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Introduction

The aim of this paper is twofold. It serves as an introduction to the
first principles of term rewrite systems, (TRS), focusing  on signatures,
term-algebras, congruences and rewrite sets.

Moreover; the conventional notion of a TRS is extended to that of a
PRS (priority rewrite system). In a PRS differ ent rules\méy have
relative priorities. Much attention is paid to precise semantics of
the PRS mechénism.

In several examples, stacks, queues and in particular Backus' FP

(functional programming) the use of the PRS mechanism is shown,

v

Motivation for the topic

In order to place the paper in an appropriate context we consider
the issue of equational (algebraic) abstract datatype specifications.
The simplest kind of specification is a pair (I,E) with ¥ a signature
and E a finite set of equations over this signature.

This type of specification.and its initial algébra semantics has
been thoroughly investigated in G”W[78] GTWr[75], see also K1[83], and
for a survey of recent literature on datatypes: KL[83].

In the subsequent development of datatype ‘specification theory three
sub-issues play a prominent role: A

(i) executable specifications.

{ii) modular structure of specifications.

(iii) expressive power of specifications.

The most promising way to turn an equational specification into an
executable module is to connect with it a term rewrite system which is
terminating.and confluent and which describes the same congruence on
closed terms. For a survey on these matters seeHO[80].

In BT{80] it was shown that every computable dataftype can be
specified equationally (through using auxiliary functions) in such a way

that one may provide each equation with a direction and then obtain a



confluent and términating rewrite system. In this sense equational

'specifications with initial algebra semantics are adequate. (Leaving out
the requirements on the rewrite system one may obtain much more concise
specifications however BT[83].)

In connection with modularity the research has focused on how a
specification S»may be composed from smaller specifications Sl,...,S .
In particular much attention has been paid to modularisation via
parametrlsatlon, in which case S is made from S1 and S2, where Sl_serves
as a parameter (specification) and 82 specifies some functorial type.
(See E[79], EXTWW[79], G[83]).

A need for specification formalisms of more expressive power arlses

- from the fact that various mechanisms can hardly be modeled by means of
algebraic equations only. This leads us to more and more complex
specification languages with less and less algorithmic contents
(e.g. BaTe[83]), ‘

In principle the expressive power of algebraic specification can be
increased (or at least modified) by changing to a more sophisticated
semantics than the usual initial algebra semantics. For instance final
algebra semantics (see K[80], W[79]) allows the specification of algebras
that cannot be specified initially, see BeTu[83]. However if we adhere
to rewrite rules as an implementation mechanism the initial algebra
semantics stands out as most plausible. Within these constraints two
extensions of a purely equational formalism come to mind:

(i) conditional equations,

(ii) rewrite rules‘with priorities,

Rewrite rules based on conditional equations have been introduced and
studied in PEE[BI] ’

The present paper introduees a mechanism w1th priorities., It is
shown that this mechanlsm allows certain modularlsat1ons that are not
expressible by means of equational specifications, Moreover we feel that
the priority mechanism is rather appealing from an intuitive point of
view (indeed it has been used by many authors, but in a rather implicit
way) . Experience in practice will have to determine the practical value

of the priority rewrite systems.



The contents of the paper are as follows:

(1)
(ii)
(iii)
(iv)
(v)

(vi)

signaﬁures

term-algebras

equations and equational specifications
term rewrite systems A

priority reﬁrite systems

examples



CHAPTER I. SIGNATURES

§1. Definition and examples

A signature contains information about names, especially of sorts,

functions and constants. Sorts are also types; functions have an arity

f: Slx tee X Sn »> S; constants have a sort (type) .
]

We denote signatures with X, T, A, O,...

Each signature description has three sections:

S: sorts,
F: functions,

C: constants,

Examples:

i. ZB S: B

F: V:BxB =B
- B> B '

C:Tes

F € B.

ii. zﬁ'P'+ S:
F: st N> N
P: N » N

+: Nx N->N

C: 0 € N,
iii. ZS'P'+' S: N
F: s: N>
P: NN
;: NxN->N
‘: Nx N->N




iv,

v. X

vi. %

vii, Z%

(Purpose: to have

viii,

P,S,+

z

SsP,ADD

D,SETS

F:

S:w

S: N=> N

P: N> N
ADD: N x N > N
0 € N.

N+ N
N->N
NxN->N

0 € N.

: N,

\'E
-1
S:
P:

eq:

BxB-~>B

B~>B

N >N

N -+ N

NxXN->B

TEB

F € B,

S
F

.
-

N >N
N+ N
4 C: l_e N

0 €N

the option P(0) = i_instead of P(0) = 0).

D, B, SETS

V: Bx B+ B

-1 B+ B

ins: D x SETS - SETS
elt: D x SETS -+ B



,C; g € SETS

T E€B
F € B.
- S -
ix, ZDTACK S: b, sr
14

F: push: D x ST - ST
pop: ST -+ ST
. top: ST - D
CQ g € st
iD €D
is € sT.

§2. Unordered signatures

All the above signature descriptions describe ordered signatures.
This means that sorts, functions and constants’ constitute an ordered list.

Unordered signatures have sets of sorts, functions and constants:
——t

Examgles:
i. Ty |S: )

F: {P:N->N,
S: N->N,
+: N x N > N}

C: {ol}. ‘

ii, -ITZ S: {B}

F: {'1: B - B,

V: B x Bv; B}
’ C: {F, o
T},

Notation: We use E} T; 6'etc. for unordered signatures, -

Fact: There is a canonical mapping:

-:-: S



mapping an ordered signature to an unordered one,

Examples: i, Eé = T},
<S,P,+ =
ii, I’ =T,
i N 1

§3. Inclusion of signatures .

2 LT and I CT are both defined in the natural way.

£~
2 nlz n
-
rJ
~-
+
o
™
n
-
9
-~
+

Examples:‘i.

™~
-

Y]
~

+.
O
™

0 = W=

ii.

o~
d

-
+

iii.

[ag]
Z:UZ
A
+

o~

2 iz n
J
+

iv.

o K
™

N
™~
w
o
g}

N,B

vie I, C I cprg

4, Union of unordered signatures

For unordered signatures I, T
T+ T

is determined by pairwise taking unions:
T+T 1|8 SO usSDH

F: FO UFD

C: C@) u M. ,
Taking unions of ordered signatures is problematic, We "do" this as
|| .Given I and T choose A with: '
E=%T+T.

Of course, this A is not uniquely determined.

follows:




§5, Restriction of signatures

Given % and T one obtains
e
by deleting all sorts, functions and constants of T' that don't occur in z,

—

but preserving the order in what remains of T,

Likewise one defines pfifﬁ.

Examples: i, DE———%ZD'SETS) = ZB

N,B
dis p— (23 Bty L3S ere 5SUP L Q: N
;LN N N
N F: s: n»>n
P: N > N
C:0
iii, pi-——————(zsfiéK) = ZD' where ZD = |S: D
D,SETS ' ' F.

§6. Isomorphism of signatures

Both for ordered and for unordered signatures we reed a notion of
isomorphism,
I=Tand?: 2T,
For (un)ordered signatures ¥ and I', they are isomorphic if a consistent
renaming transforms I into I' and conversely, This definition works in both

cases., Some examples clarify the matter:

v

S,P,+

S,P,ADD ~

R

renamings: = - <=
N-+N N >
S =+ S S >
P>Pp P->p
ADD - + + - ADD
0~>0 0-+>0



P,S,ADD ~ _S,P,+

.ii. ZN : ;N
‘renamings: = <=
N > N N -+ N
S > P S > P
>P+vS P >5s
ADD ~+ + + - ADD
00 0~0

+ ) +
iii, oot # ZE’P'

N .
(where Z§’+'P is |S: n~
F: S: N> N 3
+: N X N >N
P: N> N
L:o0€en)

§7. Renamings of signatures

Suppose I = T, pTxﬁ) = @ and I C A.
By {z:=T}A
we denote the signature that is obtained by replacing each I-name in A by
its corresponding [I'-name,

Similarly one defines {I := T'} A,
Remark: It is amazing to see that already at this elementary level of

signatures it is nontrivial (and perhaps even new) to produce a workable

set of notions, notations and operations with watertight definitions.,

§8. Calculations with signatures

Especially in connection with so-called parametrized datatypes a

simple kind of computations is frequently used.

Examgles:
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i, Let ZN =

™ T w»
.

Then ZN ZD.

Now here are two interesting unordered signatures (with ordered

1R

representations I' and A):

= _ .8,P,+ '_=
=12 + {ZD : ZN} X

N D, SETS

- o © .S,P,+
A= {ZN : ZD} ZN + ZD,SETS

Remark: I and A both have to do with substituting N for D in ZD SETS®

ii. Another (slightly more complex) example is:

+

T''v= % {Z_ == ZN} Z

N,B D D,

Y - STACK
A N ZD} ZN,B + ZD'_L

]
)

iii, Still more complex:

3 STACK
ZN,B + {ZD . ZN} (ZD,l_ + ZD,SETs

L

iv, Let ZST = : ST

(S I

and choose I'' as in the second example. Then

O=T"+ 2 &= 2gpt ZD}SETS

corresponds somehow with sets of stacks of nonnegative integers,
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CHAPTER II. (TERM) ALGEBRAS

In this chapter we focus interest on the following matters:
i. TZ’ the Zfélgebra of EEEEE over signature IL;
ii. the notion of a rewrite set R over TZ; this is a subset of TZ x TZ;
iii, The congruence =(R) generated by a rewrite set R;

iv. The reduction relation 4>>(R) generated by R,

81, Algebras

Définition: An algebra is a triple

) ((AllanniAk)] (fl'...,fl)’ ('cll‘..,cm))

where: 1. k>0, 220, mz0;
2. the Ai are nonempty and pairwise disjoint;
3. the £, are functions: A, ,. . x...x A. . >A ..

© n j(i,1) j(i,t) u(i)
for appropriate j(i,1),...,3(i,t), u(i)€ {1,...,k};

4, the c, are elements of A1 u...u Ak'

Examglés:
1. (o, 1,...1), (x.x+1, Ax.x21), (0)).

2- (({Olllocn})l (Axox"'l, }\xy.x""y), (0’1)).
3. (e,gl, {o,1,000h), Oxax+l), (0,1,t,6).

We denote algebras with Gothic capitals O, éEi...

A signed algebra is a pair (Z,G{)
of a signature and an algebra where the (oxdered) signature and the algebra

correspond in such a way that I can be used as a naming scheme for the

domains, functions and distinguished elements of ©f,
Example: (ZS'P Q) , with @ as in (1) above
SXample: N ’ A .

We denote signed algebras with A, B, C,...
With O(A) we denote the signature of A,
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§2, Term algebras

Let X be a given signature. Using a simultaneous induction one defines
for each s € §(I) the collection Tg of (closed) I-terms.of sort S:
i. if ¢ € § is in C(%) then c € Tg;
.. . ’ A .. ij i
. - n
ii. if £: Si1x f'. X Sin S is in F(Z) and t; € TZ ,...,tn € TZ ,

S
then f(tl,a..,tn) € TZ .

Let §(¥) = {Sl,...,S }, then one can use (Tgl,...,Ti?) as domains for
a I-algebra. The functlon £ corresponding to £ as 1n (ii) above then works
as follows: £: Elreest > £(E, Lt ‘
and to c € 8 corresponds the dlstlngulshed element ¢ € ;
(we must require here that the TZ are nonempty).

We denote this term algebra with'TZ. Clearly O(TZ) = 7.

Examples:

1. I =350%,

g = {O, 5(0), P(0), s(s(0)), S(P(O)), P(5(0)), P(P(0)), S(S(S(0))),...}.
2 I = ZN p* Typical terms of TZ are:

T, F, (D) VF) V (=(-1)), eq(S(0),P(P(0))), eq(S(s(0)),0),
~H(eq(0,5(0))) V F) V eq(S(0),P(0))).

3. & = ZD,SETS' Tg is empty, and T?ETS contains just @.
= _5,B,F —

4. % ZN + {ZD : Zﬁ?-ZD,SETS .

2 s contains: ins(S(0) + P(0), ins(0,d)) ;

Ty, contains: =—(—elt(S(0), ins(P(S(S(0))),8)) V F).

§3. Congruences- -

Suppose all T§ are nonempty, so TZ exists.
Definition: A congruence on TZ is a family
Hs_g T; X Tg , for s € S,
that satisfies the following conditions:
(t,t) €8 ,

i. for all t € Tg
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ii, if (t,x), (xr,u) € HS then (t,u) € HS;

o g

iii, if (t,r) € H then (r,t) € HS;

1 Si .S-v

iv. if (t,,r;) € H 3,...., (t ,xr ) €H ln, and £: S, x...x S. ~+ S is in
n n 13 in

F(%), then (f(tl,..;,tn);f(rl,.:.,rn))e B,

§4. Fundamental .construction

et 5= {8 : s € S(2)} be a congruence on Ts.
We denote with [t] the class of all u such that (t,u) € HS (for t € T?);

[t] is the congruence class of t.

With T?/HS we denote the set of all congruence classes of T?._
_ If we define ¢ = [c], and f([tl],...,[tn]) = [f(tl,...;tn)],
then'({Tg/HS :s €3N {E:£€FM}, {&8:ceCmh
is a L-algebra. It is denoted by
TZ/H'
Notation: One often writes = for congruences, and supérscripts for sorts
are usually omitted.

TZ/E is also called Ty modulo =,

85, Rewrite sets

- Definitions: 1. Let R E'TZ x Ty. We call such R a rewrite set.

2, With ER we denote the smallest congruence that includes R;
ER is the congruence generated by R.
3. Wwith R’ we denote the reduction (rewrite) relation generated by R,
Formally: i, for all t € Ty (t,t) € RY;
ii, (t,t') €ER = (t,t') € R",
iii, (t,t") €R% & (t',t'") € RO = (t,t'') € R';
iv.e (t,t") €R" = (T(t),T(t") €R?, |
(here T(t) € TZ; T(t) is called a context of t, i.e. a term with t as

subterm) .

We write t-§4+t*‘for (t,t') €RY, and t Bﬂ*t"for (t,t') € R,
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Given the rewrite set R, we can now define some important broperties

_relatlng to the global behavior of = =R and RY:

Defihitions;.l. t G‘TZ is a normal form if there is no t' € TZ' t # t!
with t So»tr, '

2. RY is confluent (or Church~Rosser) if for all t,t' such that t _R t!

e

3. R is weakly normalising if for all t +there is a +!

there is a t" with

such that tjiﬂ“t' and t' is in normal form.

4, rRY is strongly normalising (oxr terminating) if there exists no infinite

R

——
Asequence ti,t2,t3,... such that ti # ti+1 and ti ti+1 for all
i€ {1,2,...}.

§6. Meaning of (term) algebras

Minimal algebras are algebras of the form A = TZ/E.
If A is minimal then each object of A is the interpretation of a closed
term. In Gu [75] and GTWr[75], GTw [78] it has been explained that .

abstract datatypes can be modeled as minimal algebras.
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CHAPTER III. EQUATIONS

§1. Definitions and examples

Let us again consider a signature L. For each sort S of I we assume
. S
the presence of variables X = {xi : i €Ew, s € S,

: . s - .
In the present framework we look at such a variable xi as a meta variable

ranging over all terms in Tg. This view is not the pﬁrély algebraic one:
In algebra one would'view a variable as ranging over all objects of its
type (sort). But because we are interested in minimal aléebras, these
views coincide for all practical purposes. a

s ‘ .
If we allow the x, as terms of type S we obtain the sets

Ti(x) (for s € S(I))
of terms with variables. Clearly Tg E_Tg(x) for all s € S(¥).

S S
A I-equation is a pair (t%,tz), with ti € TZ(X)'

Equations are always written as follows:
' S S
ty = t2 . 7
It we want to display the free variables we may write
t(xl,...,xn) = t'(xl,...,xn)

(omitting the sort superscripts as usual).

Definition: Let E be a set of equations. The rewrite set R(E) generated by
E is the set of all pairs (t(tl,...,tn),t'(tl,...,tn)) with
t(xl,...,xn) = t'(xl,...,xn) an equation of E and tl""'tn closed terms

(i.e. terms without variables) of the right sorts.

Note: If ER(E) is the congruence generated by E, then

is the initial algebra of (I,E).

A pair (I,E) is often called an equational specification.

(£,E) is called an initial algebra specification of an algebra A if

TI(Z,E) = A.
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Examples of specificationé of familiar
chapter I:
i, (ZB,E)
E: |~ (T)
= (F)
TV x
FVAT
FVF

with

- (T)
=1 (F)
TVT
FVT

]

or E:

It 1l ]
il 1l I il

Hox 3 |8 g om

n
L I R T

xVy
FVF

i

(ZS'P'+
N

E: |P(0) =0

ii. +E) with
P(0) =

P(S(x))

or E:

P(S(x)) = x
X+ 0=x 0+ x =

S{x + y)

x + S(y) =
S,P,+,.
(ZN
P(0) =0

P(S(x)) = x

iii, +E) with

E:

X+ 0=z
X + S(y) =
x.0 =0

S{x + y)

X.8(y) =
(ZN'B,E) with
E: |- (T) = F

- (F) =

TVT-=

Xy + X

iv.

=]

TVF =
FVT=
FVF

H Hd 3 4

i

T -

eq(x,x)
eq(0,5(x))
eq(s(x),0)
; eq(S(x),s(y)) =
v. (ZhE) with &

il

eq(x,y)
s() =]
p() =]

P(0)

algebras with signatures taken from

= X

X

S(x) +y = 8(x + y)

-1

P(S(x)) = x
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In all these cases we have that TI(E,E) is isomorphic to a familiar

algebra.

Remark: it usually requires a proof that TI(Z,E) = A, This. proof is almost
always tedious and dccasionally quite nontrivial.

Warning: T (Z,E) need not always exist. Indeed if some T§ is empty then TZ
is not deflned and T_(Z,E) isn't either, Of course it is easy to decide

whether or not all T Ty, are nonempty.

. D
Now consider I . In this case 7. is indeed empty. Still there is
D, SETS z

. . f P 3 Z .
an interesting set of equations E for D, SETS

vi, E: [~ (T) = F
-1 (F). =T M
TVT=m
TVF=T
FVT=rmT
FVF=F

I+

ins(x, ins(y,V)) ins(y, ins(x,V))

ins(x,V)

ins(x, ins(x,V))

eq(x,x) =T

elt(x, ins(y,V)) eq(x,y) V elt(x,V)

elt(x,8) = F

To understand the properties of (ZD SETS,E) we must see the sort D as
r

a parameter that must be matched with another sort,

§2, Operations on specifications

Let (Z,E) be a specification. The following definitions are all
analogoms to the ones in chapter I,
Definitions: i. ~%Z E) = (Qm(Z), Q"(E)), where p—%E) is obtained from E
by leaving out all equatlons involving sorts or names outside T.
ii. {20 == 1} (T,B) = ({Z := )} I, {5, := 5} E), where {I, := I} E is
obtained from E by changing each IL,-name to the correspondlng Zi1~name,

iii. (Z,E) (Z E).
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iv. (E—]-.—IEI) + (E;IEZ) = (-Z—].—'*' f:'Z—IEI U EZ).
Examgles:
i. Lgt ZD,B.= : D, B

:eq: DX DB
: TEB
F € B,

.Y T n

Consider the specifications
(ZN B,El) with E; as E from example (iv) above;
’ .
) i E E £ i .
( D,SETS'EZ) with E»> as rom (vi) above

Now condider (I,E) with

(Z,E) = (ZN,B’EI) + {ZD,B = ZN,B} (ZD,SETS'EZ)‘
(Z,E) indeed specifies finite sets of integers (with equality function)

provided with insertion and test of elementhood,

ii. Let Z;’b = |S: b

. E.
C: 18, a, b,
STACK

a
Consider ZD’b + ZD . For this signature we have the following
’ ST,
specification: we have (Z;’b + ZD iéK,E) with
r

E: |pop(f) = 1S

pop(ly) = |
push(is,y) = lﬁ
push(x,lD) = lS

* |pop(push(x,a)) = x .
* Ipop(push(x,b)) = x
top(d) = | -
optly = 1,
* |top(push(@,a)) = a
* {top(push(@,b)) = b

Il

* top (push (push (x,a) ,a)) top(push(x,a))

il

* top(push(push(x,b),a)) top (push (x,a))

* top (push (push (x,a) ,b)) top (push (x,b))

* top (push (push(x,b) ,b)) top (push (x,b) )
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a,b

Now these equations essentially involve the extra signature of ZD

- (see the equations with *). In particular is an equation
pop(push(x,y)) = x
wrong because then A
1, = pop(push(s,].)) = 4.
Leaving out the * equations from E however, we do not obtain a workable
specification of the STACK., This is an essential differénée between the
STACK ' -

. | . .
cases ZD,SETS and D'l

In the section on priority rewrite systems we will suggest a solution

to this problem.
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CHAPTER 1IV. TERM REWRITE SYSTEMS .
Let (IZ,E) be a specification. An important difficulty is to find an

implementation of Ti(Z,E).

"In particular one needs a method to decide the word problem:

T (Z,E) = t; = t,

for closed terms t; and ts.
The paradigm: is as follows:

Let R(E)° be the reduction relation generated by the rewrite set belonging

to the equations E.

Assumption: Assume that R(E)? is both confluent and terminating,
'Then,t1=t2 is decided as follows} apply repeated rewrite steps on t; and
. té until both have reached a. normal form.(which will happen because R(E)0

is terminating). Let E:: t2 be these normal forms.

If T, |= %] = Tz then TL(Z,E) |=t1 = ta,
otherwise T (LE) =t # ta.
To see this note that if T_(I,E) |= t;=t; then T (Z,E) |= ®1=t2. Thus by

confluence, ET.and E;'have a common reduct. As both terms are in normal
" form, they must be identical.

There is a solid amount of theory about term rewrite systems. For
more information, see the survey paper HO [80].
Examples: examples (i) - (v) on equational specifications provide

confluent and terminating rewrite systems as well.

Modularisation

Let us now'c9nsider the problem of modular specifications:
1.'Modularity is.fundamental for specifications becausé large equational
specifications are notoriously hard to read.

2, Modularity is not a matter of modular notation (using blocks of

equations etc.), but of true decomposition into subsystems.

3. Theoretically minded people study decomposition byfdeveloping

appropriate composition principles,

4. In our setting the main composition principle is +:
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(21,E1), (¥2,E2) > (21,E1) + (22,E2).
-The theory of parametrized datatypes essentially studies this composition

principle. (Usually in the context of many more features, and semantically

based on catégories;)

5. The main point now is to provide specifications that can be used in a

flexible way as parts of a "Sum".

Example: Let (Z SETS,E1) be the specification giveﬁ on page 17.

Moreover let Z g be: %9 = S: b, B
D,B
) F: eq: Dx D> B
C:Tes
F € B.
‘Also let T qu P} ZDqB such that pZ (F;qB) = ZSqB
’ D,SETS

.79 N¥ = T4
(or rather: F D,B ZD,SETS D B)

Now assume that (TD B,Eo) is a specification with an initial algebra in
which B = {r7,F}, T # F and eq(x,y)=T <= x=y.
Also choose (I,E) with

(T7E) = (7o) + (T sprsrEl) -
Then T (Z,E) is 1ndeed the algebra of finite subsets of D with insertion
and 1s—element-of function,

Therefore we have that (I S,E1) is a very useful module for

D, SET
specification.

Remark: As a term rewrite system (I +E1) poses nontrivial but

D,SETS
surmountable difficulties, because of the equation

ins(x, ins(y,V)) = ins(y, ins(x,V)).
As a reductioﬁ this is a so-called permutative one. Such reductions stand

in the way of strong normalisation,

The problem:

Once more consider I qB It seems most.obvious to look at this
l

signature as a parametrized one., In this sense we look’at equations E

such that (Z B,E) + (P EY)

describes "D + equality functlon", whenever FD is a signature with sort D
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(and not naming B, T, F, eq).

Fact: Such E cannot be found. (Not even when one uses auxiliary sorts and
functions, or even conditional equations,)

2529£= Otherwise each initial algebra would be decidable!

A solid proof of this fact requires a very systematic analysis of initial

algebra semantics in the light of computability theory., In essence this

work has been carried out in BK [83].

Conclusion: Equational specifications do not support proper modularisation

(in unexpected cases).
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CHAPTER V. PRIORITY REWRITE SYSTEMS

In this chapter we will propose a new mechanism for specifying term
algebras (i.,e. congruences) via rewrite sets.
‘It is claimed that this mechanism, called "Priority Rewrite Systems"

(PRS), by its higher expressive power, supports modularity better than the

TRS mechanism.

Because of the always important issue of automatic implementation,
and the prejudice that automatic implementation for algéb:aic
specifications is deeply connected with term rewriting, we search for more

expressive power in such a way that the spirit of term rewriting is

preserved.,

(We had inspiration from discussions with Jan Heering, Paul Klint and
Ed Kuypers. They pointed out the inadequacy of TRS theory in several

examples, Of course this document does not necessarily reflect their views,)
§1. Definition

A priority rewrite system is a triple
(Z, E, P)
where I is a signature, E is a finite set of named equations (rewrite
rules) over I and P is a partial ordering on the names of equations in E.
Before giVing a detailed semantics some examples are given. The
names of rules are indicated thus: .
name: t(;) = t'(z).
If no confusion arises names can be omitted. The order between equations
is indicated by vertical arrows, for instance:
r: t; = £t
u: tz = ty
v: ts = tg
w: ty = tg

h: tg = t19

i: t31 = ti2.

This system corresponds to the partial ordering <: r<u<v, h<i,
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The notation r: t; = ty
lus t3 = tu
_ v: tg = tg
means that r and u are incomparable, but both precede v, i.e. r<v and u<v
but hot r<ﬁ or u<r,
We will not display < as a third component of a PRS if no confusion can
arise, If rule r; precedes r; in the partial order P ((r1,r2) € P) we say

that r; is of higher priority than r,.

82, Examples of notation

i, 2z : S D
B

F: eg: Dx D> B
C:res

F € B,
E | : eq(x,x) =T

eq(x,y) = F,

ii. Zj'g: S: v
F: f:uxu-uy
g: U>1U
C: a€Evu
b€U *
_ l ewu.
% ah =1
v ¢ 94
£(,%)
£(x,])
f(x,a)

n
B

iii. Each TRS is a PRS with the empty ordering.
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The‘intuitive meaning of priority between rules is this: if
ri: t1(X) > t]1 (%) precedes
rr: 2 (R) > th (),
then we may apply r; only on a redex if ¥y cannot be applied, and

could never be applied, afteér other rewrite steps.

§3. Informal example

dlrdZ = S: D

Let ZD

F: sWap: D-+D .

C: a;

dz
and E§1,d2 = swap(d;) = da
‘ swap(dz) = d;.

Note that this is just a TRS.
' = wdi1,d2  _d1,dz
+
D,B'ED,B) (ZD r By Vs
where the partial ordering on the set of equations is just the union of

Now consider (

the partial orderings. The result of this union is this PRS:

swap(di) = d»

swap(dsz) = 4,
i eqg({x,x) = T

eq(x,y) = F.

We experiment with some reductions (of closed terms) :
swap (swap (swap(d;))) — swap(swap(ds)) ~ swap(d;) = d,.
eq(swap(d;) ,swap(swap(ds))) > eq(dy,swap(d;)) - eq(ds,ds) = T.
eq (swap (swap (dy) ) ,swap(dz)) ~ eq(swap(dl),swap(dzf) > eq(d,,swap(ds))
eq(dz,d;) i F.
Here the reduction eqg(d;,d;) i F is allowed because the only rule with
higher priority cannotAbe applied, which is clear from the fact that dy

and d; are in normal form.

Remarks about the informal example:

i, (ZD B,ED B) acts as the module which was impossible to describe using
14 I
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a TRS, according to what we said on page 22,
' dz gd1.d2

. . X = = 1 ’

ii. We consider the PRS .(X,E) (ZD B’ D B) + (Z D ) to be the
di1,d2 _di,da, . .

result of puttlng the parameter (Z ’ED ) into a parametrized

datatype (glven by (ZD B’ D,B))'

As we shall later see formally, (Z,E) determines a rewrite set and a
congruence = on TZ It turns out that TZ/: can also be described without
prlorltles by this TRS:

swap(dy) = dp

d;

i

swap (dz)
eq(x,x) =T

eqg(d;,ds2) F
eq(dz,d;) = F.

If we are interested in an equational specification only we can use this

one: |swap(d;) = d,
swap (swap(x)) = x
eq(x,x) =T
eq(swap(x),x) = F.

(As a TRS this one is useless!)
iii. Let ZS 0. S:p

F: :t D+D

C: o.

. Consider (ZD B’ D B) + (Z ,¢).

This specification descrlbes integers with equality function; again in the

resulting PRS the arrows can be eliminated (see the example on page 16,

after renaming N by D).

§4, Formal semantics of a PRS.

In the 1nformal explanation on page 25, one observes a circularity.

We will now introduce a method to deal with semantlcal problems of this

type L)

4,1 Definition: let (IZ,E) be a PRS, A labeled rewrite set R'Q = RQ(Z,E) is

a set of triples (r,ti;,t2), with
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-> = :
r: t(x) = t'(x) a rule in E (so t,t' € TZ(X))’ and
. , .
.t € TZ an instance of t(x),
>
t, € T. the corresponding instance of t'(x),

z
(so only outermost rewrites are allowed).

4,2 Note: Clearly there is a maximal labeled rewrite set Rmax(Z,E) for
. L :

(2,E), and a minimal one, Rmin(Z,E) =g,

If (IZ,E) is a TRS then Rmax(Z,E) = R(Z,E) = R(E), as defined on page 15

(without the labels, which are not essential anyway in the case of a TRS).

4.3 Outline of semantics: A semantics for (Z,E) is a labeled rewrite set R

as defined in 4.1. We'll look at the followiné properties:
(1) R is sound; /
(2) R is complete;
(3) R is perfect.

We are especially interested in cases (I,E) where there is a unique perfect

rewrite set R for (I,E).

Recall that R’ is the reduction relation generated by R (this is done for

a labeled R just as for an unlabeled one).

4.4 Note: First we are going to define what it means for a rule-application
to be correct. The definition has to be more complicated than we informally
stated on page 25, as is illustrated by the following example:

we consider finite sets of nonnegative integers with insertion and deletion:

pX Q: N, sET

N,SET
' F: s: N> N

ins: N x SET > SET

del: N x SET -+ SET
C:OGN

# € SET

EN,SET = ry: ins(x, ins(x,A))

ins(x,A)

Il

rs: ins(x, ins(y,3)) ins(y, ins(x,A))
l r3: del(x, ins(x,A)) = del(x,A)

ry: del(x,A) = A.
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;n 6.7 we'll proye that (ZN,SET’EN,SET) has a unique perfect rewrite set,
Intuitively, the.application:
(*)  del(0, del(0, ins(0,#))) % del(0, ins(0,9))
is correct, since del(0, ins(0,8)) > @, so 0 "is not an element of"
del(C, ins(0,%)). A
However, we can apply r3 to the result of (*), which seems to contradict
our informal definition of cofrectness. The solution is, that the
outermost redex on the lefthand side of (*) is not the same as the
outermost redex on the righthand side. Therefore, we say that an
application

' del(x,A) LN
is correct unless there is a y € Tg and a B € T?ET such that x >y and

A > ins(y,B). This leads us to the following definition.

4.5 Definition: Let (X,E) be a PRS and let r;: ti=s; and rz: ts=ss be two

rules in E (so tj,t2,s1,82 € TZ(X))'

. . ) , Yi,r . .
The matching context of r; and r,, notation C s 2, is the largest context

such that both ti; and tz are substitution instances of it, i.e.

-+ -
rl'rz(u) is t; and cFlrr2(3) is ty: and

&> >
i, there are u,v € TZ(X) such that C

r . . .
ii, if C' satisfies property (i), then C 12 is a substitution instance

of C'.

.6 E : B i i .

4.6 Example or (ZN,SET'EN,SET)' defined in 4.4, we have
Yi,x2 s .

c (x1,%2,A1) = ins(x1,ins(x2,A1));

r r :

c 1,r3(x1) = C 1'ru(x1)x = C?z'rs(xl) = Crz'ru(xl) = x; (the empty context);
r . ‘

and C 3,rq(x1'A1) = del(x;,A;).

4.7 Definition: let. (r,t,t') € R;;

i, We say that (r,t,t') is incorrect with respect to R if

x,.,
x(Z,E) and let R E_Rmax(Z,E).

there is a rule r; with higher priority than r, and
there are t,,t},u;,...,u ,vl,...,vn € TZ such that
1. t isocr'rl(ﬁ) and t; is ¢ 'Fl(v);
2. ui-5%+vi for each i € {1,...,n};

3. (ri,t1,tl) ER.
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2
ii. (r,t,t"') is 1ncorrect if it is incorrect w.r.t. R (Z E).

iii. (r,t,t') is correct (w.r.t. R) if it is not J.ncorrect (w.x.t. R).

4.8 Definition: Let R be a labeled rewrite set for a PRS (I,E).

i. R is sound if each (r,t,t') € R is correct w.r.t. R;

ii. the closure of R, notation'ﬁ; is the set of all rewrites correct w.f.t.
R; '

iii. R is complete if R 2 f{—;

iv. R is Eerféct if R is sound and complete.

Thus we see that for each PRS (I,E):

R is sound iff R C R
' R is complete iff RQ R |-

R is perfect iff R = R

4.9 Remark: In case (X,E) is a TRS, R(E) is perfect and this perfect

rewrite set is unique.

85, Theoretical matters

First of all we note that for a given PRS (I,E), @ is a sound
.rewrite set and Riax(Z'E) is complete. It is the existence and uniqueness
of perfect rewrite sets that poses problems. With respect to
implementations confluence and termination of R? are quite important (but

not investigated here).

5.1 Lemma: Let R, P be rewrite sets for (I,E) then:
i.RCLP = RDF;

ii, R D P and P perfect => R complete;

iii. R C P and P perfect - R sound.

Proof: i. follows immediately from the definition of EZH
ii. suppose R 2 P then by (i) -P-{-_Q_ P = P, thus R2 R;
iii, if R C P then RD P = P, whence R C R,
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5.2 Notation: R = R; R =

Now suppose that R = Rﬁax(Z'E) and that P is some perfect rewrite

set. Then we find the following picture:

R=RDRIRD...

ul u u
P =p =p =_,,
u u .u

RICRCRS C ...

- : —2n+
Moreover ni% R2n is a complete rewrite set (by lemma 5.1.ii) and ngo R2n !

is sound (by 5.,1.iii).

7 - n+1
= R (L,E) , then there is a
max

5.3 Lemma: If for some n RQ (Z,E)
—— max

unique perfect rewrite set for (I,E).

Proof: immediate.

5.4 Let us now consider the speéial case that the TRS, obtained by omitting
the partial order, is strongly normalising (this occurs in several of the

examples later on).

5.5 Lemma: Let (I,E) be a PRS. Assume that Ri'ax(Z,E)D is strongly
- normalising, and that R is a unique perfect rewrite set for (I,E).
Then R is decidable, '
Proof: Let <tn : n < w> be an effective enumeration of the closed terms
over L (this is possible, since J is given effectively). Any rewrite set
for (I,E) can be represented by a subset S of w x k¥ x w, where k is the
number of rules‘iq E. '
A close inspection of the definition of soundness yields that soundness
is a Hf—property‘of S. Completeness is a Hg-property in-general, but since
RééX(Z,E)o is strongly normalising, it is a Hg—property;
Now we consider the definability of R.
We have (ri: tj.+ tz)/e R <=

¥SCwxkxw[(3,1,2) €SV (S not sound) V (S not complete)].

The part between the square brackets is z?, so by Kdnig's lemma, R is Z?
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as well. Similarly (ri: tj > tl) g R <=
¥s Cwxkxuw[(3,i,8 £ SV (S not sound) V (S not complete)],

which gives that the complement of R is also z?, from which it follows

that R is decidable.

5.6 Definition: We call a PRS (I,E) ambiguous i1f there are two rewrites
2 L
(x1,t,t1), (r2,t,t2) € RmaX(Z,E) such that r; and r, are incomparable

(i.e. n#r, ri;fr, and r,fr;).

5.7 Theorem: Suppose (Z,E) is an unambiguous PRS and RﬁaX(Z,E) is lenghth-
decreasing. Then there is at most one perfect rewrite set for (I,E).

Proof: Suppose R; and R; are two défferent peffect rewrite sets for (I,E).
Choose (r: s - t) € (R;-Rz) U (R2-R;) such that s is of minimal lenghth.
Without loss of generality, we can assume that (r: s - t) € R;-Rjp.

Since (r: s > t) £ Ry, and Ry is complete, it is incorrect with respect

to Rz, so there is a rule r'<r and reductions

X r .
s—1—>t1—3—>...-3’3-+tn in R,°
(where each reduction does not change the matching context of r and r'),
. r' .
and a reduction tn"——-*tn+1 in Ry (so outermost).

Because R; is sound, not all these reductionsteps can be in Rlo, so at
least one step is in R2°—R1°. However, every reduction is lenghth-
decreasing, and the lenghth of s was chosen to be minimal, so we must have
(s*£L+t1) € Ry-R;. Then, since (Z,E) is unambiguous, we must have that

r; and r are comparable.

If r=r;, we get an immediate contradiction; if r<r;, we get that R; is not
sound, and if r;<r, we get that R; is not sound..

Therefore, we have a contradiction, and the proof is finished.

§6. Examples

n
o

6.1 Take X = \Y and E = i ri: a

il
]

S:
F: ¥o: b
C: a, b

Claim: (Z,E) has no perfect rewrite set,
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Proof: The only complete rewrite set is {(r;,a,b), (r,,b,a)}, but that one

is not sound.

6,2 Take 2 = S: v and E = i ri: a=4d
F: rs: ¢ =Db

C: a, b; c, d ' l rz3: b =4

ry: c = a.

Then (I,E) has two different perfect rewrite sets R; and Rj:

{(rlrald)r (r2,c,b), (rSIbld)} and
{(x1,2,8), (r3,b,d), (ry,c,a)l}.

Ry

ft

Ry

6.3 In this and the following examples we will show the existence of a
unique perfect rewrite set.

Let the specification NAT be given by:

5 = pSiPst

N (see Chapter I) and E: ri: P(O) =0

ro: P(S(x))
i r3: X + 0 =x
ry: x +y =8+ P(y)).

1l
l

Theorem: (I,E) has a unique perfect rewrite set, which is confluent.
Proof: Define the algebra N = (M), (Ax.x+1, Ax.x>1, Axy.x+y), (0)) as
usual, and an interpretation ¢: TZ -+ N in the natural way.
We define a rewrite set P by:
P = {all instances of ¥Yi, Y2, r3} U
U {titts = S(£14P(t2)) + t1,t2 € Ty, ¢(ty) # O}
We prove that P is perfect gy first proving two lemmas.,
soundness lemma: reductions in P preserve ¢, i.e.

B7
if t;—>t3, then ¢(t1) = ¢(t,).

EEESEF just chepk'that each reduction-step is correct:

r1: $(P(0) = 0% 1=0=¢(0;

ra: O(P(S(x))) = ¢(S(x)) = 1 = ($p(x) + 1) = 1= ¢(x);

r3: ¢(x + 0) = ¢(x) + $(0) = d(x) + 0 = P(x);

ry: if ¢(y) # 0, then ¢(x + y) = ¢(x) + d(y) = $(x) + ((P(y) = 1) + 1) =
= 0(x) + O(P(¥)) + 1 =¢(x + P(y)) + 1 = ¢(S(x + P(y))).

definition: for n € N we define Sn(O) € TZ by induction:
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s°(0) is 0 and s (0) 1s s(s™(0)). o

completeness lemma: for all t € Ty there is an n € N such that t—>5 (0).

prooi: we first show bX lnductlon on n, that if m,n € N, then
P

s™(0) + s (0)——»s""(0).
- If n=0, s7(0) + s°(0) = s™(0) + 0L s%(0) = ™00
(Note: here = stands for identity between terms).
- If it is true for n, then #(s"71(0)) = n+1 # 0, so
s™(0) + sn+1<o>——r—z-> ss™0) + p(s™0)) = ss™(0) + Bis(s™(0)))) 22>
s(s™(0) + s7(0))F—>s(s™™(0)) = ™ l(g)) e 0.

Now we -prove the lemma by induction on t:

a) t 0. immediate, o
v P
b) t = P(t'). By induction hypothesis, there ison € N with t'-——ﬂ%sn(o).

case 1: n=0, Then Sn(O) =0, s% (t = P(t')—2—9+P(O)—£l* 0= SO(O)) € pY,

case 2: n>0., Then (t = P(t')—£—++P(Sn(O)) = P(S(Sn-l(0)))”—;*Sn-1(0))
e p°.
c) t = S(t'). immediate.
d) t.='g' + t". By inducgion hypothesis, there are m6n € N with .
£' 2> s"(0) and t"-2—>5"(0). Then t = £' + t"-2s"(0) + S7(0)—Fr
m+n

(0) by the above.

Claim 1: P is perfect.

 Proof: Let ti,tz € Ty. Then (ti+ to =t S+ P(tz))) € P <= ¢(t2) # 0
<=> there is n>0 with tzthﬁ+S (0) <= ,not(t2—£—+>0) <=

the reduction (t;+ tz———* S(t;+ P(t2}))) is correct w.r.t. P.

Claim 2: P is unique,

Proof: Suppose P'# P is also perfect. Take (t‘£+ t') € (p'-P) U (P-P")
such that the lenghth of t is minimal. Then we must have r=r,, %nd there
are El,tzve Ty with t = t1+ tz. Then (£ t') £ B! <= ¢, Eowo <«
t245—+>0 <=> ¢(t2) =0 <= (t-£+ t') £ P, contradiction.

Claim 3: P is confluent,

Proof: each term has a normal form Sn(O) by the completeness lemma,

6.4 In this and the following examples we'll look at a PRS that can be

used as a module.
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Let the module STACK Be given by:
: S: D, ST
F:‘pop: ST - ST

top: ST - D

z
8T

push: ST x D + ST

C: lD €D
g, 1, € sr,

E_: ri: push(is,y)

1 | \LrS: pop(]y) = |

ST .
Yo: push(x,lD) = is rg: pop(push(x,y)l = x
r3: pop(f) = [ r7: top(] ) = lD
ry: top(d) = lD V rg: top(push(x,y)) = y.
Note that R (ZST ST) is lenghth-decreasing and unambiguous.

This is only a module, and does not give interesting reductions (the only

datum is iD the only stacks are lS and @) .

Therefore, we consider a specification (Z1,E1) with pi—*%il) = ZD lf where
ST '
: D .
D,_L _I_
: i = i= Ty,
F- (Think e.g. of I, {ZN ZD} N)

e L,

Definition: a specification (I;,E;) with ZD l'C X1 and rewrite set P; has

. —_ P 1
* = =>
property (*) if x = . X — [ .

Note: if P; is confluent and lﬁ is in normal form, then P, has property (*).
Theorem: Put (Z,E) = (ZST ST) + (Z1,E1).
i. If (Z:,E1) has a unique perfect rewrite set P, with property (*),
then (12,E) has a unique perfect rewrite set P.
ii, If mareover P, is confluent, then P is confluent.
Proof: i) The térm algebra for (X;,E;) has as elements equivalenceclasses
[x} (under P;) for x € Tzl. An algebra for (I,E) will have finite sequences
of these as elements, so it will consist of:
a) {[x] : x € TZI};
b) elements ¢, ls (here § is the empty sequence);
c) {<[x1],...,[x ]> : for i<n we have X, € Tg , and X, i iD}
Now we define an interpretation ¢ from TZ to this algebra by induction on

terms:
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a) ¢(x) = [x] 4if x € Ty
: 1

b) ¢<is>.= 15,

c) ¢(@) = 8,
d) ¢ (push(x,¥)) = [.LS if ¢(y)=[] 1 or ¢G0)=],
<¢ (y) > (x) otherwise,
(here 7 is concatenation of sequences),
e) ¢(pop(y)) = (g if ¢(y) € {| .0},
tail (9 (v)) otherwise, -
£) ¢(top(y) = ([]] if ¢(y) € {8,

(first (¢ (y)) otherwise, ‘
Note that this is well-defined, and if x € Ty ,.then ¢ (x) is a finite
sequence or ¢(x) € {ls,¢}. ‘
Now define P = {all instances of Eloand rules ri-rs,r7 of EST} U
U {pop(push(x,y)) =8> x : x € ToF, y € Tg, ¢(y)9‘[_]_DL fb(x)ﬂs} U
U {top(push(x,y))”£§+ x : x € TZT, vy € Tg, ¢(y)#[lD], ¢(x)#ls}.

We will prove that P is the unique perfect rewrite set of (I,E).

soundness lemma: reductions in P preserve ¢.

proof: as before, just check that each rule4application is correct. 4
For example, if ¢(x)#[| ] and ¢(v)#| , then ¢ (push(x,v)) = <¢(v)> ¢ (x) £
{is,ﬂ}, so ¢ (pop(push(x,y))) = tail($(push(x,y)) = tail(<¢(y)>"d(x)) = ¢ (x).

completeness lemma: for all x € Tgl and y € T?T:

0
P
i. if ={ , th —_ ;
i 1_¢(y)j_s enypo _Ls
ii, if ¢(y)=@, then y—§;
iii. if ¢ (y) & {is,ﬁ}, there are v € Tgl and w € TgT such that v £ [lD]’

¢ (w) 7‘_!_5 .

iv. if ¢(top(y)) = [x], then there is a v € [x] such that top(y)-g—é*v

and y-22+*push(w,v);

D
(so v € Tzl).
proof: First we define the lenghth of a term t, 1(t), by induction on t:
5y 1(t)=1;
b) if t is ls or @, 1(t)=1;
c¢) l(push(t:;,t2)) = 1(t1) + 1(t2) + 1;
d) 1l(pop(ty)) = 1(t1) + 1;

a) ift €T
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e) l(top(t1)) = L(t1) + 1.

With this definition, Riax(Z,E) becomes lenghth~decreasing.

We prove the lemma by simultaneous induction on 1(y).

a) y is ls Then ¢(Y)=ls‘ so (i), (ii), (iii) are immediate.
(iv) (top(|)—=L> ) € P, and ¢(top(])) = []].

b) vy is @. Then ¢(y)=@, so (i), (ii), (iii) are immediate.
(iv) (top(®—= | ) € 7, and ¢(top(#) = [| ].

¢c) vy is push(a,b) with a € TgT, b € Tg, and suppose the lemma holds for a.

case 1: ¢(b)=[iD}. If b € Tg

-Tgl, b will contain a subterm of the form
top(z), with z € ng. However, 1l(z) < 1(y), so the induction hypothesis
allows us to reduce top(z) to a term in T§1' By repeating this procedure,
b reduces to a term b' € Tgl.

Then [b'] = ¢(0") = d(b) = [iD]' so, since P; has property (*),

o ]

dly) = ¢(pus?(a,b)) = ls, s%nce ¢ (b) = [lD], so (i) applies and

(push(a, b)—g—»*push(a b')—£~6+ push(a,iD)~£&* is) € p°,

(ii) and (iii) don't apply and |

(iv) (top(push(a, }o))————»top(_[s)—“—-*_l__D € p°

case 2: (i)(a)—_LS By induction, %—£L++ls and ¢(y) = ¢(push(a,b)) = ls,

so (i) applies and (push(a, b)—g—ﬁ+push(ls b) —= ls) € p?,

(ii) and (iii) don't apply and ‘

(iv) (top(push(a, b))—*—**top(ls)———+ lD) € p?,

case 3: otherwise, Then ¢(y) £ {ls,ﬁ}, so (i) and (ii) don't apply.

(iii) As in case 1 we can reduce b to a term b' € Tgl. '

Then [b'] = ¢(b') = ¢(b) # [iD], s0 we are done.

(iv) (top(push(a,b))—£§+ b) € P, and again reduce b to a b' € Tg .
d) y is pop(a), with a € TgT, and suppose the l?mma holds for a. 1

case 1: ¢(a)—4s. By induction hypothesis a———**ls Also ¢(y) = ls.

(1) (pop(a) -——»pop(_l_s)——"* 1y e®’. |

(ii) and (iii) don' t apply and

(iv) (top(pop(a))———**top(ls)———ﬁ lD) € p?

case 2: ¢(a)= ¢ By induction hypothesis a— g, Also o (y ls.

(i) (p0p(a)———+*pOP(¢)———+ 1) e#’.

(ii) and (iii) don't apply and
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(iv) (toP(pop<a>P—0»top<1s>ﬂ> 1) €=®°.

case 3 Otherwise. By induction hypothesis, tgere are v € TFl and
w € TX .such that v & [lD]' (w) # ls and a-g—ﬁZPush(w,v).

case 3.1: & (w ﬂ. Since 1(w) < 1l(a) < 1(y), w—>@ by induction

hfpothesis. Then ¢ (y) = ¢(pop(push{w,v)) = tail (push(w,v)) =

tail (< (v)> 0 (w)) = d(w) = @, so (ii) applies and
(pop(a)—£E++pop(push(w,v))—£§+ w~gi+>¢) € pl.

(i) and (iii) don'toapply and

(iv) (top(pop(a)) = top(#) <> | ) € P°.

case 3.2: Otherwise. Note that then ¢(w) £ {is ﬂ}, since <1>(w)=__]__S gives

d)(a)—-_l_S Again ¢(y) = ¢(w), so (iii) applles and'as in case 3.1 we have
y —*w, and use the 1nductlon hypothesis on w.

(i) and (4ii) gon t apply and

P
(iv) top(y)-—top(w), again use the induction hypothesis on w.

Now we can finish the proof of (i) with three claims.

Claim 1: P is sound.

Proof: Suppose not, so (t—E* t') €'P, but is incorrect w.r.t. P.

a) r=rg. Then there are x € TET and y € Tg such that t is pop(push(x,y))
and push(x,y)-g—o—»_!_S (for T3 %6 pop( J).

Since (tf£§+ t') € P, we must have ¢(y)#[lD] and ¢(x)#is, but on the other
- hand ¢ (push(x,y)) = ¢(ls) = ls by the soundness lemma, so by definition of
¢ we have ¢(y)=[lD] or ¢(x)=is. Contradiction.

b) Similar to (a).

Claim 2:'P is complete.

Proof: Suppose not, so (= t') € P, but is correct w.r.t. P.

a) r=rg. Take x € TgT and y € Tg such that t is pop(push(x,vy)).

Since (t Lo,pry £ P, we must have ¢(y)-[lD] ox d>(x)—'_]_S

If ¢(y)-[lD], we can reduce y to a y' € 'I'Zl by the completeness lemma (iv),
and then y' 'EL**lD' since P, has property (*). Then o
((push(x,y)———++push(x,lﬂ)———+ is) e p%, so (t—£§+ £'). is incorrect w.r.t.
P, contradiction,

v p?
If ¢(x)=ls, we have x———ﬁ+is by the completeness lemma (i), so
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(push(x,y)-——ﬁ+push(ls,y)——l*'is).G P°, and again (t=%> t') is incorrect

w.r.t., P, contradiction.

b) r=rg. Similar to (a).

Claim 3: P is unique.

Proof: By 5.7.

ii) Fot eaéh element of the algebra we define a set of standard
representatives, SR C Ty, as follows:

if x € Tzl, SR([X])‘ {y € Tzl : vy € [x]};

sr(@) = {g}; sr(| ) = {[ }

if XyreoarX € Tgl, with X, 3 [lD] (for i € {1,...,n}), then
‘SR(<[x1],...,[xn]>) = {push(push(...(push(@,yl),yz),...,yn) Py, € [xi]}.

0
P
Claim: if t € TZ' then there is a term t' € SR(¢(t)) such that t—t!,

Proof: Follows immediately, using the completeness lemma (use induction

for (iii)).

Corollary: if P; is confluent, then P is confluent.

Proof: Suppose t =po t', (t,t' € Ts) . '

From the soundness lemma it follows by induction that ¢ (t)=¢(t').

Take ti,tz € SR(P(t)) such that t—P—o—»tl, t'—P—o—»tg,

' Thenrtl and t; only differ in a number of subterms.from Tzl. But these
subterms must be pairwise congruent w.r.t. Py, so have common reducts by

3

assumption., Then t; and t; also have a common reduct, so t and t' do.

6.5 A perfect rewrite set for the remaining examples is found in a similar
way. Also the prdbfs_are similar.

Let the module QUEUE be given by:

ZQ: S: D, Q
F: gout: Q * Q
out: Q9 - D

gin: Dx Q > Q

_I_DeD
ﬁ,_lQeQ.

M
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EQ:_ ri: qin(x,lQ) = lQ rs: qOUt(iO) = io
: rz:.qin(lD,y) = lQ re: gout(qgin(x,d))= @
r3: gout(f) = iQ : r7: gout(gin(x,y)) = gin(x,gout(y))

Ty: out(g) = ib rg: out(iQ) = lD

ro9: out(gin(x,8)) = x

ne out(qgin(x,y)) = out(y)
Let (X3,E;) be a specification with pf—%Zl) = ZDrlf and aéfine
(L) = (T2,81) + (Z,5). 2 o
Theorem: (i)If (Z;,E;) has a unique perfect rewrite set P; .with property
(*), then (Z,E) has a uniqué perfect rewrite set P.
(ii) If moreover P; is confluent, then P is confluent.
Proof: As this proof is so similar to the proo% of 6.4, we'll just indicate
‘the differences. The algebra is the same (just replace ls by lQ)'
Define ¢ by: (a) ¢(x) = [x] if x € TZI;
b) ¢<1Q = 19; (c) o(2) = g;

@) ¢(gin(x,y)) = { 1Q if ¢(x) = [|] or d(y) = 1Q;

d(y) "< (x)> otherwise;
e) ¢(gout(y)) = {-lQ if ¢(y) € {lQpﬁ};
tail (¢ (y)) otherwise;
£) ¢ (out(y)) = {[iD] : £ 6(y) € {0}
first (¢ (y)) otherwise;

Define P by:
= {all instances of P1 and rules ri-rs and rg of EQ} U
U {gout(qin(x,#))—%> ¢ : x € TZ’ ¢ (x) # [lD]} U
U {qout (qin (x,y) )—L> qln(x,qout(y)) : x € TD, y € g, d(x) # [lD]r
d(y) £ {lQ 1} U {out(qin(x,0))—2> x : x € TZ, b (x) # [| 1t v
U {out(gin(x,y)) =2 out(y) : x € TZ’ y € TZ’ ¢ (x) # [lD] d(y) £ {lQ g},

P is the unique perfect rewrite set of (I,E).

Again we have the

soundness lemma: reductions in P° preserve ¢; and the

completeness lemma: for all x € Tg and y € Tg:
1

i) if ¢(y) = _LQ then y——»J_Q
ii) if ¢(y) = @, then y j———*+¢,
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iii) if ¢(y) £ {leﬁ} there are v € TZ and w € Tg such that v ¢ [lD],

b(w) # -LQ and y———»qln(v w). .
iv) if ¢(out(y)) = [x], then there is a v € [x] such that out(y)-£—4+v

- D
(so y € TZI)}

Also like in 6.4, we use these lemma's to show that P is the unique perfect

rewrite set for (I,E).

ii) We define SR on the algebra:

SR([x]) = {y € LRI ¢ € [x]} ifxe€ Tzl;

srR(g) ={g}, SRQQ) ={1Q}-

SR(<[x ],...,[x 1>) = {qln(y ,qln(y 1,...,qln(y1,¢))...)) Ty € [X 1}
if X, e TZ P Xy £ [lD] (i € {1,...,n})
Then, we show as before: 0
If t € Ty, then there is a t' € SR($(t)) with t-—mt!,

If P; is confluent, then P is confluent,

6.6 Let the module TREE be given by:

ZTR :

w

D, TR

F: <, >: TR x TR > TR

tr: D > TR .
data: TR > D

R, L: TR > TR

C:_'_DGD

iT € TR
X = lT ' rs: Ltr(x)) = iT

ro: <L = | re: R(tr(x) = |

‘LP Yg: L(-LI') =_L1,

ry: data(l&) = lD : : Virje: L<x,y>) = x
rs: data(<x,y>) = | i ri: R(|) = [
rg: data(tr(x)) = x V ria: R(<x,y>) = vy,
Let (Z;,E;) be such that pE;;{El) = ZD i-and put (Z,EX = (Zl,E1)+(ZTR,ETR).

Theorem: 1f (£:,E;) has a unique perfect rewrite set P; with property (*),

then (Z,E) has a unique perfect rewrite set P,



;f moreover P; is confluent, then P is confluent.
Proof: The initial algebra consists of equivalenceclasses of P;, an element
iT and finite binary trees with labels from {[x] : x € TZ , X E [lD]}
Define ¢ by: (a) ¢(x) = [x] if x € TZI;

b) ¢(lT) = lT;

c) P (<x,y>) = {lT ' if ¢(x) = lT or ¢(y) = lT;

the tree with left part ¢(x) and rlght part ¢ (y)
) otherwise;
d) ¢(data(x)).= {[lﬁ] if ¢(x)=_]_T or ¢(x) has more thaﬂvane node;
’ [d] if ¢(x) has one node, labeled [d];

&) ¢(tr(d) = &LT Cif d@=[] 1

the tree with one node, labeled ¢ (d) otherwise; -

£) ¢§L(x)) = {lT if ¢(x)=ﬂT or ¢(x) has one node;
the left part of ¢(x) otherwise;

g) $(R(x)) = {iT . if ¢(x)=_]_T or ¢(x) has one node;
the right part of ¢(x) otherwise.

Define P by:

= {all‘instances of P; and rules r;-rg and ri;} U
UdL(x,y>) = x: 00 # Ly 60 # [y xy €75 %
U {R(<x,y>) =125y 1 §(x) #lop 00 # Ly xy e %)

soundness lemma: reductions in P° preserve ¢.

completeness lemma: for all x € TgR and d € Tg :
) 0 1

i) if ¢(x) = lT' then x-£L9+lT;

ii) if ¢(x) has one node, labeled [d], then there is a d; € [d] such that
0

P .
X —» tr(d,);
iii) if ¢(x) has more than one node, there are y,z € TgR such that

p?
d(y) # iT ¢(z) # lT and x———e+<y,z>- éo
iv) if ¢(data(x)) = [d], then there is a d; € [d] such that data(x)—>d;.

As a result of these lemma's, we can prove that P is the unique perfect
rewrite set for (Z,E).
Next we define SR:

SR([x]) = {y € Ty +y € [x]} if x € Ty 7
1 1
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SR(iT) = {lT}; ‘ .
.if a is the tree with single node [x] (x € Tzl), then
SR(a) = {tr(y) : v € [x]}; and
if a is altrée with more than one node, with left part b .en right part c,
then SR(a) = {<x,y> : x € SR(b), y € SR(c) }.
Then we can prove the following statements: 0
If t € Ty, then there is a t' € SR($(t)) with £ 2t

If P; is confluent, then P is confluent.

6.7 Let the module SET be given by:
: |S: p, sET
F: ins: D x SET + SET

z
SET

del: D x SET = SET

C: ¢ € sET
ESET: r;: ins(x, ins(g,y)) = ins(x,y)
rz: ins(x, ins(v,y)) = ins(v, ins(x,y))
l r3: del(x, ins(x,y)) = del(x,y)
ry: del(x,y) = vy.
Let (21,E1) be a specification with DEF""%Zl) = ZD (as defined on page 8)
SET '
and put (Z,E) = (I;,E;) + (ZSET’ESET)'
(An example is (I ) ), see page 27.)

N,SET’ N,SET
This example is different from the previous ones in that we need

confluency of P; to get a unique perfect rewrite set. This is because rule

r3 requires us to recognise when two elements of D are equal.

Theorem: If (X;,E;) haé a unique perfect rewrite set P; which is confluent,
then (Z,E) has a’unique perfect rewrite set P which is. confluent.

Proof: The initiai algebra consists of:

a) {[x] : x € TZII; (b) all finite subsets of {[x] : x € Tgl}.

befine ¢ by: () 4G = [x] ifx €T (B) 0P = 0
c) ¢(ins(x,y)) = ¢(y) U {[x]} (x € TE = Tgll y € TEET);
A 9eelny) = ¢ - {[x]} xemy, y e,

Then define P = {all instances of P; and rules r;-r3 of ESET} U

U {del(er)iu_* y :x € T]Z)I y € TEETI [X] £ dJ(Y)}-



soundness lemma: reductions in P° preserve ¢.

completeness leﬁma: for all x € Tg and y € TEET:

L

P : P z
X~ vy, [x] € ¢(w) and y —» ins(v,w).

if [x] € ¢(y), there are v GOTD and w € TEET such that
0
We can again show that P is perfect and unique.
Then define SR by:
SR([x]) ={y €T. :y € [x]} if x € T, ;
RN Z1
SR(#) = {#}: .
SR({[xl],...,[xn]}) = {ins(yg(l),inS(yc(z),...,insr(iyo(n),{25))...) :

G is a permutation on n, Y, € [xi]},

if x, € Tg (i € {1,...,n}) and the [xi]hare distinct,

This definition enables us to show:
. : 0
If t € TZ’ then there is a t' € SR(¢$(t)) such that‘tji—»iﬂ.
P is confluent. (Note that all elements of SR(x) can be reduced to each

other by using P° and r,.)

6.8 Our final example is a version of Backus® Functional Programming
(B [78]). '
Let the specification FP be given by:
ZFP: C: N, 8, D, F
F: i: x>pD
j: S > D
Ap: FxD~>D

"*: Dx S > 8S

: FxF > F

T: DXxDxD->D

> FXFxF~>F

S: N+ N

“:D>F .

ot FXF~>F

C:0€en T, F €D

a3, ls € s id, 1, tl, eq, apndl, +, *, p €F
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Notes: 1. Some abbreviations we'll use to improve legibility are:

£(x) for Ap(£,%); <x,v> for 3(x*(y*#)), and | for 3.
2. Think of D as N U s U {T,F}, so think of i and j as injections.

: . D
3. EFP gives reduction relations only on TZ'

EFP: ry: l_* s = ls " r3: apndl (<x,j(y)>) = jlx * y)

rp: x * lS = 16 -V ry: apndl(x) = i

rs: £ 8 g(x) = apndl(<£(x),g(x)>) r7: TP X y = X
rg: £ > g; h(x) = £(x) g(x); h(x) re: Fr x; vy =y
Vrog: zp x; v = _L

[ rio: x(D) = | :
ri1: x(y) = x riz: id(x) = x riz: £ o, g(x) = £(g(x))
riv: 1(]) = | riz: t1(]) = |
rys: 1(j(x * s)) = x rig: tl(j(x * s)) = j(s)
Yig: 1(x) = i_ , rig: tl(x) =‘L
Yog: eq(l) = i_ You: +(<i(x),i(0)>) = i(x)
ro1: eq(<x,x>) = T Yas: +(<i(x),1i(S(0))>) = i(S(x))
rys: eq(<x,y>) = F Tae: +(<1(x),1(S(¥))>) = +(<+(<i(x),i(y)>),
¥a3: eq(x) = | i(s(0))>)

Yo7: +(x) =_L
Yog: ’(<i(X),i(0)>) = i(O)
Ta9: *(<i(x),1(S(¥))>) = +(<+ (<i(x),i(y)>),1i(x)>)

Virge: «(x) = |

r31: p(i(0)) = i(0)
C o 1rs2: p(L(8(x))) = i(x)
J rzz: p(x) = |

Theoremn: (ZFP,EFP) has a unique perfect rewrite set P, which is confluent,
Proof: is not hard, but tedious.

Define the initial algebra $ by:

a) (M), (+, *, suc, 1), (0)) C &

b) {[, 4, 7, F} C¥; ana
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o)ttt EF-{]} = <t11,3...,tn> eF.
.Define an interpretation oF TZ + ¥ by induction:

0, ¢(T) =T, ¢(F) =F, ¢(3(@)) =g, ¢p(D = |;

a) ¢(i(0)) =
b) if x € Tg and s € Tg, then
O(3(x * 8)) = {L | if ¢(0=] or ¢(3(s))=];
< (x)>7d (3 (s)) otherwise (here ” is concatenation);
¢) if x,v,z € Tg, then
b(x ry; 2 = [¢(y) _ if ¢(x) = T;
¢ (z) if ¢(x) = F; '
l_ otherwise;
d) if n € TZ' then ¢(i(S(n))) = suc(d(i(n)));

e) if x € TZ’ then we define ¢ (Ap(£f,x)) by induction on £ € Tg:
el) ¢(id(x)) = ¢ (x);
~e2) ¢(apndl(x)) = ( <first(¢(x)>"second (P (x)) if ¢(x) is a pair
with second(¢(x)) a sequence and
first(¢(x)) # |;
l_ otherwise;

(Note: x €F is a sequence if x=@ or x is obtained by (c) in the definition

of ¥.) ’
eld) ¢(1(x)) = first (¢ (x)) if ¢(x) is a nonempty sequence;
l_ otherwise;
ed) d(tl(x)) = tail (¢ (x)) if ¢(x) is a nohempty sequence;
{l. otherwise; '
e5) dleg(x)) = [T : if ¢(x) is a pair with first(dp(x)) =
= second (¢ (x));
F if ¢(x) is a pair with first(d(x)) #
# second (¢ (x));
i. otherwise;
e6) ¢ (+(x)) = first(P(x)) + second(¢ (x)) if ¢(x) is a pait from N;
{ otherwise;
e7) d{*(x)) = (first(dp(x)) ¢ second(d(x)) if ¢(x) is a pair from N;
gi_ otherwise;
e8) ¢(p(x) = (¢(x) if $(x€ W |

L

e9) ¢(f @ g(x)) = ¢(apndl(<£(x),g(x)>);

otherwise;

I._



46

e10) ¢(£ > g; h(x)) = ¢$(£(x) P g(x); h(x));
ell) $(¥(x)) ='{¢<y> if ¢ (x)#];

l_ ‘ otherwise;

e12) $(£ o g(x)) = O(£(g(x))).

Then define P = {all ihstances-of ri-Xs3, ¥rs-rg, rio, ¥i2-Yi4, Y17, Tag,
Y24, Y25, Y28, Y23, Y3y, rzat} U {apndl(xi-——+~i_ ¢(x) is not a pair or
second«¢(x)) 1s not a sequence} Uiz p x; y i_ X,¥,2 € TZ’ d(z) £
{r, F}} U{xy) 2 5 & x,y € T, ¢ WA} U {1(j(x * s ks ox € 1,
s € Tz' b (x)#], $(3(sN#[} U {1(x) Lo =& x € TZ, d)(x)#_]_ ¢(x) =@ or ¢(x)
is not a sequence} U {tl((x * s))-———+ j(s) : x € TE’ s € TZ’ b (x)#],

¢ (j(s)) #i} U {t1(x) =2 £19 l_ x € TZ’ ¢(x)fL 0 (x)=@ or ¢$(x) is not a
sequence} U{eq(<x,x>) F21s 7 . x ¢ TZ’ ¢(x)#l} U {eq(<x,y>)~———+ F :

X,y € TZ:' P@#L SWEL d W U {eqin E25 | - x e TZ, o (x)#],
d(x) is not a pair} U {+(<i(x), 1(S(y))>)-———4~+(<+(<1(x),l(y)>) i(5(0))>)
X,y € TZ' ¢ (y)#0} U {+(x)———l+‘L x € TE' $(x) is not a palr from N} U
U {o(x)—532, 'L : x € TZ’ ¢ (x) is not a pair fromZN} U {p(x) l_ x € T

¢ (x) £ W},

Soundness lemma: Reductions in p° preserve ¢.

Completeness lemma: for %ll x € ng
i) if ¢(x) = lJ then-x-g—3+lj

. P
ii) if ¢(x) = T, then x—>m;
0

11i) if ¢(x) = F, then x——F;

iv) if ¢(x) € N, there is an n € N such that x-Eil(S (8);

v) if ¢(x) = @, then x-52++3 (8) ;

vi) otherwise, ¢(x) is a nonempty sequence, and there are y € Tg and s € Tg
such that ¢ (y) # L G # 1 ana xTo=j(y * s).

££gg£ By induction on the lenghth of the term X, similar to the proof in

6.4.

Corollary: P is perfect, unique and confluent,

Proof: as before. Note that each term in Tg has a normal form in NF, where
NF is given by: (a) JJ T, F,3% € NF; (b)i (s™ (0)) € NP for n € N;

(c) If x, j(s) € NF- {l} then j(x * s) € NF (so x € TZ' s € TZ)'
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Abbreviations: 1) we define n~tuples on Tg and Tg by:

.for n=0: <> = j¢ and [] = 30;
for n>0: <X1""'Xn> = apndl(<x1,<x2,...,x >>) and
[f‘,...,f ]=£ 9 [f ,...,f 1. Note that thlS tallies with page ‘44,

1 2
2) Define selection functions n (for n € W-{0}) in TZ by:

1 is a constant in ((Z) and if n>0, we put n+l = n , tl.
3) Some other abbreviations:

pair = eq - [i4,[1,2]];

—=id > F; T

V = pair -+ (1> (2+T;T); (2 >T;F)); I;

&

pair - —1o Vo ['101,_102]; I.

'Extensions of FP: An important feature of Backus' FP is the existence of

least fixed points,

" Let t(f) € Tg(x), with one free function variable f.

Define (Zt,Et) by: Zt: S: F and Et='rt: ct(x) = t(ct)(x).
. F . .
C: c. €EF
t —
and define (ZFP'EFP) = (ZFP FP) + (Z ,E ).

Notations: Uf.t(f) = ¢, or ¢ = t(c).
Definition: P, = P U {all instances of r }.
-t D P D
Theorem: If, for all x € TZ' ct(x)——:5>y'€ TZ (sc ct(x) has a terminating
reduction, the subterm ct can be eliminated), then Pt is the unique
Z . =I
confluent perfect rewrite set for ( p’ FP) (Here, as before, I ZFP )
Proof: immediate by assumption, since rt has no prior rule,
Note: In the same way it is possible to make, successively, many extensions

of FP, provided the assumption of the theorem is satisfied each time,

Example: Let g € TZ' Deflne ag uf.eq o[ld,jﬁ] + 3@; apndl o [go1, fotl]
Claim: For each x € TZ' ag(x)~—ﬂ»?y € TZ'
Proof: By first reducing x, we can assume x € NF,
case 1: x = l, First note [id,}ﬁ](l) = id @ (55.3 EEB(J) X5,
apndl (<id(]) ,apndl (<3 (]),30(])>)>) “1eefiz,

apndl(<[,apndl(<[,[>)>) = 5L * (| * | )2 iy = L
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Therefore eqo[id,38] (|) =L eq([id,3F) QL))“EE** q(l) =20, |,
Then ag(l)-—a*'(eqo[ld 301 ~38; apndlo [go1, agotl])(i)
(eqo [1d,38] () 30(]) s apndlo[go1, OLgotl] (j_)———-»
L 238D+ apndle[go1,0get1] () 22 |.
case 2: x € {T,F} U {s™(0) : n € W}. '
Then 0g(x)—3+ (eqo[id,3@] +3F; apndle[gel,agetl]) (x) L8LELL,
eq([id,38] (x)r* 38 (x) ; apndl ([gol,0gotl] (x)) S2rEL3,
eq(apndl (<id(x) ,apndl(<3@(x) , 38 (x)>)) P 3P (x); apndl (apndl (<g (1 (x)),
apndl (<0g (t1(x)), 3@ (x)>)y) ~+leX12,X16,219 ,
eq(apndl (<x,apndl (<j@,3i@>» ) = j@; apndl(apndl(<g(l),aphdl(<ag(i),jﬂ>)3)
= eq (I (x* (38*9))) p 38; apndl (3 (g())* (0g () *#)) =
eq(<x,30>) * 3@; apndl (3 (g(])* (ag(]) *g)) F22r Case 1,
Frif; apndl (3 (g(D*(|*#)) =22 apnal(<g(]),]>) =3 j(g(]) 15)
idg) = L.
case 3: x = j#. Then ag(if) =%+ (eq.[id,IF] +3@; apndlo[gol,0gotl]) (58)
——eq(<4d(39) , B >) IB(30) 5 apndl (<go1(30) ,agotl (3g)>) ZLLeTiz,
€q(<if,i8>) 30 .. . —2 T ig; ... Z1 54,

case 4: otherwise. Then, ¢(x) is a nonempty sequence, and by definition of

NF there are g, js € NF—{l} such that x is of the form j(y *s).

P . . , . .
Then ag(x) —*eq(<x,3i@>) > jig; apndl (<g(1(j (y*s))) ,ag(tl(F(y*s)))>)
FLE0R180E22, By 365 apndl (<g(y),0q (3s)>)—E8 apndl (<g(y) ,0g (38)>) .

Now we use the induction hypothesis on the subterm ag(js).

Corollary: for all xl,..o.,xn € Tg and g € Tg, if ¢(xi)fl for i=1,...,n,

then o0g(<x ,...,xn>)‘ja—”<é(xl),...,g(xn)>-

r
Proof: use reductions as those above.

Examples: some other examples of correct extensions of FP:
apndr = uf;éo[pair,eqo[l,gaj]-+[2]; apndlo[lol,f0[tlol,2]];

distl = uf.&o[pair,eqo[2,301] +30; apndlo [[1,102],£0[1,t162]];
distr = uf.&.[pair,eqo[1,36]] +30; apndl [[1c1,2],f0[t161,2]];

iota = uf, eqo[ld S(0)]~>[s(0)]; apndro[fop,ld]
and for each g € TZ
/g = uf.eq, [tl’,jﬂ] +1; go[llfotl]-



49

Backus' FP: We define the following congruence relation on ng
f=g << ¥x€ Tg ( £(x) and g(x) have a common reduct ).

Then all of Backus' "laws" follow as theorems from (ZFP,EFP).

Examgle: Backus' III.4: a(f,9) = af.0g.
ggggﬁ: let x € TD. We can assume x € NF,
case 1: x € {T,F,|} U {s"(0) : n € N}.
By the claim on page 47, we have a(foqg) (x) = l_énd’af;dg(x)-» af(l)?+
]
case 2: otherwise. Then ¢(x) is a sequence, and we use induction. We write
this down informally, using the corollary on page 48,
First, a(f.g) (@) 3P and afeog(if) +af(3g) - 3d.
Next, if x = <x1,...,Xn>:
a(foqg) (<x1,...,xn>) +><fog(x1),...,fog(xn)> and
Otfoocg(<x1,...,xn>) -»Obf(<g(x1),...,g(xn)>) ->+<f(g(x1)),...,f(g(xn))>.

Now use rjg.
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