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Abstract

This paper is a mini-overview of some recent results on the evolution of
Ising-spin systems under Glauber spin-flip dynamics, in particular, the question
whether Gibbsianness is preserved, lost or recovered during the dynamics. Ex-
amples of all three scenarios are given, with an explanation of what drives the
behavior. Some open problems are formulated as well.
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1 Introduction

1.1 Main question

The question that we address in this paper is the following. Consider Ising spins on Z¢?
evolving under a Glauber spin-flip dynamics from an initial Gibbs measure p towards
a final Gibbs measure v (# u). Is it possible that along the way the Gibbs property is

— preserved?
— lost?
— recovered?

The answer to this question turns out to be yes in all three cases. The goal of this paper
is to give examples with explanation. We will see that these examples are natural and
typical. The results to be described below are taken from van Enter, Fernandez, den
Hollander and Redig [3], and rely on the work by C. Maes and C. Netocny [8]. For
proofs we refer the reader to these papers.

In statistical physics the above three scenarios correspond to preservation, loss or
recovery of temperature in a non-equilibrium setting (where the dynamics can be viewed
as a transformation acting on the probability law of the Ising spins). It is well known
that such behavior occurs in an equilibrium setting (under renormalization-type trans-
formations). For an extensive account of the latter up to 1993, we refer the reader to the
review paper by van Enter, Ferndndez and Sokal [2]. Later developments are described
in van Enter [1], Ferndndez [5], van Enter, Maes and Shlosman [4], and Maes [7].

1.2 Gibbs measures

Let Q = {-1, +1}Zd be the Ising-spin configuration space.

Definition 1.2.1 A probability measure p on Q is Gibbs if it has the DLR-prpperty
(Dobrushin-Lanford-Ruelle), i.e.,

1
p(oalnae) = 7 e~ H(oaVnae) VYo,neQ, VA CC Zd, (1.2.1)
Nae
with a Hamiltonian H: Q — R of the form
Hw)= Y Uilw), weQ, (1.2.2)
Acczd

where (Ua) accga are interaction potentials satisfying

sup Z |Ua(w)| < o0 Ve 7" (1.2.3)
weN

Acczd
Adz

Here, CC stands for finite subset, oy and n,c are the rectrictions of o to A and n to A€,
respectively, oy Vnae denotes their joining, Z,,. is the partition sum in A given 7 outside
A, while Ug(w) depends on w4 only. The uniform absolute summability condition in
(1.2.3) implies the uniform non-nullness and the quasi-locality that are characteristic

of Gibbs measures.



1.3 Glauber spin-flip dynamics

We consider the following situation:

1. At time t = 0, start from a translation-invariant Gibbs measure p with finite-range
interaction and with inverse temperature f3,,.

2. At times ¢ > 0, run a Glauber dynamics with spin-flip rates that are finite-range,
translation-invariant and strictly positive. This dynamics has as equilibrium at
least one translation-invariant (reversible) Gibbs measure v with finite-range in-
teraction and with inverse temperature [3,.

Let p; be the measure evolved at time ¢. Then in good situations we have
o= and = vast— oo. (1.3.1)

A priori, ¥ may depend on p. Below we will only consider high-temperature dynamics,
i.e.,, 0 < f, < 1, in which case p; converges to a unique v. We are interested in finding
out under what conditions

i is Gibbs for all/some/no ¢ > 0. (1.3.2)

Inverse temperature can be viewed as a norm for the interaction.

1.4 Gibbs versus non-Gibbs

A necessary and sufficient condition for a probability measure not to be Gibbs is the
existence of a bad configuration.

Definition 1.4.1 A configuration n € Q is called bad for a probability measure p on )
if there exist € > 0 and x € Z¢ such that:

VAsz, Accz® ITO>ATccz® 3¢Cen:

1.4.1
| pr (o(2) [navgay V Ena) = pr (0(2) [1avay V Gra) | > € 4

where pr is p restricted to I
The inequality in (1.4.1) signals the failure of quasi-locality in 7.
The set of bad configurations has p-measure 0 or 1 when p is ergodic.
2 Main theorems and a criterion for Gibbsianness

Below, when we write “for all 7 we mean “for all Glauber spin-flip dynamics whose
invariant measure is v”.



2.1 Main theorems

Theorem 2.1.1 For all u,v there exists to = to(u,v) > 0 such that p; is Gibbs for all
t €10,tp).

This says that Gibbsianness is preserved for small times.

Intuition: The set of sites where a spin-flip has occurred consists of “small islands”
that are far apart in a “sea” of sites where no spin-flip has occurred. Consequently,
sites that are far apart have disjoint histories with a high probability, implying (in a
percolation-type fashion) that there are no bad configurations.

Theorem 2.1.2 For all ji,v such that 0 < B3,, 8, < 1: py is Gibbs for all t > 0.

This says that Gibbsianness is preserved for all times when both i, v have a high tem-
perature.

Intuition: The time-evolved measure stays in the regime where no phase transition
occurs, implying that there are no bad configurations.

Theorem 2.1.3 Assume that:

(1) 1 < B, < 0o, with p the plus-phase of the standard Ising Hamiltonian with magnetic
field h.

(ii) 0 < B, < 1.

Under these assumptions:

L If h =0, then there exists 0 < t1 = t1(p,v) < oo such that p; is not (!) Gibbs for all
t e [tl, OO)

II. If h > 0, then there exists 0 < ty = to(p,v) < 00 such that p; is Gibbs for all
t € [ta,00).

III. Suppose that d > 3. If 0 < h < 1, then there exist 0 < t3 = t3(p,v) < t4 =
ta(p,v) < 00 such that uy is not (!) Gibbs for all t € [t3,t4).

This says that Gibbsianness may get lost and may get recovered when the system is
heated up from a low temperature to a high temperature. Apparently, the magnetic field
plays an important role in determining which scenario occurs.

Intuition: Not immediate. See Section 3.

The result in Theorem 2.1.3 is quite remarkable, because the regime of exponentially
fast convergence to a high-temperature Gibbs measure a priori seems unproblematic.

Figure 1 summarizes the statements in Theorem 2.1.3 (in combination with those in
Theorems 2.1.1 and 2.1.2). We believe that picture (b) holds for all d > 2 and h > 0,
but the proof requires the stated restrictions.
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Fig. 1: (a) h=0; (b) d>3,0< h < 1.

2.2 A criterion for Gibbsianness

Let o, be the spin configuration at time ¢. Consider the pair
(00, 0¢), (2.2.1)

and let fi; denote its joint distribution on € x €. The left marginal is p, the right
marginal is ju.
Suppose that fi; is Gibbs (this is not obvious!). Then it has joint Hamiltonian
Hy(o,n) given by
e~ Helom) — ¢=Hul®) p (5. p), (2.2.2)

Hi(o,) = H,(0) ~ logpi(0, ), (2.2.3)

where p;(o,n) is the transition kernel of the spin-flip dynamics. Here, the last term
has to be properly interpreted in the sense of a formal sum of t-dependent interaction
potentials, like in (1.2.2) (this is not obvious!). For n € €, let

G (H7) (2.2.4)

be the set of Gibbs measures associated with the Hamiltonian H}' (o) = H(o,n), where
n is fixed and o is running. A key criterion in our analysis is the following:

Proposition 2.2.1 (Ferndndez and Pfister [6]) Fiz t > 0. Under the assumption that
fiy s Gibbs:

1. IfIG(H)| =1 for all n € Q, then p; is Gibbs.

2. For monotone interactions, if |G(H]')| > 2 for some n € Q, then n is a bad configu-
ration for u;, and hence p; s not Gibbs.

In part 2, the non-Gibbsianness comes from the presence of a phase transition in o
for fixed n. (If we look at the marginal u; at time ¢, then we are summing out over
the marginal py at time 0.) The restriction to monotone interactions is believed to be
redundant.

The idea is to use the above criterion for a high-temperature dynamics (0 < 5, < 1),
for which it is possible to make sense of the dynamical part of H]', i.e., the last term in
the right-hand side of (2.2.3), as is shown in Maes and Netocny [8] with the help of a
space-time cluster expansion.

For the proof of Theorems 2.1.2 and 2.1.3 we refer to van Enter, Fernandez, den
Hollander and Redig [3]. In Section 3 we consider the case §, = 0, i.e., infinite-
temperature dynamics. It turns out that this case already exhibits all the relevant
features.



3 Sketch of proof for 3, =0

3.1 Joint Hamiltonian

Consider the evolution of p under a product dynamics where each spin flips indepen-
dently at rate 1. Since under this dynamics the conditional probability of the event
{ov(x) = n(z)} given the event {og(x) = o(z)} is

K1 e ) it olr) = n(a), -
s(1—e™) ifo(z) # n(),
the joint Hamiltonian in (2.2.3) is given by
Hy(0,n) = Hy(0) = Y _[hn(z)]o(x) (3.1.2)
with . . o
+e”

(Note that constants do not matter in the Hamiltonian.) The dynamical magnetic field
hy is strictly decreasing in ¢ with hy = 0o and h, = 0, corresponding to full correlation
between o and 7 at time £ = 0, respectively, no correlation at time ¢t = oo.

hy

Fig. 2: t — hy.

3.2 High- and low-temperature initial measure

e )< 3, K1t

H, has no phase transition. Since, for any n and ¢, H; differs from H, only in the
single-site interaction, it also has no phase transition. Hence Proposition 2.2.1, part 1,
applies.

o1 K f, <oo:

We consider the plus-phase of the standard Ising Hamiltonian with magnetic field A,
ie.,

Hy(0) = =B o@)oly) — 1Y o(x) (3:2.1)

T~y



with 8 = f,. Then the joint Hamiltonian in (3.1.2) reads

(o) ==BY ol@)o(y) =Y _[h+hn(@)] o). (3.2.2)

T~y T

There are four subcases:

3.2.1 yu; Gibbs for small ¢

For small ¢, h; is large and, for given 7, forces o in the direction of 1. Rewrite (3.2.2)

") = \/hy H' (o) (3.2.3)

H(0) = Z )= [% + ﬂn(x)] o(z). (3.2.4)

xwy

with

For small ¢, the last term in the right-hand side of (3.2.4) is the dominant interaction
(independently of 1, not of §,h). Therefore f[l’ has the unique ground state o = 7.
Consequently, H;' in (3.2.3) satisfies the Dobrushin condition for large enough inverse
temperature \/h;. Hence Proposition 2.2.1, part 1, applies.

3.2.2 h>0: u Gibbs for large ¢

For large ¢, h; is small and cannot overrule the effect of A > 0. Rewrite (3.2.2) as

— VA T(o) (32,5

with ) "
—\/ 0 o(x)o(y) — [—+—t77x]ax. 3.2.6
\[;y()();ﬂﬁ()() (3.2.6)
For large ¢, the middle term in the right-hand side of (3.2.6) is the dominant interaction
(independently of 7, not of 5, h). Therefore H,; has the unique ground state o = h/|h|.

Consequently, H; in (3.2.5) satisfies the Dobrushin condition for large enough inverse
temperature /3. Hence Proposition 2.2.1, part 1, applies.

3.2.3 h =0: u; not Gibbs for large ¢

Pick n = n,, the alternating configuration. For large ¢, h; is small and

H"(0)=-BY o(x — Y nal(x)o () (3.2.7)

T~y

has two ground states, 0 = +1 and o = —1, because the last term in (3.2.7) is neutral
in selecting them. By an application of Pirogov-Sinai theory, it follows that H; has a
phase transition for large enough inverse temperature 3, so 7, is a bad configuration.
Hence Proposition 2.2.1, part 2, applies.



3.24 d>3,0<h<1: u not Gibbs for intermediate ¢

A rough argument goes as follows. For intermediate ¢, h and h; are of the same order
(both small). Therefore we can find a configuration n* such that the external magnetic
field in (3.2.2),

x> h+ hn*(x), (3.2.8)

is “zero on average”, i.e., its average over a large box tends to zero as the box tends to
7.2 (for instance, h;/h = 2 and n* is a periodic repetition of +1—1—1—1). In that case
HZ’* has two ground states, 0 = +1 and ¢ = —1, because the magnetic field is neutral
in selecting them. By an application of Pirogov-Sinai theory, it follows that Hf* has a
phase transition for large enough inverse temperature 3, so n* is a bad configuration.
Hence Proposition 2.2.1, part 2, applies.

To make the above argument precise, we need the following. As shown by Zahradnik
[10], in d > 3 the random field Ising model at large enough inverse temperature has
a phase transition when the random field is small and zero on average. This phase
transition occurs for a set of random fields with measure 1 under the Bernoulli measure.
From this we conclude that n* can be drawn from a set of configurations with measure
1 under the Bernoulli measure (not g,;!). This in turn guarantees that n* exists.

4 Open problems

Some challenges for the future are:

1. What is the physical origin of the transition from Gibbs to non-Gibbs? In van
Enter, Ferndndez, den Hollander and Redig [3] it is suggested that a nature versus
nurture transition may be responsible, namely, a crossover from a situation where
fluctuations are dominated by the initial measure (small times) to a situation
where fluctuations are dominated by the dynamics (large times). This suggestion
has not yet been properly investigated.

2. In the case where p; is Gibbs for all £ > 0, what can we say about the trajectory
t — H,7 For instance, how does H,, converge to H,? The space-time cluster
expansion developed in Maes and Netocny [8] should serve as the starting point

for such an analysis.

3. What about 1 < 3, < 00, i.e., low-temperature dynamics? Here, one of the main
obstacles is to make sense of the dynamical part of H/, i.e., the last term in the
right-hand side of (2.2.3). Probably many different scenarios are possible, and
metastability phenomena are to be expected.

4. TIs it true that u,; is weakly Gibbs for all ¢ > 0 always? Or even almost Gibbs for
all t > 0 always? !

'Weakly Gibbs means that p; has an absolutely summable interaction potential for a set of con-
figurations of measure 1 w.r.t. u;. Almost Gibbs means that the set of bad configurations for pu; has
measure 0 w.r.t. g;. This is stronger than weakly Gibbs.



5. What about other types of dynamics? It was shown by Le Ny and Redig [9]
that Gibbsianness is preserved for short times under an arbitrary reversible local
dynamics, i.e., Theorem 2.1.1 generalizes fully. Does a similar type of behavior
as described in Theorems 2.1.2 and 2.1.3 hold for the lattice gas under Kawasaki
dynamics at high temperature? Infinite-temperature Kawasaki dynamics corre-
sponds to the exclusion process. Thus, we would first need to understand the
evolution of Gibbs measures under the exclusion process and we would afterwards
need to carry out an expansion for weak attraction on top of exclusion. However,
the trouble is that exclusion is not a weak interaction itself. “Glassy dynamics”
is an even greater challenge.

6. What about spins taking values in a continuous space? This question is addressed
in the paper by Dereudre and Roelly appearing elsewhere in this volume, where
for interacting diffusions a generalization of Theorems 2.1.1 and 2.1.2 is achieved.
Phase transitions for continuous systems are typically hard to handle. A criterion
like Proposition 2.2.1 is so far absent in the continuous setting. As is clear from
Section 3, this criterion is the key tool in establishing the results described in
Section 2.
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