
6.4 Adding a Time Component . 63

6.4.1 Semantics . 63

Contents ix

7 Modelling Internet Communication 67
7.1 Alphabet . 67
7.2 Semantics . 70
7.3 Access Control . 72

7.3.1 Parallel Composition . 73
7.3.2 Anonymous Interaction . 74
7.3.3 Identification . 75
7.3.4 Registration . 76

8 Modelling Transactional Behaviour 79
8.1 Introduction to Transactions . 80
8.2 A Process-Algebraic Approach . 83

8.2.1 Transactional Operator . 83
8.2.2 Locking and Unlocking Operators 88
8.2.3 Merge Operator . 89
8.2.4 Overview of PAtrans . 91

8.3 Examples . 92
8.4 Properties of Process Algebra with Transactions 99
8.5 Combining Transactions and States . 102

8.5.1 Introduction . 102
8.5.2 Rollbacks and Commits . 104
8.5.3 Executing Actions from within a Transaction 105
8.5.4 Locking and Unlocking . 107
8.5.5 Identifiers and Scoping . 110

8.6 Degrees of Isolation . 111
8.7 Related Work . 113

9 Modelling Internet Applications 115
9.1 Types . 116
9.2 Alphabet . 117
9.3 Operators . 118
9.4 Operational semantics . 121

9.4.1 Transition Labels . 121
9.4.2 Deduction Rules . 123

9.5 Example . 136
9.5.1 Properties . 138

x Contents

III Tools and Applications 147

10 Conformance Testing of Internet Applications 149
10.1 Introduction . 149
10.2 Testing of Internet Applications . 150
10.3 Introduction to Conformance Testing 152
10.4 Formal Model . 153

10.4.1 Labelled Transition Systems . 154
10.4.2 Request/Response Transition Systems 156
10.4.3 Multi Request/Response Transition Systems 156

10.5 Relating Multi Request/Response Transition Systems 157
10.6 Test Derivation . 158

10.6.1 Adapting the Algorithm . 162
10.7 Example . 164
10.8 Using DiCons Specifications . 169

10.8.1 From DiCons Specifications to LTSs 169
10.8.2 From DiCons LTSs to MRRTSs 170
10.8.3 Example . 172

10.9 Related Work . 177
10.10 Conclusions . 179

11 Generation of Internet Applications 181
11.1 Programming Internet Applications . 181

11.1.1 Hypertext Documents . 182
11.1.2 Adding Input Parameters to Hypertexts 184
11.1.3 Adding Output Parameters to Hypertexts 189
11.1.4 Communicating Hypertext Documents 191

11.2 Generating Executable Code . 195
11.2.1 Alphabet . 196
11.2.2 Operators . 197

11.3 Implementing the Compiler . 200
11.4 Future Work . 200

11.4.1 Using XML . 201
11.4.2 Adding Scope Control . 207
11.4.3 Adding Access Control . 207
11.4.4 Adding Transactional Processes 208

11.5 Conclusions . 208

Contents xi

IV Conclusions 209

12 Related Work 211

13 Conclusions 215

V Appendices 217

A Overview of PAtrans 219
A.1 Axioms of PAtrans . 220
A.2 Deduction Rules for T(PAtrans) . 221

B Proofs for PAtrans 223
B.1 Soundness of PAtrans . 223
B.2 Elimination of PAtrans to BPAδεrec . 232

C Proofs of Test Derivation Theory 235
C.1 Proof of Lemma 10.6.5 . 235
C.2 Proof of Theorem 10.6.7 . 237
C.3 Proof of Lemma 10.6.9 . 239
C.4 Proof of Lemma 10.6.12 . 241
C.5 Proof of Theorem 10.6.13 . 241

Summary 243

Samenvatting (Summary in Dutch) 245

Curriculum Vitae 247

Bibliography 249

Index 261

1
Introduction

In this thesis we develop DiCons, a formal language for specifying Internet applica-
tions. A DiCons specification can serve several goals, e.g., it can be used as input for
a compiler, such that a running application can be produced from it, or it can be used
by a tester to check whether a running application conforms to it.

We start this introduction by discussing some trends on Internet application devel-
opment in Section 1.1. As a result of these trends some problems arise. One of these
problems is the current state of programming languages available to developers of
Internet applications. We have a short look at these languages and tools in Sec-
tion 1.2. Next, we give a short introduction to formal methods, in which we explain
what they can be used for and how we use them. This is done in Section 1.3. The
use of formal methods for supporting the development of Internet applications is
the basis and serves as a goal of this thesis. This goal is described in more detail in
Section 1.4. Finally, we complete this chapter by giving an outline of the thesis in
Section 1.5.

1.1 Trends on the Internet

Some trends concerning the growth of the Internet, and thus the number of Inter-
net based applications, can be observed. Whereas in 2000, according to the Internet
World Stats [Min05], 360 million people made use of the Internet, nowadays over 888
million people access the Internet on a regular basis. This shows the enormous pop-
ularity of the Internet. As a result, not only more and more companies start making
use of the Internet for customer binding and for selling products, but also the ap-
plications developed for use via the Internet become more complex. Since the first
to come with an interesting application sets the standard for that application area,

2 Introduction 1

applications for the Internet are developed with a tremendous speed. Many new
services are realised, for example applications which support shopping, auctions or
voting via the Internet.

Apart from that, large portals arise next to the old style search engines. They provide
functionality that goes beyond mere guidance through the Internet. The longer the
visitor stays at the portal site and the more often he uses functionality provided
by the portal, the higher the income from advertisements will be. Therefore, portals
must offer interesting applications and must keep their functionality up to date. This
does not only imply that portals must maintain a large set of applications, but also
that they must be able to rapidly develop new services. Short time to market is an
important asset.

A third observation is that since the Internet use is growing, of course the number of
commercial transactions on the Internet is growing as well. To give an example, in
the Netherlands only, nearly 4 million people spent 1.7 billion euro via the Internet in
2004 [Bla05]. This is an increase of 35% compared to the on-line sales in 2003, where
2.8 million people made a purchase via the Internet.

Nowadays, people are using the Internet as a prime source for finding information
on all kinds of topics, and, even more importantly, the Internet is actively used for
doing on-line calculations, shopping, reservation of flights and hotel rooms, auctions
and even voting. All these on-line applications give rise to a new way of program-
ming and a new way of software development.

Apart from the number of so-called Internet applications, the complexity of these
applications increases too. This increasing complexity leads to a growing amount
of errors in Internet applications, of which examples can be found at The Risks Di-
gest [Neu05], amongst others. This increasing number of errors asks for better testing
of the applications and, preferably, this testing should be automated.

Security and dependability are important factors at all levels of interaction. Apart
from proper use of cryptographic encoding and decoding techniques, this also re-
quires that the protocols by which information is exchanged are correct. A voting
system, e.g., must guarantee that the winner is indeed the candidate who received
most support.

We conclude that these trends lead to a need for the better understanding of Internet
applications in general. More specific, a formalism for specifying these applications
is desirable, such that formal reasoning about these applications is possible.

1.2 Programming Internet Applications 3

1.2 Programming Internet Applications

Currently, a mix of different languages, at different levels, with a low degree of for-
mality is used for programming Internet applications, e.g. Perl, C# and Java. Apart
from the programming language, most Internet applications make use of a language
dedicated to the representation of transmitted data, like the Hypertext Markup Lan-
guage (HTML) and Cascading Style Sheets (CSS). The tools used for programming
Internet applications combine these programming and representation languages into
a mechanism such that both the logic and representation are combined into one lan-
guage, e.g., Active Server Pages (ASP), PHP Hypertext Preprocessor (PHP) or Java
Server Pages (JSP).

As a result, the specifications of such applications, which in most cases are the (anno-
tated) source codes, are written in multiple languages and distributed over several
files, possibly on several physically separated places on the Internet. This leads to
implementations that are hard to maintain and hard to test. Even worse, it is al-
most impossible to give proofs of properties of vital parts of the applications, e.g.,
for the implementation of a voting protocol via the Internet. So, do the applications
implement what we expect them to do?

1.3 Using Formal Methods

Aforementioned problems ask for a mechanism, i.e. a formal method, which enables
us to specify the behaviour of Internet applications in an unambiguous way. So,
making use of formal methods for specifying, reasoning about, testing and generat-
ing these Internet based systems is becoming more and more important.

Formal methods are a useful mechanism for giving exact specifications of any kind
of systems. In general, a formal method consists of a specification language having
a syntax and semantics. The syntax defines how to write down specifications. The
semantics describes the meaning of what has been written down. The applications
we focus on can be described as processes in which communication via the Internet
plays a central role. So we need a method for writing down Internet communication
processes. These processes are concurrent processes since several clients can interact
with the application simultaneously. In [Pnu77], Pnueli introduced formal reasoning
about concurrent processes using temporal logic. A graphical representation of con-
current processes using so-called Petri-nets, was introduced by Petri [Pet80]. More
algebraic approaches to modelling these processes, called process algebras, were in-
troduced by Hoare [Hoa78] and Milner [Mil80]. Process-algebraic specifications can
be used for mathematical reasoning about processes. Furthermore, since process
algebras are constructed from actions and operators, they can also be used for ex-

4 Introduction 1

pressing how the process is implemented. As a result, in this thesis we introduce a
mechanism for describing the processes using process algebra, which is nicely intro-
duced in [BW90].

A process-algebraic specification of an Internet application can be used as a basis for
e.g. a compiler, which can transform such a specification into a running application.
Furthermore, such an algebraic specification can be used by a tester to test whether
a running application conforms to this specification.

1.4 Goal of this Thesis

Building Internet applications is not an easy task. Given the many problems in-
volved, like session management and multi-user interaction, it makes sense to inves-
tigate the use of formal methods. We think that formal methods can help to develop
Internet applications more efficiently, and to improve the quality of applications.

In this thesis, we focus on answering the following questions: Is it possible to give a
useful formalism for the specification of Internet applications, such that formal reasoning,
formal testing and generation of Internet applications is possible? Does this formalism lead
to a better understanding of Internet applications?

We answer these question by introducing a new specification language DiCons (Dis-
tributed Consensus) which is used for specifying Internet protocols for distributed con-
sensus. The major characteristic of this class of protocols is that a number of users
strive to reach a common goal (e.g. make an appointment, evaluate a paper, select
a “winner”). The problem is that the users do not want to physically meet to reach
their goal, nor will there be any synchronised communication between the users. A
central system, i.e. an Internet application, is used to collect and distribute all rele-
vant information.

Our goal is to develop a language in which the aforementioned protocols can easily
be specified. The language must both be expressive enough and concrete. In order to
be applicable to an appropriate range of problems, it must have the right expressive
power. The language must be concrete enough, such that automatic generation of an
executable is feasible.

The most important feature of DiCons is that it is geared towards the highest level of
abstraction, the communication level, and that aspects of lower levels are treated in
separate parts of the language.

The language DiCons needs a formal syntax so that we can use or build tools. More-
over, in order to avoid unclarities, ambiguities or misunderstandings, it is vital that
also a formal semantics is developed. This makes it possible to establish formal prop-

1.5 Outline 5

erties of DiCons applications. For instance, in the case of Internet voting, we want to
prove that each participant only gets to vote once, and that the candidate with the
most votes is elected.

Since the work presented in this thesis is the result of a research project (which
started as a Master’s project), parts of this thesis has been presented before in [Bee00,
BBM01c, BBM01a, BBM01b, Bee02, BM03].

1.5 Outline

Since we are new to the domain of Internet applications, we start by analysing the
domain in Part I. Many techniques for doing a domain analysis are available. We
introduce them in Chapter 2 and conclude that we make use of a language-driven
system design. This approach asks for first identifying the problem domain, which
is done in Chapter 3 by comparing Web-based to window-based applications, by
inspecting some example applications and by examining security aspects. From this
domain, a problem space is abstracted in Chapter 4.

The problem space consists of several concepts which serve as a basis for the lan-
guage we develop. In Part II we formalise the concepts defined in the problem space.
As our goal is to develop a process algebra, we start in Chapter 5 by giving the basis
of many process-algebraic specification, viz. Basic Process Algebra. In the rest of this
part, this algebra is extended with several features to model important concepts in
the problem space of Internet applications for distributed consensus.

First of all, in Chapter 6, we explain how states can be specified in process alge-
bra. Furthermore, we discuss how types and operations/calculations on them can
be specified. Since all applications have an internal state, this is the first concept we
formalise. Formalisation of all other concepts depends on states to some extent.

Client interaction with Internet applications does not correspond to interaction with
other window-based applications. So, this asks for a formalisation which is dedi-
cated to Internet communication. In Chapter 7 this formalisation of client interaction
is given by modelling the communication primitives using process algebra.

In the domain analysis we conclude that an important mechanism when specifying
Internet applications is the use of so-called transactions. In Chapter 8 we explain
how transactions can be specified using process algebra.

To complete this part, we bring together all mechanisms in Chapter 9 where we
give the process algebra that can be used for giving formal specifications of Internet
applications for distributed consensus.

In Part III we show how the model can be put in practice. To show the usefulness

6 Introduction 1

of the language developed, we explain how an algebraic specification can serve as
a basis for the testing of running applications in Chapter 10. Apart from that, we
describe in Chapter 11 how an algebraic specification can be compiled into a running
application.

To complete this thesis, we discuss related work in Chapter 12 and draw some final
conclusions in Chapter 13.

I
Domain Analysis

2
Introduction to

Domain Analysis

When specifying a formal language, the exact domain of the language should be
defined, in our case the domain of Internet applications for distributed consensus.
That is, we need to identify the context and determine the boundaries of the domain
of applications we want to specify. So, we start our research by exactly identifying
this domain. In order to do this, we first need to analyse the domain, preferably by
using proven techniques. Therefore, we first give a short and general introduction to
domain-specific languages and domain analysis techniques in this chapter. Next, in
Chapter 3 the actual domain analysis is done. We finalise this part by reducing the
problem domain to a problem space in Chapter 4, as is explained in the remainder
of this chapter.

In Section 2.1, we first have a look at domain analysis in general, after which we
focus on a language-driven approach for designing domain-specific languages in
Section 2.2.

2.1 Introduction

Many researchers have been working in the domain of so-called domain-specific lan-
guages (DSL) and domain analysis. A nice overview of different approaches to domain-
specific languages is given by Van Deursen, Klint and Visser in [DKV00]. Domain
analysis concepts are discussed in detail by Arango and Prieto-Dı́az in [AP91]. Al-
though their focus is on domain analysis to support reuse-based software specifica-
tions and implementations, the concepts discussed can be applied to domain analy-

10 Introduction to Domain Analysis 2

sis in general.

From [DKV00] we learn that the development of a domain-specific language in-
volves the following steps:

1. Analysis

(a) identify the problem;
(b) gather all relevant information in the domain;
(c) cluster the knowledge in a handful of semantic notations and operations

on them;
(d) design a DSL that concisely describes applications in the domain.

2. Implementation

(a) construct a library that implements the semantic notations;
(b) design and implement a compiler that transforms DSL programs into a

running application.

3. Use

(a) write DSL programs.

In the remainder of this part we discuss points 1a and 1b. In Part II of this thesis,
point 1c is discussed, so we introduce the different components of the formal model.
Point 1d is discussed in detail in Chapter 9 where a formal model for specifying In-
ternet applications, DiCons, is given. Part III of this thesis is concerned with points 2a
and 2b. In this part we show how specifications can be used (point 3a) for the testing
and generation of Internet applications, respectively.

2.2 Language-Driven System Design

As stated in points 1a and 1b, we need to identify the problem and gather all relevant
information. To do this, Mauw, Wiersma and Willemse introduce a language-driven
approach for designing domain-specific languages in [MWW04], which we follow to
a large extent. Their approach consists of three steps:

1. identification of the problem domain;

2. identification of the problem space;

3. formulation of the language definition.

In the remainder of this chapter we shortly discuss these steps and we summarise
how we handle them in this thesis.

2.2 Language-Driven System Design 11

2.2.1 Identification of the Problem Domain

In [AP91], the identifying of the problem and the gathering of all relevant knowl-
edge concerning the problem domain is called domain identification. Most important
sources for this identification are technical literature, existing applications and more
general input like customer surveys.

In Chapter 3 we identify the problem domain using several techniques. First of all,
in Section 3.1 we draw a distinction between several types of Internet applications.
As mentioned, we restrict ourselves to a specific subset of all Internet applications.
Next, in Section 3.3, we compare this set of Internet applications to window-based
applications, i.e., to applications which are simply accessed using a graphical user
interface on the machine on which the application is executed. After having a clear
view of the type of applications we focus on, we give some examples in Section 3.4.
Of course, as we are dealing with Internet communication, security is important.
Therefore, we discuss security considerations in Section 3.5. This discussion results
amongst other things in a need for access control. Therefore, access control models
are discussed in Section 3.6.

2.2.2 Identification of the Problem Space

The outcome of identifying the problem domain is a collection of concepts which are
related to the actual problem, in our case related to the domain of Internet applica-
tions for distributed consensus. These concepts are often too general and too large
for actually solving the problem. Therefore, this set of concepts, i.e. the problem
domain, should be restricted. This restricted domain is called the problem space.

As proposed in [MWW04], an approach for getting a restriction of the problem do-
main is classifying the concepts into three categories, viz. irrelevant concepts, vari-
able concepts and fixed concepts. Irrelevant concepts are those concepts that do not
play any part in the solution to the problem. Variable concepts are those concepts that
vary depending on instances of the problem. In that case, the variable concepts are
problem parameters. These so-called statically variable concepts influence the actual
syntax of the domain-specific language, in this case of DiCons. Those variable con-
cepts that vary within an instance of the problem domain determine the behaviour of
the system. Therefore, these concepts, called dynamically variable concepts, appear in
the state space of the Internet applications specified in DiCons. Finally, fixed concepts
are those concepts that are identical to all instances of the problem.

The class of all variable and fixed concepts is referred to as the problem space. In
Chapter 4 we give the concepts and their classification.

12 Introduction to Domain Analysis 2

2.2.3 Formulation of the Language Definition

Giving a formal definition of the language is done in Part II of this thesis. We first
give formalisms for the different concepts as defined in the problem space in Chap-
ter 4. As mentioned before, the variable concepts define which concepts serve as a
basis for the syntax of the language and which lead to a formal definition of the state
space of Internet applications. In Chapter 4 we refer to the chapters in Part II for
making the connection between the concepts and the model. The actual language,
DiCons, is given in Chapter 9.

Since we also want to put DiCons in practice, which is called the pragmatics of the
language, we show in Part III of this thesis how a DiCons specification can serve as
a basis for the testing of Internet applications (see Chapter 10) and how it can be
compiled into a running application which conforms to the specification (see Chap-
ter 11).

3
Domain Identification

Our goal is to prove properties of Internet applications, test them and generate exe-
cutable code from (formal) specifications. These goals are kept in mind while iden-
tifying the domain. In this section we sketch a general picture of the domain we
are focusing on. After that, we discuss the similarities and differences between Web
based and window-based applications. Furthermore, we inspect some example ap-
plications. Note that this is quite an informal approach. However, the goal of the
problem domain analysis is to get (and give) an idea on what we aim at specifying,
as is stated in points 1a and 1b on page 10.

In the next chapter we summarise the concepts that are fundamental to the domain of
Internet applications for distributed consensus, based on the domain identification
done in this chapter. This results in an informal notion of the actual problem space.
The formal definition of the problem space is presented in Part II.

Since we aim at giving formal specifications of communication protocols, the do-
main analysis takes place from the Internet applications’ point of view, i.e. a technical
(protocol-based) point of view focussing on client interaction with the applications
to be modelled.

3.1 Internet Applications for Distributed Consensus

Nowadays, many (software) systems make use of the Internet to communicate with
other systems. These systems can be roughly divided into two groups, viz. clients
and servers, which do not necessarily have to be disjoint.

A client uses a server, e.g., to do calculations, gather information, buy or sell prod-
ucts, or communicate with other clients via chat boxes, Web forums, etcetera. A

14 Domain Identification 3

server, on the other hand, provides applications that can be accessed by one or more
clients. These applications can be roughly split into three groups, based on the type
of client interaction:

• Applications that are used for information retrieval, without any interaction
between any of the clients that are making use of it, e.g. an application provid-
ing daily news;

• Applications that are used for synchronous interaction between its clients, e.g.
a chat box;

• Applications that are used by multiple clients to reach a (common) goal. Ex-
amples are a forum in which clients can post questions that (asynchronously)
can be answered by other clients, or a voting system where clients can (asyn-
chronously) send their votes to a central application which calculates the re-
sults.

In this thesis we focus on this last group of applications, where several clients strive
to reach a (common) goal without having to communicate synchronously, nor having
to meet physically. We call this group “Internet applications for distributed consen-
sus”.

Most of these applications are based on the widely used Hypertext Transfer Protocol
(HTTP) for interacting with the clients. All well-known Web browsers communicate
with Web servers (which provide Internet applications) using the HTTP protocol.
More information on the HTTP protocol can be found in Chapter 7, where we give
a formal model for this protocol. We continue the domain analysis discussing the
HTTP protocol in short, after which we compare Web-based, in this case this means
HTTP-based, applications to window-based (desktop) applications.

3.2 The Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) [FGM+99] is a protocol used for communi-
cating on the World Wide Web. It defines the precise manner in which clients (mainly
Web browsers) communicate with Web servers. The protocol is request/response
oriented: The client sends a request to the server after which the server sends a re-
sponse.

HTTP is a connection-less protocol. This means that the client opens a connection,
sends a request, receives a response, and closes the connection. As a result, each
request/response pair requires its own connection. Furthermore, HTTP is a stateless
protocol, which means that it has no memory of former connections and cannot dis-
tinguish one client’s request from another. Every connection is a new request from

3.3 Web-Based versus Window-Based Applications 15

an anonymous client. There are however some strategies for adding state to HTTP.
Since requests can be extended with parameters, one can include a so-called session
identifier to interconnect consecutive requests and responses. This is discussed in
more detail in Section 11.1.4.

As can be concluded from its name, the Hypertext Transfer Protocol is mainly used
for sending hypertext documents to requesting clients. These documents can be
considered text files containing information. However, apart from normal text doc-
uments, a hypertext can contain interactive elements, like links to other texts and
forms that can be filled in and submitted. These interactive elements serve as a basis
for all HTTP-based Web applications. To make up hypertext documents, one can
make use of several techniques, of which the Hypertext Markup Language (HTML)
[RLHJ99] is the most widely used. HTML contains a mechanism for describing forms
that can be filled in and submitted, i.e. the values filled in in the form are sent to the
application which provides the form. In this way, communication between applica-
tions and users take place. A more detailed description of the Hypertext Markup
Language can be found in Section 11.1.1. The chosen markup language is irrelevant
and therefore does not influence the DiCons language. In Chapter 7, the DiCons rep-
resentation of HTTP interaction is given. In Section 4.3.2 it is shown how the HTTP
protocol serves as a basis for the interaction primitives.

3.3 Web-Based versus Window-Based Applications

In general, Web-based applications, or Internet applications, behave like window-
based (desktop) applications, i.e., like applications which are simply accessed using
a graphical user interface on the machine on which the application is executed. They
both communicate via a user interface with one or more clients. However, there are
some major differences.

As mentioned before, the Internet applications we focus on are based on client/ser-
ver communication via the Internet. The application runs on a server which is con-
nected to the Internet. Via this connection, clients who are also connected to the
Internet can interact with the application using prescribed protocols. Clients send
requests over the Internet to the server on which the application runs. The server
receives the requests and returns calculated responses.

In Figures 3.1 and 3.2 a schematic overview of the communication with Internet ap-
plications and window-based applications is given. Clients interacting with window-
based applications are using a (graphical) user interface which is directly connected
to the application. When interacting with Internet applications, the client sends an
HTTP request [FGM+99] via the Internet, i.e. via some third parties, to the server.
The server receives the request which subsequently is sent to the application. After

16 Domain Identification 3

Clients
Third

Parties Server Appli-
cation

HTTP request

HTTP response

Figure 3.1: Internet interaction

Client
Appli-
cation

GUI

GUI

Figure 3.2: Window-based interaction

receiving the request, the application calculates a response which is sent back to the
requesting client. As can be seen in Figure 3.1, when testing an Internet applica-
tion we have to take into account five entities, viz. clients, communication protocols,
third parties, Web servers and the application itself.

Clients The clients we focus on are so-called thin clients. This means that they have
reduced or no possibility to do calculations. They make use of a centralised
resource to operate. In the Wikipedia Encyclopedia1, a thin client is defined
as “a computer (client) in client-server architecture networks which has little
or no application logic, so it has to depend primarily on the central server for
processing activities”.
In the context of Internet applications, thin clients are usually Web browsers.
In general, more than one client can simultaneously access an Internet applica-
tion. Unlike stand-alone applications, while the application stays alive, clients
can fail, i.e. they can “disappear”: a browser can simply be closed without
notifying the application.

Dependency on third parties Since interaction takes place via the Internet, commu-
nication depends on third parties. First of all, packages transmitted go via
routers which control the Internet traffic. It is not known which route on the
World Wide Web is taken to get from the client to the server and back. Apart
from transmitting the requests and responses, there are more dependencies,
like DNS servers for translating domain names into IP addresses, trusted third
parties for verifying certificates and e-mail servers for both the sending and
receiving of e-mail messages.

1See http://en.wikipedia.org/wiki/Thin client

3.3 Web-Based versus Window-Based Applications 17

Stand-alone applications usually do not depend on any of these parties.

Communication via the Internet Most of the communication with Internet applica-
tions we focus on is based on the Hypertext Transfer Protocol (HTTP). This
protocol is request-response based. A Web server is waiting for requests from
clients. As soon as a request comes in, the request is processed by an applica-
tion running on the server. It produces a response which is sent back. Since
the communication takes place via the Internet, delay times are unknown and
communication can fail. Furthermore, messages can overtake other messages.

Web servers A Web server is a piece of hardware connected to the Internet. In con-
trast to stand-alone machines running a stand-alone application, a client might
try to access a Web server which is down or overtaxed, causing the interaction
to fail.

Internet applications The Internet application itself is running on a Web server. The
applications we focus on, are based on request/response interaction with mul-
tiple clients. Since more than one client can interact with the application si-
multaneously, it is important to send back a response to the right client, and
therefore there might be a notion of who is communicating with the applica-
tion. By keeping track of the interacting parties, requests and corresponding
responses can be grouped into so-called sessions.

Main differences between Internet-based and window-based applications are the
failing of clients and Web servers, the failing of communication and overtaking of
messages between clients and the application and the dependency on third par-
ties. Furthermore, Internet applications are request/response based where window-
based applications interact with the clients using a (graphical) user interface. Most
Internet applications focus on parallel communication with more than one client.
Since multiple clients can share a common state space, testing Internet applications
is fundamentally different from testing window-based applications. Window-based
applications are mostly based on single-user interaction. Finally, we mention that we
discuss security aspects which rise when dealing with Internet-based applications in
Section 3.5. These security aspects also differ for Internet-based and window-based
applications.

More differences between Web-based and window-based systems can be found in
e.g. [RFPG96].

18 Domain Identification 3

3.4 Example Applications

In this section some relevant applications are discussed. By inspecting these appli-
cations, we define concepts that are relevant to the language we develop. Message
sequence charts (MSCs) are used for illustrating the applications [MB01]. MSC is a
graphical language for the description of both interactions between and local actions
of system components. See [IT00] for more information on the MSC language. The
MSCs are only used for illustrating the protocols, not for giving a complete formal
specification. In [BBM01a] an extension to MSCs is presented which is dedicated
to specifying Internet applications. However, we decided not to use this extension
since it asks for explaining lots of notation which goes beyond the goal of this section,
namely getting a feeling of how the example applications work.

The selected applications are the drawing of Sinterklaaslootjes, an on-line meeting
scheduler, voting via the Internet and an Internet auction.

3.4.1 Sinterklaaslootjes

Near Sinterklaas, which takes place yearly on the sixth of December, it is a Dutch
tradition that people make a surprise packet for someone else. Participants of a
surprise evening come together and they all draw a ticket with the name of one
other participant on it. They have to make a surprise packet for the participant they
have drawn. It is not allowed to make a packet for oneself, so if someone draws
the ticket with his own name on it, all tickets must be recollected and the drawing
must be done over again. Apart from the fact that people have to meet for drawing
tickets, often one has to backtrack on the drawing procedure. By using the Internet
everyone can draw his ticket at his own desk at a suitable time. In Figure 3.3 an
example, specified in MSC (actually HMSC), of a simple protocol which achieves the
desired functionality is given.

msc Sinterklaaslootjes

@@¡¡

?
Initialisation

?
Drawing

?
¡¡@@

Figure 3.3: The drawing protocol

3.4 Example Applications 19

Figure 3.3 shows that first an initialisation takes place, which is followed by a draw-
ing phase. Both processes, the initialisation and drawing, are sketched in MSCs.

Initiator Application
Participant

A
Participant

B
Participant

C
set participants
({A,B,C})

start

send email
send email
send email

msc Initialisation (Sinterklaaslootjes)

Figure 3.4: The initialisation phase

In the initialisation phase, specified in Figure 3.4, a person who is called the initia-
tor starts the application by entering the list of participants which in this example
contains three participants, A, B and C. After providing all participants, the initiator
confirms that the drawing can start. The application sends an e-mail to all partic-
ipants (in arbitrary order) to inform them of their participation. They are asked to
visit the Internet site, i.e. the application, to draw a ticket.

Initiator Application
Participant

A
Participant

B
Participant

C

draw ticket
ticket

draw ticket
ticket

draw ticket
ticket

msc Drawing (Sinterklaaslootjes)

Figure 3.5: The drawing phase

Next, the drawing phase, given in Figure 3.5 starts. In arbitrary order, all participants
draw a ticket containing the name of one of the other participants.

20 Domain Identification 3

3.4.2 Meeting Scheduler

The meeting scheduler specified in this document is a simplified version of the meet-
ing scheduler presented in [MRW01].

Scheduling a meeting often is a very time-consuming activity. As a scheduler, you
have to make several phone calls and type several e-mails to collect the proper
data to come to a date. Via the Internet you can automate these activities which
is sketched in Figure 3.6.

msc Meeting scheduler

@@¡¡

?
Initialisation

?c¾ c

?
Checking

?c - c

6

?
Calculation

?
¡¡@@

Figure 3.6: The Meeting scheduler protocol

This example consists of an initialisation phase in which an initiator provides the
application with the proper data. Next, several check phases take place, in which
invitees for the meeting can provide the application with their wishes. Finally, a
calculation takes place in which a suitable date, if available, is selected.

An example of the initialisation phase is given in Figure 3.7. The initiator provides
the application with a set of possible dates on which the meeting might take place.
Apart from that, he tells the application whom to invite for the meeting. He also has
to set a deadline before which all invitees have to tell the application which dates
do not suit them. After having provided all this information, the initiator starts the
scheduler. All invitees receive an e-mail in which they are asked to check the dates
for convenience.

If an invitee is not available on one of the possible dates, he can provide the appli-
cation with this inconvenience during the checking phase, as sketched in Figure 3.8.
As long as the deadline is not reached, the inconvenient dates can be updated by all
invitees.

3.4 Example Applications 21

Initiator Application
Invitee

A
Invitee

B
Invitee

C

set dates
({X,Y,Z})
set invitees
({A,B,C})
set deadline(T)

start

check email
check email
check email

T

msc Initialisation (meeting scheduler)

Figure 3.7: The initialisation phase

Initiator Application
Invitee

A
Invitee

B
Invitee

C

deadline not reached

inconv(X)

inconv(Y)

inconv(Z)

alt

process dates

msc Checking (meeting scheduler)

Figure 3.8: The checking phase

After the passing of the deadline, the application calculates whether a date can be
found on which all invitees are available, as given in Figure 3.9. If a date is found,
the initiator together with the invitees receive a confirmation, in which they are in-
vited for the meeting and provided with the final date. If no date is available, the
meeting is cancelled. The initiator and all invitees receive an e-mail containing the
cancellation.

Note that the calculation phase given here does not have interactions with any of the

22 Domain Identification 3

Initiator Application
Invitee

A
Invitee

B
Invitee

C

T

calc date

date found

invite
invite
invite
invite

no date found

cancel
cancel
cancel
cancel

alt

msc Calculation (meeting scheduler)

Figure 3.9: The calculation phase

users: only e-mails are sent to the initiator and invitees. Of course, it is also possible
to specify that e.g. the initiator is allowed to pick a date, depending on availability
of the most important invitees. After selecting this date some people are invited and
others, those who cannot join the meeting, receive a message containing only the
selected date. In that case the application can help the initiator, e.g., by ordering the
dates on availability.

3.4.3 Internet Vote

Another example of an Internet application for distributed consensus is voting via
the Web, as sketched in Figure 3.10. Similar to the meeting scheduler, the voting
starts with an initialisation phase and ends with a calculation. In between these
phases, one or more votes can take place.

In Figure 3.11 the initialisation is given. To start a vote, an initiator has to enter the
candidates, voters and the final deadline. After providing the application with all
this information, the initiator starts the actual vote. All voters receive an e-mail in
which they are notified with the vote and invited to bring out their votes.

Next, all voters are allowed to vote at most once and they must do this before the

3.4 Example Applications 23

msc Internet vote

@@¡¡

?
Initialisation

?c¾ c

?
Vote
?c - c

6

?
Calculation

?
¡¡@@

Figure 3.10: The Internet Vote protocol

Initiator Application
Voter

A
Voter

B
Voter

C

set candidates
({X,Y,Z})

set voters({A,B,C})
set deadline(T)

start

vote email
vote email
vote email

T

msc Initialisation (Vote)

Figure 3.11: The initialisation phase

deadline, provided by the initiator, is reached. The voting process is sketched in
Figure 3.12. All votes are processed by the application.

At the moment that the deadline is reached, the voters can no longer vote. The final
calculation takes place and the results are sent to the initiator. Figure 3.13 describes
this final phase.

24 Domain Identification 3

Initiator Application
Voter

A
Voter

B
Voter

C

deadline not reached

vote(X)

vote(Y)

vote(Z)

alt

process vote

msc Vote

Figure 3.12: The vote phase

Initiator Application
Voter

A
Voter

B
Voter

C

T

calc winner

winner

msc Calculation (Vote)

Figure 3.13: The calculation phase

3.4.4 Internet Auction

Another interesting protocol which takes part in the domain of distributed consensus
applications is an Internet auction. This protocol is sketched in Figure 3.14. Similar
to the example applications given before, this application starts with an initialisation
phase. As in the case of the meeting scheduler and the Internet vote, the application
ends with a calculation phase. In between these phases, the bidding takes place.

Anyone can start his own auction for his own products. Before someone can bid for
an article, the auction has to be initialised by the initiator, which is drawn in Fig-
ure 3.15. He adds the article to the auction and sets a deadline before which the last
bid has to be made. After providing the application with all relevant information,
the auction is started.

People all over the world can bid for any kind of article which is added to the auction.

3.4 Example Applications 25

msc Internet auction

@@¡¡

?
Initialisation

?c¾ c

?
Bidding

?c - c

6

?
Calculation

?
¡¡@@

Figure 3.14: The Internet Auction protocol

Initiator Application
Bidder

A
Bidder

B
Bidder

C

set article
set deadline(T)

start

T

msc Initialisation (auction)

Figure 3.15: The initialisation phase

In the example given here, three bidders (A, B and C) can make a bid for the article
as can be seen in Figure 3.16.

When the deadline is reached, the application calculates the highest bid and sends
e-mails to the initiator and the highest bidder. This final phase is sketched in Fig-
ure 3.17).

Now that we have an idea of the type of applications we aim at specifying, we have
a look at security issues that rise when implementing any of these example applica-
tions for the Internet.

26 Domain Identification 3

Initiator Application
Bidder

A
Bidder

B
Bidder

C

deadline not reached

bid

bid

bid

alt

process bid

msc Bidding

Figure 3.16: The bidding phase

Initiator Application
Bidder

A
Bidder

B
Bidder

C

T

calc highest

highest

A is highest bidder

highest

B is highest bidder

highest

C is highest bidder

highest

alt

msc Calculation (auction)

Figure 3.17: The calculation phase

3.5 Security Considerations

Using the Internet as a medium for communication has important advantages. Users
can access applications at almost any time at any place in the world. Of course, being

3.5 Security Considerations 27

widely available also introduces threats to the applications and its users. In this
section we have a closer look at the security aspects that arise when dealing with
Internet applications in general, and the applications we focus on in more detail.
We do this by making use of the STRIDE model [HL02]. STRIDE is an acronym for
spoofing identity, tampering with data, repudiation, information disclosure, denial
of service and elevation of privilege. The STRIDE model sorts threats in these six
categories.

Spoofing Identity Spoofing identity means that a client can pretend being someone
else by using his or her user name and password to access the Internet applica-
tion. Furthermore, applications can spoof identity of other applications, e.g. by
showing a fake version of the other application’s login screen. A client might
fill in its authentication information, providing it in this way to the malicious
application. Owners of this application can abuse the information provided by
accessing the actual application with it.

In the problem domain, authentication of the client is an important concept. All
interactions with the applications are based on who the client is, and what he is
allowed to do. Authentication can be implemented in several ways, e.g. by asking
the client to authenticate using personal information, like a user name and password.
However, if a user shares this information with someone else, this other person can
pretend being the intended user, and thus access the application without having
the right identity. This careless handling of trusted users goes beyond the scope of
the DiCons applications and is therefore not taken into account. Ways to prevent
this spoofing of identities is providing trusted users with a tool to uniquely identify
themselves. For example, this is done by online banking systems, providing their
customers with card readers which generate unique codes. These codes have to be
typed in for identification. We assume that DiCons applications have the ability to
uniquely identify their users.

Tampering with Data Data tampering is modifying an application’s data in an un-
intended way. The modification of data can take place in several ways. First of
all, data, e.g. in a database, can be accessed directly and thus be modified di-
rectly. Apart from that, messages flowing between applications and a database,
or over the Internet, between clients and an application can be altered. These
modifications might cause unpredictable behaviour.

Although this is an important threat based on client hacking, we assume that the en-
vironment in which DiCons applications are executed is protecting the applications
with respect to the tampering of data. This can for example be done by making use
of Secure Socket Layers [FKK96] for communication. Furthermore, we assume that

28 Domain Identification 3

the machine serving the application is protected in such a way that access to the ap-
plication’s data is only available to the application itself. So, e.g., no direct access
to the applications’ database should be provided. Finally, we assume that multiple
instances of one application do not have a shared state space.

Repudiation If a user denies having performed an action, and other parties cannot
prove this, we call this repudiation. These threats occur for example when a
user buys an item in an Internet shop, or places a bid in an auction, after which
he denies this. Apart from that, the execution of a prohibited operation by a
user is also called repudiation if the user who executed the operation cannot
be traced.

This also is an important threat, however, it mainly is a legal issue instead of a tech-
nical one. The tracing of attackers on this threat can be done by providing log files of
all messages which are sent from and to the application, together with their sender
and possibly some other information, like the IP address, i.e., the address where the
sender actually is located on the Internet. This address can be spoofed as well, so a
mechanism to protect the application with respect to address spoofing is required as
well. When building a compiler for generating executable applications using formal
specifications, this logging should be taken into account.

Apart from logging, important messages should be signed by customers such that
it can be proved that the customer is the only person being able to send that mes-
sage. This can e.g. be done by using digital signature techniques like Pretty Good
Privacy [Gar95].

To really prevent repudiation attacks, complex encryption and signing techniques
are required, which go beyond the scope of our research.

Information Disclosure If a user has access to information he is not allowed to see,
we call this information disclosure. Examples are a user who receives personal
information, like a creditcard number of another user, which he is not intended
to see. Also a user’s ability to read a file to which he should not have read
access, or an intruding user who is interrupting messages he is not allowed to
see, is called information disclosure.

As is the case with respect to data tampering, we assume that the server on which the
application resides is protected in such a way that accessing the application’s data
in an unintended way is not possible. Also, we assume that messages are encrypted
such that it is not possible that the information in an interrupted message becomes
available to the malicious, interrupting, party. This can for example be done by using
Secure Socket Layers [FKK96]. One of the main reasons for using formal methods for

3.5 Security Considerations 29

testing and generation of Internet applications is to ensure that the information itself
is only available to the intended users, so this is part of the DiCons specifications. By
making use of a so-called access control model or authorisation control model, we
prevent applications from sending information to unintended users.

Denial of Service A denial of service attack takes place when an application is not
available to valid users. This can for example be caused by malicious users,
overloading the systems capacity.

The denial of service attacks goes beyond the scope of DiCons. We assume that the
environment in which the DiCons application resides is resistant to these attacks, or,
at least, is protected as good as possible.

Elevation of Privilege Apart from information disclosure, it might be possible that
a user gets privileges he is not intended to have. This is called elevation of
privileges. These threats include situations in which an attacker gets privileges
and becomes part in the trusted environment of the application.

Again, as we stated when discussing identity spoofing and the disclosure of infor-
mation, this threat should be prevented by having a good authentication mechanism,
in combination with an access control model. In this access control model, authenti-
cated users should only get access to those parts of the applications for which they
are authorised.

As a result of inspecting the applications we aim at specifying, we draw some conclu-
sions with respect to security aspects of DiCons applications. First of all, we conclude
that an authentication mechanism is an important concept in the problem domain.
Such a mechanism makes it possible to (uniquely) identify users accessing the ap-
plication. Assuming that users keep the authentication information, like names and
passwords, to themselves, identity spoofing is prevented by securing messages sent
from and to the application. The secured messages can be signed by a key which
is maintained by a so-called trusted third party, such that “man in the middle” at-
tacks can be prevented. We assume that the securing of messages is handled by the
environment, e.g. by using Secure Socket Layers (SSL) [FKK96] for the sending of
HTTP messages from and to interacting clients and by using Pretty Good Privacy
(PGP) [Gar95] for encrypting e-mails. In Section 4.4.1 we have a closer look at clients
in general, and how we identify them when interaction takes place.

Apart from client identification, an access control model is needed to prevent (pos-
sibly malicious) users to execute parts of the application which they are not allowed
to access. Furthermore, by controlling access we can manage the data which is avail-
able to users, such that disclosure of information is prevented. In Section 4.4.2 we

30 Domain Identification 3

have a more detailed look at access control and we introduce the model we make
use of.

A logging mechanism must be available such that interactions with users can be
traced. This logging, in combination with the signing of messages, makes it possible
to prove that users have interacted with the application. Apart from the interaction
itself, the time and (Internet) place of the interacting party should be included in
the logs. This logging of interactions is left to the environment, e.g. to the service
providing the Internet connection.

For the rest, we assume a secure environment which is as good as possible protected
for denial of service attacks, which contains a mechanism for secure communica-
tion, and which cannot be accessed by malicious users in unintended ways. These
environmental security constraints go beyond the scope of DiCons applications.

3.6 Access Control

In the previous section we concluded that access control plays an important role in
our problem domain. Therefore, we discuss access control models in more detail.
Using access control one can control permissions for accessing applications and ap-
plication data in general. From [TS97, Tho97] we learn that there are two classes of
access control, viz. the traditional passive subject-object approach and active security
models. The main difference between the two is that in active models users’ permis-
sions can be activated and deactivated.

Examples of passive models are role-based access control (RBAC) models [SCFY96].
In these models, permissions are associated with roles of which users can be mem-
bers. They can become active security models if, e.g., teams are introduced [Tho97].
On the other hand, one can look at access control from a task-oriented perspective
using task-based authorisation controls (TBAC) [TS97], which are also examples of
active models.

In the remainder of this section we discuss role based access control models, after
which we have a look at task based authorisation control models. In Section 4.4.2 we
explain which elements of the different models take part in the problem space.

3.6.1 Role Based Access Control

In role-based access control models as discussed in [SCFY96], a role is the basic build-
ing block for defining access and authorisation. RBAC models have, among other
things, the following components: sets of users, roles and permissions; a many-
to-many permission to role assignment relation; and a many-to-many user to role

3.6 Access Control 31

assignment relation.

The set of users (or so-called subjects) contains all possible users who are allowed to
access application data (objects) in some way. Users can have different permissions
on objects. E.g., a reviewer of a paper has only read permissions where authors have
both read and write permissions. Instead of assigning permissions to users, they are
assigned to roles of which users can be a member. If a user is a member of a role, he
or she has all permissions assigned to that role. A user can be a member of multiple
roles. If so, he gets all permissions of the roles he is a member of.

A partial order (a hierarchy) on the set of roles can exist. Roles can be more pow-
erful (senior roles) than other roles (junior roles), causing the senior role to inherit all
permissions of the junior role.

Another important concept in RBAC models are constraints. Constraints can apply
to all components of a RBAC model. To give an example, one can set the constraint
that two roles are mutually exclusive, which means that a user cannot be a member
of both roles simultaneously. In the reviewer/author example, a constraint should
be that authors only have write permissions on papers they have written themselves.

In most UNIX-like systems there is a notion of groups. However, this is not the same
as roles in a RBAC model. The main difference between roles and groups is that
groups are typically treated as a collection of users and not as a collection of per-
missions [SCFY96]. In RBAC, a role is both a collection of users and a collection
of permissions. According to Sandhu et al. [SCFY96] it should be approximately
equally easy to determine role membership and role permissions. Apart from that,
control of role membership and role permissions should be relatively centralised. In
RBAC, users with a similar set of roles implicitly belong to one group. Furthermore,
so called administrative permissions are introduced. These are permissions to modify
users, roles, permissions and constraints.

Another component can be added to RBAC, viz. duties [Jon93]. They describe a re-
sponsible domain of a user, i.e. a set of tasks that have to be fulfilled under certain
circumstances. The obeying of duties by users can be monitored, such that actions
can be taken if users do not fulfil their tasks.

In RBAC, users, roles, permissions and constraints are predefined and, more or less,
fixed. Only a user who has administrative permissions can change user to role and
role to permission assignments. However this cannot be done automatically. There-
fore, these models are called passive.

To make the RBAC model less passive, team-based access control (TMAC) is intro-
duced [Tho97]. TMAC provides a way to apply RBAC in a collaborative environ-
ment. A team is defined as a collection of users with specific roles who try to accom-
plish a specific task. One objective for introducing TMAC is to provide just-in-time

32 Domain Identification 3

permissions, i.e., there is a run-time permission activation mechanism at the level of
individual users. This leads to automation, therefore reducing administrative over-
head.

3.6.2 Task Based Authorisation Control

In task-based authorisation control (TBAC) models [TS97], sequences of operations,
so-called tasks, need to be controlled. However, only a limited set of users is allowed
to do specific tasks and, in most cases, within a limited time interval. TBAC enables
granting and revoking of permissions to be automated and co-ordinated with the
progression of the various tasks. In contrast to RBAC, this can be self-administering
to a great extent. As in TBAC, in the workflow authorisation model (WAM) [AH96],
authorisation is a more primitive concept. It represents that a subject has a privilege
on an object for a certain time interval.

To start executing a specific task, an authorisation step takes place. After successfully
ending this step, a set of permissions is activated. This set is dynamic and can change
if, e.g., a deadline is passed.

TBAC understands the notion of “usage” associated with permissions. This means
that an active permission does not imply an unlimited number of accesses with that
permission. Rather, authorisations have strict usage, validity and expiration charac-
teristics that may be tracked at run-time.

The main difference between TMAC and TBAC is that using TBAC leads to a work-
flow that is defined more easily. In TBAC there is no notion of roles. Users execute
an authorisation step and, depending on the task’s state, a set of permissions is acti-
vated. So instead of using roles, during execution of a task, different permissions are
assigned to users depending on the task’s progression. On the other hand, if users
have the same permissions independent of the task’s progression (e.g. reviewing of
a paper) RBAC suits better.

In Section 4.4.2 we discuss which parts of the models introduced in this section are
concepts in the problem space.

4
Concepts

In this chapter we have a more detailed look at the concepts. In Section 4.1 we intro-
duce groups of concepts that can be determined by looking at the problem domain
identified in Chapter 3. In the rest of this chapter the groups of concepts introduced
are discussed in more detail. As explained in Section 2.2.2, we classify the concepts
into three categories, viz. irrelevant concepts, variable concepts and fixed concepts.
To recall, irrelevant concepts are those concepts that do not play any part in the
solution to the problem. Statically variable concepts are those concepts that vary
depending on instances of the problem and therefore influence the actual syntax of
DiCons. The dynamically variable concepts vary within an instance of the problem
domain and appear in the state space of the Internet applications specified in DiCons.
Fixed concepts are identical to all instances of the problem.

We do not give formal definitions of the concepts here. In Part II of this thesis we for-
malise the concepts discussed in this chapter. However, we do refer to the chapters
that handle formalisation of the concepts.

4.1 Introduction

We determine the concepts related to Internet applications for distributed consensus.
We do this by looking at all elements that occur in the execution of the intended ap-
plications. In this chapter we give only informal definitions. In Part II, we formalise
the concepts introduced here. In this section we introduce groups of concepts that
are discussed in more detail in the remainder of this chapter.

All examples given in Section 3.4 are specifications of applications in general. One
instance of the application is concerned with one execution of the protocol. So, e.g.,

34 Concepts 4

one instance of the voting protocol can be the voting for a player of the year where
another instances is used for voting for the chairman of a board. Instances can be
identified by the data dedicated to the actual consensus problem with which the
instance is concerned. The data, i.e. the variables and their valuations, is called the
instance’s state space.

A first group of concepts is concerned with (progression of) the Internet application
itself. We call this group process-related concepts, which is discussed in Section 4.2.

All applications we focus on are based on asynchronous interaction with the users
who strive to reach consensus. As can be seen by looking at the figures in Section 3.4,
most interactions are initialised by the users. This is a result of the use of the HTTP
protocol, as explained in Section 3.3. Furthermore, the application can actively send
messages to users using e-mails for communication. So the only presentations are
Web forms for input (receiving data) and output (sending data), and e-mails for out-
put. The selected applications consist of multiple sequentially and/or concurrently
executed sessions, which themselves consist of sequentially executed interactions. In
the initial session, the initiator has to start the application by setting its parameters.
The next sessions are the interaction sessions. In these sessions, the users can interact
with the application until a specific goal is reached or until a deadline is passed. At
that moment the final calculation starts. All concepts related to user interaction are
discussed in Section 4.3.

As can be seen in the example applications, all specifications contain a special user
who is called the initiator. This user is the user who provides the application with
the data dedicated to the actual consensus problem. Examples of this data are given
in Section 3.4. Note that the initiator might not be known by the application when he
starts interacting with it. Therefore there must be a notion of anonymous users, who
are able to identify themselves using some sort of identification mechanism. Another
concept that can be determined is the group of users who try to reach consensus. In
the examples given in Chapter 3, all members of this group play a similar role in
the consensus protocol, e.g. voter, bidder or invitee. This group can be dynamic and
initialised by the initiator, or it can be a collection of known users. So there is a
need for grouping users who play a similar role. The concepts related to users are
discussed in Section 4.4.

A calculation such as counting the votes or finding the highest bid can be done. Since
calculations can be of any form, functions and local actions (of the applications) are
completely different. For a drawing the application should prevent that a participant
draws twice or that he draws himself. The application for a meeting scheduler has to
process inconvenient dates and it has to check if a proper date exists. Internal actions
for a voting application are checking if a voter has not voted before, processing votes
and calculating the winner. An auction application has to process all bids and finally
calculate the highest bid. In Section 4.5 we discuss concepts related to all kinds of

4.2 Processes 35

calculations.

Applications can have a deadline before which interactions with users must take
place. After reaching the deadline, the possible final calculation takes place. This
deadline could also be introduced in the drawing protocol. For example, it might be
the day before Sinterklaas. As a result, there must be a notion of time. Apart from
deadlines, time can be used for calculations, e.g. for calculating the average time a
user reacts on an invitation. All time-related concepts are discussed in Section 4.6.

4.2 Processes

We aim at specifying Internet applications for distributed consensus. Note that we
want to specify the applications, not their environment. We assume that the appli-
cation is installed and running on a machine connected to the Internet. All interac-
tionw with the application take place via the Internet, using the HTTP protocol. This
means that the client sends requests to the application, on which the application cal-
culates and returns a response. So the interaction behaviour of the application is
event-driven. However, since the application actually is a sequentially executable
process, we want to specify the application as a sequential process. The semantics of
this process is an event-driven Web application.

Message reception from users not being the initiator only takes place in the interac-
tion sessions. You are allowed to vote only once, for one candidate. And you are
allowed to draw only one ticket. You can, however, bid several times for an article
and check several times for inconvenient dates until a deadline is reached. So there
must be a mechanism for determining the interactions which are allowed and those
which are forbidden, i.e., there must be a mechanism to handle progression of the
process. As a result, we determine the concept of (progression of) process execution. We
classify the process execution as fixed since it is identical for all problems. A formal
method for giving specifications of processes is process algebra. In a process alge-
bra, a process is represented by an algebraic term, constructed from (atomic) actions
using operators. The semantics of such a term is defined by axioms and/or opera-
tional rules. Our goal is to identify the right actions and operators to be able to easily
write down correct specifications of Internet applications for distributed consensus.
Execution is implicitly defined in the operational semantics of the process algebraic
term that specifies the application’s behaviour. In Chapter 5 we introduce the basic
process algebra, which serves as a basis for the language we develop. Of course,
since we develop a process algebra, actions and operators are also introduced in the
rest of the formalisation, i.e., in Chapters 6 to 9.

An instance of an application is exactly one execution of the application, i.e., an in-
stance of an application can be seen as a sequence of states in the state space. The

36 Concepts 4

concept of instances are dynamically variable concepts which vary within a problem
instance as defined in [MWW04]. A problem instance of the problem domain is deter-
mined by a set of characteristic concepts. So in our case, an application can be seen
as a problem instance.

The progression a process makes depends on the specification together with the state
the application is in. Actions can be executed depending on the state the application
is in. This state is an element of the state space. The state space contains all possi-
ble valuations of all variables in the state of an application, together with a program
counter, indicating “where the application is” at a certain moment. The state space
is a dynamically variable concept, which depends on the application’s specification.
Where the valuation of the variables is a dynamically variable concept within a prob-
lem instance, declaration of variables are statically variable concepts. As a result, we
need a (syntactical) mechanism to be able to define state space elements, i.e., we
need syntax for introducing variables and their valuations. This is formalised in
Chapter 6. The program counter does not need to be introduced explicitly, since
progression is a fixed concept for all applications.

4.2.1 Transactions

As we have seen before, subsequent user interactions can be grouped into sessions.
The applications we specify contain sessions for, e.g., voting, visiting auctions but
also making payments via the Internet. Most of these sessions (or processes) are
based on the concept of transactions. A transaction can be seen as a “set” of (in-
ter)actions which occur “as a group” [EGLT76], i.e., they either all succeed or, when
something goes wrong during execution, the state before starting the transaction is
restored. This means that if during a transaction something goes wrong, the visitor
does not have to fear that his vote is counted without him wanting to, that his correct
bid for an object is ignored or that he pays an amount of money which never reaches
the receiver’s account. If the transaction is not finished correctly, it is completely
undone. Apart from Internet applications, nearly all database systems implement
transactional access: after doing table updates, one has to commit the updates to
make them available to other users. As long as the updates are not committed, they
can be undone (rolled back). So transactions play an important role when specifying
the behaviour of interactive systems.

Gray and Reuter [GR93] define a transaction as a “set” of (inter)actions which occur
“as a group”, meaning that they either all succeed, or none of them succeeds. If all
actions within a transaction are completed, the global state can be changed by an
atomic and synchronised commit statement. During execution of this commit state-
ment no other processes can access data updated by that statement.

To get a feeling for the use of transactions, have a look at the following example.

4.2 Processes 37

Suppose someone is going to the polls, e.g. to vote for a president. Then this voting
process consists of several steps. First of all, the voter has to identify himself by
showing his passport. If the identification succeeds, he gets a ballot containing the
names of the candidates. The voter enters the polling booth, fills in the ballot and
leaves the polling booth. Up till now, the voter has not voted yet. By destroying the
ballot any time in the process, the voting is rolled back. However, if the voter puts
his ballot in the ballot box he “commits” his vote. In this example, the commit action
is an atomic action: putting the ballot in the ballot box. It might be possible that this
action cannot be atomic, e.g. when doing a payment from one bank account to the
other. The first account should be reduced and the second one increased. Suppose
that something goes wrong while increasing the second account after the first one
has been reduced. Then the entire transaction should be undone in such a way that
the owner of the first account gets his money back and the second account contains
exactly the amount of money as before starting the transaction. So:

Transactions help in coupling related actions that either should all succeed or
none of them should succeed.

Another example where transactions can be convenient is when two or more parallel
processes access shared data. Suppose that two persons try to book the final seat for
a flight. They both log in to the airline’s Web site and fill in and submit the booking
form. Then by submitting the form, they both update shared data, viz. the set of
available seats. When not using transactions, the flight can get overbooked or one of
the two passengers does not get registered although he receives a confirmation. So:

Transactions help in maintaining data integrity when parallel processes access
shared data.

As shown in the examples, the sharing of data can lead to unwanted or unexpected
behaviour since updating and reading of the data can interleave. To prevent appli-
cations from having unexpected behaviour, its parallel components should meet the
so-called ACID properties [Gra81, HR83]. ACID is an acronym for atomicity, consis-
tency, isolation and durability.

Atomicity A transaction’s changes to the state are atomic: either all happen or none
happen.

Consistency A transaction is a correct transformation of the state. The actions taken
as a group do not violate any of the integrity constraints associated with the
state.

Isolation Even though transactions execute concurrently, it appears to each trans-
action, that other transactions take place either before or after it. So isolation

38 Concepts 4

means that a program under transaction protection must behave exactly as it
would do in single-user mode.

Durability Once a transaction completes successfully (commits), its changes to the
state survive failure.

Processes that meet all four characteristics are called transactions. Transactions, and
therefore atomic actions, are the basic building blocks for constructing applications.
In Chapter 8 we formalise the concept of transactions.

4.3 User Interaction

As mentioned, user interaction is based on the Hypertext Transfer Protocol (HTTP)
[FGM+99], which is the leading protocol for accessing the World Wide Web. Doc-
uments that are transfered via the Internet are most often written in the Hypertext
Markup Language (HTML) [RLHJ99]. A short introduction to HTTP and HTML can
be found in Section 3.2. In Section 4.3.1 we give an introduction on the level of ab-
straction we make use of when giving specifications of the interaction behaviour.
The observations made in Section 4.3.1 lead to a set of interaction primitives which
is introduced in Section 4.3.2.

4.3.1 Level of Abstraction

The basic problem when defining the interaction primitives is to determine the right
level of abstraction. Since we are modelling communication using the HTTP proto-
col, it is possible to use the HTTP based interaction primitives, i.e., HTTP requests
and HTTP responses as communication primitives. However, this does not corre-
spond to the level of abstraction we would like to make use of. In order to get a
feeling of the level of abstraction which is optimally suitable, consider Figure 4.1. In
this drawing we sketch in MSC [IT00] a typical scenario of an Internet application
which is called the Meeting Scheduler. This is an application which assists in schedul-
ing a meeting by keeping track of all suitable dates and sending appropriate requests
and convocations to the intended participants of the meeting, as also introduced in
Section 3.4.

The example shows that we have two roles, viz. initiator and participant. In this
scenario, there is only one user with role initiator, while there are three users with
role participant. The MSC shows that the initiator starts the system by providing it
with meeting information. Next, the system sends an invitation to the participants
who reply by stating which dates suit them. After collecting this information, the
system informs the initiator about the options for scheduling the meeting and awaits

4.3 User Interaction 39

Initiator Server Part-1 Part-2 Part-3

initialise
invite

invite
invite

info
info

info
options
choice

convocation
convocation

convocation
show agenda

msc Basic scenario

Figure 4.1: An MSC scenario of an Internet application

the choice made by the initiator. Finally, the system informs the participants about
the date and offers the users to have a look at the agenda. Only participant 2 is
interested in the agenda.

This example nicely shows at which level of detail one wants to specify such an
application. The arrows in the diagram represent the basic interaction primitives.
First, look at the invite messages. Since the participants do not know that they are
invited for a meeting, the initiative of this interaction is at the server side. The way
in which a server can actively inform a client is e.g. by sending an e-mail. This
interaction only contains information transmitted from the server to the user. The
messages options and convocation can also be implemented as e-mails.

The last message, show agenda contains information sent by the server to the user, on
request of the user. This is simply the request and transmission of a non-interactive
Web page.

Finally, we look at the first message, initialise. The initiator has to supply the system
with various kinds of information, such as a list of proposed dates and a list of pro-
posed participants. Sending information to the central application takes place in a
so-called session. Messages info and choice can also best be implemented as sessions.

40 Concepts 4

4.3.2 The Interaction Primitives

We make use of interaction primitives which are at the level of abstraction explained
in the previous section. The naming of the primitives is based on the viewpoint of
the application (running on the server). The primitives can be distributed over two
classes, namely pushes and pulls. Reasoning from the application’s point of view, a
push sends data to an interacting users and a pull collects data from a user.

First of all, messages sent by the server (e.g. e-mails) are constructed using active push
primitives. This primitive is called an active push since from the viewpoint of the
server, it actively pushes data to a user. We use a left-arrow () to textually specify
this interaction primitive. Note that in the specifications, the user is placed on the
left-hand side of the arrow, so the arrow is pointing to the user, indicating a push.

As explained, since we make use of standard Internet technology, i.e. e-mail and
Web browsers, we are committed to use the Hypertext Transfer Protocol for most
of the interactions between users and the central application. HTTP is based on
a request-response way of interaction: a user has to request information from the
central system, e.g. by filling in a URL in a Web browser. The central system then
responds by sending a Web page or a Web form.

If the response on a user’s request contains a non-interactive Web page, the inter-
action is a standard page request which normally takes place when surfing on the
Internet. We call this kind of interactions reactive pushes. It is reactive since the server
reacts on a user’s request and it is a push since the server pushes data to the user.
For this primitive we make use of the right-left-arrow (). This arrow shows that
the user (which again is on the left-hand side) initiates the interaction after which
the central system (on the right-hand side) responds.

On the other hand, if the response to the user’s request contains a Web form, this
form can be filled in and submitted by the user. This submission itself is another
request, extended with some parameters containing the data filled in in the form.
The central system has to send a response on this new request, possibly containing
another Web form. In this way, we get a sequence of successive form submissions.
This is called a session. Finally, after submission of the last form (which again is a
request), the central system responds by sending a Web page not containing a Web
form. This ends the session as no submission can take place anymore.

So a session is a sequence of form submissions, which is started by a user accessing
the central system via a URL request and ended by the central system sending a
plain Web page. In order to be able to clearly specify Internet applications from the
viewpoint of the central system, we couple the sending of a form to its submission.
This leads to splitting up the sequence of HTTP request/response primitives, result-
ing in three kinds of interaction primitives. In Figure 4.2 an overview of the HTTP

4.3 User Interaction 41

start middle middle middle end

req0
URL

resp0
form0

req1
subm0

resp1
form1

req2
subm1

resp2
form2

reqn
submn−1

respn
page

Figure 4.2: An overview of the session primitives

request/response sequence together with the interaction primitives is given.

The first interaction, a reactive pull, starts a session. This primitive specifies the URL
request initialising the sessions, followed by the sending and submission of the first
Web form. This interaction is represented using the right-left-right-arrow (). The
user starts the interaction, so it is called reactive. Apart from the data sent to the user
there is also a flow of data from the user to the central system. Therefore we call this
interaction a pull: the system pulls data from the user via a Web form.

Subsequently, zero or more mid-session interactions can take place, which spec-
ify the sending and submission of subsequent Web forms. These interactions are
called session-oriented pulls and are represented by a session-left-right arrow ().
The dashed part represents the preceding request (i.e. the preceding form submis-
sion). Again, this is called a pull since there is a flow of data from the user to the
central system. We call this interaction session-oriented because it is a session-based
reaction on the submission of an earlier sent Web form.

Finally, for the ending of a session we make use of the session-oriented push primitive
which specifies the sending of the final Web page. For this primitive we use the
session-left-arrow () in which the dashed part again represents the preceding form
submission. Again, we call this interaction session-oriented. It is called a push since
the Web page sent to the user does not contain a Web form.

Looking at the five arrows one can easily see which arrows can be combined into
sessions and which cannot. An arrow having a dashed tail can be connected to an
arrow’s head pointing in the tail’s direction. Note that all correct interactions and
sessions of interactions start with a solid tail and end with an arrow pointing to the
left (i.e. to the user).

In Chapter 7 we formalise sessions and interaction primitives.

42 Concepts 4

4.4 Users

When looking at the users interacting with Internet applications, we come to two
important concepts, viz. client identification and access control. These two general
concepts are discussed in this section.

4.4.1 Client Identification

Plenty of mechanisms and tools are available for clients to identify themselves. The
main property of all mechanisms and tools is the communication of data which
serves for this identification. This data has to be unique information with respect
to clients, e.g., a string of characters or a card number and accompanying personal
identification number (PIN). If the client is a human, this information can also consist
of e.g. a (digital copy of a) fingerprint or iris scan, but also a smart-card serving as a
digital passport or simply a password that is only known to the person to be identi-
fied. Note that the information used for identification of clients should be available
to the client and verifiable by the application that tries to identify the client.

Apart from identification of known clients, many Internet applications can be ac-
cessed by anonymous users. To give an example, it is almost always possible to look
at bids on products in an Internet auction without having to identify oneself. As
soon as you want to place a bid, identification is required. This identification can
be done by identifying as a client which is already known by the application, as de-
scribed above, or by registering as a new client, after which identification information
is sent to the requesting client. In the latter case, the client can subsequently identify
himself by using the identification information sent to him.

To conclude, two possible identification methods should be available and are there-
fore included in the DiCons specification language:

• Identification of clients that are known to the application using unique identi-
fication information;

• Identification of clients that are not yet known to the application, by using a
mechanism for distributing identification keys, so-called registration.

Of course, for most of the everyday Internet applications, like an auction or bulletin
board, a simple but secure identification protocol should be provided. Since provid-
ing comprehensive identification protocols goes beyond the scope of this thesis, we
abstract from the actual identification step.

However, to give an example of how such an identification step might look like, we
discuss an identification protocol which is based on name/password combinations.

4.4 Users 43

Client Server

hello
who are you?

〈name〉, 〈password〉

don’t know you

welcome 〈name〉

alt

msc Identification

Client Server

hello
who are you?

I want to register
name and address?
〈name〉, 〈address〉

mail 〈password〉
to 〈address〉

who are you?
〈name〉, 〈password〉

don’t know you

welcome 〈name〉

alt

msc Registration

Figure 4.3: MSC scenarios for identifying clients

For identification of “anonymous clients” a mechanism is included which provides
passwords by identifying the user using his e-mail address. This mechanism is called
registration. By putting restrictions on these addresses we can assure that only a re-
stricted set of persons can request for identification information. To give an example,
forcing the e-mail addresses to end with @tue.nl causes only employees of the Tech-
nische Universiteit Eindhoven to be able to request for passwords.

In Figure 4.3, examples of the two identification protocols are given using Message
Sequence Charts [IT00]. These protocols are formalised in Section 7.3. In the left-
hand MSC a client known by the application identifies himself using his name and
password as identification information. In the right-hand MSC, the registration pro-
tocol is depicted.

The protocol described in the left-hand MSC in Figure 4.3 is just one out of many
examples of identification mechanisms. In this case, a name and password is com-
municated by the client, which is verified by the application running on the server.
The application provides access if the client has the right permissions to access the
application.

44 Concepts 4

In the right-hand MSC in Figure 4.3, an example of a registration protocol is depicted.
An unknown user provides the application with his name and e-mail address, after
which a password is sent to him. This password can be used in combination with
his name for identification as explained above.

In the applications we focus on, registration is only useful in combination with iden-
tification. As can be seen by comparing the two MSCs in Figure 4.3, registration is
an extension of identification. Even stronger: for users who are known to the appli-
cation, registration is replaced by identification.

Client identification is a statically variable concept with respect to DiCons specifi-
cations. By choosing a proper syntactical representation of clients, the identifica-
tion step becomes implicit. A formalisation of client identification is given in Sec-
tion 7.3.3.

4.4.2 Access Control

In Section 3.6 we gave an overview of several access control models. In this section
we informally discuss the access control model we make use of in DiCons, based on
the user interaction as specified in the Section 4.3.

In DiCons, we do not have a notion of roles as defined in RBAC models as discussed
in Section 3.6.1. As explained earlier, roles are defined as collections of permissions.
DiCons roles, on the other hand, can be compared with groups, i.e. collections of
users as defined in [SCFY96]. Furthermore, in DiCons, no hierarchy on or relation
between roles needs to exist. However, users can be members of multiple groups.

The DiCons access control model is an active model. As in TMAC, we have a notion
of just-in-time permissions. Permissions change depending on the application’s pro-
gression, possibly even after execution of each (inter)action in a DiCons specification.

In DiCons we have a construct to add an identification step to a session (see Sec-
tion 4.4.1), which can be compared with the authorisation step available in TBAC
[TS97]. In DiCons, authorisation depends on groups, so permissions depend on
groups. In TBAC permissions depend on authorisation on a user level.

In comparison with TMAC [Tho97], we can consider execution of a DiCons applica-
tion as a task. In that case, all users concerned with one execution can be seen as a
group.

In DiCons there is no notion of constraints as contained in RBAC models (see Sec-
tion 3.6.1). However, constraints can be explicitly included in an application’s spec-
ification. These constraints can be verified using the operational semantics given in
Chapter 9. To give an example, the constraint on paper’s authors to only have write

4.5 Types and Calculations 45

permissions on papers they have written can be added to a DiCons specification.

Finally, we do not include administrative permissions explicitly. All users can have
administrative permissions by allowing them to control group membership. In most
applications only the initiator has administrative permissions. If “anonymous iden-
tification” takes place, all users implicitly have administrative permissions.

More detailed information on the DiCons access control model and a formalisation
of it can be found in Section 7.3.

4.5 Types and Calculations

Our goal is to specify Internet applications, focussing on the communication with
clients. Many calculations of different types can take place in between these com-
munications, from determining the winner of a voting to complex mathematical cal-
culations. Apart from a mechanism for specifying the calculations, this also asks
for many types that should be available. This extensive set of types and operators
on them goes beyond the scope of this thesis. We do not add types and operators
for such calculations to DiCons. We assume the availability of a large set of types
and operators, which we are free to use. Of course, if they become too specific with
respect to the application specified, they should be explained and non-trivial post-
conditions should be given. In Chapter 6 more information in how we model types
and calculations is given.

4.6 Time

As concluded in the introduction of this chapter, there must be a notion of time. On
the one hand, since we have to deal with deadlines, on the other hand, since calcu-
lations with time and dates are useful. An example of a deadline is the time before
which bidder should bid on a product, or voters should vote for a candidate. Calcu-
lations with time can be of use when, e.g., a date in the future should be provided by
a user. This can be the case when being asked for possible dates for a meeting to be
scheduled. Calculations, like comparing two time stamps, should be possible.

The way in which progression in time, which is a dynamically variable concept, is
modelled is discussed in Section 6.4. Expression of deadlines, a statically variable
concept, is discussed in Section 5.7.3, where the conditional disrupt operator is in-
troduced.

46 Concepts 4

4.7 Overview

To complete this chapter we summarise the concepts defined in the problem space
in Table 4.1.

name type formalisation
process execution fixed Chapters 5 to 9
instance of an application dynamically variable Chapters 5 to 9
state space dynamically variable Chapter 6
declaration of variables statically variable Chapter 6
valuation of variables dynamically variable Chapter 6
users dynamically variable Chapter 7
groups dynamically variable Chapter 7
client identification statically variable Section 7.3.3
access control statically variable Section 7.3
communication primitives statically variable Chapter 7
session statically variable Chapter 7
transactions statically variable Chapter 8
types statically variable Chapter 6
calculations statically variable Chapter 6
time dynamically variable Section 6.4
deadlines statically variable Section 5.7.3

Table 4.1: Relevant concepts in the problem space of Internet applications for dis-
tributed consensus.

II
Modelling

Internet Applications

5
Process Algebra

In this chapter we give a short introduction to the formalism that serves as a basis
for our model, viz. Basic Process Algebra (BPA). A process algebra is a means of
specifying algorithms and protocols, or processes, in a formal, unambiguous, way.
The formalism of process algebra is introduced by Bergstra and Klop [BK82, BK84b].
A comprehensive overview of process algebra is given by Baeten and Weijland in
[BW90]. In this thesis we make use of the so-called ACP-style for giving process alge-
braic specifications [BK84b, BW90]. As mentioned in the introduction, other process
algebras exist, like the Calculus of Communicating Systems (CCS) [Mil80], Commu-
nication Sequential Processes (CSP) [Hoa78] and the π-calculus [MPW92].

Apart from BPA, we introduce the notions of unsuccessful and successful termina-
tion, together with their algebraic representations and we introduce some condi-
tional operators which we add to our language.

5.1 Alphabet

Each process term, i.e., each algebraic representation of a process, is constructed from
(atomic) actions using predefined operators. So, when defining a process algebra,
there is the need for an alphabet. An alphabet, denoted by A, is a set of symbols
representing the (atomic) actions that the processes can execute. These actions serve
as the basic building blocks when constructing process terms.

To give an example, when defining the well-known vending machine for getting
coffee or tea, the alphabet could look like

A = {insert-coin,get-coffee,get-tea} .

50 Process Algebra 5

So the atomic actions are inserting a coin, getting coffee or getting tea. Most often,
these actions are abbreviated, so instead of the alphabet given above, we would for
example get

A = {i, c, t} .

5.2 Operators

Having defined an alphabet, there is a need for operators to construct process terms
from the actions. In Basic Process Algebra, there are two operators available, the al-
ternative composition operator, or choice, and the sequential composition operator.

The alternative composition operator, denoted as +, is used for constructing a choice
between processes. Given processes x and y, x + y is the process that executes either
x or y.

The sequential composition operator, denoted as · , is used for defining processes in
which (sub)processes should take place sequentially. Given processes x and y, x · y is
the process that first executes x, and after completion of x continues with executing
y.

By looking at the vending machine again, using the operators given above, we can
define the process that first a coin should be inserted after which a choice for either
coffee or tea can be made:

insert-coin · (get-coffee + get-tea)

As can be seen in the example, we make use of parentheses to group (sub)processes
for readability. Another example is the process that first the choice should be made
for coffee or tea, after which a coin is inserted and the chosen drink is produced.
If, e.g., the vending machine has two slots for inserting a coin, the process can be
modelled as follows:

(insert-coin ·get-coffee) + (insert-coin ·get-tea)

The moment of choice makes this process different from the process given above.

5.3 Axioms

Each process algebra is based on a set of axioms, where every axiom consists of an
equality between two process terms. This set of of axioms leads to an algebra. Basic
Process Algebra (BPA) is axiomatised by 5 axioms, named A1–5. The axioms are
given in Table 5.1.

5.3 Axioms 51

x + y = y + x A1
(x + y) + z = x + (y + z) A2
x + x = x A3
(x + y) · z = x · z + y · z A4
(x · y) · z = x · (y · z) A5

Table 5.1: Axioms of BPA.

As can be seen, the equations in Table 5.1 contain variables (x, y, z, . . .) which are
universally quantified. This means that the equations are assumed to be valid for
every instance of the variables. An instance of a variable is an atomic action, i.e.
a constant in the alphabet, or it is a process constructed using the operators and
constants of the algebra.

The first three axioms concern the alternative composition operator. Axiom A1 ex-
presses the commutativity of alternative composition: choosing between x and y is
the same as choosing between y and x. Associativity of alternative composition is
expressed by Axiom A2: when choosing between three alternatives, the grouping
of the alternatives is irrelevant. Axiom A3 expresses the idempotency of alterna-
tive composition: a choice between identical alternatives is a choice for the process
concerned. Axiom A4 concerns both the alternative and sequential composition and
expresses the right distributivity of sequential composition over alternative compo-
sition: choosing between x and y, followed by z is the same as choosing between
x followed by z and y followed by z. Finally, Axiom A5 expresses the associativity
of the sequential composition: when first doing x, followed by y, followed by z, the
grouping of the three processes is irrelevant.

Note that we did not include an axiom for left distributivity of sequential composi-
tion over alternative composition:

x · (y + z) 6= (x · y) + (x · z)

This expresses the fact that the moment of choice in both processes is different, as
explained in the vending machine example in Section 5.2. This difference is often
called a difference in branching structure.

Also note that when giving Axiom A4, we assume the existence of an operator prece-
dence scheme: sequential composition binds stronger than the alternative composi-
tion. In this thesis we adhere to the standard scheme which distributes the operators
over four categories, from strongest to weakest binding:

1. all (possibly parameterised) unary operators;
2. the sequential composition operator · ;

52 Process Algebra 5

3. all (possibly parameterised) binary operators, except + and · ;
4. the alternative composition operator +.

Using this scheme, we can drop many parentheses. Furthermore, since associa-
tivity of both the alternative and the sequential composition operators exist (Ax-
ioms A2 and A5), we can use notations x + y + z and x · y · z as well.

By making use of the axioms of a process algebra, in this case Axioms A1–A5, pro-
cesses can be rewritten into other processes using equational logic. We call two pro-
cesses x and y derivably equal in a given process algebra P if they can be rewritten
into each other using equational logic:

P ` x = y

5.4 Deadlock

Apart from the alphabet and operators given in the previous sections, we introduce
the notion of deadlock. If a deadlock state is reached, no actions can be performed
but the process does not terminate. We make use of constant symbol δ to model
deadlock. BPA extended with deadlock behaviour is denoted by BPAδ . We assume
that δ 6∈ A. Apart from Axioms A1–5, as given in Table 5.1, BPAδ consists of Axioms
A6 and A7 as given in Table 5.2.

x + δ = x A6
δ · x = δ A7

Table 5.2: Axioms for deadlock.

Axiom A6 states that no deadlock occurs as long as an alternative is available. Axiom
A7 says that after a deadlock occurs, no actions can follow.

5.5 The Empty Process

As a counterpart of deadlock, in many cases it is useful to have a special constant
to express successful termination. This process is the empty process, denoted as
ε, which expresses the process that can only terminate successfully. BPAδ extended
with the empty process is denoted by BPAδε. Apart from Axioms A1–7, the algebra is
extended with two more axioms for the empty process, A8 and A9, given in Table 5.3.
Similarly to the case for δ, we have ε 6∈ A.

5.6 Semantics 53

x · ε = x A8
ε · x = x A9

Table 5.3: Axioms for the empty process.

5.6 Semantics

To add semantics to a process algebra, we make use of a term-deduction system se-
mantics, also called Structural Operational Semantics, as introduced by Plotkin [Plo81].
We use notation x a−→ x′ to denote that process x can do an a-step, or a-transition, to
process x′. Apart from the transition, we introduce a termination predicate on pro-
cesses, x ↓, which indicates that process x has an option to terminate successfully.

For a process algebra P, the semantics of P are given by term-deduction system T(P),
induced by the a set of deduction rules which capture the operational behaviour. The
deduction rules for T(BPAδε) are given in Table 5.4.

ε ↓
1

a a
−→ ε

2
x ↓, y ↓

x · y ↓
3

x a
−→ x′

x · y a
−→ x′ · y

4
x ↓, y a

−→ y′

x · y a
−→ y′

5

x ↓

x + y ↓, y + x ↓
6

x a
−→ x′

x + y a
−→ x′, y + x a

−→ x′
7

Table 5.4: Deduction rules for T(BPAδε).

Rule 1 states that the empty process ε terminates. In rule 2 it is stated that a single
action can be executed, which results in a successfully terminating process. If both
processes x and y terminate successfully, than the sequential composition of x and y
also terminates successfully (rule 3). Rule 4 states that if x can do an a-step to x ′, then
x · y can do an a-step to x′ · y. In rule 5 it is stated that if x terminates successfully and
y can do an a-step to y′, that x · y can do this a-step to y′ as well. Next, deduction
rule 6 states that if x terminates successfully, then both x + y and y + x can terminate
successfully. Finally, rule 7 states that if x can do an a-step to x′, then x + y and
y + x can do a similar a-step to x′. Note that no deduction rules involving deadlock
process δ are available. When reaching a δ state, neither successful termination nor
a transition can occur.

54 Process Algebra 5

5.7 Additional Operators

We introduce three additional operators. The first two are contained in mostly all
specification languages, the third one is dedicated to the type of applications we fo-
cus on. We start by introducing the conditional branching operator which specifies
the if-statement. The conditional repetition operator specifies the while-statement.
Finally, we introduce the conditional disrupt operator, which can be used for speci-
fying deadlines, amongst other things.

5.7.1 Conditional Branching

We use the conditional branching operator (/ .), as defined in [HHJ+87]. This
operator behaves like the if-then-else-fi operator in sequential programming:

x / b . y ≡ if b then x else y fi

Boolean expression b may be an arbitrary expression containing predicates on any
part of the state space. This is explained in more detail in Chapter 6, where states are
introduced. The axioms for conditional branching are given in Table 5.5.

x / b . y = x if b CB1
x / b . y = y if ¬b CB2

Table 5.5: Axioms for the conditional branching operator.

Axioms CB1 and CB2 are concerned with the cases that the boolean expression b
evaluates to true or false, respectively. Evaluation of guards itself is explained in
Chapter 6.

The SOS rules for conditional branching are given in Table 5.6. Note that also for the
operational semantics, evaluation of guard b in the state is necessary.

5.7.2 Conditional Repetition

The conditional repetition can be compared with a while-do-od loop in traditional
programming. We make use of the conditional repetition operator (..) to specify
these repetitions:

b .. x ≡ while b do x od

5.7 Additional Operators 55

x ↓, b

x / b . y ↓

x a
−→ x′, b

x / b . y a
−→ x′

y ↓, ¬b

x / b . y ↓

y a
−→ y′, ¬b

x / b . y a
−→ y′

Table 5.6: Deduction rules for the conditional branching operator.

The while loop repeats process x until test b proves false. Again, b may be an arbi-
trary boolean expression, which is explained in detail in Chapter 6. The axioms for
conditional branching are given in Table 5.7.

b .. x = x · (b .. x) if b CR1
b .. x = ε if ¬b CR2

Table 5.7: Axioms for the conditional repetition operator.

Axiom CR1 is concerned with the case that the guard holds, i.e. that expression b
evaluates to true. In that case, the guarded process is started. When it finishes, the
entire process is started again. Axiom CR2 specifies that when the guard evaluates
to false, the process equals the empty process.

The SOS rules for conditional branching are given in Table 5.8.

x a
−→ x′, b

b .. x a
−→ x′ · (b .. x)

¬b

b .. x ↓

Table 5.8: Deduction rules for the conditional repetition operator.

Note that when b holds and x terminates, process b .. x does not terminate. This can
be compared with process

while true do skip od

which does not terminate but repeatedly, possibly infinitely often, executes the skip.

56 Process Algebra 5

5.7.3 Conditional Disrupt

We introduce the b .− x statement to specify conditional disrupts. This means that
process x is normally executed until b becomes true. At that moment the statement
terminates, independent of the (inter)actions that are taking place at that moment.
If x terminates before b becomes true the statement terminates too. By placing a
time check in b we can specify time-out interrupts. However, b may be an arbitrary
boolean expression. The axioms for the conditional disrupt operator are given in
Table 5.9.

b .− x = ε if b CD1
b .− ε = ε if ¬b CD2
b .− δ = δ if ¬b CD3
b .− a · x = a · (b .− x) if ¬b CD4
b .− x + y = (b .− x) + (b .− y) if ¬b CD5

Table 5.9: Axioms for the conditional disrupt operator.

Axiom CD1 states that if a disrupt takes place, the process terminates successfully. In
Axiom CD2 it is stated that if the conditionally disrupted process terminates success-
fully, than the process can not be disrupted. Axiom CD3 states that deadlock cannot
be disrupted. Axiom CD4 states that as long as no disrupt takes place, the process
can continue executing its actions. Finally, conditional disrupts distribute over the
alternative composition as stated in Axiom CD5.

The SOS rules for the conditional disrupt operator are given in Table 5.10.

x ↓

b .− x ↓

b

b .− x ↓

x a
−→ x′, ¬b

b .− x a
−→ b .− x′

Table 5.10: Deduction rules for the conditional disrupt operator.

6
Modelling States and Time

In this chapter we focus on how to model states using process algebra. We intro-
duce states, state spaces, and state manipulation. We give the basic concepts that
are needed for modelling states. Furthermore, we introduce the so-called scope-
operator, an algebraic operator for handling states and changes to the state. We give
the syntax for this extension to BPA and its operational semantics.

6.1 Introduction

In Chapter 5 we gave a short introduction to Basic Process Algebra. In this algebra,
we have operators for sequential and alternative composition. As our goal is to
model Internet applications using a process algebra, we need some more constructs.
One important construct is adding the modelling of states. During execution of an
(Internet) application, the application can reach several states. In general, the state
is the valuation of all declared variables together with a set of program counters,
indicating the part of the application to execute next.

Depending on the state of an application, the next action to execute can be deter-
mined. This determination depends on the progression the program has made, how-
ever, it might also depend on valuations of variables. This dependence on valuations
is especially the case when using for example if-then-else-fi (Section 5.7.1) or while-do-
od (Section 5.7.2) constructions. When giving a process algebraic specification, the
progression of the program is implicitly specified in the operational rules in con-
trast to the valuations of variables. Therefore, there is a need for a mechanism for
declaring variables and for keeping track of the valuation of declared variables. As
mentioned, the operational semantics of an application depends on this valuation,
so deduction rules should be extended with the valuation of all declared variables.

58 Modelling States and Time 6

This is done by extending the processes with a state space containing this valuation,
as is explained in Section 6.3.1.

Furthermore, since the calling of functions and procedures is needed, declaration
of local variables should also be possible. Of course, when adding an operational
meaning to a specification, problems like name clashes and undeclared variable ref-
erences should be taken into account.

6.2 States

Before introducing the operator for declaring variables (the so-call scope operator),
we give an introduction to states. As mentioned before, the states we are interested
in, consist of the valuations of variables. To tackle the problem of name clashing
when nesting variable declarations, we make use of so-called valuation stacks for
defining states, which are based on the notion of state stacks as defined in [BK02].
A valuation stack contains a pile of valuations of variables. When declaring a vari-
able, it is put on top of the stack, not taking into account whether a variable with
the same name is declared before. When assigning a value to a variable with a given
name, the top most variable with that name is used for the assignment. In this way
name clashes are prevented. The scope operator (which is used for declaring vari-
ables) makes use of the stack structure of states. In a later stage, in Chapter 8 on
page 103, we also introduce valuation sets since we need to do calculations using
state changes.

The types of variables are fixed in a state. Many types are needed when specifying
real-life Internet applications. Next to well-known types like natural numbers, text
strings and dates, more complex abstract data type like products, votes and sets
of Sinterklaaslootjes can be useful. We allow the use of these abstract data types in
specifications. Therefore we introduce the universe of types T. Each type can be
seen as a set of constants. Apart from the types, we define the universe of identifiers
by ID. The identifiers are used for identifying variables. Then, a valuation can be
considered the coupling of a constant of a certain type to an identifier.

T The universe of types
This set contains all possible types.

ID The universe of identifiers
This set contains all possible identifiers.

Definition 6.2.1 (Valuation) Let T be a type, T ∈ T, i be an identifier identifying a variable
of type T, i ∈ ID, and c be a constant of type T. Then, a valuation v is a triple 〈i, c,T〉,

6.2 States 59

denoted as
v =def i 7→ c : T .

If a variable is declared but no valuation is specified, i.e., no value is assigned to it
yet, we use notation i 7→⊥: T.

Definition 6.2.2 (Uninitialised valuation) Let T be a type, T ∈ T and i be an identifier
identifying a variable of type T, i ∈ ID. An uninitialised valuation v is then defined by

v =def i 7→⊥: T .

Uninitialised valuation i 7→⊥: T is interpreted as the existence of a value c of type T such
that i 7→ c : T. However, this value c is not known to the application.

Using this definition of ⊥, we assume that ⊥ is an element of all types, i.e., we only
consider types of which ⊥ is an element.

Definition 6.2.3 (Valuation stack) Let v be a valuation. A valuation stack σ is then defined
by

σ =def λ the empty valuation stack
| v ::σ a non-empty valuation stack .

We abbreviate valuation stacks with a single valuation v, that is valuation stack v ::λ,
to v. In the remainder of this thesis, when making use of the term state we mean a
valuation stack representing the state. The set of all possible states is denoted by S.

For determining the value of a variable in a state, we make use of an evaluation
function, which is a (partial) function on identifiers of variables.

Definition 6.2.4 (Evaluation) Let σ be a state, v be a valuation, i be an identifier and c be
a constant. The evaluation function σ(i) is a partial function: it is not defined if i does not
occur in σ. Since i does not occur in λ, evaluation λ(i) is not defined. Evaluation (v ::σ)(i)
is defined by the following equation:

(v ::σ)(i) =

{

c if ∃T v = i 7→ c : T
σ(i) otherwise

We extend the evaluation function to lists of variables: σ(~ı).

As can be concluded, we draw an explicit distinction between variables being de-
fined in the state and evaluating to ⊥ and variables not being defined in the state at

60 Modelling States and Time 6

all. Evaluation in the first case can result in a run-time error where errors caused by
evaluation in the second case can be determined at compile time.

We also have a function for determining the type of a variable, which is a partial
function on identifiers of variables as well.

Definition 6.2.5 (Type determination) Let σ be a state, v be a valuation, i be an identifier
and T be a type. The type determination function type(i, σ) is a partial function. It is not
defined if i does not occur in σ. Since i does not occur in λ, type determination type(i, λ) is
not defined. Type determination type(i, v ::σ) is defined by the following equation:

type(i, v ::σ) =

{

T if ∃c v = i 7→ c : T
type(i, σ) otherwise

We extend the type determination function to lists of variables: type(~ı, σ).

Apart from determining the value and type of a variable, we want to be able to
substitute valuations in a state stack. A substitution can change the mapping of a
variable to a mapping of the same variable to another value. Substitution σ[c/i]
replaces the uppermost occurrence of a valuation of a variable identified by i in state
stack σ (i.e. the occurrence with the smallest scope) with a new valuation where this
variable is mapped to value c.

Definition 6.2.6 (Substitution) Let σ be a state stack, v be a valuation, T be a type, i be an
identifier and c be a constant of type T. The substitution of c for i is then defined by

λ[c/i] = λ

(v ::σ)[c/i] =

{

(i 7→ c : T) ::σ if ∃c′ v = i 7→ c′ : T
v :: (σ[c/i]) otherwise

Likewise, we define substitution of lists of variables, σ[~c/~ı], where all i’s in~ı occur exactly
once.

6.3 Scope Operator

In the former section we introduced a mechanism for handling states where scopes of
variables might differ. In order to use this mechanism in combination with a process
algebra, we introduce the scope operator, denoted as [|]. The left argument is a
valuation, the right argument is the process which defines the scope of the valuation.

In the valuation, apart from a constant, we also allow the mapping of a variable i to
an expression e of type T: i 7→ e : T. In this case, the expression first is evaluated in
the current state, and its value is used for calculations.

6.3 Scope Operator 61

To give an example,

[n 7→ 0 : N | (n := n + 1) · (n := n× 2)]

specifies that we have a process algebra with an alphabet containing actions for
adding and multiplying natural numbers. Using the scope operator, we can declare
a natural number n. Since we also allow expressions, we could for example also
specify

[m 7→ 0 : N | [n 7→ 0 + m : N | (n := n + 1) · (n := n× 2)]] .

Within the scope of this n, the value of n can be used for calculations and changed
by actions. Note that (n := n + 1) and (n := n× 2) are elements of the alphabet. Their
semantics is a substitution as defined in Definition 6.2.6.

By making use of the scope operator, the state of the application can be extended with
valuations of variables. This, of course, can have an effect on the actions performed
within the scope of this valuation. Therefore, we make use of an action function

action : A× S→ A

where action(a, σ) is evaluation of action a in state σ. The action function makes use
of the evaluation function as defined in Definition 6.2.4: it evaluates all variables in
the action to their values, if possible. We use abbreviation a(σ) for action(a, σ). So,
e.g.,

action(n := n + 1,n 7→ 0 : N)
=

{

abbreviation
}

(n := n + 1)(n 7→ 0 : N)
=

{

evaluation
}

n := 0 + 1

On the other hand, execution of an action might affect valuations in the state of the
application, since assignments to variables in the scope can occur. Therefore, we
introduce an effect function:

effect : A× S→ S

where effect(a, σ) is the effect of action a on state σ. The effect function uses the
substitution as defined in Definition 6.2.6. So, e.g.,

effect(n := n + 1,n 7→ 0 : N)
=

{

substitution
}

n 7→ 1 : N

62 Modelling States and Time 6

〈x, (i 7→ e(σ) : T) ::σ〉 ↓

〈[i 7→ e : T | x], σ〉 ↓

〈x, (i 7→ e(σ) : T) ::σ〉 a
−→〈x′, (i 7→ c : T) ::σ ′〉

〈[i 7→ e : T | x], σ〉 a
−→〈[i 7→ c : T | x′], σ ′〉

Table 6.1: Deduction rules for the scope operator.

By adding the state to the deduction rules using tuple notation 〈 , 〉, this results in
the following deduction rule:

〈a, σ〉 action(a,σ)
−−−−−→〈ε, effect(a, σ)〉

Since we allow any kind of types, we cannot put restrictions on operators to be used.
Though in contrast to types, operators do influence process behaviour. First of all,
they are important when evaluating guards as introduced in the conditional opera-
tors in Section 5.7. This can be seen by looking at the deduction rules for the con-
ditional operators in Table 6.4 on page 65. This behaviour can be modelled without
extending DiCons, since evaluations are contained in the premises of the deduction
rules.

The second occurrence of variables, types and operators is when specifying local ac-
tions, procedures and functions. These actions can be self-explaining, for example
when using the assignment and the multiplication operators: n := n× 2. However,
it might also be possible that functions show complex behaviour, e.g., when deter-
mining the highest bid in an auction using the highest function: b := highest(B). In
the latter case, the effect of the action on the state should be provided:

effect(b := highest(B), σ) = σ ′ where b(σ ′) ∈ B(σ ′) ∧ ∀c∈B(σ ′) c ≤ b(σ ′) .

We only give the changes of the state. For all variables for which no statement in the
effect is provided, it is assumed that the action will not affect their valuations.

6.3.1 Semantics

The deduction rules for the scope operator can be found in Table 6.1. As can be seen,
deduction rules are extended with a state and describe transitions between tuples
of processes and states. For process x and state σ, such a tuple is denoted by 〈x, σ〉.
Both results of applying the action and effect functions to the action and current state
can be found in the deduction rules.

In Chapter 5 we also gave axiomatic semantics of the operators. However, since we

6.4 Adding a Time Component 63

focus on the operational semantics in the remainder of this thesis, we do not give a
complete axiomatisation of the operators introduced.

The deduction rules given in Chapter 5 are also extended with a state component. In
the following section, we extend them with a time component as well. The extended
deduction rules can be found in Table 6.4 on page 65.

6.4 Adding a Time Component

When specifying Internet applications it is useful that a time component is available.
Time is measured on a discrete scale.

T Time
Each time stamp is a constant of type T, measured on a discrete scale.

In the transition system, time can always proceed without changing the state of a
system. Process behaviour is not affected directly by passage of time, thus each
expression allows passage of time without change. However, boolean expression
can contain the (dynamic) now constant, now ∈ T, and therefore evaluate differently
due to passage of time. By use of the conditional operators, which are defined in
Section 5.7, this in turn affects process behaviour.

As a result, the deduction rules are also extended with a time constant t, t ∈ T, and
the effect and action functions get this time component as an extra parameter.

So,
action : A× S×T→ A

where action(a, σ, t) is evaluation of action a in state σ at time t. The action function
makes use of the evaluation function as defined in Definition 6.2.4: it evaluates all
variables in the action to their values, if possible. We use abbreviation a(σ, t) for
action(a, σ, t).

The effect function is also extended with a time component:

effect : A× S×T→ S

Function effect(a, σ, t) returns the effect of execution of action a in state σ at time t.

6.4.1 Semantics

The deduction rule modelling a time step can be found in Table 6.2. As can be seen,
deduction rules are extended with a time stamp and describe transitions between

64 Modelling States and Time 6

tuples of processes, states and time stamps. A time step only increases time. The
other components remain the same. However, as mentioned above, evaluation of
expressions can give different results if time passes, and so a change in time can
influence process behaviour.

〈x, σ, t〉 tick

7−→ 〈x, σ, t + 1〉

Table 6.2: Deduction rule for the time step.

Deduction rules for the scope operator in combination with time can be found in
Table 6.3. The only difference with the deduction rules given in Table 6.1 is the
addition of the time component to the tuples.

〈x, (i 7→ e(σ, t) : T) ::σ, t〉 ↓

〈[i 7→ e : T | x], σ, t〉 ↓

〈x, (i 7→ e(σ, t) : T) ::σ, t〉 a
−→〈x′, (i 7→ c : T) ::σ ′, t〉

〈[i 7→ e : T | x], σ, t〉 a
−→〈[i 7→ c : T | x′], σ ′, t〉

Table 6.3: Deduction rules for the scope operator with time.

Also the deduction rules for the empty process, atomic actions, the sequential and
alternative composition and the additional operators introduced in Section 5.7 are
extended with a state and time component. The extended rules can be found in
Table 6.4. Again, the only difference with the deduction rules given before is the
addition of state and time components. The use of the action and effect functions are
shown in the second deduction rule.

6.4 Adding a Time Component 65

〈ε, σ, t〉 ↓ 〈a, σ, t〉 action(a,σ,t)
−−−−−−→〈ε, effect(a, σ, t), t〉

〈x, σ, t〉 ↓, 〈y, σ, t〉 ↓

〈x · y, σ, t〉 ↓

〈x, σ, t〉 a
−→〈x′, σ ′, t〉

〈x · y, σ, t〉 a
−→〈x′ · y, σ ′, t〉

〈x, σ, t〉 ↓, 〈y, σ, t〉 a
−→〈y′, σ ′, t〉

〈x · y, σ, t〉 a
−→〈y′, σ ′, t〉

〈x, σ, t〉 ↓

〈x + y, σ, t〉 ↓, 〈y + x, σ, t〉 ↓

〈x, σ, t〉 a
−→〈x′, σ ′, t〉

〈x + y, σ, t〉 a
−→〈x′, σ ′, t〉, 〈y + x, σ, t〉 a

−→〈x′, σ ′, t〉

〈x, σ, t〉 ↓, b(σ, t)

〈x / b . y, σ, t〉 ↓

〈x, σ, t〉 a
−→〈x′, σ ′, t〉, b(σ, t)

〈x / b . y, σ, t〉 a
−→〈x′, σ ′, t〉

〈y, σ, t〉 ↓, ¬b(σ, t)

〈x / b . y, σ, t〉 ↓

〈y, σ, t〉 a
−→〈y′, σ ′, t〉, ¬b(σ, t)

〈x / b . y, σ, t〉 a
−→〈y′, σ ′, t〉

〈x, σ, t〉 a
−→〈x′, σ ′, t〉, b(σ, t)

〈b .. x, σ, t〉 a
−→〈x′ · (b .. x), σ ′, t〉

¬b(σ, t)

〈b .. x, σ, t〉 ↓

〈x, σ, t〉 ↓

〈b .− x, σ, t〉 ↓

b(σ, t)

〈b .− x, σ, t〉 ↓

〈x, σ, t〉 a
−→〈x′, σ ′, t〉, ¬b(σ, t)

〈b .− x, σ, t〉 a
−→〈b .− x′, σ ′, t〉

Table 6.4: Deduction rules for the empty process, atomic actions, the sequential and
alternative operators and the additional operators.

7
Modelling

Internet Communication

In this chapter we formalise the communication primitives we make use of for mod-
elling communication via the Internet. We summarise the elements of the alphabet
we use for defining the interaction primitives in Section 7.1 and we give the opera-
tional semantics of the interaction primitives in Section 7.2.

7.1 Alphabet

In Section 4.3 we introduced the interaction primitives we make use of for speci-
fying user interaction via the Internet. We will shortly summarise the interaction
primitives below.

Active server push
An active push takes place if the server sends a message to a client (arrow to the
left) which is not directly the result of a request from that client. So the server
initiates the interaction which is indicated by the arrow’s tail “pointing” to the
right.

Reactive server push
A reactive push takes place if the server sends a Web page (arrow to the left), not
containing a Web form, to a client which is the result of a normal request from
that client (client initiates, so tail to the left), i.e. not generated by filling out a
previously received Web form.

68 Modelling Internet Communication 7

Reactive server pull (start session)
This interaction takes place if a client sends a request to the server (upper hor-
izontal line, tail to the left) on which the server responds by sending a Web
form (middle line). This form is filled in and submitted by the client (lower
line, arrow to the right). A reactive pull starts a session with one particular
client.

Session-oriented server pull (within session)
In response to a prior form submission (upper, dashed line), the server sends
a Web form to the client (middle line). Subsequently, the client submits the
filled in form (lower line, arrow to the right). This interaction is repeated in the
middle of a session.

Session-oriented server push (end session)
The server sends a non-interactive Web page to the client (lower line) in re-
sponse to a prior form submission by the client (upper, dashed line). This in-
teraction ends a session since no Web form can be filled in anymore.

For specifying the interaction primitives in process algebra, we add two atomic ac-
tions to the alphabet, viz. one for an HTTP request and one for an HTTP response.
Next, we define the five interaction primitives of which four are having substruc-
ture. This substructure is specified in the deduction rules for the actions, which is
explained in Section 7.2.

Before being able to give an alphabet, we first need to introduce some sets:

U The universe of users
This set contains all possible users. Each user interacting with an application
is represented by a constant in U.

M The universe of messages
All messages are uniquely identified by an element in M and can therefore be
represented by their symbolic name m in M.

Pi The universe of input parameters
A message can be extended with parameters. For request messages these pa-
rameters are variables that are assigned by a user by filling in a Web form, i.e.,
input parameters denoted by i, i1, i2, ...

Po The universe of output parameters
For response messages and e-mail messages, the parameters are values of ex-
pressions to be included in the actual message that needs to be sent to the
requesting user, i.e., output parameters denoted by o, o1, o2, ...

7.1 Alphabet 69

The alphabet that is used for specifying interactions, C, contains the following sets
of atomic actions:

• Request actions
{req.u.~ı | u ∈ U, i1, . . . , in ∈ Pi}

These actions represent URL requests or form submissions by a user u, ex-
tended with input parameters~ı.

• Response actions

{resp.u.m.~o | u ∈ U,m ∈M, o1, . . . , ok ∈ Po}

These actions represent the sending of a Web page or Web form m to user u
with output parameters ~o.

Apart from these two sets of atomic actions, the alphabet also contains actions rep-
resenting the interaction primitives as defined in Section 4.3.2. They are defined by
five sets:

• Active server push actions

{u m(~o) | u ∈ U,m ∈M, o1, . . . , ok ∈ Po}

These actions represent the sending of an e-mail message m to user u with out-
put parameters ~o. The output parameters are expressions which are presented
to the user. The active server push actions are also atomic actions.

• Reactive server push actions

{u m(~o) | u ∈ U,m ∈M, o1, . . . , ok ∈ Po}

These actions represent the sending of a plain Web page m to user u with output
parameters ~o as a response to a URL request by user u. The output parameters
are expressions which are presented to the user.

• Reactive server pull actions

{u m(~o;~ı) | u ∈ U,m ∈M, o1, . . . , ok ∈ Po, i1, . . . , in ∈ Pi}

These actions represent the sending and submission of a Web form m with out-
put parameters ~o and input parameters~ı to user u as a response to a URL re-
quest by user u. The output parameters ~o are expressions which are presented
to the user. The input parameters~ı are variables which the user has to assign
by filling in the form.

70 Modelling Internet Communication 7

• Session-oriented server pull actions

{u m(~o;~ı) | u ∈ U,m ∈M, o1, . . . , ok ∈ Po, i1, . . . , in ∈ Pi}

These actions represent the sending and submission of a Web form m with
output parameters ~o and input parameters~ı to user u as a response to a prior
submission of a Web form by user u. Again, the output parameters ~o are expres-
sions which are presented to the user and the input parameters~ı are variables
which the user has to assign.

• Session-oriented server push actions

{u m(~o) | u ∈ U,m ∈M, o1, . . . , ok ∈ Po}

These actions represent the sending of a plain Web page m to user u with output
parameters ~o as a response to a prior submission of a Web form by user u. The
output parameters are expressions which are presented to the user.

7.2 Semantics

The operational semantics of the interaction primitives depends on their HTTP re-
quest/response behaviour. The labels in the labelled transition system we use for
modelling the operational behaviour are similar to the atomic actions for the request
and response actions as defined in Section 7.1. Apart from request and response
labels, we introduce a set of labels for representing the mail sending actions. The
request label is extended by a valuation vector which contains the values assigned
to the input parameters of the request action. So, we make use of the following set
of action labels:

• Mail sending actions

{mail.c.m.~o | c ∈ U,m ∈M, o1, . . . , ok ∈ Po}

These actions represent the sending of an e-mail message m to user c with out-
put parameters ~o. The output parameters are evaluated in the current state at
the time of sending the e-mail.

• Request actions

{req.c.~ı. ~d | c ∈ U, i1, . . . , in ∈ Pi, ~d ∈ type(~ı)}

These actions represent URL requests or form submissions by a user c, ex-
tended with input parameters ~ı and values ~d filled in by the user, which are
assigned to the input parameters. Note that the length of~ı of course must be
equal to the length of ~d. Also note that the type function used depends on the
state the process is.

7.2 Semantics 71

• Response actions

{resp.c.m.~o | c ∈ U,m ∈M, o1, . . . , ok ∈ Po}

These actions represent the sending of a Web page or Web form m to user c
with output parameters ~o. The output parameters are evaluated in the current
state at the time of sending the response.

The deduction rules for both the atomic and composed actions for the interaction
primitives can be found in Table 7.1.

u(σ, t) = c, ~d ∈ type(~ı, σ)

〈req.u.~ı, σ, t〉 req.c.~ı. ~d
−−−−→〈ε, σ[~d/~ı], t〉

u(σ, t) = c, ~o(σ, t) = ~d

〈resp.u.m.~o, σ, t〉 resp.c.m. ~d
−−−−−→〈ε, σ, t〉

u(σ, t) = c, c 6=⊥, ~o(σ, t) = ~d

〈u m(~o), σ, t〉 mail.c.m. ~d
−−−−−→〈ε, σ, t〉

u(σ, t) = c

〈u m(~o), σ, t〉 req.c.ε.ε
−−−−→〈resp.u.m.~o, σ, t〉

u(σ, t) = c

〈u m(~o;~ı), σ, t〉 req.c.ε.ε
−−−−→〈resp.u.m.~o · req.u.~ı, σ, t〉

u(σ, t) = c, ~o(σ, t) = ~d

〈u m(~o;~ı), σ, t〉 resp.c.m. ~d
−−−−−→〈req.u.~ı, σ, t〉

u(σ, t) = c, ~o(σ, t) = ~d

〈u m(~o), σ, t〉 resp.c.m. ~d
−−−−−→〈ε, σ, t〉

Table 7.1: Deduction rules for the interaction primitives.

As can be seen, the deduction rules are straightforward, looking at the HTTP struc-
ture of the interaction primitives as defined in Section 4.3.2 on page 40. The atomic
actions can do a step labelled by the atomic action, and then successfully termi-
nate. The composed actions can do a request or response step after which the rest
of the HTTP interaction modelled by the primitive should take place. If a request
is received in which input parameters are available, the valuations in the state are
changed depending on the values included in the request. The message m ∈ M is a
constant and need therefore not be evaluated in the current state. Users and output
parameters are variable and thus depend on the state the application is in. At the mo-
ment of the sending of responses and emails, the output parameters are evaluated
and the resulting values are included in the corresponding messages.

Note that we do not allow mails to be sent to undefined users. This is because the
application does not know where to send the mail to. However, unknown users can

72 Modelling Internet Communication 7

interact with the application by not asking them to identify before starting the first
interaction.

In the deduction rules given in Table 7.1 we do not take into account that multiple
interactions with the application take place in parallel. Therefore, the coupling of
requests to responses and vice versa is straight forward. However, when adding
parallelism this coupling should be made explicit, which results in an adaptation of
the deduction rules. How this is done is explained below, in Section 7.3.1.

7.3 Access Control

As mentioned in the domain space identification in Chapter 4 there is a need for an
access control model . Using such a model makes it possible to manage permissions
users have. In DiCons, permissions are implicitly included in the specification of the
Internet applications: the set of permissions of a user is exactly the set of interactions
he is allowed to execute.

We stated that users are collected in groups. As mentioned before, in DiCons, users
are constants in the universe of users U. So a group is a subset of this universe and
an element of the universe of groups:

G The universe of groups
This set contains all possible groups:

G = P (U)

There exist three access mechanisms for starting a session with an Internet applica-
tion:

1. The client accesses the application anonymously. No identification step takes
place and all users in U are allowed to interact with the application.

2. The client accesses the application by executing an identification step, identi-
fying himself as a user known to the application.

3. The client accesses the application and makes himself known to the application
by registering. A registration step takes place and the user is added to a group
of registered users. It should be able to restrict the set of users that are allowed
to register.

In the remainder of this section we give a formalisation of these three access control
mechanisms. Note that (possibly grouped) clients can access applications simulta-

7.3 Access Control 73

〈x, σ, t〉 ↓, 〈y, σ, t〉 ↓

〈x‖ y, σ, t〉 ↓

〈x, σ, t〉 a
−→
k
〈x′, σ ′, t〉

〈x‖ y, σ, t〉 a
−→
k0
〈x′ ‖ y, σ ′, t〉, 〈y‖ x, σ, t〉 a

−→
k1
〈y‖ x′, σ ′, t〉

Table 7.2: Deduction rules for the merge operator.

neously. Therefore, before formalising the access control mechanisms, we first in-
troduce both the merge and the replication operator, which are used for the parallel
composition of processes.

7.3.1 Parallel Composition

In order to put processes in parallel, we have the merge operator, or parallel com-
position operator, ‖ at our disposal. Putting processes x and y in parallel, denoted
by x‖ y, means that the execution of x and y takes place concurrently. Operationally,
this means that if one of the processes can execute an action, the parallel composition
can also execute this action. The operational semantics are given in Table 7.2. The
labels below the transition arrows (k, k0 and k1) are explained below.

When multiple sessions with one and the same user take place in parallel, it must be
possible to determine the session from which local actions and interactions with that
user are executed. This cannot be done by looking at the user himself. Therefore we
introduce session labels. As can be seen by looking at the deduction rules, we use a
sequence of bits for this labelling of transitions, with a 0 denoting the left component,
and a 1 the right component. In essence, this is the same labelling as used by Degano
and Priami [DP92] and others, often called locations.

This labelling could also be added to the tuple of processes, states and time stamps.
However, session labels are only concerned with the actual branching structure, not
with the state. Even stronger, labelling can differ for the same process when using
one of the generalised parallel composition operators given below. Therefore we
decide to have these labels as a parameter of the transition, putting them under the
transition arrow.

In the model of DiCons, which is given in Chapter 9, session labels are added to all
deduction rules such that all transitions become session aware.

Definition 7.3.1 (Session label) Let d ∈ {0,1}. A session label k is defined by

k =def λ the empty session label
| kd a non-empty session label .

74 Modelling Internet Communication 7

〈[u 7→⊥: U | x], σ, t〉 ↓

〈?ux, σ, t〉 ↓

〈[u 7→⊥: U | x], σ, t〉 a
−→
k
〈[u 7→⊥: U | x′], σ ′, t〉

〈?ux, σ, t〉 a
−→
k0
〈[u 7→⊥: U | x′]‖?ux, σ ′, t〉

Table 7.3: Deduction rules for the anonymous replication operator.

The set of all possible session labels is denoted by K. In addition to the binary merge
operator, we introduce some generalised operators for parallel composition in the
remainder of this section. These operators are of use when (multiple) users interact
with the application in parallel.

7.3.2 Anonymous Interaction

As explained in Section 4.4.1 on page 42, anonymous interaction means that any
user is allowed to interact with the application without having to identify himself.
Lack of an identification step makes it possible for any user (i.e., all u ∈ U) to start
an interaction. Apart from simple reactive push interactions (sending Web pages
without Web forms), when formally specifying anonymous interactions, there is a
need for sessions: although the application does not know who it is communicating
with, there still can be sequences of related interactions.

From the application’s point of view, it makes no sense to let one anonymous user in-
teract with it while another one is denied access. Even stronger, one user can interact
with the application several times, since it does not have to be known to the appli-
cation that it is interacting with the same user. These interactions with several users
can take place simultaneously. Therefore, in addition to the binary merge operator,
we introduce a generalised parallel composition operator: the so-called anonymous
replication operator (?). Process ?ux expresses that all users u in the universe of users
U can execute (inter)actions in process x between user u and the central application
in parallel and more than once. The user is anonymous and thus is not identifiable
by the application. The u can occur in x and is bound to ⊥ as soon as the first ac-
tion of x is executed. As a result, sessions can take place, however, no active push
interaction can occur, i.e., no e-mail can be sent. The operational semantics of the
anonymous replication operator is given in Table 7.3.

We make use of the anonymous replication operator to specify the anonymous inter-
action behaviour. Since any of the users u ∈ U can start a session with an application,
the domain of the replication operator is the entire universe of users:

?u x

7.3 Access Control 75

∀c∈G(σ,t) 〈[u 7→ c : U | x], σ, t〉 ↓

〈!u∈Gx, σ, t〉 ↓

c ∈ G(σ, t) ∈ G, 〈[u 7→ c : U | x], σ, t〉 a
−→
k
〈[u 7→ c : U | x′], σ ′, t〉

〈!u∈Gx, σ, t〉 a
−→
k0
〈[u 7→ c : U | x′]‖ !u∈Gx, σ ′, t〉

Table 7.4: Deduction rules for the replication or bang operator.

7.3.3 Identification

Apart from anonymous interaction, we also explained in Section 4.4.1 on page 42
that clients can identify themselves. Furthermore, we mentioned that since many
identification protocols are available, we abstract from the actual identification pro-
tocol. Therefore, we introduce the so-called replication or bang operator (!). Process
!u∈Gx expresses that all users u in group G can execute (inter)actions in process x
between user u and the central application in parallel and more than once. Again,
the u can occur in x and is bound as soon as the first action of x is executed. This
implicitly models an identification mechanism as introduced in Section 4.4.1. We use
the bang operator on a group of users G (G ∈ G), where G contains those users that
are allowed access:

!u∈G x

In this case, users in group G are allowed to execute process x more than once.

The operational semantics of the bang operator is given in Table 7.4.

In several cases, like the Sinterklaaslootjes and the voting example, users are allowed
to execute process x only once: one can only draw one ticket and is allowed to vote
only once. Therefore, we introduce the generalised merge or generalised parallel compo-
sition operator:

‖u∈G x

Process ‖u∈Gx specifies that all users u (u ∈ G) execute (inter)actions in process x be-
tween user u and the central application in parallel but only once. So, in contrast to
the replication operation, after execution of x for all users u in group G, the gener-
alised merge operation terminates. See Table 7.5 for the operational semantics of the
generalised merge operator.

Note that identification takes place before the first action of x is executed. The identi-
fication step itself is not contained in the operational semantics.

76 Modelling Internet Communication 7

∀c∈G(σ,t) 〈[u 7→ c : U | x], σ, t〉 ↓

〈‖u∈Gx, σ, t〉 ↓

c ∈ G(σ, t) ∈ G, 〈[u 7→ c : U | x], σ, t〉 a
−→
k
〈[u 7→ c : U | x′], σ ′, t〉

〈‖u∈Gx, σ, t〉 a
−→
k0
〈[u 7→ c : U | x′]‖‖u∈G\{c}x, σ ′, t〉

Table 7.5: Deduction rules for the generalised merge operator.

7.3.4 Registration

In Section 4.4.1 on page 42 we also introduced registration. For specifying registra-
tion, we introduce extensions for both the bang and the generalised merge operator.

Using the extended bang or extended replication operator, process !H
u∈G x expresses that

all users in group G are allowed to execute process x more than once. Group H con-
tains the set of users that is known to the application. We call this group H the reg-
istered group. If the user is not known to the application (yet), i.e. u 6∈ H, registration
takes place and the user is added to the group of users H. If the user is already con-
tained in group H, identification takes place. This semantics is implicitly expressed
in Table 7.6. Depending on user c being in group H in the last two deduction rules,
either registration or identification takes place.

Expression !H
u∈G x expresses that any user in group G can register and subsequently

execute x. If H initially contains users, these users can log in without first having to
register. Note that from the user’s point of view a different identification step takes
place depending on whether the user is contained in H: If so, identification as shown
in the left-hand MSC in Figure 4.3 on page 43 takes place. If not, he registers after
which he logs in, as depicted in the right-hand MSC in Figure 4.3. This distinction is
not expressed in the operational semantics. For expressing that any user can register,
we can use this operator using the universe of users as domain:

[G 7→ U : G | !H
u∈G x]

Apart from the extended bang operator, we introduce the extended generalised merge
or extended generalised parallel composition operator. Process ‖H

u∈G x shows a similar
behaviour, except that all users in G are allowed to execute process x once. Again,
group H contains the users that are already known by the application. The semantics
of the extended generalised merge operator can also be found in Table 7.6.

7.3 Access Control 77

∀c∈G(σ,t) 〈[u 7→ c : U | x], σ, t〉 ↓

〈!H
u∈Gx, σ, t〉 ↓

∀c∈G(σ,t) 〈[u 7→ c : U | x], σ, t〉 ↓

〈‖
H
u∈Gx, σ, t〉 ↓

c ∈ G(σ, t), 〈[u 7→ c : U | x], σ, t〉 a
−→
k
〈[u 7→ c : U | x′], σ ′, t〉

〈!H
u∈Gx, σ, t〉 a

−→
k0
〈[u 7→ c : U | x′]‖ !H

u∈Gx, σ ′[H(σ ′, t)∪{c}/H], t〉

c ∈ G(σ, t), 〈[u 7→ c : U | x], σ, t〉 a
−→
k
〈[u 7→ c : U | x′], σ ′, t〉

〈‖
H
u∈Gx, σ, t〉 a

−→
k0
〈[u 7→ c : U | x′]‖‖H

u∈G\{c}x, σ ′[H(σ ′, t)∪{c}/H], t〉

Table 7.6: Deduction rules for the extended generalised parallel composition opera-
tors.

Note that since the valuation of group H is affected by both processes !H
u∈G and ‖H

u∈G,
this H must be declared in the scope of both processes.

8
Modelling

Transactional Behaviour

Our goal is to give formal specifications of Internet applications for distributed con-
sensus, which are interactive systems. Therefore we need a formalism to specify
transactional processes, as introduced in Section 4.2.1. Since the language we make
use of for specifying Internet applications is based on process algebra, we have to
model the transactional behaviour of processes in process algebra too. Both transac-
tions and process algebra are widely used, however, as far as we know, no formalism
dedicated to expressing transactions using process algebra has been developed before.
However, in Section 8.7 we do mention some formalisms that can serve as a basis for
this purpose.

In this chapter we join the concepts of transactions and process algebra which leads
to a nice formalism for specifying transactional behaviour. Although we prove that
transactional behaviour can already be specified in a standard process algebra ex-
tended with linear recursion, introducing specific transactional operators cause spec-
ifications to be shorter and thus more legible and manageable. In this chapter we
present these operators by giving both an axiomatic and operational semantics. The
concepts introduced here are used later, in Chapter 9, for modelling Internet appli-
cations.

We abstract from parts of the concept which must be added to make the formal-
ism useful for specifying real-life processes. However, we summarise what has to
be done to put the formalism into practice, e.g. by combining transactions with the
formalism for specifying states as introduced in Chapter 6. In our opinion, these
extensions do not influence the complexity of the formalism, however, a lot of (syn-

80 Modelling Transactional Behaviour 8

tactical) extensions have to be added.

In Section 4.2.1 we informally introduced transactions. In Section 8.1, transactions
are explained in more detail. Apart from that, we give an example by which the use
of transactional processing is clarified. Next, in Section 8.2, we adapt the concept
of transactions in such a way that we are able to specify transactional behaviour
using process algebra. We introduce both axiomatic and operational semantics for
the process algebra with transactions (PAtrans), which can be read as a stand-alone
algebraic formalism. In Section 8.3 we give two more examples of the use of the
transactional operators and we do some calculations using the axioms introduced
in Section 8.2. We prove some properties of the process algebra in Section 8.4. We
discuss what has to be done to make the process algebra useful for modelling real-life
applications. In Section 8.5 we combine transactions with states. Degrees of isolation
are discussed in Section 8.6. Finally, we discuss related work in Section 8.7.

Parts of this chapter are presented in [Bee02].

8.1 Introduction to Transactions

In Section 4.2.1 we shortly introduced transactions. As mentioned there, Gray and
Reuter [GR93] define a transaction as a “set” of (inter)actions which occur “as a
group”. By means of some examples, we concluded that transactions help in cou-
pling related actions that either should all succeed or none of them should succeed.
Apart from that, we concluded that transactions help in maintaining data integrity
when parallel processes access shared data.

We introduced the so-called ACID properties, where ACID is an acronym for atomic-
ity, consistency, isolation and durability. Processes that meet all four characteristics are
called transactions. Transactions, and therefore atomic actions, are the basic build-
ing blocks for constructing applications. In the first part of this chapter (Sections 8.2
to 8.4) we construct a process algebra, PAtrans, that only focusses on the isolation
property of transactions. Since we do not take state changes themselves into account
in PAtrans, we do not discuss atomicity here. However, we do specify the rolling
back and submitting of transactions, which can also be used for modelling the con-
sistency property. Durability goes beyond the scope of this thesis, since we do not
model failure of the system in which the transaction takes place. We assume that the
environment in which applications are executed preserves durability.

Transactions can be nested, so transactions might contain subtransactions. This nest-
ing can be useful when having subprocesses that behave like transactions, like the
payment from one bank account to the other from within a larger transaction.

In general, a transaction consists of subtransactions, read and write actions, ended

8.1 Introduction to Transactions 81

by a commit action. If during a transaction something goes wrong, a rollback takes
places, undoing all data changes, and the transaction can start over again. If all
actions succeed, the commit statement causes the data changes to be durable.

During execution of parallel transactions, a transaction can lock other transactions
by accessing shared data. That is, transactions can cause other transactions to come
in a state in which they are not allowed to execute specific actions. This locking
mechanism prevents accessing so-called dirty data (i.e. data that has been changed,
but not committed yet) by using read locks. Furthermore, by using write locks it pre-
vents having lost updates, i.e. changed data is updated by another transaction before
it had been committed. Unlocking takes place while committing or rolling back a
transaction.

In this chapter we focus on transactions that are not allowed to update data that is
updated by another running transaction, so-called first degree isolated transactions.
(See Section 8.6 for more information on degrees of isolation.) So we only take write
locks into account. Read locks can be added to the formal definition for transactions
in a similar way as write locks. So by leaving out read actions and read locks we do
not reduce the complexity in a major way. In PAtrans we focus on specifying trans-
actions, so we also leave out the explicit changes to the state space. We concentrate
on the transactional behaviour of processes, which does not take into account how
the data changes but whether the data changes. The actual changes of the state are
introduced in Section 8.5.

To give an idea on how transactions are used, we give a small example which nicely
shows the behaviour of the transactional operator in defining processes. In this sec-
tion, we only give some informal definitions of the operators. They are formalised
in later sections.

Have a look at the two processes given in Figure 8.1. The assignments to variable
a are atomic actions. By using the · operator we compose these actions into se-
quentially executable processes, as explained in Section 5.2. E.g., a := 0 · a := a + 2
specifies that first a becomes 0 after which a is increased by 2.

Both processes consist of two subprocesses which are placed in parallel using the
merge operator (‖). Repeatedly, a nondeterministic choice to execute an action from
either the left-hand or the right-hand subprocess is taken. As can be seen, each sub-
process sequentially executes two assignments to variable a. In the right-hand pro-
cess, we make use of 〈〈 and 〉〉 brackets to embrace the subprocesses, which turns
them into transactions. Since both transactional processes 〈〈a := 0 · a := a + 2〉〉 and
〈〈a := 1 · a := a× 2〉〉 access shared variable a simultaneously, write access to variable
a in one of the transactions locks the other transactions until a rollback (R) or com-
mit (C) takes place. See Figure 8.1 for the intended process graphs of both processes.
We only make use of gray arrows for the rollback transitions for readability.

82 Modelling Transactional Behaviour 8

(a := 0 · a := a + 2) ‖ (a := 1 · a := a× 2) 〈〈a := 0 · a := a + 2〉〉 ‖ 〈〈a := 1 · a := a× 2〉〉

a = 2, a = 4 or a = 6

a :=
0

a :=
0

a :=
0

a :=
a+

2

a :=
a+

2

a :=
a+

2

a :=
1

a :=
1

a :=
1

a :=
a× 2

a :=
a× 2

a :=
a× 2

a = 2

a :=
0

a :=
0

a :=
a+

2

a :=
a+

2

a :=
1

a :=
1

a :=
a× 2

a :=
a× 2

R

R

R

R

RR

R R

C C

CC

Figure 8.1: An example of the use of the transactional operator

In the left-hand process, normal interleaving of the two subprocesses on either side
of the merge operator is allowed. This leads to 6 (4!

2!2!) possible traces, resulting in
three possible outcomes: a equals 2, 4 or 6. Note that the nodes of the graph do
not represent states. We only use the graph for showing the interleaving behaviour
of the process. Representing unique states by nodes would result in a much larger
graph, resulting in three terminating states for the different outcomes.

By turning both subprocesses into transactions, write access to a in one of the sub-
processes leads to locking the other subprocess (see the right graph in Figure 8.1). If
a subprocess is not finished, a rollback (R) can take place, resulting in a transition to
the state before starting the subprocess. If both actions in a subprocess are executed,
the transaction can commit (C), which leads to unlocking the other subprocess.

It can be easily seen that although we have an infinite number of possible executions
(viz. rollbacks can take place any number of times), if the process finishes then a
equals 2. In the end of this chapter we explain how transactional behaviour can
be combined with states as presented in Chapter 6, such that valuations of a in a
transactional environment can be modelled.

The example given in this section nicely shows the expressiveness of the transac-
tional operator for defining transactional behaviour. In the remainder of this chapter
we give an extension to the Basic Process Algebra which enables us to formally spec-

8.2 A Process-Algebraic Approach 83

ify transactional behaviour.

8.2 A Process-Algebraic Approach

As mentioned in Chapter 5, our starting point is an algebraic axiomatisation BPAδε

(Basic Process Algebra with deadlock and the empty process). The signature of
BPAδε consists of action alphabet A, alternative composition operator +, sequential
composition operator · and constants δ and ε. The axioms for BPAδε, A1–9, are given
in Tables 5.1, 5.2 and 5.3, their operational semantics in Table 5.4.

To be able to formally specify the transactional behaviour as discussed in the former
section, we introduce some new operators and extensions to the alphabet in this
section. The algebra is named PAtrans.

8.2.1 Transactional Operator

To group actions into transactions, we need a transactional composition operator. As
mentioned in Section 8.1, we turn a process into a transaction by making use of the
transactional operator, i.e., by embracing it using 〈〈 and 〉〉 brackets.

We focus on transactional behaviour of the processes, so we leave out the actual data
changes. Furthermore, we abstract from read access to shared variables. Instead of
writing a := a + 2 or a := 1, we simply write a. At this moment, we are not interested
in the exact value of a, but in the fact that the valuation of a might change. This
makes the algebra much more readable without losing expressiveness. In a later
stage, in Section 8.5, we show how the algebra can be extended such that evaluation
of variables is possible.

As a result we can look at an action a as being a write action on a shared variable
which is uniquely identifiable by a. The right process in Figure 8.1, for example,
would be modelled by 〈〈a · a〉〉‖ 〈〈a · a〉〉.

If a transaction executes action a, a ∈ A, all transactions running in parallel with this
transaction should be locked with respect to write access to shared variable a. Dur-
ing execution of a transaction, something can go wrong, e.g. a connection gets lost or
a time-out takes place. If this happens, the entire transaction has to be rolled back,
unlocking all other transactions that were locked by actions executed in this trans-
action. After this rollback, the transaction can start over again. If no rollback takes
place, the transaction can commit, causing other transactions to get unlocked as well.
For specifying this mechanism, we make use of an auxiliary operator 〈〈 , , 〉〉. The
first parameter is used for storing the actual transactional process. In case of a roll-
back, we make use of this parameter to restart the process. The second parameter is

84 Modelling Transactional Behaviour 8

used for storing the set of executed actions, i.e. the shared variables that are updated.
This set is used for the unlocking of other transactions (and resetting the variable’s
values). A set is sufficient since all variables have only one value before being up-
dated by a transaction. Finally, the last parameter contains that part of the process
that needs to be executed before the transaction can commit. So 〈〈x,A, y〉〉 represents
“transactional process x, which has already executed the set of actions A and still has to
execute process y before a commit statement can take place”.

To model transactional behaviour, first of all, we extend the alphabet. The idea is to
turn actions into lockable actions when they are executed from within a transaction.
This is done by adding a so-called lock counter to them. If a parallel running transac-
tion has executed a similar action before, their lock counters are increased such that
the actions get locked. Execution of a rollback or commit action unlocks the actions
by decreasing the lock counters. For example, if not taking into account rollback
actions, process 〈〈a · b〉〉 equals process a0 · b0 ·C{a,b}.

To specify the locking and unlocking behaviour, we introduce both locking and un-
locking operators. Execution of a lockable action in parallel to another process results
in the application of the locking operator to the parallel running process. This oper-
ator causes the lock counters of similar actions to be increased. On the other hand,
execution of an unlocking action introduces the unlocking operator, which is also
applied to the parallel running process. This operator decreased the lock counters of
actions locked by the transaction that is committed or rolled back.

We give an example (modulo rollback actions) of the execution of locking and un-
locking actions and the application of the locking and unlocking operators to get an
idea of the intended behaviour:

〈〈a · b〉〉‖ 〈〈a · b〉〉 (1)
= a0 · b0 ·C{a,b} ‖ a0 · b0 ·C{a,b}
(2)
= a0 · (b0 ·C{a,b} ‖bda0 · b0 ·C{a,b}cea)
(3)
= a0 · (b0 ·C{a,b} ‖ a1 · b0 ·C{a,b})
(4)
= a0 · b0 · (C{a,b} ‖bda1 · b0 ·C{a,b}ceb)
(5)
= a0 · b0 · (C{a,b} ‖ a1 · b1 ·C{a,b})
(6)
= a0 · b0 ·C{a,b} · (ε‖ba1 · b1 ·C{a,b}c{a,b})
(7)
= a0 · b0 ·C{a,b} · (ε‖ a0 · b0 ·C{a,b})
(8)
= a0 · b0 ·C{a,b} · a0 · b0 ·C{a,b}

In step 1, we introduce the lockable and unlocking actions. Next, in step 2, lock-
able action a0 is executed, applying the locking operator bd cea to the parallel running
process. This increases the lock counters of similar lockable actions (step 3), in this
case action a0 becomes action a1. As a result a1 is not allowed to be executed, so

8.2 A Process-Algebraic Approach 85

only the left-hand process can continue. Step 4 introduces the locking operator of
action b which is applied to the process in step 5: b0 becomes b1. Next, in step 6, the
transaction commits by executing the C{a,b} action, unlocking the parallel running
process with respect to actions a and b using unlocking operator b c{a,b}. This oper-
ator decreases the counters in step 7, allowing the other transaction to continue by
executing action a0.

Note that at this level of abstraction no distinction is drawn between the parallel
executed transactions. However, if e.g. in the left-hand process a represents a := a + 1
and in the right-hand side process a represents a := a× 2, the process in step 2 should
be doubled using the alternative composition operator.

Alphabet

Process 〈〈x,A, y〉〉 is a transactional process with body x, which still has to execute
process y before it can commit. Set A contains the variables that are locked by the
transaction.

As a result, transaction 〈〈x,∅, x〉〉 equals transaction 〈〈x〉〉, which has not executed
any of its actions yet. If a transaction 〈〈x,A, y〉〉 has already executed an action, i.e.
if A 6= ∅, it can roll back, using rollback action RA. This causes all parallel running
transactions that are locked with respect to variables in A to get unlocked. Next,
〈〈x〉〉 can start over again. If a transaction commits, action CA is executed which also
unlocks other transactions that run in parallel to the committed transaction. Since
we abstract from the data changes, RA and CA behave equally. Therefore, we make
use of U (Unlocking action) to represent either C or R .

Definition 8.2.1 Let A be a set of actions, A ⊆ A and U be an unlocking action, U ∈
{C ,R }. Then UA is the atomic unlocking action that unlocks all actions in A that are
locked in parallel running transactions, once. Set A is called the unlocking set.

We introduce a new action alphabet, UL, containing unlocking actions:

UL =def {UA |U ∈ {C ,R },A ⊆ A} .

As stated in Definition 8.2.1, execution of an unlocking action unlocks actions once.
If more than two transactions run in parallel, actions can get locked more than once:
each execution of a lockable action locks parallel executed actions. Therefore, we
provide a mechanism to extend actions with a lock counter indicating how many
times the action is locked.

Definition 8.2.2 Let a be an action and n be a natural number. Then an is a lockable action.
Action an represents action a which is locked n times. In an, n is called a lock counter.

86 Modelling Transactional Behaviour 8

〈〈x〉〉 = 〈〈x,∅, x〉〉 TR1
〈〈x,∅, δ〉〉 = δ TR2
〈〈x,A, δ〉〉 = RA · 〈〈x〉〉 if A 6= ∅ TR3
〈〈x,∅, ε〉〉 = C∅ TR4
〈〈x,A, ε〉〉 = CA + RA · 〈〈x〉〉 if A 6= ∅ TR5
〈〈x,∅,UB y〉〉 = U∅ · 〈〈x,∅, y〉〉 TR6
〈〈x,A,UB y〉〉 = U∅ · 〈〈x,A, y〉〉+ RA · 〈〈x〉〉 if A 6= ∅ TR7
〈〈x,∅, an y〉〉 = an · 〈〈x,{a}, y〉〉 TR8
〈〈x,A, an y〉〉 = an · 〈〈x,A∪ {a}, y〉〉+ RA · 〈〈x〉〉 if a 6∈ A∧ A 6= ∅ TR9
〈〈x,A, an y〉〉 = a · 〈〈x,A, y〉〉+ RA · 〈〈x〉〉 if a ∈ A TR10
〈〈x,∅, ay〉〉 = a0 · 〈〈x,{a}, y〉〉 TR11
〈〈x,A, ay〉〉 = a0 · 〈〈x,A∪ {a}, y〉〉+ RA · 〈〈x〉〉 if a 6∈ A∧ A 6= ∅ TR12
〈〈x,A, ay〉〉 = a · 〈〈x,A, y〉〉+ RA · 〈〈x〉〉 if a ∈ A TR13
〈〈x,A, y + z〉〉 = 〈〈x,A, y〉〉+ 〈〈x,A, z〉〉 TR14

Table 8.1: Axioms for the transactional operator.

Again, we introduce a new action alphabet, L, containing lockable actions:
L =def {an | a ∈ A,n ∈ N} .

Axioms

If transaction 〈〈x,A, y〉〉 executes action a for the first time, i.e. a 6∈ A, then a becomes
lockable by extended it with a lock counter having value 0 and A is extended with a.
If the transaction executed an a before, i.e. a ∈ A, no locking counter is added since
the transaction already has exclusive rights on action a.

If a transaction 〈〈x,A, y〉〉 has already executed actions, i.e., if A 6= ∅, then the trans-
action can rollback. So all processes 〈〈x,A, y〉〉 have a summand RA · 〈〈x〉〉 if A is not
empty.

We now have all ingredients for giving the axiomatic semantics of the transactional
operators, TR1–14 in Table 8.1.

Axiom TR2 states that if the transaction does not successfully terminate, the com-
posed process does not successfully terminate. However, as stated in TR3, it can roll
back if and only if actions have been executed before, i.e. if A 6= ∅. If the transac-
tion successfully terminates, it can commit (TR4–5). Since A 6= ∅ in TR5, the rollback
summand is also included.

TR6 and TR7 state that if the next action in a transaction is an unlock action (CB
or RB), then this action is the result of a nested subtransaction. This unlock action

8.2 A Process-Algebraic Approach 87

should only unlock actions from other parallel executed subtransactions. It should
not unlock actions outside the transactions. Therefore, B is replaced by ∅.

For the other actions, it holds that they stay lockable (TR8–9) or become lockable
(TR11–12) if they are executed by the transaction.

In TR10 and TR13 it is stated that action a which already was executed by the trans-
action (a ∈ A) does not need to be locked (any longer). Reaching this action implies
that the transaction has already executed a similar action and therefore has locked
other parallel executed transactions with respect to this action: only the first occur-
rence of an action in a transaction gets locked. Note that a ∈ A implies A 6= ∅ and
thus rolling back is also possible.

As mentioned, all transactions might roll back if they have executed actions before,
i.e., there exists a summand RA · 〈〈x〉〉 if the A in 〈〈x,A, y〉〉 is not empty (TR3, TR5,
TR7, TR9–10 and TR12–13).

Finally, Axiom TR14 states the distributivity of the auxiliary transactional operator
over the alternative composition. Note that 〈〈x + y〉〉 = 〈〈x〉〉+ 〈〈y〉〉 does not hold as
a result of possible roll back actions.

Semantics

The deduction rules for the sequential composition operator and alternative compo-
sition operator as given in Table 5.4 on page 53 can also be applied to actions in the
locking and unlocking alphabet.

The semantics of the transactional operator is given by the term deduction system
induced by the deduction rules shown in Table 8.2. The variables are defined as in
the axioms. We make a case distinction over the atomic actions that can be executed.

Rule 8 handles rollback actions: If a transaction has started, i.e., A 6= ∅, the transac-
tion can roll back by executing a rollback action RA, after which the transaction can
start over again.

If a process terminates successfully, the transaction can commit, after which it can
terminate (rules 9 and 10). An unlocking action that comes from within a transaction
may not influence actions outside the transaction (rules 11 and 14). Furthermore,
normal actions and lockable actions can always be executed (rules 12, 13, 15–18).
Depending on whether they have been executed by the transaction before, i.e. if
a is in A, they become or stay lockable and they are added to the set of executed
actions A.

88 Modelling Transactional Behaviour 8

A 6= ∅

〈〈x,A, y〉〉 RA−→〈〈x〉〉
8

x ↓

〈〈x〉〉 C∅
−→ ε

9
y ↓

〈〈x,A, y〉〉 CA−→ ε
10

x UB−→ x′

〈〈x〉〉 U∅
−→〈〈x,∅, x′〉〉

11
x an−→ x′

〈〈x〉〉 an−→〈〈x,{a}, x′〉〉
12

x a
−→ x′

〈〈x〉〉 a0−→〈〈x,{a}, x′〉〉
13

y UB−→ y′

〈〈x,A, y〉〉 U∅
−→〈〈x,A, y′〉〉

14

y an−→ y′, a 6∈ A

〈〈x,A, y〉〉 an−→〈〈x,A∪ {a}, y′〉〉
15

y an−→ y′, a ∈ A

〈〈x,A, y〉〉 a
−→〈〈x,A, y′〉〉

16

y a
−→ y′, a 6∈ A

〈〈x,A, y〉〉 a0−→〈〈x,A∪ {a}, y′〉〉
17

y a
−→ y′, a ∈ A

〈〈x,A, y〉〉 a
−→〈〈x,A, y′〉〉

18

Table 8.2: Deduction rules for the transactional operators.

8.2.2 Locking and Unlocking Operators

As mentioned in Section 8.1, locking comes in when processes are put in parallel.
Locking takes place by using lock counters. When putting locking and lockable ac-
tions in parallel, lock and unlock operators are needed for increasing and decreasing
these lock counters. We introduce two operators, bdxcea and bxcA on processes to lock
and unlock processes, respectively. The symbol used for locking, bdxcea can be seen
as a closed box containing process x that is locked using key a. Unlocking a process
opens the box, so therefore, we use bxcA notation.

The locking operator has two parameters, process x and action a. bdxcea means that all
lockable a actions in x get locked (once more). Unlocking operator bxcA also has two
parameters, viz. process x and a set of actions A, meaning that all locked actions that
occur in x which are elements of A get unlocked once.

Axioms

The axioms for both the locking and unlocking operators, L1–7 and UL1–7, are given
in Table 8.3.

Both the locking and unlocking operator do only influence lockable actions. As can

8.2 A Process-Algebraic Approach 89

bdδceb = δ L1
bdεceb = ε L2
bdUBxceb = UB · bdxceb L3
bdanxceb = an+1 · bdxceb if a = b L4
bdanxceb = an · bdxceb if a 6= b L5
bdaxceb = a · bdxceb L6
bdx + yceb = bdxceb + bdyceb L7

bδcA = δ UL1
bεcA = ε UL2
bUBxcA = UB · bxcA UL3
banxcA = an−1 · bxcA if a ∈ A∧ n > 0 UL4
banxcA = an · bxcA if a 6∈ A∨ n = 0 UL5
baxcA = a · bxcA UL6
bx + ycA = bxcA + bycA UL7

Table 8.3: Axioms for the locking and unlocking operators.

be seen, Axioms L1–3, L6, UL1–3 and UL6 state that for all non-lockable actions
both the locking and unlocking operator behave like the identity. When locking, a
lockable action gets its lock counter only increased if it equals the locking action (Ax-
iom L4). When unlocking and the lockable action is in the set of unlocking actions,
its lock counter gets decreased (Axiom UL4).

Semantics

The semantics of the locking and unlocking operators is given by the term deduction
system induced by the deduction rules shown in Table 8.4.

Non-lockable actions are influenced by neither the locking (rules 19, 20 and 23) nor
the unlocking operator (rules 24, 25 and 28). Depending on the parameters of the
locking and unlocking operators, lock counters can be increased (rules 21 and 22) or
decreased (rules 26 and 27), respectively.

8.2.3 Merge Operator

Up till now, we have not mentioned how the operators introduced so far co-operate
to reach the expected transactional behaviour. We specify parallel composition using
the merge (‖) and auxiliary left-merge (T) operators based on the merge operators
introduced in [BK82]. Since locking of transactions is only of interest when trans-

90 Modelling Transactional Behaviour 8

x ↓

bdxceb ↓
19

x UA−→ x′

bdxceb
UA−→bdx′ceb

20
x an−→ x′, a 6= b

bdxceb
an−→bdx′ceb

21

x an−→ x′

bdxcea
an+1
−−→bdx′cea

22
x a
−→ x′

bdxceb
a
−→bdx′ceb

23
x ↓

bxcA ↓
24

x UB−→ x′

bxcA
UB−→bx′cA

25
x an−→ x′, (a 6∈ A∨ n = 0)

bxcA
an−→bx′cA

26

x an−→ x′, (a ∈ A∧ n > 0)

bxcA
an−1
−−→bx′cA

27
x a
−→ x′

bxcA
a
−→bx′cA

28

Table 8.4: Deduction rules for the locking and unlocking operators.

x‖ y = x T y + y T x M1
δ T x = δ M2
εT δ = δ M3
εT ε = ε M4
εTax = δ M5
εT (x + y) = εT x + εT y M6
UAx T y = UA(x‖bycA) M7
a0x T y = a0(x‖bdycea) M8
anx T y = δ if n > 0 M9
ax T y = a(x‖ y) M10
(x + y)T z = x T z + y T z M11

a ∈ A∪L∪UL, a ∈ A

Table 8.5: Axioms for the merge operator.

actions run in parallel, accessing a shared data space, the parallel composition of
transactions introduces the locking and unlocking operators.

Axioms

The axioms for the parallel composition, M1–11, are given in Table 8.5. Axioms M1–
6 are similar to the axioms for the empty process as defined in [Vra97]. We use

8.2 A Process-Algebraic Approach 91

x ↓, y ↓

x‖ y ↓
29

x UA−→ x′

x‖ y UA−→ x′ ‖bycA, y‖ x UA−→bycA ‖ x′
30

x a0−→ x′

x‖ y a0−→ x′ ‖bdycea, y‖ x a0−→bdycea ‖ x′
31

x a
−→ x′

x‖ y a
−→ x′ ‖ y, y‖ x a

−→ y‖ x′
32

x ↓, y ↓

x T y ↓
33

x UA−→ x′

x T y UA−→ x′ ‖bycA

34
x a0−→ x′

x T y a0−→ x′ ‖bdycea

35
x a
−→ x′

x T y a
−→ x′ ‖ y

36

Table 8.6: Deduction rules for the merge operator.

notation a for an action in A and a for an action in A∪L∪UL. If an unlocking action
is executed in parallel with another process, the action is executed and the process
running in parallel gets unlocked once (M7). Execution of a lockable action, which
itself is not locked (its lock counter equals 0), locks the process running in parallel
(M8). Execution of a locked action in parallel with another action is not allowed,
so this process reaches a deadlock state (M9). All other actions do not influence the
parallel running processes’ behaviour (M10).

Semantics

The semantics of the merge operator is given by the term deduction system induced
by the deduction rules shown in Table 8.6.

For defining the deduction rules for the parallel composition operators, again we
distinguish between atomic action in A, L and UL. If both the left and right process
terminate, the parallel composition of these processes terminates (rules 29 and 33).
Execution of unlock actions cause the process running in parallel to get unlocked
once (rules 30 and 34) where execution of lockable actions introduce the lock opera-
tor, causing the parallel running processes to get locked once more (rules 31 and 35).
All other executions do not influence parallel running processes (rules 32 and 36).

8.2.4 Overview of PAtrans

An overview of PAtrans, the process algebra with transactions, can be found in Ap-
pendix A on page 219, where the alphabet, operators, axioms and deduction rules
are summarised.

92 Modelling Transactional Behaviour 8

〈〈 a · b 〉〉 ‖ 〈〈 b · a 〉〉 〈〈 a · b 〉〉 ‖ 〈〈 b · b 〉〉

a

a

b ab

b

b

b

a

a

R R
R

R

R

R RR

R R

C C

CC

a

a

b a

b a

b

b

b

b

b

b

R
R

RR

R

R

R RR

R
R

R

C

C C

CC

Figure 8.2: Examples of parallel running transactional processes with shared data.

8.3 Examples

In order to show the expressiveness of the operators introduced, two examples of
parallel running transactional processes are given in Figure 8.2. In the left-hand
process, the transactions can lock each other in such a way that the rolling back of
at least one of the two subprocesses is unavoidable, viz. if the left-hand subprocess
executes action a and the right-hand subprocess executes action b. In the example on
the right-hand side, accessing shared data b in one of the subprocesses, i.e. executing
action b, causes the other subprocess to get locked with respect to action b until a
commit or rollback takes place.

In the remainder of this section we give an axiomatic calculation for the left-hand
process in Figure 8.2. We calculate a recursive specification which no longer con-
tains any of the newly introduced operators. We do the recursive calculation of
〈〈a · b〉〉‖ 〈〈b · a〉〉 in several steps. First of all, we give a calculation of 〈〈a · b〉〉. This
results in a recursive equation. Next, we calculate a recursive equation for process
〈〈a · b〉〉‖ 〈〈b · a〉〉 using multiple variables. The result can be nicely mapped to the
process graph given in Figure 8.2. We show this mapping of variables to nodes in
Figure 8.4 together with an overview of the calculated recursive equations, so that
the mapping can be verified. It can be concluded that the nodes (i.e. states) to which
a roll back is possible need to be mapped to variables.

8.3 Examples 93

a b C
R

R

Figure 8.3: Process graph of 〈〈a · b〉〉.

Intuitively, process 〈〈a · b〉〉 is the process in which first a and then b is executed. After
execution of one of the two actions, the process can roll back, restarting the process.
After ending b, a commit action can take place which terminates the process. The
intended process graph is given in Figure 8.3.

We give an axiomatic calculation of the process below.

Calculation 8.3.1
〈〈a · b〉〉

TR1
= 〈〈a · b,∅, a · b〉〉

TR11
= a0 · 〈〈a · b,{a}, b〉〉

TR12
= a0 · (b0 · 〈〈a · b,{a, b}, ε〉〉+ R{a} · 〈〈a · b〉〉)
TR5
= a0 · (b0 · (C{a,b} + R{a,b} · 〈〈a · b〉〉) + R{a} · 〈〈a · b〉〉)

As can be easily seen, abstracting from lock counters and unlocking sets leads to
exactly the process as given in Figure 8.3. As a result from Calculation 8.3.1, we
introduce two variables which are used in the calculation of process 〈〈a · b〉〉‖ 〈〈b · a〉〉:

Y = a0 · (b0 · (C{a,b} + R{a,b} ·Y) + R{a} ·Y)
Z = b0 · (a0 · (C{a,b} + R{a,b} ·Z) + R{b} ·Z)

Both processes Y and Z are guarded recursive specifications which do not contain
operators introduced in this chapter. Process 〈〈a · b〉〉 is a solution for the first equation
and 〈〈b · a〉〉 is a solution for the second one.

We introduce a third variable,

X = 〈〈 a · b 〉〉 ‖ 〈〈 b · a 〉〉 .

In Calculation 8.3.2 we give a recursive calculation for X to come to a guarded recur-
sive specification.

94 Modelling Transactional Behaviour 8

Calculation 8.3.2
X

Def. X
= 〈〈a · b〉〉‖ 〈〈b · a〉〉
M1
= 〈〈a · b〉〉T 〈〈b · a〉〉+ 〈〈b · a〉〉T 〈〈a · b〉〉

TR1,TR11
= a0 · 〈〈a · b,{a}, b〉〉T 〈〈b · a〉〉+ b0 · 〈〈b · a,{b}, a〉〉T 〈〈a · b〉〉
M8
= a0 · (〈〈a · b,{a}, b〉〉‖bd〈〈b · a〉〉cea) + b0 · (〈〈b · a,{b}, a〉〉‖bd〈〈a · b〉〉ceb)

Def. V,W
= a0 ·V + b0 ·W

We introduced two new variables in the final step of calculation 8.3.2:

V = 〈〈a · b,{a}, b〉〉‖bd〈〈b · a〉〉cea
W = 〈〈b · a,{b}, a〉〉‖bd〈〈a · b〉〉ceb

We calculate guarded recursive specifications for V and W below. Like Y and Z,
V and W are symmetric with respect to a and b.

Calculation 8.3.3
V

Def. V
= 〈〈a · b,{a}, b〉〉‖bd〈〈b · a〉〉cea
M1
= 〈〈a · b,{a}, b〉〉Tbd〈〈b · a〉〉cea + bd〈〈b · a〉〉cea T 〈〈a · b,{a}, b〉〉

Calc. 8.3.4
= b0 · (C{a,b} ·Z + R{a,b} ·X) + bd〈〈b · a〉〉cea T 〈〈a · b,{a}, b〉〉

Calc. 8.3.5
= b0 · (C{a,b} ·Z + R{a,b} ·X) + b0 · (R{b} ·V + R{a} ·W)

The calculation for W is similar. As a result, we get five equations:

X = a0 ·V + b0 ·W
V = b0 · (C{a,b} ·Z + R{a,b} ·X) + b0 · (R{b} ·V + R{a} ·W)
W = a0 · (C{a,b} ·Y + R{a,b} ·X) + a0 · (R{a} ·W + R{b} ·V)
Y = a0 · (b0 · (C{a,b} + R{a,b} ·Y) + R{a} ·Y)
Z = b0 · (a0 · (C{a,b} + R{a,b} ·Z) + R{b} ·Z)

By labelling the nodes of the left-hand process in Figure 8.2, it can be easily seen
that the calculation matches the process graph as expected. We show the labelling
in Figure 8.4. As can be seen, exactly those nodes to which rollback transitions are
possible occur as recursive equations.

In Calculation 8.3.3 we made use of two more calculations, Calculations 8.3.4 and
8.3.5. To complete this example we give these two calculations, which depend on
two theorems.

8.3 Examples 95

〈〈 a · b 〉〉 ‖ 〈〈 b · a 〉〉

X

V W

Z Y

a 0

a 0

b0 a 0b 0

b 0

b0

b0

a0

a0

R
{b} R {a}

R
{b}

R {a}

R {a
}

R
{b}

R
{a,b}R {a

,b}

R
{a,b} R {a,

b}

C {a,
b}

C
{a,b}

C {a,
b}

C
{a,b}

Figure 8.4: Calculated process graph of 〈〈a · b〉〉‖ 〈〈b · a〉〉.

Calculation 8.3.4
〈〈a · b,{a}, b〉〉Tbd〈〈b · a〉〉cea

TR12
= b0 · 〈〈a · b,{a, b}, ε〉〉Tbd〈〈b · a〉〉cea
M8
= b0 · (〈〈a · b,{a, b}, ε〉〉‖bdbd〈〈b · a〉〉ceaceb)
TR5
= b0 · ((C{a,b} + R{a,b} · 〈〈a · b〉〉)‖bdbd〈〈b · a〉〉ceaceb)
M1
= b0 · ((C{a,b} + R{a,b} · 〈〈a · b〉〉)Tbdbd〈〈b · a〉〉ceaceb+

bdbd〈〈b · a〉〉ceaceb T (C{a,b} + R{a,b} · 〈〈a · b〉〉))
TR1,TR11,L5,L4

= b0 · ((C{a,b} + R{a,b} · 〈〈a · b〉〉)Tbdbd〈〈b · a〉〉ceaceb+

b1 · bdbd〈〈b · a,{b}, a〉〉ceaceb T (C{a,b} + R{a,b} · 〈〈a · b〉〉))
M9,A6
= b0 · ((C{a,b} + R{a,b} · 〈〈a · b〉〉)T bdbd〈〈b · a〉〉ceaceb)
M11
= b0 · (C{a,b} T bdbd〈〈b · a〉〉ceaceb + R{a,b} · 〈〈a · b〉〉T bdbd〈〈b · a〉〉ceaceb)
M7
= b0 · (C{a,b} · (ε‖bbdbd〈〈b · a〉〉ceacebc{a,b})+

R{a,b} · (〈〈a · b〉〉‖bbdbd〈〈b · a〉〉ceacebc{a,b}))
Th. 8.3.7
= b0 · (C{a,b} · (ε‖〈〈b · a〉〉) + R{a,b} · (〈〈a · b〉〉‖ 〈〈b · a〉〉))

Calc. 8.3.1,Th. 8.3.9
= b0 · (C{a,b} · 〈〈b · a〉〉+ R{a,b} · (〈〈a · b〉〉‖ 〈〈b · a〉〉))

Def. Z,X
= b0 · (C{a,b} ·Z + R{a,b} ·X)

96 Modelling Transactional Behaviour 8

Calculation 8.3.5
bd〈〈b · a〉〉cea T 〈〈a · b,{a}, b〉〉

TR1,TR11
= bdb0 · 〈〈b · a,{b}, a〉〉cea T 〈〈a · b,{a}, b〉〉

L5,M8
= b0 · (bd〈〈b · a,{b}, a〉〉cea ‖bd〈〈a · b,{a}, b〉〉ceb)
M11
= b0 · (bd〈〈b · a,{b}, a〉〉cea Tbd〈〈a · b,{a}, b〉〉ceb+

bd〈〈a · b,{a}, b〉〉ceb Tbd〈〈b · a,{b}, a〉〉cea)
Calc. 8.3.6
= b0 · (R{b} · (bd〈〈b · a〉〉cea ‖ 〈〈a · b,{a}, b〉〉) + R{a} · (bd〈〈a · b〉〉ceb ‖ 〈〈b · a,{b}, a〉〉))

Def. V,W
= b0 · (R{b} ·V + R{a} ·W)

In its fourth step, Calculation 8.3.5 uses Calculation 8.3.6.

Calculation 8.3.6
bd〈〈b · a,{b}, a〉〉cea T bd〈〈a · b,{a}, b〉〉ceb

TR12
= bda0 · 〈〈b · a,{a, b}, ε〉〉+ R{b} · 〈〈b · a〉〉cea Tbd〈〈a · b,{a}, b〉〉ceb
TR5
= bda0 · (C{a,b} + R{a,b} · 〈〈b · a〉〉) + R{b} · 〈〈b · a〉〉cea Tbd〈〈a · b,{a}, b〉〉ceb

L7,L4,L3
= (a1 · (C{a,b} + R{a,b} · bd〈〈b · a〉〉cea) + R{b} · bd〈〈b · a〉〉cea)Tbd〈〈a · b,{a}, b〉〉ceb

M11,M9,A6
= (R{b} · bd〈〈b · a〉〉cea)Tbd〈〈a · b,{a}, b〉〉ceb
M7
= R{b} · (bd〈〈b · a〉〉cea ‖bbd〈〈a · b,{a}, b〉〉cebc{b})

Th. 8.3.7
= R{b} · (bd〈〈b · a〉〉cea ‖ 〈〈a · b,{a}, b〉〉)

The final step in Calculation 8.3.6 makes use of Theorem 8.3.7, which states that lock-
ing an action once and immediately unlocking it results in the action before applying
this locking and unlocking. Note that in Theorem 8.3.7 we use superscript notation
for the indexing of elements to prevent conflicts with the subscript notation of lock
counters.

Theorem 8.3.7 Let A ⊆ A such that |A| = M and A = {a0, a1, . . . , aM−1}. Then for all
processes x,

PAtrans ` bbd. . . bdxcea0 . . .ceaM−1cA = x .

Proof We proof this theorem using induction to the structure of x.

• x = δ. Then, using L1 and UL1 it can be easily seen that bbd. . . bdxcea0 . . .ceaM−1cA =

bbd. . . bdδcea0 . . .ceaM−1cA = δ = x.
• x = ε. Similar to the previous case, using L2 and UL2.
• x = UB · y and bbd. . . bdycea0 . . .ceaM−1cA = y. Using L3, UL3 and induction, we get
bbd. . . bdxcea0 . . .ceaM−1cA = bbd. . . bdUB · ycea0 . . .ceaM−1cA = UB · bbd. . . bdycea0 . . .ceaM−1cA =

UB · y = x.

8.3 Examples 97

• x = bn · y and bbd. . . bdycea0 . . .ceaM−1cA = y.
• if b ∈ A, then there is exactly one am such that b = am. Then,

bbd. . . bdxcea0 . . .ceaM−1cA
=

{

x = bn · y
}

bbd. . . bdbn · ycea0 . . .ceaM−1cA
=

{

L5, ∀0 ≤ j < m b 6= a j }

bbd. . . bdbn · bd. . . bdycea0 . . .ceam−1ceam . . .ceaM−1cA
=

{

L4, b = am }

bbd. . . bdbn+1 · bd. . . bdycea0 . . .ceamceam+1 . . .ceaM−1cA
=

{

L5, ∀m < j < M b 6= a j }

bbn+1 · bd. . . bdycea0 . . .ceaM−1cA
=

{

UL4, b ∈ A and n + 1 > 0
}

bn · bbd. . . bdycea0 . . .ceaM−1cA
=

{

induction, bbd. . . bdycea0 . . .ceaM−1cA = y
}

bn · y
=

{

x = bn · y
}

x

• if b 6∈ A, then ∀0 ≤ m < M b 6= am and as a result this case is similar to case
x = UB · y, using L6 and UL6 instead of L5 and UL5 instead of L3 and UL3.

• x = b · y and bbd. . . bdycea0 . . .ceaM−1cA = y. Similar to case x = UB · y, using L6 and UL6
instead of L3 and UL3.

• x = y + z, bbd. . . bdycea0 . . .ceaM−1cA = y and bbd. . . bdzcea0 . . .ceaM−1cA = z. Using L7, UL7
and induction, we get bbd. . . bdxcea0 . . .ceaM−1cA = bbd. . . bdy + zcea0 . . .ceaM−1cA =

bbd. . . bdycea0 . . .ceaM−1cA + bbd. . . bdzcea0 . . .ceaM−1cA = y + z = x.

¤

In Theorem 8.3.9 we state that putting the empty process in parallel to another pro-
cess allows us to drop the empty process in some cases. In contrast to most process
algebras, the axiom x = x‖ ε does not hold for all PAtrans processes x, viz. it does not
hold if (a subprocess of) x is locked. In that case axiom M9 can be applied resulting
in a state of deadlock. Therefore we have a restricted theorem stating that if a pro-
cess in which no actions are locked is put in parallel to the empty process, then this
parallelism can be eliminated.

98 Modelling Transactional Behaviour 8

Definition 8.3.8 Let x be a process in PAtrans. Then p(x) is the predicate that no action in
x is locked:

p(δ) ≡ true
p(ε) ≡ true

p(a · x) ≡ ¬∃a∈A∃n>0 a = an ∧ p(x)
p(x + y) ≡ p(x) ∧ p(y)

Theorem 8.3.9 Let x be a process in PAtrans such that no action in x is locked, i.e. p(x)
holds for p as defined in Definition 8.3.8. Then

ε‖ x = x .

Proof We prove this using induction to the structure of x:

• x = δ. Then, using M1–3 and A6, ε‖ x = ε‖ δ = εT δ + δ T ε = δ + δ = δ = x.
• x = ε. Then, using M1, A3 and M4, ε‖ x = ε‖ ε = εT ε+ εT ε = εT ε = ε = x.
• x = UA · y for A ⊆ A and since p(y) holds, ε‖ y = y. Then using M1, M5, M7,

UL2 and induction, we get ε‖ x = ε‖ (UA · y) = εT (UA · y) + (UA · y)T ε = δ +

UA · (y‖bεcA) = UA · (y‖ ε) = UA · y = x.
• x = an · y for a ∈ A and since p(x) holds and thus p(y) holds, n = 0 and ε‖ y = y.

Then using M1, M5, M8, UL2, n = 0 and induction, we get ε‖ x = ε‖ (an · y) =

εT (a0 · y) + (a0 · y)T ε = δ + a0 · (y‖bdεcea) = a0 · (y‖ ε) = a0 · y = an · y = x.
• x = a · y for a ∈ A, and since p(x) holds and thus p(y) holds, ε‖ y = y. Then using

M1, M5, M10 and induction, we get ε‖ x = ε‖ (a · y) = εT (a · y) + (a · y)T ε = δ +

a · (y‖ ε) = a · y = x.
• x = y + z and since p(x) holds and thus p(y) and p(z) hold, ε‖ y = y and ε‖ z = z.

Then, using M1, M6, M11 and induction, we get ε‖ x = ε‖ (y + z) = εT (y + z) +

(y + z)T ε = εT y + εT z + y T ε+ z T ε = ε‖ y + ε‖ z = y + z = x.

¤

As can be seen in Figure 8.4 and by looking at the recursive specification calculated
in Calculations 8.3.1 to 8.3.6, process 〈〈a · b〉〉‖ 〈〈b · a〉〉 can reach a state in which a
rollback is unavoidable. In Calculation 8.3.5, detailed information is given. If no
rollback is possible, this leads to a state of deadlock. In the next section we prove,
amongst other things, that the transactional operator does not introduce deadlocks
without having the possibility to roll back.

8.4 Properties of Process Algebra with Transactions 99

8.4 Properties of Process Algebra with Transactions

In this section we prove some properties of PAtrans. First of all, we prove that the
transactional operator in combination with the merge operator does not introduce
deadlock situations in which no rollback is possible. We prove this since Axioms M5
and M9 introduce possibly unwanted deadlocks.

Lemma 8.4.1 After execution of an action in A or lockable action in L from within a trans-
action, there is always an alternative to rollback the transactions.

Proof We need to prove that for processes x and y, action a ∈ A, n ∈ N and A ⊆ A,
after execution of a in 〈〈x,A, ay〉〉 or an in 〈〈x,A, an y〉〉 an alternative to roll back is
available.

By looking at axioms TR8–13, execution of an a ∈ A and an an ∈ L are treated simi-
larly, except for the adding of a lock counter at the first occurrence of the execution of
a non-lockable action (TR13) and the stripping off of the lock counter when execut-
ing a lockable that that has been executed before (TR10). As can be seen, execution of
such an action leads to 〈〈x,A∪{a}, y〉〉. By looking at axioms TR3, TR5, TR7, TR9–10
and TR12–13, it can be seen that if A 6= ∅, which is the case since at least a ∈ A, we
can always do a rollback RA to 〈〈x〉〉, independent of y. ¤

Theorem 8.4.2 (Absence of Deadlock) When only making use of the main operators for
alternative composition +, sequential composition · , parallel composition ‖ and transac-
tions 〈〈 〉〉 for specifying processes, no deadlock is introduced.

Proof By looking at the axioms, it can be seen that new deadlocks are only intro-
duced in M5 and M9. All other deadlocks (δ) appear on both the left-hand and
right-hand side of the equations. So εTax = δ and for n > 0, anx T y = δ. We prove
that both processes εTax and anx T y for n > 0 only occur next to an alternative for
rolling back, and thus can be eliminated using axiom A6.

• εTax: Since we assumed that we only make use of the main operators, this
process must be a subprocess of process ε‖ax and thus an alternative occurs,
viz. ax T ε (M1). We still have a deadlock situation if a = an for n > 0 (M9). We
prove below that for anx T y, an alternative exists to roll back, so choosing y = ε
we also prove it for this case.

• anx T y for n > 0: Again, since we only make use of the main operators, anx T y
occurs as a subprocess of anx‖ y. So alternative y T anx exists. Since n > 0, anx

100 Modelling Transactional Behaviour 8

must have been locked (L4). So a x′ must exist such that anx = bdan−1x′cea. By
looking at the axioms, it can be seen that the locking operator is only intro-
duced in axiom M8, so an action a0 must exist such that a0(y‖bdan−1x′cea). Since
after execution of a0, which is locking and therefore must come from within a
transactions, a rollback can always take place (using Lemma 8.4.1), it must be
the case that a0(y‖bdan−1x′cea + RA〈〈x′′〉〉) for some A ⊆ A and process x′′. So
process y‖bdan−1x′cea and thus y‖ anx only occurs as alternative to a rollback.

¤

Next, we give a soundness proof, i.e. we prove that the set of closed PAtrans terms
modulo bisimulation equivalence, T(PAtrans)/-, is a model for PAtrans.

Definition 8.4.3 (Bisimulation for PAtrans) Let T(PAtrans) be the term deduction sys-
tem induced by deduction rules 1–36 as shown in Tables 5.4, 8.2, 8.4 and 8.6. Bisimulation
for PAtrans is then defined as follows: a symmetric binary relation R on closed terms in
PAtrans is a bisimulation if and only if the following transfer conditions hold for all closed
PAtrans terms p and q:

1. if R(p, q) and T(PAtrans) |= p ↓, then T(PAtrans) |= q ↓.

2. if R(p, q) and T(PAtrans) |= p a
−→ p′, where a ∈A∪L∪UL, then there exists a process

term q′ such that T(PAtrans) |= q a
−→ q′ and R(p′, q′).

Two closed PAtrans terms p and q are bisimular, notation p - q, if there exists a bisimula-
tion relation R such that R(p, q).

Using bisimulation, we can now construct a model for the axioms of PAtrans. In
order to do this, we first need to know that bisimulation is a congruence with respect
to all operators.

Lemma 8.4.4 (Bisimulation is a congruence) Let T(PAtrans) be the term deduction sys-
tem induced by the deduction rules 1–36 as shown in Tables 5.4, 8.2, 8.4 and 8.6. Then
bisimulation equivalence is a congruence on the set of closed PAtrans terms.

Proof It can be easily seen that the operational semantics given in Tables 5.4, 8.2, 8.4
and 8.6 is in path format [BV93]. Since it is proved that if a term deduction system is
in path format, bisimulation is a congruence [BV95] (based on [BV93, Fok94]), this
proves this lemma. ¤

8.4 Properties of Process Algebra with Transactions 101

Definition 8.4.5 (Bisimulation model for PAtrans) The bisimulation model for the pro-
cess algebra with transactions (PAtrans) is constructed by taking the equivalence classes of
the set of all closed PAtrans terms with respect to bisimulation equivalence. As bisimulation
is a congruence, the operators can be pointwise defined on the equivalence classes.

Theorem 8.4.6 (Soundness of PAtrans) The set of closed PAtrans terms modulo bisim-
ulation equivalence, T(PAtrans)/-, is a model for PAtrans.

Proof We prove this theorem by proving that each axiom is sound, i.e., by proving
that for all closed instantiations of the axiom, both sides of the axiom correspond
to the same element of the bisimulation model. This proof outline is taken from
[Ver97, BV95]. The proof itself can be found in Section B.1 on page 223. ¤

We now turn to completeness. Since we deal with a (restricted) form of recur-
sion, proving completeness requires a detailed analysis of the process terms (see
e.g. [BFP01]). Apart from that, formally specifying transactional behaviour is con-
cerned with parallelism, which makes the model even more complex. Since this
proof of completeness goes beyond the scope of the research project, we leave it for
future work.

By proving that all PAtrans terms can be eliminated to a term in a BPAδε with guarded
linear recursion (BPAδεrec), we prove that the expressiveness of the process theory
has not increased. Since the same set of processes can be defined without using
PAtrans operators, the transactional operators introduced can be considered a syn-
tactic extension for simplifying the notation of transactional processes.

If we have a closer look at the bisimulation model for PAtrans, we see that all ele-
ments in this model are regular processes, i.e. processes having finitely many states
and finitely many transitions. A regular process is represented by an equivalence
class of finite transition systems modulo bisimulation. In [BK84a] it is shown that
the set of all finite transition systems modulo bisimulation is a model for BPA with
unique solutions for all linear recursive specifications.

Theorem 8.4.7 (Elimination to BPAδεrec) For every closed PAtrans term t there exists a
linear recursive specification E over BPAδε such that t is a solution of E.

Proof This theorem is proved by induction on the general structure of t. We sketch
the proof for t ≡ 〈〈t1,A, t2〉〉 for closed PAtrans terms t1 and t2 and A ⊆ A, where t2
is a subprocess of t1 and A a set of actions from t1. We give a set of linear recursive
equations E containing variables of the form Xt1,A

t2
, and prove by induction on the

structure of t2 that for all terms 〈〈t1,A, t2〉〉 there exists a BPAδεrec term s such that

102 Modelling Transactional Behaviour 8

T(PAtrans) |= s = 〈〈t1,A, t2〉〉. Let E be defined as follows:

E = { Xt,∅
δ = δ, Xt,A

δ = RA ·Xt,∅
t ,

Xt,∅
ε = C∅, Xt,A

ε = CA + RA ·Xt,∅
t ,

Xt,∅
UB · t1

= U∅ ·Xt,∅
t1
, Xt,A

UB · t1
= U∅ ·Xt,A

t1
+ RA ·Xt,∅

t ,

Xt,∅
cn · t1

= cn ·Xt,{c}
t , Xt,A

bn · t1
= bn ·Xt,A∪{b}

t1
+ RA ·Xt,∅

t ,

Xt,A
an · t1

= a ·Xt,A
t1

+ RA ·Xt,∅
t , Xt,∅

c · t1
= c0 ·Xt,{c}

t1
,

Xt,A
b · t1

= b0 ·Xt,A∪{b}
t1

+ RA ·Xt,∅
t , Xt,A

a · t1
= a ·Xt,A

t1
+ RA ·Xt,∅

t ,

Xt,B
t1+t2

= Xt,B
t1

+ Xt,B
t2

| A ⊆ A, A 6= ∅, B ⊆ A, n ∈ N, n > 0, a ∈ A, b ∈ A \ A, c ∈ A }

Since A is finite (all actions in A come from t1) and t2 is a subprocess of t1, E is fi-
nite. As can be seen by comparing axioms TR2–14 with the recursive equations in
E, 〈〈t1,A, t2〉〉 satisfies the equation for Xt1,A

t2
in E. The full proof can be found in Sec-

tion B.2 on page 232. ¤

8.5 Combining Transactions and States

As mentioned in Section 8.1, we abstracted from read access to variables and the ac-
tual data changes. In this section we explain how we can combine transactions with
the concept of states as introduced in Chapter 6 to come closer to real-life transac-
tional behaviour.

8.5.1 Introduction

Up till now, we only took write actions into account. However, both read actions and
internal actions might also be needed when giving real-life examples. Therefore, we
need to draw a distinction between write actions and other (i.e. read or internal)
actions. In former sections we assumed that execution of action a meant a write
action to (shared) variable a. We can explicitly indicate whether an action is a write
action to a variable. The set of actions A in 〈〈x,A, y〉〉 is then redefined such that it
contains only updated variables.

Although this is a major change in the notation and the way we deal with variables,
this does not influence the axioms drastically. If we consider first degree isolated
transactions, there are dependencies between write actions only. (Degrees of isola-
tion are discussed in Section 8.6.) So both read actions and internal actions are not
influenced by the locking operator and therefore only write actions should have their
lock counter increased. We make this distinction between different kinds of actions
by adapting the conditions in the axioms and operational rules.

8.5 Combining Transactions and States 103

Since only (more) conditions on the format of the actions are added, this extension
does not influence the soundness nor the elimination to BPAδεrec substantially with
respect to the operators introduced in this chapter.

As introduced in Chapter 6, we have a formalism for specifying states and state
changes. In this section we combine the formalism for specifying transactions with
this formalism. Both formalisms are concerned with valuation changes of variables.
Since we need a mechanism for the handling of state changes and doing calculations
using state changes we introduce valuations sets, together with some operators on
them.

Definition 8.5.1 A valuation set V is a set containing valuations where valuations are as
defined in Definition 6.2.1. All valuations in a valuation set have a unique identifier:

∀ (i 7→ c : T) ∈ V ∀ (i′ 7→ c′ : T′) ∈ V \ {i 7→ c : T} i 6= i′

The set of all possible valuations is denoted by V.

We make use of some operators on sets of valuations, which we introduce below.
First of all, we use function vars for determining the variable identifiers occurring in
a valuation set.

Definition 8.5.2 Let V ⊆ V be a valuation set. The set of identifiers in V, vars(V), is then
defined by

vars(V) = {i ∈ ID | ∃T∈T∃c∈T (i 7→ c : T) ∈ V}

We also introduce some binary infix operators on valuation sets, to which we add a
small bullet (•). The first reason is for identifying them as being operators on valua-
tion sets. Apart from this identification, the bullet makes the operators asymmetric,
which is preferred since none of the operators is commutative.

Definition 8.5.3 Let V ⊆ V and W ⊆ V be valuation sets. The addition of W to V, V ∪W
contains all valuations in V and those valuations in W that map variables not occurring in
V:

V ∪W = V ∪ {(i 7→ c : T) ∈W | i 6∈ vars(V)}

Definition 8.5.4 Let V ⊆ V and W ⊆ V be valuation sets. The identifier intersection of
these sets, V ∩W, is a valuation set containing all valuations in V for which the variables
are also mapped in W:

V ∩W = {(i 7→ c : T) ∈ V | i ∈ vars(W)}

104 Modelling Transactional Behaviour 8

Definition 8.5.5 Let V ⊆ V and W ⊆ V be valuation sets. The set V without W, V \ W, is
a valuation set containing those valuations from V where the variable is not mapped in W:

V \ W = {(i 7→ c : T) ∈ V | i 6∈ vars(W)}

Apart from the operators on valuation sets, we introduce some additional operators
on valuation stacks (see Definition 6.2.3). First of all, we make use of a function (vars)
to determine the variable identifiers occurring in a valuation stack.

Definition 8.5.6 Let σ be a valuation stack. The set of identifiers in σ, vars(σ), is then
defined by

vars(λ) = ∅

vars((i 7→ c : T) ::σ) = {i} ∪ vars(σ)

In Definition 6.2.6 we introduced the substitution operator on valuation stacks. This
function is extended to substitutions of valuation sets.

Definition 8.5.7 Let σ be a valuation stack and V be a valuation set. Then, the substitutions
of valuations in σ by valuations V, σ[V], is defined by

λ[V] = λ

(i 7→ c : T) ::σ[V] =

{

(i 7→ c′ : T) :: (σ[V \ {i 7→ c′ : T}]) if ∃c′ (i 7→ c′ : T) ∈ V
(i 7→ c : T) :: (σ[V]) otherwise

Now that we have introduced valuation sets together with operators on them, we
have a look at the deduction rules for the operators introduced in Section 8.2. The
deduction rules nicely show all elements that should be thought of when replacing
the current PAtrans actions with real actions and when adding a state and time com-
ponent to them. In the remainder of this section we discuss the elements that should
be taken into account when adapting the deduction rules in such a way that they
become suitable for the combination with states and time.

8.5.2 Rollbacks and Commits

Since a rollback should be able to restore a state which existed before starting a trans-
action, we should not only keep track of the variables that are updated when execut-
ing actions from within transactions, but also of their valuations at the time of their
first update within the transaction. This is done by replacing the set of actions A in
〈〈x,A, y〉〉with a valuation set V, so 〈〈x,A, y〉〉 becomes 〈〈x,V, y〉〉. This set V contains
all valuations that are updated by the transaction. Apart from this extension, we

8.5 Combining Transactions and States 105

draw a distinction between rolling back a transaction and committing one. If a roll-
back takes place, the original values, stored in V, are restored and the variables are
unlocked. If, on the other hand, a transaction commits, we only unlock the variables,
keeping the new valuations as assigned from within the transaction. To achieve this,
the A which is added to commit (C) and rollback (R) actions is also replaced by
valuation set V.

By looking at the deduction rules for the operators introduced in this chapter, it
can be seen that we already draw a distinction between rolling back a transaction
(deduction rule 8 in Table 8.2) and committing one (deduction rules 9 and 10 in Ta-
ble 8.2). So in rule 8 we should restore the original valuations where in rules 9 and 10
the new valuations should be kept. The effect of rolling back or committing a trans-
action which updated valuations V in state σ at time t, effect(UV , σ, t), is therefore
defined as follows:

effect(RV , σ, t) =def σ[V]
effect(CV , σ, t) =def σ

As can be seen in deduction rule 8 (in Table 8.2 on page 88), we make use of A 6= ∅ to
check whether an action had already been executed in the current transaction. Since
read actions and internal actions do not affect any of the valuations in the state, the
set of valuations V in 〈〈x,V, y〉〉 can be empty, even if actions are executed. Therefore,
we make the assumption that we only allow the use of non-auxiliary operators when
giving specifications of processes. This assumption, together with the fact that the
auxiliary transactional operator (〈〈 , , 〉〉) is only introduced after executing the ini-
tial action of the transaction (see deduction rules 9, 11, 12 and 13 in Table 8.2), allows
us to drop the premise of this rule. As a result, we get the following deduction rule:

〈〈〈x,V, y〉〉, σ, t〉 RV−→〈〈〈x〉〉, σ[V], t〉

Since there are no premises, we call this deduction rule an axiom.

8.5.3 Executing Actions from within a Transaction

As mentioned, we replace the set A in 〈〈x,A, y〉〉 with a set of valuations V. On
page 83, we introduced abbreviation a for a write action to a shared variable a. Fur-
thermore, on page 84 we said that 〈〈x,A, y〉〉 represents “transactional process x, which
has already executed the set of actions A and still has to execute process y before a commit
statement can take place”. This set of actions A is actually the set of already updated

106 Modelling Transactional Behaviour 8

variables. This is exactly what we store in V: the original valuations which are up-
dated by executed actions from within the transaction. So, when executing an action
a, we add all valuations to V which are affected by action a and which are not already
contained in V.

Determining the set of updated valuations is an easy task as long as the values of
updated variables change. In that case, the set of valuations that are updated by
execution of action a in state σ at time t is the difference between the states before
and after execution of action a. However, it might be possible that even if valuations
keep unchanged, valuations are updated. To give an example we revise the process
given on the right-hand side in Figure 8.1 on page 82. We initialise the a with two
different values:

[a 7→ 0 : N | 〈〈a := 0 · a := a + 2〉〉 ‖ 〈〈a := 1 · a := a× 2〉〉]

and
[a 7→ 1 : N | 〈〈a := 0 · a := a + 2〉〉 ‖ 〈〈a := 1 · a := a× 2〉〉] .

In the first case with initial value 0, the effect of a := 0 on state a 7→ 0 : N is a 7→ 0 : N.
So the difference is empty. However, locking should take place since otherwise we
can get the unwanted sequence

a := 0 · a := 1 · a := a× 2 · a := a + 2

which results in state a 7→ 4 : N. The same holds when initialising with 1. In that case
we can also get into a state where a maps to 4, viz. after execution of sequence

a := 1 · a := 0 · a := a + 2 · a := a× 2 .

Initialisation with any other value, including ⊥, results in the intended process as
shown in Figure 8.1.

To solve this problem, we define an updates predicate on variable identifiers and
action, which states whether the action might update the valuation of the variable:

updates : ID×A→ B

updates(i, a) = ∃σ∈S ∃t∈T i(σ, t) 6= i(effect(i, σ, t), t)

Having the updates functions, we can specify a function U for determining the val-
uations in a state that are (possibly) updated by an action:

U : A× S×T→ P (V)

U(a, λ, t) = ∅

U(a, (i 7→ c : T) ::σ, t) =

{

{i 7→ c : T} ∪U(a, σ, t) if updates(i, a)
U(a, σ, t) otherwise

8.5 Combining Transactions and States 107

So U(a, σ, t) returns the set of valuations in σ that are possibly updated by the action
a at time t. We use notations U for the updated function since it is the first character
of “updated” and its result is a valuation set which corresponds to formerly used
valuation sets V and W.

The set of valuations that is updated and where no mapping to the variables is (al-
ready) available in V, can be expressed by

U(a, σ, t) \ V .

In rules 15–18 in Table 8.2 on page 88, premises a ∈ A and a 6∈ A state whether vari-
able a had or had not been updated by an action from within the transaction. We
replace these premises by premises which express that either none or at least one
valuation is updated by the action which was not updated by actions from within
the transaction before. So the premises can be adapted as follows:

a ∈ A is replaced by U(a, σ, t) \ V = ∅

a 6∈ A is replaced by U(a, σ, t) \ V 6= ∅

Furthermore, instead of adding a to A in rules 12, 13, 15 and 17 , we now have to add
the updated valuations to valuation set V:

{a} is replaced by U(a, σ, t)
A∪ {a} is replaced by V ∪U(a, σ, t)

8.5.4 Locking and Unlocking

We recall the considerations that led to the use of lock counters, as stated on page 86:
“If transaction 〈〈x,A, y〉〉 executes action a for the first time, i.e. a 6∈ A, then a is ex-
tended with a lock counter having value 0 and A is extended with a. If the transac-
tion executed an a before, i.e. a ∈ A, no locking counter is added since the transaction
already has exclusive rights on action a”. As mentioned in the previous section, the
check for a 6∈ A is replaced by U(a, σ, t) \ V 6= ∅, i.e., there is at least one valuation
that is updated by action a, which was not yet updated by an action in the transac-
tion. The lock counter contains the number of variables that are locking the action,
i.e., the number of times the action is locked because it tries to update a variable that
is locked. Apart from that, the locking operator uses the locking action which syn-
tactically represents the updated variable. However, when adding states and time,
we should not lock variables identified by the name of the action, but we lock the
set of lockable actions which also try to update the newly updated set of valuations
U(a, σ, t) \ V. Therefore, apart from the lock counter, we extend locking actions with

108 Modelling Transactional Behaviour 8

this valuation set. To give an example, we present the adapted deduction rule for
rule 17 in Table 8.2:

〈y, σ, t〉 a
−→〈y′, σ ′, t〉, U(a, σ, t) \ V 6= ∅

〈〈〈x,V, y〉〉, σ, t〉 a0,U(a,σ,t) \ V
−−−−−−→〈〈〈x,V ∪U(a, σ, t), y′〉〉, σ ′, t〉

Furthermore, since we draw a distinction between read and write actions by compar-
ing states before and after execution of actions, we need to split deduction rule 13
in Table 8.2 into two rules. We only want write actions to be lockable, so rule 13
should only add a lock counter if the executed action changes the state, that is, if
U(a, σ, t) 6= ∅:

〈x, σ, t〉 a
−→〈x′, σ ′, t〉, U(a, σ, t) = ∅

〈〈〈x〉〉, σ, t〉 a
−→〈〈〈x,∅, x′〉〉, σ ′, t〉

〈x, σ, t〉 a
−→〈x′, σ ′, t〉, U(a, σ, t) 6= ∅

〈〈〈x〉〉, σ, t〉 a0,U(a,σ,t)
−−−−→〈〈〈x,U(a, σ, t), x′〉〉, σ ′, t〉

Now, we have all ingredients to adapt the deduction rules for the transactional op-
erator given in Table 8.2.

We still need to adapt the rules for the locking and unlocking operators and for the
parallel composition. These rules deal with the actual (un)locking of actions. We
first have a look at the parallel composition, after which we discuss the locking and
unlocking operators in more detail.

As explained in Section 8.2.3, the merge operator introduces the locking and unlock-
ing operator if a locking or unlocking action is executed, respectively (see deduction
rules 30, 31, 34 and 35 in Tables 8.6 on page 91). The unlocking actions unlock the
variables contained in the valuation set with which it is parameterised (the V in UV).
This set is also added to the unlocking operator, which is explained in more detail
below. So we only need to replace the A’s in the deduction rules with V’s. The lock-
ing operator, however, should also be extended with a set of variables, i.e., the set
of valuations that are updated by the executed action. Having a one-on-one relation
on the actions and the locked variables (as in PAtrans), we could parameterise the
locking operator with the action itself. However, since the one-on-one relation no
longer holds when adding states and time, we have to extend the locking operator
with the newly updated variables, as explained above. This exactly equals the set of
valuations added to the locking actions, i.e., the V in an,V . To give an example, we
present the adapted deduction rule for rule 31 in Table 8.6:

〈x, σ, t〉 a0,V
−−→〈x′, σ ′, t〉

〈x‖ y, σ, t〉 a0,V
−−→〈x′ ‖bdyceV , σ

′, t〉, 〈y‖ x, σ, t〉 a0,V
−−→〈bdyceV ‖ x′, σ ′, t〉

The locking and unlocking operators increase and decrease the lock counters of lock-
able actions, respectively. This changing of the lock counter depends on the set of

8.5 Combining Transactions and States 109

variables that is added as a parameter to the operators. In PAtrans, the locking op-
erator increases the lock counter of all actions that are equal to the action which is
attached to the locking operator. This means that those actions are locked that up-
date the variables added to the locking operator. Since we now add a set of variables
(which is actually a set of valuations), we need to check whether the lockable ac-
tions update any of the variables included in this set. As we have seen before, the
set of variables updated by lockable action an,V is V. Thus, the test whether the lock
counter should be increased is determined by testing for emptiness of the intersec-
tion of this valuation set V and parameter W of the locking operator:

a = b is replaced by V ∩W 6= ∅

a 6= b is replaced by V ∩W = ∅

So if at least one variable from W is updated by lockable action an,V , its lock counter
should be increased. We increase the lock counter with the number of variables that
cause the locking of the action, i.e. the number of variables that are both updated
by the lockable action and the locking action: |V ∩W|. As a result, e.g. deduction
rule 22 in Table 8.4 is adapted as follows:

〈x, σ, t〉 an,V
−−→〈x′, σ ′, t〉, V ∩W 6= ∅

〈bdxceW , σ, t〉
an+|V ∩W|,V
−−−−−→〈bdx′ceW , σ

′, t〉

If no valuations are updated, the lock counter should not increase, as stated in rule 21
in Table 8.4. Since in that case |V ∩W| = 0, increasing with |V ∩W| is allowed, we
can merge rules 21 and 22 by dropping the premise V ∩W 6= ∅:

〈x, σ, t〉 an,V
−−→〈x′, σ ′, t〉

〈bdxceW , σ, t〉
an+|V ∩W|,V
−−−−−→〈bdx′ceW , σ

′, t〉

Unlocking of actions is done in a similar way. First of all, we extend the unlocking
operator with a valuation set V instead of the A we made use of in PAtrans. For
example, deduction rule 30 in Table 8.6 is adapted as follows:

〈x, σ, t〉 UV−→〈x′, σ ′, t〉

〈x‖ y, σ, t〉 UV−→〈x′ ‖bycV , σ
′, t〉, 〈y‖ x, σ, t〉 UV−→〈bycV ‖ x′, σ ′, t〉

Furthermore, in PAtrans we tested for a ∈ A, which meant that the variable is con-
tained in the set of variables that should be unlocked. Similarly to the locking opera-
tor, the test whether the lock counter should be decreased by the unlocking operator
can be determined by testing for emptiness of the intersection of valuation set V and

110 Modelling Transactional Behaviour 8

parameter W of the unlocking operator:

a ∈ A is replaced by V ∩W 6= ∅

a 6∈ A is replaced by V ∩W = ∅

So a lockable action should be unlocked if the intersection of the updated variables
by the lockable action and the set of unlocked variables is not empty. The lock
counter is decreased by the number of variables in this intersection. To give an ex-
ample, we adapt deduction rule 26 in Table 8.4 as follows:

〈x, σ, t〉 an,V
−−→〈x′, σ ′, t〉, (V ∩W 6= ∅ ∧ n > 0)

〈bxcW , σ, t〉
an−|V ∩W|,V
−−−−−→〈bx′cW , σ

′, t〉

8.5.5 Identifiers and Scoping

Up till now, we only took the deduction rules for the transactional operators into ac-
count. However, the deduction rules for the scope operator also need an adaptation
to achieve the expected behaviour. This is caused by the fact that we parameterise
the locking and unlocking actions with valuation sets. Of course, locking and un-
locking of actions can only depend on variables available to the action. Suppose
that we do not adapt the deduction rules for the scope operator. Have a look at the
following process:

[n 7→ 0 : N |
〈〈[i 7→ 0 : N | (i := i + 1) · (n := n + i)]〉〉

‖
〈〈[i 7→ 1 : N | (i := i + 1) · (n := n× i)]〉〉

]

As can be seen, both transactions executed in parallel have a local variable i which
is (and can be) only used inside the transaction. Of course, since variable i is local
in both transactions, we do not want updates of i to cause the transaction running
in parallel being locked with respect to its own local variable i. However, since we
extend locking and unlocking actions with valuation sets, these sets do pass scope
operators and can therefore conflict with other scopes. To prevent this behaviour,
when leaving a scope, the local variables should be filtered from the valuation sets
attached to both locking and unlocking actions. We do this by using the without
operator as defined in Definition 8.5.5. To update the valuation sets which are added
to the locking and unlocking actions, we make a case distinction on the type of ac-
tions for the deduction rules of the state operator, as we do with all transactional

8.6 Degrees of Isolation 111

operators. This leads to three rules instead of the second rule in Table 6.3 on page 64:

〈x, (i 7→ e(σ, t) : T) ::σ, t〉 UV−→〈x′, (i 7→ c : T) ::σ ′, t〉

〈[i 7→ e : T | x], σ, t〉 UV \ {i 7→e(σ,t):T}
−−−−−−−→〈[i 7→ c : T | x′], σ ′, t〉

〈x, (i 7→ e(σ, t) : T) ::σ, t〉 an,W
−−→〈x′, (i 7→ c : T) ::σ ′, t〉

〈[i 7→ e : T | x], σ, t〉 an,W \ {i 7→e(σ,t):T}
−−−−−−−−→〈[i 7→ c : T | x′], σ ′, t〉

〈x, (i 7→ e(σ, t) : T) ::σ, t〉 a
−→〈x′, (i 7→ c : T) ::σ ′, t〉

〈[i 7→ e : T | x], σ, t〉 a
−→〈[i 7→ c : T | x′], σ ′, t〉

As a result of using the new deduction rules, variable i in the example is no longer
locking the i in the other transaction since it is stripped off of the valuation set of the
locking action i := i + 1 when leaving its scope.

An overview of all deduction rules for the transactional operators combined with
states can be found in Table 9.10 on page 128.

8.6 Degrees of Isolation

In Section 8.1 we shortly mentioned degrees of isolation. We discuss this concept in
more detail in this section.

All transactions have a so-called degree of isolation which specifies the structure and
dependencies between actions in the transactions. A distinction can be drawn be-
tween four degrees of isolation, mainly due to performance issues [GR93]. A short
overview of the different degrees is given in Table 8.7.

A 0◦ isolated transaction is called chaos. It does not overwrite another transaction’s
dirty data if the other transaction is 1◦ or greater.

A 1◦ isolated transaction is called browse. It prevents data updates to get lost. It is
both well-formed and two-phase with respect to writes. A transaction is said to be
well-formed with respect to writes if all data updates are preceded by locks, locking data
updates to the same data in other transactions until it is committed or rolled back.
Two-phase means that all locks precede all unlocks.

A 2◦ isolated transaction, called cursor stability, has the same properties as a first
degree transaction, but it also implements well-formedness with respect to reads. So
also the reading of updated data by other transactions is locked.

112 Modelling Transactional Behaviour 8

Issue Degree 0 Degree 1 Degree 2 Degree 3
Common
name

Chaos Browse Cursor Stability Isolated

Protection
provided

Lets others
run at higher
isolation

0◦ and
no lost updates

No lost updates,
no dirty reads

No lost updates,
no dirty reads,
repeatable reads

Transaction
structure

Well-formed
w.r.t. write

Well-formed
w.r.t. write
and two-phase
w.r.t. write

Well-formed
and two-phase
w.r.t. write

Well-formed
and two-phase

Dependen-
cies

None write→ write write→ write
write→ read

write→ write
write→ read
read→ write

Table 8.7: Degrees of isolation as given in [GR93].

Finally, a 3◦ isolated transaction also locks data read by a transaction until it com-
mits or rolls back. This is called isolated, serialisable or repeatable reads. Optimally, all
transactions should be 3◦ isolated.

We can extend our process algebraic model such that we can distinguish between
degrees of isolation. Although this does not increase the complexity of the transac-
tional locking mechanism, we need to add lots of extra syntax to make this possible.
One of the causes is that we need to introduce an explicit read action. On the other
hand this is caused by the fact that actions from within 1◦ isolated transactions both
are lockable and cause other actions to get locked. So the lock counter we make use
of in combination with the set of locking variables is not only a counter which stores
the number of times the action is locked, but it also specifies that execution of the
action causes other actions to get locked (as stated in axiom M8). We call an action
that causes other actions to get locked a locking action. In zeroth and second degree
isolated transactions, lockable actions do not necessarily have to be locking and vice
versa, as can be seen in Table 8.8. So apart from the lock counter (and the set of lock-
ing variables), we need to extend actions from within transactions with a locking
attribute to indicate whether the action is a locking action. This of course depends
on the degree of isolation, which should be added to the transactional operators.

In the previous section we introduced a function, U, for determining the variables
that are updated by actions. When adding degrees of isolation, we also need to
introduce a function on actions for determining the set of variables that are read.

Furthermore, we need to draw a distinction between shared locks and exclusive locks
[GR93]. Shared locks are set by read actions from within 3◦ isolated transactions and
cause other transactions not to write to variables read by the transactions. However,
the other transactions are allowed to read them. On the other hand, write actions set
exclusive locks on variables, causing other transactions to get locked when access-

8.7 Related Work 113

degree lockable locking
of isolation write read write read

zeroth yes no no no
first yes no yes no

second yes yes yes no
third yes yes yes yes

Table 8.8: Lockable versus locking actions.

ing variables, even for read actions. A 3◦ isolated transaction can upgrade a shared
lock to an exclusive lock by writing to a variable it has a shared lock on. The set
of variables or valuations that we stored in the auxiliary transactional operator (the
A in 〈〈x,A, y〉〉) is used for keeping track of the variables the transaction has exclu-
sively locked. By introducing shared locks, we need to either split this set into two
sets, one for shared and one for exclusive locks, or we should extend the elements
in the set with an attribute which indicates whether the element is shared locked or
exclusively locked.

To conclude, adding degrees of isolation to the formalism presented leads to the
introduction of several extensions. Although these extensions do not make the con-
cepts more complex, they introduce a considerably large amount of syntactical over-
head, which goes beyond the scope of this thesis.

8.7 Related Work

Since both transactions and process algebra are widely used concepts, much research
is done in both areas.

Transactions can be considered as groups of actions. In process algebra there are
mechanisms available to group actions. In [BKT85] a mechanism is introduced for
specifying asynchronous communication between processes, based on process alge-
bra. Each communication consists of (independent) write and read actions. Each
read action should be preceded by its corresponding write action. If this is not the
case, actions can get locked which can be compared with transactional locking. The
semantics of this mechanism is given in [BKP92]. In [BK84b] the tight multiplica-
tion operator is introduced. This operator is used in the same way as the sequential
composition operator. However, no interleaving can take place between two actions
which are composed into a process using this tight multiplication operator. Trans-
actions can roll back, causing actions being undone. In [BPW94], a mechanism for
modelling this undoing of actions is added to process algebra. The choice for execut-
ing such undo actions is deterministic in contrast to the nondeterministic choice for

114 Modelling Transactional Behaviour 8

rolling back a transaction. In [BM01], Bruni and Montarnari introduce Zero-safe net
models, which are Petri nets that can be used for the modelling of transactions. In
[BLM02], join calculus is used for the modelling of transactions, based on Zero-safe
petri nets.

The classical transaction concept appeared for the first time in [EGLT76]. In [Gra81]
the ACID properties of transactions are explicitly indicated. A nice and complete
overview of the main concepts of transactions is given and discussed by Gray and
Reuter in [GR93]. Our model of nesting of transactions is an extension of the concept
of nested transactions as developed by Moss [Mos81]. Other extensions of Moss’
concept are for example multi-level transactions [Wei86] and open nested transac-
tions [WS92]. For the concepts described in this chapter we make use of the two-
phase locking (2PL) protocol as introduced in [EGLT76]. Many variations on the 2PL
technique exist [AD76, GR93, SGMS94]. Apart from two-phase locking, other con-
currency control mechanisms exist, like timestamp-ordering (TO) techniques [SM77]
and optimistic schedulers [Bad79]. All techniques can be combined into hybrid tech-
niques, e.g. 2PL-TO combinations [BG81].

9
Modelling Internet Applications

In this chapter we bring together the ideas and concepts introduced in former chap-
ters of this thesis. We combine all elements to come to a language for specifying
Internet applications. So in this chapter we give a formal definition of the syntax
and semantics of DiCons, which can be used for modelling Internet applications (see
also Section 1.4). The model is geared towards modelling the interaction behaviour
of Internet applications with respect to its users. In Chapters 10 and 11 we make
use of these specifications for the testing of running Internet applications and for the
generation of executable applications, given a specification.

To express the semantics of the processes we are interested in, we make use of pro-
cess graphs, which are defined using Structured Operational Semantics rules, as in-
troduced by Plotkin [Plo81].

First of all, in Section 9.1 we give an overview of the types used in the specifications.
We give an overview of the action alphabet of DiCons in Section 9.2. Next, in Sec-
tion 9.3 we give a summary of the operators introduced before. A complete overview
of the structured operational semantics is given in Section 9.4. To complete this chap-
ter, we give an example of a formal specification of an Internet application and prove
some properties in Section 9.5.

This chapter contains many lists, tables, and references to former pages, chapters and
tables. Although we know that this makes this chapter less readable, we do include
them here to present a complete overview of the model.

116 Modelling Internet Applications 9

9.1 Types

In former chapters we introduced several types for several parts of the formal spec-
ifications. We revise them here, give short explanations, and show the way we use
them.

U The universe of users (page 68)
This set contains all possible users. Each user interacting with an application
is represented by a u of type U.

G The universe of groups (page 72)
This set contains all possible groups, which themselves are sets of users. So,
G = P (U).

M The universe of messages (page 68)
All messages are uniquely identified by an element in M and can therefore be
represented by their symbolic name m in M.

Pi The universe of input parameters (page 68)
A message can be extended with parameters. For request messages these pa-
rameters are variables that are assigned by a user by filling in a Web form, i.e.,
input parameters denoted by i, i1, i2, ...

Po The universe of output parameters (page 68)
A message can be extended with parameters. For response messages and e-
mail messages, the parameters are values of expressions to be included in the
actual message that needs to be sent to the requesting user, i.e., output param-
eters denoted by o, o1, o2, ...

V The universe of valuations (page 103)
This set contains all possible valuations where valuations of variables are as
defined in Definition 6.2.1.

S The universe of states (page 59)
The set of all possible states. When making use of the term state we mean the
representation of the state by a valuation stack as defined in Definition 6.2.3.

T Time (page 63)
Time is measured on a discrete scale, as defined in Section 6.4.

K The universe of session labels (page 74)
The set of all possible session labels as defined in Definition 7.3.1. Session labels
are used for uniquely identifying sessions of connected interactions.

We introduce one more set, viz. the set of all process terms.

9.2 Alphabet 117

X The set of all process terms
U The universe of users
G The universe of groups
M The universe of messages
Pi The universe of input parameters
Po The universe of output parameters
V The universe of valuations
S The universe of states
T Time
K The universe of session labels

Table 9.1: Types in the DiCons model.

X Process terms
This set contains all DiCons process terms.

A short overview of the types is given in Table 9.1.

9.2 Alphabet

The alphabet of actions, A, consists of four sets of actions, viz. local or internal ac-
tions, communication primitives, unlocking actions and lockable actions:

A =def I ∪ C ∪ UL ∪ L

Apart from the actions in A, the alphabet of DiCons contains two more elements, viz.
deadlock δ and the empty process ε.

δ Unsuccessful termination (page 52)
In Section 5.4 we introduced deadlock, which states unsuccessful termination.

ε Successful termination (page 52)
In Section 5.5 we introduced the empty process, which expresses the process
that can only terminate successfully.

I The internal actions (page 62)
I is the set of all possible internal actions as briefly introduced in Section 6.3.
As mentioned before, these actions can be simple and self-explaining. If func-
tions show complex behaviour, the effect of the action on the state should be
provided explicitly.

118 Modelling Internet Applications 9

A The DiCons alphabet, {δ, ε} ∪ I ∪ C ∪ UL ∪ L

δ Unsuccessful termination
ε Successful termination
I The internal actions
C The communication primitives
UL The unlocking actions
L The locking actions

Table 9.2: Alphabet of the DiCons model.

C The communication primitives (page 69)
The alphabet of communication primitives is introduced in Section 7.1:

C =def { req.u.~ı | u ∈ U, i1, . . . , in ∈ Pi } ∪
{ resp.u.m.~o | u ∈ U,m ∈M, o1, . . . , on ∈ Po } ∪
{u m(~o) | u ∈ U,m ∈M, o1, . . . , on ∈ Po } ∪
{u m(~o) | u ∈ U,m ∈M, o1, . . . , on ∈ Po } ∪
{u m(~o;~ı) | u ∈ U,m ∈M, o1, . . . , on ∈ Po, i1, . . . , in ∈ Pi } ∪
{u m(~o;~ı) | u ∈ U,m ∈M, o1, . . . , on ∈ Po, i1, . . . , in ∈ Pi } ∪
{u m(~o) | u ∈ U,m ∈M, o1, . . . , on ∈ Po }

UL The unlocking actions (pages 85, 105)
The alphabet of unlocking actions is introduced in Section 8.2.1. We adapted
this alphabet in Section 8.5.2, where unlocking actions are combined with states:

UL =def {UV |U ∈ {C ,R }, V ⊆ V}

We model a commit action by a C and a rollback action by an R .

L The locking actions (pages 86, 108)
The alphabet of locking actions is also introduced in Section 8.2.1. To combine
locking actions with states, this alphabet in adapted in Section 8.5.4:

L =def {an,V | a ∈ I∪C, n ∈ N, V ⊆ V}

The locking and unlocking actions are auxiliary actions, which are not used when
giving specifications. A short overview of the elements of the actions in the alphabet
is given in Table 9.2.

9.3 Operators

In this section we summarise the operators introduced in this thesis. We only give
their syntax and informal definitions here. To be able to give these definitions, we

9.3 Operators 119

x, y ∈ X DiCons process terms
a ∈ A an action
a ∈ I∪C a non-auxiliary action
p ∈ I an internal action

U ∈ {C ,R } an unlocking constant
u ∈ U a user

G,H ∈ G groups of users
m ∈M a message
i ∈ Pi input parameters
o ∈ Po output parameters
k ∈ K a session label
b ∈ B a boolean expression
n ∈ N a natural number
σ ∈ S a state
t ∈ T a time stamp

V,W⊆ V valuation sets

j an arbitrary variable identifier
T an arbitrary (abstract data) type

c, d arbitrary constants
e an arbitrary expression

... and any use of primes and vector notation.

Table 9.3: Variables used in the DiCons model.

make use of some variables which are summarised in Table 9.3. These variables are
also used in Section 9.4 where the operational semantics is presented. We identify
the operators that should not be used when giving specifications, i.e. the auxiliary
operators.

x + y Alternative composition (auxiliary, page 50)
Alternative composition is used for constructing a choice between processes.
Given processes x and y, x + y is the process that executes either x or y.

x · y Sequential composition (page 50)
The sequential composition operator can be used for defining processes in
which (sub)processes should take place sequentially. Given processes x and
y, x · y is the process that first executes x, and after completion of x continues
with executing y.

x / b . y Conditional branching (page 54)
The conditional branching operator behaves like the if-then-else-fi operator in

120 Modelling Internet Applications 9

sequential programming: x / b . y ≡ if b then x else y fi .

b .. x Conditional repetition (page 54)
The conditional repetition can be compared with a while loop in traditional
programming. We make use of the conditional repetition operator (..) to
specify these repetitions: b .. x ≡ while b do x od .

b .− x Conditional disrupt (page 56)
Process b .− x specifies that process x is normally executed until b becomes
true. At that moment the process terminates, independent of the (inter)actions
that are taking place at that moment.

[j 7→ e : T | x] Variable declaration (pages 60, 110)
The scope operator is used for declaring variables. The left argument is a valua-
tion, the right argument is the process which defines the scope of the valuation.

x‖ y Parallel composition (pages 73, 89)
Putting processes x and y in parallel, denoted by x‖ y, means the execution of
x and y takes place concurrently.

?ux Anonymous replication (page 74)
Process ?ux expresses that all users u in the universe of users U can anony-
mously execute (inter)actions in process x between unknown user u and the
application in parallel and more than once. The u can occur in x and is bound
as soon as the first action of x is executed.

!u∈Gx Replication (page 75)
Process !u∈Gx expresses that all users u (u ∈ G) can execute (inter)actions in
process x between user u and the application in parallel and more than once.
The u can occur in x and is bound as soon as the first action of x is executed.

!H
u∈Gx Extended replication (page 76)

process !H
u∈G x expresses that all users in group G are allowed to execute process

x more than once. Group H contains the users that are known to the applica-
tion. If u 6∈ H, registration takes place and the user is added to H. If u ∈ H,
identification takes place.

‖u∈Gx Generalised parallel composition (page 75)
Process ‖u∈Gx specifies that all users u (u ∈ G) execute (inter)actions in process
x between user u and the application in parallel but only once. The u can occur
in x and is bound as soon as the first action of x is executed.

‖
H
u∈Gx Extended generalised parallel composition (page 76)

Process ‖H
u∈G x specifies that all users u (u ∈ G) execute (inter)actions in process

9.4 Operational semantics 121

x between user u and the application in parallel but only once. Group H con-
tains the users that are known to the application. If u 6∈ H, registration takes
place and the user is added to H. If u ∈ H, identification takes place.

〈〈x〉〉 Transactional composition (page 83)
The transactional composition is used for turning processes into transactions
such that the process shows transactional behaviour.

〈〈x,V, y〉〉 Extended transactional composition (auxiliary, pages 83, 104)
Process 〈〈x,V, y〉〉 can be read as transactional process x, which has already up-
dated valuations V and still has to execute process y before a commit statement
can take place.

bdxceV Process locking (auxiliary, pages 88, 108)
Process bdxceV specifies that all lockable actions in x which update variables in
valuation set V get locked with respect to these variables.

bxcV Process unlocking (auxiliary, pages 88, 108)
Process bxcV specifies that all lockable actions in x which update variables in
valuation set V get unlocked with respect to these variables.

A short overview of the operators together with their types is given in Table 9.4.

9.4 Operational semantics

To express the operational semantics of DiCons specifications we make use of Plotkin-
style SOS rules [Plo81]. As explained in Section 6.4.1, we give a process graph to
represent transitions on tuples having as arguments a process term, a state and a
moment in time/a time slice. In this section we give the deduction rules for the
operators we make use of for specifying Internet applications.

9.4.1 Transition Labels

Before giving the deduction rules, we need to specify the transition labels. The set
of possible action labels, Al , is based on a subset of the alphabet of DiCons, A. It
contains internal action labels, e-mail, request and response action label and both
locking and unlocking labels:

Al =def I ∪ Cl ∪ UL ∪ Ll

122 Modelling Internet Applications 9

+ : X×X→ X Alternative composition (auxiliary)
· : X×X→ X Sequential composition

/ . : X×B×X→ X Conditional branching
.. : B×X→ X Conditional repetition
.− : B×X→ X Conditional disrupt

[|] : V×X→ X Variable declaration
‖ : X×X→ X Parallel composition
? : ID×X→ X Anonymous replication
! ∈ : ID×G×X→ X Replication
! ∈ : ID×G×G×X→ X Extended replication
‖ ∈ : ID×G×X→ X Generalised parallel composition
‖ ∈ : ID×G×G×X→ X Extended generalised parallel composition
〈〈 〉〉 : X→ X Transactional composition
〈〈 , , 〉〉 : X× P (V)×X→ X Extended transactional composition (auxiliary)
bd ce : X× P (V)→ X Process locking (auxiliary)
b c : X× P (V)→ X Process unlocking (auxiliary)

Table 9.4: Operators of the DiCons model.

Cl The communication labels (page 70)
The set of communication actions that serve as transition labels:

Cl =def {mail.u.m.~o | u ∈ U,m ∈M, o1, . . . , on ∈ Po } ∪

{ req.u.~ı. ~d | u ∈ U, i1, . . . , in ∈ Pi, ~d ∈ type(~ı) } ∪
{ resp.u.m.~o | u ∈ U,m ∈M, o1, . . . , on ∈ Po }

Note that the type function used in the second set actually depends on the state
the process is in. We use type(~ı) to express the types of i1, . . . , in.

Ll The locking labels
The subset of locking actions:

Ll =def {an,V | a ∈ I∪Cl , n ∈ N, V ⊆ V}

Internal action labels and unlocking labels can be one-to-one mapped to the internal
actions and unlocking actions as defined in Section 9.2.

Furthermore, as explained in Section 7.3.1, transitions are also labelled with a session
label k ∈ K. We put the action label above and the session label below the transition
arrow.

9.4 Operational semantics 123

9.4.2 Deduction Rules

In the remainder of this section we give the deduction rules for all actions in the
alphabet and for all operators of DiCons.

〈ε, σ, t〉 ↓
1

〈p, σ, t〉 action(p,σ,t)
−−−−−−−−−→

λ
〈ε, effect(p, σ, t), t〉

2

〈x, σ, t〉 tick

7−→ 〈x, σ, t + 1〉
3

Table 9.5: Deduction rules for the empty process, internal actions and the time step.

In Table 9.5 the deduction rules for the empty process, the internal actions and the
time step are given. The empty process terminates successfully, as stated in rule 1.
Termination notation ↓ is explained in Section 5.5.

Rule 2 states that internal actions are evaluated in state σ at time t. The new state is
determined by the effect of action p on state σ at time t.

The semantics of progression in time is given in rule 3. At any moment, a time
step, denoted by tick

7−→ can occur. As mentioned in Section 6.4, time is measured on
a discrete scale. We use a different kind of arrow to indicate that time steps do not
affect the actual state of the system. However, progression in time can influence
process behaviour since time can be used in calculations and conditions.

124 Modelling Internet Applications 9

u(σ, t) = c, ~d ∈ type(~ı, σ)

〈req.u.~ı, σ, t〉 req.c.~ı. ~d
−−−−−−→

λ
〈ε, σ[~d/~ı], t〉

4
u(σ, t) = c, ~o(σ, t) = ~d

〈resp.u.m.~o, σ, t〉 resp.c.m. ~d
−−−−−−−−→

λ
〈ε, σ, t〉

5

u(σ, t) = c, c 6=⊥, ~o(σ, t) = ~d

〈u m(~o), σ, t〉 mail.c.m. ~d
−−−−−−−−→

λ
〈ε, σ, t〉

6
u(σ, t) = c

〈u m(~o), σ, t〉 req.c.ε.ε
−−−−−−→

λ
〈resp.u.m.~o, σ, t〉

7

u(σ, t) = c

〈u m(~o;~ı), σ, t〉 req.c.ε.ε
−−−−−−→

λ
〈resp.u.m.~o · req.u.~ı, σ, t〉

8

u(σ, t) = c, ~o(σ, t) = ~d

〈u m(~o;~ı), σ, t〉 resp.c.m. ~d
−−−−−−−−→

λ
〈req.u.~ı, σ, t〉

9
u(σ, t) = c, ~o(σ, t) = ~d

〈u m(~o), σ, t〉 resp.c.m. ~d
−−−−−−−−→

λ
〈ε, σ, t〉

10

Table 9.6: Deduction rules for the communication primitives.

In Table 9.6 the deduction rules for the communication primitives are given. Except
for the (empty) session labels, the rules in this table correspond to the deduction
rules in Table 7.1 on page 71. Therefore, we only shortly explain them here.

The first two rules, rules 4 and 5, show the semantics of the atomic HTTP communi-
cation actions: they can do a step labelled with their evaluation in the current state
and then successfully terminate. Only the request action affects the state.

Rule 6 describes the semantics of the mail sending action. Rules 7 to 10 describe
the semantics of the composed communication primitives. These composed actions
execute their first atomic request or response action, after which the rest of the HTTP
interaction modelled by the primitive should take place. More information on the
communication primitives can be found in Section 4.3 and in Chapter 7.

9.4 Operational semantics 125

〈x, σ, t〉 ↓, 〈y, σ, t〉 ↓

〈x · y, σ, t〉 ↓
11

〈x, σ, t〉 a
−→
k
〈x′, σ ′, t〉

〈x · y, σ, t〉 a
−→
k
〈x′ · y, σ ′, t〉

12

〈x, σ, t〉 ↓, 〈y, σ, t〉 a
−→
k
〈y′, σ ′, t〉

〈x · y, σ, t〉 a
−→
k
〈y′, σ ′, t〉

13
〈x, σ, t〉 ↓

〈x + y, σ, t〉 ↓, 〈y + x, σ, t〉 ↓
14

〈x, σ, t〉 a
−→
k
〈x′, σ ′, t〉

〈x + y, σ, t〉 a
−→
k
〈x′, σ ′, t〉, 〈y + x, σ, t〉 a

−→
k
〈x′, σ ′, t〉

15

Table 9.7: Deduction rules for the alternative and sequential composition operators.

Table 9.7 shows the deduction rules for the alternative and sequential composition
operators. These rules are also given in Table 6.4 on page 65. Again only session
labels are added.

If both processes x and y terminate successfully, than the sequential composition of
x and y also terminates successfully (rule 11). Rule 12 states that if x can do an a-step
to x′, then x · y can do an a-step to x′ · y. In rule 13 it is stated that if x terminates
successfully and y can do an a-step to y′, that x · y can do this a-step to y′ as well.
Next, deduction rule 14 states that if x terminates successfully, then both x + y and
y + x can terminate successfully. Finally, rule 15 states that if x can do an a-step
to x′, then x + y and y + x can do a similar a-step to x′. Note that no deduction
rules involving deadlock process δ are available. When reaching a δ state, neither
successful termination nor a transition can occur.

126 Modelling Internet Applications 9

〈x, σ, t〉 ↓, b(σ, t)

〈x / b . y, σ, t〉 ↓
16

〈x, σ, t〉 a
−→
k
〈x′, σ ′, t〉, b(σ, t)

〈x / b . y, σ, t〉 a
−→
k
〈x′, σ ′, t〉

17

〈y, σ, t〉 ↓, ¬b(σ, t)

〈x / b . y, σ, t〉 ↓
18

〈y, σ, t〉 a
−→
k
〈y′, σ ′, t〉, ¬b(σ, t)

〈x / b . y, σ, t〉 a
−→
k
〈y′, σ ′, t〉

19

〈x, σ, t〉 a
−→
k
〈x′, σ ′, t〉, b(σ, t)

〈b .. x, σ, t〉 a
−→
k
〈x′ · (b .. x), σ ′, t〉

20
¬b(σ, t)

〈b .. x, σ, t〉 ↓
21

〈x, σ, t〉 ↓

〈b .− x, σ, t〉 ↓
22

b(σ, t)

〈b .− x, σ, t〉 ↓
23

〈x, σ, t〉 a
−→
k
〈x′, σ ′, t〉, ¬b(σ, t)

〈b .− x, σ, t〉 a
−→
k
〈b .− x′, σ ′, t〉

24

Table 9.8: Deduction rules for the conditional operators.

Table 9.8 shows the deduction rules for the conditional operators. These rules are
given without session labels in Table 6.4 on page 65.

Rules 16 to 19 are introduced in Section 5.7.1 and describe the behaviour of the con-
ditional branching operator. Rule 16 and 18 state that if, as result of the evaluation
of the condition, the chosen alternative terminates, then the process terminates.

On the other hand, rule 17 and 19 state that if the alternative subprocess executes an
action, then the action is also executed by the constructed process.

Rules 20 and 21 are introduced in Section 5.7.2. The first deduction rule states that
if the process under conditional repetition can execute an action and the condition
holds, that the constructed process also executes the action. As a result, the rest of the
process should terminate successfully, after which the (conditional) process restarts.
If the condition does not hold in the current state, then the process terminates suc-
cessfully, as stated in rule 21.

Finally, rules 22 to 24 are introduced in Section 5.7.3. Rule 22 states that if the con-
ditionally disrupted process terminates then the constructed process terminates. In
rule 23 it is stated that if the condition holds, the process is disrupted and success-
fully terminates. If the process is not disrupted and can execute an action, then the

9.4 Operational semantics 127

〈x, (j 7→ e(σ) : T) ::σ, t〉 ↓

〈[j 7→ e : T | x], σ, t〉 ↓
25

〈x, (j 7→ e(σ, t) : T) ::σ, t〉 UV
−−→
k
〈x′, (j 7→ c : T) ::σ ′, t〉

〈[j 7→ e : T | x], σ, t〉 UV \ { j 7→e(σ,t):T}
−−−−−−−−−−−→

k
〈[j 7→ c : T | x′], σ ′, t〉

26

〈x, (j 7→ e(σ, t) : T) ::σ, t〉 an,W
−−−→

k
〈x′, (j 7→ c : T) ::σ ′, t〉

〈[j 7→ e : T | x], σ, t〉 an,W \ { j 7→e(σ,t):T}
−−−−−−−−−−−−→

k
〈[j 7→ c : T | x′], σ ′, t〉

27

〈x, (j 7→ e(σ, t) : T) ::σ, t〉 a
−→
k
〈x′, (j 7→ c : T) ::σ ′, t〉

〈[j 7→ e : T | x], σ, t〉 a
−→
k
〈[j 7→ c : T | x′], σ ′, t〉

28

Table 9.9: Deduction rules for the scope operator.

constructed process can also execute the action, as stated in rule 24.

Table 9.9 contains the deduction rules for the scope operator. Rule 25 states success-
ful termination, which is also given in Table 6.1 on page 62. Except for the session
labels, rules 26 to 28 are also given and explained in more detail on page 111. These
rules are concerned with the execution of actions with a scope and their effect on
valuations defined with the scope operator.

Rule 28 can be compared with the second rule in Table 6.1, stating that executing
actions within a scope can affect the valuation of the declared variable. Rules 26
and 27 also express this behaviour, however, they define some different behaviour
for the locking and unlocking actions. Rule 26 is concerned with the execution of an
unlocking action. The set of unlocking valuations (the V in UV) is based on the scope
of the unlocking action. Therefore, leaving a scope causes the variable to be stripped
off of the set of unlocking valuations. The same holds for locking actions, as stated
in deduction rule 27.

128 Modelling Internet Applications 9

〈〈〈x,V, y〉〉, σ, t〉 RV
−−→
k
〈〈〈x〉〉, σ[V], t〉

29
〈x, σ, t〉 ↓

〈〈〈x〉〉, σ, t〉 C∅
−−→
k
〈ε, σ, t〉

30

〈y, σ, t〉 ↓

〈〈〈x,V, y〉〉, σ, t〉 CV
−−→
k
〈ε, σ, t〉

31
〈x, σ, t〉 UW

−−−→
k
〈x′, σ ′, t〉

〈〈〈x〉〉, σ, t〉 U∅
−−→
k
〈〈〈x,∅, x′〉〉, σ ′, t〉

32

〈x, σ, t〉 an,W
−−−→

k
〈x′, σ ′, t〉

〈〈〈x〉〉, σ, t〉 an,U(a,σ,t)
−−−−−−→

k
〈〈〈x,U(a, σ, t), x′〉〉, σ ′, t〉

33

〈x, σ, t〉 a
−→
k
〈x′, σ ′, t〉, U(a, σ, t) 6= ∅

〈〈〈x〉〉, σ, t〉 a0,U(a,σ,t)
−−−−−−→

k
〈〈〈x,U(a, σ, t), x′〉〉, σ ′, t〉

34

〈x, σ, t〉 a
−→
k
〈x′, σ ′, t〉, U(a, σ, t) = ∅

〈〈〈x〉〉, σ, t〉 a
−→
k
〈〈〈x,∅, x′〉〉, σ ′, t〉

35
〈y, σ, t〉 UW

−−−→
k
〈y′, σ ′, t〉

〈〈〈x,V, y〉〉, σ, t〉 U∅
−−→
k
〈〈〈x,V, y′〉〉, σ ′, t〉

36

〈y, σ, t〉 an,W
−−−→

k
〈y′, σ ′, t〉, U(a, σ, t) \ V 6= ∅

〈〈〈x,V, y〉〉, σ, t〉 an,U(a,σ,t) \ V
−−−−−−−−−→

k
〈〈〈x,V ∪U(a, σ, t), y′〉〉, σ ′, t〉

37

〈y, σ, t〉 an,W
−−−→

k
〈y′, σ ′, t〉, U(a, σ, t) \ V = ∅

〈〈〈x,V, y〉〉, σ, t〉 a
−→
k
〈〈〈x,V, y′〉〉, σ ′, t〉

38

〈y, σ, t〉 a
−→
k
〈y′, σ ′, t〉, U(a, σ, t) \ V 6= ∅

〈〈〈x,V, y〉〉, σ, t〉 a0,U(a,σ,t) \ V
−−−−−−−−−→

k
〈〈〈x,V ∪U(a, σ, t), y′〉〉, σ ′, t〉

39

〈y, σ, t〉 a
−→
k
〈y′, σ ′, t〉, U(a, σ, t) \ V = ∅

〈〈〈x,V, y〉〉, σ, t〉 a
−→
k
〈〈〈x,V, y′〉〉, σ ′, t〉

40

Table 9.10: Deduction rules for the transactional operators.

9.4 Operational semantics 129

The deduction rules for the transactional operators are summarised in Table 9.10.
They are based on the rules as given in Table 8.2 on page 88 on which the findings
given in Section 8.5 are applied.

Rule 29 handles the case of a rollback of a transaction that has executed actions. The
rule itself is introduced in Section 8.5.2 and can be found on page 105.

Rules 30 and 31 are concerned with termination of transactional processes: a trans-
action ends by committing, causing other transactions to become unlocked with re-
spect to variables locked by the ending transaction. After committing, the process
can successfully terminate.

Deduction rules 32 and 36 deal with the case of executing an unlocking action which
comes from a nested transaction. The valuation set of unlocked variables (the W
in UW) does not pass transactional operators, so this set is replaced by the empty
set. This set is already rebuilt when locking actions from within the same nested
transactions passed the transactional operator.

The semantics of execution of lockable actions that come from within nested trans-
actions is given by rules 33, 37 and 38. As is the case for the unlocking actions, the
valuation sets of locking variables (the W in an,W) do not pass the transactional opera-
tors. These sets are also rebuilt using the current state. Deduction rule 33 states that if
a locking action is executed from within a transaction, then it is also executed by the
transaction, however with its locking variable set replaced by a set containing those
variables that are updated by executing the action in the current state. In rule 37 it is
stated that if a locking action is executed and it does affect valuations in the current
state which are not already affected by the transaction, then it is also executed by the
constructed process, having its locking set replaced by the set of affected valuations.
Otherwise, the action is no longer a locking action as stated in rule 38.

The deduction rules for internal and communication actions, rules 34, 35, 39 and 40,
can be compared with those for the locking actions. Rules 34 and 35 are introduced
on page 108, where we explain that we have to split rule 13 in Table 8.2 into two
rules. Rules 35 and 40 state that is an action from within a transaction cannot affect
the state, then it can simply be executed by the transaction. If, however, the state
might change by executing the action, then the action becomes a locking/lockable
action as stated in rules 34 and 39.

130 Modelling Internet Applications 9

〈x, σ, t〉 ↓

〈bdxceV , σ, t〉 ↓
41

〈x, σ, t〉 UV
−−→
k
〈x′, σ ′, t〉

〈bdxceW , σ, t〉
UV
−−→
k
〈bdx′ceW , σ

′, t〉
42

〈x, σ, t〉 an,V
−−−→

k
〈x′, σ ′, t〉

〈bdxceW , σ, t〉
an+|V ∩W|,V
−−−−−−−−→

k
〈bdx′ceW , σ

′, t〉
43

〈x, σ, t〉 a
−→
k
〈x′, σ ′, t〉

〈bdxceW , σ, t〉 a
−→
k
〈bdx′ceW , σ

′, t〉
44

〈x, σ, t〉 ↓

〈bxcW , σ, t〉 ↓
45

〈x, σ, t〉 UV
−−→
k
〈x′, σ ′, t〉

〈bxcW , σ, t〉
UV
−−→
k
〈bx′cW , σ

′, t〉
46

〈x, σ, t〉 an,V
−−−→

k
〈x′, σ ′, t〉, (V ∩W = ∅ ∨ n = 0)

〈bxcW , σ, t〉
an,V
−−−→

k
〈bx′cW , σ

′, t〉
47

〈x, σ, t〉 an,V
−−−→

k
〈x′, σ ′, t〉, (V ∩W 6= ∅ ∧ n > 0)

〈bxcW , σ, t〉
an−|V ∩W|,V
−−−−−−−−→

k
〈bx′cW , σ

′, t〉
48

〈x, σ, t〉 a
−→
k
〈x′, σ ′, t〉

〈bxcW , σ, t〉 a
−→
k
〈bx′cW , σ

′, t〉
49

Table 9.11: Deduction rules for the locking and unlocking operators.

The deduction rules for the locking and unlocking operators, given in Table 9.11, can
be compared with the rules as given in Table 8.4 on page 90. Again, the findings in
Section 8.5 are applied to them.

Rules 41 and 45 state that termination is not affected by the locking and unlocking
operators. Also, non-lockable actions are influenced by neither the locking (rules 42
and 44) nor the unlocking operator (rules 46 and 49).

In rule 43 it is stated that locking a lockable action causes its lock counter to be in-
creased by the number of variables that overlap in the valuation set containing val-
uations (possibly) affected by the action and the set of valuations locking the action.

9.4 Operational semantics 131

〈x, σ, t〉 ↓, 〈y, σ, t〉 ↓

〈x‖ y, σ, t〉 ↓
50

〈x, σ, t〉 UV
−−→
k
〈x′, σ ′, t〉

〈x‖ y, σ, t〉 UV
−−→
k0
〈x′ ‖bycV , σ

′, t〉, 〈y‖ x, σ, t〉 UV
−−→
k1
〈bycV ‖ x′, σ ′, t〉

51

〈x, σ, t〉 a0,V
−−−→

k
〈x′, σ ′, t〉

〈x‖ y, σ, t〉 a0,V
−−−→
k0

〈x′ ‖bdyceV , σ
′, t〉, 〈y‖ x, σ, t〉 a0,V

−−−→
k1

〈bdyceV ‖ x′, σ ′, t〉
52

〈x, σ, t〉 a
−→
k
〈x′, σ ′, t〉

〈x‖ y, σ, t〉 a
−→
k0
〈x′ ‖ y, σ ′, t〉, 〈y‖ x, σ, t〉 a

−→
k1
〈y‖ x′, σ ′, t〉

53

Table 9.12: Deduction rules for the parallel composition operator.

Unlocking of lockable actions causes the opposite to happen: the lock counter gets
decreased by the number of overlapping variables if the action is locked as stated
in rule 48. Rule 47 states that if the action is locking but not locked (n = 0), or if
no overlap takes place (V ∩W = ∅), then the action is not affected by the unlocking
operator.

Table 9.12 contains the deduction rules for the parallel composition operator. These
rules can be one-on-one matched to the first four rules given in Table 8.6 on page 91.
As can be seen by looking at rules 51 to 53, the session label gets updated depending
on the side of the process that executes the action.

If both processes put in parallel terminate, the composed process terminates, as
stated in rule 50.

Executing an unlocking action in parallel to another process causes the process put
in parallel to be unlocked with respect to the valuations with which the unlocking
action is parameterised (rule 51).

A locking action executed in parallel to another process is only allowed if it is not
locked, i.e., if its locking counter equals 0. In that case, the process running in parallel
gets locked with respect to the valuations that might be affected by the locking action
(rule 52).

Rule 53 states that non-locking actions executed in parallel to another process can

132 Modelling Internet Applications 9

〈[u 7→⊥: U | x], σ, t〉 ↓

〈?ux, σ, t〉 ↓
54

〈[u 7→⊥: U | x], σ, t〉 UV
−−→
k
〈[u 7→⊥: U | x′], σ ′, t〉

〈?ux, σ, t〉 UV
−−→
k0
〈[u 7→⊥: U | x′]‖b?uxcV , σ

′, t〉
55

〈[u 7→⊥: U | x], σ, t〉 a0,V
−−−→

k
〈[u 7→⊥: U | x′], σ ′, t〉

〈?ux, σ, t〉 a0,V
−−−→
k0

〈[u 7→⊥: U | x′]‖bd?uxceV , σ
′, t〉

56

〈[u 7→⊥: U | x], σ, t〉 a
−→
k
〈[u 7→⊥: U | x′], σ ′, t〉

〈?ux, σ, t〉 a
−→
k0
〈[u 7→⊥: U | x′]‖?ux, σ ′, t〉

57

Table 9.13: Deduction rules for the anonymous replication operator.

simply be executed.

Table 9.13 shows the deduction rules for the anonymous replication operator. These
rules correspond to the rules as given in Table 7.3 on page 74. We adapt them here
so that they apply to the alphabet of DiCons.

Since the anonymous replication operator puts processes in parallel, session labels
are updated, as can be seen by looking at rules 55 to 57.

In rule 54 it is stated that if the processes put in parallel terminate, then the con-
structed process terminates.

Rules 55 and 56 state that execution of unlocking and locking actions causes the
processes put in parallel to be unlocked or locked. Otherwise the process is simply
forked off and put in parallel as stated in rule 57.

9.4 Operational semantics 133

∀c∈G(σ,t) 〈[u 7→ c : U | x], σ, t〉 ↓

〈!u∈Gx, σ, t〉 ↓
58

c ∈ G(σ, t), 〈[u 7→ c : U | x], σ, t〉 UV
−−→
k
〈[u 7→ c : U | x′], σ ′, t〉

〈!u∈Gx, σ, t〉 UV
−−→
k0
〈[u 7→ c : U | x′]‖b!u∈GxcV , σ

′, t〉
59

c ∈ G(σ, t), 〈[u 7→ c : U | x], σ, t〉 a0,V
−−−→

k
〈[u 7→ c : U | x′], σ ′, t〉

〈!u∈Gx, σ, t〉 a0,V
−−−→
k0

〈[u 7→ c : U | x′]‖bd!u∈GxceV , σ
′, t〉

60

c ∈ G(σ, t), 〈[u 7→ c : U | x], σ, t〉 a
−→
k
〈[u 7→ c : U | x′], σ ′, t〉

〈!u∈Gx, σ, t〉 a
−→
k0
〈[u 7→ c : U | x′]‖ !u∈Gx, σ ′, t〉

61

∀c∈G(σ,t) 〈[u 7→ c : U | x], σ, t〉 ↓

〈!H
u∈Gx, σ, t〉 ↓

62

c ∈ G(σ, t), 〈[u 7→ c : U | x], σ, t〉 UV
−−→
k
〈[u 7→ c : U | x′], σ ′, t〉

〈!H
u∈Gx, σ, t〉 UV

−−→
k0
〈[u 7→ c : U | x′]‖b!H

u∈GxcV , σ
′[H(σ ′, t)∪{c}/H], t〉

63

c ∈ G(σ, t), 〈[u 7→ c : U | x], σ, t〉 a0,V
−−−→

k
〈[u 7→ c : U | x′], σ ′, t〉

〈!H
u∈Gx, σ, t〉 a0,V

−−−→
k0

〈[u 7→ c : U | x′]‖bd!H
u∈GxceV , σ

′[H(σ ′, t)∪{c}/H], t〉
64

c ∈ G(σ, t), 〈[u 7→ c : U | x], σ, t〉 a
−→
k
〈[u 7→ c : U | x′], σ ′, t〉

〈!H
u∈Gx, σ, t〉 a

−→
k0
〈[u 7→ c : U | x′]‖ !H

u∈Gx, σ ′[H(σ ′, t)∪{c}/H], t〉
65

Table 9.14: Deduction rules for the replication operators.

In Table 7.4 on page 75 the deduction rules for the replication operator are given.
Table 7.6 on page 77 contains the deduction rules for the extended replication oper-
ator. Here, in Table 9.14, we adapt these rules such that they apply to the alphabet of
DiCons. This results in a case distinction on the type of action executed.

134 Modelling Internet Applications 9

As is the case with the anonymous replication operator, session labels are updated,
as can be seen by looking at rules 59 to 61 and rules 63 to 65.

Deduction rules 58 and 62 state that if all processes put in parallel terminate, then
the composed process also terminates.

The executing of an unlocking action by one of the processes causes the other pro-
cesses to be unlocked with respect to the valuations with which the unlocking action
is parameterised (rules 59 and 63). The process for the user causing this unlocking
event, c ∈U, is forked off and continues running in parallel to the replication process.
Apart from that, in rule 63 the user is added to the group of registered users H.

Execution of a locking action is similar to the execution of an unlocking action: in
rules 60 and 64 it is stated that if a locking, but not locked, action is executed by
one of the processes, the other processes are locked with the the valuation set added
to the locking action. Again, the interacting user’s process is forked off and put in
parallel to replication process and registered group H is extended with the user.

For all other actions, the action is executed, the process is forked off (rules 61 and 65)
and registered group H is extended with the user.

The deduction rules for the generalised parallel composition operators, given in Ta-
ble 9.15, can be compared with those for the replication operators as given in Ta-
ble 9.14. The only difference is the dropping from the users who fork off a process
from the domain of the operators: using the generalised parallel composition opera-
tors, all users in their domains can only fork off at most one process.

9.4 Operational semantics 135

∀c∈G(σ,t) 〈[u 7→ c : U | x], σ, t〉 ↓

〈‖u∈Gx, σ, t〉 ↓
66

c ∈ G(σ, t), 〈[u 7→ c : U | x], σ, t〉 UV
−−→
k
〈[u 7→ c : U | x′], σ ′, t〉

〈‖u∈Gx, σ, t〉 UV
−−→
k0
〈[u 7→ c : U | x′]‖b‖u∈G\{c}xcV , σ

′, t〉
67

c ∈ G(σ, t), 〈[u 7→ c : U | x], σ, t〉 a0,V
−−−→

k
〈[u 7→ c : U | x′], σ ′, t〉

〈‖u∈Gx, σ, t〉 a0,V
−−−→
k0

〈[u 7→ c : U | x′]‖bd‖u∈G\{c}xceV , σ
′, t〉

68

c ∈ G(σ, t), 〈[u 7→ c : U | x], σ, t〉 a
−→
k
〈[u 7→ c : U | x′], σ ′, t〉

〈‖u∈Gx, σ, t〉 a
−→
k0
〈[u 7→ c : U | x′]‖‖u∈G\{c}x, σ ′, t〉

69

∀c∈G(σ,t) 〈[u 7→ c : U | x], σ, t〉 ↓

〈‖
H
u∈Gx, σ, t〉 ↓

70

c ∈ G(σ, t), 〈[u 7→ c : U | x], σ, t〉 UV
−−→
k
〈[u 7→ c : U | x′], σ ′, t〉

〈‖
H
u∈Gx, σ, t〉 UV

−−→
k0
〈[u 7→ c : U | x′]‖b‖H

u∈G\{c}xcV , σ
′[H(σ ′, t)∪{c}/H], t〉

71

c ∈ G(σ, t), 〈[u 7→ c : U | x], σ, t〉 a0,V
−−−→

k
〈[u 7→ c : U | x′], σ ′, t〉

〈‖
H
u∈Gx, σ, t〉 a0,V

−−−→
k0

〈[u 7→ c : U | x′]‖bd‖H
u∈G\{c}xceV , σ

′[H(σ ′, t)∪{c}/H], t〉
72

c ∈ G(σ, t), 〈[u 7→ c : U | x], σ, t〉 a
−→
k
〈[u 7→ c : U | x′], σ ′, t〉

〈‖
H
u∈Gx, σ, t〉 a

−→
k0
〈[u 7→ c : U | x′]‖‖H

u∈G\{c}x, σ ′[H(σ ′, t)∪{c}/H], t〉
73

Table 9.15: Deduction rules for the generalised parallel composition operators.

136 Modelling Internet Applications 9

9.5 Example

In this section we give a small specification to show the expressiveness of DiCons.
The application specified here corresponds to the Internet vote example given in
Section 3.4.3 on page 22 to a great extent.

The specification is given in Figure 9.1. We shortly discuss the elements of the speci-
fication. In lines 1 and 2 we specify who can start the initialisation of a vote. In this
specification we allow anyone to start a vote, as can be seen by the initialisation of
Initiators by U. Note that we do not use the anonymous replication operator ? since
we want the results to be sent to the initiator. So the initiator must be known to the
application. By initialising the group of possible users by universe U we achieve this
intended semantics.

Lines 8 to 12 specify the initialisation phase which mostly corresponds to the spec-
ification given in Figure 3.11 on page 23. Before starting the initialisation phase, lo-
cal variables used for saving application data are declared in line 4. The candidates
(line 8), voters (line 9) and a deadline (line 10) are provided by the initiator. In line 11
the vote is started, which is confirmed in line 12. By looking at the communication
primitives it can be easily seen which interactions form a session.

Next, in line 14, the results are declared. The results map the candidates to a number
representing the number of voters who voted for the candidate. In line 15 they are
all mapped to 0:

effect(initialise(results), σ, t) = σ ′ where ∀c∈Candidates(σ ′) results[c](σ ′) = 0

In lines 19 to 27 the vote phase is specified. All voters receive an invitation (line 19).
The remainder of this phase, lines 21 to 27, can be compared with the MSC specifi-
cation in Figure 3.12 on page 24. Using the conditional disrupt operator, we specify
that as long as the deadline is not reached (now < deadline) all voters are allowed
to execute the vote process once. A vote is started by identification of the voter
(using the generalised parallel composition operator ‖ in line 22) after which he se-
lects a candidate from the group of candidates in line 24. This candidate gets his
votes increased in line 25. If something goes wrong during the vote it must be rolled
back, so we turn the vote process into a transaction using the transactional brackets
(lines 23 and 27).

Finally, after passing of the deadline or if all voters have voted, the winner is calcu-
lated in line 32 and sent to the initiator in line 33. This phase can be compared with
the MSC in Figure 3.13 on page 24. To complete the example we give the effect of the
calc winners function:

9.5 Example 137

1 [Initiators 7→ U : G |
2 !initiator∈Initiators

3

4 〈〈[Candidates 7→⊥: G | [Voters 7→⊥: G | [deadline 7→⊥: T |
5

6 // initialisation phase
7

8 initiator set candidates(ε;Candidates) ·
9 initiator set voters(ε;Voters) ·

10 initiator set deadline(ε;deadline) ·
11 initiator start(ε; ε) ·
12 initiator ok(ε) ·
13

14 [results 7→⊥: array Candidates of N |
15 initialise(results) ·
16

17 // vote phase
18

19 ‖v∈Voters
v vote email(Candidates ,deadline) ·

20

21 now < deadline .−
22 ‖v∈Voters

23 〈〈[candidate 7→⊥: U |
24 v vote(Candidates ; candidate) ·
25 results[candidate] := results[candidate] + 1 ·
26 v done(candidate)
27]〉〉 ·
28

29 // calculation phase
30

31 [winner 7→⊥: G |
32 winners := calc winners(results) ·
33 initiator send results(winners)
34]
35

36]
37

38]]]〉〉
39

40]

Figure 9.1: A DiCons specification of an Internet vote.

138 Modelling Internet Applications 9

effect(winners := calc winners(results), σ, t) =

σ ′ where winners(σ ′) = { c ∈ Candidates(σ ′) |
∀d∈Candidates(σ ′) results[c](σ ′) ≥ results[d](σ ′) }

9.5.1 Properties

In this section we specify and verify some properties of Internet applications. Prop-
erties can be divided into two classes: general properties and application-dependent
properties. General properties are properties of all Internet applications we focus on
where application-dependent properties are subject to a specific application.

Before we give these properties we explain the notion of blocking, which is an im-
portant concept with respect to (multi-client) Internet applications in general. Apart
from that, we make some assumptions on the clients that make use of the application
and the robustness of the server.

Blocking

A session in a process is blocked by a user if it is waiting for that user to interact
with it, i.e., if it is waiting for the user to send a new request. In Section 4.3 we ex-
plained the way in which interaction primitives are constructed of HTTP requests
and responses. From that point of view, a session in a process can be blocked if it is
waiting for the user to send a URL request or to fill in and submit a Web form. Note
that blocking has nothing to do with the locking mechanism of transactional pro-
cesses: blocking is concerned with user interaction where locking handles valuation
updates.

To be able to formally specify the blocking concept, we first introduce the way we
reason about traces. This is based on [BB88]. As explained in Section 9.4, we label
our transitions using several action labels. Apart from the action labels we add a
session label to the transitions to be able to keep the actions within different sessions
separated. In our semantics, a trace is a sequence of these action label/session label
combinations which correspond to actions that subsequently can take place starting
in some initial state.

Definition 9.5.1 (Trace) Let a be an action label (a ∈ Al) and k be a session label (k ∈ K).
A trace α is then defined by

α =def ε the empty trace
| 〈a, k〉;α a nonempty trace

9.5 Example 139

We have some general functions on traces for determining the head, tail and length
of a trace. Note that both the head and tail functions are partial.

Definition 9.5.2 (General functions on traces) Let α be a trace, a ∈ Al be an action label
and k ∈ K be a session label. Then,

head(〈a, k〉;α) = 〈a, k〉
tail(〈a, k〉;α) = α

|α| =

{

0 if α = ε
1 + |tail(α)| otherwise .

Apart from these general functions we have some specific functions in combination
with our semantics. The first function we introduce is for determining whether a
user is blocking a trace within a particular session. This means that the trace starts
with a request label.

Definition 9.5.3 (Blocking) Let α be a trace, c be a (constant) user, c ∈ U, and k be a session
label, k ∈ K. The property of a trace α being blocked by a user c in session k is then defined
by

α c, k ≡ ∃~ı∃~d head(α) = 〈req.c.~ı. ~d, k〉

Given these functions we can only reason about traces. However we want to reason
about processes in a given state at a given time. Therefore we want to transform
a process into a (possibly infinite) set of feasible traces. We do this using the traces
function which returns all traces that can take place starting a process in a given state
at a given time. Traces can be infinitely long if the process does not terminate.

Definition 9.5.4 (Traces of a process) Let x, x′ ∈X be processes, σ, σ ′ ∈ S be states, t, t′ ∈ T

be time stamps, a ∈ Al be an action label and k ∈ K be a session label. At time t in state σ,
the set of traces of process x is then defined by

traces(〈x, σ, t〉) = {ε | 〈x, σ, t〉 ↓ ∨ ¬∃a∈Al∃k∈K 〈x, σ, t〉 a
−→
k
〈x′, σ ′, t′〉} ∪

{〈a, k〉;α | 〈x, σ, t〉 a
−→
k
〈x′, σ ′, t′〉 ∧ α ∈ traces(〈x′, σ ′, t′〉)} .

A (session in a) process is blocked by a user if, in a given state at a given time, a trace
exists that is blocked by that user.

Definition 9.5.5 (Blocking of a process) Let x ∈ X be a process, σ ∈ S be a state, t ∈ T be a
time stamp and c ∈ U be a constant user. At time t in state σ, a process x being blocked by

140 Modelling Internet Applications 9

user c is then defined by

〈x, σ, t〉 c ≡ ∃α ∈ traces(〈x, σ, t〉)∃k ∈ K α c, k .

Apart from the application being blocked, a user can be blocked by an application.
This takes place between the sending of a request and the receiving of a response. So
a user is blocked if he is waiting for a reaction, i.e. a response from the server.

If a given specification answers the syntax and static assumptions, this means that a
user is blocked by a process in a given state at a given time if there is a trace of that
process in which the first occurrence of the receiving of a reactive or session-oriented
message in a session precedes the first occurrence of the sending of a request in that
session. To determine the number of steps before the n-th occurrence of an element
in a set of given transition takes place, we make use of the #n operator. Let A be a set
of elements in a trace, A ⊆ Al ×K. Then,

#n(A, α) =

∞ if α = ε
1 if n = 1 ∧ head(α) ∈ A
1 + #n−1(A, tail(α)) if n > 1 ∧ head(α) ∈ A
1 + #n(A, tail(α)) otherwise .

Again, we first specify a function over traces which we use for specifying the func-
tion over processes.

Definition 9.5.6 (User-blocking for traces) Let α be a trace, c ∈ U be a (constant) user and
k ∈ K be a session label. The property of a user c being blocked in session k by a trace α is
then defined by

c α, k ≡ ∃~d∃~ı∃~d′ #1({〈resp.c.m. ~d, k〉 | m ∈M}, α) < #1({〈req.c.~ı.~d′, k〉}, α)

Definition 9.5.7 (User-blocking for processes) Let x ∈X be a process, σ ∈ S be a state, t ∈ T

be a time stamp and c ∈ U be a (constant) user. At time t in state σ, the property of user c
being blocked by process x is then defined by

c 〈x, σ, t〉 ≡ ∃α ∈ traces(〈x, σ, t〉)∃k ∈ K c α, k

In order to prove properties of processes, it would be very useful to introduce the
notion of invariants for traces and therefore for processes. To be able to verify prop-
erties after execution of each action means that we want to be able to verify proper-
ties at all semicolons in a trace. This can be done by proving that the property holds
at the beginning of all possible tails of a trace. By using the tails function we can
generate this set of tails.

tails(α) =

{

{α} if α = ε
{α} ∪ {tails(tail(α))} otherwise

9.5 Example 141

We use this function for defining the properties below.

Assumptions

Since we have a notion of blocking, we have to make some assumptions on interac-
tions to be able to define suitable properties of Internet applications. Furthermore,
we make an assumption on the robustness of the server.

Client interactivity Web forms sent to a client are finally filled in and submitted. We
need this assumption to prevent the application from being blocked.

Server robustness The server on which the application runs does not crash or shut
down as long as the application is active.

Note that we only make assumptions with respect to the client and the robustness
of the server. We do not make any assumptions on aspects of the application itself.
Since we want to formally verify specifications of Internet applications we cannot
and will not introduce these properties in our semantics. This would make the se-
mantics unnecessarily complex.

General properties

In this section we define the independent responsiveness property and show how
to prove this property for a simple example specification to show the usefulness of
DiCons. This property is in general a desirable property of Internet applications.

Users who interact with the central system can block the application as explained
before. However, we do not want users to be able to block other user’s sessions.

Definition 9.5.8 (Independent responsiveness) Let x ∈ X be a process, σ ∈ S be a state and
t ∈ T be a time stamp. At time t in state σ, the independent responsiveness IR property for
process x is defined by

IR(〈x, σ, t〉) ≡
∀α∈tails(traces(〈x, σ, t〉)) ¬∃c∈U∃d∈U∃k∈K (c 6= d∧ α c, k ∧ d α, k)

So this property states that for all traces in the set of tails of traces of the process it is
not the case that a trace is blocked by a user within a session and at the same moment
within the same session a different user is blocked by the trace. If this property does
not hold it can be the case that a user submitting a form has to wait for another
user to interact with the application before he receives a response to his submission.
Below, we give an example of a specification in which independent responsiveness
does not hold:

142 Modelling Internet Applications 9

[u1 7→ c1 : U | [u2 7→ c2 : U | [n : N | [m : N |
u1 give(ε;n) · u2 give(ε;m) · u1 return(m) · u2 return(n)

]]]]

As can be seen, user u1 is blocked by user u2, who should first provide value m before
it can be sent to u1.

If this property holds for the initial state of an application it follows from the use of
the tails and traces functions that it holds in all possible states during the execution
of the application. We can make use of a test generator and execution tool (e.g. using
the TorX tools [BFV+99]) for testing applications with respect to this property. Using
the voting example given on page 137 results in a set of traces which is too large to
prove independent responsiveness by hand. Therefore we give a small application
and prove that it answers the independent responsiveness property.

In the following example two users can simultaneously submit an integer number
via a Web form which subsequently is returned. There may be interference so that
the returned number may be the number submitted by the other user.

[u1 7→ c1 : U | [u2 7→ c2 : U | [n : N |
u1 give(ε;n) · u1 return(n) ‖ u2 give(ε;n) · u2 return(n)

]]]

Intuitively the IR property holds since the two sessions of users c1 and c2 run in
parallel and are independent of each other with respect to the user interactions.

Theorem 9.5.9 Let x ∈ X be the process defined above and t0 ∈ T be the initial time. Then,
IR(〈x, ε, t0〉) holds.

Proof Since there are only two users, c1 and c2, the IR property of the initial state of
x, IR(〈x, ε, t0〉), can be reduced to

∀α ∈ tails(traces(〈x, σ, t〉))¬∃k ∈ K (α c1, k ∧ c2 α, k)∨ (α c2, k ∧ c1 α, k)

Since the merge operator ‖ is, apart from the session label, commutative, this appli-
cation is symmetric with respect to users u1 and u2. So by proving

∀α ∈ tails(traces(〈x, ε, t0〉))¬∃k ∈ K (α c1, k ∧ c2 α, k)

and using symmetry, we have proved IR(〈x, ε, t0〉).

Suppose that IR does not hold for 〈x, ε, t0〉. Then there must be a trace α in the set
of possible traces traces(〈x, ε, t0〉) where a k exists such that (α c1, k ∧ c2 α, k) holds.

9.5 Example 143

Suppose we have an α and a k such that α c1, k. Then, it follows from deduction
rule 53 in Table 9.12 that k = 0. This means that c2 α,0 must hold. So

∃~d∃~y∃~d′ (#1({〈resp.c2.m. ~d,0〉 | m ∈M}, α) < #1({〈req.c2.~y.~d′,0〉}, α))

However, if there is an element 〈resp.c2.m. ~d,0〉 or 〈req.c2.~y.~d′,0〉, it follows from de-
duction rule 53 in Table 9.12 that there must be a subprocess on the left-hand side of
the merge operator ‖ that can do a step where the user is c2. This is not the case, so
we get∞<∞which proves false. So ¬ c2 α,0. And therefore there is no k such that
α c1, k ∧ c2 α, k. So IR(〈x, ε, t0〉) holds. ¤

We can give a similar proof for the Internet vote example given in Figure 9.1. The
parallel execution of the vote phase proves to have the independent responsiveness
property.

Another general property that must hold is the property that sessions must be valid,
i.e., that, only considering interaction primitives, all sessions must start with a re-
active pull, possibly followed by session-oriented pulls, and end with a session-
oriented push. We call this property session validity. Operationally, this means that
in all sessions, all responses must be preceded by a corresponding request. Since the
transactional operator might break this behaviour by rolling back between requests
and responses, we do not consider traces where a rollback takes place.

Definition 9.5.10 (Session validity) Let x ∈ X be a process, σ ∈ S be a state and t ∈ T be a
time stamp. At time t in state σ, the session validity SV property for process x is then defined
as follows:

SV (〈x, σ, t〉) ≡
∀α∈traces(〈x, σ, t〉) ∀c∈U∀k∈K∀n≥1 (

#1({〈RV , k〉 | V ⊆ V}, α) =∞
∧

#n({〈req.c.~ı. ~d, k〉 | i1, . . . , ip ∈ Pi, ~d ∈ type(~ı)}, α) <∞
) ⇒ (

#n({〈req.c.~ı. ~d, k〉 | i1, . . . , ip ∈ Pi, ~d ∈ type(~ı)}, α)
<
#n({〈resp.c.m.~o, k〉 | m ∈M, o1, . . . , oq ∈ Po}, α)
∧

#n({〈resp.c.m.~o, k〉 | m ∈M, o1, . . . , oq ∈ Po}, α)
<

#n+1({〈req.c.~ı. ~d, k〉 | i1, . . . , ip ∈ Pi, ~d ∈ type(~ı)}, α)
)

144 Modelling Internet Applications 9

So session validity states that in every session in which no rollback has occurred,
for each user, the n-th occurrence of a response to a user in a session is preceded by
the n-th occurrence of a request by that user in the session and vice versa, the n-th
occurrence of a request by a user in a session is followed by the n-th occurrence of
a response to that user in the session. Furthermore, if another request is sent, then
this sending takes place after receiving the response. So session validity holds for an
alternating occurrence of requests and responses in all traces in the process.

An example of a process with an invalid session is given below:

[u 7→ c : U | [n : N |
u finished(ε) · u give(ε;n)

]]

Execution of this process can contain the following trace, for which the SV property
not holds:

〈resp.c.finished.ε, λ〉; 〈req.c.ε.ε, λ〉; 〈resp.c.give.ε, λ〉; 〈req.c.n.1, λ〉

As can easily be seen by looking at the specification of the Internet vote in Figure 9.1,
session validity holds since all communication primitives are used correctly.

Theorem 9.5.11 Let x be the process defined in Figure 9.1 on page 137 and t0 ∈ T be a time
stamp. Then SV (〈x, ε, t0〉) holds.

Proof To informally prove SV (〈x, ε, t〉) we take into account the process for only one
of the instances, i.e., for only one of the initiators initiator ∈ Initiators . Since for all
other instances the session labels differ from those in the process taken into account,
proving it for one instance proves it for all instances. Let k be the process identifier
of the process for the chosen initiator initiator ∈ Initiators . We split the process into
three subprocesses, viz. the initialisation, vote and calculation phase:

• initialisation phase
The set of trace of the initialisation phase, restricted to the request and response
actions, is:

{ 〈req.initiator .ε.ε, k〉; 〈resp.initiator .set candidates.ε, k〉;
〈req.initiator .Candidates .C, k〉; 〈resp.initiator .set voters.ε, k〉;
〈req.initiator .Voters .V, k〉; 〈resp.initiator .set deadline.ε, k〉;
〈req.initiator .deadline.d, k〉; 〈resp.initiator .start.ε, k〉;
〈req.initiator .ε.ε, k〉; 〈resp.initiator .ok.ε, k〉
| C ∈ G, V ∈ G, d ∈ T

}

9.5 Example 145

As can be seen by looking at the traces given above, all requests and responses
occur in an alternating way, starting with a request and ending with a response.
So SV holds for the initialisation phase.

• vote phase
In the vote phase, multiple users vote in parallel. Since we make use of the gener-
alised parallel composition operator, all processes split off for the users in group
Voters get a unique session label. Therefore, all traces restricted to requests and
responses and restricted to one session label give the operational semantics of pro-
cess

[v 7→ c : U |
〈〈[candidate 7→⊥: U |

v vote(Candidates ; candidate) ·
v done(candidate)

]〉〉
]

for a user c ∈Voters . As can be easily seen, this also results in a trace of alternating
requests and responses, viz.

{ 〈req.c.ε.ε, k〉; 〈resp.c.vote.Candidates , k〉;
〈req.c.candidate.d, k〉; 〈resp.c.done.candidate, k〉;
| d ∈ Candidates

}

for voter c ∈ Voters and session label k ∈ K of the voter’s session.
• calculation phase

As can be concluded, in the traces of the calculation phase no request and re-
sponses occur, so SV holds since all n-th occurrence operations evaluate to infin-
ity.

Since all phases are combined into a process using the sequential composition oper-
ator, no interference of the subtraces is possible. Therefore, all traces of the process
given in the example Figure 9.1 show alternating request response behaviour and
thus SV holds for the process. ¤

III
Tools and Applications

10
Conformance Testing of

Internet Applications

In this chapter, we adapt and extend the theories used in the general framework of
automated software testing in such a way that they become suitable for black-box
conformance testing of thin client Internet applications. That is, we automatically
test whether a running Internet application conforms to its formal specification. The
actual implementation of the application is not taken into account, only its exter-
nally observable behaviour, i.e., the requests received and responses sent. In this
chapter, we show how to formally model this behaviour using so-called multi re-
quest/response transition systems and we explain how such formal specifications
can serve as a basis for the automatic conformance testing of Internet applications.
In the end of the chapter we show how DiCons specifications can be used as a basis
for the testing. Parts of this chapter are presented in [BM03].

10.1 Introduction

As mentioned in Chapter 1, the complexity of Internet applications increases fast,
which leads to a growing amount of errors (see e.g. [Neu05]). This increasing num-
ber of errors asks for better testing of the applications and, preferably, this testing
should be automated.

Research has been done in the field of automated testing of applications that are
not based on Internet communication. A nice overview can be found in [BT00]. In
this chapter, we adapt and extend the theories used in the general framework of

150 Conformance Testing of Internet Applications 10

automated software testing in such a way that they become suitable for the testing
of Internet applications.

We focus on black-box conformance testing of thin client Internet applications. That
is, given a running application and a (formal) specification, our goal is to automat-
ically test whether the implementation of the application conforms to the specifica-
tion. Black box testing means that the actual implementation of the application is not
taken into account but only its externally observable behaviour: We test what the ap-
plication does, not how it is done. Interaction with the application takes place using
the interface that is available to normal users of the application. In this case, the inter-
face is based on communication via the Internet using the HTTP protocol [FGM+99].

As a start, in Section 10.2 we introduce how we plan to automatically test Internet
applications. In Section 10.3, we give a short introduction to conformance testing. In
Section 10.4 we describe the formalism we make use of for this automatically testing.
This formalism serves as a basis for the definition of the conformance relation in
Section 10.5 and the generation of test suites in Section 10.6. To show the usefulness
of the framework, we give a practical example in Section 10.7. In Section 10.8, we
show how DiCons specifications can be used as a basis for generation of test suites.
To complete this chapter, we discuss related work in Section 10.9 and draw some
final conclusions in Section 10.10.

10.2 Testing of Internet Applications

In Section 3.3, we compared Internet applications to window-based applications.
We concluded that the main differences between Internet-based and window-based
applications are the failing of clients and Web servers, the failing of communica-
tion and overtaking of messages between clients and the application and the de-
pendency on third parties. Furthermore, Internet applications are request/response
based where window-based applications interact with the clients using a (graphical)
user interface. Finally, most Internet applications focus on parallel communication
with more than one client. Since multiple clients can share a common state space,
testing Internet applications is basically different from testing window-based appli-
cations. Window-based applications are mostly based on single user interaction.
More differences between Web-based and window-based systems can be found in
e.g. [RFPG96].

First, we informally show how implementations of these applications can be tested.
We focus on black-box testing, restricting ourselves to dynamic testing. This means
that the testing consists of really executing the implemented system. We do this by
simulating real-life interaction with the applications, i.e. by simulating the clients
that interact with the application. The simulated clients interact in a similar way as

10.2 Testing of Internet Applications 151

Tester

Specifi-
cation Primer Driver Adapter

pass/fail/inconclusive

System under test

Third
Parties Server Appli-

cation

HTTP request

HTTP response

Figure 10.1: Automatic testing of Internet applications.

real-life clients would do. In this way, the application cannot distinguish between a
real-life client and a simulated one. See Figure 10.1 for a schematic overview of the
test environment.

We make use of a tester which generates requests and receives responses. This is
called test execution. By observing the responses, the tester can determine whether
they are expected responses in the specification. If so, the implementation passes the
test, if not, it fails.

The tester itself consists of four components, based on [BFV+99]:

Specification The specification is the formal description of how the application un-
der test is expected to behave.

Primer The primer determines the requests to be sent by inspecting the specification
and the current state the test is in. So the primer interacts with the specification
and keeps track of the state of the test. Furthermore, the primer checks whether
responses received by the tester are expected responses in the specification at
the state the test is in.

Driver The driver is the central unit, controlling the execution of the tests. This com-
ponent determines what actions to execute. Furthermore, the verdict whether
the application passes the test is also computed by the driver.

Adapter The adapter is used for encoding abstract representations of requests into
HTTP requests and for decoding HTTP responses into abstract representations
of these responses.

While executing a test, the driver determines if a request is sent or a response is
checked. If the choice is made to send a request, the driver asks the primer for a
correct request, based on the specification. The request is encoded using the adapter
and sent to the application under test. If the driver determines to check a response, a
response is decoded by the adapter. Next, the primer is asked whether the response

152 Conformance Testing of Internet Applications 10

is expected in the specification. Depending on the results, a verdict can be given on
the conformance of the implementation to its specification.

As mentioned in Section 3.3, clients, Web servers, their mutual communication and
third parties can fail. In such a case, no verdict can be given on the correctness of
the implementation of the Internet application. However, depending on the failure,
it might be possible to determine the failing entity.

10.3 Introduction to Conformance Testing

As a basis for conformance testing of Internet applications, we take the formal frame-
work as introduced in [BAL+90, Tre94, ISO96]. Given a specification, the goal is to
check, by means of testing, whether an implemented system satisfies its specifica-
tion. To be able to formally test applications, there is a need for implementations
and formal specifications. Then, conformance can be expressed as a relation on these
two sets.

Implementations under test are real objects which are treated as black boxes exhibit-
ing behaviour and interacting with their environment. They are not amenable to
formal reasoning, which makes it harder to formally specify the conformance rela-
tion. Therefore, we make the assumption that any implementation can be modelled
by a formal object. This assumption is referred to as the test hypothesis [Ber91] and
allows us to handle implementations as formal objects. We can express conformance
by a formal relation between a model of an implementation and a specification, a
so-called implementation relation.

An implementation is tested by performing experiments on it and observing its re-
actions to these experiments. The specification of such an experiment is called a test
case, a set of test cases a test suite. Applying a test to an implementation is called
test execution and results in a verdict. If the implementation passes or fails the test
case, the verdict is pass or fail, respectively. If no verdict can be given, the verdict is
inconclusive.

In the remainder of this chapter, we instantiate the ingredients of the framework
as sketched above. We give a formalism for both modelling implementations of
Internet applications and for giving formal specifications used for test generation.
Furthermore, we give an implementation relation. By doing this, we are able to test
whether a (model of an) implementation conforms to its specification. Apart from
that, we give an algorithm for generating test suites from specifications of Internet
applications.

10.4 Formal Model 153

10.4 Formal Model

To be able to formally test Internet applications, we need to formally model their
behaviour. Since we focus on conformance testing, we are mainly interested in the
communication between the application and its users. We do not focus on the repre-
sentation of data. Furthermore, we focus on black-box testing, which means that the
internal state of an application is not known in the model. Finally, we focus on thin
client Internet applications that communicate using the Hypertext Transfer Protocol
(HTTP) [FGM+99]. As a result, the applications show a request/response behaviour.

These observations lead to modelling Internet applications using labelled transition
systems. Each transition in the model represents a communication action between
the application and a client. The precise model is dictated by the interacting be-
haviour of the HTTP protocol, as explained in Section 3.2.

In general, an HTTP interaction is initiated by a client, sending a request for some
information to an application. A request can be extended with parameters. These pa-
rameters can be used by the application. After calculating a response, it is sent back
to the requesting client. Normally, successive requests are not grouped. However,
the grouping can be done by adding parameters to the requests and responses. In
such a way, alternating sequences of requests and responses are turned into sessions.
All this can be found in Section 4.3.2 where client interaction is introduced.

Note that we test the interaction behaviour of Internet applications communicating
via HTTP. We do not model the client-side tools to interact with Internet applica-
tions, i.e., we do not model the behaviour of the application when using browser
buttons like stop, back, forward and refresh. The main reason for not including this be-
haviour is that different client implementations cause distinct interaction behaviour.
For example, some browsers may store visited pages in a cache such that pressing
a back button does not result in the sending of a request but in simply showing the
stored page. Pressing the back button in other browsers may result in sending a new
request for the previously visited page.

Furthermore, we do not add (failure of) components in the system under test, other
than the application, to the specification. This means that failure of any of these
components leads to tests in which the result is inconclusive. If all components in the
system under test operate without failure, verdicts are pass or fail. This implies that
testing of rollbacks is not taken into account.

The tester should behave like a set of thin clients. The only requests sent to the ap-
plication are the initial request which models the typing in of a URL in the browser’s
address bar and requests that result from clicking on links or submitting forms which
are contained in preceding responses.

154 Conformance Testing of Internet Applications 10

Since we focus on HTTP based Internet applications, and thus on sessions of alter-
nating request/response communication with applications, we make use of so-called
multi request/response transition systems (MRRTSs) for modelling implementations of
Internet applications and initially for giving formal specifications used for test gener-
ation. Later, in Section 10.8, we show how DiCons specifications can serve as a basis
for the tester to test Internet applications. An MRRTS is a labelled transition system
having extra structure. In the remainder of this section we explain MRRTSs in more
detail and show how they relate to labelled transition systems and request/response
transition systems (RRTSs).

10.4.1 Labelled Transition Systems

The formalism of labelled transition systems is widely used for describing the be-
haviour of processes. We provide the relevant definitions.

Definition 10.4.1 A labelled transition system is a 4-tuple 〈S, L,→, s0〉 where

• S is a countable, non-empty set of states;

• L is a countable set of labels;

• →⊆ S× L× S is the transition relation;

• s0 ∈ S is the initial state.

Note that we do not draw a distinction between states which can successfully ter-
minate and deadlock states, as we do in DiCons. The testing theory is based on
black-box testing using test suites that consist of traces of interactions. These traces
are constructed using the specification. By black-box testing of Internet applications,
we assume that we cannot determine whether an implementation under test reaches
a terminating or deadlock state after acceptance of a trace. If all traces in the specifi-
cation are accepted by the application, it conforms to the specification.

Definition 10.4.2 Let si (i ∈ N) be states and ai (i ∈ N) be labels. A (finite) composition of
transitions

s1
a1−→ s2

a2−→ . . . sn
an−→ sn+1

is then called a computation. The sequence of actions of a computation, a1; a2; . . . ; an, is
called a trace. The empty trace is denoted by ε. If L is a set of labels, the set of all finite traces
over L is denoted by L∗.

Definition 10.4.3 Let p = 〈S, L,→, s0〉, s, s′ ∈ S, S′ ⊆ S, ai ∈ L and ς ∈ L∗. Then,

10.4 Formal Model 155

s a1;...;an−−−→ s′ =def ∃s1, . . . , sn−1 s a1−→ s1
a2−→ . . . sn−1

an−→ s′
s a1;...;an−−−→ =def ∃s′ s a1;...;an−−−→ s′

init(s) =def {a ∈ L | s a
−→} all possible transitions from s

traces(s) =def {ς ∈ L∗ | s ς
−→} all possible execution sequences from s

traces(S′) =def
⋃ s′ ∈ S′ traces(s′) all possible execution sequences from S′

s after ς =def {s′ ∈ S | s ς
−→ s′} reachable states from s after execution of ς

S′ after ς =def
⋃ s′ ∈ S′ s′ after ς reachable states from S′ after execution of ς

A labelled transition system p = 〈S, L,→, s0〉 is identified by its initial state s0. So,
e.g., we can write traces(p) instead of traces(s0) and p after ς instead of s0 after ς .

We aim at modelling the behaviour of the HTTP protocol using labelled transition
systems. Therefore, we need to add restrictions on the traces in the labelled transition
system used for modelling this behaviour. One of these restrictions is that traces in
the LTSs should answer the alternating request/response behaviour.

Definition 10.4.4 Let A, B be sets of labels. Then alt(A, B) is the (infinite) set of traces
having alternating structure with respect to elements in A and B, starting with an element
in A. Formally, alt(A, B) is the smallest set such that

ε ∈ alt(A, B) ∧ ∀ς ∈ alt(B,A)∀a ∈ A aς ∈ alt(A, B) .

As mentioned before, interactions with an Internet application can be grouped into
sessions. To be able to specify the behaviour within each session, we make use of a
projection function. This function is used for determining all interactions contained
within one session.

Definition 10.4.5 Let ς be a trace and A be a set of labels. Then ς |A , the projection of ς to
A, is defined by

ε |A =def ε

(a; ς) |A =def

{

a; (ς |A) if a ∈ A
ς |A if a 6∈ A .

Definition 10.4.6 A partitioning S of a set A is a collection of mutually disjoint non-empty
subsets of A such that their union exactly equals A:

∀B∈S B 6= ∅ ∧
⋃

S = A ∧ ∀B,C∈S B 6= C⇒ B∩C = ∅

156 Conformance Testing of Internet Applications 10

10.4.2 Request/Response Transition Systems

We give a formal definition of a request/response transition system, denoted by
RRTS. RRTSs can be compared with input/output transitions systems (IOTSs) as
defined in [Tre95]. As in IOTSs, we differentiate between two sets of labels, called
request labels and response labels, respectively. Where in IOTSs inputs are always en-
ables, RRTSs are based on pure request/response alternation.

Definition 10.4.7 Let L be a countable set of labels and {L?, L!} be a partitioning of L.
Then, a request/response transition system 〈S, L?, L!,→, s0〉 is a labelled transition sys-
tem 〈S, L,→, s0〉 such that

∀ς ∈ traces(s0) ς ∈ alt(L?, L!) .

Elements in L? are called request labels, elements in L! response labels.

RRTSs resemble the notion of Mealy machines [Mea55], however, it turns out to be
technically simpler to start from the notion of RRTSs since our focus is on mod-
elling HTTP interaction instead of on the translation of input strings (requests) into
output strings (responses). Furthermore, the alternating behaviour of requests and
responses is contained in the structure of RRTSs where it should be contained in both
the next-state and output functions of Mealy machines.

10.4.3 Multi Request/Response Transition Systems

IOTSs can be used as a basis for multi input/output transition systems (MIOTSs)
[Hee98]. Similarly, in a multi request/response transition system (MRRTS), multiple
request/response transition systems are combined into one. All subsystems behave
like an RRTS, however interleaving between the subsystems is possible.

Definition 10.4.8 Let L be a countable set of labels. Let L ⊆ P (L) × P (L) be a count-
able set of pairs such that {A, B ∈ P (L) | (A, B) ∈ L} is a partitioning of L. Then, a
multi request/response transition system 〈S,L,→, s0〉 is a labelled transition system
〈S, L,→, s0〉 such that

∀(A, B) ∈ L ∀ς ∈ traces(s0) ς |A∪B ∈ alt(A, B) .

The set of all possible request labels, L?, is defined by

L? =def
⋃

(A,B)∈L

A .

10.5 Relating Multi Request/Response Transition Systems 157

The set of all possible response labels, L!, is defined by

L! =def
⋃

(A,B)∈L

B .

Note that an RRTS 〈S, L?, L!,→, s0〉 can be interpreted as MRRTS 〈S,{(L?, L!)},→, s0〉,
i.e., each MRRTS having singleton L is an RRTS.

We introduce some extra functions on the sets of pairs as introduced in Defini-
tion 10.4.8.

Definition 10.4.9 Let L⊆ P (L)×P (L) be a countable set of pairs such that {A, B ∈ P (L) |
(A, B) ∈ L} is a partitioning of L, where each tuple contains a set of request labels and a set
of response labels. We define functions req and resp for determining corresponding requests
or responses given either a request label or response label. For x ∈ L, we define functions
req, resp : L→ P (L), such that

(req(x), resp(x)) ∈ L and x ∈ req(x)∪ resp(x) .

10.5 Relating Multi Request/Response Transition Sys-
tems

An implementation conforms to a specification if an implementation relation exists
between the model of the implementation and its specification. We model both the
implementation and the specification as multi request/response transition systems,
so conformance can be defined by a relation on MRRTSs.

While testing Internet applications, we examine the responses sent by the application
and check whether they are expected responses by looking at the specification. So
we focus on testing whether the implementation does what it is expected to do, not
what it is not allowed to do.

Given a specification, we make use of function exp to determine the set of expected
responses in a state in the specification.

Definition 10.5.1 Let p be a multi request/response transition system 〈S,L,→, s0〉. For
each state s ∈ S and for each set of states S′ ⊆ S, the set of expected responses in s and S′ is
defined as

exp(s) =def init(s)∩L!

exp(S′) =def
⋃

s′ ∈ S′ exp(s′) .

158 Conformance Testing of Internet Applications 10

If a model of an implementation i conforms to a specification s, the possible re-
sponses in all reachable states in i should be contained in the set of possible responses
in the corresponding states in s. Corresponding states are determined by executing
corresponding traces in both i and s.

Definition 10.5.2 Let MRRTS i be the model of an implementation and MRRTS s be a
specification. Then i conforms to s with respect to request/response behaviour, i rrconf s, if
and only if all responses of i are expected responses in s:

i rrconf s =def ∀ς ∈ traces(s) exp(i after ς) ⊆ exp(s after ς) .

Relation rrconf on MRRTSs is analogous to relation conf on LTSs as formalised in
[BSS87].

10.6 Test Derivation

An implementation is tested by performing experiments on it and observing its re-
actions to these experiments. The specification of such an experiment is called a test
case. Applying a test to an implementation is called test execution. By now we have
all elements for deriving such test cases.

Since the specification is modelled by an MRRTS, a test case consists of request and
response actions as well. However, we have some more restrictions on test cases.
First of all, test cases should have finite behaviour to guarantee that tests terminate.
Apart from that, unnecessary nondeterminism should be avoided, i.e., within one
test case the choice between multiple requests or between requests and responses
should be left out.

In this way, a test case is a labelled transitions system where each state is either a
terminating state, a state in which a request is sent to the implementation under test,
or a state in which a response is received from the implementation. The terminating
states are labelled with a verdict which is a pass or fail.

Definition 10.6.1 A test case t is an LTS 〈S,L? ∪L!,→, s0〉 such that

• t is deterministic and has finite behaviour;

• S contains terminal states pass and fail with init(pass) = init(fail) = ∅;

• for all s ∈ S \ {pass, fail}, init(s) = {a} for a ∈ L? or init(s) = L!.

We denote this subset of LTSs by TESTS. A set of test cases T ⊆ TESTS is called a test suite.

10.6 Test Derivation 159

We do not include the possibility for reaching inconclusive states in test cases. Such
verdicts are given if a component in the system under test, other than the application,
fails. The tester (as described in Section 10.2) is able to identify errors caused by the
application and lead to a fail state. Other errors result in an inconclusive verdict.

As mentioned, we call a set of test cases a test suite. Such a test suite is used for deter-
mining whether an implementation conforms to a specification. A test suite T is said
to be sound if and only if all implementations that conform to the specification pass
all test cases in T. If all implementations that do not conform to the specification fail
a test case in T, T is called exhaustive. A test suite that is both sound and exhaustive
is said to be complete [ISO96].

Definition 10.6.2 Let MRRTS i be an implementation and T be a test suite. Then, imple-
mentation i passes test suite T if no traces in i lead to a fail state:

i passes T =def ¬∃t ∈ T ∃ς ∈ traces(i) ς ; fail ∈ traces(t)

We use the notation ς ; fail to represent trace ς leading to a fail state, i.e.,

ς ; fail ∈ traces(t) =def t ς
−→ fail .

Definition 10.6.3 Let s be a specification and T be a test suite. Then for relation rrconf:

T is sound =def ∀i i rrconf s =⇒ i passes T
T is exhaustive =def ∀i i rrconf s ⇐= i passes T
T is complete =def ∀i i rrconf s ⇐⇒ i passes T

In practice, however, finite test suites are often incomplete and infinite test suites
cannot be processed in finite time. So, we have to restrict ourselves to test suites for
detecting non-conformance instead of test suites for giving a verdict on the confor-
mance of the implementation. Such test suites are called sound.

To test conformance with respect to request/response behaviour, we have to check
for all possible traces in the specification that the responses generated by the imple-
mentation are expected responses in the specification. This can be done by having
the implementation execute traces from the specification. The responses of the im-
plementation are observed and compared with the responses expected in the spec-
ification. Expected responses pass the test, unexpected responses fail the test. The
algorithm given is based on the algorithm for generating test suites as defined in
[Tre96].

Algorithm 10.6.4 Let s be MRRTS 〈S,L,→, s0〉. For any non-empty set C of states of
the specification, we define the collection of nondeterministic recursive algorithms gentestn

160 Conformance Testing of Internet Applications 10

(n ∈ N) for deriving test cases as follows:

gentestn : P (S)→ TESTS

gentestn(C) =def [return pass
8 n > 0 ∧ a ∈ L? ∧ C after a 6= ∅ →

return a; gentestn−1(C after a)
8 n > 0 →

return ∑{b; fail | b ∈ L! \ exp(C)}
+ ∑{b; gentestn−1(C after b) | b ∈ exp(C)}

]

Algorithm gentestn can be used for the generation of test cases having a maximum of
n transitions. In each recursive step, the algorithm makes a nondeterministic choice
out of three options. The first option is to end the test case by returning a pass. Al-
ternatively, if a request is enabled, this request can be added to the test case after
which the algorithm is recursively called. Finally, a response can be inspected which
either results in a fail state if it is unexpected or in a recursive call if it is an expected
response. The algorithm returns an process-algebraic expression (that can be con-
sidered a test case). Algorithm gentestn({s0}) generates all sound test cases with at
most n transitions, starting in state s0.

As mentioned in Definition 10.4.2, the ; infix notation is used for trace composition.
So, e.g., trace a; b relates to transitions s a−→ s′ b−→ s′′. As mentioned, notation a; pass
and a; fail is used for representing transitions s a−→pass and s a−→ fail, respectively. We
use Σ-notation, which is the generalisation of the alternative composition, to indicate
that it is not known which of the responses is returned by the implementation. So,
e.g. alternative composition a + b (see Section 5.2) relates to transitions s a−→ s′ and
s b−→ s′′. Depending on whether the response is expected, the algorithm might either
continue or terminate in a fail state.

Although a choice for the first option can be made in each step, we added a param-
eter to the algorithm, n ∈ N, to force termination. As mentioned, we want all test
cases to be finite, since otherwise no verdict might take place.

To give an example, suppose we have an MRRTS where repetitively one type of
request can be sent, which contains an integer value n. The corresponding response
returns the square of the value: n2. Then, e.g., these two test cases can be generated
using the algorithm:

10.6 Test Derivation 161

fail fail fail fail pass fail fail

req.c.n.2

res
p.c

.sq
uare

.0

res
p.

c.s
qu

ar
e.1

re
sp

.c.
sq

ua
re

.2

re
sp

.c.
sq

ua
re

.3 resp
.c.square.4

resp.c.square.5

resp.c.square.N

fail fail fail fail fail fail

req.c.n.1

res
p.c

.sq
uare

.0

res
p.

c.s
qu

ar
e.1

re
sp

.c.
sq

ua
re

.2

re
sp

.c.
sq

ua
re

.3 resp
.c.square.4

resp.c.square.5
resp.c.square.N

pass fail fail fail fail fail fail

req.c.n.0

res
p.c

.sq
uare

.0

res
p.

c.s
qu

ar
e.1

re
sp

.c.
sq

ua
re

.2

re
sp

.c.
sq

ua
re

.3 resp
.c.square.4

resp.c.square.5

resp.c.square.N

The set of derivable test cases from gentestn(C) is denoted by gentestn(C). So set
gentestn(C) contains all possible test cases of at most n transitions starting in states
C of the specification. Although our goal is to generate sound test suites, we prove
that in the limit, as n goes to infinity, test suite ⋃

n>0 gentestn({s0}) is complete for
specification 〈S,L,→, s0〉. To prove this, we make use of some lemmas.

Lemma 10.6.5 Let s be a specification 〈S,L,→, s0〉 and ς0, ς1 ∈ L∗, ς1 6= ε. Then

ς0ς1 ∈ traces(gentestn({s0})) ⇐⇒ ς1 ∈ traces(gentestn−|ς0|(s0 after ς0))

where |ς | is the length of trace ς .

Proof This lemma can be proved by using induction on the structure of ς0. The full
proof can be found in Appendix C.1 on page 235. ¤

Lemma 10.6.6 Let s be a specification 〈S,L,→, s0〉, ς0 ∈ L∗ and n > 0. Then

ς ; fail ∈ traces(gentestn({s0})) =⇒ ∃ς ′ ∈ L∗∃b ∈ L! ς = ς ′b .

Proof This can be easily seen by looking at the definition of the gentest algorithm:
State fail can only be reached after execution of a b ∈ L!. ¤

162 Conformance Testing of Internet Applications 10

Theorem 10.6.7 Let s be a specification 〈S,L,→, s0〉. Then test suite
⋃

n>0
gentestn({s0}) is complete.

Proof We prove this by proving exhaustiveness (⇐) and soundness (⇒) separately
using proofs by contradiction. The full proof can be found in Appendix C.2 on
page 237. ¤

10.6.1 Adapting the Algorithm

If we know or assume that the implementation satisfies some soundness condition,
we need not test for violations of that condition. So, then we need fewer tests. Here
we assume that the implementation has the alternating request/response behaviour:
the implementation can only send responses on requests sent by the tester.

As can be seen by looking at Algorithm 10.6.4, each choice for inspecting a response
of the implementation leads to |L!| new branches in the generated test case. How-
ever, as a result of the alternating request/response behaviour of the implementa-
tion, many of these branches never take place.

This means that we only want to contain this restricted set of responses in the test
case. The generated test case itself then also is an MRRTS. As a result, while gen-
erating test cases, we keep track of the responses that might be sent by the im-
plementation according to the definition of MRRTSs. We do this by watching the
set of responses that can be received at each state in the test case and only add
these responses to the test case. In this way, the alternating behaviour of the re-
quest/response interaction is maintained.

Algorithm 10.6.8 Let s be MRRTS 〈S,L,→, s0〉. For any non-empty set C of states of
the specification, we define the collection of nondeterministic recursive algorithms gentestn

E
(n ∈ N, E ⊆ L!) for deriving test cases as follows:

gentestn
E : P (S)→ TESTS

gentestn
E(C) =def [return pass

8 n > 0 ∧ a ∈ L? ∧ C after a 6= ∅ →
return a; gentestn−1

E∪resp(a)(C after a)
8 n > 0 ∧ E 6= ∅ →

return ∑{b; fail | b ∈ E \ exp(C)}
+ ∑{b; gentestn−1

E\resp(b)(C after b) | b ∈ exp(C)}
]

10.6 Test Derivation 163

Algorithm 10.6.8 extends Algorithm 10.6.4 with an extra parameter, E ⊆ L!. This
set E is used for keeping track of the sets of enabled responses, i.e., responses that
might be received by the tester at the current state of the test case. Initially, this set
is empty, viz. a response cannot be received if no request has been sent. Sending
a request adds the corresponding set of responses to E. If set E is not empty, the
choice for examining a response is enabled. Receiving a response leads to dropping
the set of corresponding responses, i.e. the set of responses in E that contains the
received response. Abstracting from responses that cannot occur because they are
elements of other sessions is allowed: they do not occur in the implementation since
all responses have to be preceded by a corresponding request.

We prove that test suite ⋃

n>0 gentestn
∅({s0}) is complete as well. To prove this, again,

we make use of some lemmas.

Lemma 10.6.9 Let s be an MRRTS 〈S,L,→, s0〉, L be the set of labels in s, ς be a trace in s
and Eς be the set of expected responses after execution of ς in s:

Eς = {b ∈ L! | ∃a ∈ req(b) ∃ς0, ς1 ∈ L∗ (ς = ς0aς1 ∧¬∃b′ ∈ resp(a) b′ ∈ ς1)} .

Then,

1. ∀a ∈ L? Eς ∪ resp(a) = Eςa

2. ∀b ∈ L! Eς \ resp(b) = Eςb

Proof The proof can be found in Appendix C.3 on page 239. ¤

Lemma 10.6.10 Let s be a specification 〈S,L,→, s0〉. Then

∀n > 0 traces(gentestn
∅({s0})) ⊆ traces(gentestn({s0})) .

Proof By comparing algorithms 10.6.4 and 10.6.8, we see that the only difference
is in the choice for option three and the number of fail traces generated via option
three. All pass traces that are generated by Algorithm 10.6.8 are generated by Al-
gorithm 10.6.4 since those do not depend on E. The fail traces generated by Algo-
rithm 10.6.8 are also generated by Algorithm 10.6.4 since E ⊆ L!. ¤

Lemma 10.6.11 Let s be a specification 〈S,L,→, s0〉 and ς0, ς1 ∈ L∗, ς1 6= ε. Then

ς0ς1 ∈ traces(gentestn
∅({s0})) ≡ ς1 ∈ traces(gentestn−|ς0|

Eς0
(s0 after ς0))

where |ς | is the length of trace ς and Eς is as defined in Lemma 10.6.9.

164 Conformance Testing of Internet Applications 10

Proof This Lemma follows from the definitions of Algorithms 10.6.4 and 10.6.8 and
Lemmas 10.6.5, 10.6.9 and 10.6.10. ¤

Lemma 10.6.12 Let MRRTS i be 〈S,L,→, s0〉. Then,

∀b ∈ L! ςb ∈ traces(i) ⇒ b ∈ Eς

where Eς is as defined in Lemma 10.6.9.

Proof The proof can be found in Appendix C.4 on page 241. ¤

Theorem 10.6.13 Let s be a specification 〈S,L,→, s0〉. Then test suite
⋃

n>0
gentestn

∅({s0}) is complete.

Proof The proof can be found in Appendix C.5 on page 241. ¤

Up till now, we only took batch-wise testing into account, i.e., a test suite is generated
after which test execution takes place. As mentioned before, test cases, and thus test
suites, often grow very large. Therefore it is more suitable to execute the test cases
on-the-fly. That is, while generating test cases, the actions are immediately executed
by interacting with the implementation under test. The algorithms presented in this
chapter are also suitable for on-the-fly testing: When a choice is made for sending
a request (second option), the request is directly sent to the implementation. If the
next step in the test case is receiving a response (third option), a response is inspected
and, depending on whether the response is expected, the test case fails or continues.

10.7 Example

We show how the theory introduced in former sections can be used for testing real-
life Internet applications. As an example, we take a voting protocol. All members of
a group of voters are asked whether they are for or against a proposition. They are
able to visit a Web site where they can either vote or have a look at the current score.
They can vote at most once and they can check the score as often as they want to.

We start by giving an MRRTS that formally specifies the application. Let V be the set
of voters and P = {for,against}.

10.7 Example 165

All voters v ∈ V can start a vote. If a voter has indicated that he wants to vote, he is
asked to vote for or against a proposition. The voter votes and his vote is confirmed
or rejected, depending on whether the voter had voted before. As a result, a correct
voting session can be modelled by the following sequence of requests and responses:

start.v?k
0; vote.v!k

1; vote.v.p?k
2; ok.v!k

If the vote is rejected, the final response is a ¬ok.v!k. More details and the exact
syntax and semantics of the actions are given below, in Example 10.7.1. We number
the semicolons in order to be able to keep track of the state the session is in. This is
also explained below.

A score-checking session consists of a single request/response interaction (a reactive
push). A trace representing this interaction has the following structure:

score.v?k ; score.v. f .a!k

In Example 10.7.1 we give an MRRTS specifying the behaviour described above.

Example 10.7.1 Let 〈S,L,→, s0〉 be the MRRTS having the following structure:

• L, the set of pairs of transition labels is defined as follows:

L = { ({start.v?k,vote.v.for?k,vote.v.against?k},
{vote.v!k,ok.v!k,¬ok.v!k}

) | v ∈ V, k ∈ K }
∪ { ({score.v?k},

{score.v. f .a!k}
) | f , a ∈ N, v ∈ V, k ∈ K }

The first part specifies the interactions where voter v starts a vote and sends a request
to vote for or against the proposition. The response on a start is the question to vote
for or against the proposition. The response on a vote is a confirmation (ok) or a denial
(¬ok), depending on whether the voter had voted before. The second part specifies the
requests for the score which are responded by the number of votes for (f) and against
(a) the proposition. All labels are extended with an identifier k for uniquely identifying
the sessions. Request labels are marked with a question-mark and response labels with
an exclamation-mark.

• S, the set of states, is defined as follows:

S = P (K×V×{0,1,2}× P) states of the vote sessions
× P (K×V×N×N) states of the score-checking sessions
× P (V) voters who voted
× N number of voters who voted for
× N number of voters who voted against

166 Conformance Testing of Internet Applications 10

For 〈Q,R,W, f , a〉 ∈ S,

– Q ⊆ K×V×{0,1,2}× P are the states of the vote sessions.
For 〈k, v, i, p〉 ∈ Q,
∗ k ∈ K is the session label;
∗ v ∈ V is the voter who is voting;
∗ i ∈ {0,1,2} is the state the session is in. This i indicates at which semicolon

the vote session is, where we use the labelling as given above;
∗ p ∈ P is the actual vote: for or against the proposition;

– R ⊆ K×V×N×N are the states of the score-checking sessions.
For 〈k, v, fk, ak〉 ∈ R,
∗ k ∈ K is the session label;
∗ v ∈ V is the voter who is checking the score;
∗ fk ∈ N is the number of voters who voted for the proposition at the time that

session k started;
∗ ak ∈ N is the number of voters who voted against the proposition at the time

that session k started;
– W ⊆ V is the set of voters who voted;
– f ∈ N is the number of voters who voted for the proposition;
– a ∈ N is the number of voters who voted against the proposition.

• Transition relation→ is defined by the following derivation rules.
A vote session, uniquely labelled by k, can be started by voter v by sending a start
request:

k ∈ K, v ∈ V, ¬∃k′∈K\{k}∃v′∈V ∃i∈{0,1,2}∃p∈P 〈k′, v′, i, p〉 ∈ Q

〈Q,R,W, f , a〉 start.v?k−−−−→〈Q∪ {〈k, v,0,⊥〉},R,W, f , a〉

If a start request has been received from voter v in session k, a response, asking for a
vote, can be sent:

〈k, v,0,⊥〉 ∈ Q

〈Q,R,W, f , a〉 vote.v!k−−−−→〈(Q \ {〈k, v,0,⊥〉})∪ {〈k, v,1,⊥〉},R,W, f , a〉

After the voter received the response to vote, he can send a request containing the vote:

〈k, v,1,⊥〉 ∈ Q, p ∈ P

〈Q,R,W, f , a〉 vote.v.p?k
−−−−−→〈(Q \ {〈k, v,1,⊥〉})∪ {〈k, v,2, p〉},R,W, f , a〉

10.7 Example 167

If the vote is accepted, i.e., if the voter had not voted before (v 6∈W), the vote is counted
and confirmed and the session ends:

〈k, v,2, for〉 ∈ Q, v 6∈W

〈Q,R,W, f , a〉 ok.v!k−−−→〈Q \ {〈k, v,2, for〉},R,W ∪ {v}, f + 1, a〉

〈k, v,2,against〉 ∈ Q, v 6∈W

〈Q,R,W, f , a〉 ok.v!k−−−→〈Q \ {〈k, v,2,against〉},R,W ∪ {v}, f , a + 1〉
If the voter had voted before, or is concurrently sending a vote in another session, the
vote can be rejected and the session ends:

〈k, v,2, p〉 ∈ Q, v ∈W ∨ ∃k′∈K\{k}∃p′∈P 〈k′, v,2, p′〉 ∈ Q

〈Q,R,W, f , a〉 ¬ok.v!k−−−→〈Q \ {〈k, v,2, p〉},R,W, f , a〉

A score-checking session, uniquely labelled by k, can be started by voter v by sending
a score request:

k ∈ K, v ∈ V, ¬∃k′∈K\{k}∃v′∈V ∃ f ′, a′∈N 〈k′, v′, f ′, a′〉 ∈ R

〈Q,R,W, f , a〉 score.v?k−−−−→〈Q,R∪ {〈k, v, f , a〉},W, f , a〉

If a request for the score has been sent, the scores can be returned to the requesting
client. Since interactions can overtake each other, the result can be any of the scores
between the sending of the request and the receiving of the response. So, the score must
be at least the score at the moment of requesting the score and at most the number of
processed votes plus the number of correct votes, sent in between requesting for the
score and receiving the score:

〈k, v, fk, ak〉 ∈ R,
fk ≤ f ′ ≤ f + (#v∈V∃k∈K 〈k, v,2, for〉 ∈ Q∧ v 6∈W),

ak ≤ a′ ≤ a + (#v∈V∃k∈K 〈k, v,2,against〉 ∈ Q∧ v 6∈W)

〈Q,R,W, f , a〉 score.v. f ′.a′?k−−−−−−→〈Q,R \ {〈k, v, fk, ak〉},W, f , a〉

• Initial state s0 = 〈∅,∅,∅,0,0〉: no requests to start a vote or inspect the scores have
been sent yet, no one has voted for and no one has voted against the proposition.

This MRRTS specifies the example where voters can vote once and check for the scores as
often as they want.

As a proof of concept, we implemented an on-the-fly version of Algorithm 10.6.8.
We used this algorithm to test eleven implementations of the Internet vote applica-
tion: one correct and ten incorrect implementations. We tested by executing 26.000

168 Conformance Testing of Internet Applications 10

implementation % failures verdict
1. correct implementation 0.00 pass
2. no synchronisation: first calculate

results, then remove voter
33.30 fail

3. no synchronisation: first remove
voter, then calculate results

32.12 fail

4. votes are incorrectly initialised 91.09 fail
5. votes for and against are mixed up 87.45 fail
6. votes by voter 0 are not counted 32.94 fail
7. voter 0 cannot vote 91.81 fail
8. unknown voter can vote 0.00 pass
9. voters can vote more than once 68.75 fail

10. voter 0 is allowed to vote twice 16.07 fail
11. last vote is counted twice 8.82 fail

Table 10.1: Test results.

test cases per implementation. This took approximately half a day per implemen-
tation. We tested using different lengths of test traces, varying between 10 and 110
transitions. We also varied the numbers of voters, choosing numbers between 5 and
50. The test results are briefly summarised in Table 10.1. The left column describes
the error in the implementation. In the second column, the percentage of test cases
that ended in a fail state is given.

As can be seen, in nine out of ten incorrect implementations, errors are detected. In
all test cases, only requests are sent that are part of the specification, i.e., only requests
for votes by known voters are sent. Because we did not specify that unknown voters
are forbidden to vote, errors in the implementation that allow other persons to vote
are not detected: the implementation conforms to the specification.

The percentages in Table 10.1 strongly depend on the numbers of voters and lengths
of the test traces. Some errors can easily be detected by examining the scores, e.g.
incorrect initialisation (4). This error can be detected by traces of length 2: request
for the score and inspect the corresponding response. Other errors, however, depend
on the number of voters. If the last vote is counted twice, all voters have to vote
first, after which the scores have to be inspected. This error can only be detected by
executing test traces with at least a length of two times the number of voters plus
two.

10.8 Using DiCons Specifications 169

10.8 Using DiCons Specifications

We showed how to formally test Internet applications by modelling them as multi
request/response transition systems. In this section we explain how to use a DiCons
specification as a basis for the tester. We do this by showing how such a DiCons
specification can be transformed into a multi request/response transition system.
We first informally show how this transformation is done after which we give a
formalisation.

Given a DiCons specification, we explained in Section 9.5 how to transform such a
specification into a (possibly infinite) set of traces. By projecting these traces to only
the requests and responses, we get a (possibly infinite) set of traces that can be used
as test cases. To come to an MRRTS, we make use of the users and session labels:
all pairs containing a set of request labels and a set of response labels are concerned
with one user in one session.

We construct an MRRTS from a DiCons specification in two steps. First we con-
struct an LTS from the specification using the operational semantics of DiCons. This
LTS equals the term deduction system induced by the deduction rules given in Sec-
tion 9.4. Next, we construct an MRRTS from the LTS by abstracting from internal
actions and mail actions and by partitioning the set of labels. In the remainder of
this section we have a detailed look at these steps.

10.8.1 From DiCons Specifications to LTSs

The deduction rules of DiCons as given in Section 9.4.2 induce a labelled transition
system where we write transition s a

−→
k

t as a transition from s to t with label 〈a, k〉:

s 〈a,k〉
−−→ t

Definition 10.8.1 (LTS from DiCons specification) Let x ∈ X be a process, σ ∈ S be a state
and t ∈ T be a time stamp. Then, the LTS that corresponds to the execution of process x in
state σ at time t, LTS(〈x, σ, t〉), is defined as follows:

LTS(〈x, σ, t〉) = 〈S, L,→, s0〉

where

• S is the (possibly infinite) set containing all tuples of processes, states and time stamps:

S =def X× S×T

170 Conformance Testing of Internet Applications 10

• L is the set of pairs of action labels and session labels:

L =def Al ×K

with Al as defined in Section 9.4.1 on page 121 and K as defined in Section 7.3.1 on
page 73.

• →⊆ S× L× S defines the transition relation. Let T(DiCons) be the term deduction
system induced by the deduction rules given in Section 9.4. Then,

∀s, t ∈ S ∀〈a, k〉 ∈ L s 〈a,k〉
−−→ t ⇐⇒ T(DiCons) |= s a

−→
k

t .

• s0 ∈ S is the initial state, which equals 〈x, σ, t〉.

The specifications in DiCons are not only concerned with interaction behaviour, but
they also specify the internal actions. These actions can influence the possible choices
made in specifications and thus can influence the interaction behaviour. To abstract
from these internal actions, we introduce a symmetric equivalence relation on states.
This is explained in more detail in Definition 10.8.5 on page 171.

10.8.2 From DiCons LTSs to MRRTSs

Since we aim at black-box testing of Internet applications, we abstract from internal
actions and mail actions: we focus on testing the request/response behaviour of
implementations. By projecting the traces to only the request and response labels,
this abstraction is achieved.

As mentioned in Section 10.4, we do not take rollbacks into account: we only want
traces in the test suite which model correct behaviour of the implementation. By
allowing rollbacks, the alternating request/response property of traces is no longer
ensured. Therefore, we do not include rollback labels in the LTS. We turn an LTS
〈S, L,→, s0〉 into an LTS without rollback transitions, 〈S, L,→, s0〉/R :

Definition 10.8.2 (LTS without rollback transitions) Let 〈S, L,→, s0〉 be an LTS. Then, the
LTS without rollback transitions, 〈S, L,→, s0〉/R , is defined by

〈S, L,→, s0〉/R =def 〈S, L,→′, s0〉

where
→′

= → \{(s, l, s′) | s, s′ ∈ S, l ∈ {RV | V ⊆ V}} .

10.8 Using DiCons Specifications 171

Locking actions wrap communication actions and internal actions. So they might
also model requests and responses. By dropping lock counters and updated valua-
tion sets, we transform them into the original actions. To do this, we introduce the
function unwrap.

Definition 10.8.3 (Unwrap lockable actions) Let a ∈ Al be an action label and k ∈ K be
a session label. Then, unwrapping the label 〈a, k〉 by stripping off the lock counter and
updating the valuation set from locking labels, unwrap(〈a, k〉), is defined by

unwrap(〈a, k〉) =

{

〈a, k〉 if a = an,V ∈ Ll
〈a, k〉 otherwise .

Before giving the transformation from DiCons LTSs to MRRTSs, we first introduce
the set of request and response labels.

Definition 10.8.4 (request and response labels) The set of all possible request and response
transition labels, R, is defined as follows:

R =def { req.u.~ı. ~d | u ∈ U, i1, . . . , in ∈ Pi, ~d ∈ type(~ı) } ∪
{ resp.u.m.~o | u ∈ U,m ∈M, o1, . . . , on ∈ Po }

Definition 10.8.5 (MRRTS from DiCons LTS) Let x ∈ X be a process, σ ∈ S be a state and
t ∈ T be a time stamp. Let 〈S′, L′,→′, s′0〉 be the LTS without rollback transitions of 〈x, σ, t〉:

〈S′, L′,→′, s′0〉 = LTS(〈x, σ, t〉)/R

Then, the MRRTS modelling the request/response interaction behaviour of process x in state
σ at time t, MRRTS(〈x, σ, t〉) is defined by the following equation:

MRRTS(〈x, σ, t〉) = 〈S,L,→, s0〉

where

• S, the set of states in the MRRTS, is defined using an equivalence relation on states.
For states s, t ∈ S′, s l t is the smallest symmetric relation such that

s l t ≡ ∃ l∈L′ s l
−→′ t ∧ unwrap(l) 6∈ R×K

Then, S, the set of states in the MRRTS is defined as follows:

S = S′/l .

172 Conformance Testing of Internet Applications 10

• L, the transition labels, partitioned by sets of requests and corresponding responses.
The total set of labels, L, contains pairs of request and response labels and session
labels:

L = R × K .

Each element of L contains those request and response labels that are concerned with
one user in one session. So, L, the partitioning of L over unique users and session
labels is defined as follows:

L = { ({ 〈req.c.~ı. ~d, k〉 | i1, . . . , in ∈ Pi, ~d ∈ type(~ı) },
{ 〈resp.c.m.~o, k〉 | m ∈M, o1, . . . , on ∈ Po })

| c ∈ U, k ∈ K

}

• → ⊆ S × L × S is the transition relation which relates all states in S for which a
relation in the LTS without rollback transitions exists that is labelled by a (possibly
wrapped) request or response label:

∀s, t∈S ∀l∈L
s l
−→ t

⇐⇒

∃s′, t′ ∈ S′ ∃l′ ∈ L′ s l s′ ∧ t l t′ ∧ l = unwrap(l′) ∧ s′ l′
−→′ t′

• s0 ∈ S is the initial state, which equals 〈x, σ, t〉.

10.8.3 Example

In this section we revise the MRRTS given in Section 10.7. In the example, we have a
group of voters V and a type P = {for,against}.

Example 10.8.6 All voters are allowed to vote once and check the score as often as they want.
In DiCons, this can be specified as follows:

10.8 Using DiCons Specifications 173

1 [f 7→ 0 : N | [a 7→ 0 : N |
2 [V 7→ V : G |
3 ‖v∈V
4 〈〈[p 7→⊥: P |
5 v vote(ε; p) ·
6 (f := f + 1/ p = for . a := a + 1) ·
7 v ok(ε)
8]〉〉
9]

10 ‖
11 [V 7→ V : G |
12 !v∈V
13 v score(f , a)
14]
15]]

In line 1, the number of voters who voted for (f) and against (a) are declared and
initialised with 0. Next, two processes are put in parallel (line 10), viz. the voting
process in lines 2 to 9 and the checking for the score in lines 11 to 14.

Using the generalised parallel composition operator, we specify in line 3 that all
voters can execute the voting session once. The voting itself consists of the voting
for or against the proposition by providing the p in line 5. The vote is counted in
line 6. Finally, a confirmation is sent to the voter in line 7. Using the transactional
operator, we specify that the voting session can be rolled back if something goes
wrong.

Checking for the score is specified by the sending of the current score, i.e., the num-
ber of voters who voted for and against the proposition. All voters can do this as
often as they want to, as stated in line 12 by the use of the replication operator. The
score is sent using a reactive push message (line 13), which immediately terminates
the session.

We can transform this specification into an MRRTS as explained before. When in-
specting Example 10.7.1, we can easily see that the MRRTS constructed for the spec-
ification given in Example 10.8.6 is not equal to it: the constructed MRRTS does not
have a ¬ok interaction. This is caused by the fact that we make use of the generalised
parallel composition, in which identification is implicitly defined. In Example 10.7.1
this identification is explicitly contained in the specification. The result of this find-
ing is that when using a DiCons specification, we do specify the intended behaviour,
however, because of the implicit identification in DiCons, test suites generated from
the specification can be different from those specified using MRRTSs. By using the
specification in Example 10.8.6 as a basis for the generation of test cases, we cannot
detect several errors in the implementation, like errors 8, 9 and 10 in Table 10.1 on

174 Conformance Testing of Internet Applications 10

page 168: the test suites generated from Example 10.8.6 do not contain test cases in
which a user is trying to vote more than once. So, the DiCons specification to use
depends on the errors we want to detect.

Below, we give a specification which corresponds the the MRRTS given in Exam-
ple 10.7.1.

Example 10.8.7 Let V be a group of voters. Then, the DiCons specification from which an
MRRTS can be constructed that corresponds to the MRRTS of Example 10.7.1 is defined as
follows:

1 [W 7→ ∅ : G | [f 7→ 0 : N | [a 7→ 0 : N |
2 [V 7→ V : G |
3 !v∈V
4 〈〈[p 7→⊥: P |
5 v vote(ε; p) ·
6 (W := W ∪ {v} ·
7 (f := f + 1/ p = for . a := a + 1) ·
8 v ok(ε)
9) / v 6∈W . (

10 v ¬ok(ε)
11)
12]〉〉
13]
14 ‖
15 [V 7→ V : G |
16 !v∈V
17 v score(f , a)
18]
19]]]

To complete this chapter, we show that the MRRTS constructed from the specification
in Example 10.8.7 corresponds to the MRRTS specified in Example 10.7.1.

Lemma 10.8.8 The MRRTS constructed from the specification in Example 10.8.7 corre-
sponds to the MRRTS specified in Example 10.7.1.

Proof To prove this lemma, we first show that the sessions themselves are bisim-
ular, i.e., that a bisimulation relation between the states and transitions exists if no
interleaving takes place. We do this by giving the process graphs induced by the
deduction rules of both models. Next, we show that interleaving does not affect this
relation.

10.8 Using DiCons Specifications 175

Step 1. Relation on vote sessions

The process graph for a vote session induced by the deduction rules given in Exam-
ple 10.7.1 is the following graph:

〈Q,R,W, f , a〉

〈Q,R,W ∪ {v}, f + 1, a〉 〈Q,R,W, f , a〉 〈Q,R,W, f , a〉 〈Q,R,W ∪ {v}, f , a + 1〉

start.v?k

vote.v!k

vote.v.for?k vote.v.against?k

ok.v!k ¬ok.v!k ¬ok.v!k ok.v!k

Let p be the vote process given in lines 4 to 12 of Example 10.8.7 and σ be the state
when starting process p at time t0. Then, the process graph induced by the deduction
rules of DiCons is given below. Note that we abstract from internal actions when
turning the graph into an MRRTS:

〈p, σ, t0〉

σ[for/p] σ[against/p]

〈ε, σ[for/p][σ(W)∪{v}/W][σ(f)+1/ f], tn〉 〈ε, σ[against/p][σ(W)∪{v}/W][σ(a)+1/a], tn〉

〈req.v.ε.ε, k〉

〈resp.v.vote.ε, k〉

〈req.v.p.for, k〉 〈req.v.p.against, k〉

〈W := W ∪ {v}, k〉 〈resp.v.¬ok.ε, k〉 〈resp.v.¬ok.ε, k〉
〈W := W ∪ {v}, k〉

〈 f := f + 1, k〉

〈resp.v.ok.ε, k〉

〈a := a + 1, k〉

〈resp.v.ok.ε, k〉

〈resp.v.ok.ε, k〉 〈resp.v.ok.ε, k〉

176 Conformance Testing of Internet Applications 10

As can be seen, these processes show similar behaviour by relating the nodes and by
using the following relation ∼ on transition labels:

start.v?k ∼ 〈req.v.ε.ε, k〉
vote.v.p?k ∼ 〈req.v.p.p, k〉 for p ∈ P

vote.v!k ∼ 〈resp.v.vote.ε, k〉
ok.v!k ∼ 〈resp.v.ok.ε, k〉
¬ok.v!k ∼ 〈resp.v.¬ok.ε, k〉

There is a one-to-one correspondence on valuations in state stack σ and elements in
the states of the MRRTS in Example 10.7.1.

Step 2. Relation on score-checking sessions

The score-checking sessions consist of only one request and one response. The pro-
cess graph induced by the deduction rules of Example 10.7.1 is given on the left-hand
side, the graph induced by the deduction rules of DiCons on the right-hand side. Pro-
cess q equals the score checking process given in line 17 of Example 10.8.7.

〈q, σ, t0〉

〈ε, σ, tn〉

〈req.v.ε.ε, k〉

〈resp.v.score.(σ(f),σ(a)), k〉

〈Q,R,W, f , a〉

〈Q,R,W, f , a〉

score.v?k

score.v. f .a!k

As is the case with vote sessions, states in the score-checking sessions in both ex-
amples can be related. We use the following relation on transition labels of both
examples:

score.v?k ∼ 〈req.v.ε.ε, k〉
score.v. f .a!k ∼ 〈resp.v.score.(f,a), k〉

Note that σ(f) and σ(a), the evaluations of f and a in state σ of the DiCons process,
correspond to the f and the a in the states of Example 10.7.1.

Furthermore, as a result of the implicit adding of session labels, no two sessions are
labelled by the same label. This means that all labels in all vote sessions and all score-
checking sessions differ. As a result, the k in all relations on 〈req.v.ε.ε, k〉 differs:

start.v?k ∼ 〈req.v.ε.ε, k〉 =⇒ score.v?k 6∼ 〈req.v.ε.ε, k〉
score.v?k ∼ 〈req.v.ε.ε, k〉 =⇒ start.v?k 6∼ 〈req.v.ε.ε, k〉

Step 3. Interleaving of sessions

When sessions interleave, things can go wrong: users might be able to vote twice,
votes might get lost, or incorrect scores might be sent. We prove that if one voter

10.9 Related Work 177

votes simultaneously in two sessions, the vote is counted only once. Furthermore,
we prove that simultaneous votes by two different users are processed correctly and
we prove that the results sent when checking the score correspond to the score-
checking response given in Example 10.7.1.

If two vote sessions of the same voter v interleave, the first three actions can be
executed for both processes. When reaching the processing of the vote, the first
thing done by both processes is the inspection of W and the adding of voter v to W.
Since we have a transactional process, this update can only be done by one of the two
voters, causing the other process to get locked. As a result, when the first transaction
terminates, the second process cannot execute the update since v is already in V. So
v 6∈W evaluates to false and therefore the second process is ended by a resp.v.¬ok.ε
interaction.

Interleaving of two processes by different voters do not cause any problem since the
updating of both f and a are synchronised by the transactional operator.

When interleaving of votes take place with a score-checking session, the values of
f and a can get updated in between the receiving of a request for the score and
the sending of the response containing the score. The f and a sent are always at
least the values when receiving the request (fk and ak) since both f and a are in-
creased only. This corresponds to fk ≤ f ′ and ak ≤ a′ in the premise of the deduc-
tion rule for the score-checking response in Example 10.7.1. The score responded
can be at most fk and ak, increased by the number of vote sessions which are in a
state between increasing the f or a and the sending of response resp.v.ok.ε. This
exactly corresponds to f ′ ≤ f + (#v∈V∃k∈K 〈k, v,2, for〉 ∈ Q ∧ v 6∈ W) and a′ ≤ a +

(#v∈V∃k∈K 〈k, v,2,against〉 ∈ Q∧ v 6∈W in the premise.

This completes the proof that both MRRTSs describe similar behaviour. ¤

10.9 Related Work

Automatic test derivation and execution based on a formal model has been an active
topic of research for more than a decade. This research led to the development of a
number of general purpose black box test engines. However, the domain of Internet
applications induces some extra structure on the interacting behaviour of the imple-
mentation which enforces the adaptation of some of the key definitions involved.
Therefore, our work can be seen as an extension to and adaptation of the formal test-
ing framework as introduced in [BAL+90, Tre94, ISO96]. The major difference stems
from our choice to model an Internet application as a multi request/response tran-
sition system. We expect that existing tools (such as TorX [BFV+99]) can be adapted

178 Conformance Testing of Internet Applications 10

to this new setting. The reader may want to consult [BT00] for an overview of other
formal approaches and testing techniques.

Approaching the problem of testing Internet applications from another angle, one
encounters methodologies and tools based on capture/replay, which can be found
in e.g. [Col03, OSGL03]. In the case of capture/replay testing, test cases are pro-
duced manually and recorded once, after which they can be applied to (various)
implementations. These tools prove very beneficial for instance for regression test-
ing. However, automatic generation of test cases has several advantages. In general
it proves to be a more flexible approach, yielding test suites that can be maintained
more easily and more completely and test suites can be generated more quickly (and
thus more cheaply). The main disadvantage of automatic black-box testing is that it
requires a formal model of the implementation under test.

A methodology that comes very close to ours is developed by Ricca and Tonella
[RT01]. The starting point of their semi-automatic test strategy is a UML specifi-
cation of a Web application. This specification is manually crafted, possibly sup-
ported by re-engineering tools that help in modelling existing applications. Their
UML specification is at the same level as our DiCons specification. However, DiCons
is much more expressive, since it allows e.g. the specification of transactions and
the sharing of data between sessions. Moreover, the fact that parallel sessions can
influence each others behaviour led us to the introduction of MRRTSs. Phrased in
our terms, Ricca and Tonella consider RRTSs as their input format (which they call
path expressions). Another difference is that we perform black-box testing, whereas
they consider white-box testing. This implies that their approach considers imple-
mentation details (such as cookies), while we only look at the observable behaviour.
White-box testing implies a focus on test criteria instead of a complete testing al-
gorithm. Finally, we mention the difference in user involvement. In our approach
the user has two tasks, viz. building an abstract specification and instantiating the
test adapter which relates abstract test events to concrete HTTP-events. In their ap-
proach, the user makes a UML model, produces tests and interprets the output of the
implementation. For all of this, appropriate tool support is developed, but the pro-
cess is not automatic. In this way derivation and execution of a test suite consisting
of a few dozens of tests takes a full day, whereas our on-the-fly approach supports
many thousands of test cases being generated, executed and interpreted in less time.

Jia and Liu [JL02] propose a testing methodology which resembles Ricca and To-
nella’s in many respects, so the differences with our work are roughly the same.
Their focus is on the specification of test cases (by hand), while our approach con-
sists of the generation of test cases from a specification of the intended application’s
behaviour. Their approach does not support on-the-fly test generation and execu-
tion. Like Ricca and Tonella, their model is equivalent to RRTSs which makes it
impossible to test parallel sessions (or users) that share data.

10.10 Conclusions 179

Wu and Offutt [WO02] introduce a model for describing the behaviour of Web appli-
cations, which can be compared with the DiCons language. In contrast to the model
presented in this chapter, their model supports the use of special buttons that are
available in most Web browsers. The main difference with our model is that they
focus on stateless applications, i.e., responses only depend on the preceding request.
We model stateful applications which are based on sessions executed in parallel.

Another functional testing methodology is presented by Niese, Margaria and Stef-
fen in [NMS02]. Where we focus on modelling Internet applications only, they model
other subsystems in the system under test as well. In their approach, test cases are
not generated automatically, but designed by hand using dedicated tools. Test ex-
ecution takes place automatically via a set of co-operating subsystem-specific test
tools, controlled by a so-called test co-ordinator.

Our research focuses on conformance testing only. Many other properties are im-
portant for the correct functioning of Web applications, such as performance, user
interaction and link correctness [BFG02]. Testing such properties is essentially dif-
ferent from conformance testing. They focus on how well applications behave in-
stead of what they do. Plenty of tools are available for performance testing, e.g.,
[Die01, Ful02].

10.10 Conclusions

Due to the focus of DiCons on interaction, rather than on presentation, it is likely
that developers prefer to use a less formal approach that supports the need for a nice
user interface. However, our current research shows that development of a formal
interaction model, like in DiCons, still has benefits. Our research shows that there is
a point in making a formal model, even if it is not used for generating Internet ap-
plications, since a formal model can be used for (automated) conformance testing of
the application. In the near future, this might become a legal claim for, e.g., Internet
votes.

The input of the testing process described in this chapter is a multi request/response
transition system which is a theoretically simple model, but which is very hard to
use in practice for the specification of real applications. Since DiCons is targeted to
specify Internet applications and since its operational semantics can be transformed
into an MRRTS, we can connect the DiCons execution engine to our prototype testing
tool. This provides an effective tool for automated on-the-fly conformance testing of
Internet applications without having to give complex specifications using e.g. MR-
RTSs.

As the development of a formal model of an Internet application is quite an invest-

180 Conformance Testing of Internet Applications 10

ment, we expect that only in cases where it is vital that the application shows the
correct interaction behaviour, automated formal testing will be applied. However,
there will be a huge gain in reliability and maintainability of the application (e.g.
because of automated regression testing), compared with e.g. capture and replay
techniques.

Although we have only built a simple prototype, we can conclude that the proposed
testing approach works in practice, since it quickly revealed (planted) errors in er-
roneous implementations. Interestingly enough, playing with the prototype made
it clear that the response times in the HTTP-protocol are much slower than in tra-
ditional window-based applications, resulting in less test runs per time unit. We
cannot foresee if the unreliability of an Internet connection will prevent us from ex-
ecuting lengthy test runs over the Internet.

An interesting point is that the actual HTTP-response of an Internet application has
to be matched against the expected abstract event from the specification. In our
current prototype tool we simply scan for the occurrence of certain strings, but this
does not seem to be a safe and generic approach. Future research should answer the
question of how to match actual HTTP-replies against abstract events. This problem
is more or less the inverse of the presentation problem of DiCons as is explained in
Chapter 11, where DiCons specifications serve as a basis for generating executable
code.

11
Generation of

Internet Applications

Apart from testing Internet applications against a formal specification, specifications
can also serve as a basis for a compiler, turning specifications into running applica-
tions. In this chapter, we investigate how such a compilation can be done; we do not
give a complete specification of a compiler.

In an early stage of our project we made a feasibility study [Bee00] which we dis-
cuss in this chapter. This study was based on a preliminary version of DiCons. In
Section 11.1 we introduce how the current programming of Internet applications is
done and what techniques are available. These techniques lead to many possibilities
but of course they also introduce insuperable limitations. In Section 11.2 we show
how a DiCons specification can be turned into a running application. Apart from
the result that a compiler should produce, we also shortly mention how Java can be
used for programming the compiler itself in Section 11.3. The feasibility study re-
sults in suggestions for future work in Section 11.4, after which we draw some final
conclusions in Section 11.5.

11.1 Programming Internet Applications

Although programming Internet applications can be compared with programming
stand-alone window-based applications, there are many differences, as explained in
Section 3.3. The main differences between the two styles of programming depend
on the different ways of user interaction with the applications.

182 Generation of Internet Applications 11

In the specifications given in this thesis we abstracted from the actual contents of all
interactions. We stated that HTTP is used for the communication and that input and
output parameters can be attached.

As a start, we explain in Section 11.1.1 what interactions actually look like. Interac-
tions are represented using hypertexts, which are pieces of text extended with inter-
active elements. We explain how the actual presentation of hypertext documents can
be detached from the HTML document. In this way, e.g. fonts, colours and images
can be specified on a central, application-independent, place.

We show how this representation can be extended with input parameters using links
and Web forms in Section 11.1.2. Apart from that, we also show how we can make
use of client-side scripting languages to pre-process information filled in in Web
forms. In this way, we can reduce the number of interactions containing incorrect
values for the input parameters.

Next, in Section 11.1.3, we explain how the representation can be pre-processed such
that output parameters of the interactions can be included. In this way, static hyper-
texts can be adapted such that they become dynamic. Several languages are available
for doing this adaptation. We shortly summarise them and, to give an example, we
show how Java can be used for this purpose.

We explain how these dynamic hypertext documents can be sent to interacting clients
in Section 11.1.4. Since we make use of HTTP, parameters can be attached to requests
in several ways, which will also be explained. Furthermore, we explain how subse-
quent interactions can be combined into sessions. Since session management is not
contained in the HTTP protocol itself, special facilities are available to implement
this, which we discuss in short.

11.1.1 Hypertext Documents

Many documents can be retrieved over the Internet. They can be of any type, e.g.,
PostScript files, PDF files or plain ASCII files. However, the documents we focus
on are represented by so-called hypertexts. A hypertext is a piece of text containing
links to other (hyper)texts. Selecting such a link causes the text to be replaced by the
linked text. Apart from these hyperlinks, a hypertext can also contain other elements,
like headers, images, tables, and interactive elements such as fields that can be filled
in, boxes that can be checked and menus from which an element can be chosen. Of
course, since many possible elements can be included in hypertexts, a specification
language for such documents is needed. The most widely used language for doing
this is the Hypertext Markup Language (HTML) [RLHJ99].

11.1 Programming Internet Applications 183

Hypertext Markup Language

Hypertext Markup Language [RLHJ99] is an application of the Standard Gener-
alised Markup Language (SGML) [Int86], an international standard formally called
ISO 8879 by the International Organization for Standardization (ISO). SGML is a for-
mal definition for defining data and document interchange languages. HTML is a
standard which is maintained by the World Wide Web Consortium (W3C).

An HTML document is a text file containing so-called tags. These tags are used
for embracing pieces of text which gives the text a special meaning. The syntax
of an opening tag is <identifier>. Its corresponding closing tag is denoted by
</identifier>. The opening tag can be extended with so-called attributes, speci-
fying properties of the tag. For example <table width="50%"> specifies that a table
is opened having a width of 50% of the document it is contained in. Tags can be
nested, result in in a completely structured document. A small example of an HTML
document together with its representation is given in Figure 11.1.

Adapting Styles

By using attributes of tags, we are able to adjust styles of the text, as shown in the ex-
ample in Figure 11.1. We used the attribute center to centre the header text. Plenty
more style elements can be set, e.g., fonts, colours, margins and other aspects of a
hypertext document, without having to change its structure. These visual design is-
sues can be addressed separately from the logical structure using so-called Cascading
Style Sheets (CSS). In this way it is easier to give a set of related hypertext documents
a similar look and feel. By putting the style in a separate document, adapting the
style can take place in a central place. The style sheet to be used is referred to in the
header of the hypertext document using the <link> tag. An example of a style that
adapts all texts in the body part of a document is given below.

body {

font-family: Helvetica;

font-size: 10pt;

font-style: normal;

text-align: justify;

margin: 5px;

}

The font is set to Helvetica, with a size of 10 points and normal thickness. Text is
justified with a margin of 5 pixels. If this style is attached to a hypertext document,
the body is adapted so that this style is used. An overview of what can be modified
using style sheets can be found at [WLB99].

184 Generation of Internet Applications 11

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>

<title>Example HTML Specification</title>
</head>
<body>

<h1 align="center">This is an example</h1>
<p>

This is an example of an HTML specification.
The header above is centred. The table below,
with a width of 60% of the body’s width, has
three rows and two columns.

</p>
<table width="60%">

<tr>
<th>First column header</th>
<th>Second column header</th>

</tr>
<tr>

<td>Text in field one</td>
<td>Text in field two</td>

</tr>
<tr>

<td>Text in field three</td>
<td>Text in field four</td>

</tr>
</table>
<p>

The following link leads to the W3C
home page:

World Wide Web Consortium

</p>
</body>

</html>

This is an example

This is an example of an HTML
specification. The header above is
centred. The table below, with a width
of 60% of the body’s width, has three
rows and two columns.

First
column
header

Second
column
header

Text in Text in
field one field two
Text in Text in
field three field four

The following link leads to the W3C
home page:
World Wide Web Consortium

Figure 11.1: Example of an HTML document.

Since we are not concerned with representation but only with logic, this is a very
useful feature, as the application can generate output to which a style can be attached
at a later stage. This ensures that the application does not need to be concerned with
the representation at all.

11.1.2 Adding Input Parameters to Hypertexts

Up till now we only looked at fixed elements in HTML documents. However, the
interaction primitives introduced in Section 4.3 and Chapter 7 contain both input and
output parameters for the communication of data between the application and its
users. In this section, we explain how input parameters can be added to hypertexts,
such that they can be used to collect data from clients. In the next section, we look at

11.1 Programming Internet Applications 185

a way of adding output parameters.

Apart from tags for adding layout and links to other documents, tags are available
for adding forms containing interactive elements. These elements can be used for
inquiring information from interacting users. A form can be added to an HTML
document by using the <form> tag. The tag can be extended with several attributes,
among which the most important one is the action attribute. The action specifies
what should be done when the form is submitted, i.e., what should be done with the
information provided by the user.

Between the opening and closing tag of a form, input fields of different types can be
added using several tags, like <input>, <select> and <textarea>. We summarise
the possible elements here in short, together with some HTML examples.

Single-line input fields This type of input is used for the collection of pieces of sim-
ple text, like a name, an address or a telephone number. An initial value can be
provided.

Address: <input type="text" name="address" value="">

The example specifies a text field (preceded by the text “Address:”) with the
empty string as initial value. Note that no closing tag is needed.

Multi-line input fields If more information should be filled in in one text field, a
multi-line field can be used. A multi-line input field is called a text area.

<textarea name="remark">Type your remarks here</textarea>

The example specifies a multi-line text field with the string “Type your remark
here” as initial value.

Radio buttons If the user is asked to choose one item from a limited number of
elements, radio buttons can be used. Radio buttons with the same name are
grouped and only one of them can be chosen.

<input type="radio" name="sex" value="male"> Male

<input type="radio" name="sex" value="female"> Female

This example shows two radio buttons from which only one can be selected.
The first button is followed by the text “Male”, the second one by “Female”.

Checkboxes A checkbox gives the user the possibility to select one or more options
of a limited number of choices.

186 Generation of Internet Applications 11

Hobbies:

<input type="checkbox" name="read"> Reading books

<input type="checkbox" name="play"> Playing games

<input type="checkbox" name="chat"> Chatting

The user can check zero or more of the hobbies.
Menus and lists Apart from radio buttons and checkboxes it might be preferable to

use a pull-down menu or a list. A pull-down menu takes less space than radio
buttons since only the selected item is visible. Lists can be useful if multiple el-
ements might be selected. Using the size attribute, the number of concurrently
shown elements can be set.

Sex:

<select name="sex">

<option value="male">Male</option>

<option value="female">Female</option>

</select>

This example specifies a pull-down menu where the choice for male or female
can be made.

Hobbies:

<select name="hobby" size="3" multiple>

<option value="read">Reading books</option>

<option value="play">Playing games</option>

<option value="chat">Chatting</option>

</select>

This second example shows a list with three elements from which zero or more
can be selected.

Buttons Buttons can be added, which can be pressed. This may cause the form to
be e.g., submitted or cleared.

<input type="submit" value="Submit form">

<input type="reset" value="Clear form">

The example shows how a submit button with the text “Submit form” and a
reset button with the text “Clear form” can be added to a form.

Apart from the examples given above, more interactive elements can be included like
password fields, images, etcetera. So by adding forms containing input elements to
a hypertext, input parameters of the interaction can be implemented.

11.1 Programming Internet Applications 187

Client-Side Scripting Languages

We developed DiCons from the point of view that clients have no ability to do cal-
culations, so we put all logic in the application on the server side. However, Web
browsers become more and more complex applications and most Web applications
make use of client-side scripting. Therefore, we discuss this scripting technique here
in short, and show how we can make use of it in generating DiCons specifications.

With client-side scripts one has the ability to run programs, catch events, etc. with-
out having to communicate with the server. Scripting languages can be directly
embedded into a hypertext document. These elements can e.g. respond to user ac-
tions like clicking a button or they can generate dynamic documents where content
and/or presentation changes. Furthermore, external programs exist which are ex-
ecuted from within a hypertext document. Such programs, e.g. applets, ActiveX-
components and Flash movies, are applications which run inside a Web browser. We
give a short overview of client-side scripting languages.

ECMAScript [Eur99] Nowadays, the Web’s only standard scripting language is EC-
MAScript, whose name comes from the European Computer Manufacturers
Association (ECMA). The ECMA is an international, Europe-based industry
association dedicated to the standardisation of information and communica-
tion systems. The first scripting language to fully conform to ECMAScript is
Microsoft JScript. Except for JScript two other major scripting languages are
VBScript and JavaScript.

Microsoft JScript [Rog01] JScript is an object-based, loosely typed language. This
means that data types of variables do not have to be declared explicitly. It is
Microsoft’s variant of JavaScript. Therefore, it is not a cut-down version of any
other existing language. JScript is a pure interpreter that processes source code
that is directly embedded in hypertext documents. JScript communicates with
host applications using ActiveX Scripting.

Microsoft Visual Basic Scripting Edition [LCP03] Microsoft Visual Basic Scripting
Edition, VBScript in short, is a subset of the Microsoft Visual Basic program-
ming language. It can be used in Web browsers and other applications that
use Microsoft ActiveX Controls. VBScript also communicates with host appli-
cations using ActiveX Scripting.

JavaScript [Fla98] JavaScript is the most used scripting language. JavaScript is not
Java! JavaScript is a scripting language developed by Netscape for use within
HTML documents. Java on the other hand, is an object-oriented programming
language developed by Sun Microsystems that can be used to create (stand-
alone) applications. A Java-enabled browser is not automatically a JavaScript-
enabled browser, and vice versa, since the two technologies require entirely

188 Generation of Internet Applications 11

JavaScript Java
Interpreted (not compiled) by client. Execution via compiled byte-codes.
Object-based. No distinction between
types of objects. Inheritance is through
the prototype mechanism and proper-
ties and methods can be added to any
object dynamically.

Object-oriented. Objects are divided
into classes and instances with all
inheritance through the class hierar-
chy. Classes and instances cannot have
properties or methods added dynami-
cally.

Variable data types not declared (loose
typing).

Variable data types must be declared
(strong typing).

Dynamic binding. Object references
are checked at runtime.

Static binding. Object references must
exist at compile-time.

source: JavaScript Guide, Netscape Communications Corporation, 1997.

Table 11.1: JavaScript compared to Java.

separate interpreters. In Table 11.1 an overview of the main differences be-
tween Java and JavaScript is given.

With respect to DiCons we can use scripting languages for client-side checking of
constraints on data which has to be filled out in Web forms. To give an example,
suppose that a client has to fill in a Dutch zip code (such as 5600 MB). Then, the
syntax of the zip code can be checked client-side before it is sent to the server. This
can be done as follows:

<script language="JavaScript">

function check() {

var zipcode = document.getElementById("zipcode").value;

if (zipcode != null && /[1-9][0-9]{3} ?[a-zA-Z]{2}/.test(zipcode)) {

return true;

} else {

alert("This zip code is not correct.");

return false;

}

}

</script>

<form onSubmit="return check();">

Zip code: <input type="text" id="zipcode">

<input type="submit" value="Submit">

</form>

We define a function in JavaScript specifying that the zip code filled in in the text
field should conform to the regular expression representing a Dutch zip code: four

11.1 Programming Internet Applications 189

digits of which the first one should not be a 0, possibly followed by a space and
ended by two letters. On submission of the form, this function is executed. If the zip
code is wrong, an alert is shown with the text “This zip code is not correct”. If the
function returns true, the form is submitted, otherwise, the submission is cancelled.

Using client-side checks reduces the number of interactions. However, not all clients
have the possibility to execute client-side code, and there is always a possibility to
disable the client-side scripting feature of a Web browser. Therefore, a server-side
check for correctness of the values received is always needed.

To conclude, using forms with input fields, we have a mechanism for implementing
the input parameters of DiCons interactions. Next, we have a look at how output
parameters can be implemented.

11.1.3 Adding Output Parameters to Hypertexts

Where the input parameters can be presented by elements in the hypertext docu-
ments, output parameters should be evaluated and their value should be sent to the
client, as is specified in the operational semantics in Table 9.6 on page 124. This asks
for a server-side pre-processor, making the hypertexts dynamic. Several techniques
and specification languages are available for doing this pre-processing. We discuss
some of them in short.

Common Gateway Interface [RC04] A Common Gateway Interface (CGI) script is a
program that is stored on a Web server and executed on the Web server in
response to a request from a user. A CGI script file is written in a programming
language which can be either compiled to run on the server or interpreted by
an interpreter on the server. Examples of languages used to write CGI scripts
are C, C++ and Perl. Each time a CGI script is requested, the server must create
a new process, run the script and terminate the (just created) process. So, like
HTTP, CGI scripts are both connection-less and stateless.

ColdFusion [Mac05] Macromedia’s ColdFusion is a cross-platform Web application
server. It provides a platform for building and deploying Web systems that
integrate browser, server, and database technologies. Database access takes
place with ColdFusion templates. Such templates look like normal HTML doc-
uments. By using special tags, a template sends an SQL1 query to a database
and the result is sent to the user.

Active Server Pages [Mic05] Active Server Pages (ASP) is a language-independent
framework designed by Microsoft for efficient coding of server-side scripts that
are designed to be executed by a Web server in response to a user’s request for

1Structured Query Language (SQL) query, allows users to access data in a relational database.

190 Generation of Internet Applications 11

a URL. ASP is actually an ActiveX Scripting Host and can, therefore, be written
in JScript or in VBScript. ASP makes accessing databases easier using ActiveX
Data Objects (ADO), which allows easy access to any ODBC2 compliant data
source. ASP can be seen as Microsoft’s variant of ColdFusion.

PHP: Hypertext Preprocessor [PHP05] PHP can be compared with ASP, using a Perl-
like language as its server-side scripting language. PHP is mostly used on
Linux/Apache and is the open source alternative to ASP.

Servlets and Java Server Pages [SUN05a, SUN05c] Java servlets are server-side Java
applications that can be compared with CGI scripts. Main difference is that
servlets do not run a separate process for every single request. A servlet stays
in memory between requests where CGI scripts need to be loaded and started
every time a request is placed. A servlet can handle client-side HTTP requests.
Such a request can e.g. be posting a Web form or getting an HTML page.
A servlet has an internal state. This state can be used to respond in different
ways to one and the same HTTP request. In such a way an application can
be executed sequentially. If, e.g., the initialisation phase of an application has
ended, the servlet might respond by sending a Web page to the initiator in
which it thanks the initiator for initialising the application.
Since servlets are Java classes, database access can be added using JDBC3.
A JSP page [SUN05c] is a hypertext containing Java code. When a JSP docu-
ment is accessed for the first time via a Web browser, the document is trans-
formed into a servlet which subsequently is executed. So JSPs can be consid-
ered servlets.

Since one servlet can be used for the handling of several requests, we focus on
servlets in the remainder of this chapter. As mentioned, we aim at compiling a com-
plete DiCons specification into a running application, which can be done by turning
it into a servlet.

We give some examples of how output parameters can be added to hypertexts using
JSP documents (i.e. servlets) as a basis. Output parameters should be evaluated and
their values should be inserted somewhere in the hypertext which is sent to the in-
teracting client. A JSP document actually is an hypertext document containing tags
with Java code in it. This Java code can, amongst other things, write data to the
hypertext document. We show how this can be done by means of an example.

Let (name 7→ “Harm” : String) be a valuation in the state of the application. If we
want to send a hypertext document containing the text “Hello Harm” to the client,

2Open Database Connectivity (ODBC) is a widely accepted application programming interface (API) for
database access.

3Java Database Connectivity (JDBC) is the Java counterpart of ODBC.

11.1 Programming Internet Applications 191

this can be done using the following code:

Hello <%=name%>

In the example in Figure 9.1 on page 137 the voters can select a candidate from a
group of candidates. This combines an input parameter with an output parameter.
So we need to add a form element based on an output parameter. This example
specifies a pull-down menu which is filled with the list of candidates:

<select name="candidate">

<% for (int i=0; i<Candidates.length; i++) { %>

<option><%=Candidates[i]%></option>

<% } %>

</select>

A pull-down menu named “candidate” is specified using the select tag. The op-
tions, i.e. the possible candidates, are added using a for loop. The <%..%> tag can
be used for inserting arbitrary Java code, so the opening brace { can be in a differ-
ent tag than its corresponding closing brace }. The code above is compiled into the
following code when the JSP document is transformed into a servlet:

out.write("<select name=\"candidate\">\r\n");

for (int i=0; i<Candidates.length; i++) {

out.write("<option>");

out.write(Candidates[i]);

out.write("</option>\r\n");

}

out.write("</select>\r\n");

As can be easily seen, a JSP document is much more readable and thus more suitable
for specifying documents than Java (servlet) code.

Now that we have an idea of how both input and output parameters can be added to
hypertext documents, we have a look at how these documents can be sent to clients
and how values of input parameters can be sent from clients to the server.

11.1.4 Communicating Hypertext Documents

It is not our goal to give a complete outline containing all possible technologies avail-
able. The techniques that are described here serve as a base for the introduction of
the current Internet application communication. We do not take into account the

192 Generation of Internet Applications 11

lower layers of the TCP/IP model [Bra89], but only focus on those parts that de-
velopers are concerned with when developing the specifications we focus on in this
thesis, i.e., the application layer.

As mentioned before, the communication we focus on depends on the HTTP proto-
col. In Section 3.2 we introduced the Hypertext Transfer Protocol.

HTTP [FGM+99] is connection-less, meaning that a client opens a connection, sends
a request, receives a response and closes the connection. Furthermore, HTTP is state-
less, which means that it has no memory of former connections and cannot distin-
guish one client’s request from the other. This is a problem when specifying sessions
with a user, since we need to interconnect the responses and the requests follow-
ing on that response as explained in Section 4.3 where we introduce the interaction
primitives. This connection can be made by adding one or more parameters to the
requests containing session identifiers. This adding of parameters can be done using
two different request methods, viz. by attaching it to the uniform resource locator
(URL) encoding the request (the GET method), or by adding it to the body of the
request (the POST method). To give a more detailed explanation of this, we first
introduce the format of a URL and the GET and POST methods of HTTP requests.

Uniform Resource Locators

All documents that are available on the Internet, like hypertexts but also images and
e.g. PDF documents, can be uniquely located using a so-called Uniform Resource
Locator [BMM94]. The (simplified) syntax for a URL that can be accessed using the
HTTP protocol is given below.

http://host[:port]/[path/]resource_name[#section][?query_string]

The host name points to (a part of) a server connected to the Internet. Connection
to a server takes place via a port. For HTTP, port 80 is reserved. If a non-standard
port is used, an additional port number can be attached. A specific resource name
(possibly preceded by a path) can be accessed. Such a resource can, among other
things, be a hypertext document or a servlet. If a resource contains different anchors,
one can immediately jump to an anchored part of the resource by using the # sign
followed by the anchor name. An example of such a URL is given below.

http://www.win.tue.nl/ipa/archive/springdays2001/Abstracts.html#vanbeek

This URL leads to the abstracts in the archive of the IPA Spring Days 2001. It is lo-
cated at the server named www.win.tue.nl and we directly go to the abstract labelled

11.1 Programming Internet Applications 193

vanbeek.

An important part of the URL is the query string. By using this string one can pass
parameters to the resource. Such parameter can be added to the URL by typing
them directly in a browser’s address field. Another way for adding parameters is
by using HTML forms. Using these forms one can type the parameters into a text
field as described above and subsequently send them to the server by clicking on a
submit button. An example of such a URL is given below.

http://www.google.com/search?q=DiCons

This URL leads to the result page of a search for the word “DiCons” using the
Google search engine. After sending this request, the resource search on server
www.google.com processes this request, evaluating variable q to DiCons.

The query string can also be used for user authentication. E.g., a user can send a
unique identifier as query part of the URL. In the same way, sessions can be imple-
mented. A user can add a unique identifier to several requests which indicates that
these requests form a session.

The HTTP Request Methods

According to the standard [FGM+99], eight HTTP request methods are available:
OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE and CONNECT. However,
when implementing Internet applications, we are mostly concerned with only the
GET and POST methods. Therefore, we have a closer look at these two.

GET method Using a GET method, all information is encoded in the request URL.
Parameters can be attached to the request using the query string as explained
above. The query string encodes pairs of identifiers and values, coupling them
using the equals sign (=). The pairs of identifiers and values are composed
into a query string using the ampersand sign (&). Since in this way several
characters (e.g., =, & and spaces) cannot be used in the values, the query string
is encoded using two-digit hexadecimal representation (case-insensitive) of the
ISO-Latin code for special characters. So, e.g., the request

GET /resource?name=Harm%20van%20Beek&email=harm@win.tue.nl HTTP/1.1

is a GET request (from a client using HTTP version 1.1) for a resource contain-
ing the query string encoding two valuations, viz.

name 7→ “Harm van Beek” : String and
email 7→ “harm@win.tue.nl” : String .

194 Generation of Internet Applications 11

POST method If large pieces of text or binary data need to be included in a request,
using query strings is not sufficient. In that case, the data to be sent is put in
the requests’ body using the POST method. The query string above can be put
directly in the request body, resulting in the following POST request:

POST /resource HTTP/1.1

Content-Length: 44

name=Harm%20van%20Beek&email=harm@win.tue.nl

In the next section, we explain how requests and responses can be combined into
sessions.

Clustering Interactions in Sessions

The problem with implementing sessions is that HTTP is both a connection-less and
stateless protocol. In this section, we present a simple but very useful technique for
adding states to HTTP. Our goal is to cluster subsequent requests and responses into
sessions as explained in Section 4.3 and Chapter 7. This can be done by parame-
terising requests with a unique session label. At the moment that a first request is
sent to the application, a unique session label is constructed. This label is added to
all responses and all forms and links in the responses are extended with the session
label. In this way, all subsequent requests contain this unique label and can therefore
be identified as requests in the session. So how can this label be added to links and
forms?

The first method for implementing this is putting the session label in the request
string of all links, coupling it to a unique identifier, e.g. sessionid. We then get
links of the form:

http://www.example.com/resource?sessionid=6861726D4077696E

If we use forms, we can add the session label to a hidden field which is added to
the URL when submitted in case of a GET method, or put in the request body when
using the POST method. The method can be defined as an attribute of the <form>

tag:

<form method="POST" action="resource">

<input type="hidden" name="sessionid" value="6861726D4077696E">

...

</form>

11.2 Generating Executable Code 195

In this way, the session label is not visible to the client.

A second method for coupling subsequent requests is by setting a so-called cookie
as soon as the first response is sent. A cookie is a piece of data, e.g. a session label,
which is sent to a Web browser by a Web server. The browser stores the data in a
text file. Then, this data is included in each request that is sent by the browser to
the server. Advantage of using cookies is that they have to be set only once and
thus the session label does not have to be attached to each link and in each form.
Disadvantage is that users can disable cookies, not allowing servers to set them.

It is possible to tell the browser what will be done with the cookie so that, e.g., cook-
ies for session managements can be allowed and cookies storing personal informa-
tion can be denied. For this purpose the Platform for Privacy Preferences is initiated
by the World Wide Web Consortium. They provide a standard, The Platform for Pri-
vacy Preferences 1.0 Specification [CLM+02], in which it is specified how to express
the privacy practices of an Internet application. This means that it can be specified
what data of a user is collected and how this data is used. If in this policy it is stated
that data is only used for session management, cookies can be accepted. More in-
formation on how to communicate the privacy practices and policies, for example
using HTTP headers, can be found in [CLM+02].

11.2 Generating Executable Code

Now that we have an idea of what hypertext documents look like and how they are
used for communication, we have a closer look at the different aspects of a DiCons
specification. We show in short how they can be implemented using the Java servlet
technology [SUN05a]. As mentioned, a servlet can be seen as a Java object, which
implements a (part of a) Web service. The interface of a servlet contains amongst
other methods the service method, which is extended with two parameters, viz. the
request and the response. Each time that a request is sent to a servlet, this method
is called. The complete interface of a servlet can be found in the Servlet Application
Programming Interface (API) specification which is available at [SUN05a]. The re-
quest parameter is a Java object which wraps the actual HTTP request. It has several
methods for e.g. getting the HTTP headers, information on the path, names and val-
ues of parameters added in the query string, and session information. The response
parameter is an object which wraps the response to be sent to the requesting client.
This parameter is an output parameter which has several methods for setting infor-
mation on the response, for example headers can be added, data can be attached to
the body of the response, and cookies can be included. Each instance of a servlet can
process multiple requests in parallel as long as the instance exists.

In Section 11.2.1 we handle the compiling of the actions in a DiCons specification, i.e.,

196 Generation of Internet Applications 11

the elements of the alphabet. Next, is Section 11.2.2 we discuss how the operators
can be compiled into a Java implementation.

11.2.1 Alphabet

The actions contained in the alphabet are internal actions (which can be of any form)
and the communication primitives.

Internal Actions

In Section 9.2 we stated that an internal action can be any action, from simple, self-
explaining to very complex. Furthermore, we did not put any restrictions on the
types of variables and thus on result types and types of the arguments of functions.
If we compile specifications into Java servlets, the easiest way for implementing in-
ternal actions is by defining a Java function for each of them and by calling them
when the action is executed.

Furthermore, we did not put any restrictions on the representation chosen for speci-
fying types and internal actions. We allow e.g. the use of notation N 7→ ∅ : P (N). The
format of types and functions has to be restricted, for example to only the use of Java
types and Java functions. In this way, we can copy them easily into the Java code
generated from the specification. Syntax errors in the internal actions will be discov-
ered when compiling the generated servlet into Java byte-code. Run-time errors in
the sources of internal actions can be detected by executing the servlet.

Tools exist for testing of pre- and postconditions and invariants of Java functions.
They can be of use if, e.g., the effect function can only be evaluated under certain
conditions. First of all, assertions can be used in Java using the assert key word.
When an assert statement is reached, its argument, which is a boolean expression,
is evaluated and should evaluate to true. If not, an exception is thrown. Using
assertions, pre- and postconditions and invariants and their evaluation can be added
to the source code. This only helps in checking the conditions at run-time. Apart
from this adding of assertions, tools exist to test code by using test suites dedicated
to testing the specific functions. An example of such a tool is JUnit [Obj05].

Communication Primitives

The active server push interaction, the sending of an e-mail, can be easily imple-
mented using one of the available e-mail implementations in Java.

On the contrary, the implementation of the other communication primitives is not
as straightforward. Main issue is that servlets (like all Web services) are request/re-

11.2 Generating Executable Code 197

sponse based: The servlet is waiting for a request to come in after which it is pro-
cessed and the corresponding (calculated) response is sent back. Since the specifi-
cation is a sequential program, this sequence should be turned into an event-driven
servlet implementation. This can be done by keeping track of the location and the
state “the application is in” at the moment that a request is received. If this request
is expected, the application continues by returning the response.

The event-driven implementation causes the servlet only to make progress if re-
quests are sent. Therefore, several threads should be used. A thread is a single
sequential flow of control within a program. A thread executing the sequential ap-
plication is started and as soon as a request is expected, the thread waits for this
request to take place. Since many requests can take place in parallel, synchronisa-
tion of the threads is important.

Implementation of the communication primitives is done by using their internal
structure: the primitives consist of alternating requests and responses. By turning
the sequence of interactions and local actions into a sequence of requests, responses
and local actions, we are able to keep track of the state at a lower level.

As explained, a servlet uses the service method which has a (wrapped) request and
response as its parameters, coupling the response to the request. The communication
primitives we make use of can be implemented using this service method. A reactive
server push, the simple providing of a plain Web page, can be implemented by a
single service call. Sessions are implemented by a sequence of service calls. Internal
actions contained in a session are executed by calling the function implementing the
internal action from within the service method.

11.2.2 Operators

In this section we have a closer look at how the operators can be implemented.

A Java program specifies a sequentially executable process where the actions are sep-
arated using semicolons, so the sequential composition, putting actions in sequence,
is implemented using the semicolon. For example, we implement x · y as follows:

x ; y

We already explained that conditional branching can be compared with an if-state-
ment which is available in Java. So, e.g, x / b . y is implemented as follows:

198 Generation of Internet Applications 11

if (b) {

x

} else {

y

}

In x / b . y, evaluation of boolean expression b is not a step, in contrast to execution of
the if(b){x}else{y} statement in Java. Since extra states (after evaluation of guard
b but before execution of the first action of x or y) are added, this might influence
possible deadlock situations.

The conditional repetition can be implemented using a while in Java. Thus, b .. x is
implemented by the following statement:

while (b) {

x

}

Again, this implementation introduces extra states between evaluation of the guard
and execution of the first action from the conditionally executed process.

Conditional Disrupts

To implement the conditional disrupt, we can make use of a separate thread, running
it in parallel to the process which is conditionally executed. At the moment that the
condition holds, the process is stopped.

Alternatively, using the assert key word, we can add assertions to the specification.
This is explained in Section 11.2.1 on page 196. Advantage of using assertions is that
we do not have to implement and execute separate threads. Disadvantage is that the
statement has to be put in between all actions in the process which is conditionally
executed. Therefore, thread implementation is preferred.

Scope Operator

The scope operator as introduced in Section 6.3 can be implemented in Java using
curly braces. So, e.g., [n 7→ 0 : N |n := n + 1 ·n := n × 2] can be implemented as
follows:

{ int n = 0; n := n + 1; n := n * 2; }

11.2 Generating Executable Code 199

However, if the scope contains interactions or even multiple sessions it becomes
more complex. Since the implementation is not a sequential program but an event-
driven program, scoping must be implemented by maintaining a context for each
session in which interaction with the application takes place. The variables in the
context have different scopes, like application-scope and session-scope. In Java,
these contexts are available. Java Server Pages for example also use these context
objects for implementing scope.

Access Control

In Section 7.3 we introduced access control. We identified three types of access con-
trol, viz. anonymous interaction, identification and registration. The last two occur
in two shapes, viz. using the bang operator and the generalised parallel composition
operator.

Both users and groups can be implemented by objects of specific classes. The class
specifying a group is extended with several methods for adding users, removing
users, and checking if a user is a member.

The groups used as a basis for the identification and registration can be implemented
by sets of objects representing the users. Depending on the information and iden-
tification method, a user has several properties, like a name, a password, an object
representing a fingerprint, etcetera. The implementation uses the properties for the
generation of forms for identification and registration.

For the implementation of anonymous sessions, no registration step needs to be
added at all. As a result, the application does not know who the interacting client is.

Transactions

In Java, several techniques exist for the synchronisation of pieces of code with respect
to variable access and updates. First of all, the synchronized key word can be used
for synchronising execution of functions: only one instance of the function can be
executed at a certain time. Apart from that, the synchronized statement can be
used, which synchronises access to specific variables. Have a look at the following
two pieces of Java code:

synchronized (a) {

a := 1;

a := a * 2;

}

synchronized (a) {

a := 0;

a := a + 2;

}

200 Generation of Internet Applications 11

If we execute the code in parallel, all actions which access variable a are synchro-
nised. So, the state after execution of both pieces of code in parallel results in variable
a evaluating to 2. Using the synchronized key word results in a locking mechanism
that can be compared with third degree isolation (see Table 8.7 on page 112): vari-
ables are also locked when read.

For implementing transactional behaviour in Java, an interface is available: the Java
Transaction API (JTA) [SUN05b]. The Java Transaction Service (JTS) [Che99] is an
implementation of a transaction manager that supports the Java Transaction API. A
transaction manager can be used in Java programs for the implementation of trans-
actions with lower than third degree of isolation.

11.3 Implementing the Compiler

To compile our specified application into a running Internet application we need a
parser to parse the specification. To implement a parser we can choose e.g. for using
the Java parser generator Java Compiler Compiler (JavaCC) [VS+03]. This choice is
preferred because we are specifying an Internet application and Java is the Internet
specification language par excellence. JavaCC is a parser generator that produces
parsers in Java from grammar specifications written in a lex/yacc-like manner. More
information on JavaCC can be found at [VS+03].

JavaCC is both a lexical analyser and a grammar parser. First, all terminals like
key words, predefined object and special characters are defined. Furthermore one
can define which characters to skip—end of line, spaces, tabs—and how comments
can be inserted. After specifying the lexical analyser the grammar specification is
defined. Each non-terminal is specified by a Java method.

Using JavaCC, we are able to build a compiler for compiling a DiCons specification
into a piece of Java code specifying a servlet class. Of course, an ASCII-like version
of the specification language is needed, such that the Java Compiler Compiler can
parse it. This generated servlet class can subsequently be compiled into Java byte-
code, which can be executed by a Web server.

11.4 Future Work

In [Bee00] we present the implementation of a compiler based on the first version of
DiCons. The specifications that can be compiled using that compiler contain amongst
other things the internal actions, specified as Java functions, the communication
primitives as explained in Chapter 7 and deadlines, which can be compared with
conditional disrupts having a condition of the form deadline < now . This compiler

11.4 Future Work 201

WEB FORM ::= ‘{’ · title · ‘:’ ·SPECS ·body · ‘:’ ·SPECS · ‘}’
E MAIL ::= ‘{’ · from · ‘:’ ·SPECS · to · ‘:’ ·SPECS ·

subject · ‘:’ ·SPECS · contents · ‘:’ ·SPECS · ‘}’
SPECS ::= (SPEC · ‘;’)+
SPEC ::= text · ‘:’ ·TEXT

| (input | textarea) · ‘:’ ·VARIABLE ·
[default · (TEXT |VARIABLE)] ·
[check ·TEXT ·else ·TEXT]
|output · ‘:’ · (VARIABLE |URL)
| (select | submit | radiobutton) · ‘:’ ·
VARIABLE · ‘=’ · (‘(’ ·TEXTLIST · ‘)’ |VAR NAME)
| checklist · ‘:’ ·VARIABLE

TEXT ::= ‘”’ · (ANYCHAR)∗ · ‘”’
ANYCHAR ::= {any character except ‘”’}
VARIABLE ::= VAR NAME · (‘.’ ·VARIABLE)∗
VAR NAME ::= IDENTIFIER
IDENTIFIER::= CHAR · (CHAR |DIGIT | ‘ ’)∗
CHAR ::= ‘a’ | ‘b’ | . . . | ‘z’ | ‘A’ | ‘B’ | . . . | ‘Z’
DIGIT ::= ‘0’ | ‘1’ | . . . | ‘9’
TEXTLIST ::= TEXT · (‘,’ ·TEXT)+

Table 11.2: Syntax specification of the interaction primitives.

served as a proof of concept in the early stage of our research.

By implementing the compiler, we encountered several issues which had to be taken
into account. In this section we discuss these issues in short and give suggestions on
how they can be tackled.

11.4.1 Using XML

First of all, we use HTML to make up the documents. These hypertexts have useful
properties like the possibility for easily specifying Web forms. However, by using
HMTL, we restrict ourselves to one interface, viz. Web browsers, where other inter-
faces and devices like WAP on a mobile phone, could also be used for interacting.
We conclude that the Extensible Markup Language (XML) [YBP+04] serves better for
both specifying and implementing the Web pages and forms that are communicated.

In the experiment in [Bee00] we used an ad hoc syntax for specifying presentations
of interactions of which the BNF notation is given in Table 11.2.

202 Generation of Internet Applications 11

This BNF specification shows that we can define two different interactions, viz. Web
forms and e-mails. A Web form consists of a title and a body where an e-mail consists
of a sender (from), a receiver (to), a subject and a body. All these elements them-
selves are specified using pieces of plain text, input fields and values of (output)
variables. Depending on the part and type of an interaction, certain specifications
are not allowed. E.g. one cannot add an input field to the subject field of an e-mail.
For defining these constraints we have a set of static rules which must be answered
by the specification.

In [Bee00, BBM01c] we gave some specifications of DiCons applications. To give an
idea of what such an interaction looks like we give a small example. Note that the
BNF given in Table 11.2 only specifies the part on representation of the interaction.

session of Initiator→ add voter(out I: Initiator, in v: Voter, in s: String) =
{title:

text: ”Internet Vote”;
body:

text: ”Hello”;
output: I.name;
text: ”Insert voter:”;
text: ”name: ”;
input: v.name

check ”/\S/”
else ”Fill out a name, please”;

text: ”email: ”;
input: v.email

check ”/^\w+((-\w+)|(\.\w+))*\@\w+((\.|-)\w+)*\.\w+$/”
else ”Incorrect email address.”;

text: ”Add more voters?”;
submit: s from (”yes”, ”no”);

};

As can be seen from the example and the BNF specification the experiment was
feasible for a restricted setting for the communication, viz. Web forms and e-mails
only. However, it is preferred to specify interactions in a more general and protocol
independent way. So we do not want to make a separation between e-mails and
Web forms. Depending on the device or tool used for interacting with a DiCons
application, the corresponding representation should be used.

Furthermore, restricting to predefined input types like ‘input’, ‘select’ and ‘check-
box’ is not preferred. The syntax of interaction specifications should be outside the
DiCons syntax to make it easier to adapt DiCons to future extensions on tools and
techniques. To achieve this, a choice for using XML [YBP+04] can be made. XML

11.4 Future Work 203

makes it possible to write (human-readable) code which can both serve as specifica-
tion language for the interactions and output format for a DiCons program. We give
a short introduction to XML, mostly based on the technical introduction to XML by
Walsh [Wal98].

XML [YBP+04], developed by the World Wide Web Consortium (W3C), is a subset
of the Standard Generalized Markup Language (SGML), an international standard
used for defining the rules to write markup languages. One reason to prefer XML
over, e.g., HTML is to be able to separate the data from its representation. This led
to three components of XML:

1. The content;
2. The specification of the elements, the structure;
3. The specification of the visual aspects, the representation.

The content of an XML document contains one or more elements. These elements
have a type and possibly some attributes and a content. An element is written down
using HTML-like tags:

<element type name attribute name=”attribute value”>
element’s content

</element type>

By giving the structure of an XML document, the content is bound to a specific set of
elements. This structure can be given as a Document Type Definition (DTD) [YBP+04],
which can be compared with a BNF specification. A DTD contains the definition
rules of element tags. It is used to denote the elements, their attributes and the order
in which elements appear in an XML document. DTDs themselves are not extensible
and not written in XML. Furthermore, they do not specify data types which can be
very useful for a lot of applications. To add these properties to DTDs, XML Schemas
[FW04, TBMM04, BM04] are introduced.

The representation of an XML document is specified using style sheets. These style
sheets map an XML element to its representation. This representation does not nec-
essarily have to be a Web-based representation. One can use several style sheets to
transform one and the same XML document into different formats like HTML, WML
but also PDF. Style sheets can be defined using the Extensible Style sheet Language
(XSL), which itself is divided into three parts:

1. A language for referencing specific parts of an XML document (XML Path Lan-
guage – XPath);

204 Generation of Internet Applications 11

2. A language for transforming XML documents into other XML documents (XSL
Transformations – XSLT);

3. An XML vocabulary for specifying formatting semantics.

In general, XSL Transformations are used for transforming XML into e.g. HTML
for generating Web pages or WML for interaction via mobile devices using WAP.
Depending on the device accessing the XML document a corresponding transforma-
tion takes place.

For DiCons applications it is necessary to transform the XML specifications into in-
teractive representations, like Web forms. By parameterising the DiCons compiler
with a Document Type Definition, we can use one and the same compiler to gener-
ate different interaction sets.

Another advantage of using XML is that making use of multiple style sheets leads to
different representations of one and the same interaction. This leads to using XML at
the representation side of the application, i.e. after compilation of the specification.

By using XML at the specification side of the application, this XML data can be
compiled into a Document Object Model (DOM) [LLW+04] which can be used at
run-time to produce XML as output format. By looking at the syntax of the former
DiCons versions it can be easily seen that this was based on interaction using Web
forms and e-mails only. We specified the interactions using their commonly used
and well known naming schemes, viz. title and body for Web forms and from, to,
subject and contents for e-mails. However, analysing the two representations shows
that e-mails and Web forms actually contain more or less the same elements. The
subject and contents of an e-mail can be compared with the title and body of a Web
form, respectively. The ‘from’ field of an e-mail usually contains the initiator of an
application or a virtual sender having the application’s name. The sender of a Web
form can also be seen as the initiator of the application or as the application itself. So
this ‘from’ field can be omitted without losing information.

An e-mail’s ‘to’ field can be left out as well since the receiver is already known:
the interacting party should receive the message. However, by omitting this field we
make it harder to generate the XML documents used for interactions. That is because
we want to be able to use style sheets independent of the DiCons syntax. If we omit
the ‘to’ field we lose the interactor’s information since we drop the possibility for
adding a receiver to the XML document.

This observation leads to a different way of giving interactions. We generalise both
specifications of Web forms and e-mails to one basic interaction specification. By do-
ing this we can drop the technique-specific naming of different parts of interactions.
So we use one general naming scheme for both e-mails and Web forms. An overview
is shown in Table 11.3. By generalising these presentation specifications we cannot

11.4 Future Work 205

e-mail Web forms general
from (application/initiator) sender

to (interactor) receiver
subject title subject

contents body message

Table 11.3: General naming for e-mails and Web forms.

make a distinction between interactions that are allowed to have input fields or not,
i.e. we are not able to check the static demands on distinct types of interactions. So
preferably, we extend the XML part over the complete interaction specification, in-
cluding their types. We can do this by giving a Document Type Definition based on
an interaction instead of only its components.

Another observation we make is that output variables which could be included using
the ‘output’ key word actually are references to parameters of the interactions. They
are replaced by their values when interacting with a user at run-time. To correspond
with this, we introduce an XML ‘output’ element which can occur as child element
of both a subject and a message.

Furthermore, we made use of the ‘input’ key word which was used for giving spec-
ifications of Web form elements. These elements returned a value and, depending
on its type, could produce error messages. To turn this into an XML specification,
we introduce another element named ‘input’. This element can have several child
elements, depending on its type.

Note that the new DiCons compiler will be independent of the elements given above.
We will parameterise the compiler with a DTD which is used for parsing the inter-
action specifications. As a result of the former observation we can give a straightfor-
ward Document Type Definition.

A DiCons interaction has a name, a direction (push or pull) and an activity (active or
reactive). These are chosen to be attributes of the interaction since they are always
fixed. The contents of an interaction consists of four parts, viz. sender, receiver, title
and message. These elements themselves can contain several elements depending on
the type of the interaction. The base components of an interaction can be distributed
over two classes:

Plain text components can contain plain texts, which, depending on the component
it takes part in, represent a value. So, e.g. the text value

“somebody@somedomain.com”

specifies an e-mail address if it is placed in a sender or receiver element.

206 Generation of Internet Applications 11

<!ELEMENT dicons-interaction (sender, receiver, title, message)>

<!ATTLIST dicons-interaction direction (push|pull) #REQUIRED

activity (active|reactive|session) #REQUIRED>

<!ELEMENT sender (user)>

<!ELEMENT receiver (user)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT message (#PCDATA|input)+>

<!ELEMENT user (name, e-mail-address, telephonenumber, password)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT e-mail-address (#PCDATA)>

<!ELEMENT telephonenumber (#PCDATA)>

<!ELEMENT password (#PCDATA)>

<!ELEMENT input (EMPTY)>

<!ATTLIST input result CDATA #REQUIRED

type (textfield|checkbox|radiobutton|submit)

check CDATA

error CDATA>

Table 11.4: Document Type Definition of DiCons interactions.

Input elements Within the contents of interactions we can place input elements
which lead to the interaction becoming interactive. This means that users who
receive such an interaction can react on it by “filling in” the input elements.
Note that this can only take place if the direction of the interaction is pull.

By using the DTD given in Table 11.4 we can add input fields to an interaction whose
direction is a push. This is not desired. To solve this problem, we can abstract from
the direction attribute by introducing two elements dicons-interaction-push and
dicons-interaction-pull. However, in that case we can still define an active pull
interaction which is not allowed. To solve this we have to abstract from the activity

attribute as well. This leads to five elements, all defining one of the communication
primitives explained in Chapter 7. As a result of this observation it would be very
suitable if Document Type Definitions can be extended with a set of rules to which
an XML specification must answer.

In [Bee00, BBM01c] we gave some specifications of DiCons applications. An example
of the notation we made use of together with the XML notation is given in Table 11.5.

11.4 Future Work 207

session of Initiator → add voter(
out I: Initiator,
in v: Voter, in s: String) =

{title:
text: ”Internet Vote”;

body:
text: ”Hello”;
output: I.name;
text: ”Insert voter:”;
text: ”name: ”;
input: v.name

check ”/\S/”
else ”Fill in a name, please”;

text: ”email: ”;
input: v.email

check ”/^\w+((-\w+)|(\.\w+))*\
\@\w+((\.|-)\w+)*\.\w+$/”

else ”Wrong email address”;
text: ”Add more voters?”;
submit: s from (”yes”, ”no”);

};

session of Initiator → add voter(
out I: Initiator,
in v: Voter, in s: String) =

<title>Internet Vote</title>
<message>

Hello <output>this.name</output>,
Insert voter:
name:
<input type=”textfield”>
<result>v.name</result>
<check>/\S/</check>
<error>Fill in a name, please</error>
</input>
email:
<input type=”textfield”>
<result>v.email</result>
<check>/^\w+((-\w+)|(\.\w+))*\

\@\w+((\.|-)\w+)*\.\w+$/</check>
<error>Wrong email address</error>
</input>
Add more voters?
<input type=”submit”>
<result>s</result>
</input>
</message>

Table 11.5: Example of an XML DiCons interaction.

11.4.2 Adding Scope Control

As mentioned before, scope can be implemented using context objects. In the com-
piler we have currently available, all variables must be declared at one place, in the
beginning of the specification, which leads to having a fixed scope in which all vari-
ables are available. This should of course be extended to multiple scopes where,
amongst other things, session-scope variables can be declared.

11.4.3 Adding Access Control

In the compiler currently available, no predefined users can be used for interacting
with the application: all groups can only be initialised by the empty set. As a result,
the adding of users to groups has to be specified explicitly. This is done by asking
for a user’s name and e-mail address, after which a password is generated for the
specific user. Having the possibility to implement groups using e.g. a database table
would be preferable. In that way it is much easier to initialise and maintain groups.

208 Generation of Internet Applications 11

11.4.4 Adding Transactional Processes

The compiler does not implement transactional behaviour at all. As stated in Sec-
tion 11.2.2, this can be added by implementing the transactional behaviour spec-
ified in Chapter 8 in Java by using implementations of the Java Transaction API
(JTA) [SUN05b] which are publicly available, e.g. Sun’s Java Transaction Service
(JTS) [Che99].

11.5 Conclusions

Although many elements are not available in the (meanwhile outdated) compiler
built during the feasibility study, we have shown that generating running applica-
tions from formal DiCons specifications is possible using a proof-of-concept compiler.

The choice for using HTML led to a more or less fixed representation of interactions,
which is not very useful for real-life applications. As mentioned in Section 10.10,
this problem with the representation of interactions is the inverse of the problem of
matching HTTP-replies against abstract events when using the DiCons specifications
for testing.

The specifications used as a basis for the compiler can be compared with the for-
mal specifications in this thesis to a great extent. Main differences are the lack of
transactional operators, the explicit inclusion of presentations of interactions (see
e.g. Table 11.5), the use of roles instead of groups, and declarations of variables on a
fixed place instead of using a scope operator.

Choosing for Java servlets as a target interface gives many possibilities, but of course
also brings in some restrictions. The types used for variables and functions are re-
stricted to the classes defined in Java. However, using specific application program-
ming interfaces (APIs), we can extend this set of classes and implement our own data
types which can be used for giving specifications.

IV
Conclusions

12
Related Work

Closest to our work is the development of the Web-language Mawl [ABBC99, LR95].
This is also a language that supports interaction between an application and a single
user, and adds a state concept to HTML. Mawl provides the control flow of a single
session, but does not provide control flow across several sessions (the only thing that
persists across sessions are the values of global variables). This is a distinguishing
feature of DiCons: interactions involving several users are supported. On the other
hand, Mawl does allow several sessions with a single user to exist in parallel, using
an atomicity concept to execute sequences of actions as a single action.

A descendant of the Mawl project is <bigwig> [BMS02]. It inherits the concepts of
sessions and document templates. However, <bigwig> is no longer under develop-
ment and passed into JWIG [CMS03], its Java-based successor. As in our research,
the main goal of the JWIG project is to simplify development of complex Internet
applications. Like DiCons, JWIG is based on sessions, where a session consists of
a sequence of interactions between a server and a client. In DiCons we have the
possibility to interconnect sessions. JWIG allows the sharing of data between ses-
sions, but it does not provide a mechanism for the sequential composition of them.
Transactional behaviour is available using either Java’s built-in serialisation mech-
anism or serialisation based on XML representations. JWIG provides a mechanism
for sending e-mails, which can be compared with the active server push interactions
in DiCons.

A so-called embedded domain specific language (EDSL) for programming Internet
applications is WASH [Thi02] developed by Thiemann. Actually, it is a family of
languages which are all embedded in the functional language Haskell. The language
that comes closest to DiCons is WASH/CGI, which is a language for programming
server-side applications with sessions and forms. This can be compared to DiCons
sessions and forms to a great extent. E-mail interaction is not included in WASH/

212 Related Work 12

CGI.

Groupware is a technology designed to facilitate the work of groups. This technol-
ogy may be used to communicate, co-operate, co-ordinate, solve problems, compete,
or negotiate. Groupware can be divided into two main classes: asynchronous and
synchronous groupware. Synchronous groupware concerns an exchange of informa-
tion, which is transmitted and presented to the users instantaneously by using com-
puters. An example of synchronous groupware is chatting via the Internet. On the
other hand, asynchronous groupware is based on sending messages which do not
have to be read and replied to immediately. Examples of asynchronous groupware
that can be specified in DiCons are work-flow systems to route documents through
an office and group calendars for scheduling projects. More information on group-
ware can be found in [Ude99].

In the early days of the Internet, Visual Obliq [KB94] was developed, which is an
environment for designing, programming and running distributed, multi-user GUI
applications. Its interface builder outputs code in an interpreted language called
Obliq [Car94]. Unlike DiCons applications, Obliq applications do not have to run
on one single server: an application can be distributed over several so-called sites.
After setting up a connection, sites can communicate directly. In this way, an ap-
plication can be partitioned over different servers. Another difference with respect
to DiCons is that a client has to install a special interpreter to view Visual Obliq ap-
plications whereas DiCons makes use of standard client-side techniques like HTML
pages which can be viewed using a Web browser. In [BC95], embedding distributed
applications in a hypermedia setting is discussed and in particular how applications
generated in the Visual Obliq programming environment are integrated with the
World Wide Web. Here, a Web browser is used to refer to a Visual Obliq application,
but it must still be viewed using an interpreter.

Collaborative Objects Coordination Architecture (COCA) [LM98] is a generic framework
for developing collaborative systems. In COCA, participants are divided into differ-
ent roles, having different rights like in DiCons. Li, Wang and Muntz [LWM98] used
this tool to build an online auction. A COCA Virtual Machine runs at each client
site to control the interactions between the different clients. On the other hand, any
client connected to the Internet can communicate with a DiCons application without
having to reconfigure his machine.

The Describing Collaborative Work Programming Language (DCWPL) [CM96] helps pro-
grammers to develop customisable groupware applications. DCWPL does not con-
cern the computational part of an application. As in DiCons, this part is specified
in a computational language like Java, Pascal or C++. A DCWPL application also
runs on an interpreter, here called control engine. DCWPL is based on synchronous
groupware in contrast to DiCons in which the asynchronous aspect is more impor-
tant.

213

The World Wide Web Consortium defined so-called Web Services. Following their
definition [BHM+04], “a Web service is a software system designed to support in-
teroperable machine-to-machine interaction over a network. It has an interface de-
scribed in a machine-processable format (specifically WSDL). Other systems inter-
act with the Web service in a manner prescribed by its description using SOAP
messages, typically conveyed using HTTP with an XML serialisation in conjunc-
tion with other Web-related standards.” To give operational semantics of Web Ser-
vices, BPEL [ACD+03] and WS-CDL [KBR+04] are available. To describe the com-
putational logic of a single client, the Business Process Execution Language for Web
Services (BPEL) is available. BPEL is also identified as BPELWS or BPEL4WS. It
combines and replaces IBM’s WebServices Flow Language (WSFL) [Ley01] and Mi-
crosoft’s XLANG specification [Tha01]. Using BPEL, which is an XML-based lan-
guage, control-flow (including conditions, sequential composition, parallelism and
loops), observable behaviour, variables and functions, event handlers, time-out man-
agement and exception handlers can be defined. On the other hand, the Web Services
Choreography Description Language (WS-CDL) is used for the description of collab-
oration between multiple parties. It is based on a variant of π-calculus [MPW92], viz.
the Explicit Solos calculus [GLW02]. WS-CDL specifications focus on the global de-
scription of Web Services in a more general way than DiCons does. Where we focus
on distributed consensus problems, WS-CDL can be used for the specification of any
multi-party distributed Web Service. The communication takes place between par-
ties directly, instead of with a centralised DiCons application. Furthermore, where
we focus on communication with real users using a Web browser and e-mail to com-
municate, Web Services focus on communication with clients in general. Commu-
nication takes place by both the receiving and sending of XML documents using
SOAP [Mit03, GHM+03a, GHM+03b, HHK+03] in contrast to simple HTTP requests
and HTTP responses extended with input parameters.

Further, there are languages that allow to program browsing behaviour. These, for
instance, allow to program the behaviour of a user who wants to download a file
from one of several mirror sites. For so-called Service Combinators see [CD99, KM98].
A further development is the so-called ShopBot, see [DEW97].

Our implementation is based on existing Internet programming techniques, viz. Java
servlets and HTML. In Udell’s book on groupware [Ude99] an Internet vote is im-
plemented using a Java servlet. Also in [O’B99] an election servlet is presented.
Furthermore, there are many commercial voting servlets put on the market. One of
them can be found at [Col02]. To set up an Internet auction one can use commercial
software like the Auction Engine [Sit05] developed by SiteOption.

Other useful Internet programming techniques are Java Server Pages (JSP) [SUN05c],
Active Server Pages (ASP) [Mic05], ColdFusion [Mac05] and PHP Hypertext Prepro-
cessor [PHP05]. We can extend these techniques with customised tags for distributed

214 Related Work 12

consensus. However, these techniques are library-based and therefore not as suitable
for formal verification as our language-based DiCons technique.

13
Conclusions

Formal methods in combination with Internet applications are not a well-known
combination. Most Internet applications are ad hoc implementations where the code
and logic is spread over several files of several types. Therefore, it is hard to use
formal methods in this field of computer science. In this thesis we tried to make this
link by formalising the Internet communication process using process algebra.

We succeeded in defining a formalism which is suitable for specifying Internet appli-
cations for distributed consensus, i.e., applications which help several users to come
to consensus without having to meet physically.

The first thing to conclude is that nowadays most Internet applications serve more
than only the goal of reaching consensus: most applications implement complex be-
haviour of which some parts can be specified as an actual distributed consensus pro-
tocol. Therefore, only those parts of the Internet application can be specified using
DiCons. Although this is a disadvantage, it is still very useful to have a mechanism
for proving aspects of the application, for testing it or even for generating it from its
formal specification.

Since transition systems grow very large as a result of the parallel composition of
sessions, proving properties of applications can, and should be, supported using
computers instead of doing it by hand. This is a conclusion that can be drawn for
almost all process algebraic specification tools and techniques [FGR04].

When using DiCons specifications as a basis for testing, the errors found in Internet
applications highly depend on the chosen specification: applications conforming to
specifications do not necessarily have to be correct. We gave examples of errors that
could not be detected as a result of the chosen specification. As a result, if we want to
give useful specifications, we first need to determine the errors we want to be able to

216 Conclusions 13

find. Next, we need to give a specification which is suitable for testing for the errors.

In general, when implementing (and thus actually specifying) Internet applications,
one reasons from the point of view of the client interacting with it. This is caused by
the fact that requests are one-on-one connected to responses. However, by reasoning
from the point of view of the application, i.e., by interconnecting the responses to
the subsequent requests, interactions get functional behaviour: by specifying the
interactions using the communication primitives as specified in this thesis, they can
be looked at as being functions with input and output parameters.

Formalising transactions in combination with states leads to complex overhead which
is caused by the explicit locking and unlocking of actions. The semantics of transac-
tional processes highly depends on the determination of valuations that might be up-
dated by actions. In theory, this is no problem, however in practice, implementation
of a function for determining the possibly updated valuations is very hard, if not, im-
possible. Most theories make use of explicit synchronisation of shared variables. We
chose to use implicit synchronisation in DiCons, using first degree isolated transac-
tions. Adding an operator to explicitly define the variables in the state that might be
updated by an action or a transaction is possible. However, since this method leads
to a lot of specification work, we have chosen to leave this out of the specification
and use implicit synchronisation using the transactional operator which depends on
the U function for determining the possibly updated valuations.

Another major issue when using formal specifications is the matching of hypertext
documents to their abstract representations and the other way around, creating hy-
pertext documents from abstract representations. The first method is needed when
testing applications: the response received from an application should be matched
to a abstract communication action representing the response. The second method
is used when constructing hypertext documents by an application generated from a
specification.

A final conclusion we draw is that using DiCons helps in getting a better understand-
ing of what Internet applications look like, how they (should) behave, and that spec-
ifying and implementing Internet applications is not as easy and straightforward as
it looks like.

V
Appendices

A
Overview of PAtrans

In this appendix we give an overview of the axioms and deduction rules for PAtrans,
the process algebra with transactions. More detailed information can be found in
Chapter 8. First of all, we give the constants:

• A, the action alphabet, contains the set of atomic actions;
• δ, deadlock, representing unsuccessful termination;
• ε, the empty process, representing successful termination;
• UL = {UA |U ∈ {C ,R },A ⊆ A}, the set of unlock actions;
• L = {an | a ∈ A,n ∈ N}, the set of lockable actions.

For x and y processes in PAtrans, a ∈ A and A ⊆ A, the operators of PAtrans are:

• x + y, alternative composition;
• x · y, sequential composition;
• x‖ y and x T y, the parallel composition operators;
• bdxcea, the locking operator;
• bxcA, the unlocking operator;
• 〈〈x〉〉 and 〈〈x,A, y〉〉, the transactional operators.

The axiomatic semantics of PAtrans is given by the axioms in Table A.1:

A1–9 + TR1–14 + L1–7 + UL1–7 + M1–11

The operational semantics of PAtrans is given by T(PAtrans), the term deduction
system induced by deduction rules 1–36 as shown in Table A.2. In both tables,
a ranges over A∪L∪UL and a over A.

220 Overview of PAtrans A

A.1 Axioms of PAtrans

x + y = y + x A1
(x + y) + z = x + (y + z) A2
x + x = x A3
(x + y) · z = x · z + y · z A4
(x · y) · z = x · (y · z) A5

x + δ = x A6
δ · x = δ A7

x · ε = x A8
ε · x = x A9

x‖ y = x T y + y T x M1
δ T x = δ M2
εT δ = δ M3
εT ε = ε M4
εTax = δ M5
εT (x + y) = εT x + εT y M6
UAx T y = UA(x‖bycA) M7
a0x T y = a0(x‖bdycea) M8
anx T y = δ if n > 0 M9
ax T y = a(x‖ y) M10
(x + y)T z = x T z + y T z M11

bdδceb = δ L1
bdεceb = ε L2
bdUBxceb = UB · bdxceb L3
bdanxceb = an+1 · bdxceb if a = b L4
bdanxceb = an · bdxceb if a 6= b L5
bdaxceb = a · bdxceb L6
bdx + yceb = bdxceb + bdyceb L7

bδcA = δ UL1
bεcA = ε UL2
bUBxcA = UB · bxcA UL3
banxcA = an−1 · bxcA if a ∈ A∧ n > 0 UL4
banxcA = an · bxcA if a 6∈ A∨ n = 0 UL5
baxcA = a · bxcA UL6
bx + ycA = bxcA + bycA UL7

〈〈x〉〉 = 〈〈x,∅, x〉〉 TR1
〈〈x,∅, δ〉〉 = δ TR2
〈〈x,A, δ〉〉 = RA · 〈〈x〉〉 if A 6= ∅ TR3
〈〈x,∅, ε〉〉 = C∅ TR4
〈〈x,A, ε〉〉 = CA + RA · 〈〈x〉〉 if A 6= ∅ TR5
〈〈x,∅,UB y〉〉 = U∅ · 〈〈x,∅, y〉〉 TR6
〈〈x,A,UB y〉〉 = U∅ · 〈〈x,A, y〉〉+ RA · 〈〈x〉〉 if A 6= ∅ TR7
〈〈x,∅, an y〉〉 = an · 〈〈x,{a}, y〉〉 TR8
〈〈x,A, an y〉〉 = an · 〈〈x,A∪ {a}, y〉〉+ RA · 〈〈x〉〉 if a 6∈ A∧ A 6= ∅ TR9
〈〈x,A, an y〉〉 = a · 〈〈x,A, y〉〉+ RA · 〈〈x〉〉 if a ∈ A TR10
〈〈x,∅, ay〉〉 = a0 · 〈〈x,{a}, y〉〉 TR11
〈〈x,A, ay〉〉 = a0 · 〈〈x,A∪ {a}, y〉〉+ RA · 〈〈x〉〉 if a 6∈ A∧ A 6= ∅ TR12
〈〈x,A, ay〉〉 = a · 〈〈x,A, y〉〉+ RA · 〈〈x〉〉 if a ∈ A TR13
〈〈x,A, y + z〉〉 = 〈〈x,A, y〉〉+ 〈〈x,A, z〉〉 TR14

Table A.1: PAtrans: Process Algebra with Transactions.

A.2 Deduction Rules for T(PAtrans) 221

A.2 Deduction Rules for T(PAtrans)

ε ↓
1

a a
−→ ε

2
x ↓, y ↓

x · y ↓
3

x a
−→ x′

x · y a
−→ x′ · y

4
x ↓, y a

−→ y′

x · y a
−→ y′

5

x ↓

x + y ↓, y + x ↓
6

x a
−→ x′

x + y a
−→ x′, y + x a

−→ x′
7

A 6= ∅

〈〈x,A, y〉〉 RA−→〈〈x〉〉
8

x ↓

〈〈x〉〉 C∅
−→ ε

9
y ↓

〈〈x,A, y〉〉 CA−→ ε
10

x UB−→ x′

〈〈x〉〉 U∅
−→〈〈x,∅, x′〉〉

11
x an−→ x′

〈〈x〉〉 an−→〈〈x,{a}, x′〉〉
12

x a
−→ x′

〈〈x〉〉 a0−→〈〈x,{a}, x′〉〉
13

y UB−→ y′

〈〈x,A, y〉〉 U∅
−→〈〈x,A, y′〉〉

14
y an−→ y′, a 6∈ A

〈〈x,A, y〉〉 an−→〈〈x,A∪ {a}, y′〉〉
15

y an−→ y′, a ∈ A

〈〈x,A, y〉〉 a
−→〈〈x,A, y′〉〉

16
y a
−→ y′, a 6∈ A

〈〈x,A, y〉〉 a0−→〈〈x,A∪ {a}, y′〉〉
17

y a
−→ y′, a ∈ A

〈〈x,A, y〉〉 a
−→〈〈x,A, y′〉〉

18

x ↓

bdxceb ↓
19

x UA−→ x′

bdxceb
UA−→bdx′ceb

20
x an−→ x′, a 6= b

bdxceb
an−→bdx′ceb

21
x an−→ x′

bdxcea
an+1
−−→bdx′cea

22

x a
−→ x′

bdxceb
a
−→bdx′ceb

23
x ↓

bxcA ↓
24

x UB−→ x′

bxcA
UB−→bx′cA

25
x an−→ x′, (a 6∈ A∨ n = 0)

bxcA
an−→bx′cA

26

x an−→ x′, (a ∈ A∧ n > 0)

bxcA
an−1
−−→bx′cA

27
x a
−→ x′

bxcA
a
−→bx′cA

28
x ↓, y ↓

x‖ y ↓
29

x UA−→ x′

x‖ y UA−→ x′ ‖bycA, y‖ x UA−→bycA ‖ x′
30

x a0−→ x′

x‖ y a0−→ x′ ‖bdycea, y‖ x a0−→bdycea ‖ x′
31

x a
−→ x′

x‖ y a
−→ x′ ‖ y, y‖ x a

−→ y‖ x′
32

x ↓, y ↓

x T y ↓
33

x UA−→ x′

x T y UA−→ x′ ‖bycA

34

x a0−→ x′

x T y a0−→ x′ ‖bdycea

35
x a
−→ x′

x T y a
−→ x′ ‖ y

36

Table A.2: Deduction rules for T(PAtrans).

B
Proofs for PAtrans

In this appendix we prove soundness of the Process Algebra with Transactions,
PAtrans, and we prove that all terms in this process algebra can be eliminated to
a term in a BPAδε with guarded linear recursion (BPAδεrec).

B.1 Soundness of PAtrans

Theorem (Soundness of PAtrans) The set of closed PAtrans terms modulo bisimu-
lation equivalence, T(PAtrans)/-, is a model for PAtrans.

Proof We prove this theorem by proving that each axiom is sound, i.e., we prove
that for all closed instantiations of the axiom, both sides of the axiom correspond
to the same element of the bisimulation model. This proof outline is taken from
[Ver97, BV95]. For each axiom, as given in Table A.1, we take the relation which
relates each process to itself (identity) and which relates the left-hand side of the
equation to its right-hand side. So e.g. for proving axiom A1, we take relation

R = {(x, x), (x + y, y + x) | x, y closed PAtrans terms} .

Furthermore, x and y are closed PAtrans terms. We use subscript notation to indicate
the deduction rules we make use of. The deduction rules can be found in Table A.2.

Axiom A1 x + y - y + x.

• Suppose x + y ↓, then6, x ↓ or y ↓, but then also6 y + x ↓.
• Suppose x + y a−→ x′, then7 x a−→ x′ or y a−→ x′, but then also7 y + x a−→ x′ and R(x′, x′).

Using symmetry in x and y this proves x + y - y + x.

224 Proofs for PAtrans B

Axiom A2 (x + y) + z - x + (y + z).

• Suppose (x + y) + z ↓, then6, x + y ↓ or z ↓.
• If x + y ↓, then6 x ↓ or y ↓.

• If x ↓, then6 x + (y + z) ↓.
• If y ↓, then6 y + z ↓ and thus6 x + (y + z) ↓.

• If z ↓, then6 y + z ↓ and thus6 x + (y + z) ↓.
• Suppose (x + y) + z a−→ x′, then7, x + y a−→ x′ or z a−→ x′.

• if x + y a−→ x′, then7 x a−→ x′ or y a−→ x′.
• If x a−→ x′, then7 x + (y + z) a−→ x′ and R(x′, x′).
• If y a−→ x′, then7 y + z a−→ x′ and thus7 x + (y + z) a−→ x′ and R(x′, x′).

• if z a−→ x′, then7 y + z a−→ x′ and thus7 x + (y + z) a−→ x′ and R(x′, x′).

Proof for the right-hand side is analogous.

Axiom A3 x + x - x.

Left-hand side:

• Suppose x + x ↓, then6 x ↓.
• Suppose x + x a−→ x′, then7 x a−→ x′ and R(x′, x′).

Right-hand side:

• Suppose x ↓, then6 x + x ↓.
• Suppose x a−→ x′, then7 x + x a−→ x′ and R(x′, x′).

Axiom A4 (x + y) · z - x · z + y · z.

Left-hand side:

• Suppose (x + y) · z ↓, then3, x + y ↓ and z ↓, and thus6 x ↓ and z ↓ or y ↓ and z ↓.
• If x ↓ and z ↓, then3 x · z ↓ and thus6 x · z + y · z ↓.
• If y ↓ and z ↓, then3 y · z ↓ and thus6 x · z + y · z ↓.

• Suppose (x + y) · z a−→ x′, then, either4 x + y a−→ x′′ and x′
= x′′ · z, or5 x + y ↓ and

z a−→ x′.
• if x + y a−→ x′′ and x′

= x′′ · z, then7 x a−→ x′′ or y a−→ x′′.
• if x a−→ x′′, then4 x · z a−→ x′′ · z (= x′) and thus7 x · z + y · z a−→ x′ and R(x′, x′).
• if y a−→ x′′, then4 y · z a−→ x′′ · z (= x′) and thus7 x · z + y · z a−→ x′ and R(x′, x′).

• if x + y ↓ and z a−→ x′, then6 x ↓ or y ↓.
• if x ↓ and z a−→ x′, then5 x · z a−→ x′ and thus7 x · z + y · z a−→ x′ and R(x′, x′).
• if y ↓ and z a−→ x′, then5 y · z a−→ x′ and thus7 x · z + y · z a−→ x′ and R(x′, x′).

Right-hand side:

B.1 Soundness of PAtrans 225

• Suppose x · z + y · z ↓, then6, x · z ↓ or y · z ↓.
• If x · z ↓ then3 x ↓ and z ↓. Then6 x + y ↓ and thus3 (x + y) · z ↓.
• If y · z ↓ then3 y ↓ and z ↓. Then6 x + y ↓ and thus3 (x + y) · z ↓.

• Suppose x · z + y · z a−→ x′, then7 x · z a−→ x′ or y · z a−→ x′.
• if x · z a−→ x′, then either4 x a−→ x′′ and x′

= x′′ · z, or 5 x ↓ and z a−→ x′.
• if x a−→ x′′ and x′

= x′′ · z, then7 (x + y) a−→ x′′ and thus4 (x + y) · z a−→ x′′ · z (= x′)
and R(x′, x′).

• if x ↓ and z a−→ x′, then6 (x + y) ↓ and thus5 (x + y) · z a−→ x′ and R(x′, x′).
• proof for y · z a−→ x′ is analogous.

Axiom A5 (x · y) · z - x · (y · z).

Left-hand side:

• Suppose (x · y) · z ↓, then3 x · y ↓ and z ↓, and thus3 x ↓, y ↓ and z ↓. But then also3
y · z ↓ and thus3 x · (y · z) ↓.

• Suppose (x · y) · z a−→ x′, then either4 x · y a−→ x′′ and x′
= x′′ · z, or5 x · y ↓ and z a−→ x′.

• if x · y a−→ x′′ and x′
= x′′ · z, then either4 x a−→ x′′′ and x′′

= x′′′ · y, or5 x ↓ and y a−→ x′′.
• if x a−→ x′′′ and x′′

= x′′′ · y, then4 x · (y · z) a−→ x′′′ · (y · z) and x′
= (x′′′ · y) · z.

R((x′′′ · y) · z, x′′′ · (y · z)).
• if x ↓ and y a−→ x′′, then4 y · z a−→ x′′ · z (= x′) and5 x · (y · z) a−→ x′. R(x′, x′).

• if x · y ↓ and z a−→ x′, then3 x ↓ and y ↓. So5 y · z a−→ x′ and 5 x · (y · z) a−→ x′ and
R(x′, x′).

Proof for the right-hand side is analogous.

Axiom A6 x + δ - x.

Left-hand side:

• Suppose x + δ ↓, then6 x ↓ or δ ↓. Since δ ↓ does not hold, x ↓.
• Suppose x + δ a−→ x′, then7 x a−→ x′ or δ a−→ x′. Again, since δ a−→ x′ does not hold,

x a−→ x′. R(x′, x′).

Proof for the right-hand side is trivial using deduction rules 6 and 7.

Axiom A7 δ · x - δ.

Neither δ · x nor δ can terminate or do a transition.

Axiom A8 x · ε - x.

Left-hand side:

226 Proofs for PAtrans B

• Suppose x · ε ↓, then3 x ↓ (and1 ε ↓).
• Suppose x · ε a−→ x′, then either4 x a−→ x′′ and x′

= x′′ · ε or5 x ↓ and ε a−→ x′, which is
not possible. So x a−→ x′′ x′

= x′′ · ε. R(x′′ · ε, x′′).

Right-hand side:

• Suppose x ↓. Since1 ε ↓ it holds that3 x · ε ↓.
• Suppose x a−→ x′, then4 x · ε a−→ x′ · ε and R(x′ · ε, x′).

Axiom A9 ε · x - x

Proof is similar to the proof of Axiom A8.

Axiom L1 bdδceb - δ.

Neither bdδceb nor δ can terminate or do a transition.

Axiom L2 bdεceb - ε.

Both19 bdεceb ↓ and1 ε ↓ and neither side can do a transition.

Axiom L3 bdUB · xceb - UB · bdxceb.

Since2 UB
UB−→ ε and1 ε ↓, it holds that4,5 UB · x UB−→ x. So20 bdUU · xceb

UB−→bdxceb.
Furthermore2 ,1,4,5 UB · bdxceb

UB−→bdxceb. R(bdxceb, bdxceb).

Axiom L4 bdan · xceb - analt1 · bdxceb if a = b.

Similar to the proof of Axiom L3, using rule 22 instead of rule 20.

Axiom L5 bdan · xceb - an · bdxceb if a 6= b.

Similar to the proof of Axiom L3, using rule 21 instead of rule 20.

Axiom L6 bda · xceb - a · bdxceb.

Similar to the proof of Axiom L3, using rule 23 instead of rule 20.

Axiom L7 bdx + yceb - bdxceb + bdyceb.

Left-hand side:

• Suppose bdx + yceb ↓, then19 x + y ↓ and thus6 x ↓ or y ↓.
• if x ↓, then19 bdxceb ↓ and thus6 bdxceb + bdyceb ↓.
• if y ↓, then19 bdyceb ↓ and thus6 bdxceb + bdyceb ↓.

B.1 Soundness of PAtrans 227

• Suppose bdx + yceb
UA−→ x′, then20 x + y UA−→ x′′ and x′

= bdx′′ceb. If x + y UA−→ x′′, then7
x UA−→ x′′ or y UA−→ x′′.
• if x UA−→ x′′, then20 bdxceb

UA−→bdx′′ceb (= x′) and thus6 bdxceb + bdyceb
UA−→ x′. R(x′, x′).

• if y UA−→ x′′, then20 bdyceb
UA−→bdx′′ceb (= x′) and thus6 bdxceb + bdyceb

UA−→ x′. R(x′, x′).
• Suppose bdx + yceb

an−→ x′ for a 6= b. Similar to the previous case, using rule 21 instead
of rule 20.

• Suppose bdx + yceb
an−→ x′ for a = b. Similar to the previous case, using rule 22 instead

of rule 21.
• Suppose bdx + yceb

a−→ x′. Similar to the previous case, using rule 23 instead of rule 22.

Right-hand side:

• Suppose bdxceb + bdyceb ↓, then7 bdxceb ↓ or bdyceb ↓.
• if bdxceb ↓, then19 x ↓ and thus6 x + y ↓, so19 bdx + yceb ↓.
• if bdyceb ↓, then19 y ↓ and thus6 x + y ↓, so19 bdx + yceb ↓.

• Suppose bdxceb + bdyceb
UA−→ x′, then7 bdxceb

UA−→ x′ or bdyceb
UA−→ x′.

• if bdxceb
UA−→ x′, then20 x UA−→ x′′ and x′

= bdx′′ceb. If x UA−→ x′′, then7 x + y UA−→ x′′ and20
bdx + yceb

UA−→bdx′′ceb (= x′). R(x′, x′).
• if bdyceb

UA−→ x′, then20 y UA−→ x′′ and x′
= bdx′′ceb. If y UA−→ x′′, then7 x + y UA−→ x′′ and20

bdx + yceb
UA−→bdx′′ceb (= x′). R(x′, x′).

• Suppose bdxceb + bdyceb
an−→ x′ for a 6= b. Similar to the previous case, using rule 21

instead of rule 20.
• Suppose bdxceb + bdyceb

an−→ x′ for a = b. Similar to the previous case, using rule 22
instead of rule 21.

• Suppose bdxceb + bdyceb
a−→ x′. Similar to the previous case, using rule 23 instead of

rule 22.

Axiom UL1–7

Similar to the proofs of Axioms L1–7.

Axiom M1 x‖ y - x T y + y T x.

We look at the transisiton of both sides of the axiom at the same time, making a case
distinction on termination of x and any of the actions x can execute. Note that the
axiom is symmetric in x and y.

• Suppose x ↓.
• if y ↓, then29 x‖ y ↓, but also33 x T y ↓ and y T x ↓ and thus6 x T y + y T x ↓.
• if y a−→ y′, this case is handles in the rest of the proof for this axiom, using sym-

metry in x and y.

228 Proofs for PAtrans B

• Suppose x UA−→ x′, then30 x‖ y UA−→ x′ ‖bycA and34 x T y UA−→ x′ ‖bycA.
Thus7 x T y + y T x UA−→ x′ ‖bycA. R(x′ ‖bycA, x′ ‖bycA).

• Suppose x a0−→ x′, then31 x‖ y a0−→ x′ ‖bdycea and35 x T y a0−→ x′ ‖bdycea.
Thus7 x T y + y T x a0−→ x′ ‖bdycea. R(x′ ‖bdycea, x′ ‖bdycea).
Note that a transition x an−→ x′ for n > 0 is not possible.

• Suppose x a−→ x′, then32 x‖ y a−→ x′ ‖ y and36 x T y a−→ x′ ‖ y.
Thus again7 x T y + y T x a0−→ x′ ‖ y. R(x′ ‖ y, x′ ‖ y).

Axiom M2 δ T x - δ.

Neither side can terminate, nor do a transition.

Axiom M3 εT δ - δ.

Again, neither side can terminate, nor do a transition.

Axiom M4 εT ε - ε.

Both1 ε ↓ and33 εT ε ↓. No other transitions are possible.

Axiom M5 εTa · x - δ.

No rules can be applied to both sides, since a · x ↓ does not hold. So neither side
terminates, nor can do a transition.

Axiom M6 εT (x + y) - εT x + T y.

Left-hand side:

• Suppose x + y ↓, then6 x ↓ or y ↓. Furthermore1, ε ↓.
• if x ↓, then33 εT x ↓ and thus6 εT x + εT y ↓.
• if y ↓, then33 εT y ↓ and thus6 εT x + εT y ↓.

• Suppose x + y a−→ x′, then none of the rules can be applied.

Right-hand side: Since1 ε ↓, εT x + εT y ↓ if and only if6 εT x ↓ or εT y ↓.

• εT x ↓ if and only if29 x ↓. But then also6 x + y ↓ and thus29 εT (x + y) ↓.
• εT y ↓ if and only if29 y ↓. But then also6 x + y ↓ and thus29 εT (x + y) ↓.

No transitions are possible.

Axiom M7 UA · x T y - UA · (x‖bycA).

Since2 UA
UA−→ ε and1 ε ↓, it holds that4,5 UA · x UA−→ x. So34 UA · x T y UA−→ x‖bycA.

B.1 Soundness of PAtrans 229

Furthermore2 ,1,4,5 UA · (x‖bycA) UA−→ x‖bycA. R(x‖bycA, x‖bycA).

Axiom M8 a0 · x T y - a0 · (x‖bdycea).

Similar to the proof of Axiom M7, using deduction rule 35 instead of rule 34.

Axiom M9 an · x T y - δ if n > 0.

Neither side can terminate, nor do a transition.

Axiom M10 a · x T y - a · (x‖ y).

Similar to the proof of Axiom M7, using deduction rule 36 instead of rule 34.

Axiom M11 (x + y)T z - x T z + y T z.

Left-hand side:

• Suppose (x + y)T z ↓, then33, x + y ↓ and z ↓, and thus6 x ↓ and z ↓ or y ↓ and z ↓.
• If x ↓ and z ↓, then33 x T z ↓ and thus6 x T z + y T z ↓.
• If y ↓ and z ↓, then33 y T z ↓ and thus6 x T z + y T z ↓.

• Suppose (x + y)T z UA−→ x′, then34, x + y UA−→ x′′ and x′
= x′′ ‖bzcA. If x + y UA−→ x′′,

then7 x UA−→ x′′ or y UA−→ x′′.
• if x UA−→ x′′, then34 x T z UA−→ x′′ T bzcA(= x′) and thus7 x T z+ y T z UA−→ x′ and R(x′, x′).
• if y UA−→ x′′, then34 y T z UA−→ x′′ T bzcA(= x′) and thus7 x T z+ y T z UA−→ x′ and R(x′, x′).

• Suppose (x + y)T z an−→ x′. Similar to the previous case, using rule 35 instead of
rule 34.

• Suppose (x + y)T z a−→ x′. Similar to the previous case, using rule 36 instead of
rule 35.

Right-hand side:

• Suppose x T z + y T z ↓, then6, x T z ↓ or y T z ↓.
• If x T z ↓ then33 x ↓ and z ↓. Then6 x + y ↓ and thus33 (x + y)T z ↓.
• If y T z ↓ then33 y ↓ and z ↓. Then6 x + y ↓ and thus33 (x + y)T z ↓.

• Suppose x T z + y T z UA−→ x′, then7 x T z UA−→ x′ or y T z UA−→ x′.
• if x T z UA−→ x′, then34 x UA−→ x′′ and x′

= x′′ ‖bzcA. If x UA−→ x′′, then7 (x + y) UA−→ x′′

and thus34 (x + y)T z UA−→ x′′ ‖bzcA (= x′). R(x′, x′).
• proof for y T z UA−→ x′ is analogous.

• Suppose x T z + y T z an−→ x′. Similar to the previous case, using rule 35 instead of
rule 34.

• Suppose x T z + y T z a−→ x′. Similar to the previous case, using rule 36 instead of

230 Proofs for PAtrans B

rule 35.

Axiom TR1 〈〈x〉〉 - 〈〈x,∅, x〉〉.

We proof this by using case distinction on the possible transitions x can do.

• Suppose x ↓, then9 〈〈x〉〉 C∅
−→ ε and10 〈〈x,∅, x〉〉 C∅

−→ ε. R(ε, ε).
• Suppose x UA−→ x′, then11 〈〈x〉〉 U∅

−→〈〈x,∅, x′〉〉 and14 〈〈x,∅, x〉〉 U∅
−→〈〈x,∅, x′〉〉.

R(〈〈x,∅, x′〉〉, 〈〈x,∅, x′〉〉).
• Suppose x an−→ x′, then12 〈〈x〉〉 an−→〈〈x,{a}, x′〉〉 and15, since a 6∈ ∅,
〈〈x,∅, x〉〉 an−→〈〈x,{a}, x′〉〉. R(〈〈x,{a}, x′〉〉, 〈〈x,{a}, x′〉〉).

• Suppose x a−→ x′, then13 〈〈x〉〉 a0−→〈〈x,{a}, x′〉〉 and17, since a 6∈ ∅,
〈〈x,∅, x〉〉 a0−→〈〈x,{a}, x′〉〉. R(〈〈x,{a}, x′〉〉, 〈〈x,{a}, x′〉〉).

Axiom TR2 〈〈x,∅, δ〉〉 - δ.

Neither side can terminate, nor do a transition.

Axiom TR3 〈〈x,A, δ〉〉 - RA · 〈〈x〉〉 if A 6= ∅.

Since A 6= ∅, rule 8 can be applied to 〈〈x,A, δ〉〉, so 〈〈x,A, δ〉〉 RA−→〈〈x〉〉. Furthermore2
RA · 〈〈x〉〉 RA−→〈〈x〉〉. R(〈〈x〉〉, 〈〈x〉〉). No termination or other transitions are possible.

Axiom TR4 〈〈x,∅, ε〉〉 - C∅.

Since1 ε ↓, it holds that10 〈〈x,∅, ε〉〉 C∅
−→ ε. Also2 C∅

C∅
−→ ε and R(ε, ε). This is the only

action both sides of the axiom can execute.

Axiom TR5 〈〈x,A, ε〉〉 - CA + RA · 〈〈x〉〉 if a 6= ∅.

Looking at the right-hand side, it can be concluded that two transitions can take
place7,2 CA + RA · 〈〈x〉〉 CA−→ ε and7,2,1,4,5 CA + RA · 〈〈x〉〉 RA−→〈〈x〉〉. The left-hand side can
do exactly the same transition10 〈〈x,A, ε〉〉 CA−→ ε, R(ε, ε), and8, since A 6= ∅,
〈〈x,A, ε〉〉 RA−→〈〈x〉〉, R(〈〈x〉〉, 〈〈x〉〉). No other transitions are possible and neither pro-
cess terminates.

Axiom TR6 〈〈x,∅,UB · y〉〉 - U∅ · 〈〈x,∅, y〉〉.

Since2,1,4,5 UB · y UB−→ y we conclude14 〈〈x,∅,UB · y〉〉 U∅
−→〈〈x,∅, y〉〉. Rule 8 cannot be

applied, so no other transitions are possible. The right-hand side can also do only
one transition2,1,4,5, U∅ · 〈〈x,∅, y〉〉 U∅

−→〈〈e〉〉x∅y and R(〈〈x,∅, y〉〉, 〈〈x,∅, y〉〉).

Axiom TR7 〈〈x,A,UB · y〉〉 - U∅ · 〈〈x,A, y〉〉+ RA · 〈〈x〉〉 if A 6= ∅.

B.1 Soundness of PAtrans 231

Looking at the right-hand side, it can be concluded that two transitions can take
place7,2,1,4,5, U∅ · 〈〈x,A, y〉〉+ RA · 〈〈x〉〉 U∅

−→〈〈x,A, y〉〉 and apart from that7,2,1,4,5,
U∅ · 〈〈x,A, y〉〉+ RA · 〈〈x〉〉 RA−→〈〈x〉〉. The left-hand side can do exactly the same tran-
sition. Since2,1,4,5 UB · y UB−→ y, we conclude that14 〈〈x,A,UB · y〉〉 U∅

−→〈〈x,A, y〉〉, and
R(〈〈x,A, y〉〉, 〈〈x,A, y〉〉). Furthermore8, since A 6= ∅, we conclude 〈〈x,A, ε〉〉 RA−→〈〈x〉〉,
and R(〈〈x〉〉, 〈〈x〉〉). No other transitions are possible and neither process terminates.

Axiom TR8 〈〈x,∅, an · y〉〉 - an · 〈〈x,{a}, y〉〉.

Similar to the proof of Axiom TR6, using deduction rule 15 instead of rule 14.

Axiom TR9 〈〈x,A, an · y〉〉 - an · 〈〈x,A∪ {a}, y〉〉+ RA · 〈〈x〉〉 if a 6∈ A∧ A 6= ∅.

Similar to the proof of Axiom TR7, using deduction rule 15 instead of rule 14.

Axiom TR10 〈〈x,A, an · y〉〉 - a · 〈〈x,A, y〉〉+ RA · 〈〈x〉〉 if a ∈ A.

Similar to the proof of Axiom TR7, using deduction rule 16 instead of rule 14.

Axiom TR11 〈〈x,∅, a · y〉〉 - a0 · 〈〈x,{a}, y〉〉

Similar to the proof of Axiom TR6, using deduction rule 17 instead of rule 14.

Axiom TR12 〈〈x,A, a · y〉〉 - a0 · 〈〈x,A∪ {a}, y〉〉+ RA · 〈〈x〉〉 if a 6∈ A∧ A 6= ∅.

Similar to the proof of Axiom TR7, using deduction rule 17 instead of rule 14.

Axiom TR13 〈〈x,A, a · y〉〉 - a · 〈〈x,A, y〉〉+ RA · 〈〈x〉〉 if a ∈ A.

Similar to the proof of Axiom TR7, using deduction rule 18 instead of rule 14.

Axiom TR14 〈〈x,A, y + z〉〉 - 〈〈x,A, y〉〉+ 〈〈x,A, z〉〉.

First of all, it can be easily seen by looking at the deduction rules that neither side
can terminate. Furthermore8, if A 6= ∅, 〈〈x,A, y + z〉〉 RA−→〈〈x〉〉, 〈〈x,A, y〉〉 RA−→〈〈x〉〉 and
thus7 〈〈x,A, y〉〉+ 〈〈x,A, z〉〉 RA−→〈〈x〉〉. R(〈〈x〉〉, 〈〈x〉〉). We make a case distinction on the
actions that the left-hand and right-hand side can execute.

Left-hand side:

• Suppose 〈〈x,A, y + z〉〉 UB−→ x′. If A = B and A 6= ∅ this can be a rollback, handled
above. Otherwise14, if B = ∅, y + z UC−→ x′′ and x′

= 〈〈x,A, x′′〉〉. if y + z UC−→ x′′, then7
y UC−→ x′′ or z UC−→ x′′.
• if y UC−→ x′′, then14 〈〈x,A, y〉〉 U∅

−→〈〈x,A, x′′〉〉. And thus7, using B = ∅, 〈〈x,A, y〉〉+

232 Proofs for PAtrans B

〈〈x,A, z〉〉 U∅
−→〈〈x,A, x′′〉〉 (= x′). R(x′, x′).

• if z UC−→ x′′, then14 〈〈x,A, z〉〉 UB−→〈〈x,A, x′′〉〉. And thus7, using B = ∅, 〈〈x,A, y〉〉+
〈〈x,A, z〉〉 UB−→〈〈x,A, x′′〉〉 (= x′). R(x′, x′).

• Suppose 〈〈x,A, y + z〉〉 an−→ x′. This case is similar to the previous case, using rule 15
if a 6∈ A and rule 16 if a ∈ A.

• Suppose 〈〈x,A, y + z〉〉 a−→ x′. This case is similar to the previous case, using rule 17
if a 6∈ A and rule 18 if a ∈ A.

Right-hand side:

• Suppose 〈〈x,A, y〉〉+ 〈〈x,A, z〉〉 UB−→ x′. If A = B and A 6= ∅ this can be a rollback,
handled above. Otherwise7, 〈〈x,A, y〉〉 UB−→ x′ or 〈〈x,A, z〉〉 UB−→ x′.
• If 〈〈x,A, y〉〉 UB−→ x′, then14 if B = ∅, y UC−→ x′′ and x′

= 〈〈x,A, x′′〉〉. If y UC−→ x′′, then7
y + z UC−→ x′′ and thus14, using B = ∅, 〈〈x,A, y + z〉〉 UB−→〈〈x,A, x′′〉〉 (= x′). R(x′, x′).

• proof for 〈〈x,A, z〉〉 UB−→ x′ is analogous.
• Suppose 〈〈x,A, y〉〉+ 〈〈x,A, z〉〉 an−→ x′. This case is similar to the previous case, using

rule 15 if a 6∈ A and rule 16 if a ∈ A.
• Suppose 〈〈x,A, y〉〉+ 〈〈x,A, z〉〉 a−→ x′. This case is similar to the previous case, using

rule 17 if a 6∈ A and rule 18 if a ∈ A.

¤

B.2 Elimination of PAtrans to BPAδεrec

Theorem (Eliminiation to BPAδεrec) For every PAtrans term t there exists a guarded
linear recursive specification E over BPAδε such that t is a solution of E.

Proof This theorem is proved by induction on the general structure of t. In the proof
we use the definition of linear as given in [BW90]. Then, by definition, all linear
BPAδε terms are guarded. Note that this definition slightly differs from the definition
in [BK84a] where guardedness of linear BPAδε terms is not demanded.

1. t ≡ ε. Then t is a linear BPAδε term.

2. t ≡ δ. Then t is a linear BPAδε term.

3. t ≡ a for a ∈ A∪L∪UL. Then t is a linear BPAδε term.

4. t ≡ t1 + t2 for PAtrans terms t1 and t2. By induction, there are linear BPAδε terms
s1 and s2 such that T(PAtrans) |= s1 = t1 and T(PAtrans) |= s2 = t2. But then also
T(PAtrans) |= s1 + s2 = t1altt2 and s1 + s2 is a linear BPAδε term.

B.2 Elimination of PAtrans to BPAδεrec 233

5. t = t1 · t2 for PAtrans terms t1 and t2. By induction, there are linear BPAδε terms s1
and s2 such that T(PAtrans) |= s1 = t1 and T(PAtrans) |= s2 = t2. Since s1 is linear,
s1 ≡ ε, s1 ≡ δ, s1 ≡ a, s1 ≡ a · s3 or s1 ≡ s3 + s4 for a ∈ A∪L∪UL and linear BPAδε

terms s3 and s4.
• s1 ≡ ε. Then s1 · s2 = ε · s2 = s2, which is a linear BPAδε term.
• s1 ≡ δ. Then s1 · s2 = δ · s2 = δ, which is a linear BPAδε term.
• s1 ≡ a · s3 for a ∈ A∪L∪UL and linear BPAδε term s3. Then s1 · s2 = (a · s3) · s2 =

a · (s3 · s2). By induction, s3 · s2 is linear, so a · (s3 · s2) is linear and thus s1 · s2 is
linear.

• s1 ≡ s3 + s4 for linear BPAδε terms s3 and s4. Then, s1 · s2 = (s3 + s4) · s2 =

(s3 · s2) + (s4 · s2). Since, by induction, s3 · s2 and s4 · s2 are linear BPAδε terms,
s1 · s2 is linear.

6. t ≡ bdt1ceb for PAtrans term t1 and b ∈ A. By induction, there exists a linear BPAδε

term s1 such that T(PAtrans) |= s1 = t1. So, s1 ≡ ε, s1 ≡ δ, s1 ≡ a, s1 ≡ a · s3 or
s1 ≡ s3 + s4 for a ∈ A∪L∪UL and linear BPAδε terms s3 and s4.
• s1 ≡ ε. Then bds1ceb = bdεceb = ε, which is a linear BPAδε term.
• s1 ≡ δ. Then bds1ceb = bdδceb = δ, which is a linear BPAδε term.
• s1 ≡ a · s3 for a ∈ A∪ L∪UL and linear BPAδε term s3. Then bds1ceb = bda · s3ceb =

bdaceb · bds3ceb. By induction, bds3ceb is linear. Furthermore, bdaceb ∈ A ∪ L ∪ UL so
bdaceb · bds3ceb is linear and thus bds1ceb is linear.

• s1 ≡ s3 + s4 for linear BPAδε terms s3 and s4. Then bds1ceb = bds3 + s4ceb = bds3ceb +

bds4ceb. By induction, bds3ceb and bds4ceb are linear and thus bds1ceb is linear.

7. t ≡ bt1cA for PAtrans term t1 and A ⊆ A. This case is treated analogous to case 6.

8. t ≡ t1 T t2 for PAtrans terms t1 and t2. By induction, there exists a linear BPAδε

term s1 such that T(PAtrans) |= s1 = t1. But since all recursive specifications in
PAtrans are guarded, there is a linear BPAδε term r1 which is in head normal
form, such that T(PAtrans) |= r1 = s1 = t1. We prove this case by induction on the
structure of r1:
• r1 ≡ ε. Then s1 T s2 = εT s2, which equals δ if s2 6= ε and ε otherwise. Both are

linear BPAδε term.
• r1 ≡ δ. Then s1 T s2 = δ T s2 = δ, which is a linear BPAδε term.
• r1 ≡ a · r2 for a ∈ A ∪ L ∪ UL and linear BPAδε term r2.Then PAtrans ` t =

(a · r2)T t2. Depending on the structure of a, PAtrans ` t = UA(r2 ‖bt2cA),
PAtrans ` t = an(r2 ‖bdt2cea) or PAtrans ` t = a(r2 ‖ t2). So there is a function f
such that PAtrans ` t = (a · r2)T t2 = a · (r2 ‖ f (t2)) where f (x) ∈ {bxcA, bdxcea, x}.
We proved (6,7) that f (t2) is a linear BPAδε term.
Furthermore, PAtrans ` r2 ‖ f (t2) = r2 T f (t2) + f (t2)T r2 and, by induction, both
r2 T f (t2) and f (t2)T r2 are linear BPAδε terms and thus r2 ‖ f (t2) is a linear BPAδε

234 Proofs for PAtrans B

term. Since a is in A ∪ L ∪ UL, a · (r2 ‖ f (t2)) is linear and thus (a · r2)T t2 is a
linear BPAδε term.

• r1 ≡ r2 + r3 for r2 and r3 linear BPAδε terms. Then PAtrans ` t = (r2 + r3)T t2 =

r2 T t2 + r3 T t2. By induction there exist linear BPAδε terms s2 and s3 such that
PAtrans ` s2 = r2 T t2 and PAtrans ` s3 = r3 T t2. Then also T(PAtrans) |= t =

(r2 + r3)T t2 = r2 T t2 + r3 T t2 = s2 + s3 and s2 + s3 is a linear BPAδε term.
• r1 ≡ X for some recursion variable X. This case is not possible since r1 should

be guarded.

9. t≡ t1 ‖ t2 for PAtrans terms t1 and t2. PAtrans ` t1 ‖ t2 = t1 ‖ t2 = t1 T t2 + t2 T t1. We
have proved (8) that there exist linear BPAδε terms s1 and s2 such that T(PAtrans) |=
s1 = t1 T t2 and T(PAtrans) |= s2 = t2 T t3. But then, T(PAtrans) |= t1 ‖ t2 = t1 T t2 +

t2 T t1 = s1 + s2 and s1 + s2 is a linear BPAδε term.

10. t ≡ 〈〈t1〉〉 for closed PAtrans term t1. PAtrans ` 〈〈t1〉〉 = 〈〈t1,∅, t1〉〉. As is proved in
11, there exists a linear BPAδε term s1 such that T(PAtrans) |= s1 = 〈〈t1,∅, t1〉〉 and
thus T(PAtrans) |= s1 = 〈〈t1〉〉.

11. t ≡ 〈〈t1,A, t2〉〉 for PAtrans terms t1 and t2 and A ⊆ A. We give a set of recur-
sive equations, E, and prove by induction on the structure of t2 that for all terms
〈〈t1,A, t2〉〉 there exists a linear BPAδε term s such that T(PAtrans) |= s = 〈〈t1,A, t2〉〉.
Let E, the set of recursive equations, be defined as follows:

E = { Xt,∅
δ = δ, Xt,A

δ = RA ·Xt,∅
t ,

Xt,∅
ε = C∅, Xt,A

ε = CA + RA ·Xt,∅
t ,

Xt,∅
UB · t1

= U∅ ·Xt,∅
t1
, Xt,A

UB · t1
= U∅ ·Xt,A

t1
+ RA ·Xt,∅

t ,

Xt,∅
cn · t1

= cn ·Xt,{c}
t , Xt,A

bn · t1
= bn ·Xt,A∪{b}

t1
+ RA ·Xt,∅

t ,

Xt,A
an · t1

= a ·Xt,A
t1

+ RA ·Xt,∅
t , Xt,∅

c · t1
= c0 ·Xt,{c}

t1
,

Xt,A
b · t1

= b0 ·Xt,A∪{b}
t1

+ RA ·Xt,∅
t , Xt,A

a · t1
= a ·Xt,A

t1
+ RA ·Xt,∅

t ,

Xt,B
t1+t2

= Xt,B
t1

+ Xt,B
t2

| A ⊆ A, A 6= ∅, B ⊆ A, n ∈ N, n > 0, a ∈ A, b ∈ A \ A, c ∈ A }

As can be easily seen by comparing axioms TR2–20 with the recursive equations
in E, T(PAtrans) |= 〈Xt1,A

t2
|E〉= 〈〈t1,A, t2〉〉 holds for all t1, A and t2. So there exists

a linear BPAδε term for every 〈〈t1,A, t2〉〉 in PAtrans, viz. 〈Xt1,A
t2
|E〉. Furthermore,

since PAtrans ` 〈〈t〉〉 = 〈〈t,∅, t〉〉, T(PAtrans) |= 〈〈t〉〉 = 〈Xt,∅
t |E〉.

So for all PAtrans terms t there exists a linear BPAδε term s such that PAtrans |= s = t.
¤

C
Proofs of Test Derivation Theory

In this appendix we give full proofs of some lemmas and theorems that are given in
Chapter 10.

C.1 Proof of Lemma 10.6.5

Lemma Let s be a specification 〈S,L,→, s0〉 and ς0, ς1 ∈ L∗, ς1 6= ε. Then

ς0ς1 ∈ traces(gentestn({s0})) ⇐⇒ ς1 ∈ traces(gentestn−|ς0|(s0 after ς0))

where |ς | is the length of trace ς .

Proof We prove this lemma by using induction on the structure of ς0.

ς0 = ε.
Induction hypothesis (IH): Let ςm

0 ∈ L∗ such that |ςm
0 | = m. Then,

ςm
0 ς1 ∈ traces(gentestn({s0})) ⇐⇒ ς1 ∈ traces(gentestn−|ςm

0 |(s0 after ςm
0)) .

ς0ς1 ∈ traces(gentestn({s0}))
⇐⇒

{

ς0 = ε, ες1 = ς1
}

ς1 ∈ traces(gentestn({s0}))
⇐⇒

{

|ς0| = |ε| = 0, s0 after ε = {s0}
}

ς1 ∈ traces(gentestn−|ς0|(s0 after ς0))

236 Proofs of Test Derivation Theory C

We prove that

ςm+1
0 ς1 ∈ traces(gentestn({s0}))

⇐⇒

ς1 ∈ traces(gentestn−|ςm+1
0 |(s0 after ςm+1

0)) .

We prove this by case distinction for ςm+1
0 =ςm

0 a for a ∈ L? and ςm+1
0 =ςm

0 b for b ∈ L!.
Note that L? ∪L! = L, so these cases cover all labels in L.

ςm+1
0 = ςm

0 a for a ∈ L?:

ςm+1
0 ς1 ∈ traces(gentestn({s0}))

⇐⇒
{

ςm+1
0 = ςm

0 a
}

ςm
0 aς1 ∈ traces(gentestn({s0}))

⇐⇒

{

(IH) ςm
0 aς1 ∈ traces(gentestn({s0})) ≡

aς1 ∈ traces(gentestn−|ςm
0 |(s0 after ςm

0))

}

aς1 ∈ traces(gentestn−|ςm
0 |(s0 after ςm

0))

⇐⇒

{

(gentest, second option) n > 0, a ∈ L?,
(s0 after ςm

0) after a 6= ∅

}

ς1 ∈ traces(gentestn−|ςm
0 |−1((s0 after ςm

0) after a))

⇐⇒

{

n− |ςm
0 | − 1 = n− (|ςm

0 |+ 1) = n− |ςm
0 a|,

(s0 after ςm
0) after a = s0 after ςm

0 a

}

ς1 ∈ traces(gentestn−|ςm
0 a|(s0 after ςm

0 a))
⇐⇒

{

ςm+1
0 = ςm

0 a
}

ς1 ∈ traces(gentestn−|ςm+1
0 |(s0 after ςm+1

0))

ςm+1
0 = ςm

0 b for b ∈ L!:

ςm+1
0 ς1 ∈ traces(gentestn({s0}))

⇐⇒
{

ςm+1
0 = ςm

0 b
}

ςm
0 bς1 ∈ traces(gentestn({s0}))

⇐⇒

{

(IH) ςm
0 bς1 ∈ traces(gentestn({s0})) ≡

bς1 ∈ traces(gentestn−|ςm
0 |(s0 after ςm

0))

}

bς1 ∈ traces(gentestn−|ςm
0 |(s0 after ςm

0))

C.2 Proof of Theorem 10.6.7 237

bς1 ∈ traces(gentestn−|ςm
0 |(s0 after ςm

0))
⇐⇒

{

(gentest, third option) n > 0
}

ς1 ∈ traces(gentestn−|ςm
0 |−1((s0 after ςm

0) after b))

⇐⇒

{

n− |ςm
0 | − 1 = n− (|ςm

0 |+ 1) = n− |ςm
0 b|,

(s0 after ςm
0) after b = s0 after ςm

0 b

}

ς1 ∈ traces(gentestn−|ςm
0 b|(s0 after ςm

0 b))
⇐⇒

{

ςm+1
0 = ςm

0 b
}

ς1 ∈ traces(gentestn−|ςm+1
0 |(s0 after ςm+1

0))

¤

C.2 Proof of Theorem 10.6.7

Theorem Let s be a specification 〈S,L,→, s0〉. Then

test suite
⋃

n>0
gentestn({s0}) is complete.

Proof Let s be 〈S,L,→, s0〉 and T be ⋃

n>0 gentestn({s0}). Then,

T is complete
≡

{

definition of complete test suites
}

∀i i rrconf s ⇔ i passes T
≡

{

definition of rrconf and passes
}

∀i ∀ς ∈ traces(s) exp(i after ς) ⊆ exp(s after ς)
⇐⇒
¬∃t ∈ T ∃ς ∈ traces(i) ς ; fail ∈ traces(t)

We prove this by proving exhaustiveness (⇐) and soundness (⇒) separately.

• Exhaustiveness.

∀i ∀ς ∈ traces(s) exp(i after ς) ⊆ exp(s after ς)
⇐=

¬∃t ∈ T ∃ς ∈ traces(i) ς ; fail ∈ traces(t)

We prove exhaustiveness by contradiction:
Let ς ∈ traces(s) and b ∈ exp(i after ς) such that b 6∈ exp(s after ς). Then, we

238 Proofs of Test Derivation Theory C

prove that ∃t ∈ T ∃ς ′ ∈ traces(i) ς ′; fail ∈ traces(t).

∃t ∈ T ∃ς ′ ∈ traces(i) ς ′; fail ∈ traces(t)
⇐

{

b ∈ exp(i after ς)⇒ ςb ∈ traces(i), Let ς ′ = ς ; b
}

∃t ∈ T ς ; b; fail ∈ traces(t)
⇐

{

Definition of T
}

∃n > 0 ς ; b; fail ∈ traces(gentestn({s0}))
≡

{

Lemma 10.6.5
}

∃n > 0 b; fail ∈ traces(gentestn−|ς |({s0 after ς}))

⇐

{

gentest (third option), let n > |ς |,
b 6∈ exp(s0 after ς)⇒ b ∈ L! \ exp(s0 after ς)

}

true

• Soundness.

∀i ∀ς ∈ traces(s) exp(i after ς) ⊆ exp(s after ς)
=⇒
¬∃t ∈ T ∃ς ∈ traces(i) ς ; fail ∈ traces(t)

Soundness is also proved by contradiction:
Let t ∈ T and ς ∈ traces(i) such that ς ; fail ∈ traces(t). Then, by definition of T,
∃n > 0 ς ; fail ∈ traces(gentestn({s0})).
Let m > 0 such that ς ; fail ∈ traces(gentestm({s0})).
We prove that ∃ς ′ ∈ traces(s)∃b ∈ exp(i after ς ′) b 6∈ exp(s after ς ′).
Let ς ′′ ∈ traces(s) and b′′ ∈ exp(i after ς ′′).
Then, we prove that b′′ 6∈ exp(s after ς ′′). Since ς ; fail ∈ traces(gentestm({s0})),
using Lemma 10.6.6, ∃ς ′ ∈ traces(s)∃b ∈ L! ς = ς ′; b. Let ς = ς ′′; b′′. Then,

ς ; fail ∈ traces(gentestm({s0}))
≡

{

ς = ς ′′; b′′
}

ς ′′; b′′; fail ∈ traces(gentestm({s0}))
≡

{

Lemma 10.6.5
}

b′′; fail ∈ traces(gentestm−|ς ′′|(s0 after ς ′′))
⇒

{

Definition of algorithm gentest (third option)
}

b′′ ∈ L! \ exp(s0 after ς ′′)
⇒

{

Set theory
}

b′′ 6∈ exp(s0 after ς ′′)

¤

C.3 Proof of Lemma 10.6.9 239

C.3 Proof of Lemma 10.6.9

Lemma Let s be an MRRTS 〈S,L,→, s0〉, L be the set of labels in s, ς be a trace in s
and Eς be the set of expected responses after execution of ς in s:

Eς = {b ∈ L! | ∃a ∈ req(b) ∃ς0, ς1 ∈ L∗ (ς = ς0aς1 ∧¬∃b′ ∈ resp(a) b′ ∈ ς1)} .

Then,

1. ∀a ∈ L? Eς ∪ resp(a) = Eςa

2. ∀b ∈ L! Eς \ resp(b) = Eςb

Proof

1. ∀a ∈ L? Eς ∪ resp(a) = Eςa. Let a ∈ L?. Then,

Eςa

=
{

definition of E
}

{

b ∈ L!

∣

∣

∣

∣

∃a′ ∈ req(b) ∃ς0, ς1 ∈ L∗

(ςa = ς0a′ς1 ∧¬∃b′ ∈ resp(a′) b′ ∈ ς1)

}

=
{

case distinction: a′ = a∧ ς1 = ε and ς1 = ς ′1a
}

{b ∈ L! | a ∈ req(b), ¬∃b′ ∈ resp(a) b′ ∈ ε)}

∪

{

b ∈ L!

∣

∣

∣

∣

∃a′ ∈ req(b) ∃ς0, ς ′1 ∈ L∗

(ςa = ς0a′ς ′1a∧¬∃b′ ∈ resp(a′) b′ ∈ ς ′1a)

}

=
{

ς1 = ∅ ⇒ ¬∃b′ ∈ resp(a) b′ ∈ ς1
}

{b ∈ L! | a ∈ req(b)}

∪

{

b ∈ L!

∣

∣

∣

∣

∃a′ ∈ req(b) ∃ς0, ς ′1 ∈ L∗

(ςa = ς0a′ς ′1a∧¬∃b′ ∈ resp(a′) b′ ∈ ς ′1a)

}

=
{

(definition of req and resp) {b ∈ L! | a ∈ req(b)} = resp(a)
}

resp(a)

∪

{

b ∈ L!

∣

∣

∣

∣

∃a′ ∈ req(b) ∃ς0, ς ′1 ∈ L∗

(ςa = ς0a′ς ′1a∧¬∃b′ ∈ resp(a′) b′ ∈ ς ′1a)

}

=

{

ςa = ς0a′ς ′1a ≡ ς = ς0a′ς ′1,
a ∈ L? ⇒ (∀b′ ∈ resp(a′) b′ ∈ ς ′1a ≡ b′ ∈ ς ′1)

}

resp(a)

∪

{

b ∈ L!

∣

∣

∣

∣

∃a′ ∈ req(b) ∃ς0, ς ′1 ∈ L∗

(ς = ς0a′ς ′1 ∧¬∃b′ ∈ resp(a′) b′ ∈ ς ′1)

}

=
{

definition of E
}

resp(a)∪ Eς

240 Proofs of Test Derivation Theory C

2. ∀b ∈ L! Eς \ resp(b) = Eςb. Let b ∈ L!. Then,
Eςb

=
{

definition of E
}

{

b′ ∈ L!

∣

∣

∣

∣

∃a ∈ req(b′) ∃ς0, ς1 ∈ L∗

(ςb = ς0aς1 ∧¬∃b′′ ∈ resp(a) b′′ ∈ ς1)

}

=
{

b ∈ L! ∧ a ∈ L? ⇒ ∃ς ′1 ∈ L∗ ς1 = ς ′1b
}

{

b′ ∈ L!

∣

∣

∣

∣

∃a ∈ req(b′) ∃ς0, ς ′1 ∈ L∗

(ςb = ς0aς ′1b∧¬∃b′′ ∈ resp(a) b′′ ∈ ς ′1b)

}

=
{

case distinction: b′ ∈ ς ′1 and b′′ = b
}

{

b′ ∈ L!

∣

∣

∣

∣

∃a ∈ req(b′) ∃ς0, ς ′1 ∈ L∗

(ςb = ς0aς ′1b∧¬∃b′′ ∈ resp(a) b′′ ∈ ς ′1 ∨ b′′ = b)

}

=
{

set theory, ςb = ς0aς ′1b ≡ ς = ς0aς ′1
}

{b′ ∈ L! | ∃a ∈ req(b′) ∃ς0, ς ′1 ∈ L∗ (ς = ς0aς ′1 ∧¬∃b′′ ∈ resp(a) b′′ ∈ ς ′1)}
\{b′ ∈ L! | ∃a ∈ req(b′) ∃b′′ ∈ resp(a) b′′ = b}

=
{

definition of E, req, resp
}

Eς \ {b′ ∈ L! | ∃b′′ ∈ resp(b′) b′′ = b}
=

{

definition of resp
}

Eς \ resp(b)

¤

C.4 Proof of Lemma 10.6.12 241

C.4 Proof of Lemma 10.6.12

Lemma Let MRRTS i be 〈S,L,→, s0〉. Then,

∀b ∈ L! ςb ∈ traces(i) ⇒ b ∈ Eς

where Eς is as defined in Lemma 10.6.9.

Proof Let b ∈ L!. Then,

ςb ∈ traces(i)
⇒

{

i is an MRRTS, definition of req and resp
}

ςb |req(b)∪resp(b) ∈ alt(req(b), resp(b))
⇒

{

Definition of alt, b ∈ resp(b)
}

∃a ∈ req(b)∃ς ′ ∈ L∗ ςb = ς ′ab
⇒

{

For ς0 = ς ′ and ς1 = ε, ς = ς0aς1
}

∃a ∈ req(b)∃ς0, ς1 ∈ L∗ (ς = ς0aς1 ∧ ¬∃b′ ∈ resp(a) b′ ∈ ς1)
⇒

{

Definition of Eς

}

b ∈ Eς

¤

C.5 Proof of Theorem 10.6.13

Theorem Let s be a specification 〈S,L,→, s0〉. Then test suite ⋃

n>0 gentestn
∅({s0}) is

complete.

Proof Let T be ⋃

n>0 gentestn({s0}) and T∅ be ⋃

n>0 gentestn
∅({s0}). In Theorem 10.6.7

we proved that test suite T is complete. To prove that T∅ is complete as well, we
prove that

T∅ is complete ⇐⇒ T is complete.
≡

{

definition of complete test suites
}

∀i i rrconf s ⇔ i passes T∅ ⇐⇒ ∀i i rrconf s ⇔ i passes T
≡

{ }

∀i i rrconf s ⇔ i passes T∅ ⇔ i passes T
≡

{

Theorem 10.6.7
}

∀i i passes T∅ ⇔ i passes T

242 Proofs of Test Derivation Theory C

• ∀i i passes T∅ ⇐ i passes T
Let MRRTS i be an implementation, t ∈ T∅ be a test case and ς ∈ traces(i) be a
trace such that ς ; fail ∈ traces(t). Then we prove that i does not pass T.
Lemma 10.6.10 proves that all traces in all test cases in T∅ are traces in some
test case in T, so there exists a test case t′ in T such that ς ; fail ∈ traces(t′) and
thus i does not pass T.

• ∀i i passes T∅ ⇒ i passes T.
We prove this by contradiction. Let MRRTS i be an implementation, t ∈ T be
a test case b ∈ L! be a response label and ςb be a trace in i such that ςb; f ail ∈
traces(t). Then we prove that there exists a test case t′ ∈ T∅ such that ςb; fail ∈
traces(t′).
By inspecting Algorithm 10.6.8 and using Lemma 10.6.11, it can be concluded
that this trace can only occur in T∅ if

b; fail ∈ traces(
⋃

n>0
gentestn−|ς0|

Eς
(s0 after ς)) .

This can only be the case if b ∈ Eς \ exp(s0 after ς). Since ςb is a trace in i,
Lemma 10.6.12 proves that b ∈ Eς . From Lemma 10.6.5 and ςb; f ail ∈ traces(t)
it follows that b 6∈ exp(s0 after ς). So b ∈ Eς \ exp(s0 after ς).

¤

Summary

Nowadays, more and more activity takes place via the Internet. This means that
Internet applications become more important. Since these applications also grow
in size and complexity, specifying and implementing such applications becomes
harder. Many issues arise, like session management and the correct implementa-
tion of parallel use by multiple clients. In our opinion, formal methods can help in
tackling these problems.

In this thesis, a new specification language, DiCons, is introduced, which can be used
for specifying a specific group of Internet applications, the so-called distributed con-
sensus applications. These are applications which can be used by a group of clients
to reach a common goal. Users do not have to physically meet and all communica-
tion takes place asynchronously. Examples of such applications are the drawing of
Sinterklaaslootjes, a vote, an auction, but also the scheduling of a meeting.

We first inspect the differences between Web-based and “normal” window-based
applications. Next, we have a look at the differences and similarities between some
example applications and we determine the risks that are involved by using Web ap-
plications. From that, we abstract concepts that are of importance for all applications
in the domain we focus on.

With these concepts in mind, we develop a formal specification language based on
process algebra. Apart from the default operators for sequential and alternative com-
position, the language contains three conditional operators: conditional branching,
conditional repetition and conditional disrupts. We explain how states and time are
added to the language and which communication primitives we make use of for
modelling the communication via the Internet between users and the application it-
self. Apart from that, we add the possibility for specifying transactional behaviour.
We do this by first developing a detailed formalism which describes this transac-
tional behaviour. Next, this formalism is adapted such that it fits in the DiCons spec-
ification language.

To show the usefulness of the language, we prove some properties of specifications.
Furthermore, a methodology is given for the testing of Internet applications. This
methodology is based on transition systems that for instance could be generated by

244 Summary

DiCons specifications. Using an implementation of the algorithm for the testing of
Internet applications, some applications are tested. It is also explained how Internet
applications can be implemented using current technology, and how a specification
can be turned into executable code. The compiler that is developed for the first ver-
sion of DiCons is shortly discussed and the extensions that should be added to be able
to turn specifications described in this thesis into executable code are mentioned.

Samenvatting

Tegenwoordig vinden er meer en meer activiteiten plaats via het internet. Dit bete-
kent dat internet-applicaties steeds belangrijker worden. Omdat deze applicaties
ook in omvang en complexiteit groter worden, wordt het specificeren en imple-
menteren van zulke applicaties steeds lastiger. Er komen veel kwesties de hoek om
kijken, zoals sessie-beheer en het correct implementeren van het parallel gebruik
door meerdere cliënten. Onze mening is dat formele methoden kunnen helpen deze
problemen aan te pakken.

In dit proefschrift wordt een nieuwe specificatietaal, DiCons, geı̈ntroduceerd, die
gebruikt kan worden voor het specificeren van een speciale groep van internet-
applicaties, de zogenaamde gedistribueerde consensus applicaties. Dit zijn appli-
caties die door een groep van cliënten gebruikt kan worden om een gemeenschap-
pelijk doel te bereiken. Hierbij hoeven gebruikers elkaar niet fysiek te ontmoeten en
vindt alle communicatie asynchroon plaats. Voorbeelden van zulke applicaties zijn
het trekken van Sinterklaaslootjes, een stemming, een veiling, maar ook het plannen
van een vergadering.

We bekijken eerst de verschillen tussen op het web gebaseerde en “gewone” window-
gebaseerde applicaties. Vervolgens bekijken we de verschillen en overeenkomsten
tussen enkele voorbeeldapplicaties en we kijken welke risico’s het gebruik van web-
applicaties met zich meebrengt. Daaruit abstraheren we concepten die voor alle ap-
plicaties in het voor ons interessante domein van belang zijn.

Met deze concepten in ons achterhoofd ontwikkelen we een op proces-algebra geba-
seerde formele specificatietaal. De taal bevat naast de standaardoperatoren voor
sequentiële en alternatieve compositie drie conditionele operatoren: de conditionele
keuze, de conditionele herhaling en de conditionele onderbreking. We leggen uit hoe
toestanden en tijd aan de taal toegevoegd worden en welke communicatieprimitie-
ven we gebruiken voor het modelleren van communicatie via het internet tussen
gebruikers en de applicatie zelf. Daarnaast voegen we de mogelijkheid voor het
specifieren van transactioneel gedrag toe. Dit doen we door eerst een formalisme in
detail uit te werken dat dit transactioneel gedrag beschrijft. Dit formalisme wordt
vervolgens aangepast zodat het in de DiCons specificatietaal past.

246 Samenvatting (Summary in Dutch)

Om de toepasbaarheid van de taal aan te tonen worden enkele eigenschappen van
specificaties bewezen. Daarnaast wordt een methodiek gegeven voor het testen van
internet-applicaties. Deze methodiek is gebaseerd op transitiesystemen die onder
andere met behulp van DiCons specificaties beschreven kunnen worden. Met behulp
van een implementatie van het algoritme voor het testen van internet-applicaties
worden enkele applicaties getest. Ook wordt uitgelegd hoe een internet-applicatie
geı̈mplementeerd kan worden met behulp van de momenteel gangbare technieken,
en hoe een specificatie omgezet kan worden in uitvoerbare programmacode. Er
wordt kort ingegaan op de compiler die voor een eerste versie van DiCons geı̈mple-
menteerd is en er wordt aangegeven welke uitbreidingen nodig zijn om specificaties
van de in dit proefschrift beschreven taal om te zetten in programmacode.

Curriculum Vitae

Harm van Beek was born on the 7th of November 1975 in Westerhoven, Noord-
Brabant, The Netherlands.

In 1995 he received his atheneum diploma from the Hertog-Jan College in Valkens-
waard.

From 1995 till 2000 he studied computer science at the Department of Mathematics
and Computer Science of the Technische Universiteit Eindhoven in Eindhoven. He
received his master’s degree in August 2000 (cum laude) after finishing his master’s
thesis, titled ‘Internet Protocols for Distributed Consensus – the DiCons Language’.
This work served as a basis for starting a Ph.D. program.

Subsequently, he got a part-time position as a Ph.D. student at the Formal Methods
group of the Department of Mathematics and Computer Science of the Technische
Universiteit Eindhoven. His work, which focused on the development of a formal-
ism for specifying Internet applications, took place at the (Eindhoven) Embedded
Systems Institute. The research led to several publications and to this Ph.D. thesis.

Next to his work on this thesis, he continued running ISAAC, a company started
in 1998 which focuses on the development of Internet applications with complex
server-side behaviour.

Bibliography

[ABBC99] D.L. Atkins, T. Ball, G. Bruns, and K. Cox. Mawl: a domain-specific
language for form-based services. IEEE Transactions on Software En-
gineering, 25(3):334–346, May 1999. Special Section: Domain-Specific
Languages (DSL).

[ACD+03] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Ley-
mann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weer-
awarana. Business process execution language for web services, ver-
sion 1.1. BEA, IBM, Microsoft, SAP AG and Siebel Systems, available
at http://www.siebel.com/bpel, May 2003.

[AD76] P.A. Alsberg and J.D. Day. A principle for resilient sharing of dis-
tributed resources. In 2nd International Conference on Software Engineer-
ing, pages 562–570, San Francisco, CA, USA, 1976.

[AH96] V. Atluri and W. Huang. An authorization model for workflows. In
Proceedings of the Fourth European Symposium on Research in Computer
Security, pages 25–47, Rome, Italy, September 1996.

[AP91] G. Arango and R. Prieto-Dı́az. Domain analysis concepts and research
directions. In R. Prieto-Dı́az and G. Arango, editors, Domain Analysis
and Software Systems Modeling, pages 9–32, Los Angeles, CA, USA, 1991.
IEEE Computer Society Press.

[Bad79] D.Z. Badal. Correctness of concurrency control and implications
for distributed databases. In Proceedings of the IEEE COMPSAC 79,
Chicago, USA, November 1979.

[BAL+90] E. Brinksma, R. Alderden, J. Langerak, R. van de Lagemaat, and J. Tret-
mans. A formal approach to conformance testing. In Second Interna-
tional Workshop on Protocol Test Systems, pages 349–363. North-Holland,
1990.

250 Bibliography

[BB88] J.C.M. Baeten and J.A. Bergstra. Global renaming operators in concrete
process algebra. Information and Computation, 78:205–245, 1988.

[BBM01a] J.C.M. Baeten, H.M.A. van Beek, and S. Mauw. An MSC based repre-
sentation of DiCons. In Proceedings of the 10th SDL Forum, volume 2078
of Lecture Notes in Computer Science, pages 328–347, Copenhagen, Den-
mark, June 2001. Springer-Verlag.

[BBM01b] J.C.M. Baeten, H.M.A. van Beek, and S. Mauw. Operational seman-
tics of DiCons, a formal language for developing Internet applications.
CS-Report 01/12, Department of Mathematics and Computing Science,
Technische Universiteit Eindhoven, October 2001.

[BBM01c] J.C.M. Baeten, H.M.A. van Beek, and S. Mauw. Specifying Internet ap-
plications with DiCons. In Proceedings of the 16th ACM Symposium on Ap-
plied Computing (SAC 2001), pages 576–584, Las Vegas, Nevada, USA,
March 2001.

[BC95] K. Bharat and L. Cardelli. Distributed applications in a multimedia
setting. In Proceedings of the First International Workshop on Hypermedia
Design, pages 185–192, Montpellier, France, 1995.

[Bee00] H.M.A. van Beek. Internet protocols for distributed consensus – the
DiCons language. Master’s thesis, Technische Universiteit Eindhoven,
August 2000.

[Bee02] H.M.A. van Beek. An algebraic approach to transactional processes.
CS-Report 02/18, Department of Mathematics and Computing Science,
Technische Universiteit Eindhoven, December 2002.

[Ber91] G. Bernot. Testing against formal specifications: A theoretical view. In
S. Abramsky and T.S.E. Maibaum, editors, TAPSOFT ’91: Proceedings of
the International Joint Conference on Theory and Practice of Software Devel-
opment, volume 494 of Lecture Notes in Computer Science, pages 99–119.
Springer-Verlag, 1991.

[BFG02] M. Benedikt, J. Freire, and P. Godefroid. VeriWeb: Automatically test-
ing dynamic web sites. In Proceedings of the 11th international world wide
web conference (WWW2002), Honolulu, Hawaii, USA, May 2002.

[BFP01] J.A. Bergstra, W.J. Fokkink, and A. Ponse. Process algebra with recur-
sive operations. In J.A. Bergstra, A. Ponse, and S.A. Smolka, editors,
Handbook of Process Algebra, pages 333–389. Elsevier, 2001.

Bibliography 251

[BFV+99] A. Belinfante, J. Feenstra, R.G. de Vries, J. Tretmans, N. Goga, L. Feijs,
S. Mauw, and L. Heerink. Formal test automation: A simple experi-
ment. In G. Csopaki, S. Dibuz, and K. Tarnay, editors, 12th Int. Workshop
on Testing of Communicating Systems, pages 179–196. Kluwer Academic
Publishers, 1999.

[BG81] P.A. Bernstein and N. Goodman. Concurrency control in distributed
database systems. ACM Computing Surveys, 13(2):185–221, June 1981.

[BHM+04] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris,
and D. Orchard. Web Services Architecture. W3C Working Group Note,
http://www.w3.org/TR/ws-arch, February 2004.

[BK82] J.A. Bergstra and J.W. Klop. Fixed point semantics in process algebras.
Report IW 206, Mathematisch Centrum, Amsterdam, 1982.

[BK84a] J.A. Bergstra and J.W. Klop. The algebra of recursively defined pro-
cesses and the algebra of regular processes. In J. Paredaens, editor,
Automata, Languages and Programming, 11th Colloquium, volume 172 of
Lecture Notes in Computer Science, pages 82–94, Antwerp, Belgium, July
1984. Springer-Verlag.

[BK84b] J.A. Bergstra and J.W. Klop. Process algebra for synchronous commu-
nication. Information and Control, 60:109–137, 1984.

[BK02] V. Bos and J.J.T. Kleijn. Formal specification and analysis of industrial sys-
tems. PhD thesis, Technische Universiteit Eindhoven, 2002.

[BKP92] F.S. de Boer, J.W. Klop, and C. Palamidessi. Asynchronous communi-
cation in process algebra. In A. Scedrov, editor, Proceedings of the 7th
Annual IEEE Symposium on Logic in Computer Science, pages 137–147,
Santa Cruz, CA, June 1992. IEEE Computer Society Press.

[BKT85] J.A. Bergstra, J.W. Klop, and J.V. Tucker. Process algebra with asyn-
chronous communication mechanisms. In S.D. Brookes, A.W. Roscoe,
and G. Winskel, editors, Proceedings of the Seminar on Concurrency, num-
ber 197 in Lecture Notes in Computer Science, pages 76–95. Springer-
Verlag, 1985.

[Bla05] Blauw Research. Online thuiswinkelen naar recordomzet van 1,7 mil-
jard euro. Press release, available at http://www.blauw.nl/, March
2005.

[BLM02] R. Bruni, C. Laneve, and U. Montanari. Orchestrating transactions in
join calculus. In L. Brim, P. Jancar, M. Kretinsky, and A. Kucera, editors,
Proceedings of CONCUR 2002, volume 2421 of Lecture Notes in Computer

252 Bibliography

Science, pages 321–335, Brno, Czech Republic, August 2002. Springer-
Verlag.

[BM01] R. Bruni and U. Montanari. Zero-safe net models for transactions in
Linda. In U. Montanari and V. Sassone, editors, Proceedings of ConCoord
2001, International Workshop on Concurrency and Coordination, volume 54
of Electronic Notes in Theoretical Computer Science, Lipari Island, Italy,
August 2001. Elsevier Science.

[BM03] H.M.A. van Beek and S. Mauw. Automatic conformance testing of In-
ternet applications. In A. Petrenko and A. Ulrich, editors, Proceedings of
the 3rd International Workshop on Formal Approaches to Testing of Software
(FATES 2003), volume 2931 of Lecture Notes in Computer Science, pages
205–222, Montreal, Canada, October 2003. Springer-Verlag.

[BM04] P.V. Biron and A. Malhotra. XML schema part 2: Datatypes second edi-
tion. W3C Recommendation, http://www.w3.org/TR/xmlschema-0/,
October 2004.

[BMM94] T. Berners-Lee, L. Masinter, and M. McCahill. Uniform Resource Loca-
tors (URL). Internet RFC 1738, December 1994.

[BMS02] C. Brabrand, A. Møller, and M.I. Schwartzbach. The <bigwig> project.
ACM Transactions on Internet Technology (TOIT), 2(2):79–114, May 2002.

[BPW94] J.A. Bergstra, A. Ponse, and J.J. van Wamel. Process algebra with back-
tracking. In J. W. de Bakker, W.P. de Roever, and G. Rozenberg, ed-
itors, REX Workshop, number 803 in Lecture Notes in Computer Sci-
ence, pages 46–91, Noordwijkerhout, The Netherlands, 1994. Springer-
Verlag.

[Bra89] R.T. Braden. Requirements for Internet hosts – communication layers.
Internet RFC 1122, October 1989.

[BSS87] E. Brinksma, G. Scollo, and C. Steenbergen. LOTOS specifications, their
implementations and their tests. Protocol Specification, Testing and Veri-
fication VI, IFIP 1987, pages 349–360, 1987.

[BT00] E. Brinksma and J. Tretmans. Testing transition systems: An annotated
bibliography. In F. Cassez, C. Jard, B. Rozoy, and M. Ryan, editors, Sum-
mer School MOVEP’2k – Modelling and Verification of Parallel Processes,
pages 44–50, Nantes, July 2000.

[BV93] J.C.M. Baeten and C. Verhoef. A congruence theorem for structured op-
erational semantics with predicates. In E. Best, editor, Proceedings of the
International Conference on Concurrency Theory – CONCUR’93, number

Bibliography 253

715 in Lecture Notes in Computer Science, pages 477–492, Hildesheim,
Germany, 1993. Springer-Verlag.

[BV95] J.C.M. Baeten and C. Verhoef. Concrete process algebra. In S. Abram-
sky, D.M. Gabbay, and T.S.E. Maibaum, editors, Semantic Modelling, vol-
ume 4 of Handbook of Logic in Computer Science, pages 149–268. Oxford
University Press, 1995.

[BW90] J.C.M. Baeten and W.P. Weijland. Process algebra. Cambridge Tracts in
Theoretical Computer Science 18. Cambridge University Press, 1990.

[Car94] L. Cardelli. Obliq: a language with distributed scope. SRC Research
Report 122, Digital Equipment, June 1994.

[CD99] L. Cardelli and R. Davies. Service combinators for web computing.
IEEE Transactions on Software Engineering, 25(3):309–316, May 1999.

[Che99] S. Cheung. Java Transaction Service (JTS). Sun Microsystems, Inc., De-
cember 1999.

[CLM+02] L. Cranor, M. Langheinrich, M. Marchiori, M. Presler-Marshall, and
J. Reagle. The Platform for Privacy Preferences 1.0 (P3P1.0) Specifica-
tion. W3C Recommendation, http://www.w3.org/TR/P3P, April 2002.

[CM96] M. Cortes and P. Mishra. DCWPL: a programming language for de-
scribing collaborative work. In Proceedings of ACM CSCW’96 Conference
on Computer-Supported Cooperative Work, Language Support for Group-
ware, pages 21–29, 1996.

[CMS03] A.S. Christensen, A. Møller, and M.I. Schwartzbach. Extending Java for
high-level Web service construction. ACM Transactions on Programming
Languages and Systems, 25(6):814–875, November 2003.

[Col02] Coldbeans Software. Vote servlet. http://www.servletsuite.com/

servlets/vote.htm, 2002.

[Col03] CollabNet, Inc. MaxQ. http://maxq.tigris.org/, 1999–2003.

[DEW97] R.B. Doorenbos, O. Etzioni, and D.S. Weld. A scalable comparison-
shopping agent for the world-wide web. In W. Lewis Johnson and
B. Hayes-Roth, editors, Proceedings of the First International Conference
on Autonomous Agents (Agents’97), pages 39–48, Marina del Rey, CA,
USA, February 1997. ACM Press.

[Die01] Dieselpoint, Inc. dieseltest. http://www.dieseltest.com/, 2001.

254 Bibliography

[DKV00] A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: An
annotated bibliography. SIGPLAN Notices, 35(6):26–36, 2000.

[DP92] P. Degano and C. Priami. Proved trees. In W. Kuich, editor, Proceedings
ICALP’92, number 623 in Lecture Notes in Computer Science, pages
629–640, Vienna, 1992. Springer-Verlag.

[EGLT76] K.P. Eswaran, J.N. Gray, R.A. Lorie, and I.L. Traiger. On the notions of
consistency and predicate locks in a data base system. Communications
of the ACM, 19(11), November 1976. Also published in/as: IBM, Res.R.
RJ1487, San Jose, CA, December 1974.

[Eur99] European Computer Manufacturers Association. ECMAScript Lan-
guage Specification. Standard ECMA–262, third edition, ISO/IEC
16262, December 1999.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. Internet RFC
2616, June 1999.

[FGR04] W.F. Fokkink, J.F. Groote, and M.A. Reniers. Process algebra needs
proof methodology. Bulletin of the EATCS, 82:108–125, February 2004.
Also appeared as Computer Science Report 04/04, Department of
Mathematics and Computer Science, Technische Universiteit Eind-
hoven, 2004.

[FKK96] A.O. Freier, P. Kariton, and P.C. Kocher. The SSL protocol: Version
3.0. Internet draft, Netscape Communications, 1996. Available at
http://www.netscape.com/eng/ssl3/.

[Fla98] D. Flanagan. JavaScript Definitive Guide. O’Reilly, July 1998.

[Fok94] W.J. Fokkink. The tyft/tyxt format reduces to tree rules. In M. Hagiya
and J.C. Mitchell, editors, Proc. 2nd Symposium on Theoretical Aspects of
Computer Software – TACS’94, number 789 in Lecture Notes in Com-
puter Science, pages 440–453, Sendai, April 1994. Springer-Verlag.

[Ful02] J. Fulmer. Siege. http://www.joedog.org/siege/, 2002.

[FW04] D.C. Fallside and P. Walmsley. XML schema part 0: Primer second edi-
tion. W3C Recommendation, http://www.w3.org/TR/xmlschema-0/,
October 2004.

[Gar95] S. Garfinkel. PGP: Pretty Good Privacy. O’Reilly & Associates, Inc., New-
ton, MA, USA, 1995.

Bibliography 255

[GHM+03a] M. Gudgin, M. Hadley, N. Mendelsohn, J-J. Moreau, and H.F. Nielsen.
SOAP Version 1.2 Part 1: Messaging Framework. W3C Recommenda-
tion, http://www.w3.org/TR/soap12-part1, June 2003.

[GHM+03b] M. Gudgin, M. Hadley, N. Mendelsohn, J-J. Moreau, and H.F.
Nielsen. SOAP Version 1.2 Part 2: Adjuncts. W3C Recommendation,
http://www.w3.org/TR/soap12-part2, June 2003.

[GLW02] P. Gardner, C. Laneve, and L. Wischik. The fusion machine (extended
abstract). In L. Brim, P. Jančar, M. Křetinský, and A. Kučera, editors,
CONCUR 2002: Concurrency Theory (13th International Conference), vol-
ume 2421 of LNCS, pages 418–433, Brno, Czech Republic, August 2002.
Springer.

[GR93] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann, 1993.

[Gra81] J. Gray. The transaction concept: Virtues and limitations. In Interna-
tional Conference On Very Large Data Bases (VLDB ’81), pages 144–154,
Los Angeles, CA, USA, September 1981. IEEE Computer Society Press.

[Hee98] L. Heerink. Ins and outs in refusal testing. PhD thesis, University of
Twente, The Netherlands, 1998.

[HHJ+87] C.A.R. Hoare, I.J. Hayes, H. Jifeng, C.C. Morgan, A.W. Roscoe, J.W.
Sanders, I.H. Sorensen, J.M. Spivey, and B.A. Surfin. Laws of program-
ming. In Communications of the ACM, 30(8), pages 672–686, 1987.

[HHK+03] H. Haas, O. Hurley, A. Karmarkar, J. Mischkinsky, M. Jones,
L. Thompson, and R. Martin. SOAP Version 1.2 Specifica-
tion Assertions and Test Collection. W3C Recommendation,
http://www.w3.org/TR/soap12-testcollection, June 2003.

[HL02] M. Howard and D. LeBlanc. Writing Secure Code, Second Edition. Mi-
croSoft Press, 2002.

[Hoa78] C.A.R. Hoare. Communicating sequential processes. Communications
of the ACM, 21(8), August 1978.

[HR83] T. Haerder and A. Reuter. Principles of transaction-oriented database
recovery. ACM Computing Surveys, 15(4):287–317, December 1983.

[Int86] International Organization for Standardization. Information process-
ing – text and office systems – Standard Generalized Markup Language
(SGML). ISO 8879, December 1986.

256 Bibliography

[ISO96] ISO/IEC JTC1/SC21 WG7, ITU-T SG 10/Q.8. Information retrieval,
transfer and management for OSI; framework: Formal methods in con-
formance testing. Committee Draft CD 13245-1, ITU-T proposed rec-
ommendation Z.500, ISO – ITU-T, Geneva, 1996.

[IT00] ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart
(MSC2000). ITU-TS, Geneva, 2000.

[JL02] X. Jia and H. Liu. Rigorous and automatic testing of web applications.
In Proceedings of the 6th IASTED International Conference on Software En-
gineering and Applications (SEA 2002), pages 280–285, Cambridge, MA,
USA, November 2002.

[Jon93] D. Jonscher. Extending access control with duties – realized by ac-
tive mechanisms. In B. Thuraisingham and C.E. Landwehr, editors,
Database Security VI: Status and Prospects, pages 91–111, North-Holland,
1993.

[KB94] Bharat K. and M.H. Brown. Building distributed, multi-user applica-
tions by direct manipulation. In Proceedings of the ACM Symposium on
User Interface Software and Technology, Groupware and 3D Tools, pages
71–81, 1994.

[KBR+04] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, and Y. Lafon. Web
services choreography description language (WS-CDL), version 1.0.
W3C Working Draft, http://www.w3.org/TR/ws-cdl-10, December
2004.

[KM98] T. Kistler and H. Marais. WebL – a programming language for the Web.
Computer Networks and ISDN Systems, 30(1–7):259–270, April 1998.

[LCP03] P. Lomax, M. Childs, and R. Petrusha. VBScript in a Nutshell, 2nd Edi-
tion. O’Reilly, April 2003.

[Ley01] F. Leymann. Web Services Flow Language (WSFL 1.0). IBM, avail-
able at http://www.ibm.com/software/solutions/webservices/

pdf/WSFL.pdf, May 2001.

[LLW+04] A. Le Hors, P. Le Hégaret, L. Wood, G. Nicol, J. Robie, M. Champion,
and S. Byrne. Document object model (DOM) level 3 core specification.
W3C Recommendation, http://www.w3.org/TR/DOM-Level-3-Core,
April 2004.

[LM98] D. Li and R.R. Muntz. COCA: Collaborative objects coordination ar-
chitecture. In Proceedings of ACM CSCW’98 Conference on Computer-
Supported Cooperative Work, Infrastructures for Collaboration, pages
179–188, 1998.

Bibliography 257

[LR95] D.A. Ladd and J.C. Ramming. Programming the web: An application-
oriented language for hypermedia service programming. In Proceedings
of the 4th WWW Conference, WWW Consortium, pages 567–586, 1995.

[LWM98] D. Li, Z. Wang, and R. Muntz. Building online auctions from the per-
spective of COCA. Technical report, UCLA Department of Computer
Science, September 1998.

[Mac05] Macromedia, Inc. ColdFusion MX. http://www.macromedia.com/

software/coldfusion/, 1995–2005.

[MB01] S. Mauw and V. Bos. Drawing message sequence charts with LATEX.
TUGboat, 22(1/2):87–92, March 2001.

[Mea55] G.H. Mealy. A method for synthesizing sequential circuits. Bell System
Technical Journal, 34(5):1045–1079, September 1955.

[Mic05] Microsoft Corporation. ASP.NET Web: The official Microsoft ASP.NET
site. Available at http://www.asp.net/, 2003–2005.

[Mil80] R. Milner. A calculus of communicating systems. Lecture Notes in Com-
puter Science, 92, 1980.

[Min05] Miniwatts International, Inc. Internet world stats – usage and popula-
tion statistics. http://www.internetworldstats.com/, 2001–2005.

[Mit03] N. Mitra. SOAP Version 1.2 Part 0: Primer. W3C Recommendation,
http://www.w3.org/TR/soap12-part0, June 2003.

[Mos81] J.E.B. Moss. Nested Transactions: An Approach to Reliable Computing. PhD
thesis, MIT, 1981.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes.
Information and Computation, 100(1):1–77, September 1992.

[MRW01] S. Mauw, M.A. Reniers, and T.A.C.. Willemse. Message sequence charts
in the software engineering process. In S.K. Chang, editor, Handbook of
Software Engineering and Knowledge Engineering, pages 437–463. World
Scientific Publishing Co., 2001.

[MWW04] S. Mauw, W.T. Wiersma, and T.A.C. Willemse. Language-driven sys-
tem design. International Journal of Software Engineering and Knowledge
Engineering, 14(6):1–39, 2004.

[Neu05] P.G. Neumann. The risk digest, forum on risks to the public in comput-
ers and related systems. http://catless.ncl.ac.uk/Risks/, 1985–
2005. ACM Committee on Computers and Public Policy.

258 Bibliography

[NMS02] O. Niese, T. Margaria, and B. Steffen. Automated functional testing of
web-based applications. In Proceedings of the 5th Int. Conference On Soft-
ware and Internet Quality Week Europe (QWE2002), Brussels, Belgium,
March 2002.

[O’B99] L. O’Brien. Vox populi. Java Pro Magazine, June 1999.

[Obj05] Object Mentor, Inc. JUnit, testing resources for extreme programming.
http://www.junit.org/, 2001–2005.

[OSGL03] The Original Software Group Ltd. TestWEB.
http://www.testweb.com/, 2003.

[Pet80] C.A. Petri. Introduction to general net theory. In W. Brauer, editor,
Net theory and applications: Proceedings of the advanced course on general
net theory, processes and systems, volume 84 of Lecture Notes in Computer
Science, pages 1–20. Springer-Verlag, 1980.

[PHP05] The PHP Group. PHP: Hypertext Preprocessor. http://www.php.net/,
2001–2005.

[Plo81] G.D. Plotkin. A structural approach to operational semantics. Tech-
nical Report DAIMI FN-19, Aarhus University, Computer Science De-
partment, Denmark, 1981. Published in 2004.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th
IEEE Symposium on the Foundations of Computer Science (FOCS-77), pages
46–57, Providence, Rhode Island, 1977. IEEE Computer Society Press.

[RC04] D. Robinson and K. Coar. The Common Gateway Interface (CGI) ver-
sion 1.1. Internet RFC 2875, October 2004.

[RFPG96] J. Rice, A. Farquhar, P. Piernot, and T. Gruber. Using the web instead
of a window system. In Human Factors in Computing Systems, CHI’96
Conference Proceedings, pages 103–110, Vancouver, B.C, Canada, 1996.

[RLHJ99] D. Raggett, A. Le Hors, and I. Jacobs. HTML 4.01 specification. W3C
Recommendation, http://www.w3.org/TR/html401, December 1999.

[Rog01] J. Rogers. Microsoft Jscript.Net Programming. Macmillan Computer Pub,
December 2001.

[RT01] F. Ricca and P. Tonella. Analysis and testing of web applications. In
Proceedings of the 23rd International Conference on Software Engeneering
(ICSE-01), pages 25–34, Toronto, Ontario, Canada, May 2001. IEEE
Computer Society.

Bibliography 259

[SCFY96] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-based
access control models. IEEE Computer, 29(2):38–47, February 1996.

[SGMS94] K. Salem, H. Garcı́a-Molina, and J. Shands. Altruistic locking. ACM
Transactions on Database Systems, 19(1):117–165, March 1994.

[Sit05] SiteOption. Auction Engine. http://www.siteoption.com/

AuctionEngine.cfm, 1995–2005.

[SM77] R.M. Shapiro and R.E. Millstein. Reliability and fault recovery in dis-
tributed processing. In OCEANS’77, Conference Record, volume II, pages
31D.1–31D.5, Los Angeles, CA, USA, October 1977.

[SUN05a] SUN Microsystems, Inc. Java Servlet Technology.
http://java.sun.com/products/servlet/, 1994–2005.

[SUN05b] SUN Microsystems, Inc. Java Transaction API (JTA).
http://java.sun.com/products/jta/, 1994–2005.

[SUN05c] SUN Microsystems, Inc. JavaServer Pages Technology.
http://java.sun.com/products/jsp/, 1994–2005.

[TBMM04] H.S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML
schema part 1: Structures second edition. W3C Recommendation,
http://www.w3.org/TR/xmlschema-0/, October 2004.

[Tha01] S. Thatte. XLANG, web services for business process design. Microsoft
Corporation, 2001.

[Thi02] P. Thiemann. WASH/CGI: Server-side Web scripting with sessions and
typed, compositional forms. In S. Krishnamurthi and C.R. Ramakrish-
nan, editors, Practical Aspects of Declarative Languages: 4th International
Symposium, volume 2257 of Lecture Notes in Computer Science, pages
192–208, Portland, OR, USA, January 2002. Springer-Verlag.

[Tho97] R. Thomas. Team-based access control (TMAC): A primitive for apply-
ing role-based access controls in collaborative environments. In Pro-
ceedings of the Second ACM Workshop on Role-Based Access Control, pages
13–19, Fairfax, Virginia, USA, November 1997.

[Tre94] J. Tretmans. A formal approach to conformance testing. In O. Rafiq,
editor, International Workshop on Protocol Test Systems VI, volume C-19
of IFIP Transactions, pages 257–276. North-Holland, 1994.

[Tre95] J. Tretmans. Testing labelled transition systems with inputs and out-
puts. In A. Cavalli and S. Budkowski, editors, Participants Proceedings of
the Int. Workshop on Protocol Test Systems VIII – COST 247 Session, pages
461–476, Evry, France, September 1995.

260 Bibliography

[Tre96] J. Tretmans. Test generation with inputs, outputs and repetitive quies-
cence. Software—Concepts and Tools, 17(3):103–120, 1996.

[TS97] R. Thomas and R. Sandhu. Task-based authorization controls (TBAC):
Models for active and enterprise-oriented authorization management.
In Proceedings of the 11th IFIP Working Conference on Database Security,
pages 136–151, Lake Tahoe, California, USA, August 1997.

[Ude99] J. Udell. Practical Internet Groupware. O’Reilly & Associates, Inc., Octo-
ber 1999.

[Ver97] J.J. Vereijken. Discrete-Time Process Algebra. PhD thesis, Technische Uni-
versiteit Eindhoven, 1997.

[Vra97] J.L.M. Vrancken. The algebra of communicating processes with empty
process. Theoretical Computer Science, 177(2):187–328, May 1997.

[VS+03] S. Viswanadha, S. Sankar, et al. Java Compiler Compiler [tm] (JavaCC
[tm]) – The Java Parser Generator. http://javacc.dev.java.net/,
1999–2003.

[Wal98] N. Walsh. A technical introduction to XML. In World Wide Web Journal,
October 1998.

[Wei86] G. Weikum. A theoretical foundation of multilevel concurrency con-
trol. In Proceedings of the 5th ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems, pages 31–42, Cambridge, Massachusetts,
March 1986.

[WLB99] H. Wium Lie and B. Bos. Cascading style sheets, level 1. W3C Recom-
mendation, http://www.w3.org/TR/CSS1, January 1999.

[WO02] Y. Wu and J. Offutt. Modeling and testing web-based applications. ISE
Technical ISE-TR-02-08, GMU, November 2002.

[WS92] G. Weikum and H.-J. Schek. Concepts and applications of multilevel
transactions and open nested transactions. In A.K. Elmagarmid, edi-
tor, Transaction Models for Advanced Database Applications. Morgan Kauf-
mann, February 1992.

[YBP+04] F. Yergeau, T. Bray, J. Paoli, C.M. Sperberg-McQueen, and E. Maler. Ex-
tensible markup language (XML) 1.0 (third edition). W3C Recommen-
dation, http://www.w3.org/TR/2004/REC-xml, February 2004.

Index

A
access control .30

DiCons . 44
formalisation of. .72
role-based . 30
team-based . 31

ACID properties . 37, 80
action

internal .117
lockable . 85
locking . 112, 118
unlocking . 85, 118

action function . 61
Active Server Pages . 3, 189
adapter . 151
alphabet . 49
alternating structure . 155
alternative compositionsee composition,

alternative
API see application programming interface
application programming interface 190
ASP . see Active Server Pages
associativity

of alternative composition 51
of sequential composition . 51

atomicity . 37, 80
authorisation control

task-based . 32
axioms

for conditional branching . 54
for conditional disrupt . 56
for conditional repetition . 55
for deadlock . 52
for locking . 89
for parallel composition . 90
for the empty process . 53
for transactional composition 86
for unlocking . 89
of BPA. 51

B
Basic Process Algebra . 49
blocking. .138

of a process . 139
of a user . 140

BPA . see Basic Process Algebra
browse . 111

C
Cascading Style Sheets . 3, 183
CGI see Common Gateway Interface
chaos. .111
client identification see identification, client
ColdFusion . 189
commit . 81
Common Gateway Interface 189
communication primitives see interaction

primitives
commutativity

of alternative composition 51
composition

alternative . 50
sequential . 50
transactional .83

concept .33
fixed . 11
irrelevant . 11
variable . 11

conditional branching . 54
conditional disrupt . 56
conditional repetition . 54
conformance . 152

relation . 158
congruence . 100
consistency . 37, 80
CSS . see Cascading Style Sheets
cursor stability . 111

262 Index

D
deadlock . 52

absence of . 99
deduction rules

for T(BPAδε) . 53, 65
for alternative composition 53, 65, 125
for anonymous replication 74, 132
for conditional branching 55, 65, 126
for conditional disrupt 56, 65, 126
for conditional repetition 55, 65, 126
for extended generalised parallel composition77,

135
for extended replication 77, 133
for generalised parallel composition 76, 135
for interaction primitives 71, 124
for internal actions . 123
for locking . 90, 130
for parallel composition 73, 91, 131
for replication . 75, 133
for scope operator 62, 64, 127
for sequential composition 53, 65, 125
for the empty process 53, 65, 123
for the time step. .64, 123
for transactional composition.88, 128
for unlocking . 90, 130

denial of service . 29
derivably equal . 52
DiCons . 4, 115
dirty data . 81
distributed consensus. .4
Document Object Model . 204
Document Type Definition . 203
DOM see Document Object Model
domain analysis . 9
domain identification . 11
domain-specific language . 9
driver . 151
DSL see domain-specific language
DTD see Document Type Definition
durability . 38, 80

E
ECMAScript . 187
effect function . 61, 105
elevation of privilege . 29
empty process . 52
evaluation . 59
evaluation function . 59
Extensible Markup Language.201
Extensible Style sheet Language 203

F
fail . 152
formal methods . 3

G
group . 72

registered. .76

H
HTML see Hypertext Markup Language
HTTP see Hypertext Transfer Protocol
hyperlink . 182
hypertext .182
Hypertext Markup Language. 3, 15, 38, 183

tags . 183
Hypertext Transfer Protocol 14, 17, 38, 182, 192

GET request . 193
POST request . 194

I
idempotency

of alternative composition 51
identification . 34

client . 42
identifier intersection . 103
if-then-else-fi . 54
implementation relation . 152
inconclusive . 152
independent responsiveness 141
information disclosure . 28
instance . 35
interaction

active server push . 40, 67
anonymous . 74
reactive server pull . 41, 68
reactive server push . 40, 67
session-oriented server pull 41, 68
session-oriented server push 41, 68

interaction primitives . 40, 118
IOTS see transition system, input-output
isolated . 112
isolation . 37, 80

degrees of . 111

J
Java Compiler Compiler . 200
Java Server Pages . 3, 190
JavaCC see Java Compiler Compiler

Index 263

JavaScript . 187
JScript . 187
JSP . see Java Server Pages

L
level of abstraction . 38
lock

exclusive . 112
read . 81
shared . 112
write . 81

lock counter . 85
lost updates . 81
LTS see transition system, labelled

M
Mealy machine . 156
message sequence chart . 18, 43
MIOTS . . . see transition system, multi input-output
MRRTS see transition system, multi

request-response
MSC see message sequence chart

O
operator . 50

alternative composition 50, 119
anonymous replication 74, 120
bang see operator, replication
choice see operator, alternative composition
conditional branching 54, 119
conditional disrupt . 56, 120
conditional repetition 54, 120
extended bangsee operator, extended replication
extended generalised merge see operator,

extended generalised parallel composition
extended generalised parallel composition . . 76,

120
extended replication . 76, 120
extended transactional composition.121
generalised merge see operator, generalised

parallel composition
generalised parallel composition 75, 120
left-merge . 89
locking. .88, 121
merge 89, see operator, parallel composition
parallel composition . 73, 120
precedence scheme . 51
replication . 75, 120
scope . 60, 120
sequential composition 50, 119

transactional composition 83, 121
unlocking . 88, 121

P
partitioning . 155
pass . 152
path format . 100
PGP . see Pretty Good Privacy
PHP see PHP Hypertext Preprocessor
PHP Hypertext Preprocessor. .3
pragmatics . 12
Pretty Good Privacy . 29
primer . 151
problem domain. .11
problem instance . 36
problem space . 11
process . 35

empty. .see empty process
regular . 101

process algebra . 35, 49
process term . 49, 117
program counter . 36, 57
projection . 155
protocol

connection-less . 14
stateless . 14

R
RBAC see access control, role-based
registered group.see group, registered
registration . 42, 76
regular process see process, regular
repeatable reads . see isolated
repudiation. .28
request label . 156
response

enabled . 163
expected . 157

response label . 156
right distributivity

of sequential composition . 51
rollback . 81
RRTS see transition system, request-response

S
Secure Socket Layers . 29
sequential composition see composition, sequential
serialisable . see isolated
servlet . 190
session . 17, 35, 40, 155

264 Index

implementation of . 194
label . 73

session validity . 143
SGMLsee Standard Generalized Markup Language
SOS see Structural Operational Semantics
specification . 151
spoofing identity . 27
SQL see Structured Query Language
SSL. see Secure Socket Layers
Standard Generalized Markup Language 203
state . 57, 59

initial .154
space. .34, 36

STRIDE model . 27
Structural Operational Semantics 53
Structured Query Language 189
substitution . 60, 104

T
tampering with data . 27
TBAC see authorisation control, task-based
termination

successful . 52, 117
unsuccessful .117

test
case . 152, 158, 158
derivation . 158, 160, 162

algorithm . 160, 162
execution . 151, 158
hypothesis . 152
suite . 152, 158

complete . 159
exhaustive . 159
sound . 159

testing
batch-wise. .164
black-box . 150, 153
conformance . 150, 152
dynamic . 150
on-the-fly . 164

thin client . 16, 150
time . 45, 63, 116
TMAC see access control, team-based
trace . 138
transaction . 36, 80

nesting of . 80
transactional composition see composition,

transactional
transfer condition . 100
transition. .121

label .121
relation . 154

transition system

input/output . 156
labelled . 154, 169

without rollback transitions 170
multi input/output . 156
multi request/response 156, 171
request/response . 156

two-phase . 111
type . 116
type determination . 60

U
Uniform Resource Locator . 192
universe

of groups . 72, 116
of identifiers . 58
of input parameters . 68, 116
of messages . 68, 116
of output parameters . 68, 116
of session labels . 116
of states . 116
of types. .58
of users . 68, 116
of valuations . 116

unlocking set . 85
unwrapping . 171
updates function . 106
URL see Uniform Resource Locator
user . 42

anonymous . 34, 42

V
valuation . 58

uninitialised . 59
valuation set . 103
valuation stack . 59
VBScript . 187
verdict . 152

W
WAM see workflow authorisation model
well-formed . 111
while-do-od . 54
workflow authorisation model32

X
XML see Extensible Markup Language
XML Schemas . 203
XSL see Extensible Style sheet Language

Titles in the IPA Dissertation Series

J.O. Blanco. The State Operator in Process Algebra.
Faculty of Mathematics and Computing Science,
TUE. 1996-01

A.M. Geerling. Transformational Development of
Data-Parallel Algorithms. Faculty of Mathematics
and Computer Science, KUN. 1996-02

P.M. Achten. Interactive Functional Programs: Mod-
els, Methods, and Implementation. Faculty of Mathe-
matics and Computer Science, KUN. 1996-03

M.G.A. Verhoeven. Parallel Local Search. Fac-
ulty of Mathematics and Computing Science, TUE.
1996-04

M.H.G.K. Kesseler. The Implementation of Func-
tional Languages on Parallel Machines with Distrib.
Memory. Faculty of Mathematics and Computer
Science, KUN. 1996-05

D. Alstein. Distributed Algorithms for Hard Real-
Time Systems. Faculty of Mathematics and Com-
puting Science, TUE. 1996-06

J.H. Hoepman. Communication, Synchronization,
and Fault-Tolerance. Faculty of Mathematics and
Computer Science, UvA. 1996-07

H. Doornbos. Reductivity Arguments and Program
Construction. Faculty of Mathematics and Comput-
ing Science, TUE. 1996-08

D. Turi. Functorial Operational Semantics and its De-
notational Dual. Faculty of Mathematics and Com-
puter Science, VUA. 1996-09

A.M.G. Peeters. Single-Rail Handshake Circuits.
Faculty of Mathematics and Computing Science,
TUE. 1996-10

N.W.A. Arends. A Systems Engineering Specifica-
tion Formalism. Faculty of Mechanical Engineering,
TUE. 1996-11

P. Severi de Santiago. Normalisation in Lambda
Calculus and its Relation to Type Inference. Fac-
ulty of Mathematics and Computing Science, TUE.
1996-12

D.R. Dams. Abstract Interpretation and Partition Re-
finement for Model Checking. Faculty of Mathematics
and Computing Science, TUE. 1996-13

M.M. Bonsangue. Topological Dualities in Seman-
tics. Faculty of Mathematics and Computer Sci-
ence, VUA. 1996-14

B.L.E. de Fluiter. Algorithms for Graphs of Small
Treewidth. Faculty of Mathematics and Computer
Science, UU. 1997-01

W.T.M. Kars. Process-algebraic Transformations in
Context. Faculty of Computer Science, UT. 1997-02

P.F. Hoogendijk. A Generic Theory of Data Types.
Faculty of Mathematics and Computing Science,
TUE. 1997-03

T.D.L. Laan. The Evolution of Type Theory in Logic
and Mathematics. Faculty of Mathematics and Com-
puting Science, TUE. 1997-04

C.J. Bloo. Preservation of Termination for Explicit Sub-
stitution. Faculty of Mathematics and Computing
Science, TUE. 1997-05

J.J. Vereijken. Discrete-Time Process Algebra. Fac-
ulty of Mathematics and Computing Science, TUE.
1997-06

F.A.M. van den Beuken. A Functional Approach to
Syntax and Typing. Faculty of Mathematics and In-
formatics, KUN. 1997-07

A.W. Heerink. Ins and Outs in Refusal Testing. Fac-
ulty of Computer Science, UT. 1998-01

G. Naumoski and W. Alberts. A Discrete-Event
Simulator for Systems Engineering. Faculty of Me-
chanical Engineering, TUE. 1998-02

J. Verriet. Scheduling with Communication for Multi-
processor Computation. Faculty of Mathematics and
Computer Science, UU. 1998-03

J.S.H. van Gageldonk. An Asynchronous Low-
Power 80C51 Microcontroller. Faculty of Mathemat-
ics and Computing Science, TUE. 1998-04

A.A. Basten. In Terms of Nets: System Design with
Petri Nets and Process Algebra. Faculty of Mathemat-
ics and Computing Science, TUE. 1998-05

E. Voermans. Inductive Datatypes with Laws and
Subtyping – A Relational Model. Faculty of Mathe-
matics and Computing Science, TUE. 1999-01

H. ter Doest. Towards Probabilistic Unification-based
Parsing. Faculty of Computer Science, UT. 1999-02

J.P.L. Segers. Algorithms for the Simulation of Surface
Processes. Faculty of Mathematics and Computing
Science, TUE. 1999-03

C.H.M. van Kemenade. Recombinative Evolutionary
Search. Faculty of Mathematics and Natural Sci-
ences, UL. 1999-04

E.I. Barakova. Learning Reliability: a Study on Indeci-
siveness in Sample Selection. Faculty of Mathematics
and Natural Sciences, RUG. 1999-05

M.P. Bodlaender. Scheduler Optimization in Real-
Time Distributed Databases. Faculty of Mathematics
and Computing Science, TUE. 1999-06

M.A. Reniers. Message Sequence Chart: Syntax and
Semantics. Faculty of Mathematics and Computing
Science, TUE. 1999-07

J.P. Warners. Nonlinear approaches to satisfiability
problems. Faculty of Mathematics and Computing
Science, TUE. 1999-08

J.M.T. Romijn. Analysing Industrial Protocols with
Formal Methods. Faculty of Computer Science, UT.
1999-09

P.R. D’Argenio. Algebras and Automata for Timed
and Stochastic Systems. Faculty of Computer Sci-
ence, UT. 1999-10

G. Fábián. A Language and Simulator for Hybrid
Systems. Faculty of Mechanical Engineering, TUE.
1999-11

J. Zwanenburg. Object-Oriented Concepts and Proof
Rules. Faculty of Mathematics and Computing Sci-
ence, TUE. 1999-12

R.S. Venema. Aspects of an Integrated Neural Predic-
tion System. Faculty of Mathematics and Natural
Sciences, RUG. 1999-13

J. Saraiva. A Purely Functional Implementation of
Attribute Grammars. Faculty of Mathematics and
Computer Science, UU. 1999-14

R. Schiefer. Viper, A Visualisation Tool for Parallel
Program Construction. Faculty of Mathematics and
Computing Science, TUE. 1999-15

K.M.M. de Leeuw. Cryptology and Statecraft in the
Dutch Republic. Faculty of Mathematics and Com-
puter Science, UvA. 2000-01

T.E.J. Vos. UNITY in Diversity. A stratified approach
to the verification of distributed algorithms. Faculty of
Mathematics and Computer Science, UU. 2000-02

W. Mallon. Theories and Tools for the Design of Delay-
Insensitive Communicating Processes. Faculty of
Mathematics and Natural Sciences, RUG. 2000-03

W.O.D. Griffioen. Studies in Computer Aided Verifi-
cation of Protocols. Faculty of Science, KUN. 2000-04

P.H.F.M. Verhoeven. The Design of the MathSpad Ed-
itor. Faculty of Mathematics and Computing Sci-
ence, TUE. 2000-05

J. Fey. Design of a Fruit Juice Blending and Packag-
ing Plant. Faculty of Mechanical Engineering, TUE.
2000-06

M. Franssen. Cocktail: A Tool for Deriving Correct
Programs. Faculty of Mathematics and Computing
Science, TUE. 2000-07

P.A. Olivier. A Framework for Debugging Hetero-
geneous Applications. Faculty of Natural Sciences,
Mathematics and Computer Science, UvA. 2000-08

E. Saaman. Another Formal Specification Language.
Faculty of Mathematics and Natural Sciences,
RUG. 2000-10

M. Jelasity. The Shape of Evolutionary Search Discov-
ering and Representing Search Space Structure. Fac-
ulty of Mathematics and Natural Sciences, UL.
2001-01

R. Ahn. Agents, Objects and Events a computational
approach to knowledge, observation and communica-
tion. Faculty of Mathematics and Computing Sci-
ence, TU/e. 2001-02

M. Huisman. Reasoning about Java programs in
higher order logic using PVS and Isabelle. Faculty of
Science, KUN. 2001-03

I.M.M.J. Reymen. Improving Design Processes
through Structured Reflection. Faculty of Mathemat-
ics and Computing Science, TU/e. 2001-04

S.C.C. Blom. Term Graph Rewriting: syntax and se-
mantics. Faculty of Sciences, Division of Mathemat-
ics and Computer Science, VUA. 2001-05

R. van Liere. Studies in Interactive Visualiza-
tion. Faculty of Natural Sciences, Mathematics and
Computer Science, UvA. 2001-06

A.G. Engels. Languages for Analysis and Testing of
Event Sequences. Faculty of Mathematics and Com-
puting Science, TU/e. 2001-07

J. Hage. Structural Aspects of Switching Classes.
Faculty of Mathematics and Natural Sciences, UL.
2001-08

M.H. Lamers. Neural Networks for Analysis of Data
in Environmental Epidemiology: A Case-study into

Acute Effects of Air Pollution Episodes. Faculty of
Mathematics and Natural Sciences, UL. 2001-09

T.C. Ruys. Towards Effective Model Checking. Fac-
ulty of Computer Science, UT. 2001-10

D. Chkliaev. Mechanical verification of concurrency
control and recovery protocols. Faculty of Mathemat-
ics and Computing Science, TU/e. 2001-11

M.D. Oostdijk. Generation and presentation of for-
mal mathematical documents. Faculty of Mathemat-
ics and Computing Science, TU/e. 2001-12

A.T. Hofkamp. Reactive machine control: A simula-
tion approach using χ. Faculty of Mechanical Engi-
neering, TU/e. 2001-13

D. Bošnački. Enhancing state space reduction tech-
niques for model checking. Faculty of Mathematics
and Computing Science, TU/e. 2001-14

M.C. van Wezel. Neural Networks for Intelligent
Data Analysis: theoretical and experimental aspects.
Faculty of Mathematics and Natural Sciences, UL.
2002-01

V. Bos and J.J.T. Kleijn. Formal Specification and
Analysis of Industrial Systems. Faculty of Mathemat-
ics and Computer Science and Faculty of Mechani-
cal Engineering, TU/e. 2002-02

T. Kuipers. Techniques for Understanding Legacy
Software Systems. Faculty of Natural Sciences,
Mathematics and Computer Science, UvA. 2002-03

S.P. Luttik. Choice Quantification in Process Alge-
bra. Faculty of Natural Sciences, Mathematics, and
Computer Science, UvA. 2002-04

R.J. Willemen. School Timetable Construction: Algo-
rithms and Complexity. Faculty of Mathematics and
Computer Science, TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est: Verification of Prob-
abilistic, Real-time and Parametric Systems. Faculty
of Science, Mathematics and Computer Science,
KUN. 2002-06

N. van Vugt. Models of Molecular Computing. Fac-
ulty of Mathematics and Natural Sciences, UL.
2002-07

A. Fehnker. Citius, Vilius, Melius: Guiding and Cost-
Optimality in Model Checking of Timed and Hybrid
Systems. Faculty of Science, Mathematics and Com-
puter Science, KUN. 2002-08

R. van Stee. On-line Scheduling and Bin Packing.

Faculty of Mathematics and Natural Sciences, UL.
2002-09

D. Tauritz. Adaptive Information Filtering: Concepts
and Algorithms. Faculty of Mathematics and Natu-
ral Sciences, UL. 2002-10

M.B. van der Zwaag. Models and Logics for Process
Algebra. Faculty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2002-11

J.I. den Hartog. Probabilistic Extensions of Semantical
Models. Faculty of Sciences, Division of Mathemat-
ics and Computer Science, VUA. 2002-12

L. Moonen. Exploring Software Systems. Faculty of
Natural Sciences, Mathematics, and Computer Sci-
ence, UvA. 2002-13

J.I. van Hemert. Applying Evolutionary Computation
to Constraint Satisfaction and Data Mining. Faculty
of Mathematics and Natural Sciences, UL. 2002-14

S. Andova. Probabilistic Process Algebra. Faculty of
Mathematics and Computer Science, TU/e. 2002-15

Y.S. Usenko. Linearization in µCRL. Faculty of
Mathematics and Computer Science, TU/e. 2002-16

J.J.D. Aerts. Random Redundant Storage for Video
on Demand. Faculty of Mathematics and Computer
Science, TU/e. 2003-01

M. de Jonge. To Reuse or To Be Reused: Techniques
for component composition and construction. Faculty
of Natural Sciences, Mathematics, and Computer
Science, UvA. 2003-02

J.M.W. Visser. Generic Traversal over Typed Source
Code Representations. Faculty of Natural Sciences,
Mathematics, and Computer Science, UvA. 2003-03

S.M. Bohte. Spiking Neural Networks. Faculty of
Mathematics and Natural Sciences, UL. 2003-04

T.A.C. Willemse. Semantics and Verification in Pro-
cess Algebras with Data and Timing. Faculty of Math-
ematics and Computer Science, TU/e. 2003-05

S.V. Nedea. Analysis and Simulations of Catalytic Re-
actions. Faculty of Mathematics and Computer Sci-
ence, TU/e. 2003-06

M.E.M. Lijding. Real-time Scheduling of Tertiary
Storage. Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2003-07

H.P. Benz. Casual Multimedia Process Annotation –
CoMPAs. Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2003-08

D. Distefano. On Modelchecking the Dynamics
of Object-based Software: a Foundational Approach.
Faculty of Electrical Engineering, Mathematics &
Computer Science, UT. 2003-09

M.H. ter Beek. Team Automata – A Formal Approach
to the Modeling of Collaboration Between System Com-
ponents. Faculty of Mathematics and Natural Sci-
ences, UL. 2003-10

D.J.P. Leijen. The λ Abroad – A Functional Approach
to Software Components. Faculty of Mathematics
and Computer Science, UU. 2003-11

W.P.A.J. Michiels. Performance Ratios for the Differ-
encing Method. Faculty of Mathematics and Com-
puter Science, TU/e. 2004-01

G.I. Jojgov. Incomplete Proofs and Terms and Their
Use in Interactive Theorem Proving. Faculty of Math-
ematics and Computer Science, TU/e. 2004-02

P. Frisco. Theory of Molecular Computing – Splicing
and Membrane systems. Faculty of Mathematics and
Natural Sciences, UL. 2004-03

S. Maneth. Models of Tree Translation. Faculty of
Mathematics and Natural Sciences, UL. 2004-04

Y. Qian. Data Synchronization and Browsing for Home
Environments. Faculty of Mathematics and Com-
puter Science and Faculty of Industrial Design,
TU/e. 2004-05

F. Bartels. On Generalised Coinduction and Probabilis-
tic Specification Formats. Faculty of Sciences, Divi-
sion of Mathematics and Computer Science, VUA.
2004-06

L. Cruz-Filipe. Constructive Real Analysis: a Type-
Theoretical Formalization and Applications. Faculty
of Science, Mathematics and Computer Science,
KUN. 2004-07

E.H. Gerding. Autonomous Agents in Bargaining
Games: An Evolutionary Investigation of Fundamen-
tals, Strategies, and Business Applications. Faculty of
Technology Management, TU/e. 2004-08

N. Goga. Control and Selection Techniques for the Au-
tomated Testing of Reactive Systems. Faculty of Math-
ematics and Computer Science, TU/e. 2004-09

M. Niqui. Formalising Exact Arithmetic: Represen-
tations, Algorithms and Proofs. Faculty of Science,
Mathematics and Computer Science, RU. 2004-10

A. Löh. Exploring Generic Haskell. Faculty of Math-
ematics and Computer Science, UU. 2004-11

I.C.M. Flinsenberg. Route Planning Algorithms for
Car Navigation. Faculty of Mathematics and Com-
puter Science, TU/e. 2004-12

R.J. Bril. Real-time Scheduling for Media Processing
Using Conditionally Guaranteed Budgets. Faculty of
Mathematics and Computer Science, TU/e. 2004-13

J. Pang. Formal Verification of Distributed Systems.
Faculty of Sciences, Division of Mathematics and
Computer Science, VUA. 2004-14

F. Alkemade. Evolutionary Agent-Based Economics.
Faculty of Technology Management, TU/e. 2004-15

E.O. Dijk. Indoor Ultrasonic Position Estimation Us-
ing a Single Base Station. Faculty of Mathematics
and Computer Science, TU/e. 2004-16

S.M. Orzan. On Distributed Verification and Verified
Distribution. Faculty of Sciences, Division of Math-
ematics and Computer Science, VUA. 2004-17

M.M. Schrage. Proxima - A Presentation-oriented Ed-
itor for Structured Documents. Faculty of Mathemat-
ics and Computer Science, UU. 2004-18

E. Eskenazi and A. Fyukov. Quantitative Prediction
of Quality Attributes for Component-Based Software
Architectures. Faculty of Mathematics and Com-
puter Science, TU/e. 2004-19

P.J.L. Cuijpers. Hybrid Process Algebra. Faculty of
Mathematics and Computer Science, TU/e. 2004-20

N.J.M. van den Nieuwelaar. Supervisory Machine
Control by Predictive-Reactive Scheduling. Faculty of
Mechanical Engineering, TU/e. 2004-21

E. Ábrahám. An Assertional Proof System for Mul-
tithreaded Java -Theory and Tool Support-. Faculty of
Mathematics and Natural Sciences, UL. 2005-01

R. Ruimerman. Modeling and Remodeling in Bone
Tissue. Faculty of Biomedical Engineering, TU/e.
2005-02

C.N. Chong. Experiments in Rights Control - Expres-
sion and Enforcement. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science, UT. 2005-03

H. Gao. Design and Verification of Lock-free Parallel
Algorithms. Faculty of Mathematics and Comput-
ing Sciences, RUG. 2005-04

H.M.A. van Beek. Specification and Analysis of Inter-
net Applications. Faculty of Mathematics and Com-
puter Science, TU/e. 2005-05

	Preface
	Contents
	1. Introduction
	I. Domain analysis
	2. Introduction to domain analysis
	3. Domain identification
	4. Concepts
	II. Modelling Internet applications
	5. Process algebra
	6. Modelling states and time
	7. Modelling Internet communication
	8. Modelling transactional behaviour
	9. Modelling Internet applications
	III. Tools and applications
	10. Conformance testing of Internet applications
	11. Generation of Internet applications
	IV. Conclusions
	12. Related work
	13. Conclusions
	V. Appendices
	A. Overview of PAtrans
	B. Proofs for PAtrans
	C. Proofs of test derivation theory
	Summary
	Samenvatting
	Curriculum vitae
	Bibliography
	Index

