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Abstract

We survey recent results regarding embeddings of finite simple groups
(and their nonsplit central extensions) in complex Lie groups, especially
the Lie groups of exceptional type.

1. Introduction

Throughout this paper, L will be a finite group. Representation theory for
L is usually understood to be the study of group morphisms L — GL(n,k)
for distinguished collections of fields k (e.g., all overfields of a fixed field
F) and positive integers n. The topic of this survey is motivated by the
question as to what happens if GL(n,-) is replaced by another algebraic
group G(:).

We shall mainly be concerned with the case where L is a finite simple
group (that is, a finite nonabelian simple group) or a central extension
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thereof, and G(k) is-a connected simple algebraic group over a field k. A
further restriction of our discussion concerns the field k. It will mostly be -
taken to be the complex numbers, in which case we will mainly study group
morphisms from L to the complex Lie group G(T). (See below for some
exceptions in §3 and §5.) ' ' :
, For G(-) of classical type, the theory for representations L — G(T)
differs little from the usual one for GL(n,C). ‘Trideed, a representation
L — GIL(n,C) decomposes into irreducible subrepresentations. The de-
composition is well controlled by character theory. Given an irreducible
representation p: L — GL(n,T), it can be checked whether it is conjugate:
to a symplectic representation L — Sp(n,C) or an orthogonal representa-
tion L — O(n,C) by verifying whether its Frobenius-Schur index (that is,
2ogeL p(g%)/1L}) takes the value —1, or 1, respectively (cf. (Isaacs [1976])).
Using the criterion for irreducible subrepresentations, it can also be success-
fully employed for.arbitrary. (reducible) representations L — GL(n,C).
Thus, the simple connected complex algebraie groups of exceptional
type remain. There are five of them; their universal covers form a chain
with respect to group embeddings: k

Go(€) < Fa(€) < 3+ Fo(CT) < 2 E+(C) < Ea(C).

Here, 3 - E¢(C) denotes the universal covering group of type Eg, which has
a center of order 3. .

In §4 we indicate what is known about the occurrence of finite simple
groups in each of these. In §2 we deal with some general theory, and in §3
with correspondences between ordinary (characteristic 0) and modular rep-
resentations. §5 deals with related embedding problems, mainly focussing
on finite maximal subgroups of the same overgroups, and finite simple sub-
groups of simple algebraic groups in positive characteristic. §6 is concerned
with an overview of the calculations needed to establish the harder embed-
dings. In §7, we end by a discussion of the computational aspects of the
constructive proofs outlined in the previous section.

We gratefully acknowledge comments by R.L. Griess, Jr. and J -P. Serre
on earlier versions of this paper:.

2. Finiteness results

The theorem below generalises a well-known fact known for GL(n,-). A
good reference for a proof is (Slodowy [1993]); it is based on (Weil [1964]).

Consider the set of all maps from L to G, denoted by GL, as an affine
variety by viewing it as the product of |L| copies of the affine variety G.
. Regard the set of all representations as the subvariety of GL consisting of
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all points p : L —= G satiéfying the polynomial equations p(g)p(h) = p(gh)
for all g,k € L. Note that G acts on X by conjugation:

(g-p)h) = g;’(h)g;1 (9€G, pe X, he L)

If k is a field, we denote by % its algebraic closure. If G is an algebraic
group, we denote by G° its connected component containing the identity.

2.1. Theorem. Suppose L is a finite group and G is an algebraic group.
If k is a field such that HY(L,V) = 0 for all finite-dimensional kL-modules
V, then the number of conjugacy classes of representations L — G(k) is
finite. In fact, in the variety X of all representations, each GC%-orbit of a
representation is an irreducible component of X.

The vanishing cohomology condition for L on kL-modules is satisfied
if |L] and chark are coprime (this includes the case chark = 0). At least
| some condition in this direction is necessary as, for any natural number i ,
the elementary abelian group L of order p? embeds into SL(2,k), where
k= (Z/p)E), via R

: 1 a4+t
oo (o °5)

this gives an infinite set of representations {¢;}:, no two of which are G(k)-
conjugate. : : '

There are more detailed results in this direction. For instance, for p =
chark > 0, Slodowy (Slodowy [1993]) proves that, when fixing a particular
representation of a Sylow p-subgroup of L, the number of conjugacy classes
of representations of L extending this representation is finite (thus answering
a question of Kilshammer). - '

A very useful consequence of Theorem 2.1 is the following result.

7

2.2, Corollary. Let K be an algebraically closed overfield of F' and suppose
char F' and |L| are coprime. Then any finite subgroup L of G(K) is conjugate
~ to a subgroup of G(k) where k is a finite extension of F' inside K.

PRrROOF. As before, let X be the subvariety of GL consisting of all group
morphisms L — G. Then X is clearly defined over F. Let p: L — G(K) be
the embedding afforded by the hypothesis. The above theorem yields that
the G(K)%-orbit of p: L — G{K) is the set of K-points of an irreducible
component of X. Therefore, this orbit contains a point defined over a finite
extension k of F, that is, there is ¢ € G(K) such that g-p : L — G(K)
satisfies (- p)(L) < G(k). The assertion follows as (¢-p)(L) = gp(L)g~*. O

Thus, for any given representation with specified ground field, one may
ask for the minimal degree of an extension field of the ground field that
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realizes it. In particular; it would be interesting to have an analogue of
Brauer’s result (Brauer [1980]), which states that if F is a finite field, each
irreducible representation p : L — GL(n,F) is GL(n, F)-conjugate to a
- representation o : L — GL(n,k), where k is the smallest subfield of F
containing all traces of p(g) for g € L. S
 In order to give a meaning to such an extension from GL(n,-) to arbi-
trary reductive algebraic groups G, two notions need appropriate general-
izations. The first is irreducibility of a representation: a good candidate for
“simple algebraic groups might be that p(L) is not contained in any parabolic
subgroup of G. The second is the extension field of the ground field: taking
k to be the smallest subfield of F' containing all traces of elements of p(L) on
any of the fundamental weight modules, we would regain Brauer’s subfield
- in case G = GL(n,-). ' : : : ‘ _ '
For example it is shown in (Testerman [1989]) that Ga(q) ‘embeds in”
E¢(q) as an irreducible group on a 27-dimensional module for FE¢(q) if and
only if /=7 is in GF(q). It is shown in (Cohen & Wales [1993]) that a
certain embedding of L(2,13) into Ee(q?) is in E¢(q) if and only if /=01 is
in GF(g). ‘ ' -

3. Relation With the finite groups of Lie type

In this section we review some of the folklore on the connection between
group embeddings in groups of Lie type defined over the complex numbers
and those over a finite field. See also (Griess [1991]), (Cohen; Griess &
Lisser [1993]) and (Cohen & Wales [1992]). We are indebted to Prasad,
Ramakrishnan, and others, for helpful discussions concerning the contents
of this section. '
For the duration of this section, let G be a semi-simple algebraic group
_scheme. Denote by A its Dynkin diagram, by r its number of nodes (i.e.,
the rank of G), and by A the extended Dynkin diagram of A. Furthermore, .
fix a prime number p. We let Q, be the p-adic field and K the p-adic
completion of the algebraic closure of Q,. As is well known, K and € are
isomorphic as fields. Pick an isomorphism which identifies these fields.

For k a finite extension of Q,, let o denote the ring of integers in k and
p the maximal ideal of 0. Then o/p = Fg where ¢ is a power of p and F,
is a finite field with ¢ elements. The groups G(C) & G(K), G(k), G(F,),
and the subgroup Gr(o) of G(K), where I is a rank r subdiagram of A, are
now defined by the group scheme. v )

Reduction modulo p is a homomorphism from Gr(o) onto Gr(F,). The
kernel of this map is a profinite p-group. The quotient Gr(F,) is a finite
group of Lie type I'. The quotient G (F,) coincides with G(F,). Reduction
modulo p works because of the following key result.
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- '3.1. Theorem. Suppose k is a finite extension of Q,. Then the group G(k)
. is a locally compact group, when endowed with the p-adic topology. Any
. fnite subgroup of G(k) is compact and is contained in a maximal compact
- subgroup of G(k). Given a maximal compact subgroup M of G(k) there
. is a rank r subdiagram T of A and an algebraic subgroup Gr of G defined
| over k such that M is conjugate within G(k) to Gr(o), where o denotes the
- ring of integers in k. :

| PROOF. See (Bruhat & Tits [1972]; Tits [1979]). =

_ Actually, we have been informed (Serre [1994]) that one can do better:

there is a totally ramified extension k. of k such that Gr(o) embeds in
Ga(oe), where o, is the ring of integers of k... It follows that each finite
- subgroup of G(k) is conjugate in G(k) to a subgroup of Ga (o).

3.2. Theorem. Suppose L is a finite subgroup of G(K). Then thereis a
- finite extension field k of Q, inK,arankr subdiagram of A and a subgroup -
"L, of G(k) conjugate to L such that L, is a subgroup of Gr(oc), where o is
the ring of integers of k. Reduction modulo the maximal ideal p of 0 is 2
homomorphism from L onto a subgroup of Gr(¥,) for some power ¢ of p.
The kernel is a p-group. '

PROOF. Choose k as in Corollary 2.2, so that, identifying K and C, the
- subgroup L of G(C) is conjugate to a subgroup of G(k).

By Theorem 3.1 there is a conjugate Ly of Ly in G(k) which is a -
subgroup of Gr(o) for some rank r subdiagram T of A. The kernel in
Gr(o) of reduction modulo p being 2 profinite p-group, the kernel of its
restriction to Lo is a finite p-group.. The image of L2 under reduction

- modulo p is a subgroup of Gr(¥F,). o

In particular, if L has no normal p-subgroup, we find that L embeds
Cin G(F,). For, take k as in Theorem 3.2. Then the residue field of o, as
above is again Fy, so by the second assertion of the theorem, there is a
homomorphism from a conjugate Lj of L to Ga(F,) = G(F,). By the last
assertion and the hypothesis on normal subgroups of L, the homomorphism
is injective. ’

Now, conversely, given an embedding of L in G(F,), we can lift- the
embedding to one of L in G(C) under a familiar condition, which finds its
origin in the following well-known result.

3.3. Lemma. Suppose H is a finite group which contains a normal sub-
group P of order a power of the prime p and H /P is of order prime to p.
Then H contains a subgroup isomorphic to H/P, and all such subgroups
are conjugate in H.
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Proor. This is the Schur-Zassenhaus theorem. See, e. g, (Suzukl [1682]),
Theorem 8.10 of Chapter 2. . oo

3.4. Theorem. Suppose g is a power of p and L is a subgroup of G(Fq)
whose order is not divisible by p. Choose a finite extension k of Q, with ring
of integers o and maximal ideal p of o such that of/p =¥, Tben there is a
subgroup of G (o) which reduces modulo p to L. For a ﬁxed isomorphism
between the p-adic completion K of the algebraic closure of k and €, there
is a unique conjugacy class of subgroups of C'(iD) for Wlnch some conjugate
in Ga(o) reduces to L. :

PROOF. Denote by L the inverse image in Ga{o) of L under reduction
modulo p. If N; is'the kernel of reduction modulo p?, then N; is normal in
L and Ny /N; is a finite p-group. Since the latter quotients are p-groups and
p does not divide |L|, the lemma above and induction on 7 yield that there
exists a unique (up to conjugacy) subgroup L; in L 1<omorph1c to L and
mapping onto Liq under the natural quotient map L L/N; — I [Ni-1. Thus,
we can find a complement of N unique up to conjugacy in L isomorphic
to L. This complement provides an embedding of L in Ga(0), which by
the isomorphism K = C as above leads to an embedding of L in G(C).
The conjugacy condition follows from the uniqueness of L in L. O

Caution with the uniqueness statement in the theorem is needed, as,
changing the isomorphism between K and C, the conjugacy class of L may
change by a Galois conjugation. : »

4. Established enlbe'ddings and open cases

The existence of finite simple subgroups of complex Lie groups has been of
interest for some time. Systematic searches for such embeddings received an
impetus by Kostant’s conjecture, formulated in 1983. It asserts that every
simple complex Lie group G(C) with a Coxeter number A such that 2h + 1
is a prime power, has a subgroup isomorphic to L(2,2k + 1). For G(C) of
classical type, this is readily checked using ordinary representation theory
and the Frobenius-Schur index. For G(C) of exceptional type the theorem
below and the knowledge that A = 6,12,12,18,30 for the five respective
exceptional types give an affirmative case-by-case answer.
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A quick overview of the state of the art is supplied by Table 1.

Table 1.

Nonabelian simple groups L a central extension of which embeds
in a complex Lie group of exceptional type X,

X I

G| Alts, Alts, L(2,7), L(2,8), L(2,13), U(3,3)

Bl Altr, Altg, Alte, L(2,25), L(2,27),

L(3{3)7 3D4(2)7 U(47 2)) 0(772)7 0+(8) 2)
Es Altyg, Altiy, L(2,11), L(2,17), L(2,19),
, . L(3,4), U(4,3), 2Fy(2), My, T

Eq Altyy, Altys, L(2,29)7, L(2,37), U(3,8), Mi2

Es Altyy, Altls, Altys, Altyz, L(2,16), L(2,31), L(2, 41)
L(2 32)7 L(2, 61) L(3,5), Sp(4, 5), G2(3) $2(8)"

There are two meanings to be attached to this table:

4.1. Theorem. Let L be a finite simple group and let G be a simple
algebraic group of exceptional type X,.

(i) If L occurs on a line corresponding to X, in Table 1, then a central
extension of it embeds in G(C), with a possible exception for the four groups .
marked with a “?”.

(i) If X, is as in some line of Table 1 and L appears neither in the line
corresponding to X, nor in a line above it, then no central extension of L

embeds in G(C).

Warnings. To simplify the presentation,
a. we have deliberately neglected questions of conjugacy classes of embed-
dings, and
b. we have not specified the pzirticular nonsplit central extensions of the
simple groups involved.

Ad a. An example where the conjugacy class question is more subtle than
suggested by the table is provided by L(2,13). By (Cohen & Wales [1993]),
it is isomorphic to a subgroup of F,(€) whose normalizer is a finite maximal -
closed Lie subgroup of F4{C), whereas the table only hints at the existence
of embeddings via a closed Lie subgroup of Fy(C) of type Ga.

Ad b. For instance, the simple group L(2,37) Iisted embeds into a group
of type E7 but not in a group of type E3 because each embedding in an
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adjoint group of type Ex lifts to an embedding of SL(2, 37) into the universal
|~ covering group 2 - E7(C). Of course, the double cover SL(2,37) of L(2,37)
-+ embeds in the universal Lie group of type E7, whence in a Lie group of type
L Eg. :

Another warning concerning Table 1 is perhaps in order: The main theorems
in (Cohen & Wales [1992]) and (Cohen & Griess [1987]) only concern sub-
groups not contained in closed Lie subgroups of positive dimension whereas
Table 1 lists all finite simple subgroups (Whether in a closed Lie subgroup
of positive dimension or not)

~Remarks. .

- 1. The choice of central extensions of simple groups rather than just stmple
groups is important because they are the ones needed for the general-
1zed Fitting subgroup. :

'ii. The table does not account for all groups that are involved in Fg(C).
For instance, no central extension of L(5,2) is embeddable in Eg(C),
but a nonsplit extension 2{5+10} . 1(5 2) does embed (cf (Alekseevskii
[1974])).

iti. The group L(2,29) appears in a Lie group of type Bz, whence in one of
type Eg. So, if the question whether a central cover of L(2,29) embeds
in E7(C) has a negative answer, the group should appear at the bottom
line of Table 1.

iv. Unlike the GL(n,-) case, knowledge of the classes of the individual
elements of an embedded group L does not suffice to determine the
_conjugacy class of L in G. This has been observed by Borovik for the
alternating group Altg in Fg(C). The problem of how many conjugacy
classes of embeddings of L exist only has a partial solution. See (Gness )

- [1994]) for the full solution concerning Go.
v. The group L(2,41) does not appear as a possible subgroup of Eg(C)in -
(Cohen & Griess [1987]), but neither does the argument ruling it out. -
Also, the group Sz(8) does not appear as a possible subgroup of Eg(C)

in [loc. cit.], whereas the argument ruling it out is erroneous. :

vi. Another error in [loc. cit.] concerns the character given for L(2, 31).
The restriction of the adjoint character for Eg(C) to the subgroup
isomorphic to L(2,31) constructed by Serre (see below) has a different
character. :

PROOF OF THEOREM 4.1(i). In some cases where the subgroup to be em-
bedded is “big enough”, L can be shown to embed by use of ‘character
theoretic arguments, without explicit constructions. Two useful examples
are the following two criteria, valid for both finite and algebraically closed

fields F':
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LXp:L— GL(7,F)is an irreducible representation and p(L) leaves
fixed a 3-linear alternating form on F' 7 then there is a subgroup of
GL(7, F) isomorphic to Ga(F) such that p(L) < G2(F) (cf. (Cohen &
Helminck [1988])). N _ .

I1. If, for some positive integer 7, the map p : L — GL(n,F) is an irre-
ducible representation such that p(L)fixes a nonzero symmetric bilinear
form and a nonzero alternating trilinear form on F™, but no nonzero
alternating quadrilinear form, then p(L) preserves a non-trivial Lie al-
gebra product on F™ (cf. (Norton [1988]); earlier, in (Griess [1977]),
similar conditions were given). o

In both cases, the conditions can be verified using character tables and
power maps only. '

We now deal with the individual groups occurring in the table.

| Go: Alts, Alts, L(2,7) have 3-dimensional projective representations, so a
| central extension occurs in 2 group of type Az;the latter diagram occurs-in
G, and so, by (Borel & Siebenthal [1949]), there is a closed Lie subgroup
in G2(€) of type A,, via which central covers of the three simple.groups
embed in G2(C). The above argument 1. applies to L(2,8), L{(2,13). The
group U(3,3) is an index 2 subgroup of the full automorphism group of the
Cayley integers, and as such is known to embed in G-, see (Coxeter [1946]).
For more details, see (Cohen & Wales [1983]). Recently, a new approach to

this classification appeared in (Griess [1994]). :

Fy: Alt; < Alts < Alty, and the latter has an orthogonal representation
of degree 8, so embeds in a Lie group of type Dy, whence a central cover
embeds in aLie group of type Fy. Similarly for 0(7,2) and 07(8,2). A
central cover of the group U(4,2) has a 4-dimensional orthogonal represen-
tation, and so embeds in a group of type Aj, whence in F4(C). The group
L(2,25) occurs as a subgroup of 2F,(2), which can easily be seen to embed
in E¢(C) (see below); restriction of the Eg-character on a 27-dimensional
high-weight module to the subgroup L(2,25) shows that a vector is left
fixed; the stabilizer of this vector must then be a Lie group of type Fi,
whence L(2,25) < Fy(C). The group 3D4(2) can be seen to embed in
F4(C) by argument IL. above. The group L(3,3) occurs in the split ex-
tension 33 : L(3,3) found by (Alekseevskil [1974]). For an embedding of
L(2,27) 'and more details, see (Cohen & Wales [1992]).

Eg: Alt;o < Alty; embeds in a Lie group of type Ds. The groups L(2,11),
L(3,4), U(4,3), and J; have nontrivial projective representations of dimen-
sion less than or equal to 6, and so central extensions embed in A5(C),
whence in E¢(C). Similarly M has an orthogonal representation of degree
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10, so embeds in a group of typé D5, whence in one of type Eg. By argu-
ments IL, it can be established that 2F,(2)’ embeds in E¢(C). For L(2,17)
and L(2,19), and more details, see (Cohen & Wales [1992]).

Eq: Altys < Altys is in Dg(C) whence in E7’(er3) An embedding for U(3,8)
is given.in (Griess & Ryba [1991]). Finally, M), embeds in Al¢;3. For more
details on max1mahty and chara,cters, see (Cohen & Gness [1987]).

Eg: Altyy < Altls < Altig < Alt” embed in Ds(©). he group L(2, 16)

embeds in Alt;7. The group L(3,5) occurs in a split extension 5° : SL(3,5)

(cf. (Alekseevskii [1974])). The groups Sp(4, 5) and G2(3) embed iz a group

of type Dz, whence in E3(C). Finally, L(2,61) is constructed in (Cohen,

Griess & Lisser [1993]). For more details, see (Cohen & Griess [1987]).
- Using a more elaborate lifting criter_ionthan the one of Theorem 3.4 Serre
- recently proved (Serre [1994]), at least for groups G of exceptional type,
~the existence of a subgroup of G(C) isomorphic to PGL(2, k + 1) where
is the Coxeter number (starting from the existence of a particular subgroup
of type Ay in G(Fp11)). This establishes the ex1stence of a subgroup of
Es(C) isomorphic to PGL(2,31).

SKETCH OF PROOF OF THEOREM 4.1(ii). This part of the theorem uses
the classification of finite simple groups. The proof can be found in (Cohen
& Griess [1987]) for E7 and Es, (Cohen & Wales [1992]) for F; and Fg, and
(Cohen & Wales [1983]) for G2. Some of the main techniques are discussed
below.

First, due mainly to (Landazuri & Seitz [1974]), for any given finite
simple L there is an explicitly known number r such that each nontrivial
projective representation of L has degree at least . If a central cover of L
embeds in G(C), then the smallest high weight representation has dimension
at least r. For G = Gs, Fy, Eg, E7, Eg, this gives r, < 7,26,27, 56,248.
‘This leads to an explicitly known finite list of simple groups for Whlch the
existence of an embedding needs to be checked.

In most cases, the list resulting from the Landazuri-Seitz bound ry, is
still too big for a detailed analysis. An extremely useful result that helps
to trim down the list further is due to (Borel & Serre [1953]). It states that
every supersolvable subgroup of G(C) is embeddable in the normalizer N
of a maximal torus T of G(C). Its use lies in the fact that the structure
of N is completely determined: T = €” where r is the rank of G, and
N/T is the Weyl group of G. Thus necessary conditions for the existence
of an embedding of L in G can be derived in terms of the structure of all
supersolvable subgroups of L. For example, the rank of a maximal abelian
p-subgroup of L is at most r + 1 when L is embedded in G(C) (cf. (Cohen
& Seitz [1987]; Griess [1991])).
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Another useful criterion comes from the' limited number of classes of
clements of given order in G(C) and knowledge of their centralizers. For
instance, the possible traces on small G-modules can be readily computed (it

is fully automated in LiE, cf. (Leeuwen, Cohen & Lisser [1992])). This gives

rise to necessary conditions on the characters-of L for them to be restrictions
of characters of the ambient Lie group G(C) on a given small-dimensional

. high-weight module:

There are other conditions on the characters of L that must hold for
them to be restrictions of G(C)-characters if L embeds in G(C). For in-
stance, on the adjoint module, L must leave invariant a symmetric bilinear
form and an alternating trilinear form; these conditions can be expressed

' in terms of characters. In (Cohen & Wales [1992]) a more detailed relation

between the characters that holds for the Lie group but not for “likely”

“character restrictions for G2(3), was used to show that G2(3) cannot be em-
- bedded in E¢(C). More specifically, let ¥, x be the characters of 3 - Eg(C)
. on high weight modules of dimension 27 and 78, respectively. Then 3 ® ¢

contains y. Assume now that G»(3) <,E6.(_C),. Then, by character argu-
ments, we see that L = 3 - G2(3) < 3- E¢(C), and that there are unique
characters 1, x1 of L such that |L = 3; and x|L = xa- Nowﬂ@%
does not contain Y1, a contradiction with x|L occurring in ¢|L ® P L.

" If such arguments do not help, an explicit model of the group is useful.

" This model is usually taken to be the smallest dimensional. high-weight
* module of G. ‘ i O

In conclusion, in establishing the existence of an embedding of a central
extension for finite simple groups, we only encounter computational diffi-
culties for the Suzuki group Sz(8) in Es(C) and for the groups L = L(2, $)
with s = 17,19,27,29, 32, 37,41, 61 in the respective cases X, = Eg, Es,
Fy, Eq, Eg, E7, Eg, Eg. In _View of part (1) of the theorem, we have the

. following result.

" 4.2. Theorem. Kostant’s conjecture holds.

To finish off the question marks of Table 1, the following open questions

need to be solved.

4.3. Open problems. Establish that L(2,29) embeds in E7(C), and that
L(2,41), L(2,32), and Sz(8) embed in Es(CT)..

The first of these, the only case left open for E7, is probably the most
straightforward one. The centralizer of the image of the diagonal of L(2,29)
in E;(C) is a group of type TsA; (that is, a product of a central torus of
dimension 6 and (P)SL(2,C)). From §6, it will be clear that this slightly
complicates the approach to a construction used for cases where the cen-
tralizer of a similar image is minimal, i.e., a maximal torus of G.
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5. Related embedding problems

Embedding other groups in simple algebraic groups. In (Borovik
[1989}; Borovik [1990]) perhaps the most remarkable finite subgroup of any
Lié group appeared: it is a finite maximal closed Lie subgroup of Eg(T),
whose socle is Alts x Altg. It is the only occurrence of a subgroup of a
simple complex Lie group G(C) whose normalizer is a finite maximal closed.
Lie subgroup of G(C) and whose socle is a product of more than one simple
group. : ‘ .

Now let I be a finite maximal closed Lie subgroup of a complex simple
Lie group G(C) of exceptional type. If L has a nontrivial abelian normal
subgroup, then L is known by (Alekseevskii [1974]; Alekseevskii [1975]). If
not, then either L has socle Alts x Alts (and G has type Eg), or L has a
~ simple socle, in which case the results of §4 apply. Thus, finite maximal
closed Lie subgroups of G(C) are well understood.

Modular representations of finite simple groups. The analog of The-
orem 4.1 for algebraic groups over algebraically closed fields of positive
characteristic p > 0 is more difficult. One extreme is the situation where
(|L|, p) = 1; by Theorems 3.2 and 3.4, this can be brought back to the Lie
group case. At the other extreme, L may be a group of Lie type of the same
characteristic. The study in (Seitz [1991]) shows how intricate this situation
is.

'On the positive side, many constructions as suggested by Table 1 go
through due to the results in §3. To indicate that extra embeddings arise,
we mention a few, without attempting to be exhaustive. In (Kleidman &
Wilson [1993]), the sporadic simple groups embedding in 2 finite group of
_exceptional Lie type are determined. Apart from the sporadic simple groups
L that can be found by use of Theorems 4.1(i) and 3.2 above, they found
Mzz (111 E6(4)), J1 (1n Gg(ll)), J3 (in Ee(4)), Ru, HS (both in E7(5)), F22 :
(in Ee¢(4)) and Th (in Es(3)). The reader is warned that here, as opposed -
to [loc. cit.], no exhaustive list is given of the groups of Lie type in which
the sporadic groups occur. Earlier, several of the sporadic groups were
hypothesised (notably by Steve Smith for Ru and H.S) or proven (e.g. by
(Thompson [1976]) for Th and by (Janko [1966]) for J1) to embed in a group
of exceptional Lie type. The added value of [loc. cit.] is that it establishes
- exactly where these groups occur and that the list is complete.

Modular representations of other groups. In the theory of maximal
finite subgroups of algebraic groups over fields of positive characteristic,
much progress has been made, especially for finite and algebraically closed
fields. The cases where L has a nontrivial normal abelian subgroup have
been dealt with in (Cohen et al. [1992]). Borovik’s remarkable subgroup
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] " remains the sole finite maximal closed subgroup whose socle is a product of

© more than one simple group (cf. (Borovik [1990]; Liebeck & Seitz [1990])).

' The remaining case, where the socle is simple and there is no abelian normal
- subgroup, is very hard. See (Seitz [1992]) and references contained therein,
_ for general results in this direction. The determinations of maximal finite
- subgroups of groups of Lie type Gs, F} and Fg are fairly satisfactory, due

to, among others, (Aschbacher [1991]; Kleidman [1988]; Magaard [1990]).
' Those for E; and Ejs are still unfinished. It should be noted that not all
! finite subgroups are contained in ma.x1mal finite subgroups Many finite

subgroups of a torus are examples

8. Descrlptlon of hard embeddmas

The carliest descmptlon of a method for an embeddlng of an L(2,s) in an
exceptional Lie group was perhaps (Meurman [1982]) (although in this case,

according to I. of §4, no explicit construction was necessary). A method -

along the same lines works in principle for most of the hard cases. The
starting point for these constructions is a presentation for L = L(2 ,8) by
generators and relations, together with a medel for G.

By way of example, consider the group L(2, s), where s is an odd prime.
It has a presentation of the form

Ly =(u,t,w|u®= t(sfl)/z =1, tut™ = us’,
w? =1, wtw=1¢"",

(uw)® = L, wudw = %' wu])

for mtegers g,a,1,7 such that
1. g mod s is a generator of the multlphcatlve group of Z / 38,
ii. a=(s—3)/2 (mod s),
ii. i=g® (mods)andj =31 (mods).
In particular, the following map on {u,t,w} can be extended to an

i isomorphism L; — L.

; 1 1) g 0 0 1
Wi(o 1), mi<0 ,g_) Wi(*l 0).

* Here 7§ stands for g mod s. The subgroup (u,t) of Ly is clearly isomorphic
" to a Borel subgroup of L, and hence a Frobenius group of order s(s —1) /2,

and so a Todd-Coxeter enumeration for the presentation with respect to

~ this subgroup of L; (yielding that (u,t) has index s + 1) suffices to show

that L and Ly are isomorphic.
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Next, a model for G(-) is needed. In almost all cases, G(F), for a suit-
able field F', is viewed as a subgroup of the linear group GL(n, F') preserving
a form or a multiplication on F*. In (Cohen, Griess & Lisser [1993]) the Lie
algebra product g is used to define G, that i is, G(F) is viewed as the sub-
group of GL(n, F') of all matrices preserving p. In (Griess & Ryba [1991])
G(F') is viewed as the subgroup of GL(n, F)) of all matrices which leave in-
variant (under conjugation) the Lie algebra L corresponding to G(F'), where
L is presented as a linear space of n X n-matrices over F.

In such a setting, a maximal split torus 7 is fixed, usually the subgroup
of all diagonal matrices in G(F’), and its normalizer N in G(F') is a monomial
group, which can be described explicitly.

It is easy to embed (u, t) in G(F) provided F contains s-th roots of
unity. Because this group is supersolvable, the theorem of Borel-Serre
mentioned in the proof of 4.1(ii) (a variant for algebraic groups is due to
(Springer & Steinberg [1970])) yields that, up to conjugacy, we may assume
{u,t) is contained in N, the normalizer in G of the standard maximal torus
T of G.. The structure of N then forces the image of u to lie in 7.  The
T-coset of the image of ¢t in W = N/T belongs to a well-studied conjugacy
class inside the Weyl group. In most cases, for instance in the Kostant
series, the image of ¢ in W is a regular element in the sense of {Springer
[1974]) This implies that all elements in the inverse image Tt C N are
conjugate in G(F).

Now suppose we are given such an embedding of (u,t) into N. We
shall denote the images of u and ¢ also by u and ¢. How do we extend it
to an embedding of Ly into G? 'In order to find an element in G which is
the image of w € L; under an embedding, we start with wo € N inducing
an involution inverting ¢ in W. Due to the good control over N, such an
element wyg is easy to find. The next stage is to look for w € wgC, where
C is the centralizer in G(F) of ¢. If ¢ is a Coxeter element, C is a maximal
split torus (in general, the dimension of C' is at least the Lie rank r of G).
Maximal split tori are conjugate. Suppose now that ¢ is a Coxeter element.
In order to be able to compute with elements of C', we need to identify this
group with an explicit conjugate of T', that is, we need to find d € G with
dTd™' = C. For this operation, it is useful to have (s — 1)/2-th roots of
1'in F'. Thus, an appropriate choice for F would be a field of prime order
1 4 ms(s — 1)/2 for a suitable natural number m. (If L = L(2,61), we
can take m = 1 so that |F| = 1831.) Here, for the first time, we need an
explicit model for G. We can take it to be G(F) = Aut g, where g is the
corresponding Lie algebra defined over F.

Computationally, finding d is a hard step. An eigenspace decompo-
sition of F'™ with respect to d is needed, but is not enough. In‘(Cohen,
Griess & Lisser [1993]), detailed information regarding the behaviour of the
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eigenspaces under the multiplication u was exploited to ﬁﬁish this step.
' But the result is gratifying in that it enables us to explicitly comstruct C,
' sothat the embedding problem can be transformed into a set of equations,

the unkowns of which are the entries of a matrix representing an element
z € C =dTd. The number of unknown entries in z is r = dim T if we re-
gard the diagonal entries of d~!zd as monomials in r independent variables,
or n, if we regard that diagonal as n = dim & linear variables.

The final step consists of solving the equations pertaining to the relation
(uw)® = 1 (often the most complicated relation wufw = t*utwu’ is not
needed). To this end, rewrite this relation as:

UWGTU = woafu_lng

for z € dT'd™1. By letting these matrices act on vectors y € dt, where t is

the Cartan subalgebra related to T', we get the equations

UWOTUY = WoTU *Woy,

. which are linear in . Big systems of linear equations are more easily solved
" than small systems of polynomial equations. Thus, for the case s = 61,
© the linear equations in n = 248 variables were quite manageable, whereas
the polynomial equations in r = 8 variables were extremely difficult to
solve. (Recently, A. Reeves, using the software package Macaulay, managed
' to solve a set of polynomial equations derived in the course of the work
- described in (Cohen, Griess & Lisser [1993]); it took her Sparc server little
~ over an hour to find the unique solution.) Seeing to it that |F| is coprime
~ with |L|, we can conclude by Theorem 3.4 that L embeds in G(C).

In some cases, the lifting argument. was not needed; for instance, in

: (Cohen & Wales [1993]), the group L(2,13) could be exphmtly embedded
in 3. E¢(C).

An entirely different method of construction, based on computer exper-
iments, is to be found in (Kleidman & Ryba [1993]). The method works with

- asmaller field F, and has a probabilistic portion (for finding an embedding;
~ the resulting existence proof is not probabilistic).

- 7. Existence by computer

The kind of proof described in the previous section raises the question about
construction of an embedding by means of computer. In this section, we

- discuss some of the issues regarding an existence proof by computer.

It goes without saying that a computer-free proof, if it did not degen-

erate into a dull stack of computations accounted for on paper, would be
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much preferable. But given the fact that no such proof of Kostant’s conjec-
ture is in sight, we are faced with the question of what is acceptable as a
proof when computations. are involved that can no longer be checked by a
single person using pad and pencil. : :

For the sake of exposition, it is convenient to revisit the embedding
described in the previous section. So, suppose we are given three square
matrices u, t and w of size 248 and we wish to verify that they generate-a
subgroup of the Lie group of type Fjg isomorphic to the finite group L =
L(2,61). Here, by ‘being given’ a matrix of this size, we mean that thereisa
simple routine available for generating them, or that they are on file, because
the amount of data is simply too large for visual inspection or typing. We
need to be able to multiply two such matrices. These computations are
useful since it is possible to verify an identity between products of matrices.
In particular, checking whether u, ¢ and w satisfy the defining relations for
Ly is feasible. . L ) . o

For the computations involved it is essential that the entries_li'(_%ihg field
of moderate size, such as Z/p for p a prime- less than 10%. - Multiplication
of two matrices of this size would otherwise not be practical. This shows
the importance of the lifting results: the computer calculations will only
explicitly embed L in G(Z /p); Theorem 3.4 is subsequently used to derive
the existence of an embedding in G(C).

In purpose-dedicated software, multiplication of two 248 x 248-matrices
over such prime order fields takes less than a second. In packages like GAP,
MAGMA, and LiE which are specially suited for computations with such
matrices, it will take several seconds, which is still acceptable. '

As a consequence, it is possible for everyome with access to a work-
station with one of the abovementioned packages to perform the necessary
' matrix multiplications in order to be convinced that the defining relations
for L are satisfied. So much for the verification that u, 1 and w generate a’
subgroup of GL(248,Z/p) isomorphic to L. S

Another part of the verification that L embeds in G(Z/p) is the check -
that u, ¢ and w preserve the Eg Lie algebra product.  To this end, the
Lie algebra product p is given as a vector p(z,y) of 248 polynomials in
the 2 x 248 variables z,y (representing vectors of (Z/p)**?). Then, for
E=1,...,248 and g = u,t,w, it is checked whether, for generic vectors &
and y, the k-th component of the vectors u(gz,gy) and gp(z,y) coincide.
By reduction of the check to one component at a time, this computation is
feasible in a general purpose package (such as Maple or Mathematica).

In general, it can be argued that, provided the source code and the
software used is well documented, widely available and implementable, com-
putations that are independently verifiable (with relative ease) can be ac-
cepted as parts of a mathematical proof. The argument in defense of ac-
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- ceptance is that, if the intermediate steps documented in the proof suffice
- for a monastery of mathematically skilled monks to be able to perform
- the computations within a reasonable time span, the usual proof check is
- conceivable (albeit blown out of proportion) in times and places where no
computers are available.

Although the proof requires relatively little computer effort, finding

* such a proof can be much more time consuming. Indeed, this has been the’

case in the computer search for the right matrices yielding the preceding -

- embedding of L in G(Z/p), especially w. But, once the ‘oracle-like’ results
 are establish, the time-consuming constituents of the computer work need
-~ not be repeated (with the minor exception that, in (Cohen, Griess & Lisser
[1993]), a uniqueness proof (up to conjugacy) of the embedding of Z(2, 61)
~ in E3(C) is given that depends on computer computations).

8. Conclusion

Most embedding questions regarding finite simple groups in complex Lie
groups of exceptional type have beén solved, except for the four persistent

- problems of §4.3. More detailed questions are still (partially) open, such as

minimal splitting fields, the number of conjugacy classes, a description of

. integral representations, and a geometric interpretation of the existence of
. such amazingly small groups as maximal closed Lie subgroups of such huge
. Lie groups.
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