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Chapter 1

Introduction

1.1 Interference & Interferometry

Interference is the superposition of waves and oscillations resulting in a new wave pattern.
This effect is ubiquitous and universal for all waves whether they are e.g. water waves,
sound or light. All these waves are locally described by an amplitude and a phase. De-
pending on the phase difference the interference of two waves can result in an increase to
an amplitude that equals the sum of those two waves or the decrease to the amplitude
difference. In every day life, however, often a wave pattern is the combination of many
different waves with a large range of frequency and wavelength. The phases of the wave
components thus vary rapidly, both in space and time, such that the interferences tend to
cancel and an overall structural interference pattern is hard to recognize.

An interferometer is a device that is specifically designed to make a clear and simple
interference pattern and utilize this to perform measurements. Many different types of
interferometers exist, but they are all based on the principle that one wave is split in
two and that these two partial waves are recombined again. Examples are the double
slit interferometer (Fig. 1.1) and the Mach-Zehnder interferometer (Fig. 1.2). The double
slit interferometer gives a spatial interference pattern on the screen. The Mach-Zehnder
interferometer (when perfectly aligned) does not give a spatial profile, but the interference
is revealed in the relative intensity on the detector. Interferometers are used to translate
the phase difference between the two paths to an intensity signal on a detector. Because
the phase of a wave often is much more sensitive to small perturbations than the amplitude,
an interferometer can be used as a very precise measuring instrument for these perturbing
effects.

The phase resolution of an interferometer is the minimum phase change that can be
detected. This is equal to the phase change at which the detector intensity has changed
by more than the detection noise. It is obvious that lower noise and larger overall signal
increase the phase resolution. The resolution, however, also depends on the sensitivity
which is the change in intensity, scaled to the total signal at the input, per unit change
of the phase. In Fig. 1.3 the phase sensitivity is given by the slope of the lines. For
an ideal 2-path interferometer the maximum sensitivity is 1. A real setup, however, has
imperfections that introduce phase noise which decreases the sensitivity. Fast fluctuations
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ScreenSlits

Figure 1.1: Double slit interferometer. One plane wave enters from the
left and is transmitted through two slits. These slits then act as two coherent
sources that emit spherical waves. The interference of the two waves from
the two slits form a spatial interference signal on the screen.

in the phase, for example, average out to a signal that oscillates with reduced amplitude.
An example of the resulting signal is given in Fig. 1.3 by the dashed line where the sum
is taken over signals that have a Gaussian distribution in the relative phase with an RMS
width of approximately 1 rad. In that case the detector signal changes much less with
the phase and a large fraction of the signal is lost to a constant offset. Sometimes the
quality of the interference signal is expressed in terms of the contrast which is the ratio
between the amplitude of the interference signal and the offset. It is clear that for a good
interferometer one strives for a low phase noise and a high contrast.

As mentioned, interference occurs for all oscillations, with perhaps the earliest obser-
vation in water waves. The first interferometers were developed in the 19th century and
used light as the interfering wave. From the beginning, these optical interferometers had a
large impact on physics and they are still being improved for more precise measurements.
In applied physics these interferometers are used for a large variety of measurements of
e.g. material properties like refractive indices and surface properties, and for high accu-
racy length measurements. In fundamental physics, optical interferometers have played
a large role in answering fundamental questions, as exemplified by the Michelson-Morley
experiment which ruled out the ether theory.

With the advent of quantum theory in the 20th century and the discovery of the matter-
wave duality of particles, the concept of interferometry was extended to matter waves, first
to electrons [1] and later to neutrons [2]. The first atom interferometers were developed in
the early 1990’s. This development has been motivated by two important factors. First,
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Detector

Mirror
Beam

Splitter

Figure 1.2: Mach-Zehnder interferometer. One wave that enters from
the left is split by the first beamsplitter and recombined on a second. When
the interferometer is perfectly aligned there is no spatial interference signal.
In that case a phase difference between the two paths sets how the intensity
is divided between the two output ports.

massive particles have the possibility for much shorter wavelengths and might thus allow
for much more sensitive measurements than light. Second, these particles have an ever
richer internal structure which allows for completely new kinds of interferometers.

1.2 Atom Interferometry

There is a vast range of configurations for optical interferometers, like the two that were
mentioned in the previous section. Atom interferometers, however, come in even more
varieties. Many atom interferometers have a direct analogue of optical interferometer in
which the atom wave is split in two spatially separated parts. It is however also possible
to split the atomic wavefunction over the internal states, e.g. by partial excitation by laser
pulses. In that case the “paths” of the interferometer are the different histories between
two parts of the wavefunction. The basic principle of operation, however, is the same for
all interferometers. The atoms are coherently split and an interference pattern is observed
when the split parts of the wavefunction are brought back together on the same position
and in the same internal state.

The many different kinds of atom interferometers each have their own advantages and
disadvantages and are all optimized to measure different quantities (for an overview see
Refs [3] and [4]). Roughly they can be divided into two categories: beam or spatial
interferometers and pulsed or time-based interferometers. In a time-based interferometer
a small number of atoms is exposed to a sequence of fields and laser pulses that are turned
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Figure 1.3: Examples of interference patterns where the detector signal
is scaled to the total intensity at the input. The thin line is the signal for
an ideal 2 path interferometer. The dashed line is the averaged signal of a
whole range of waves with a Gaussian spread of 1 rad in phase.

on and off. Separation and detection of the atoms is done with laser pulses that act on
all atoms at the same time. Because the interference signal depends on the timing of the
fields and laser pulses which can easily be performed with high accuracy, this type is often
used for precision measurements. The disadvantage is that the atoms are hardly accessible
for objects and fields that are to be studied. In a spatial interferometer the atoms enter
the setup at one end, move through beamsplitters, mirrors and interaction sections and are
detected at the other end of the setup. In this type of interferometer it is relatively easy
to add fields and objects and effects requiring an actual spatial separation can be studied.
The interferometer that is described in this thesis is of this kind.

The largest disadvantage of a spatial interferometer is that the phase difference induced
by the objects and fields usually is proportional with the transit time. The quality of the
interference signal and the accuracy with which the phase can be determined are thus
related to the velocity spread of the atoms. This typically limits the precision of these
measurements. This thesis describes a detailed study of this effect and concludes with
some design criteria that allow for any required level of precision.

There are numerous examples for the beamsplitters and mirrors that are needed to
split, bring back and recombine the atoms. Here, I will limit myself to a few examples. For
splitting the atoms in two internal states, an RF field [5] or laser pulses [6] can be applied.
The latter option can simultaneously spatially separate the paths through the absorbed
momentum. Periodic structures, either mechanical gratings [7] or standing light waves [8],
can be used to spatially split the beam through diffraction. In this category, standing light
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waves offer more flexibility and allow optimization for single order diffraction by using the
atomic analogue of Bragg scattering. It is this last option that is extensively studied in
this thesis (Chapter 5).

1.3 Applications

Although atom interferometry is a relatively new area of research, it already has found
many applications [3,4]. The most famous use to date is precision spectroscopy and its use
in atom clocks [9]. Other uses lie among others in its high sensitivity to accelerations [10]
and rotation [11], the possibility to study atom-atom interactions [12] and precision mea-
surements of polarizabilities [13]. Contributions to fundamental themes are the direct
observation of the quantization of the electromagnetic field [14], high accuracy measure-
ment of the fine-structure constant [15] and insight in the duality of quantum mechanics
through which-way experiments [16]. This summation is certainly not exhaustive and many
more applications will be developed in the future.

The interferometer that is described in this thesis has been designed primarily for mea-
surements on the quantum properties of the electromagnetic field in high-finesse cavities.
In the simplest example of such an experiment, the cavity is inserted in one arm of the
interferometer. If there is light in the cavity, the atom will experience an energy shift
in the cavity that leads to a change in the phase. This phase change is detected by the
interferometer. By using a high finesse cavity it is possible to get a detectable phase shift
for even a single photon [17]. In that case this interferometer opens a new window for
studying the dynamics of the quantized electromagnetic field.

1.4 This Thesis

The interferometer is presently ready for the first tests. This thesis describes crucial ele-
ments of the design, extensive tests of the performance of these elements, and a theoretical
study of the many possible sources of errors in the signal of the interferometer.

The interferometer needs two main ingredients: an atom beam and coherent beamsplit-
ters. The beamsplitters are created by off-resonant standing light fields on which the atom
beam is diffracted by Bragg scattering. Then three rather stringent demands on the atom
beam follow from some simple argumentation. First, the atom beam has to be collimated
to a transverse velocity spread that is smaller than one photon recoil to avoid scattering to
multiple orders. Second, the atoms have to be slowed to a longitudinal velocity of approx-
imately 250 m/s to obtain a spatial separation of several mm between the two paths. And
third, the spread in longitudinal velocity has to be as small as possible to get an optimal
interference signal. These three criteria can most easily be met with a beam of metastable
helium in the metastable {1s2s}3S1 state. Helium has a large photon recoil velocity which
allows for large splitting angles and it can be laser cooled with commercially available laser
diodes (λ = 1083 nm).

In Chapters 2 and 3 the design of this atom beam is explained and diagnostics are
developed that verify the operation of the atom beam. Indeed, the beam meets all the
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requirements and we obtain a longitudinal velocity spread of only 1% and a flux of some
hundreds per second. The preparation of this beam uses four laser cooling sections that
cool, slow and compress the atom beam. The setups of the lasers that are used in these
sections and the setup of the laser that is used in the interferometer are described in
Chapter 4.

The atom beam is split by Bragg scattering on a standing light field. This process
allows clean scattering, i.e. the atoms are split in only two beams. However, the process is
selective to the transverse velocity. In Chapter 5 the acceptance range is optimized where
a delicate balance was sought between a maximum number of atoms that can be scattered,
while keeping the diffraction to other orders to a minimum.

A full design of the interferometer can not be made without knowing the sensitivity of
the phase to all parameters of the setup. Therefore, an analysis was made in Chapter 6
that takes into account all alignment errors, position and velocity spread of the atom beam
and any possible potentials and rotation. The largest contributions to the interferometer
phase are calculated and translated into concrete design criteria.

The last chapter of this thesis (Chap. 7) is the result of a collaboration with the group
of Prof. M. Kasevich at Stanford University. They are preparing an interferometer that
will measure differences in gravity to a new level of precision. In this chapter the effect of
the length of laser pulses on the interferometer phase is investigated. This effect is usually
ignored, but the results show that the pulse length does play a role at these high levels of
precision and can greatly complicate the interpretation of the interference fringes.
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[16] S. Dürr, T. Nonn, and G. Rempe, Phys. Rev. Lett. 81, 5705 (1998).

[17] G.T. Jansen, Bragg Diffraction of He* by a Standing Light Wave, internal report,
Eindhoven University of Technology (2001)



8 Introduction



Chapter 2

Atom Beam Design

2.1 Introduction

This chapter describes the preparation of the atom beam that is necessary before the
atoms can be used in the interferometer. As we will see, we need a beam with well
defined direction and velocity, much better than is achieved with conventional atom beam
sources. Fortunately, with the advent of laser cooling it has become possible to manipulate
beams of neutral atoms and greatly reduce the temperature, divergence and velocity of the
atoms. This technique allows us to reach the stringent demands that are set by the atom
interferometer.

Still, the preparation of the atoms is no easy task. As we will see, it takes a setup of
9 m long that includes 4 laser cooling sections and above that an extra selection stage with
two small apertures. This setup has been designed [1] and implemented [2] in the past,
and this chapter will give an overview along with some new insights that were developed
since then.

2.1.1 Requirements

To build an atom interferometer that has a macroscopic spatial separation (≈ 1 cm) be-
tween the two paths, there are some strict requirements on the atom beam that have to
be met.

The first requirement follows from the limitations of the beam splitters and the mirrors
that coherently split and recombine the two paths of the interferometer. The separation
between the two arms is determined by the difference in transverse velocity, the longi-
tudinal velocity of the atoms and the length of the interferometer. The atom beam is
generally separated by the interaction of the beam with light. By stimulated absorption
and emission cycles, momentum is transferred from the light to the atom. An example
of such a scheme is Bragg Scattering which will be used in our setup, as described in
Chapter 5. The maximum amount of coherently transferred momentum is limited in all of
these beam splitting schemes. With Bragg Scattering, a transfer of 16 photon recoils has
been demonstrated by Koolen [2, 3] and it seems reasonable that this can be extended to
20 recoils. The maximum separation between the arms will be halfway, at 1 m for a 2 m
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long interferometer. To get a macroscopic separation of 7 mm the longitudinal velocity
of the atoms then can be no higher than 250 m/s. The beams that are produced in the
supersonic expansion (Sec. 2.3.2) are considerably faster than this. This means that the
atoms will have to be slowed down.

The second criterion is that the interference fringes have to be visible. An atom expe-
riences a phase shift between the two paths of the interferometer if these two paths have
an energy difference ∆E. This energy shift could be caused by a number of effects, such
as the Zeeman effect or inertial effects (for details see Chapter 6) and an interferometer is
designed to measure at least one of these. Two distinct atoms can experience a different
phase shift when they cross the interferometer in a (slightly) different way, for example
because they have a different velocity. The spread in interference phase for a beam with
longitudinal velocity spread σv is given by

σφ =
∆E T

~
σv

v
, (2.1)

where T is the total transit time. If this spread in phase is larger than π the fringes will
be averaged out and the interferometer phase can not be determined. It is clear from this
formula that a narrow velocity distribution allows the detection of larger energy differences
between the two arms at the end of the interferometer. From another point of view, one
sees that in the case of a narrow velocity distribution the constraints on stray fields can be
relaxed.

A third consideration is on the transverse velocity distribution of the atom beam. First
of all, such a distribution will give a variation in the atoms phase shift and therefore a
blurring of the interference signal, in a similar way as the longitudinal velocity. Above
that, the beam splitting process by single order Bragg scattering only works on atoms
within a very small transverse velocity interval, with a width of typically one photon recoil
(see Chapter 5). To get a well defined splitting ratio of the atom beam, the transverse
velocity spread of the atoms must not be larger than this. For metastable Helium this sets
the maximum transverse velocity spread to 0.05 m/s.

Finally, the flux of atoms has to be high enough to do experiments within a reasonable
time span. This requires a count rate on the final detector that is well above 1 atom/s.

In conclusion, we need an atom beam that has a low longitudinal velocity, a low diver-
gence and sufficient flux. It is not at all easy to meet all these requirements. It takes a
setup that comprises four laser cooling sections and additional transverse velocity selection
by two collimating apertures [1, 2]. In this chapter all sections of the setup will be de-
scribed, giving the basic theory of their operation. We will start by an explanation of the
principle of laser cooling in Section 2.2, including three specific configurations that are used
in the setup. The optical molasses configuration (Subsection 2.2.1) is used to collimate the
atom beam as it emerges from the source. Subsequently, the atoms are slowed down in
the Zeeman slower with the compensation technique and finally compressed in a 2D MOT
(Subsec. 2.2.2). In Section 2.3 the implementation of these devices in the actual setup is
described.
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v

Figure 2.1: Working principle of the spontaneous radiation force. The
absorbed photon has a well defined direction, while the direction of emitted
photon is randomly distributed in space

2.2 Laser Cooling

The “working horse” of the atom beam preparation setup is the spontaneous radiation
force (first proposed in 1975 [4, 5] and observed in 1985 [6]). In different configurations of
lasers and magnetic fields, this force is able to slow, cool, and compress the atoms (see [7]
and [8] for an overview). All of these techniques are used in the preparation setup. Insight
in the operation principles of the cooling section therefore relies on an understanding of
the spontaneous radiation force.

The origin of the spontaneous radiation force can be understood from Fig. 2.1 in which
an ensemble of atoms is irradiated by a laser beam coming from the right. The atoms absorb
light from a well defined direction, but emit this light in a random direction. Averaged over
many absorption-spontaneous emission cycles, the atom thus acquires a net momentum
change in the direction of the laser beam. For cooling, one needs a velocity selective
force. For the spontaneous radiation force, this selectivity arises from the Doppler shift in
combination with the finite width of the absorption profile [9].

The number of photons that is scattered per unit of time per atom is given by neΓ, with
ne the fraction of atoms in the excited state and Γ the decay rate. The excitation fraction
has a Lorentzian profile as a function of the laser frequency, with a maximum that is given
by ne,max = s/(2(s + 1)). The saturation parameter s is given by s = I/Isat, with Isat the
saturation intensity that depends on the atomic transition that is used. For large laser
intensity, the excitation at resonance reaches a maximum of 1/2, saturating the absorption
rate. Each cycle will increase the atoms momentum by the photon momentum1 ~k, where
k is the wavevector of the laser. Taking into account the absorption profile, the radiation

1boldfaced symbols denote vectors
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force of a single running laser wave takes the form:

F =
~kΓs

2(1 + s + (2∆eff/Γ)2)
. (2.2)

Here, ∆eff is the effective detuning between the atomic resonance frequency and the laser
frequency. The maximum force is at resonance (∆eff = 0) and high saturation param-
eter and is equal to Fmax = ~kΓ/2. For metastable helium this force gives a maximum
acceleration of 4.7× 105 ms−2.

There are several effects that contribute to the effective detuning. First of all there is the
laser detuning, which is the difference between the laser frequency ωl and the unperturbed
atomic transition frequency ω0, ∆l = ωl − ω0. Second, as the atoms are moving along
the laser beam, the effective laser frequency that is experienced by the atoms is shifted
by the Doppler shift ∆D = −k · v. This is the origin of the velocity dependence of the
radiation pressure and the basis for any cooling based on the spontaneous emission force.
The last contribution to the effective detuning originates from any energy shift that the
atoms experience. The most relevant for typical laser cooling configurations is the Zeeman
shift in a magnetic field B. In a magnetic field the energy of each atomic level is changed
by an amount ∆EZ = −µ ·B = µBBgimi, where µ is the magnetic moment, gi the Landé
factor and mi is the magnetic quantum number relative to the magnetic field, B is the
strength of the magnetic field and µB is the Bohr magneton. The two atomic states that
are involved with the optical transition generally feel a different energy shift, causing the
resonance frequency to change. The resonance frequency then changes with the magnetic
field. By using an inhomogeneous magnetic field, the radiation force can be made position
dependent.

2.2.1 Velocity Dependent Radiation Force

Optical Molasses

Consider the situation where an atom moves along two antiparallel laser beams with the
same frequency, slightly below the atomic transition frequency [9]. In Figure 2.2, the
effective laser frequency (ωl +∆D) of both lasers is plotted versus the velocity of the atom.
Resonance is reached when this effective frequency is equal to the transition frequency
(ω0). The graph shows that for the two beams this happens for opposite velocity of the
atom. In effect, as the atom moves towards one laser, the associated Doppler shift brings
the atom closer to resonance with the approached laser, while it moves the atom away
from resonance with the other laser (see Fig. 2.2). The atom will absorb more atoms
from this counter-propagating laser and thus feel a force opposite to its own velocity, i.e,
a decelerating force.

For low intensity (s ¿ 1), i.e, ignoring stimulated emission, the total force by the lasers
can be approximated by the vector sum of the radiation force from each laser:

F = Flaser1 + Flaser2. (2.3)

The laser detuning has the same sign for both lasers, but the Doppler shift is opposite as
the atom moves away from one laser and towards the other. The resulting force is depicted
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Figure 2.2: Frequency diagram for an optical molasses setup. Because
the two laser are anti parallel, the associated Doppler shift is opposite. For
a red detuned laser a moving atom will always be closer to resonance with
the laser beam that propagates in the opposite direction

in Fig. 2.3 as a function of the atoms velocity for the 2s3S1 → 2p3P2 transition in helium,
with ∆l = −Γ/2 and s=2. For atoms that move slower than the so-called capture velocity
vc = −∆l/k, this force can be approximated to be linear with the velocity, thus acting as
a pure friction force:

F ≈ 8~s(∆l/Γ)

(1 + s + (2∆l/Γ)2)2
k(k · v) ≡ −

⇒
βv. (2.4)

This principle can be extended to 2 and 3 dimensions by adding orthogonal pairs of coun-
terrunning laser beams, thus providing the possibility of cooling in all directions.

2.2.2 Radiation Force with Magnetic Field Gradients

Magnetic Field as Compensation

The optical molasses scheme only damps the velocity of the atom. There is no depen-
dence of the force on the position of the atoms and therefore trapping or focussing is not
possible. This changes when an inhomogeneous magnetic field is applied. As mentioned,
each atomic level will be shifted in energy by this field and thus the effective detuning will
contain a position dependent contribution ∆B = −µBB(r)(geme− ggmg)/~. This position
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Figure 2.3: Velocity dependence of the decelerating force in Doppler
cooling. Numerical values are used of the helium 2s3S1 → 2p3P2 transition,
with ∆l = −Γ/2 and s=2

dependence can, for example, be used to compensate for the changing Doppler shift as an
atom is decelerated by a laser. Without the magnetic field, the atom would quickly lose
resonance. With the compensation resonance is retained much longer, making it possible
to decelerate the atom over much larger velocity ranges. This is the operating principle of
the Zeeman slower (Sec. 2.3.4).

Magneto-Optical Trap

To use the radiation force to focus or trap the atoms, this force has to be in opposite
direction for atoms that are on opposite sides of the lens or trap. To achieve this, the
contribution of the (position dependent) Zeeman shift to the effective detuning has to be
opposite for the two counter-propagating lasers. For this two lasers with opposite, circular
polarization (σ+/σ−) are used and a magnetic field that is zero in the center and increases
linearly with the position along the laser beams [10].

The polarization of the laser determines which magnetic substate the atoms are excited
to. For a J = 0 → J = 1 transition with circularly polarized light, there are only two
possibilities: mJ = ±1. In Fig. 2.4, the energies of all involved sublevels are drawn versus
the position x. As in Fig. 2.2, resonance is reached when the laser frequency matches the
energy difference between ground and excited state. In a magnetic field, the Zeeman shift
for the two accessible excited states is opposite. As each laser can only address one of the
two excited states, this Zeeman shift can be used to bring the atom closer to resonance
with either one of the two laser beams. In a Magneto-Optical Trap (MOT), with a linearly
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Figure 2.4: Energy diagram for a MOT setup and an atom at rest. The
position dependence of the magnetic field brings the atoms closer to reso-
nance with the laser that pushes them back to the center of the trap

increasing magnetic field and B = 0 in the center of the trap, atoms at rest will be closer
to resonance with the laser that pushes them back to the center and the atoms will thus
feel an effective trapping force.

With the position dependence of the Zeeman shift, the optical force is now a function
of both position and velocity. The total force of the two laser beams can be calculated in
the same way as in Section 2.2.1. By expanding the force around k · v + µB∇B · x/~ = 0
we get:

F ≈ −
⇒
βv − ⇒

κx. (2.5)

This describes the damped oscillation of the atom in a MOT with a damping coefficient

|
⇒
β |, given by Eq. 2.4 and a spring constant |⇒κ| equal to

⇒
κx ≡ −8s(∆l/Γ)µ′

(1 + s + (2∆l/Γ)2)2
k (∇B · x) , (2.6)

µ′ = (geme − ggmg)µB. (2.7)

The transition in metastable helium that is used for laser cooling has J = 1 → J = 2.
This makes the process more complicated than in the J = 0 → J = 1 case, as there are
now more magnetic sublevels. Extra optical pumping processes redistribute the atoms over
these sublevels and have to be taken into account when calculating the total cooling force.
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The principle of operation, however, remains the same. As long as the atom is far from
equilibrium optical pumping is limited and Eq. 2.6 with a fixed µ′ is a good approximation.

This scheme is easily extended to more dimensions. Three orthogonal pairs of coun-
terrunning σ+/σ− beams and a magnetic quadrupole field cool and compress the atoms in
three dimensions, forming a magneto-optical atom trap (MOT). We will use two pairs of
laser beams in a two dimensional quadrupole field such that the atoms are focussed and
compressed in the direction perpendicular to the beam axis.

2.2.3 Cooling Limits

The analysis of the previous sections would suggest that there is no limit on the cooling
process and the atoms come to a full stop, resulting in a temperature T=0. In reality,
there is also heating by the lasers that limits the lowest temperature that can be achieved.
It arises from the discrete momentum steps that the atoms undergo with each absorption
and emission [9]. For a 1-dimensional model of optical molasses, the temperature at which
the cooling and heating processes reach equilibrium is called the Doppler temperature,
which is given by TD = ~Γ/(2kB). For metastable helium cooled on the 2s3S1 → 2p3P2

transition this amounts to TD = 39 µK, with a corresponding Doppler velocity vD =√
〈v2〉 =

√
kBTD/m = 0.28 m/s.

2.3 Atomic Beam Setup

2.3.1 Overview

This section describes the design of the setup that is used to create an atomic beam
that meets the requirements as set in Sec. 2.1. The restrictions on the transverse and
longitudinal velocity distribution could in principle be met by a beam preparation setup
that only comprises a Zeeman slower and a pair of collimating apertures. Simulations [1,11],
however, showed that this would result in a count rate that is approximately 1 atom per
hour. This is of course completely unacceptable and therefore three extra transverse cooling
and compression stages were added to increase the on-axis beam brightness. A schematic
of the total resulting setup is given in Fig. 2.5. The total length of the setup from source
to 2D-detector is more than 9 m. The pressure in the setup is kept at the 10−8 mbar level
by 7 turbo pumps, backed with 2 scroll pumps [11].

2.3.2 Metastable Atom Source

The beam of metastable helium atoms is produced by a discharge-excited supersonic ex-
pansion. Electron impact is the only way to excite the atoms because of the high excitation
energy of the atoms (19.8 eV), which is much larger than the photon energy of available
lasers. Therefore, a DC discharge partially excites the atoms to the metastable 2s3S1 state
with an efficiency of approximately 10−5 [12]. Because a collision of a metastable atom
with an other atom will likely cause the metastable atom to decay back to the ground state,
the atoms will have to be excited just before they enter the vacuum. This is achieved by
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Figure 2.5: Schematic representation of the total atom beam setup.
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Figure 2.6: Cross-section of the liquid nitrogen cooled metastable helium
source.

running the discharge from an electrode through the nozzle to the grounded skimmer (see
Fig. 2.6).

The parameters of the expansion of the gas through the nozzle into the vacuum are
chosen such that the flow is supersonic. This has the advantage that the longitudinal
velocity distribution is much narrower than an ordinary thermal expansion. The velocity
distribution is described by

P (v)dv ∝
(v

u

)3

exp

[
−

(
v − u

u

)2

S2

]
dv. (2.8)

The speed ratio S is defined as the ratio of the flow velocity u over the characteristic
velocity, which determines the velocity spread. The value of this ratio is set by parameters
of the source, like the temperature Tsource and the pressure psource, summarized in the
source parameter Ξ [13]:

Ξ = 4.47× 104

[
K4/3m2

J

]
psourcedn,effT

−4/3
source. (2.9)

The effective nozzle diameter dn,eff is smaller than the geometric diameter because of
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boundary layers in the flow profile. The speedratio for helium then can be calculated from:

S = 19.3 (
Ξ

100
)0.495. (2.10)

The source parameter also has an influence on the flow velocity:

u =
u∞√

1 + 3
2S2

, (2.11)

u∞ =

√
5kTsource

m
. (2.12)

If the speed ratio is high enough (S À 1), the flow velocity is only set by the temperature
of the gas in the reservoir, Tsource. By cooling the reservoir with liquid nitrogen, this
temperature is reduced from approximately 400 K to 200 K, giving an average velocity of
1200 m/s.

In a supersonic flow the total flux of atoms in the expansion is given by:

Ṅ = 0.513 n0β0π
d2

n,eff

4
, (2.13)

where n0 = psource/kBTsource is the density in the reservoir and β0 = (2kBTsource/m)1/2 the
thermal velocity. It follows from this equation that a higher source pressure increases the
flux of atoms. It should be noted, however, that increasing the source pressure increases
both the number of atoms that return from the skimmer and the average density of the
background gas in the vacuum chamber. Both of these effects increase the chance that a
metastable atom collides with another atom and subsequently is de-excited. This limits the
total gain of metastable atoms, giving an optimal source pressure. Typical beam intensities
that can be achieved are ≈ 1014 s−1sr−1 [14].

2.3.3 Atom Beam Collimation

The atom beam as it emerges from the nozzle has a cubed cosine intensity profile as a
function of the angle with the beam axis, resulting in an RMS divergence of approximately
0.5 rad. This means that the atom beam expands rapidly, reducing the beam intensity. To
increase the downstream intensity, a pair of optical molasses in both transverse directions
to the beam axis is placed directly after the skimmer. The transverse motion of the atoms
is cooled and the divergence of the beam is reduced.

The collimator works on the principle of optical molasses as described in Sec. 2.2.1, using
two orthogonal pairs of counterpropagating laser beams that are created by circulating and
retroreflecting one single laser beam. As mentioned in that paragraph, the cooling force
and therefore the time it takes to cool the atoms depends on the laser detuning. Too large
a detuning will result in a small cooling force and a remaining divergence of the atom beam
at the end of the interaction region. On the other hand, a small laser detuning will decrease
the number of atoms that are cooled, because of a resulting decrease of the capture velocity
vc = −∆l/k. Atoms that have a transverse velocity much larger than this capture velocity
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will experience no cooling force and are not collimated. Because the transverse velocity
distribution from the source is very broad (≈ 700 m/s) a lot can be gained by increasing
the capture velocity.

A technique to combine a large capture efficiency with a low final divergence is the
curved wavefront technique (see Fig. 2.7, [15,16]). By giving the laser beams a small angle
α along the propagation direction of the atoms, an effective Doppler shift ∆eff = ∆l−kvα
is introduced. Because all (retro-reflected) beams have the same angle with the beam
axis, this Doppler shift is identical for each beam. This Doppler shift then acts as an
effective overall laser detuning which depends on the angle α. When the laser beam
is slightly focussed the angle α changes with the transverse position in the laser beam,
giving a curved wavefront. With the curved wavefront technique, this angle is large at
the beginning of the interaction. This gives a large effective detuning, allowing for a large
capture velocity and thus a large number of atoms that is captured. Along the propagation
axis, the angle becomes smaller, optimizing the actual cooling process. In effect, we have
created an atomic funnel in velocity space.

The maximum capture velocity that can be achieved this way is limited by the maximum
radiation force and the interaction time and can be estimated by

vcap,max =
~kΓL

2Mv‖
. (2.14)

We use an interaction length L of 0.17 m. Combined with the longitudinal velocity from the
source of 1200 m/s this estimate of the maximum capture velocity for metastable helium
amounts to 65 m/s or an angle of 54 mrad. Simulations [2] show that the actual capture
velocity is a factor 2 smaller, with a capture angle of 25 mrad.

The purpose of the collimator is to increase the flux of atoms at the end of the total
beam setup. Because the Zeeman slower gives a large divergence to the atom beam the
settings for an optimal final flux may not correspond to a minimum divergence after the
collimator. The optimal settings will rather correspond to a situation where a maximum
number of atoms is collimated just enough to be captured by the 2D compression stage
(Sec. 2.3.5). Because the total final flux is the result of a complicated interplay between
the different sections, it is difficult to predict the optimal settings for the collimator exactly
and they will have to be optimized experimentally.

2.3.4 Atom Beam Slowing

After the collimator, the atoms still have an average longitudinal velocity of 1200 m/s and
have to be slowed down. This is achieved by a so called Zeeman-Slower in which the atoms
are decelerated by the radiation force of a counter propagating laser beam [17]. When they
slow down, however, they experience a change in Doppler shift and quickly lose resonance
with the laser. Without any compensation, the maximum change in velocity is ≈ Γ/k =
1.7 m/s. Obviously, the changing Doppler shift has to be compensated for. This is achieved
with the Zeeman shift by an inhomogeneous magnetic field.

The laser beam is circularly polarized (σ+) and in the beginning of the slower, the
atoms are pumped to the |mg = +1〉 ↔ |me = +2〉 sublevel system. The Zeeman shift



20 Atom Beam Design

mirror

lens

laser

source

atoms

α=0

α

Figure 2.7: Principle of collimation with a curved wavefront technique.
A slightly focussed laser beam is directed with a small angle along the atom
beam, producing an effective laser frequency chirp.

of this subsystem is equal to µBB(z)/~. The magnetic field is position dependent and is
designed such that the atoms are in resonance with the laser continuously.

∆eff = ∆l − µB

~
B(z) + kv‖ = 0. (2.15)

A constant deceleration a of the atoms over time gives a position dependent velocity

v(z) = v0

√
1− z

z0

, (2.16)

where v0 is the initial velocity and z0 = v2
0/2a is the position where the atoms would come

to a standstill if the deceleration would continue. For helium at the maximum radiation
force, with v0 = 1200 m/s this would give z0 = 1.5 m. To allow for a margin on the actual
deceleration of the atoms, however, the total length of the Zeeman slower was made twice
as long. Matching the magnetic field to the velocity profile gives the optimal field

B(z) =
~
µB

(
∆l + k

√
v2

0 − (v2
0 − vf

2)
z

L

)
. (2.17)

The field is created by two separate solenoids, producing fields in opposite direction. This
allows us to independently set the fields at the entrance and at the exit of the slower.

In more detail, the slowing process can be understood from Fig. 2.8. In this graph the
magnetic field profile is schematically drawn (right axis). Given the magnetic field strength
and the fixed laser detuning, there is a specific velocity at which the atoms are in resonance
with the laser (Eq. 2.15). We will call this velocity the resonance velocity. It has the same
profile as the magnetic field, with values that are indicated on the left axis. Also drawn
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Figure 2.8: Working principle of the slowing process in the Zeeman slower.
The magnetic field profile is drawn (solid line, right axis) together with the
associated resonance velocity (left axis). The dashed line indicates the
velocity of an atom that enters with a velocity smaller than the maximum
capture velocity.

in Fig. 2.8 is the velocity of an atom that enters the slower with a velocity that is smaller
than the maximum resonance velocity.

The slowing process can then be divided in three phases. In phase I, the atom enters
the magnetic field. The atom experiences a swiftly increasing magnetic field. To stay in
resonance with the associated resonance velocity, it would have to be accelerated which
is impossible in this configuration. The effective interaction time with the laser is only
very short and there will hardly be any change in the atoms velocity. Further downstream,
the magnetic field decreases again and at the point where the local resonance velocity is
equal to the velocity of the atom, the atom again feels the decelerating force. This time
the change in resonance velocity corresponds to a deceleration. During phase II, the atom
stays in resonance and is slowed down continuously. At the end of the slower the atom will
reach the point with a minimum magnetic field. After this point, the resonance velocity
increases again, and the atom can no longer follow. The atom loses resonance with the
laser and remains at the velocity it had at the point of minimum field (phase III). In this
idealized view, the maximum capture velocity is thus determined by the laser detuning
and the magnetic field maximum at the entrance of the slower. The exit velocity is set by
the field strength at the end.
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Magnetic Field Imperfections

Now let’s take a look at the actual deceleration of the atom. If the atom is to stay on
resonance, the required acceleration can be calculated from the position dependence of the
resonance velocity (Eq. 2.15)

ares =
dvres

dt
=

dvres

dz

dz

dt
=

dvres

dz
vres =

µB

~k
dB

dz
vres. (2.18)

The required acceleration is thus proportional to the local magnetic field gradient. If
at some point the local field gradient makes the required acceleration higher than the
maximum acceleration of the radiation force, the atom can not follow the resonance velocity
profile. The atom then will exit the slower at a higher velocity than intended. The margin of
error on the acceleration is a factor of 2, so a doubling of the local field gradient would cause
severe problems. The resonance condition has a finite width Γ, allowing some averaging of
the field gradient. This averaging length can be estimated by:

Lav =
∆vtol

dvres/dz
≈ ΓLslower

k(v0 − vf )
= 5 mm. (2.19)

Clearly, the tolerance is not large, and the B fields have to be designed very carefully.

Transverse expansion

The Zeeman slower slows and cools the longitudinal velocity of the atom beam, but this
comes at the expense of the atom beam divergence. As the spontaneous emission recoils
are omnidirectional, while the slowing action acts only along the beam axis the scattered
photons induce diffusion in both transverse directions. The induced spread in transverse
velocity can be estimated from an evaluation of the random walk of the atom in velocity
space, giving:

σv⊥ =
2

3

√
Nvrec, (2.20)

where vrec is the photon recoil velocity and N is the number of scattered photons N =
(v0−vf )/vrec. If we slow the atoms from 1200 m/s to 250 m/s, this amounts to σv⊥ = 6 m/s
or a divergence of the atom beam of 24 mrad. Clearly, the transverse motion of the atoms
has to be cooled again.

A second concern is the diameter of the atom beam at the end of the slower. This can
be calculated by considering the final position of each atom. The final position of the atom
is the vector sum of each momentum kick times the time between scattering and the atom
reaching the end of the Zeeman slower. The average length of this position vector then
gives the RMS width of the atom beam:

σx =
2

3

√√√√
N∑

i=0

x2
i =

2

3
vrec∆t

√√√√
N∑

i=0

(N − i)2 ≈ 2

3
vrec∆t

√
1

3
N3. (2.21)

Here, ∆t is the average time between emission of the photons ∆t = Tslower/N =
2Lslower/N(v0 + vf ). If we slow the atoms from 1200 m/s to 250 m/s the width amounts
to σx = 15 mm. Cooling the atoms thus is not enough, we will have to compress the atom
beam as well.
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2.3.5 Atom Beam Compression

Compression and cooling of the atom beam is done with the Magneto-Optical Trap tech-
nique as described in Section 2.2.2. Instead of taking one long interaction section, the
compressor is divided in two sections, reducing the required total amount of laser power.
The first section, called the Magneto-Optical Lens (MOL), is designed to focus the broad
atom beam into a relatively small beam [18]. The second stage, the Magneto-Optical Com-
pressor (MOC), is positioned at the focus of the lens and compresses and cools the atoms
into a narrow and collimated beam [19].

I will describe the processes again for a J = 0 → J = 1 transition, keeping in mind that
the processes for helium are in reality more complicated due to the presence of magnetic
sublevels. Also, the described theory is 1-dimensional, while the actual setup has a two-
dimensional configuration. The principle of operation, however, remains the same.

With the Magneto-Optical force given by Equation 2.5 it is straightforward to derive
the equation of motion

m
d2x(t)

dt2
− β

dx(t)

dt
− κ cos(θ)x(t) = κ sin(θ)vzt. (2.22)

Here we have introduced an angle θ between the laser and the magnetic field gradient to
investigate its effect on the atom beam. This way we get some insight in the tolerances
of the alignment and we see in what way we can use the MOL and the MOC to steer the
atom beam.

Equation 2.22 describes a driven and damped oscillation. The exact form of the tra-
jectory depends on the relative size of β and κ. In the MOC these parameters are chosen
such that oscillation is roughly critically damped with a damping time that is much less
than the interaction time. In the MOL the magnetic field gradient is much weaker and the
oscillation is overdamped. Not all transverse motion is stopped and the MOL is therefore
slightly more difficult to describe. We will therefore start with a description of the MOC,
although in the setup this is located after the MOL.

Magneto-Optical Compressor

The compressor is designed to “guide” the atoms to the axis of the atom beam setup and
to cool them so that they remain on this axis. For optimal operation, the magnetic field
gradient is large (up to 0.8 T/m), giving maximum damping to the transverse motion. In
Figure 2.9 the solutions to Eq. 2.22 are drawn for a number of atoms that enter the MOC
at different position and velocity. The magnetic field gradient is assumed constant and the
zero-axis of the field (the line on which B = 0) is drawn in the graph, at an angle θ with the
optical axis for reference. The laser intensity is constant in the interaction region (between
z = 0 and z = 0.1 m). After the interaction region, the trajectories are extrapolated using
the final velocity.

The oscillation at the end of the interaction region is completely damped. The atoms
position and velocity at the end of the interaction region (at t = T = LMOC/vz) can then
be approximated by:

x(T ) ≈ vosT + xos (2.23)
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Figure 2.9: Atomic trajectories in the MOC as calculated by the damped
oscillator model. The interaction with the light takes place between the two
vertical lines. Also drawn is the B=0 axis which acts as the reference axis
to which the atoms are cooled.

vx(T ) ≈ vos (2.24)

xos =
−βvz tan(θ)

κ cos(θ)
=
−kvz tan(θ)

µ∇B cos(θ)
(2.25)

vos = vz tan(θ). (2.26)

Both the final position and velocity are independent of their initial values and so all atoms
leave the compressor moving in the same direction

x(t) = vost + xos t > T. (2.27)

For θ = 0 the atoms are thus perfectly compressed to the magnetic field axis (x=0) and
cooled to vx = 0. When there is an angle between the laser and the magnetic field gradient,
the atoms are directed along the direction of the zero-axis of the magnetic field, with an
angle θ. The atoms will then not be compressed to exactly the zero-axis, but the beam
will have an offset of xos. This offset can be understood as the position where the Zeeman
shift compensates the Doppler shift that is induced from the relative movement between
the magnetic axis and the optical axis (from the atoms point of view).

There are two remarks that have to be made about this simple harmonic oscillator
model. First, this highly simplified model suggest that the atoms are perfectly compressed
and cooled to a beam with no width and no divergence. In reality, the final divergence
and beam width have some finite value. Second, the linear approximation of the cooling
force is only valid for |k · v + µB∇B · x/~| < ∆l. If the effective detuning is much larger
than the laser detuning, the atoms will not be compressed. We need a high gradient for
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optimal compression, but this means that even for small deviations of the atom from the
optical axis, the effective detuning will become too large. For a gradient of 0.8 T/m and
vx = 0, the so-called capture diameter is only 0.6 mm. Although it is possible to increase
the capture radius by matching the transverse velocity of the atom to its position, the
margins of error are very small.

To increase the effective capture radius of the compressor two measures were taken.
Firstly, the magnetic field gradient dB/dx is smaller at the beginning of the interaction
region (≈ 0.1 T/m). This allows for a larger capture radius, while at the end of the
interaction region, the gradient is large for optimal compression. For a further increase of
the effective capture range of the compressor, a second compression stage was added to
the setup: the Magneto-Optical Lens.

Magneto-Optical Lens

In the MOL the magnetic field gradient is chosen such that the motion is overdamped.
There are two characteristic damping times of which one is (much) longer than the inter-
action time and one is shorter. The resulting trajectories are drawn in Fig. 2.10. Unlike
the MOC, the trajectories in the MOL are not completely damped, but still depend on the
initial velocity and position of the atom. The position and the transverse velocity of the
atom at the end of the interaction region, at t = T = LMOL/vz can be approximated by

x(T ) ≈ vosT +
m(vx0 − vos)

β
+ x0 (2.28)

v(T ) ≈ vos +
κ cos(θ)

β

(
m(vx0 − vos)

β
+ x0 − xos

)
, (2.29)

where xos and vos are given by Equations 2.25 and 2.26. It turns out that when the atomic
trajectories are extrapolated after the interaction region, all trajectories will cross at the
same position. In other words, the atom beam is focussed. The position of this focus can
be calculated from the focus time Tfocus at which the transverse position x(T )−v(T )Tfocus

is independent of the initial position and velocity:

zfocus = vzTfocus =
βvz

κ cos(θ)
=

~kvz

µ∇B cos(θ)
. (2.30)

The transverse position of this focus is

xfocus = xos. (2.31)

Contrary to the MOC the atoms now do not follow the line where the magnetic field is
zero. Instead it is now the angle of the lasers and the zeropoint of the magnetic field inside
the interaction region that determine the position of the focus of the atom beam.

By placing the MOC at the focal point of the MOL, the effective capture radius of the
compressor is increased. Because the magnetic field gradient in the MOL is much smaller
than in the MOC, the capture diameter is much larger, approximately 40 mm. This way,
the combination of MOL and MOC compresses almost all atoms that emerge from the
Zeeman slower into a cold and narrow beam.
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Figure 2.10: Atomic trajectories in the MOL as calculated by the damped
oscillator model. Although the magnetic B=0 axis is under a (large) angle,
the focal point remains on the optical axis.

Simulations [1] show that even in an ideal setup, the divergence of the atoms after the
MOC is still σv⊥ = 1.1 m/s. This is still much larger than the recoil velocity. Therefore
two extra collimating apertures of 60 and 25 µm separated by 2 m were added which select
an atom beam with a transverse velocity spread of vrec/10 = 9 mm/s.

2.4 Conclusion

The atom beam that is to be used in the interferometer has to meet stringent requirements.
These arise from the demand that there has to be a macroscopic separation between the
two arms and that the interference signal is not “washed out” by the velocity distribution.
The current setup meets all of these requirements. Atoms that emerge from the supersonic
source are first collimated by optical molasses. Then, the atoms longitudinal motion is
slowed and cooled in the Zeeman slower, giving vz = 250 m/s. After the slower the atoms
are focussed by the Magneto-Optical Lens and then further compressed and cooled by the
Magneto-Optical Compressor. Finally, after two collimating apertures, we are left with an
atom beam that has a maximum transverse velocity of 0.1 photon recoil. Typical count
rate at the end of the setup is approximately 50 atoms/s.

This is a very complex setup, with many parts that have to work together. Obviously,
the chances of achieving this are minimal without good diagnostics on each section. These
diagnostics will be described in the next chapter.
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Chapter 3

Atomic Beam Diagnostics

3.1 Introduction

The total preparation stage of the atom beam consists of 6 sections: source, collimator,
slower, lens, compressor and velocity selection (Chap 2). To get an atom beam that meats
all criteria, all these sections have to work simultaneously. The optimal settings of each
section, however, may depend strongly on the settings of all previous sections. Because of
the large number of adjustable parameters in the setup, it is impossible to optimize the
beam (or in fact to even get any beam running at all) by just measuring the beam intensity
at the end of the setup. Additional diagnostics are essential to optimize and verify the
operation of each stage separately.

3.2 Detectors

The detection efficiency of commercially available CCD cameras is very low at 1083 nm.
This makes any diagnostics based on fluorescence very difficult, except possibly the detec-
tion of the final compressed beam directly after the compressor. So, instead, all diagnostics
use the internal energy of the metastable atoms. This energy (20 eV) is much higher than
the typical workfunction of a metal (5 eV, [1]) and therefore the impact of a metastable
helium atom on a metal surface allows for the emission of an electron. The number of
emitted electrons per second (current) is then a direct measure of the total atom flux on
the surface. For helium in both the metastable 2s3S1 and 1s1S0 states, the electron emission
efficiency on impact on stainless steel ranges between 0.5 and 0.95 [1,2], depending on the
quality of the surface. There are two severe disadvantages to this detection method. The
measurement is destructive, i.e, an atom that hits the detector decays to the ground state
and can no longer be used in the experiments. Furthermore, the detection requires a metal
surface to be placed in the beam, limiting access for a longitudinal laser beam, as used in
the Zeeman slower.

The preparation setup is schematically drawn in Fig. 3.1. At the end of the setup
there is a 2 dimensional position sensitive detector (referred to as the 2D detector) [3]
consisting of a triple z-stack of multi-channel plates (MCPs) and a resistive anode. The
collimating apertures, however, block the view on the preparation section, so that only



30 Atomic Beam Diagnostics

B B B

Zeeman

slower
Collimator

He*

source

MOC

Apertures

Interferometer

section

2D-detectorMOL

B

   wire

scanner

  knife edge

scanners (h+v)

       5 mm

flux detector

2.1 m 2.0 m 0.3 m

Figure 3.1: Schematic representation of the total setup including the permanent detectors.

little information about the operation of this section can be gathered from the signal on
the 2D-detector. Its main use for diagnostics on the preparation stage will be the possibility
to do time-of-flight measurements for fast atoms that have not been slowed down by the
Zeeman Slower (Sec. 3.4.1).

Three other detectors are placed further upstream. They include a large area stainless
steel flux detector (5 mm diameter), 0.1 mm diameter stainless steel crosswires mounted on
a translator (wirescanner) and a pair of perpendicularly movable conductive (ITO) plates
with sharp edges (knife edge scanners). All these detectors are connected to electrometers
that measure the total current of emitted electrons.

The knife-edge scanners are placed behind the mirror that couples the Zeeman slower
laser beam into the vacuum. A small hole (1.2 mm diameter) in this mirror allows the
passage of the final compressed atom beam with a relatively small distortion on the slower
laser profile. When the first knife edge scanner is fully inserted, it is used as a total flux
detector of the atoms that pass this hole in the slower mirror.

The two knife edge scanners have a 60 µm slit. The combination of the two knife
scanners with a vertical and a horizontal slit, placed directly after each other forms the
first collimating aperture.

3.2.1 Atom Beam Intensity Calibration

To directly determine the center-line atom beam intensity as it emerges from the source,
a detector was built with a well defined detector area (see Fig. 3.2). The main component
of the detector is a stainless steel disk, with a diameter of 5 mm. When placed 2 m behind
the source, the atom flux on the large area still produces a current of a few 100 pA, which
can readily be measured.

To make sure that an electron that is emitted by the impact of an atom does not
return to the detector surface and hence does contribute to the current, a conducting ring
was placed in front of the disk. When a positive bias voltage is applied to this ring, an
accelerating electric field is formed which pulls the electrons away from the surface. This
ring also prevents any electrons from the discharge source that are propagating along the
atom beam from hitting the detector surface, thereby reducing the current. Experimentally
it was found that the detector current increases with the bias voltage, leveling off at 60 V.
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Figure 3.2: Schematic representation of the
large area flux detector. A bias voltage can be
applied to draw electrons away from the detector.

Apparently, at this voltage all electrons are removed from the beam and the surface. The
influence of the bias voltage on the detector current is enormous; at 60 V the current is
almost 20 times higher than without a bias voltage.

Maximum atom beam intensity of metastable atoms is reached when the total source
gas flow of helium atoms is set to approximately 4× 1018 s−1, giving an intensity of
3.8× 1014 s−1sr−1 of metastable atoms on this detector. This corresponds to an excita-
tion efficiency of 1× 10−4. Changing the discharge current between 4 and 10 mA does not
have a significant effect on the measured beam flux.

Taking this intensity as a reference, we can calibrate the other two total flux detectors,
i.e, the knife edge scanners and the 2D detector at the end of the setup. The knife edge
scanners do not have a guard ring, so the only possibility to apply a bias field is to place
a negative voltage on the detectors themselves. To avoid that this applied voltage induces
a current larger than the atom beam signal, the detector circuit has to be well insulated
from the rest of the setup (> 1013 Ω). This is achieved by applying the bias voltage using
batteries. At a bias voltage of 30 V we measured an intensity of 3× 1014 s−1sr−1, which is
consistent with the reference value.

The flux that reaches the final 2D detector is set by the size of the final collimating
aperture (∅ 25 µm). The countrate on this detector without any laser cooling is typically
200/s. This intensity has to be corrected for the effective detection area of 60% that is
formed by the open area of the channels of the MCP and for the loss in signal that is
caused by the electronic threshold. If we make a very rough estimate of this threshold to
50% this measured countrate indicates an intensity of 5× 1013 s−1sr−1. This is a factor 8
less than the reference value and the difference is much more than can be explained by the
uncertainty on the electron emission efficiency.

The 2D detector counts the number of electronic pulses that are excited in the MCPs.
Both electrons and metastable atoms can excite such a pulse and an electron would thus add
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to the countrate instead of decreasing it. Two possible explanations for the low intensity
are either that the intensity is indeed somehow reduced on the way from the knife edge
scanner to the 2D detector or that the detection efficiency of the MCP is severely reduced.

At this point it is impossible to determine what the exact cause for the lower countrate
is and we will have to keep in mind that there might be a relatively large margin of error
on the flux on this detector. For all planned experiments, however, we do not need to know
the absolute intensity of the atom beam, making this uncertainty acceptable.

3.3 Collimator

The effect of the collimator on the atom beam can be measured in two ways. One way
is to measure the beam profile with a wirescanner. A metal wire is moved through the
beam and at each position the current is measured that is excited by atom impact over
the entire length of the wire. The beam profile is thus integrated over one dimension and
information on the profile along the wire is lost. A true 2D image of the beam profile can
not be made with this method, and only by assuming a specific profile it becomes possible
to extract beam parameters.

We use crosswires that are rotated at a 45 degree angle with the translation axis and
thus make two simultaneous scans in two perpendicular directions. The two scans always
look very similar and therefor the results of only one wire is presented. Figure 3.3 shows
two examples of a wirescan profile for laser detunings of −2Γ and −4Γ together with a
reference scan where the collimator laser was turned off. It is clear from these scans that
the collimator drastically reduces the beam divergence.

The profile at ∆l = −2Γ has a FWHM of 9 mm. If we assume a spherically symmetric
profile, this translates into a transverse velocity spread of σv⊥=1.2 m/s, which is more than
4 times larger than the Doppler velocity. The theoretical limit on the velocity spread at
this detuning is 1.5vD = 0.42 m/s [4] and we are still well above this. The most probable
explanation for this relatively high divergence can be found in imperfections in the laser
beam profile. The atom beam profile at ∆l = −4Γ is clearly broader than the profile at
−2Γ, as expected from the reduced cooling force.

The height of the peak Imax is 25 pA. In combination with the width and the assumption
of a 2D Gaussian profile, we can calculate the total number of captured atoms:

Ṅ =
√

2πσx
Imax

dwire

= 1× 1010 s−1 (3.1)

and the maximum intensity

Imax =
Imax√

2πσxdwire

= 2× 1014 m−2s−1. (3.2)

The second source of information on the operation of the collimator, and the most
direct way to measure the center line beam intensity, is the total flux through the hole
in the Zeeman mirror as measured on the knife-edge scanner. This way, we measure an
intensity of 3× 1014 m−2s−1, in good agreement with the wirescan measurement. Typically,
the collimator increases the flux on the knife-edge scanner by at least a factor of 100.
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Figure 3.3: Wirescanner profiles for detuning of −2Γ and −4Γ of the
collimator laser and a reference scan with the collimator laser turned off.

3.4 Time-of-Flight measurements

The large increase in beam intensity by the collimator can be used to effectively turn the
beam on and off. By chopping the collimator laser, we can chop the atom beam with a
contrast of 1/100. The response time is approximately equal to the interaction time of the
atoms with the light field τ ≈ L/v= 0.1 ms. By measuring the intensity on a detector
sufficiently far downstream as a function of the time after such a pulse, one can determine
the velocity distribution of the atoms. This technique was used to optimize the setting of
the source and to verify that in the Zeeman slower all atoms are slowed down to the target
velocity.

3.4.1 Supersonic Source Velocity Distribution

For the measurement of the velocity distribution of the atoms that leave the source, we
used the entire length of the setup to maximize the time resolution. The collimator laser
was chopped with a mechanical chopper to give light pulses of 1.2 ms long at a repetition
rate of 30 Hz. The detector electronics of the 2D detector at the end of the setup records
the arrival time of each pulse it receives. By synchronizing this time with the chopper and
discarding all position information of the atoms we obtained the time-of-flight distribution.

There are several parameters of the source that influence the velocity distribution.
One of these is the total electrical power that is dissipated in the discharge. The current
through the discharge is set to a fixed value of a few mA. The voltage over the discharge,
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Figure 3.4: Some examples of the TOF signal on the 2D detector when
the collimator laser is chopped. Shown are the signals for a nozzle with
0.11 mm diameter and increasing gas flow and one signal with a larger
nozzle diameter, dnozzle=0.3 mm.

however, depends not only on the current, but also on parameters such as the gas pressure,
temperature and source geometry. Therefore, both the discharge current and voltage were
measured. Under normal conditions, the discharge dissipates approximately 4 W.

In this setup we control the gas flow through the source by setting an inlet pressure
upstream of a capillary. The source pressure can in principle be calculated from the gas
flow, but this requires detailed knowledge of the source parameters such as the temperature.
We tried to measure the source pressure directly with a pressure gauge downstream of the
capillary, but under normal operating conditions this pressure is less than 1 mbar, making
it difficult to get an accurate value.

The electrical power and the gas flow can readily be changed, but there are more
parameters that influence the velocity distribution. Examples of these are the source tem-
perature and the details of the nozzle geometry. To explore the effect of these parameters,
we performed TOF measurements for various settings of the source parameters. A few
examples of these TOF distributions are given in Fig. 3.4. Measurements were made with
two different nozzle diameters (0.3 and 0.11 mm). It is clear from the longer travel time
that the larger nozzle diameter results in a much lower average velocity. The graph also
shows that the longitudinal velocity of the atoms depends on the gas flow. This effect,
however is much smaller than the effect of the nozzle diameter.

To get a good measure of the velocity, the TOF graphs were fitted with the distribution
that is associated with a supersonic flow (derived from Eq. 2.8). Results of the fitting
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dnozzle cooling Ṅ P u S Tsource

(mm) (1018s−1) (W) (m/s) (K)
0.11 LN2 3.9 4.1 1390 ± 18 3.29 ± 0.15 212 ± 6

LN2 2.8 4.2 1350 ± 17 3.13 ± 0.13 203 ± 6
LN2 1.7 4.2 1184 ± 17 2.66 ± 0.11 164 ± 5
LN2 1.0 4.2 1174 ± 26 2.54 ± 0.15 164 ± 8
none 3.8 4.2 1563 ± 42 3.00 ± 0.26 275 ± 16

0.3 LN2 7.0 3.3 1101 ± 15 3.98 ± 0.23 128 ± 4
LN2 3.9 4.5 997 ± 13 3.15 ± 0.14 111 ± 3
none 7.0 2.2 1525 ± 76 2.32 ± 0.29 287 ± 33

Table 3.1: Results of the fitting routine through the Time of Flight distribution for various settings
of the source parameters. Given are the flow velocity u, the speedratio S and the effective source
temperature that is calculated from these.

routine are given in Table 3.1. The table gives the flow velocity u and the speed ratio S
that are the result of the fitting routine along with the effective source temperature that
is calculated from these values using Equation 2.11.

First of all, we can check the validity of the fitting routine by looking at the calculated
velocity when the source is not cooled. The table shows that for both nozzle diameters
the effective source temperature that is derived from the TOF measurement is indeed close
to room temperature. The associated velocity is 1550 m/s, which is much higher than
the capture velocity of the Zeeman slower (≈ 1300 m/s), so cooling with liquid nitrogen
is indeed essential. The velocity is lowered by cooling of the source, but there is a large
variation, ranging from 1000 m/s to 1390 m/s. At the boiling point of Nitrogen (77 K),
one would expect from Eq. 2.11 a flow velocity of approximately 900 m/s, however, even
the lowest measured velocity is significantly higher than this. This indicates that there
is some kind of process going on that either heats the gas or prevents an effective heat
exchange with the liquid nitrogen.

The first candidate for such a mechanism is the discharge power dissipation. Inspection
of the table, however, shows that for the small nozzle, the discharge power is constant, while
there is still a large variation in temperature. For the large nozzle diameter, the effect is
even reversed; a higher power gives a lower temperature. Considering the dissipated energy
per atom also does not give an explanation, as with constant power the velocity increases
with the number of atoms (flow rate).

The table clearly shows that the effective temperature strongly depends on the flow rate.
For both nozzle diameters, the velocity decreases with decreasing atom flux. Possibly, the
pressure inside the source is the critical parameter. This pressure can be estimated from
the gasflow, the nozzle diameter and the source temperature (Equation 2.13). Although
this estimate of the source pressure always gave a much higher value than was measured,
it can still be used to check a relative effect. In Fig. 3.5 the final flow velocity is plotted
versus this calculated source pressure. The graph clearly suggests that the source pressure
is indeed the relevant parameter as the graph seems to be a smooth curve, even with the
step in the nozzle diameter around psource= 5 mbar.
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Figure 3.5: The flow velocity plotted versus the source pressure that is
estimated from the gas flow and the nozzle diameter.

We tried to counter the heating by making a new nozzle plate. The new nozzle was
more like a long channel (8 mm) than an aperture in a thin disk, which greatly increases
the surface area around the nozzle and thus decreases the thermal resistance through the
nozzle plate to the liquid nitrogen. This way the dissipated electrical power is more easily
guided to the liquid nitrogen and the temperature of the gas should be lowered. All
efforts, however, to get the discharge running with this new nozzle plate failed, leaving this
hypothesis still unchecked.

In conclusion, although the physical processes are not completely understood, the time-
of-flight measurements clearly show that the larger nozzle gives the lowest longitudinal
velocity. Therefore, this nozzle is used in all further measurements. The TOF measure-
ments also show that low source pressure leads to low effective temperature. Low pressure,
however, means low flux. Thus the optimal pressure is a compromise between temperature
and flux which has to be determined during operation of the total beam setup.

3.4.2 Zeeman Slower

Having verified that the source temperature is low enough, we can now continue with the
Zeeman slower. The operation of the slower was analyzed using a similar TOF technique
as was used on the source. The large divergence of the atom beam after the slower,
however, quickly decreases the beam intensity to an undetectable level. To increase the
signal, the knife edge scanner was used which is closer to the slower than the 2D detector.
However, even on this detector the flux of slow atoms is still too low to measure. To solve
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Figure 3.6: Some examples of the TOF signal on the knife edge scanner
when the MOL is chopped. Images are given for ∆l=-650, -700, -750, and
-850(2π)MHz.

this problem, we used the magneto-optical lens (MOL) to focus the slowed atoms on the
detector. By chopping the MOL laser beam we obtained clear TOF signals.

An extra advantage of using the MOL is that it enables chopping the atom beam after
the slower. The transit time through the slower is a complicated function of the initial
velocity and this effect would blur the TOF signal if the beam is chopped before it enters
the slower. By chopping after the slower, the TOF signal is independent of the details of
the slowing process, enabling a direct measurement of the final velocity.

A few examples of the resulting time-of-flight signals are shown in Fig. 3.6. A compli-
cation when using the MOL is that the gain in detector signal by the MOL depends on the
longitudinal velocity of the atoms (Eq. 2.30). It is impossible to determine the gain by the
MOL and its velocity dependence a priori. Therefore, we used only the peak arrival time
to get an estimate of the average velocity.

The first measurements showed that the atoms were not slowed all the way down to the
final velocity (250 m/s), but instead ended up with a velocity of approximately 400 m/s.
This suggested that the slowing process was stopped somewhere in the second half of the
slower, possibly caused by a local glitch in the magnetic field gradient (Eq. 2.18). To
decrease this glitch, the current through the second coil was slightly reduced (10%). The
resulting change in capture and final velocity was compensated for with the current in
the first coil and the laser detuning (Eq. 2.15). This small change proved to be sufficient,
restoring the full slowing capability.

In Figure 3.7, the final velocity of the atoms that corresponds to the maximum of the
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Figure 3.7: Final velocity (points) of the Zeeman slower versus the laser
detuning. The line indicates the set velocity as determined by the laser
detuning and the magnetic field strength at the end of the slower.

TOF plot is plotted versus the laser detuning. The current through the second coil was
kept constant, but the current in the first coil was increased to compensate for the lowering
of the capture velocity as the laser detuning was changed. The line in the plot indicates
the expected velocity, obtained from the laser detuning and the magnetic field at the end
of the slower. We can conclude that the Zeeman Slower now works as it should, with a
tuning range on the final velocity of at least 500 m/s. Looking at the total TOF spectrum
(Fig. 3.6), one can see that there is no sign of residual fast atoms, indicating that indeed
almost all atoms are completely slowed down to the final velocity.

3.5 Atom Beam Compression

Now the Zeeman slower works correctly, it becomes possible to compress the slowed atom
beam. The compressor consists of two stages: a lens (MOL) that focusses the atoms to
the optical axis and a final compressor (MOC) which cools and compresses the atoms to a
narrow and well collimated beam. Designing good diagnostics for both of these sections,
but especially for the compressor, proved to be as essential as difficult.

The main problem is the necessity to have the slower laser beam running through the
setup. This rules out most possibilities for placement of a detector upstream of the mirror
that directs this slower laser in the vacuum. Behind this mirror, the information that can
be gathered about the atom beam profile is limited because of the spatial filtering by the
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small hole (1.2 mm diameter) in the mirror. In the end, a series of tests were performed
which each gave a view on a different stage of the compression process and finally helped
to fully compress the beam.

3.5.1 Focussing

The first stage of the compression process is the focussing of the atom beam by the MOL.
The effect of this stage was measured in two different ways. The most important measure-
ment is the total flux through the hole in the Zeeman mirror. The main purpose of the
lens is to increase the number of atoms inside the capture radius of the MOC, which is
situated at some distance before this mirror. An increase in flux on the knife edge scanner
is a good indication that the center line beam intensity at the entrance of the MOC is also
increased. Typically, the MOL (without the MOC) increases the flux through the mirror
by a factor of 2.

A second diagnostic is provided by the wire scanner, located at the entrance of the MOC,
which is thin enough not to disturb the slower laser beam. Two scans with and without
the MOL are shown in Fig. 3.8. The scans clearly show an increase in the peak intensity
by the MOL indicating that the atom beam is indeed focussed. The width (FWHM) of the
peak is 7.8 mm. This is slightly larger than the expected capture diameter of the MOC (≈
6 mm), but most of the atoms should still be compressed. If we estimate the total number
of atoms from the height and the width of the profile, we find Ṅ = 9× 109/s. This is very
close to the total number of atoms that is captured by the collimator. All atoms that leave
the Zeeman slower are thus focussed by the MOL.

3.5.2 Compression

The second stage of the compression process is performed by the MOC. Here, atoms inside
a relatively small capture volume are compressed into a narrow and cold beam. Ideally,
one would like to monitor the entire compression process with a camera, monitoring the
1083 nm fluorescence of the excited atoms. However, the low detection efficiency of com-
mercially available cameras at the used laser wavelength make this virtually impossible.
As mentioned, placing a detector inside the beam is also impossible, because that would
block the slower laser. The only option that remains is to monitor the flux of the atoms
through the hole in the Zeeman mirror. With well designed experiments, however, even
this very limited view on the beam can provide a lot of information. A big problem is that
the small atom beam has to be directed through a small hole. Since one can only see atoms
that pass through this hole, a first signal has to be obtained by blind trial and error.

The main handle on the position of the atom beam is provided by the magnets. The
atoms are cooled to the central axis where the magnetic field is zero (Sec. 2.3.5). The
quadrupole magnetic field is formed by 4 individual permanent magnets that are mounted
on a single stage that can both be translated and rotated in two dimensions. By moving
the magnets, one can move the zero field axis and thereby the position of the atoms. The
atom beam can then be aligned with the hole in the Zeeman mirror by maximizing the
signal on the total flux detector. This increase in flux, however, does not mean that the
atom beam is fully compressed. Focussing of the beam at a position close to the hole would
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Figure 3.8: Focussed beam profile just before the MOC, measured with
the wire scanner.

also give an increase in flux, but would make the atom beam highly divergent.
To verify the completion of the compression process, the flux through the hole in the

Zeeman mirror (3 cm behind the MOC) was measured as a function of the interaction length
in the MOC. To achieve this, the laser beam entering the MOC was partially blocked with
a different cut-off position for each measurement.

During the interaction with the laser, the transverse velocity and position of the atoms
change (see Fig. 2.9). The atoms first acquire a velocity towards the axis of the setup
and only when the atoms approach this axis, the transverse velocity is stopped. If the
cooling process is stopped before the atom beam is fully compressed, the atom beam is
effectively focussed at some point that depends on the interaction time. This is sketched in
Figure 3.9. At first, as the interaction length is increased, the atoms get a larger velocity
towards the axis of the magnetic fields. By extrapolation of the trajectories we see that
the beam is focussed at a point that lies closer to the end of the MOC. After the inflection
point of the full trajectory, the transverse velocity decreases again and the focus point gets
further away from the MOC, until the beam is fully compressed and the focal point lies at
infinity. The beam radius at the position of the mirror hole changes with the position of
the focal point and thus on the interaction length. The flux through the hole in the mirror
is maximal when the focus lies exactly on the mirror (trajectory 3 in Fig. 3.9) or when the
beam is fully compressed and directed through this hole (trajectory 6).

The experimental results are given in Figure 3.10 where we indeed see the two charac-
teristic points of increased flux. At the first maximum, around L=0.01 m, the atoms are
focussed on the mirror. For longer interaction lengths the flux decreases because of the
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Figure 3.9: Effect of decreasing the interaction length in the MOC. The
full line gives the trajectory when the MOC laser is not blocked. The dashed
lines indicate the trajectories for increasing cut-off position of the laser xi.
The arrows at the right give the beam size at the mirror hole. At a specific
interaction length (3), the atom beam is focussed at this hole, giving an
increase in the transmitted atom flux.

focus length becomes shorter than the distance to the hole in the mirror. For L>0.04 m
the flux increases again, because the atoms have reached the inflection point of the tra-
jectory. After L=0.11 m the flux levels and the beam is fully compressed. We can thus
recognize the entire compression process and the fact that the flux levels indicates that the
interaction time is long enough for a full compression of the atom beam.

However, this measurement does not give all necessary information on the MOC. To
check the final beam diameter and divergence, scans were made with the magnets and the
knife edge scanners (Fig. 3.11). As mentioned, the position of the atom beam is set by the
position of the magnets. By translating the magnets, one can move the atom beam over
the hole in the mirror, using the hole as a probe for the local beam intensity. Assuming
that this translation does not affect the quality of the compression process, this scan gives
the beam profile at the position of the mirror hole. This profile looks very much like a
square profile with a width of 1.2 mm, which is equal to the size of the hole in the mirror.
We can thus conclude from this measurement that the diameter of the atom beam at the
position of the mirror (3 cm behind the MOC) is significantly smaller than 1.2 mm.

The profile of the atom beam was also measured with the knife edge scanner. This
scanner measures the total number of atoms impinging upon its surface. The signal as a
function of the knife edge position thus represents the integral of the beam intensity and
has to be differentiated to give the beam profile. We see in Fig. 3.11 that the scan gives
a linearly increasing signal over the entire scanning range. The signal does not reach a
maximum, which means that the beam diameter at the position of the knife edge scanner
(14 cm behind the MOC) is larger than the scanning range. Combining this result with
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Figure 3.10: Atom flux through the hole in the Slower laser mirror as a
function of the interaction length in the MOC.

the diameter at the mirror, we can estimate a beam divergence, giving σθ =7 mrad. This
corresponds to a transverse velocity spread of 1.8 m/s which is equal to 6 times the Doppler
velocity. In an ideal situation, one would expect to reach the Doppler temperature, a result
that would be in agreement with 1D computer simulations [3]. The scans show, however,
that the divergence of the atom beam is much larger. The most likely cause for this are
imperfections in the light field. The light field is produced by circulating one single laser
beam, with in total eight reflections on mirrors inside the vacuum. This design is efficient
in laser power, but it leads to accumulated errors in the laser polarization and a possible
dark spot in the center of the laser beam. A decrease of the beam divergence might thus
be achieved by redesigning the optics.

3.5.3 Directional Control

Now that we have verified that we have a compressed atom beam, it has to be directed
through the two collimating apertures. In order to do this, it is imperative to have a
good control of the angle and position of the atom beam. Except for the total flux on the
2D detector, there is no information available to help with the alignment. Directing the
beam through the two apertures then remains a blind trial and error process. Obviously,
a good understanding of the effect of all parameters on the beams direction and position
is necessary to have a chance for success. Measurements in the previous paragraph showed
the control of the beam position with the position of the MOC magnets. To test the
direction of the atom beam, a temporary extra detector was added at 0.7 m behind the
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Figure 3.11: Two profiles of the atom beam after the compressor. One
profile was obtained by moving the atom beam and using the hole in the
Slower mirror (30 mm after MOC) as a probe. The other scan was made
with the knife edge scanner (0.14 m behind MOC). This gives the integrated
flux over the detector surface. The beam profile is the derivative of this
curve.

Zeeman mirror.
The detector consisted of a multichannel plate (MCP) with a phosphor screen placed

behind it (as in [5]). The impact of an atom induces a very localized current in the MCP and
the impact of this current on the phosphor screen results in a flash. Integrated over many
atoms, an image results that represents the atom beam profile. This image is recorded by
a CCD camera and stored on a computer with a framegrabber card. An example of the
resulting image is shown in Fig. 3.12 with a cross section. The intensity in these pictures
is a measure of the atom beam intensity.

As a reference, another picture was taken with only the collimator turned on. The atom
beam then is not slowed down and expanded by the Zeeman slower and there is only one
peak with high intensity. The position of this peak is indicated by the cross in Graph 3.12
and the dashed line in the cross section. When the Zeeman slower is turned on, the height
of this peak decreases, showing only the small fraction of atoms that are not captured
by the Zeeman slower. The slow atoms remain invisible because of their high divergence.
Only when the compressor is turned on, the cold atoms appear on the screen.

Graph 3.12 has two interesting features. First, there is the presence of the cold atoms,
forming the broader spot in the image. The peak of the slow atoms is lower, but if the
intensity is integrated over the entire 2D profile, we find that there are 10 times more slow
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than fast atoms. The width of the spot of slow atoms is 4.9 mm, which corresponds to a
divergence of the cold atoms of σθ = 4 mrad. The transverse velocity spread is σv⊥ = 1 m/s
which is consistent with the measurement by Koolen [6]. This method provides a more
accurate measurement of the beam divergence than the method described in the previous
section. Although this measurement gives a lower divergence than the estimated 7 mrad
based on the knife edge measurement, the results confirm that the divergence is much
larger than the Doppler velocity.

It turned out that the size of the spot is independent of the compressor laser detuning.
Setting the laser closer to resonance decreases the damping time of the atomic transverse
motion. The fact that the spot size is independent of the detuning thus again indicates that
the interaction time of the atoms with the light is long enough to reach the cooling limit.
The intensity does depend on the laser detuning, because the detuning also influences the
capture radius and thus the number of atoms that are compressed.

The second interesting feature of the graph is the position of the peaks. Without the
Zeeman Slower and the compressor, the atoms move in a straight line from the collimator
through the hole in the Zeeman mirror to the detector. Because of the high velocity of
these atoms, the position where they hit the detector is equal to the position of the main
axis of the setup. When the compressor is turned on, the peaks of both the slow and the
remaining fast atoms change in position. Despite the short interaction time, the effect of
the MOC on the fast atoms is thus still large enough to deflect the fast atoms. The manner
of deflection, however, is very different from that of the cold atoms. The interaction time is
too short to direct the atoms along the magnetic field axis, and the deflection is probably
caused by a slight off-axis focussing effect (like in the MOL).

The slow atoms are completely compressed and are thus expected to follow the magnetic
field axis, as predicted by the simple theory described earlier (Sec. 2.3.5). When the angle
between the magnetic field and the optical axis was changed, however, the position of the
spot on the detector did not change. Instead, the largest effect on the atom beam direction
is achieved by slightly changing the laser beam alignment. This surprising fact explains
earlier problems in aligning the setup based on strategies derived from theory.

The final direction of the atom beam is thus set by the imperfections in the light field,
which dominate over the guiding effect of the magnetic field axis. The steering possibilities
with an intentional laser misalignment are limited, however, because at some point the
imbalance becomes so large that the atom beam is no longer compressed. Therefore, the
entire MOC vacuum chamber, including the fixed mirrors inside it, was slightly rotated
relative to the rest of the setup by using bellows while compensating the change in the
light field with optics outside the vacuum. Although this is a cumbersome procedure it
allowed the position of the slow beam at the same position as the reference beam, thereby
aligning it with the main beam axis.

3.6 Conclusions

In this chapter, a series of diagnostic tools were developed that helped in making the full
beam line operational. The most crucial of these were the time-of-flight measurements and
the imaging system with the temporary 2D detector. The TOF measurements showed that
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Figure 3.12: Image of the beam profile on the extra MCP detector with a
cross section. The broader spot is formed by slowed atoms, the smaller and
brighter peak consists of residual fast atoms. The reference position (the
position where the fast atoms impinge the detector without the MOL/MOC)
is given by a cross in the full image and by a dashed line in the cross section.

the nozzle geometry plays an essential role in the velocity distribution of the atoms that
emerge from the source. Only by taking a relatively large nozzle diameter (0.3 mm), the
effective source temperature could be sufficiently reduced to allow most atoms to be slowed
to the target velocity by the Zeeman slower.

The TOF measurements also helped a great deal in making the Zeeman Slower fully
operational. The TOF spectrum showed that the atoms were initially only partially slowed
down. Choosing a slightly lower magnetic field gradient in the second half of the slower
solved the problem, giving a beam of atoms that are now almost all slowed to 250 m/s.

The pictures taken with the temporary 2D detector gave crucial insight in parameters
that affect the final direction of the compressed atom beam. The atoms do not follow
the simple behavior that was sketched in Chapter 2.3.5. Imperfections in the light field
apparently are too large and dominate the steering process. Knowing this, however, we
were able to align the atom beam by rotating the entire MOC vacuum chamber.

Finally, after guiding the atoms through the two collimating apertures, we produced
an atom beam with a flux of approximately 100 atoms per second that have a longitudinal
velocity of 250 m/s and a FWHM divergence of 40 µrad.
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Chapter 4

Lasers

4.1 Introduction

The atom beam setup includes five sections that require laser light. All of these sections
have different requirements on laser power and frequency. An estimate of the requirements
on these parameters is summarized in Table 4.1. The table shows that the four laser
cooling sections need only moderate laser power so that we can use laser diodes for these
sections. For the atom interferometer we need considerably more power. Hence, we use a
fiber amplifier (Keopsys, KPS-BT2-YFA-20-FA) to amplify the laser power of one of the
diodes to a maximum of 2 W.

We use two different types of laser diode system. One is a Distributed Bragg Reflector
laser diode (Spectra Diode Labs, SDL-6702H1, [1]) with an internal grating structure.
The temperature of these diodes is controlled by a home-made controller that uses the
NTC sensor and Peltier element that are integrated in the laser package. The diode
current is supplied by a home-made current source. The other type of laser system is
a complete commercial laser system (Toptica, DL-100), which is a laser diode with an
extended external cavity formed by the optical feedback from a grating. In this system,
the temperature of the entire external cavity is controlled. Because the MOL and the
MOC were expected to use the same laser detuning, the Toptica laser provides the power
for both of these sections. All other sections are supplied by separate SDL diodes.

In the experiments we always use the 2s3S1 → 2p3P2 transition of metastable Helium
which has a wavelength of 1083.034 nm and a linewidth of 1.6 MHz. The required detunings
relative to this transition are indicated in Table 4.1 and can easily be obtained by tuning the
laser diode temperature. For the stability of the laser frequency, the laser cooling sections
require that the laser frequency does not fluctuate by more than the transition linewidth.
If we compare this with the free running linewidth of the SDL diodes (3 MHz), it becomes
clear that this requirement is not easy to meet. The lasers are therefore carefully isolated
from all sources of noise (see Section 4.2). Additionally, all lasers are actively stabilized to
obtain the required stability. The collimator and the compressor lasers are both directly
locked to the atomic transition frequency in a reference gas cell (see Section 4.4). The
other two lasers (slower and interferometer) are operated at a detuning that is too large
to reach with a gas cell. Therefore, these lasers are referenced to the other two by using a
frequency-offset phase locking technique (Section 4.5).
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section power(mW) detuning(MHz) stability(MHz) laser system
collimator 20 -3 <1 SDL

slower 20 -630 <1 SDL
lens 20 -3 <1

compressor 10 -3 <1

}
Toptica

interferometer 1000 ±1000 ¿ 103 SDL + amplifier

Table 4.1: Requirements on laser power, frequency and frequency stability for the five different
sections of the setup

4.2 Passive Isolation

As Table 4.1 indicates, there is only a small margin of error for the laser frequency. The laser
frequency is very sensitive to noise and careful isolation, both mechanical and electronic,
is required before the noise is reduced to a level that is low enough.

The frequency stability of the laser was tested with a low finesse etalon. The length
of the etalon was tuned close to resonance with the laser frequency. Using the known
transmission curve of the etalon, fluctuations in the transmitted laser power are then
translated into fluctuations of the laser frequency. Using this diagnostic tool, it was found
that there are two main sources of noise that disturb the laser frequency stability.

The first source is optical feedback [2] from other optical components in the setup.
Most of this optical feedback could be eliminated by using two optical isolators per laser
in series (in total 60 dB isolation). However, there is some feedback from the isolators
itself. This feedback is already strong enough to influence the laser frequency. A change
in distance between the laser and the isolator then shifts the laser frequency. Therefore,
both the isolator and the laser have to be firmly attached to the optical table and as close
to the table surface as possible (±4 cm) to remove any relative vibrations.

The second source of noise is electrical. This was eliminated by a careful layout of the
electronics and good grounding [3]. The optics and the electronics are placed such that the
length of all cables is as short as possible and the area of any ground loop is minimized.
To make sure that induced currents in the remaining loops have no effect on the electrical
signals (and the laser frequency) all ground connections to cases and mantles of coaxial
cables are carefully short-circuited to a resistance below 0.1 Ω.

4.3 Control Theory

Not all changes in laser frequency can be eliminated by passive isolation. Especially low
frequency noise and drift are very difficult to remove by passive means. Therefore, control
loops were added that actively lock the laser frequency to a reference value. In order to get
an optimal design of the control systems, we need a basic understanding of the dynamics
of a control loop. The following is, therefore, a short introduction to the basics of control
theory [4].

The behavior of a linear time invariant control loop is most easily described in Laplace
space where the dynamical output of a system is simply the product of the input with the
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Figure 4.1: Schematic representation of a feedback loop with a device D
that is to be stabilized with the controller C

transfer function G̃(s):
Ṽout(s) = G̃(s)Ṽin(s). (4.1)

The impulse response in time (the output after a short pulse is applied to the input) is
given by the inverse Laplace transform of G̃(s). Then the output as a function of time for
an arbitrary input is the convolution of this input with the impulse response. A simple
example of a first order transfer function and the associated impulse response is:

G̃(s) =
1

s− s0

⇔ G(t) = L−1(G̃(s)) = es0t, (4.2)

which corresponds to an RC filter if s0 = −1/RC.
This result can be generalized to higher order polynomials in the denominator with the

result that all poles of the transfer function (zeros of the denominator of G̃(s)) give an
exponential factor in the time response. Clearly, if any of these poles have a positive real
part, the output grows exponentially in time and the system is instable. Thus, for a well
designed system the real parts of all poles of the transfer function have to be negative.

In a feedback loop, one continuously monitors the output and compares this with a
reference. Based on the difference between these two, the input is changed such that the
output gets to the desired value. Such a feedback loop is drawn schematically in Fig.
4.1, where D is the device whose output has to be stabilized to the value Vin and C is a
controller that reshapes and amplifies the error signal for good stability and performance.
It can readily be shown that the output is given by

Ṽout(s) =
Ṽnoise(s)

1 + G̃D(s)G̃C(s)
+

G̃D(s)G̃C(s)Ṽin(s)

1 + G̃D(s)G̃C(s)
. (4.3)

Obviously, one wants to make the gain of the controller G̃C(s) as large as possible, because
then the noise is maximally suppressed and the output exactly follows the input. For
stability, however, the real parts of the poles (the zeros of 1 + G̃DG̃C) still have to be
negative. Noise that originates in the detector (measurement noise) has a much larger effect
on the output if the gain of the controller is large. Therefore, if this is the predominant
source of noise a low gain controller could be more beneficial.

The Nyquist criterium states that a feedback loop is stable if the open loop gain
G̃D(iω)G̃C(iω) as a function of the real frequency ω plotted in the complex plane does
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Figure 4.2: Schematic representation of the optical part of the laser
stabilization setup that uses saturated absorption spectroscopy

not encircle -1 in a clockwise direction. Translated into practical design criteria this means
that when for increasing frequency the total phase delay becomes 180 degrees, the total
open loop gain |G̃CG̃D| has to be less than unity. In a fast system the total gain can be large
over a long frequency range and noise suppression can be strong over a large bandwidth.

4.4 Frequency Lock on Atomic Transition

As mentioned, there are two lasers that have to be locked close to resonance. The SDL
laser diode can be tuned with the diode current and the temperature. However, because
the temperature response is slow, the temperature is only used for the approximate setting
of the laser frequency. The diode current is used in the frequency lock. The Toptica
laser has an extended cavity that is formed with optical feedback from a grating. By
changing the length of this external cavity with a piezo element we have an additional
way to tune the laser frequency. The response of the piezo element is slower (up to 1 kHz
modulation frequency) than the response to the diode current, but it has a larger tuning
range. Therefore we use the piezo to compensate the slow drift and feedback on the diode
current to compensate fast fluctuations in the laser frequency.

The reference for both of these lasers is provided by gas cells [5] in which the atoms
are partially excited to the metastable state by an RF discharge. We probe the required
transition with Doppler-free saturated absorption spectroscopy [6]. Both the pump and
the probe beam are σ+ polarized so that the atoms are pumped to the |mg = +1〉 state
and optical transitions are limited to a two level system. At resonance the probe beam
experiences diminished absorption because the excited state of the atoms is saturated by
the pump beam. The width of this absorption dip (Lamb dip) is approximately 10 MHz
and the control loop fixes the laser frequency to the center of this dip. The exact frequency
of this dip can be shifted via the Zeeman shift in a DC magnetic field up to approximately
100 MHz. A small angle between the probe and the pump beam is introduced to avoid
optical feedback to the laser diode. This gives a slight offset to the resonance frequency
which is compensated for with the magnetic field.
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To transform the saturated absorption peak into a dispersive error signal we use two
methods. In one setup (collimator, SDL diode) we modulate the magnetic field in the
reference gas cell at a frequency of 10 kHz and demodulate the detector signal with a
lock-in amplifier. The resulting error signal is integrated and added to the diode current.
The bandwidth of the control loop is limited by the low modulation frequency and only
fluctuations with a frequency up to 100 Hz are effectively removed. We measured the
frequency stability with an etalon and found ∆fRMS=0.4 MHz over a measuring time of
0.5 s, well within the tolerance.

The other laser (MOL/MOC, Toptica) uses a Pound-Drever-Hall modulation scheme
[7]. Here, the laser frequency is modulated instead of the reference cell, by modulating the
diode current at a frequency of 20 MHz. The error signal that is formed by demodulation
of the detector signal is fed back to the laser system in two ways. First, the error signal is
integrated and added to the piezo voltage to correct the length of the extended cavity. The
bandwidth of this loop is approximately 1 kHz. Faster fluctuations in the laser frequency
are compensated for by a parallel proportional feedback loop acting on the diode current.
This loop compensates fluctuations with a frequency up to 100 kHz. In the end this laser
has a stability of 0.5 MHz.

Even though the feedback loop on this laser is much faster, the final frequency stability
is approximately the same as the stability of the collimator laser. The reason for this is that
the spectrum of the (remaining) frequency noise has a bandwidth that is much larger than
100 kHz. The largest part of this spectrum is not affected by any of the feedback loops.
Both setups adequately remove the long term drift and slow fluctuations, but the remaining
frequency fluctuations (laser linewidth) remain the same. The stability is however good
enough for the experiments.

4.5 Frequency Offset Lock

The laser for the Zeeman slower and the atom interferometer operate at a large detuning
that can not be reached with the reference gas cell. These two lasers are therefore locked
to the collimator and the MOL/MOC laser with a frequency offset lock based on a phase
locking technique [8, 9]. The beat frequency with a stabilized laser is measured and this
beat frequency is locked to a stable reference oscillator by the phase locked loop.

4.5.1 Phase Locked Loops

Principle of Operation

Although the final setup uses two references (the stabilized laser and the reference gen-
erator), we will first explain the principles of a phase locked loop (PLL) with only one
reference, as in Figure 4.3. In this PLL, the oscillator is locked to the zero crossing of the
output of the mixer. This mixer produces the product of two oscillating input signals:

Vproduct = sin(φ1(t)) sin(φ2(t)) ∝ sin(φ1(t)− φ2(t)) + sin(φ1(t) + φ2(t)). (4.4)

After filtering any DC and the high frequency component (sum of the phases) this multi-
plication results in a signal that oscillates with the frequency difference. Because the loop
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Figure 4.3: Schematic diagram of a phase locked loop

locks to a zero crossing of this oscillation, the phase (and thereby the frequency) of the
oscillator is locked to the phase of the reference.

Capture

The difference between a phase locked loop and a regular stabilization loop is that the
error signal does not increase linearly with the phase difference, but oscillates. With large
frequency differences or when viewed over long a time scale the sign of the error signal
thus alternates as well. This is the case if the control loop has just been turned on and
the frequency of the laser is not yet equal to the reference. In that case the frequency of
the oscillator will at some times be shifted in the wrong direction, away from the reference
frequency. If the loop is designed well, however, the oscillator can still be locked. It is very
difficult to describe the behavior of the loop analytically, but qualitatively the following
happens in a first order PLL.

When the error signal is “on the right slope” the loop brings the frequencies closer
together. On the other slope, the frequencies will get further apart. However, because the
phase difference grows slower when the frequency difference is small, the loop will stay “on
the right slope” longer. Averaged over a full oscillation, there remains an effective push on
the laser frequency towards the reference. Then after a number of cycles, the frequencies
have become the same and the error signal no longer oscillates.

The frequency of the error signal is equal to the frequency difference between the laser
and the reference. If this frequency is larger than the bandwidth of the control loop,
the loop does not react to the error signal anymore and the laser frequency can not be
locked. The maximum frequency difference that can be “captured” by the loop is thus
approximately equal to the bandwidth of the loop. It is very difficult to manually set the
laser frequency with an accuracy better than 1 MHz and thus the bandwidth of the control
loop has to be at least as high.

Stability

To test the stability of the loop, we need to know the total open loop gain. As mentioned,
the phase detector (mixer) is a highly non-linear device. However, when the frequency
is locked the phase excursions will be small and the output of the mixer (Verror) can be
approximated as linear with the phase difference. The response of the laser to an input
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signal is a change in frequency. The laser phase is the laser frequency integrated over time,
which adds a factor 1/s: φ̃laser(s) = ω̃laser(s)/s. (Note: the dimension of φ̃laser(s) is s
and ω̃laser(s) is dimensionless.) In an ideal loop where we use a simple amplifier as the
controller and all components are fast enough, the total open-loop gain is then a perfect
integrator, a first order PLL

G̃tot(s) =
1

sτloop

, (4.5)

where the time constant τloop is set by the total amplification by the mixer, the controller
and the laser.

Suppose that without feedback the laser phase fluctuates in time with a spectrum
φ̃laser(s). This noise is reduced by the feedback and with a closed loop the spectrum of the
residual phase fluctuations is

φ̃closedloop(s) =
φ̃laser(s)

1 + G̃tot(s)
=

ω̃laser(s)

s(1 + G̃tot(s))
=

ω̃laser(s)τloop

1 + sτloop

. (4.6)

For the loop to stay in lock, the residual phase fluctuations must be smaller than π. The
RMS value of the remaining phase fluctuations is given by:

σ2
φ =

∫
Sω(f)

∣∣∣∣
τloop

1 + ifτloop

∣∣∣∣
2

df, (4.7)

where Sω(f) is the free running power spectral density of the laser frequency fluctuations.
In the case that this power spectrum is independent of f (white noise, Sω(f) = Sω,0), the
probability of measuring a specific laser frequency is given by a Lorentzian with FWHM
∆fFWHM = πSω,0 [10]. This probability density is easily measured with e.g, an etalon and
has a width of approximately 3 MHZ for the lasers that we use. The requirements on the
residual phase stability then translate into

σ2
φ =

τ 2
loop∆fFWHM

π

∫
1

1 + (fτloop)2
df = τloop∆fFWHM . (4.8)

For the loop to stay in lock, the bandwidth of the control loop (1/τloop) thus has to be
larger than the free running frequency fluctuations of the laser ∆fFWHM . Of course, the
regular stability (Nyquist, Sec. 4.3) criterium still applies. Therefore, to make the phase
locked loop work, all components of the loop including the frequency response of the laser
have to be much faster than the free running laser frequency fluctuations.

There are two ways to alleviate the strict demands on bandwidth. One is to use a more
complicated controller (PID controller for example) that artificially increases the control
bandwidth of the laser and thereby the effective feedback bandwidth. The other possibility
is to use a frequency divider which has three main advantages. First, the working frequency
is reduced, which greatly simplifies the electronics design. Second, it has a digital output
and thus amplifies the signals to a fixed amplitude, so that any unwanted filtering effects
(by cables and amplifiers for example) are compensated. Third, the error signal fluctuates
slower so that the laser can more easily follow and lock. This way the capture range of
the loop is increased and the required phase lock is more easily obtained. If at the same
time the total loop gain is kept constant, for example by increasing the amplification by
the controller, the stability of the laser frequency is not affected.
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4.5.2 Implementation

The actual stabilization setup is slightly more complicated than the idealized picture of
the previous section. Instead of locking the laser directly to one reference oscillator, we
first take the beat signal of the laser with a stabilized reference laser. This beat frequency
is then locked by the PLL to a reference generator. This way the laser frequency is locked
to the laser frequency of the reference laser plus (or minus) the frequency of the generator.

Both lasers use the setup that is given in Fig. 4.4. The slowest component in the loop
is the mixer (MiniCircuits ZRPD-1 phase detector) with a maximum output frequency of
50 MHz and a maximum input frequency of 100 MHz. The laser for the Zeeman slower
has a detuning of approximately 700 MHz. To bring the beat frequency within the range
of the mixer, it was scaled down by a factor of 16 (Motorola MC12026A prescaler). The
atom interferometer laser needs a detuning of 1 GHz and higher so in this case the beat
frequency is divided by 64 (NEC UPB1505GR prescaler).

The maximum output voltage of the mixer is insufficient to compensate the drift of the
laser frequency during the day. Thus, to increase the feedback range an extra PI controller
was added behind the mixer. To stay well below the maximum frequency of the mixer
and to avoid any influence of sum frequency signals the bandwidth of the control loop
(frequency with unity gain of open loop) was set to 2 MHz by the appropriate choice of the
proportional gain of the controller. For stability of the feedback loop, the time constant
of the PI-controller has to be longer than this. By setting the time constant of the PI
controller to 10−5 s, we obtain extra strong feedback on lower frequencies and are able to
track the drift for a full day.

We use a frequency counter (Voltcraft 7023) to measure the frequency stability of the
beat signal. If we use a stable signal generator (Adret 7100A) the beat frequency does
not change outside the accuracy of the counter (10 kHz at 10 ms integration time, or
10 Hz over 10 s). Using a somewhat less stable reference oscillator (Peaktech 1450SG)
the beat node still has a stability of 2 kHz, equal to the frequency stability of the signal
generator. In other words, the phase locked loop works very well and the stability of the
beat frequency is in practice only limited by the stability of the reference oscillators. The
stability of the reference lasers, however, is much worse (≈ 0.5 MHz) than the stability of
the beat frequency. Thus the stability of the laser frequency is completely determined by
the stability of these reference lasers.

4.6 Conclusions

We have built four laser setups that meet the requirements on laser frequency, frequency
stability and power. Two lasers are locked to an atomic transition using saturated ab-
sorption spectroscopy. We obtained a frequency stability of approximately 0.5 MHz, well
below the transition linewidth. The other two lasers are phase locked to these lasers with
a frequency offset. The stability of the difference frequency was much better than the
stability of the reference lasers. We can thus conclude that the phase locked loops work
very well and the stability of the actual laser frequency is equal to that of the reference
lasers. Three diodes provide enough power for the laser cooling sections. The power for



References 55

to atom beam

reference 

laser

optical isolator (2x)

detector

+

f/N

reference

oscillator

I DC

frequency

divider

PI

controller
mixer

Figure 4.4: Schematic diagram of the phase locked loop setup

the atom interferometer is generated by power amplification of one of the lasers by a fiber
amplifier.
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Chapter 5

Atomic Bragg Scattering

5.1 Introduction

Bragg scattering was first observed in the diffraction pattern of an X-ray beam on a cleaved
crystal surface. The beam is specularly reflected by the surface only when it hits the surface
under certain specific angles θB. The value of these angles can easily be calculated by
considering reflection of the X-rays by several stacked lattice planes and the requirement of
constructive interference between all of these reflected beams. We find the Bragg condition
which sets the angles θB at which specular reflection can be seen:

2d sin(θB) = Nλbeam. (5.1)

Here d is the distance between the crystal planes, λbeam is the wavelength of the diffracted
(X-ray) beam and N is an arbitrary integer.

This kind of diffraction can also occur for other kinds of waves and even for massive
particles. An example of the latter is the diffraction of neutrons on a crystal [1]. In this
chapter we will study the diffraction of a cold atom beam on a near-resonant standing
light wave (Fig. 5.1). If the laser is tuned off-resonant and spontaneous emission can be
neglected, the standing light wave acts as a periodic potential [2] and takes the role of
the lattice planes with separation d = λlaser/2. In this configuration the atoms with a
De-Broglie-wavelength λbeam = h/p take the role of the X-ray beam and are diffracted on
the standing light wave. We speak of Bragg scattering if the parameters are such that
we only see scattering if the initial angle between the atomic beam and the laser fulfills
the Bragg condition Eq. 5.1 [3–5]). This can be expressed alternatively in terms of the
momentum along the standing wave:

p‖,in = N~k (5.2)

p‖,out = ±p‖,in, (5.3)

where k is the laser wavenumber 2π/λlaser.
In Figure 5.2 three examples of recorded detector images are given for different angles

θ. In the upper image the laser is exactly perpendicular to the atomic beam (zeroth order
Bragg scattering). In the other two images the laser beam is slightly rotated such that
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Figure 5.2: Detector images for 0th, 2nd and
4th order Bragg scattering

the initial parallel momentum p‖ is exactly 2 and 4 times the photon momentum ~k. We
recognize Bragg scattering by the fact that there are only two peaks visible at most. One
peak is what remains of the original beam. The other spot is formed by atoms that are
diffracted by the light field or, in this case, specularly reflected from the equipotential
planes of the light field. The distance between these two peaks corresponds to a velocity
difference of exactly 2N photon recoils, as prescribed by Eqs. 5.2 and 5.3.

The Bragg condition (Eq. 5.2) only describes an exact resonance condition, but obvi-
ously there will still be some scattering when there is a slight mismatch. If this process
is used as a beamsplitter in an atom interferometer, one wants to make the maximally al-
lowed mismatch as large as possible to increase the tolerance for experimental fluctuations
and for imperfect beam collimation (spread in θ). At some point, however, this acceptance
angle becomes so large that the atoms start to diffract in several orders simultaneously,
thereby complicating the signal of the interferometer. The optimal settings for this kind of
beamsplitter therefore are those at which the full acceptance angle corresponds to a parallel
momentum of one photon recoil, the maximum value without overlap between orders. To
be able to set the acceptance angle to exactly this value, we formed a model to predict the
dependence of this tolerance to experimental parameters such as the diffraction order and
the laser intensity (Section 5.5).

5.2 Mathematical Description

In the experiment, we applied a magnetic field along the laser and used σ+ polarized light
in order to select single lower and upper level magnetic substates. In that case we can
accurately describe the interaction of the atoms with the standing light wave by the model
of a two level atom and a single frequency laser beam [6,7].

The laser is far detuned (∆l = 1(2π) GHz) so that the population of the upper level is
very small (∼ 10−4) and the chance that an atom spontaneously emits a photon is small.
Furthermore, the random recoil of the spontaneously emission generally removes the atom
from the bright spots on the detector that represent the coherent diffraction. This allows
us to easily filter out the few atoms that have spontaneously emitted by looking at the
spatial profile on the detector. We can then simply consider (the remaining) spontaneous
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emission as a loss process and describe the interaction with the pseudo-Hamiltonian

Ĥ =
p̂2

2m
+ ~

(
ω0 − i

Γ

2

)
|e〉〈e|

+
~
2
Ω(ẑ)

(
ei(kx̂−ωlt+φ1) + ei(−kx̂−ωlt+φ2)

)
(|e〉〈g|+ |g〉〈e|) . (5.4)

Here |e〉 is the atomic excited state which has a decay rate Γ and an energy difference
~ω0 with the ground state |g〉. The standing light wave consists of two running wave
components with frequency ωl that propagate in opposite direction with reference phases
φ1 and φ2 that determine the position of the zeros of the light field. In this case we take
two antiparallel plane waves with an envelope that depends only on z: Ω(r) = Ω(z)e±ikx.
This is a good approximation if the Gaussian waist of the laser profile is large (we typically
use ∼ 1 mm) and the divergence is small.

In the experiments the energy of the atom typically changes by a few (∼ 50) photon
recoils (see Section 5.3). Because the velocity of the atoms transverse to the laser (the axial
velocity, vz) is orders of magnitude higher than the recoil velocity, this energy difference has
a negligible effect on the axial velocity. We can then safely take vz constant and transform
to a coordinate system that moves along the z-axis at this velocity. If we also make the
usual rotating wave approximation, we can reduce the Hamiltonian (Equation 5.4) to a 1
dimensional form:

Ĥ1D =
p̂2

x

2m
+ ~Ω(vzt) cos(kx̂ + φ1 − φ2) (|e〉〈g|+ |g〉〈e|) + ~

(
∆l − i

Γ

2

)
|e〉〈e|, (5.5)

where ∆l is the laser detuning, ωl − ω0.
The effect of this Hamiltonian can best be understood from the matrix components in

momentum representation:

〈p1, g|Ĥ1D|p2, g〉 =
p2

1

2m
δ(p1 − p2)

〈p1, g|Ĥ1D|p2, e〉 =
1

2
~Ω(vzt)

(
δ(p1 − p2 + ~k)eiφ2 + δ(p1 − p2 − ~k)eiφ1

)

〈p1, e|Ĥ1D|p2, e〉 =

(
p2

1

2m
+ ~∆l − i

~Γ
2

)
δ(p1 − p2). (5.6)

The delta-functions in the middle expression indicate that the momentum of the atom
changes by ~k each time it is excited by a photon. De-excitation by stimulated emission of
this photon gives a second momentum kick, so that each absorption/emission cycle adds
2,0, or -2~k. If the initial wavefunction is a plane wave with momentum p0 we can, without
loss of generality, describe the wavefunction as a superposition of an infinite number of
plane waves in the ground state that have momentum p0 + 2n~k plus plane waves in the
excited state with momentum p0 + (2n + 1)~k.

A partial energy diagram of the levels that are involved in the diffraction process is given
in Figure 5.3 for the case that the original momentum is an odd number times the photon
momentum. The thick lines indicate the accessible momentum states of the ground and the
excited level. The associated energy of these states is the sum of the internal energy ~ω0
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Figure 5.3: Partial energy diagram for the diffraction of a two-level atom
on a standing light wave. In the case of Bragg scattering, the two degenerate
momentum states are coupled through a number of off-resonant ground and
excited level states.

and the kinetic energy p2/2m. As an example, a minimum number of (virtual) transitions
are indicated that are needed for fifth order Bragg scattering. This process requires at
least 10 single photon transitions to off-resonant states in both the ground and the excited
level.

In this reduced basis where the momentum states are separated by discrete steps the
Schrödinger equation transforms into an infinite set of coupled differential equations. For
numerical calculations we used a basis set of 64 momentum states where we continuously
checked that the higher momentum states are not populated during the process. The
truncated set of equations is numerically integrated using a NAG routine. In the following
we will only refer to the reduced version of the Hamiltonian with the discrete momentum
basis.

The Hamiltonian Eq. 5.6 shows that a change in momentum also adds the phase factor
of the laser component involved. It is not so difficult to show [8] that the atoms that are
diffracted to the Nth order have acquired a phase N(φ2−φ1). This phase is essential for the
full interferometer. However, because in this chapter we are only interested in scattering
probabilities, we will ignore this phase for now.
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5.3 Eigenvector Approach

The results that are obtained from a full integration of the Schrödinger equation describe
the measurements very well [6]. It is however insightful to look at the process in terms of
eigenvectors and eigenvalues of the Hamiltonian.

Dynamically, there is no restriction on the allowed momentum (within the discrete
momentum basis) that an atom can take during and after the interaction with the laser. We
see, however, that in the case of Bragg scattering the atoms only end up with the original
momentum, or with the opposite momentum if this is accessible though a 2N -photon
exchange. It seems that scattering only takes place between two momentum states that
have the same (kinetic) energy. Quantum mechanically this is described by the adiabatic
following of the instantaneous eigenfunctions.

We calculated the full set of eigenvalues of the Hamiltonian matrix (Eq. 5.6 in the
discrete momentum basis) by numerical diagonalization. In Figure 5.4 the lowest few
eigenvalues (in terms of the photon recoil energy ~ωrec = ~2k2/2m, ωrec = 42(2π) kHz) are
given for the reduced Hamiltonian with Γ = 0 and p0 = 0. The eigenvalues are plotted as
a function of z so that we can recognize the Gaussian profile of the laser with waist wlaser.

In the case of fifth order Bragg scattering, the initial wavefunction (at the left of the
graph) is a plane wave with momentum 5~k. This is an eigenfunction of the Hamiltonian
without the laser (Ω = 0) and has an energy of 25 ~ωrec. Because it is an eigenfunction, the
atoms momentum would (of course) not change if there were no laser. As the laser intensity
increases, however, the momentum states are no longer eigenfunctions and in general the
wavefunction evolves into a superposition of all possible momentum states. However, if the
laser intensity increases slowly enough, the atoms follow the energy curve (like in Fig. 5.4)
and the associated eigenfunction. This process is called adiabatic following.

It can be understood as a continuous series of projections of the wavefunction to the new
eigenfunctions. In this process, the new eigenfunctions that are closest in energy receive
the largest fraction of atoms. If the intensity increases slowly enough, the wavefunction
will each time be projected completely onto a single new eigenfunction and all atoms will
end up in the same eigenstate.

At zero laser intensity, momentum states with opposite momentum are energetically
degenerate. The interaction with the light field lifts the degeneracy and it can be shown that
in the limit of no laser intensity, the eigenfunctions (at resonance of the Bragg condition)
are given by the symmetric and the antisymmetric combination of these two momentum
states. In the case of fifth order Bragg scattering the two eigenstates that are energetically
closest to the original momentum state are:

lim
Ω→0

|Ψ5〉 =
1√
2

(|5〉+ | − 5〉)

lim
Ω→0

|Ψ6〉 =
1√
2

(|5〉 − | − 5〉) . (5.7)

The wavefunctions |Ψ〉 are the instantaneous eigenfunction of the Hamiltonian and its
index indicates the ordering of the associated eigenvalues. The number inside the other
kets indicates the momentum in terms of ~k. Thus, exactly on resonance of the Bragg
condition (correct angle between laser and atoms) the initial state projects exactly 50-50
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Figure 5.4: Lowest few eigenvalues of the reduced Hamiltonian (at res-
onance of the Bragg condition) as a function of the position z along the
laser profile.

onto the two eigenfunctions |Ψ5〉 and |Ψ6〉. As the laser intensity increases, the energies of
these two eigenfunctions start to diverge and the two eigenfunctions adiabatically evolve
into a different form. The distribution of atoms over these two remains unchanged (50/50).
At the end, the energies of the two populated eigenfunctions converge and the wavefunction
returns to a superposition of the the two plane waves |5〉 and | − 5〉.

In this simple picture, we have effectively formed a two path interferometer. The
incoming atoms are distributed evenly over the two nearest eigenfunctions. As long as they
are separated in energy, these two components have a different phase evolution that is given
by the energy difference and the travel time: φ =

∫
∆E(τ) dτ/~. In Graph 5.4 the phase

difference between the two paths is indicated by the shaded area. After the interaction,
the detection of the atoms on the detector effectively projects the wavefunction on the |5〉
and | − 5〉 momentum states. The full process then is described as follows

|5〉 → 1√
2
(|Ψ5〉+ |Ψ6〉)

→ 1√
2
(|Ψ5〉+ eiφ|Ψ6〉)

→ 1

2
(1 + eiφ)|5〉+

1

2
(1− eiφ)| − 5〉. (5.8)

We see that the atoms oscillate between the two degenerate momenta as a function of the
phase area φ. This effect is called the Pendellösung oscillation [7,9]. For zero laser power,
the phase area is zero and the atoms retain the original momentum. As the laser power is
increased, the phase area increases and the atoms oscillate to momentum -5~k (at φ = π)
and back.
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Figure 5.5: Measured Pendellösung oscillations for fifth order Bragg scat-
tering with a comparison with the phase area calculations. ∆l=1(2π) GHz,
wlaser=1.6 mm, v⊥=250 m/s.

Measurements of the Pendellösung effect are plotted in Figure 5.5, where the fraction of
atoms with momentum p = −5~k is plotted versus the total single beam laser power, with
the overall maximum fraction scaled to 1. The absolute value of the diffraction efficiency
for these measurements is quite low (∼ 40%), because we used a relatively large divergence
(θFWHM ≈ 100 µrad) of the atom beam (see Section 5.4). The dashed line is the result of
a calculation with the above mentioned phase-area method without any free parameter,
except for a 5% correction to the measured laser power. The graphs shows five clear
oscillations that stay in phase with the phase area calculations. For higher laser power the
amplitude of the measured oscillation decreases because of losses by spontaneous emission
and scattering to other diffraction orders (see also [10]).

5.4 Acceptance Angle

The phase area method gives an excellent description of the phase of the Pendellösung
oscillations, but it assumes that the angle between atom beam and laser is exactly on
the Bragg condition and that there are no transitions between adiabatic states during the
interaction. For a small misalignment this model predicts that there is no scattering at
all, a statement that is obviously wrong. For the design of the interferometer we need to
know the scattering probability as a function of a small mismatch in order to choose the
optimal divergence for the atomic beam.
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For first order Bragg scattering an analytic expression for this scattering profile can be
obtained by reducing the model to a two level system with a 2-photon Raman coupling
through a far detuned excited level. See [11] for the case of a square pulse and [12] for a
hyperbolic secant shape. For higher order Bragg scattering no analytic expression exists
yet, because there are always intermediate (momentum) ground level states that are not
far detuned (see Fig. 5.3), which makes it more difficult to find an analytic expression.

We performed extensive measurements in order to determine the acceptance angle for
Bragg scattering. To this end, the diffraction profile was measured for a large number
of laser angles at a number of different laser powers. An example of such a series is
given in Fig. 5.6. In this graph 75 one-dimensional detector images (atom beam intensity,
integrated over y) as a function of x are given in grayscale with the laser angle as the second
coordinate. The grayscale is purposely saturated at high intensity to clarify the narrow
and low intensity peaks. For the largest part of the range in angle (vertical axis) hardly
any atoms are diffracted and the atoms hit the detector at the position of the original peak
around x=14.7 mm. Only if the Bragg condition is approximately fulfilled, there appears
a significant second peak on the detector. The third order diffraction peak is missing.
This is caused by the fact that the scan was performed at a constant value of the laser
power, where the Pendellösung oscillation for this particular order happens to be right at
a minimum.

The divergence of the atom beam with these measurements was σθ = 21 µrad. However,
the widths of the diffraction peaks in terms of the laser angle in Fig. 5.6 are much larger
than this, especially for the lower orders. To get a better view on the acceptance angle,
we counted the total number of atoms that ended up in each diffraction order. For this,
the atomic positions were binned with bin sizes that were the equivalent of 1 order (2~k).
As an example of the results, the number of atoms in the fourth order diffraction peak is
plotted in Figure 5.7 as a function of the laser angle, expressed in atomic momentum along
the laser. There is a clear maximum in the number of atoms around p‖ = 4~k, the fourth
order Bragg angle. The tolerance on the Bragg condition (acceptance angle) is given by
the width of the peak and is determined by a Gaussian fit.

5.5 Demkov Model

The numerical calculations, described earlier, correctly predict the Bragg tolerance. How-
ever, these calculations are in a sense pure “black box” simulations, providing little insight
and no handles for convenient parameter optimization. In this section we will therefore
develop an analytic model for the direct estimation of the acceptance angle.

Even if the laser angle is not set to the Bragg condition, the atoms are still distributed
over only two possible momentum states. It then seems likely that also in this case, the
process can be described by a two-level system. We will look for a model in which two
(momentum) states with a fixed energy difference experience a peaked interaction that
is determined by the Gaussian shape of the laser profile. There is a number of known
two state models that have an analytic solution (for an overview see [13, 14]). The most
appropriate of these is the Demkov model [15].

The Demkov model describes the non-adiabatic transfer between two states with a
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Figure 5.6: 1-D detector intensity (diffraction profile integrated in the
y direction) as a function of the laser angle. Dark points indicate high
intensity of the atom beam.

fixed energy difference ∆E and a peaked interaction strength ΩDemkov(t) that changes
exponentially in time. In matrix form we can write the Hamiltonian:

HDemkov =

(
∆E/2 ΩDemkov(t)

ΩDemkov(t) −∆E/2

)
=

(
∆E/2 βe−γ|t|

βe−γ|t| −∆E/2

)
. (5.9)

In the beginning and at the end, the interaction strength is zero, but during the interaction
it peaks to a value β that is much larger than the energy difference.

It turns out that the instantaneous eigenstates are adiabatically followed, except around
the points in time ±t0 where the interaction strength is equal to the energy difference,
∆E = β exp(−γ|t0|). Near these points, the non-adiabatic transitions occur. It can be
shown that the total transition probability PDemkov after the entire pulse equals:

PDemkov = sech2

(
π∆E

2~γ

)
sin2(φ0/2), (5.10)

φ0 =
2

~

∞∫

−∞

ΩDemkov(t)dt. (5.11)

We see the qualitative agreement of this formula with the measurements: a peaked shape
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Figure 5.7: Total number of atoms that ended up in the fourth order
diffraction peak as a function of the laser angle in terms of the atomic
momentum along the laser together with a Gaussian fit.

as a function of the energy difference (laser angle) and an oscillating term as a function of
the phase area φ0 (Pendellösung oscillations).

In the Bragg scattering process the two levels of the Demkov model correspond to the
incoming plane wave and the plane wave that is closest in (kinetic) energy, the reflected
wave. Although these plane waves have adiabatically evolved into a complex superposition
at the peak of the laser intensity, the non-adiabatic transitions take place in the tails of
the laser profile where these adiabatic eigenfunctions are still approximately equal to the
original pure momentum states. The interaction between these states is not in actuality
exponential in time: it follows the intensity of the Gaussian laser profile. However, the
transitions occur in the tails of the Gaussian, where the effective interaction can be ap-
proximated by an exponential. In between the two points ±t0 we only need to know the
relative phase evolution. In Equation 5.10 this phase evolution is written in terms of the
off-diagonal terms of the 2-level Hamiltonian. For ∆E = 0, however, this off-diagonal term
is equal to half the adiabatic energy difference (difference in eigenvalues). If we make the
translation to the full system with all the momentum states, we see that the phase φ0

(Eq. 5.11) is thus described by the phase area method of Section 5.3, where the phase area
is always calculated on resonance of the Bragg condition even if the two momentum states
have an energy difference.

To calculate the scattering probability we have to match the parameters ∆E and γ to
our situation. The energy difference is simply the difference in kinetic energy between the
two momentum states. One can readily show that with an offset momentum ∆N ~k from
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Nth-order resonance the energy difference is

∆E = 4~ωrecN ∆N. (5.12)

The parameter γ is more difficult to calculate, but can be obtained from a local approxi-
mation around t0

γ =
dΩeff (t0)/dt

Ωeff (t0)
, (5.13)

where Ωeff is the effective 2N photon Rabi frequency between the two levels. This effective
Rabi frequency can be obtained by adiabatically eliminating all other momentum states.
For low laser intensity this can be approximated by [5,16]

Ωeff (t) =
Ω2N

0 (t)

24N−3((N − 1)!)2∆N
l ωN−1

rec

, (5.14)

where Ω0 is the single photon Rabi frequency, Ω0(t) = Γ
√

I(t)/2Isat. This is the general-
ization of a two-photon Raman transition to a 2N -photon transition. The numerator is the
product of the interaction strengths for each intermediate transition and the denominator
is the product of the detuning of each intermediate level. In this approximation the small
shift ∆E is neglected.

For a Gaussian profile of the laser Equations 5.14 and 5.13 result in

γ = −4Nt0/τ
2, (5.15)

where τ = wlaser/v⊥, with wlaser the Gaussian waist radius at 1/e2 height of the laser
intensity profile. The point t0 where the interaction takes place is given by the solution of
the equation ~Ωeff (t0)/2 = ∆E, yielding

t0 = τ

√
1

2N
ln

(
Ω2N

0

(16∆l ωrec)N((N − 1)!)2N ∆N

)
. (5.16)

The expression for the effective Rabi frequency (Eq. 5.14) is only valid if the detuning
of all intermediate levels (see Fig. 5.3) is much larger than Ω0. The laser detuning is
much larger than the maximum single photon Rabi frequency (∆l = 1(2π) GHz, Ω0,max ≈
63(2π) MHz) and the elimination of these states is a very good approximation. The
momentum states of the ground level, however, are only detuned by a few times the
photon recoil frequency, which is smaller than Ω0. To test the validity of Equation 5.14 we
also numerically calculated the effective Rabi frequency by numeric adiabatic elimination
of all off-resonant states. We found that Equation 5.14 is valid to within 10% when the 2-
photon Rabi frequency satisfies Ωeff,2photon = Ω2

0/2ωrec∆l < 10 which gives Ω0 < 500ωrec =
21(2π) MHz. Since typically t0 ≈ τ we get Ω0(t0) = 23(2π) MHz and we find that the laser
intensity at the Demkov point t0 is low enough to use expression 5.14. At the peak of the
laser profile, however, the intensity is too high and we will have to compute the phase area
numerically.



68 Atomic Bragg Scattering

0 1 2 3 4 5 6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

 

F
W

H
M

 a
c
c
e
p
ta

n
c
e
 a

n
g
le

 (
h
k
)

diffraction order N

 measurements

 Demkov model

 simulations

 transit-time-broadening

40%

29%
75%

65%

57%

Figure 5.8: FWHM acceptance angle for Bragg scattering as a function
of the Bragg order (wlaser=1.6 mm, ∆l=1(2π) GHz, P=21 mW). The
percentages next to the measurements indicate the maximum scattered
fraction of atoms.

5.6 Measurements

In Figure 5.8 the FWHM acceptance angle for the scattering probability is plotted as a
function of the diffraction order N with constant laser power. The filled squares indicate
the result of a Gaussian fit through measurements like in Fig. 5.7. The point for 3rd order
scattering is missing because at this particular laser power, the Pendellösung oscillation
has reached its minimum so that no atoms are scattered, regardless of the tolerance. The
error bars on the measurements give the uncertainty from the fitting routine and the
percentages next to the measurements indicate the maximum scattered fraction of atoms
to that momentum for these settings.

The results from the Demkov model are depicted by triangles that are connected
by the line. These values, indicate FWHM of the sech2 part of the scattering prob-
ability (Eq. 5.10) and are given by the value of 2 ∆NHWHM at which the argument
π∆E(∆NHWHM)/2~γ(∆NHWHM) = 0.88. The Pendellösung phase φ does in principle
depend on the laser angle and might change the tolerance through the sin(φ(p‖)) compo-
nent in the scattering probability. With these calculations, however, we assume that over
the range of one resonance peak this phase does not change by much. We therefore take
this phase area constant per diffraction order. In that case, the scattering profile is fully
determined by the sech function. The measured acceptance angles agree quite well with
this Demkov model, except for the fifth order, where the scattering efficiency is quite low.
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The open circles in the graph are the result from a series of full numerical calculations
(Sec. 5.2). These agree quite well with the measurements and the model. The results from
the calculations seem to vary more per diffraction order than the measurements which
have a very smooth behavior. This is probably caused by the fact that parameters such
as laser power varied slightly during the experiment, causing some effective averaging that
smooth out the variations in the measurements. If we evaluate the acceptance angle from
the simulations at a slightly different laser power, where the maximum transfer efficiency
is maximal, the simulated acceptance angles agree much better with the Demkov model.
The actual acceptance angle thus strongly depends on the laser power.

We might be tempted to use a much simpler criterion for the tolerance on the Bragg
condition based on the idea of transit time broadening, i.e, the energy uncertainty asso-
ciated with the finite interaction time. In that case the acceptance angle is set by the
angle offset at which the difference in kinetic energy between the original and the scattered
beam exceeds the transit-time broadened energy uncertainty ∆E = ~/τ . The result of
this estimate is given in Fig. 5.8 by the dashed line. For the interaction time we took the
value that corresponds to the waist of the laser profile. Clearly, this estimate results in
an acceptance angle that is much too low and that drops off much more quickly with the
diffraction order. Another choice of τ would result in different values for the acceptance
angle. The trend as a function of N , however, would remain the same.

As another check on the Demkov model, we also measured the tolerance on the Bragg
condition as a function of the total laser power. For this we again measured the total
number of atoms that is scattered to second order as a function of the laser angle for a
fixed laser power and determined the Gaussian width of this scattering probability. This
was repeated for 3 different values of the laser power. The result of these measurements is
given in Figure 5.9 by the filled squares. These measurements agree well with the Demkov
model (full line). The trend in the graph is that the tolerance only increases very slowly
with the laser power. The model shows a sharp decrease in the acceptance angle for very
low laser intensities (<2 mW). At this point however, the phase area φ is also too small to
see any scattering so that the acceptance angle has little meaning.

The acceptance angles that result from the full numerical calculations are given by
the open circles that are connected by the dashed line. The size of these circles indicate
the maximum transfer efficiency and the graph shows that for each laser power at which
the transfer is maximal (largest circles), the acceptance angle agrees very well with the
Demkov model. However, when following a single section of the dashed line connecting
the simulations, i.e, when traversing a single maximum of the Pendelösung oscillations,
the acceptance angle changes rapidly as a function of the laser power. This discrepancy
is probably caused by the effect of the laser angle on the phase area. Although this effect
only introduces a small shift in the Pendellösung oscillation, this shift itself could have
a relatively large effect on the width of the acceptance profile. A full calculation of the
effective interaction strength by adiabatic elimination of the off-resonant levels instead of
the approximation 5.14 would probably give an even better correspondence. However, for
the moment we can conclude that the Demkov model captures the physics of the Bragg
tolerance correctly, both qualitatively and quantitatively, and provides a very convenient
handle to optimize the experimental parameters.
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Figure 5.9: FWHM acceptance angle for Bragg scattering as a function
of the single beam laser power (wlaser=1.6 mm, ∆l=1(2π) GHz, N=2).
The three measurements were taken for maximum scattering. The circles,
connected by the dashed lines, give the results from the numerical calcu-
lations and the size of these circles indicate the maximum transfer at that
laser power. The jumps in the acceptance angles occur at the minima of
the Pendelösung oscillations.

5.7 Optimal waist

The previous paragraph showed that the Demkov model is in excellent agreement with the
measurements and the simulations. In this Section we will now use this model to determine
the optimal settings to get an optimal acceptance angle and to diffract as many atoms as
possible without any diffraction to unwanted angles. The goal is then to get a FWHM
acceptance angle for Bragg scattering of 1~k.

The scattering probability (Equation 5.10) consists of two parts that are (largely) in-
dependent and can be optimized separately: the oscillating part depends on the phase
area φ, representing the Pendelösung oscillation and the envelope function depending on
the energy difference representing the tolerance. The phase area has to be set differently
for the atom beam splitters and the atom beam mirrors, but for now we will consider
the mirrors, φ = π. At large laser detuning, the independent parameters that we can
use to tune the process are the diffraction order N , the effective 2-photon Rabi frequency
Ωeff,2photon = Ω2

0/2ωrec∆l and the interaction time τ . When we choose a fixed order N and
hence a fixed diffraction angle, the two conditions for the phase area and acceptance angle
determine the optimal values for the laser power and the interaction time.
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= π) and an optimal acceptance angle according to the Demkov model.
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∆l = 1(2π) GHz.

In Figure 5.10 the relation between the value of Ω0 at the center of the laser profile
(Ωmax) and τ that results from each of the two criteria is plotted for several values of N .
The relation for the phase area is obtained by a numerical integration routine combined
with a search algorithm that searches for the optimal value of Ωmax for each value of τ .
The other lines are the result from the required HWHM width of the envelope. They are
the result of combining Equations 5.12, 5.14 and 5.15, yielding:

Ω2
max

2ωrec∆l

= 8
[
((N − 1)!)2N ∆N

]1/N
e2(π ∆N ωrecτ

2×0.88 )
2

, (5.17)

where ∆N = 0.5 for a FWHM acceptance angle of 1~k. The optimal value for τ and
for Ωmax for each order N are given by the intersection of the two lines, indicated by the
circles in Figure 5.10. For a FWHM acceptance angle of 1~k all six diffraction orders
require an interaction time of τopt ≈ 0.4/ωrec which in our setup gives an optimal laser
waist of 0.4 mm, independent of the diffraction order, which is very convenient.

To compare these results with the simulations the procedure described above was re-
peated for a target acceptance angle of 0.25, 0.5 and 0.75~k. In Figure 5.11 the results are
plotted as required acceptance angle versus the optimal waist (solid symbols). The lines
indicate the results from the full numerical simulations. They represent the FWHM ac-
ceptance angles that are obtained by a Gaussian fit through the simulations at four values
of the laser waist.

Again, the results from the simulations and the Demkov model are close, except for the
lowest diffraction order. The most likely explanation for this is that the low momentum
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Figure 5.11: The optimal waist for the lowest six diffraction orders and
four values of the required acceptance angle. For comparison the lines
indicate the acceptance angle that are obtained from full numerical simula-
tions at four different values of the laser waist. The optimal setting that is
obtained from a transit-time broadening calculation is also drawn.

states have small energy differences. It is then easier to make non-adiabatic transitions
between these states. This makes the used two level approximation less accurate.

The lower line in Fig. 5.11 indicates the result from the transit-time broadening esti-
mate. Again, it is clear that the Demkov model is a much better approximation.

5.8 Conclusion

We have shown in this chapter that atomic Bragg scattering can very well be described by
a Demkov model. The presence of Pendellösung oscillations indicate that the interaction of
the atoms with the laser is mostly adiabatic and effectively limited to two states. The two
relevant states correspond to the initial incoming plane wave and the reflected wave with a
momentum difference of 2N~k and the smallest energy difference. In the Demkov model,
transitions between the two states occur at the two points ±t0 where the effective interac-
tion strength is equal to the energy difference. When these points are calculated using an
analytical approximation for the effective interaction strength it is straight forward to cal-
culate the acceptance angle for Bragg scattering. The dependence of this acceptance angle
as a function of the laser intensity and the diffraction order N was tested experimentally.
This model, without any adjusted parameters, was found to be in excellent agreement with
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the experiments. Although the model works best for laser power with maximum reflection
of the atom beam, it is a good tool to estimate the optimal settings for an atom interfe-
rometer. For a FWHM acceptance angle of 1~k we found wopt ≈ 0.4 mm, independent of
the diffraction order.

Comparison with a widely used transit-time broadening approach revealed that the
Demkov model is a great improvement and works much better in predicting the acceptance
angle.
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Chapter 6

Interferometer Theory

6.1 Introduction

Atom interferometers are very sensitive to a large variety of physical phenomena such as
rotation [1] and gravity [2] and therefore they are excellent devices to measure these effects
very accurately. On the other hand, these same effects can be troublesome sources of noise
if one is looking for other signals (see for example [3]).

There are numerous effects that contribute to the interferometer phase, including the
mentioned inertial effects but also including alignment errors. It is impossible to do a mea-
surement without detailed knowledge of all relevant contributions. Effects of alignment er-
rors on the interferometer phase and contrast were already investigated by Champenois [4],
however in this paper each error was taken into account separately and the calculations
did not include rotation and gravity. In this chapter we will calculate the full interferom-
eter phase accounting for all possible alignment errors, variations in initial velocity and
position and rotation, gravity and a quadratic potential. All of these effects are included
simultaneously, so that we can evaluate the cross terms as well.

The ideal interferometer setup is schematically drawn in Figure 6.1. The beam enters
the interferometer through the aperture at the left and is subsequently split and recom-
bined by three standing light waves that are positioned at equal distances. The associated
classical trajectories that contribute to the detector signal are indicated by the dashed
lines.

To calculate the phase difference between the two paths we need to calculate two effects:
the interaction with the lasers and the propagation between the lasers. The propagation
between the lasers is described in Section 6.2, where the phase evolution is calculated
by using a WKB approximation along the classical trajectories. The effect of the lasers is
described in Section 6.3. In Section 6.4 we combine the two effects and obtain an expression
for all relevant effects that influence the interferometer phase at a detectable level. At the
end, in Section 6.5, we evaluate some of the phase terms and translate them into design
criteria for the interferometer.
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Figure 6.1: Schematic representation of the interferometer setup. The
atomic beam enters through the aperture at the left. Three standing light
waves positioned at equal distances split and recombine the atom beam. At
the end of the setup the beam intensity is measured by a detector.

6.2 Free Propagation

6.2.1 WKB approximation

All parameters in the setup are fixed and the beam that enters through the aperture
runs continuously. We can then describe the atoms as a continuous atomic wavefunction.
In the interferometer this wavefunction and thus the detector signal is described by the
time-independent Schrödinger equation

ĤΨ(r) = EΨ(r), (6.1)

with the boundary conditions that are given by the input beam at the aperture

Ψ(x, y, z = 0) = Ψ0(x, y) (6.2)

dΨ(x, y, z = 0)/dz = f(x, y) (6.3)

and the energy E of Equation 6.1 matching these boundary conditions. The Hamiltonian Ĥ
describes all energy terms within the interferometer region, including the interaction with
the lasers and their spatial profile. The intensity at the detector is given by |Ψ(rdetector)|2.
In the case of a pulsed input beam, this solution is a Fourier component of the full time-
dependent solution with frequency E/~.

Unfortunately, it is impossible to get a simple analytic solution from the full problem so
we will make a few approximations. First, we will approximate the laser beams by infinitely
thin sheets that are approximately perpendicular to the beam axis (see Section 6.3). The
interferometer is then divided by these sheets into 4 sections where the effect of the lasers is
summarized in a coupling relation for the wavefunctions on either side of each interface. We
then have to solve Equation 6.1 for each section of the interferometer with a Hamiltonian



6.2 Free Propagation 77

that usually only has a small potential energy term and thus represents “almost free”
propagation.

For a reduced Hamiltonian that is at most quadratic in momentum and position the
time-independent Schrödinger equation can in principle be solved. That is, the solution
can be expressed in terms of (integrals over) standard functions. The full solution to the
problem that matches the boundary conditions, however, still gets extremely complicated
and is not useful for simple sensitivity relations. We will therefore make a second approxi-
mation and consider the classical trajectories of the atoms and use a WKB approximation
to calculate the phase.

The following is a simplified version of the result of Maslov [5]. We write the wave-
function Ψ(r) as the product of an amplitude A(r) and a phase factor exp(iφ(r)). If the
amplitude A varies much more slowly than the phase φ (i.e. (∇2A)/A ¿ (∇φ)2) we can
use the WKB approximation and decouple the equations for the amplitude and the phase.
In general, these equations can still not be solved. However, we are only interested in the
phase at the points where the amplitude is high. If the wavefunction at the boundary is
peaked at the point r0, the amplitude of the full wavefunction is large in the neighborhood
of the classical trajectory that starts at position r0 with initial momentum

p0 = ~∇φ(r0) (6.4)

and energy
E = H(p0, r0). (6.5)

It can then be shown that the approximate solution for the phase around this classical
trajectory rcl(t) is given to first order in r − rcl(τ) by

φ(r) = φ(r0) +
1

~

∫ rcl(τ)

0

pcl(t) · drcl(t) +
1

~
pcl(τ) · (r − rcl(τ)) . (6.6)

The second order term can be found in [5]. If the trajectory does not reach the point
r where we want to evaluate the phase, the time τ(r) describes the time at which the
classical trajectory comes closest to this point r. This time τ is then given by the relation

(r − rcl(τ)) · d

dt
rcl(τ) = 0. (6.7)

The phase 6.6 has three contributions: the phase of the wave at the point where it enters
the section, φ(r0), the path integral of p·dr over the classical trajectory and a continuation
of the wave as a plane wave with wave vector pcl(τ)/~ from the final point rcl(τ) to the
point r. In the special case of a non-rotating reference frame the momentum is parallel to
the velocity v = drcl/dt (see Subsec. 6.2.2) and the last phase term vanishes, because of
the condition 6.7.

Equation 6.6 gives the phase of the wavefunction at any point r in the region of free
propagation (between lasers) with only the classical trajectory as input. The interferometer
consists of two arms with multiple sections and the calculation of the interferometer phase
requires the evaluation of Equation 6.6 over all partial trajectories.

For a time-based atom interferometer with pulsed lasers the expression for the phase
is similar to Equation 6.6, but with two differences. Firstly, the time τ is now imposed
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by the pulse sequence and does not have to be calculated from the trajectory. This makes
it a lot easier to calculate higher order correction factors for the interferometer phase [6].
Secondly, the path integral over pcl · dr is replaced by an integration of the Lagrangian
over time [7] which effectively adds a phase integral of

∫
E(t)dt/~. Because of the relative

ease of the calculations spatial interferometers are often approximated as time-based by
taking the axial velocity constant. This approach, however, can lead to large discrepancies
in the interferometer phase if there is a path length difference between the two arms.
Although the two approaches produce many phase terms that are equivalent, the two type
of interferometers are fundamentally different.

6.2.2 Classical Trajectories

As mentioned above, the calculation of the “propagation phase” only requires the classical
trajectory. In this section we will therefore derive an expression for the classical trajectory
in terms of the initial position and momentum, where we account for rotation (e.g, the
daily rotation of the earth) and potentials.

In classical mechanics the motion of a particle is fully determined by the (classical)
Hamiltonian H(p, r). The trajectory rcl(t) is given by the Hamilton equations

d

dt
rcl(t) = ∇pH(pcl(t), rcl(t)) (6.8)

d

dt
pcl(t) = −∇rH(pcl(t), rcl(t)). (6.9)

We shall limit ourselves in this work to a second order expansion of the potential energy.
In the rotating frame the Hamiltonian is:

H(p, r) =
p2

2m
−mg · r − m

2
r · ⇒Γr − (r + R) · ⇒Ωp, (6.10)

where boldfaced symbols indicate column vectors and symbols with an arrow are matrices.
In the case of gravity, the vector g is equal to the gravitational acceleration, but in

the case of a general potential field V (r) the vector mg contains the first order expansion

coefficients ∇V (r). The matrix m
⇒
Γ contains the second order coefficients, ∇∇T V (r),

where the T indicates the transposed vector. The rotation is described by the matrix

⇒
Ω =




0 Ωz −Ωy

−Ωz 0 Ωx

Ωy −Ωx 0


 , (6.11)

such that
r · ⇒Ωp = −r ·Ω× p = Ω · r × p (6.12)

gives the usual rotational energy term. The matrix notation was chosen over the usual
vector notation, because matrix multiplications are easier to work with than vector cross
products. The vector R is the offset of the origin of the coordinate system to the center
of rotation (center of the earth if the rotation of the earth is considered, or an arbitrary
other point on the rotation axis).
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The Hamilton equations 6.8 and 6.9 can be written in the form

d

dt

(
rcl(t)

pcl(t)/m

)
=

⇒
M

(
rcl(t)

pcl(t)/m

)
+

( ⇒
ΩR
g

)
(6.13)

⇒
M ≡

( ⇒
Ω 1
⇒
Γ

⇒
Ω

)
. (6.14)

The solution to these equations can be written in terms of the initial conditions and the

time-dependent 3×3 matrices
⇒
A,

⇒
B,

⇒
C and

⇒
D and vectors ξ and ζ:

(
rcl(t)

pcl(t)/m

)
=

( ⇒
A(t)

⇒
B(t)

⇒
C(t)

⇒
D(t)

)(
r0

p0/m

)
+

(
ξ(t)

ζ(t)/m

)
(6.15)

p0 = m
(
v0 −

⇒
Ω(r0 + R)

)
. (6.16)

This translates Equation 6.13 to a new set of differential equations that are independent of
the initial conditions. In the case that all parameters of rotation and gravity are constant
this set can be solved exactly. Furthermore, if ||Ω|| and

√
||Γ|| are small compared to the

transit time T (i.e. ||Ω||T, ||Γ||T 2 ¿ 1) the unknown matrices and vectors can be obtained
by a series expansion in t [8]:

( ⇒
A(t)

⇒
B(t)

⇒
C(t)

⇒
D(t)

)
= e

⇒
Mt = 1 +

⇒
Mt +

1

2!

⇒
M

2

t2 + ... (6.17)

(
ξ(t)

ζ(t)/m

)
=

⇒
M

−1 (
e
⇒
Mt − 1

) ( ⇒
ΩR
g

)

=

(
t +

1

2!

⇒
Mt2 +

1

3!

⇒
M

2

t3 + ...

) ( ⇒
ΩR
g

)
. (6.18)

We will need these expansions to calculate the time at which the classical trajectories hit
the lasers and to find simple expressions for the phase sensitivity (see Section 6.4).

6.3 Laser Interaction

The atom interferometer uses Bragg scattering (Chapter 5) to split, reflect and recombine
the two paths of the interferometer and the following calculations are based on these
beamsplitters. Other more complicated schemes are investigated to split the atom beam
with laser beams [9]. If such a scheme is indeed used in the interferometer, the theory that
is developed in this section can easily be modified.

To calculate the total interferometer phase, we need to summarize the effect of each
splitter in a simple beam splitter rule that gives a relation between the wavefunction on
either side of the laser sheet. For this, we will first consider two simpler examples of
atom beam splitters. The kind of beam splitters that is most easily described consists of
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mechanical gratings [10]. The beamsplitter rule in that case is simply that the wavefunction
behind the grating is equal to the (binary) amplitude modulated initial wavefunction. The
two wavefunctions are equal at the positions where the grating is open and the transmitted
wave is zero where the grating is closed.

The second kind of beam splitter is a running laser wave. The atoms are (partially)
excited by the laser to another internal state [11]. The atoms that are excited have absorbed
a photon from the laser beam together with its associated momentum and will thus spatially
separate downstream of the laser from the atoms that have not absorbed a photon. This
excitation process takes a finite amount of time, which depends on the available laser power.
In the limit of infinite laser intensity, however, the interaction time can be reduced to zero
(so-called short pulse limit). Typical laser pulses are indeed short enough that deviations
from this limit are far below the resolution of the experiment (see Chapter 7). In that
case the beamsplitter rule becomes: the motional, external part of the wavefunction of
the excited atoms is equal to the external wavefunction of the original atoms times the
phase factor of the laser beam exp(ikx + iφ0). De-excitation on the other hand gives
a multiplication with exp(−ikx − iφ0). This multiplication corresponds to adding (or
subtracting) ~k to the atoms momentum.

For Bragg scattering it is impossible to get to the limit of infinitely short interaction
time, because the length of the interaction time is essential for selectivity in the transverse
momentum (Chap. 5). In principle, this leads to small corrections to the (classical) position
and momentum of the diffracted atom. We will ignore this however and describe the effect
of Bragg scattering on the wavefunction in a similar way as scattering by a running wave:
the diffracted part of the wavefunction Ψ′ acquires a phase factor (see also Section 5.2)

Ψ′(r′) = Ψ0(r
′)e±i(keff ·(r′−rm)), (6.19)

where rm is the position of the mirror and r′ is any position on the laser interface. The
effective wavevector keff is the component of 2Nklaser perpendicular to the mirror surface,
with N the Bragg order. The sign of keff is not defined for a standing wave and can be
chosen freely, as long as one applies the beamsplitter phase consistently. The sign of this
phase depends on the direction in which the atoms are diffracted. Diffraction into the
direction along keff adds the phase (+ sign), while diffraction into the opposite direction
subtracts the phase (minus sign).

The rules that are stated above describe changes in the wavefunction on the laser
interface. To calculate the total wavefunction in the section behind the laser we also need
to know the phase gradient (momentum) transverse to the laser. This can be derived from
the criterion of energy conservation. The multiplication with the laser phase factor adds
a momentum component ~keff . Apart from this momentum kick, there is also a small
contribution pcomp in the direction transverse to the laser to keep |v| constant and close
the energy balance.

We can now translate the laser phase rule into a recipe that can be incorporated into
the semiclassical approximation of Subsection 6.2.1. The results are given in Table 6.1.
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before after
classical position rcl rcl

classical momentum pcl pcl ± ~keff + pcomp

phase at classical trajectory φ0 φ0 ± (keff · (rcl − rm))

Table 6.1: Beamsplitter rule in terms of the semiclassical approximation. The sign depends on the
direction of the diffracted beam relative to keff . The size of pcomp has to be calculated from the
criterion of energy conservation.

6.4 Total Phase Calculation

With the theory that is introduced in Sections 6.2 and 6.3 we can now calculate the total
interferometer phase. Inertial effects are completely taken into account in the expression
for the classical trajectories (Eq. 6.15). The effect of the misalignment of the lasers is
twofold: it will change the laser phases (Eq. 6.19) and it will change the trajectories
because of its effect on the transferred momentum. See Figure 6.2 where an exaggerated
schematic with misalignments is drawn. In this example, the misalignment angle of the
second laser amongst others makes the upper trajectory of the first section longer than the
lower trajectory.

We will take all of the misalignment and inertial effects into account simultaneously to
include all cross terms, but assume that these effects are small so that we can make a series
expansion in the associated parameters. In Subsection 6.4.1 we will first derive expressions
for the arrival times of the atoms and an expression for the total change in momentum by
the laser beams. These expressions are then approximated by a series expansion in small
parameters that represent the deviations from the perfectly aligned situation with straight
trajectories. This allows us to get polynomial expressions from which we can easily obtain
the dominant sensitivities. In Subsection 6.4.2 the outline of the full phase calculation is
given and the results are presented in Subsection 6.4.3.

6.4.1 Approximations

The laser beams are modeled by infinite sheets that are perfectly parallel with the y-axis.
The wavevector k of each of the lasers lies approximately parallel to the x axis, but is
rotated by small angle θ around the z axis and an angle ϕ in the xz plane. To second order
in the angles:

keff,i = (kx,i, ky,i, kz,i)
T = keff (1−

(
θ2

i + ϕ2
i

)
/2, θi, ϕi)

T i = 1, 2, 3, (6.20)

where keff = 2N~k and N is the Bragg diffraction order. The positions of the mirrors
are the pivot points of the laser sheets. They are at a distance xm,i from the z-axis and
positioned at z = 0, L + ∆L, 2L.

With the construction of the normal vectors ni to the laser sheets we can calculate the
time ti at which the classical trajectory crosses the laser plane from the equation:

(rcl(ti)− rlaser) · ni = 0, (6.21)

ni = (keff,i × ey) /keff , (6.22)



82 Interferometer Theory

x

z

L+dL L-dL

ϕ
2

ϕ
3

r1

r
2u

r2l

r
3l

r3u

ϕ
1

xm

y

Figure 6.2: Highly exaggerated representation of the trajectories when the
lasers are misaligned. The classical trajectories hit the lasers at the indicated
positions r1,r2u,r2l and r3l. The end of the upper path r3u is the point
of the upper trajectory that lies closest to r3l. The interferometer phase is
the difference in accumulated phase between the paths r1 − r2u − r3u and
r1 − r2l − r3l.

where rlaser can be any fixed point on the laser plane (usually the position of the mirror
rm is taken). We will approximate the classical trajectories by parabolas. In terms of the
dummy variables r0, v0 and a0:

rcl(t) = r0 + v0t + a0t
2/2. (6.23)

These dummy variables will be different for each section of the interferometer. All effects
from gravity and rotation on the trajectory are temporarily summarized in the vectors v0

and a0. In the full calculation these will be replaced by their full expression that follows
from Equation 6.15 (in combination with Eq. 6.17 and Eq. 6.18). We assume that the
acceleration (gravity, rotation) is small enough to give only small deviation from a straight
line. We then obtain the following approximate solution to Equation 6.21:

ti =
−(r0 − rlaser) · ni

v0 · ni

− a0 · ni ((r0 − rlaser) · ni)
2

2(v0 · ni)2
+ ...

≈ − (r0 − rlaser) · ni

vz0

(
2− v0 · ni

vz0

)

− a0 · ni ((r0 − rlaser) · ni)
2

2v3
z0

(
4− 3

v0 · ni

vz0

)
+ ..., (6.24)

where we made an extra expansion of the velocity terms v0 · ni around the initial axial
velocity vz0.
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In principle, one has to calculate the phase integral over the full path from the aperture
to the detector. To limit the computational work, however, only the phase evolution in
between the standing light waves was calculated. Obviously, there is no harm in omitting
the section before the first atom beam splitter. The omission of the last section before
the detector is not trivial as the two trajectories have a slightly different position and
momentum, leading to a slightly different phase. Numerical calculations, however, show
that this difference is very small and that the detector is positioned close enough to the
final beamsplitter1 that the phase contribution of this final section can be neglected. The
interferometer phase difference between the two paths then no longer changes when the
“lower path” has been diffracted by the last laser (at the position r3l). The “upper beam” is
not diffracted by the last laser and does not acquire an extra phase when it passes through.
Therefore, regardless of whether this path hits the last laser before or after the lower path,
the total phase difference is fixed as soon as the lower path arrives at the last laser. The
phase difference between the two paths at this point is equal to the interferometer phase.

The time associated with the closest point on the upper path to r3l (needed for Eq. 6.6)
has to be calculated with Equation 6.7. In terms of the initial position, velocity and
acceleration after the second laser we can approximate the associated arrival time to first
order in the acceleration by

t3u ≈ −c3

c2

− c1c
2
3

c3
2

+ ... ≈ c3

v2
z0

(
2 +

c2

v2
z0

)
+

c1c
2
3

v6
z0

(
4 +

3c2

v2
z0

)
+ ... (6.25)

c1 = −3

2
a0 · v0 (6.26)

c2 = (r3l − r0) · a0 − v2
0

(≈ −v2
z0

)
(6.27)

c3 = (r3l − r0) · v0. (6.28)

The final approximation that we have to make is on the velocity change on diffraction by
the laser beams. The atoms acquire a velocity increase of ∆v = ~keff/m along the laser,
but the velocity perpendicular to the laser plane (along n) also changes with an amount
vcomp because of energy conservation. In terms of the initial velocity vi the velocity of the
atom vf directly after the laser beam becomes:

vf = vi + ∆v + vcompn (6.29)

vcomp = −vi · n +
√

(vi · n)2 −∆v2 − 2∆v · vi

≈ −∆v2 + 2vi ·∆v

2vi · n
≈ −

(
∆v2 + 2vi ·∆v

2vz0

)(
2− vi · n

vz0

)
. (6.30)

As long as the position of the atom does not change during the interaction with the laser,
this calculation can also be performed in terms of the momentum p. We use the velocity
here instead, because the lasers are aligned to be almost perpendicular to the atom beam
(v · klaser is small), while the momentum (Eq. 6.16) could have a large component along
the laser.

1The detector is however placed far enough to have a spatial separation between the two output ports.
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6.4.2 Calculations Outline

Using the approximation of Equations 6.24, 6.25 and 6.29 and the series expansion of the
classical trajectory, we can now calculate the total interferometer phase. For this we use
the following recipe:

1. Full lower trajectory: the lower path starts at r1 (which lies on the first laser
plane) with velocity v1. Using the series expansion of Equation 6.15 in t we calculate
the acceleration and then the arrival time t2l at the second laser from Eq. 6.24 with
the position r2l = rcl(t2l) and the velocity. The second section of the lower path starts
at r2l, but with an added velocity +~keff,2/m (plus compensation, Eq. 6.29). Then,
like in the first section, we calculate the acceleration and velocity at this position and
from these the arrival time t3l at the third laser. The position on the trajectory at
this time is called r3l.

2. Full upper trajectory: the upper path also starts at r1 but with velocity v1 +
~keff,1/m+vcomp. Again, the initial acceleration is calculated, followed by the arrival
time t2u at the second laser and the position r2u at this time. Here the velocity is
changed by −~keff,2/m + compensation. The final position r3u of the upper path is
given by the time t3u that is obtained from Equation 6.25.

3. Propagation Phase: From the classical trajectories we calculate the four integral
contributions to the interferometer phase (see Equation 6.6)

φprop =
1

~

(∫ t2u

0

p2u(t) · v2u(t)dt +

∫ t3u

0

p3u(t) · v3u(t)dt

−
∫ t2l

0

p2l(t) · v2l(t)dt−
∫ t3l

0

p3l(t) · v3l(t)dt

)
. (6.31)

(the vectors pi(t) and vi(t) indicate the classical momentum and velocity along the
trajectory, while pi and vi denote their values at the end of each section).

4. Laser Phase: The classical positions at the laser planes give the contribution of the
imprint of the laser phase:

φlaser = keff,1 · (r1 − rm1)− keff,2 · (r2u − rm2)

−keff,2 · (r2l − rm2) + keff,3 · (r3l − rm3). (6.32)

5. Separation Phase: The final contribution to the total interferometer phase stems
from the fact that the two classical paths do not exactly overlap and is given to first
order in the separation by

φsep = (r3l − r3u) · p3u/~. (6.33)

6. Total Interferometer Phase: The total phase difference between the two paths
that is seen in the detector signal is

φtot = φprop + φlaser + φsep. (6.34)
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By using the discussed approximations, the obtained interferometer phase is polynomial in
all parameters. We then expand the expression for the phase into one large summation and
evaluate each of the terms separately for typical values of the parameters. This allows us
to easily obtain the strongest dependencies. The results are given in the next subsection.

6.4.3 Results

The expression for the total interferometer phase was calculated algebraically on a com-
puter using Maple software following the recipe that was described in the previous sub-
section. The total expression for this phase was expanded into a sum of terms and all
of these terms were evaluated with typical values for the parameters (see Table 6.2). For
parameters that have an average value of zero, like the misalignment angles, the maximum
value within the uncertainty interval was taken. Then the phase terms were sorted in
order of numerical value and stored in a list. The largest few terms of this list are given
in Table 6.3 in the column “piecemeal max.”, where similar terms are combined again for
clarity. Note that the numerical value in this column does not give the numerical value
of the total, combined phase term, but rather the maximum of the summed components.
One could also say that we estimated, e.g, the difference between angles with the value of
the maximum individual angle. This number gives a clear ordering of the parameters that
have the largest effect on the interferometer phase. For example, the table clearly shows
that the (relative) positions of the mirrors have to be extremely stable.

For the numerical values in this column (“piecemeal max.”), we only considered the
gravity and the rotation of the earth and did not account for additional potential fields
or e.g, the rotation of the setup relative to the laboratory. The gravitational acceleration
g (g = 9.8 m/s2) lies exactly along the y-axis and the interferometer plane is almost
perpendicular to this with small laser angles θi=1 mrad for misalignment. The angles ϕi

of the lasers in the interferometer (xz) plane can be aligned more accurately by looking
at the scattering efficiency. We took ϕi = 0.2 mrad which corresponds to an error of 0.5
photon recoil in the velocity along the laser beam.

The three mirrors are placed at z = 0, z = L + ∆L = 155 mm and z = 2L = 300 mm.
If the laser angles were perfectly aligned these values would be the same for the positions
where the atoms interact with the laser. However, because of the angles and the separation
between the mirrors and the atom beam, the z-coordinate of the interaction points is
slightly different. The first interaction point, where the actual interferometer starts, is
given in terms of the atoms offset from the z-axis

r1 = (x1, y1, ϕ1(x1 − xm1))
T = (100, 100, 40)T µm. (6.35)

The origin of the coordinate system was (thus) chosen at the nominal position where the
atom beam intersects the first laser beam. The considered atoms have an axial velocity
of 250 m/s and an angle that is close to the Bragg condition, but have a mismatch of a
fraction ∆N = 0.1 of the photon recoil velocity (corresponding to 9 mm/s) such that:

v1 = (vx0, vy0, vz0)
T = (−0.47, 0.025, 250)T m/s. (6.36)

The calculations are for fifth order Bragg scattering N = 5.
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The considered rotation is that of the earth with radius R = 6.7 × 106 m (we take
R along the y-axis). Because the exact orientation of the setup is unknown, the three
components of Ω were all taken equal Ωx = Ωy = Ωz = 7 × 10−5 s−1. In reality, the
rotational components will thus be smaller. For example, in the case that the axis of the
interferometer is aligned perfectly from north to south, Ωx is zero. For completeness, we
also included the gradient in g for a spherically symmetric earth with 2Γxx = 2Γzz =
−Γyy = 2gy/R = 3 × 10−6 s−2 and all other components zero. The effect of this gradient
is too small, however, and does not appear in the list.

A few terms in Table 6.3 can be identified with traditional phases, like the Sagnac phase
shift and the acceleration terms. The term that is commented by the time integral, can
be easily explained with the difference in kinetic energy (of the motion along the lasers)
integrated over the transit time. The difference in this kinetic energy is caused by the slight
misalignment ∆N vrec. In a perfectly symmetric interferometer this energy difference would
be compensated in the two sections of the interferometer. The difference in length 2∆L,
however, breaks the symmetry and leaves the phase that is indicated in Table 6.3. This
effect was also found in [4].

The largest contribution to the phase by far is the well known contribution of the phase
of the standing waves. In this case we estimated the value of this term solely from the
distance of the mirrors from the atoms (0.2 m). This is the only term in the list where
the numerical value of the individual terms in the column “piecemeal max.” can be quite
misleading. The three mirrors are placed at approximately the same distance and the
three terms will cancel each other for the most part. The actual phase that remains is
then orders of magnitude smaller than the value that is given here. However, even with
this refinement, the combined phase term often is still much larger than the other phases.
Because of the high sensitivity and because it can be adjusted very easily (e.g, by moving
a mirror), this effective laser phase is sometimes used to mimic or compensate for other
phase terms [12].

It is clear from the list that many of the phase terms cancel each other. To get an
idea of the extent of this cancelation, the column “ideal mean” was added in which the
total phase contribution of that row is given for a perfect alignment of the lasers. We see
that most of the phase terms disappear and only the Sagnac phase and the centrifugal
acceleration remain. The gravity terms also disappears, because in the ideal case of this
configuration, gravity is perpendicular to the interferometer plane.

In this work, however, we are interested in misalignment effects and specifically the
resulting loss of contrast. Loss of contrast is caused by a variation of phase, either from
atom to atom or in time. If all parameters are constant (in time), the quality of the
interference signal is determined by the statistical spread in atomic parameters. The fourth
column of Table 6.3 gives the RMS phase spread of the interferometer phase when the error
on the atomic parameters in Table 6.2 are taken as an RMS spread and the alignment of
the lasers is the worst possible within the given error intervals. It is then assumed that
the temporal fluctuations of these parameters are much smaller than the alignment error
and do not contribute to the phase spread. Some phase terms are independent of atomic
parameters and therefore do not have an (atomic) phase spread. Notably, this is the case
for the large laser phase term. Because of the magnitude of this term, however, in practice
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we cannot neglect the temporal variations in the relative mirror distance and we will have
to reckon with the associated phase fluctuations

σφ = 2Nklaser σ∆x, (6.37)

σ∆x ≡
√〈

(xm1 + xm3 − 2xm2)
2〉. (6.38)

The spread of many other terms is the same as the value in the second column. Only terms
with vz0 as the only atomic parameter have a phase spread that is smaller than the value
in the second column, because this is the only atomic parameter with a relatively narrow
distribution (σv/v̄ ≈ 1%) that is not centered around zero. The largest contribution to the
atomic phase spread comes from the second term in the list. To reduce the phase spread
the alignment will have to be considerably better than the value that was used for this
table. We will get back to this in more detail in the next section.

To check the validity of this list, the same calculations were performed fully numerically
without the approximations of Subsection 6.4.1. The trajectories were still approximated
by parabolas, but the arrival times were from a full numerical solution of Equations 6.7 and
6.21. We found that the difference between the full numerically calculated interferometer
phase and the result with the approximations differed at most by 4 mrad. We can thus
conclude that the series expansions are indeed valid for the numerical ranges of Table 6.2.

An extra potential can be added to the calculations by changing the numerical values

of g and
⇒
Γ. Some of the largest contributions to the interferometer phase that arise are

given in Table 6.4. Closer inspection of this list reveals that most of the phase terms can
be written in terms of the gradient along the lasers. There are only two terms that involve
the potential gradient along the beam axis. These terms are introduced by the requirement
of energy conservation on diffraction by the lasers and are often very small. The only term
without perturbation effects is the top entry, which is the equivalent of the acceleration
term kgT 2 in the treatment of time-based interferometers.

6.5 Design Considerations

Using the results of the previous section, we can now set up the specifications of the in-
terferometer. With respect to the phase, there are two parameters that are of importance:
the phase stability and the phase spread. The basic difference between these two is the
time scale of the fluctuations with respect to the total integration (measurement) time.
The phase spread describes the variations in phase that exist between atoms with different
properties, such as the longitudinal velocity, and the variations that are caused by fast
temporal fluctuations in the interferometer parameters. The phase stability relates to fluc-
tuations that are slow compared to the measurement time. Both of these effects influence
the accuracy of a phase measurement from the interference signal. The phase spread will
give an average signal over a range of signals with different phases. This reduces the fringe
contrast and the sensitivity and thereby the accuracy of the measurement. The phase
stability influences the accuracy through the uncertainty in the reference phase.

In the following we consider only the phase spread: we will assume that all fluctuations
are much faster than the measuring time. This is a reasonable assumption, because the
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description expression value

laser angle in xz plane ϕ1 = ϕ2 = ϕ3 0± 0.2 mrad
laser angle around z-axis θ1 = θ2 = θ3 0± 1 mrad

laser separation (on mirrors) L 0.15± 0 m
error in z-position mirror 2 ∆L 0± 5 mm
mirror distance from z-axis xm1 = xm2 = xm3 200± 1 mm

gravity gx = gz 0± 0
gy −9.8± 0 m/s2

rotation Ωx = Ωy = Ωz (7.3± 0)× 10−5 s−1

center of rotation Rx = Rz 0± 0
Ry (6.7± 0)× 106 m

Bragg order N 5± 0
error in transverse velocity ∆N 0± 0.1

atomic mass m (6.6± 0)× 10−27 kg
laser wavenumber k = 2π/λlaser (5.8± 0)× 106 m−1

(single photon) recoil velocity vrec = ~k/m 92± 0 mm/s
position of first laser z1 0± 0

transverse position at first laser x1 = y1 0± 0.1 mm
velocity at first laser vx0 = −(N + ∆N)vrec

vy0 0± 25 mm/s
vz0 250± 2 m/s

Table 6.2: Numerical values that are used in Table 6.3. The errors on the atomic parameters
indicate the RMS spread. The values of the laser parameters indicate the ideal setting ± the maximum
alignment error.

limited beam flux sets the minimum integration time to at least a few seconds so that all
fluctuations with a frequency that is larger than 1 Hz are indeed averaged out. Furthermore,
variations that are much slower than the integration time can be eliminated by differential
measurements. In that case the stability is not a main concern and we only need to set
a limit to the phase spread. The requirement is then simply that the phase spread is not
large enough to significantly reduce the contrast of the interference signal.

A quantitative measure of the contrast is called the visibility V . This is the ratio of
the amplitude of the interference fringes to the offset in the detector signal, or in terms of
the maximum and minimum detector signal (see Fig. 6.3):

V =
Imax − Imin

Imax + Imin

. (6.39)

The phase accuracy is determined by the shot-noise limit: [13]

σφ,meas =
σNcounts

dNcounts/dφ
=

1

V
√

Ncounts

. (6.40)

In an ideal interferometer (V = 1), the RMS deviation in the measured phase thus decreases
with the number of measured atoms Ncounts and can be made arbitrarily small by measuring
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expression piece- ideal max.
meal mean atomic
max. spread

−keff (xm1 + xm3 − 2xm2) 2× 107 0 0. laser phases
−2keffvrec ∆N ∆L/vz0 22 0 22.

∫
∆Ekin,xdt/~

keffy1(θ1 + θ3 − 2θ2) 12 0 12.
−keff (θ

2
1xm1 + θ2

3xm3 − 2θ2
2xm2)/2 12 0 0.

2keffvy0(θ3 − θ2)L/vz0 1.7 0 1.7
−2keffΩyL

2/vz0 0.7 0.7 0.007 Sagnac phase
−keffΩxΩyRL2/v2

z0 0.7 0.7 0.01 centrifugal
acceleration

−keff (ϕ
2
1xm1 + ϕ2

3xm3 − 2ϕ2
2xm2)/2 0.5 0 0.

keffgy(2θ3 − θ2)L
2/v2

z0 0.4 0 0.008 gravity
keffvrec ∆N (ϕ1xm1 + ϕ3xm3 − 2ϕ2xm2)/vz0 0.2 0 0.2
~k2

eff (2θ1θ2 − 2θ2
2 + θ3θ2 − θ2

1)L/vz0m 0.07 0 0.0007
2keffθ2vy0 ∆L/vz0 0.06 0 0.06
−4keffΩyL ∆L/vz0 0.05 0 0.0005

−2keffΩxΩyRL ∆L/v2
z0 0.05 0 0.001

2keffθ2gyL ∆L/v2
z0 0.05 0 0.001

−keffx1(θ
2
1 + θ2

3 − 2θ2
2)/2 0.006 0 0.006

...

Table 6.3: List of contributions to the interferometer phase in order of estimated size. The value in
the column “piecemeal max.” indicates the estimated maximum value of the individual terms using
the numerical values of the parameters from Table 6.2. The third column gives the mean value of the
combined terms in the case of perfect laser alignment. The column “max. atomic spread” gives the
RMS phase spread that is caused by the statistical spread on the atomic parameters in the case of
worst optical alignment (within error).

effects from added potential

keffgxL
2/v2

z0

keffgy(2θ3 − θ2)L
2/v2

z0

2keffgxL ∆L/v2
z0

keffvrecgz ∆N L2/v3
z0

keff (Γxxx1 + Γxyy1)L
2/v2

z0

2keffΓxxx1(ϕ2xm2 − ϕ3xm3)L/v2
z0

keffΓxyy1(ϕ2xm2 − ϕ3xm3)L/v2
z0

keffvrec ∆N(Γyzy1 + Γxzx1)L
2/2v3

z0

...

Table 6.4: Possible extra contributions to the phase from a potential



90 Interferometer Theory

0 2 4 6 8 10 12 14 16

0

10

20

30

40

50

I
min

I
max

d
e

te
c
to

r 
s
ig

n
a

l 
(a

rb
. 
u

n
it
)

phase (rad)

Figure 6.3: Example of interference fringes with an indication of the
maximum and the minimum detector signal.

ever more atoms. In a non-ideal interferometer the visibility is smaller than unity and the
error on the measured phase is larger. In the following, we will demand a maximum phase
spread of σφ max = 0.1 rad, at which the visibility is still 98% and the phase accuracy is
thus hardly affected.

The main problem in atom interferometers is the relative motion of the mirrors. From
the top entry of Table 6.3 we obtain the requirement that the three mirrors have to be
stable within

σ∆x <
σφ max

keff

= 1.7× 10−9 m, (6.41)

at fifth order Bragg scattering. This criterion can be relaxed slightly with a factor of 5
by taking first order Bragg scattering, but even then this stability is not easy to achieve.
The setup will have to be carefully isolated from vibrations and the mirrors may have
to be actively locked with a feedback loop. For this purpose, an optical interferometer
has already been implemented parallel to the atom interferometer to measure and actively
stabilize the relative positioning of the mirrors [14,15].

Except for an actual movement of the mirrors, the effective phase of the standing wave
can also be influenced by fluctuations in the laser frequency and wavelength. The required
stability of the laser frequency (for N=5) is

σω,laser <
cσφ max

2Nxm

= 2.4× 106(2π) Hz. (6.42)

Note that we can not assume that the laser frequency is the same for all three standing
waves, because the frequency can change as the atom moves through the interferometer.



6.5 Design Considerations 91

This stability is readily obtained by most lasers. Fluctuations in the refractive index on
the optical path between the atom beam and the mirrors, e.g, by air flows, have the same
effect as a fluctuation of the laser frequency. These often have an even larger impact than
changes in the laser frequency and careful shielding is necessary to avoid such air flows.

The second source of concern in an atom interferometer is the angle of the laser mirrors.
The exact criterion on these angles is more difficult to determine than the criterion on the
position, because the angles of the lasers affect more than just the interferometer phase.
The angle of the lasers directly translates to the angle of the atom beam. At the output
of the interferometer the two beams have a momentum difference ∆p = p3u − p3l ≈
~(keff,1 + keff,3 − 2keff,2). This momentum difference between the two beams sets two
criteria. Firstly, the angle between the two beams may not be so large that they do not
overlap anymore. To first order in the laser angles we get

(θ1 + θ3 − 2θ2) <
∆xdet vz0

2Nvreczdet

= 13 mrad (6.43)

for a detector distance zdet of 2 m and a maximum separation of 100 µm, which is approx-
imately the atom beam size at the detector. Secondly, the difference in the (transverse
component of the) wavevector introduces spatial fringes on the detector. To avoid that
these fringes reduce the contrast of the interferometer, the wavelength of these fringes along
the detector surface must be larger than the detector area (or the detector resolution of
the position sensitive detector). Again to first order in the laser angles we obtain

(θ1 + θ3 − 2θ2) <
1

2Nklaserwdet

= 0.17 mrad (6.44)

for a detector resolution wdet of 100 µm.
A third criterion for the laser angles stems from the tolerance on Bragg scattering

(Chap. 5). This only has a minute effect on the angles θi, but the angles ϕi have to be
aligned (to the atom beam) with an accuracy that is better than 0.4 mrad.

As a last consideration for the laser angles we look at the contribution to the interfe-
rometer phase. We find the most stringent restrictions from the terms in Table 6.3 that
have the largest phase spread. For the laser angles we get

θ1 + θ3 − 2θ2 <
σφ max

keff σy1

= 17 µrad (6.45)

if the atom beam is spatially completely incoherent over the entrance aperture and

θ3 − θ2 <
σφ maxvz0

2keffL σvy0

= 57 µrad (6.46)

if the beam is spatially fully coherent (σy1 = 0). The angles in the interferometer plane
must fulfill the following relation

ϕ1 + ϕ3 − 2ϕ2 ≤ σφ maxvz0

keffvrec ∆N xm

= 0.23 mrad. (6.47)

Then if we compare all the requirements on the laser angles we can summarize them by
taking the strongest requirement. Applying the requirements for differences on the angles
separately we get the limits that are given in Table 6.5.
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max.
σ∆x 1.7 nm
φ 0.23 mrad
θ 17 µrad

∆L 23 µm

Table 6.5: Maximum errors of the laser parameters.

The last parameter that involves the positioning of the laser mirrors is the difference
in length of the interferometer sections 2∆L which affects both the overlap at the end of
the detector and the atomic phase spread. A straight forward calculation that arises from
the requirement that the two atom beams at the end of the interferometer may not be
separated by more than their diameter gives

∆L <
∆xdetvz0m

2~keff

= 14 mm. (6.48)

The second term in Table 6.3 gives

∆L <
σφ maxvz0

2keffvrec ∆N
= 23 µm. (6.49)

The demands on the symmetry of the setup thus are severe and the length of the two
sections should be set very carefully.

Lastly, we will consider the external potential that is applied to the interferometer.
For neutral atoms the most common source of potential energy is caused by an external
magnetic field V (x) = −µ ·B(x) = miµBgiB(x), where µ is the magnetic moment, gi the
Landé factor, mi is the magnetic quantum number relative to the magnetic field and µB

is the Bohr magneton. The only term in Table 6.4 without any perturbation effects is the
top term and this will therefore usually be the dominant contribution to the phase. Using
this expression we find an upper limit for the allowed field gradient along the lasers

dB

dx
≤ mσφ max v3

z0

mjµBgjkeffL2 σvz0

= 1.8× 10−4 T/m (6.50)

for atoms with mj = 1. The sensitivity to magnetic field gradients is thus quite high and
(stray) fields have to be avoided. A possibility to reduce the sensitivity to magnetic fields
is to prepare the atom beam for mj = 0. In fact, without any additional shielding from
stray magnetic fields this seems essential.

6.6 Conclusion

In this chapter we calculated the phase sensitivity of a static spatial atom interferometer.
Under the assumption that the classical atomic trajectories are approximately straight
lines, we were able to make a series expansion of the interferometer phase and find the
dominant contributions. Among the largest few sensitivity terms are traditional phases
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like the Sagnac phase and the gravitation phase. There are, however, also a few terms that
arise from imperfect alignment of the lasers that are usually ignored. It was shown that the
phase contribution from these terms can easily be larger than the traditional phases and one
has to take special care that these effects do not wash out the interference signal. Maximum
values were found for the position and angle of the mirrors of the standing light waves. The
most restrictive are on the relative transverse position of the laser mirrors σ∆x ≤ 2 nm,
the angle of the standing light waves with the interferometer plane θ < 17 µrad and the
difference in length of the two interferometer sections ∆L < 23 µm. The maximum allowed
magnetic field gradient is dB/dx < 2 G/m which implies that without any additional
shielding, interference fringes will only be visible for atoms with mj = 0.
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[8] Bordé Ch. J., J. Opt. B: Quant. Semiclass. Opt. 5, S199 (2003).

[9] W. van Dijk, Quasi-Bragg Scattering, internal report, Eindhoven University of Tech-
nology (2004).

[10] J. Schmiedmayer et al in Atom Interferometry, (Academic Press, New York, 1997) (ed
P. Berman), p1.

[11] B. Young et al in Atom Interferometry, (Academic Press, New York, 1997) (ed P.
Berman), p366.

[12] T.L. Gustavson, A. Landragin and M.A. Kasevich, Class. Quantum Grav. 17 2385
(2000).

[13] Marlan O.Scully and Jonathan P.Dowling, Phys. Rev. A 48 3186 (1993).

[14] David M. Giltner, Roger W. McGowan and Siu Au Lee, Phys. Rev. Lett 75 2638
(1995).

[15] A.C.H. Meesters, Assessment of Very Large Atom Interferometers, internal report,
Eindhoven University of Technology (2003)



94 Interferometer Theory



Chapter 7

Laser Pulse Length Effects in
Time-Based Atom Interferometers

7.1 Introduction

We saw in the previous chapter that atom interferometers are very sensitive to a great
number of effects such as gravity and rotation. Atom interferometers are therefore ideal
setups for precision measurements of these effects. The accuracy of a measurement is
limited by the relatively small flux of atoms and technical noise. As technical developments
progress, these sources of noise are ever further reduced and the accuracy increased. The
accuracy of a measurement, however, is also limited by the quality of the model that is
used to interpret the signal. Usually, simple expressions are used such as the Sagnac phase.
These expressions only contain a few parameters that have to be known, which makes it
relatively easy to do precision measurements, but they rely on several approximations.
Although these formulas work very well [1, 2], there is bound to be some limit at which
they are no longer valid. As interferometric measurements often aim for extremes in
sensitivity and accuracy, it is important to investigate this limit and the range beyond. It
is the goal of this chapter to take the calculations one step further and find out what the
validity range of these traditional phase expressions is. Specifically, we will focus on the
effect of the finite length of the laser pulses in time based interferometers which is usually
neglected. The calculations are performed in the context of an interferometer that is being
constructed at Stanford to test the equivalence principle to a relative accuracy of 10−15.
They can, however, readily be applied to other atom interferometers.

We will start with a description of the experiment in Section 7.2, after which we in-
troduce all effects that we will consider by introducing the Hamiltonian. The considered
interferometer is time-based in which spatially the laser beams overlap fully with the atoms
and are turned on for a few short pulses. The evolution between pulses can be solved ex-
actly. In Section 7.3 the Hamiltonian is therefore transformed to a reference frame that
moves along with the free propagation of the atoms in which nothing changes between the
laser pulses. The evolution during the laser pulses can not be solved exactly, but in Sec-
tion 7.4 we assume that the pulses are sufficiently short that we can use a series expansion
in the pulse length. Then in Section 7.5 we combine the effect of three laser pulses and
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calculate the propagator of the full interferometer sequence. Finally, with this propagator
we calculate the interferometer signal including phase and amplitude. The goal of all the
mathematics is to account for as many effects as possible by coordinate transformations.
The remaining dynamics then still have to be approximated, but because they are small,
the overall accuracy of the calculation is still very high.

This chapter gives a full quantum mechanical calculation for the interferometer phase
that includes effects from the shape of the initial atom cloud and the finite length of the
laser pulses. These two effects are usually neglected, but a numerical comparison shows
that the phase difference that is introduced by these approximations can easily exceed
10 µrad. This is above the target accuracy of the experiment and it is therefore imperative
to compare the measurements with the full quantum mechanical calculations.

7.2 Experiment

In the group of Prof. M. Kasevich at Stanford University, an experiment is being prepared
which is to set a new limit on the equivalence principle using the extraordinary sensitivity
of atom interferometers to gravity. The equivalence principle is a fundamental assumption
in both Newtonian mechanics and General Relativity and states that gravitational mass
and inertial mass are the same. If these two are the same, they cancel out in the equations
of motion with the consequence that all objects in a gravitational field have the same
acceleration g and follow the same trajectories. If the two masses are not exactly equal
two objects with different mass ratios (gravitational mass/inertial mass) will feel a different
gravitational acceleration. A difference in g between two objects with different mass thus
indicates a violation of the equivalence principle. The target accuracy of the Stanford
experiment is

∆(g1 − g2)

g
= 10−15, (7.1)

which would set a new limit on the validity of the equivalence principle [3]. The gravity
induced phase difference between the two paths in the interferometer that is being built
is approximately 3 × 108 rad. Therefore we need a phase resolution of 10−7 rad to reach
the target accuracy of g. Obviously, before such an accuracy can be claimed, one needs a
detailed understanding of all effects besides gravity that give rise to a phase shift and may
cause an erroneous interpretation of gravity differences. In this chapter we will consider
a few of these effects, including gradients in the gravitational acceleration, the rotation
of the Earth, finite lengths of laser pulses and effects of the shape of the initial atomic
wavefunction.

The experiment is composed of two distinct measurements of the gravitational accel-
eration for two different species of atoms. In the following, however, we will consider the
measurement with only one species. The interferometer is of a time-based Mach-Zehnder
type in which the atoms are launched vertically, see Figure 7.1. The experiment starts
with the formation of a cold atomic sample underneath a “launching” tower. This cloud
then is accelerated upwards with a laser pulse to a velocity that is such that the top of the
parabolic trajectory lies underneath the top of the tower.

During the free fall of the atoms through the tower, three other laser pulses act as
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I II III IV V VI

Figure 7.1: Schematic representation of the pulse sequence in the Stan-
ford experiment. Large arrows indicate lasers and the small arrows the
atomic velocity. I:cooling, II:accelleration, III:π/2 pulse, IV:π pulse, V:π/2
pulse, VI:detection.

beamsplitters for the atomic interferometer. The goal of these pulses is to (partially) excite
and de-excite the atoms to a different internal energy level with an associated different
momentum. The first pulse of length τ excites the atoms to an equal superposition of
the original and the excited state (π/2 pulse). Then because of the momentum difference,
the excited atoms, or strictly speaking the excited state part of the total wavefunction,
and the atoms that have not absorbed any photons will spatially separate. At t = T + τ ,
when the atoms are at the top of the tower, a second pulse of length 2τ inverts the atomic
populations (π pulse). That is, the excited atoms will now be de-excited and lose the extra
momentum. The other atoms in the original energy level will now be excited and acquire
the extra photon momentum. After the second pulse the two atomic clouds will again
get closer together. At the moment that the two clouds are again at (approximately) the
same position, at t = 2T + 3τ , a third laser pulse (π/2) is applied. If there was no phase
difference between the two trajectories all atoms will end up in the original energy level
with the same momentum. If there is a phase difference, a part of the atoms will be in the
excited level. Finally, a detection pulse measures the number of atoms in one of the two
energy states, from which this phase difference is deduced.

7.3 External Hamiltonian

We will describe the experiment analogous to Section 6.2.2 in the coordinate system that
is indicated in Figure 7.2 which models a lab on the rotating surface of the earth. The
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x

z

y

Ω

R

Figure 7.2: Schematic representa-
tion of the coordinate system.

origin of this coordinate system lies at the interferometer and is located at a distance R
from the center of rotation. This vector1 R is drawn relative to the center of the earth,
although it can be defined to any point on the axis of rotation with the same results for
the calculations. The rotation is described by the vector Ω.

The total Hamiltonian that describes the evolution of the atomic cloud in the rotating
frame is composed of a part Ĥ0 that describes the internal energy levels of the atoms, a
part Ĥext that describes inertial effects and a time-dependent term Ĥlaser that gives the
interaction with the laser pulses:

Ĥtot = Ĥ0 + Ĥext(r̂, p̂) + Ĥlaser(r̂, t). (7.2)

The external Hamiltonian like in Section 6.2.2 is given by:

Ĥext =
p̂2

2m
−mg · r̂ − m

2
r̂ · ⇒Γr̂ − (r̂ + R) · ⇒Ωp̂ + V (r̂), (7.3)

where g is the local gravitational acceleration at the origin of the coordinate system (at

r = 0),
⇒
Γ is the gravity gradient (second order expansion of the local gravitational potential

or the first order derivative of g at the origin of the coordinate system) and R is the
separation of the origin of the coordinate system from the center of rotation. By using

this matrix notation for the rotation (see Subsection 6.2.2 for the definition of
⇒
Ω) we avoid

1In this work boldfaced symbols indicate 3-dimensional vectors, symbols with a hat are quantum me-
chanical operators and symbols with a double arrow on top represent 3×3 matrices. Vectors are in column
notation such that the product of a matrix followed by a vector gives a new vector. A dot between two
vectors indicates the dot product which results in a number. Identity- and zero matrices and vectors do
not have an extra symbol, but it is always clear from the context what the dimensions are.
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vector cross products and are able to write all terms in the Hamiltonian as dotproducts and
matrix multiplications which are more convenient to work with. The potential V includes
all terms that are of higher order in r and p. In this work, however, we will take this
potential zero. Note that r̂ and p̂ are both vectors (with 3 components) and operators (for
commutation relations see Appendix A.1).

The Schrödinger equation with the total Hamiltonian can not be solved exactly, but
with only the external Hamiltonian it can. It is then a logical step to use an interaction
representation in which the external Hamiltonian has been eliminated and has thus been
taken into account exactly. Bordé showed ( [4, 5], see also Appendix A.2) that this elim-
ination can be achieved by a series of transformations, which replace r̂ (and p̂) in the
following way

r̂ =
⇒
Ar̂′ +

⇒
Bp̂′/m + ξ (7.4)

p̂ = m
⇒
Cr̂′ +

⇒
Dp̂′ + ζ. (7.5)

The prime on the position and the momentum operator in these equations only refers to
the interaction picture that is used; The coordinate system is the same in both pictures. In
the following we will therefore drop the primes. After the transformations the Hamiltonian
has the following form:

Ĥ = Ĥ0 + Ĥlaser

(⇒
A(t)r̂ +

⇒
B(t)p̂/m + ξ(t), t

)
. (7.6)

The 3 × 3 matrices
⇒
A (components are dimensionless) and

⇒
B (components have the di-

mension of time) which describe this coordinate transformation obey the following set of
differential equations:

d

dt

( ⇒
A

⇒
B

⇒
C

⇒
D

)
=

⇒
M

( ⇒
A

⇒
B

⇒
C

⇒
D

)
(7.7)

with the initial condition: ( ⇒
A

⇒
B

⇒
C

⇒
D

)

t=0

=

(
1 0
0 1

)
(7.8)

where
⇒
M is a 6× 6 matrix:

⇒
M ≡

( ⇒
Ω 1
⇒
Γ

⇒
Ω

)
. (7.9)

The vectors ξ(t) and ζ(t) follow the differential equations:

d

dt

(
ξ

ζ/m

)
=

⇒
M

(
ξ

ζ/m

)
+

( ⇒
ΩR
g

)

(
ξ

ζ/m

)

t=0

=

(
0
0

)
. (7.10)

There is a slight apparent difference with the result of Bordé [6], because he places the
origin of his coordinate system at the center of the earth (R = 0). This however results
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in confusing definitions of g and
⇒
Γ. Therefore we chose to recast his calculations in the

reference frame of Fig. 7.2, so that g and
⇒
Γ indeed describe the local acceleration and

gradient at the position of the interferometer instead of the center of the earth.
The set of differential equations 7.10 is identical to the classical Hamilton equations for

an atom that starts at r0 = 0 and p0 = 0 where the classical position has been replaced
by ξ and the classical momentum by ζ. For these special initial conditions, the vector ξ(t)
thus describes the classical trajectory. One can readily show that the classical trajectories
for general initial conditions are given by:

(
rcl(t)

pcl(t)/m

)
=

( ⇒
A(t)

⇒
B(t)

⇒
C(t)

⇒
D(t)

)(
r0

p0/m

)
+

(
ξ(t)

ζ(t)/m

)
(7.11)

p0 = m
(
v0 −

⇒
Ω(r0 + R)

)
. (7.12)

The transformations 7.5 are thus the quantum equivalent of a coordinate transformation
to a system that follows the free fall of the atom (see also Section 6.2.2).

The big advantage of these transformations is that in this interaction picture most of
the time (between laser pulses) nothing happens and the atomic wavefunction changes only
during the short laser pulses. Because of the short duration of the laser pulses (typically
10 µs) these changes are relatively small and it is easier to use a perturbative approach.

If
⇒
Ω and

⇒
Γ are time-independent, it is possible to find an exact solution to Equatios 7.8

and 7.10. Furthermore, the rotation rate and the gravity gradient are usually sufficiently

small compared to the time scale T of the experiment (||⇒ΩEarth||T ¿ 1, ||⇒ΓEarth||T 2 ¿ 1)
to allow a series expansion in time [6]:

( ⇒
A

⇒
B

⇒
C

⇒
D

)
= e

⇒
Mt = 1 +

⇒
Mt +

1

2!

⇒
M

2

t2 + ... (7.13)

(
ξ

ζ/m

)
=

⇒
M

−1 (
e
⇒
Mt − 1

)( ⇒
ΩR
g

)

=

(
t +

1

2!

⇒
Mt2 +

1

3!

⇒
M

2

t3 + ...

) ( ⇒
ΩR
g

)
. (7.14)

7.4 Laser Interaction

With the removal of the external Hamiltonian (in the new interaction picture) the Hamil-
tonian Eq. 7.6 still includes the internal Hamiltonian and the interaction with the lasers.
To continue, we need to specify these two terms and form a model for the laser interaction
and the relevant internal energy levels. In this work, we will only consider a two-level atom
interacting with a single (infinitely large) running laser wave. This is a valid approximation
if the energy differences with all other levels are large in comparison with the laser detun-
ing. One can think of single photon processes in which the laser is tuned to resonance with
an atomic transition. However, often multi-photon processes such as Raman transitions
and Bragg scattering can also be described as an effective two level system.
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In the rotating wave approximation without spontaneous emission, the effective laser
interaction relative to the original lab frame and in (|e〉, |g〉) spinor notation2 is:

Ĥlaser =
~
2

(
0 ΩRei(keff ·r̂−∆lt+φ0)

ΩRe−i(keff ·r̂−∆lt+φ0) 0

)
. (7.15)

Where ΩR is the effective Rabi-frequency, keff is the effective laser wavevector, ∆l is the
effective laser detuning from resonance and φ0 is the phase offset of the laser. Then, after
the transformations described in the previous section, we get:

Ĥ ′
laser =

~
2

(
0 ΩReiφ̂(t)

ΩRe−iφ̂(t) 0

)
(7.16)

φ̂(t) = keff ·
(⇒
A(t)r̂ +

⇒
B(t)p̂ + ξ(t)

)
−∆lt + φ0. (7.17)

The evolution of the atom during the laser pulse from the starting point t0 is given by the
2× 2 propagator matrix Ûlaser:

|Ψ(t0 + τ)〉 = Ûlaser(t0, τ)|Ψ(t0)〉, (7.18)

whose time dependence is given by the Schrödinger equation

i~
d

dτ
Ûlaser(t0, τ) = Ĥ ′

laserÛlaser(t0, τ) (7.19)

Ûlaser(t0, 0) = 1. (7.20)

This can be a very complicated set of equations, because of the time dependence of Ĥ ′
laser

(through φ̂) and the fact that Ĥ ′
laser is an operator (function of r̂ and p̂). It can be solved

in the case of uniform gravitational field without rotation and gravity gradients [7]. In
general, however, it is impossible to get a closed form solution to this set of equations and
one has to resort to numerical calculations.

When the inertial effects (g,
⇒
Γ and

⇒
Ω) and the detuning are small enough, the phase

φ̂(t) only changes very slowly with time. We know that in this case the evolution will look
very much like an unperturbed Rabi oscillation (with ∆l = 0). The atoms will oscillate
between the ground and the excited state and the upper level acquires the phase of the
laser [8]. To take these two effect into account exactly, we take two more transformations
(see Appendix A.4), after which the remaining changes in the wavefunction are only very
small. Then we get an approximate solution using a Dyson expansion of the propagator
and transform this solution back to the frame of Equation 7.17. The result is still fully
analytic, but very extensive so we will leave its evaluation to the computer.

Some insight can be obtained if we keep track of all the exponential phase terms. If we
take those terms separately, the effect of a laser pulse that starts at t0 is described by a
matrix that has the following form:

Ûlaser =

(
eiφ̂(t0+τ)Ûee(t0, τ)e−iφ̂(t0) eiφ̂(t0+τ)Ûeg(t0, τ)

Ûge(t0, τ)e−iφ̂(t0) Ûgg(t0, τ)

)
. (7.21)

2an atom is described by a vector whose first component is the wavefunction of the excited state and
the second component is the wavefunction of the ground state
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The coefficient with Ûee, for example, describes the effect on the wavefunction for atoms
that are initially in the excited state and remain in the excited state after the laser pulse.
The full recipe for all the coefficients Ûij can be found in Appendix A.4.

We see that the phases of the diagonal terms are very small: the ground state diagonal
term does not have an explicit phase term and the excited state diagonal has two phase
factors that largely cancel out because of the short length of the laser pulse τ . The off-
diagonal elements of this matrix, however, carry a large phase factor φ̂(ti), the phase of
the laser. This constitutes the laser phase rule: an atom acquires the phase of a photon
when this photon is absorbed and the phase is lost when the photon is emitted. This laser
phase rule forms the basis for most atomic phase calculations. All standard phase terms
like the Sagnac phase and the kgT 2 gravity term are directly derived from the phase φ(t)
(Eq. 7.17). The terms Ûij, however, also give a contribution to the phase and have to be
taken into account for precision measurements.

7.5 Atom Interferometry

With the inertial effects taken into account by Bordés ABCDξ transformation (Section 7.3)
and the effect of individual laser pulses described by Equation 7.21, we have all the tools
we need to calculate the output of the interferometer. In this section we will derive a
general expression for the interferometer signal, from which the phase and the amplitude
of the detector signal can be derived.

As mentioned in Section 7.2, the interferometer will be of a pulsed Mach-Zehnder type.
Because transitions between internal (electronic) energy levels are accompanied by a change
in the atomic momentum, atoms that absorb or emit photons in a different laser pulse, will
follow a different trajectory. In Figure 7.3 the timing of the pulses is depicted together with
a schematic indication of all possible atomic trajectories z(t). In reality the trajectories
will be parabolic, but for clarity this has been omitted from the drawing. We assume that
the laser is infinitely wide so that the laser intensity is uniform. Furthermore, we assume
square pulses in time (laser is either on or off) with constant intensity that is the same
for all three pulses. The length τ of the first and the last pulse are chosen such that they
form an effective π/2 pulse that transfers half of the atoms from one internal state to the
other. The second pulse is of length 2τ to create a π pulse. The two periods T in between
pulses are taken identical, so that the total time lapse from beginning of first pulse to end
of third pulse is 2T + 4τ .

After the third pulse, the total number of atoms in the ground state is measured. In
general, especially for an atomic cloud with large width or divergence, this number is formed
by a superposition of four interfering paths. Two paths end up at (approximately) the
same position, but two other paths end up at some distance. When the spatial separation
between paths is much larger than the size of the detection area and the width of the atomic
beam, the two extreme paths do not contribute to the detector signal and only two paths
are needed to describe the interference signal. A fact that further ratifies this approach is
that experimentally the length of the second pulse can be tuned very accurately such that
the relative occupation of the two extreme paths is very low. The figure shows that the
two extreme paths are followed by atoms that do not make a transition during the second
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Figure 7.3: Schematic representation of a time based MachZehnder in-
terferometer.

laser pulse. Mathematically, the complex amplitudes of these paths have a diagonal term
of the second laser matrix Ûlaser and these paths can thus be removed from the model by
setting these terms to zero.

This time based interferometer can readily be described by cutting the total sequence in
five parts with constant laser intensity. The interaction between pulses is trivial: H ′

laser = 0,
and thus the wavefunction in the comoving reference frame does not change. The total
evolution in the interferometer ÛMZ is then described by the interaction with the laser,
Ûlaser(tstart, τpulse), only:

ÛMZ = Ûlaser(2T + 3τ, τ)Ûlaser(T + τ, 2τ)Ûlaser(0, τ). (7.22)

After setting the diagonal terms of the second laser interaction matrix to zero (two path
approximation), we obtain the evolution matrix of the total interferometer. The coefficient
of the total propagator that describes the transition from ground state at the beginning
to ground state at the end is given by the lower diagonal element of the total propagator,
ÛMZ,gg (see Appendix A.5):

ÛMZ,gg = e−iφ̂0
3eiφ̂+

2

(
ĝ1 + e−iφ̂MZ ĝ2

)
(7.23)

φ̂MZ = φ̂+
1 − φ̂0

2 − φ̂+
2 + φ̂0

3

− i

2

(
[φ̂+

2 , φ̂0
3] + [φ̂0

2, φ̂
+
1 ]− [φ̂+

2 − φ̂0
3, φ̂

+
1 − φ̂0

2]
)

. (7.24)

The operators ĝ1 and ĝ2 describe the two complex valued contributions from the two
interfering paths of the interferometer that include the transition amplitudes from the
laser pulses and the (usually small) phase corrections from the finite pulse length. An
expression of these two variables in terms of the components of the laser matrices can be
found in Appendix A.5 (Eq. A.68).

The interferometer phase φ̂MZ is composed of the effective (in the co-moving reference
frame) laser phase operator at the end of the first pulse (denoted with a plus sign, φ̂+

1 )
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and the end of the second pulse (φ̂+
2 ). It also contains the phases at the beginning of the

second (φ̂0
2) and the third pulse (φ̂0

3) (Eq. A.66). Notice that ĝ1, ĝ2 and φ̂MZ are operators,
because they are a function of r̂ and p̂.

In the case that all atoms were initially in the ground state with wavefunction |Ψ0,g〉,
the fraction of atoms that are still in the ground state at the end of the interferometer
sequence can be calculated as:

Pgg = 〈Ψ0,g|Û †
MZ,ggÛMZ,gg|Ψ0,g〉

= 〈Ψ0,g|ĝ†1ĝ1 + ĝ†1e
iφ̂MZ ĝ2 + ĝ†2e

−iφ̂MZ ĝ1 + ĝ†2ĝ2|Ψ0,g〉, (7.25)

where the dagger denotes the Hermite conjugate. This is an oscillating function, where
〈Ψ0,g|ĝ†1eiφ̂MZ ĝ2|Ψ0,g〉 + c.c. describes the interference fringes and the two terms g†i gi give
the offset.

The easiest way to calculate Eq. 7.25 is to expand |Ψ0,g〉 in eigenfunctions of ÛMZ,gg.

This operator ÛMZ,gg fully consists of operators φ̂ which are all linear combinations of
r̂ and p̂. The eigenfunctions of such linear combinations of r̂ and p̂ can be calculated
analytically and can be found in Appendix A.6. The different phase operators φ̂ consist of
different combinations of r̂ and p̂ and do not commute. Therefore, we need to transform
to a different set of eigenfunctions for each of the phase operators (see Section 7.6).

Often, in a semi-classical approximation, it is assumed that the original wavefunction is
sufficiently located in both space and momentum to approximate it by a delta function in
phase space. In that case, the interferometer signal is calculated by replacing the operators
r̂ and p̂ in ÛMZ,gg with the initial expectation value (r̂ → 〈r̂〉0 and p̂ → 〈p̂〉0). In general,
however, this substitution does not give the correct result (for example 〈x̂〉2 6= 〈x̂2〉) and
one has to perform a full expansion in eigenfunctions.

7.6 Phase Calculations

In the previous sections we derived an abstract expression for the interferometer signal
in the form of operators. For comparison of the theory with the experiment we need to
evaluate the expectation value Eq. 7.25. For this, we will start in this chapter by defin-
ing the experimental parameters. Subsequently, in Subsection 7.6.2 we will explain how
the interferometer signal and the phase are calculated from the expectation value of the
full propagator. Subsection 7.6.3 then gives the numerical results of both the interferom-
eter contrast and phase as a function of the laser pulse length and the size of the initial
wavefunction. We will see that both these parameters have a significant effect on the in-
terferometer phase that exceeds the target accuracy of the experiment and that indeed it
is essential to use the full quantum mechanical treatment to interpret the interferometer
signal. However, there are settings at which this correction to the phase is smaller than
the required accuracy. We will therefore conclude in Subsection 7.6.4 where we investigate
if, at these settings, a semiclassical approach is sufficient to describe the signal.
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7.6.1 Parameters

For the numerical calculation of the phase we will use the geometry that is sketched in
Fig. 7.2 where we only consider the gravitational field and the rotation of the earth. The
gravitational acceleration g (g=9.8 m/s2) is along the z-axis and the x-axis is chosen such
that Ωx = 0 (Ωy=7.29×10−5 sin(0.86) s−1 at 41 degrees latitude). For the gravitational

gradient
⇒
Γ we take the field of a perfectly spherical earth 2Γxx = 2Γyy = −Γzz = 2gz/R

where R = 6.38× 106 m is the radius of the earth and all other components are zero. For
the atomic parameters we will take the values of rubidium (m = 1.44 × 10−25 kg). The
atoms interact with two counterpropagating lasers with slightly different frequencies that
are tuned such that two ground state levels are resonantly coupled through a far detuned
upper level (Raman transition). This way we still have an effective two level system but
can transfer more momentum, λeff=390 nm. We will assume that the intensity of the
pulses is perfectly matched to their length ΩR = π/2τ .

The atoms are launched with a velocity vz0 = −gzT . With a separation between pulses
T = 1.43 s the atoms reach a maximum height of 10 m. Unless stated otherwise, the
atomic cloud has exactly this initial velocity and the middle point of the wavepacket lies
exactly at the origin of the coordinate system. In that case, the initial momentum is

p0 = m
(
v0 −

⇒
ΩR

)
. (7.26)

The two photon laser pulses are exactly on resonance (effective detuning ∆l=0) at the
beginning of the interferometer sequence. Because of the curved trajectory, however, the
Doppler shift gives a continuous chirp to the effective detuning and quickly brings the
atoms out of resonance. Without adjustment of the laser frequency, the (effective) laser
detuning at the second pulse would be too large, there would be no momentum transfer
and hence the interferometer would not work. To minimize this effect, it is assumed that at
the beginning of each pulse the laser frequency is adjusted to compensate for the Doppler
shift that is associated with the classical velocity at that moment (the dot indicates a time
derivative):

∆i = ∆l − keff ·
(
⇒̇
A(ti)r0 +

⇒̇
B(ti)p0 + ξ̇(ti)

)
. (7.27)

Changing the laser frequency during the interferometer sequence keeps the effective de-
tuning small and the used Dyson expansion of the interferometer propagator valid, but
changes the laser offset phase φ0 from pulse to pulse. It can readily be shown that this
adds a phase to the interferometer signal:

φtune =

∫ T+τ

τ

∆l(t)dt−
∫ 2T+3τ

T+3τ

∆l(t)dt. (7.28)

This phase is independent of the laser frequency during the pulses and we will omit this
phase from further calculations. In the experiment, however, this phase has to be known as
precisely as the intended resolution of the measurement and thus requires careful tracking
of the laser phase.
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7.6.2 Full Wavefunction Integral

In this section we will calculate the interferometer signal as given by Eq. 7.25. However,
since we are only interested in the phase and the amplitude of the interference signal, it
is sufficient to calculate the expectation value of only one of the complex conjugated g1g2

terms. The phase Φint and amplitude Aint of the interference fringes then follow from the
result:

Φint = arg
(
〈Ψ0,g|ĝ†1eiφ̂MZ ĝ2|Ψ0,g〉

)
(7.29)

Aint = 2
∣∣∣〈Ψ0,g|ĝ†1eiφ̂MZ ĝ2|Ψ0,g〉

∣∣∣ . (7.30)

To calculate this expectation value we write the operators ĝ1, ĝ2 and φ̂MZ in terms of linear
combinations of r̂ and p̂. Next we insert the identity

1 ≡
∫ ∞

∞
dp3|φ(p)〉〈φ(p)| (7.31)

in front of each combination of r̂ and p̂, where |φ(p)〉 is an associated eigenvector (see
Appendix A.6) to transform the wavefunction to the basis of these eigenvectors. With
this transformation we can treat the operators as normal functions of the vectors p. The
cost of these transformations is the introduction of overlap integrals, but these evaluate to
simple Gaussians (Appendix A.6, Eq. A.83). To limit the number of these transformations,
we approximate the phase derivatives that we need to evaluate the laser transformation
matrices (see Ĥ8, Eq. A.58):

dφ̂

dt
(t) ≈ keff ·

(
⇒̇
A(ti)r̂ +

⇒̇
B(ti)p̂ + ξ̇(ti)

)
+ keff · ξ̈(ti)(t− ti), (7.32)

where we have added the second derivative of ξ because of its relative size. The explicit
expression for the time derivative of the phase is only used for the correction terms to the
laser interaction. The actual contribution of this expression to the interferometer phase is
given by the time integral during the pulse length τ . Because the pulses are short compared
to the total length of the pulse sequence, it is likely that this lower order series expansion
of the phase evolution during the pulses suffices for the same accuracy of the calculation.
The order of the time-expansion of the overall phase φMZ does not influence the number
of integrals that have to be performed, because this only has one combination of r̂ and p̂.
Therefore, the order of the expansion of φMZ(t) in t can be much higher.

To check the validity of this approximation, Table 7.1 gives numerical estimates of the
contribution of time derivatives to the correction terms of the laser interaction. In this
table the time derivative of the phase is broken up in contributions from

⇒
A,

⇒
B and ξ. The

numerical values are for an interaction time of 100 µs and an atomic cloud of RMS size
σr = 50 µm with an associated momentum spread σp = ~/2σr. The lowest entries indicate
the terms that are omitted in the approximation of Equation 7.32. The table shows that for
τ = 10−4 s the phase error for all three components is smaller than the intended accuracy
10−7, making this approximation highly valid. Obviously, the approximation gets even
better for shorter τ .
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|
⇒
AT keff |σr |

⇒
BT keff |σp keff · ξ

φ̇(T )τ 4.4× 10−7 2.3× 10−3 2.3× 103

φ̈(T )τ 2 2.5× 10−13 2.6× 10−12 1.6× 10−2

φ(3)(T )τ 3/2 3.5× 10−13

Table 7.1: Estimates of the change in laser phase during a laser pulse, broken up into terms of the

series expansion in time and in the contributions from
⇒
A,

⇒
B and ξ. Values are given for 100 µs pulse

lengths and the maximum position and momentum differences (σp = ~/σr) are taken for a 50 µm
RMS cloud radius.

The contribution from ξ̇ would give a very large phase if it weren’t exactly compensated
for by the laser detuning (Eq. 7.27). The second term k · ξ̈ ≈ k · g however also gives a
phase that is relatively close to unity, indicating that pulse length τ = 10−4 s is at the limit
of the validity of the Dyson expansion. Sometimes, the laser frequency is chirped during
the pulses to compensate for this large phase term. A very complicated phase evolution
of the laser could even compensate the entire k · ξ term, thereby greatly improving the

validity of the used expansion. The
⇒
A and

⇒
B terms, however, can not be compensated by

a chirped laser frequency and remain as limiting factors for the accuracy.
With the approximation of the phase (Eq. 7.32), the expression for the interferometer

phase has 7 operators that are linear combinations of r̂ and p̂. Together with the trans-
formation Equation 7.31 we get a 21-fold integration of a Gaussian times a polynomial. In
terms of the unevaluated laser matrix elements and the unevaluated overlap integrals, this
has the form:

〈Ψ0,g|ĝ†1eiφ̂MZ ĝ2|Ψ0,g〉
=

∫
dp3

1

∫
dp3

2

∫
dp3

3

∫
dp3

4

∫
dp3

5

∫
dp3

6

∫
dp3

7 U1
gg(rC ,p1)

∗

× U2
eg(rC ,p2)

∗U3
ge

(
rC + ~

(⇒
B

0
3 −

⇒
B

+
2

)T

keff ,p3 − ~
(⇒
A

0
3 −

⇒
A

+
2

)T

keff

)∗

× eiφMZ(rC ,p4)U3
gg

(
rC + ~

(⇒
B

0
2 −

⇒
B

+
1

)T

keff ,p5 − ~
(⇒
A

0
2 −

⇒
A

+
1

)T

keff

)

× U2
ge

(
rC + ~

(⇒
B

0
2 −

⇒
B

+
1

)T

keff ,p6 − ~
(⇒
A

0
2 −

⇒
A

+
1

)T

keff

)
U1

eg(rC ,p7)

× 〈Ψ0,g|φ̇(t1),p1〉〈φ̇(t1),p1|φ̇(t2),p2〉〈φ̇(t2), p2|φ̇(t3), p3〉〈φ̇(t3),p3|φMZ ,p4〉
× 〈φMZ ,p4|φ̇(t3),p5〉〈φ̇(t3), p5|φ̇(t2),p6〉〈φ̇(t2), p6|φ̇(t1), p7〉〈φ̇(t1),p7|Ψ0,g〉,

(7.33)

where the asterisk denotes the complex conjugate and the superscript indices on the func-
tions U indicate the associated laser pulse. The phase term φMZ is obtained from Equa-
tion 7.24 by replacing r̂ with an arbitrary, but fixed offset position rC (we take rC = 0) and
p̂ with the running integration variable p4. The eigenfunctions |φ̇(ti), pj〉 are calculated

with Equations A.77 and A.81, taking v =
⇒̇
AT (ti)keff , w =

⇒̇
BT (ti)keff and pc = pj. A
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similar recipe is applied for |φMZ ,p4〉. Finally, the initial wavefunction is a 3D-Gaussian

〈r|Ψg,0〉 = e−(r−r0)2/w2
0+ip0·r/~, (7.34)

with waist w0 = 2σr,0, momentum p0 (Eq. 7.26) and a possible offset position r0 which is
usually taken zero. This is the optimal initial wavefunction that has minimum uncertainty
in r and p. In practice, this form is very difficult to obtain and the actual atomic wave-
function has a more complicated form. In that case the following results that are based on
this Gaussian shape can be considered as a limiting case for an optimal interference signal.

Equation 7.33 can in principle be solved analytically, however the solution is too ex-
tensive to handle in full symbolic form. Therefore we calculated the exact solution of the
integral only with numerical values of the parameters and repeated this calculation for
various values of the pulse length and the initial RMS cloud radius σr,0. The amplitude
and the phase were then evaluated from the result using Equations 7.29 and 7.30 using
symbolic algebra software (Maple). The result of the integration is in the form of a large
phase in an exponential term, multiplied with a complex number with small phase. By
evaluating the phases of these terms separately, it is possible to determine the full phase
without the need to take the modulus of 2π. The calculations were performed with 50

digits accuracy and a 5th order expansion of
⇒
A,

⇒
B and ξ in t (Eq. 7.13 and 7.14).

7.6.3 Results

The resulting amplitude Aint are drawn in Figure 7.4 as a function of the initial RMS cloud
size σr,0. It turns out that the contrast hardly changes with the interaction time and that
the graphs for τ ≤ 13 µs are indistinguishable. Only close to 100 µs does the amplitude
decrease slightly (see the τ = 63 µs plot), but at this point the approximations used lose
their validity. The contrast depends much more strongly on σr,0 with two boundaries above
and below which the amplitude quickly drops to zero. The position of these boundaries,
i.e, the maximum allowed position spread σr,max and maximum allowed Heisenberg limited
momentum spread σp,max = ~/2σr,min, can be estimated from the expression of φMZ .
These boundaries are given by the difference in initial position or momentum over which

the interferometer phase has changed by π. From a leading terms estimate of
⇒
A and

⇒
B we

get

σr,max =
π

2keffΓT 2
= 1.6× 10−2m (7.35)

σr,min =
2~keffΩT 2

mπ
= 1.1× 10−6m. (7.36)

In this case, the criterion on the maximum spread in position originates in the difference in
gravity that acts on atoms on opposite sides of the cloud. The other criterion traces back
to the difference in Sagnac phase between two atoms that have opposite initial velocity
perpendicular to the laser. The numerical values are in good agreement with the graph.
Although usually σr,min < σr,max it is possible that the restrictions on both the momentum
and the position spread are so strong that σr,min > σr,max and there is no range in which
interference fringes can be observed.
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Figure 7.4: amplitude of the interference signal as a function of the initial
cloud size w0

The phases that are obtained from Equation 7.33 for σr,0=0.35 mm are plotted in
Figure 7.5 relative to the phase at τ = 10−7 s (approximately 3.2× 108 rad) as a function
of the interaction time τ . In this plot, the total time lapse of the interferometer sequence
2T + 4τ was kept constant, but the graph shows that there is still a strong dependence
on the laser interaction time. This effect was also found when only gravity was considered
[9]. This strong phase dependence on τ can largely be eliminated by choosing a different
compensation of T on the pulse length (calculation showed that the optimal choice was to
keep approximately 2T+2τ fixed), but it is unclear what the physical significance of this
is and we will stick to our choice. The behavior of the phase as a function of τ looks very
similar for other values of σr,0. Therefore, we will take the interferometer phase for this
initial waist φ0.35mm(τ) as a reference for the following graphs and consider the differences
with this reference only.

In Figure 7.6 the interferometer phase relative to the reference φ0.35mm(τ) is plotted as
a function of σr,0 for various values of the interaction time τ . The plot shows that there is
a minimum in the phase at σr,0=0.35 mm for all interaction times τ (this is the reason why
this was chosen as a reference). For larger initial clouds the interferometer phase increases
with σr,0 squared and for smaller σr,0 the phase goes with 1/σ2

r,0. It is unclear what the
reason is for the power of 2, but qualitatively we can expect such a behavior because the
phase operator depends on r̂ and p̂. The measured phase is a kind of average of this
operator over the entire cloud and we can expect that when the cloud gets larger (either
in real or in momentum space) that the average value gets shifted more and more. The
phase minimum is at the point where the contributions from the size and the momentum
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Figure 7.5: Interferometer phase relative to phase at τ = 10−7 s as a
function of τ for σr,0=0.35 mm

spread are equal. Experimentally, this cloud size is the best to choose, because then the
sensitivity for differences in cloud size is minimal. The graphs also clearly shows that
shorter interaction times give less effect of σr,0 on the phase. In the limit τ → 0 we return
to the short pulse limit in which there is no effect of the initial cloud size at all.

In Figure 7.7 the same data is now plotted as a function of τ . According to the graph,
the phase (relative to the reference φ0.35mm(τ)) grows approximately cubical with τ for all
values of the initial RMS cloud size and over the entire plotted range of τ . At τ=100 µs
the phase term keff ·gτ 2 ≈ 1. Then the approximations are no longer valid which explains
the jumps in phase and the missing points (in the logarithmic scale).

7.6.4 Semiclassical Approximation

There is a range of the initial RMS cloud size around 1 mm in which the phase does not
change by more than 10−7 rad, the target accuracy of the experiment. It is thus possible
that within this range a semiclassical approach is sufficient for the required accuracy.
To test this, we calculated the signal Eq. 7.25 not by a full expansion in eigenvectors,
but simply by replacing all r̂ by r0 and all p̂ by p0. The phase difference between this
calculation and the full eigenvector integral (Eq. 7.33) is given in Figure 7.8 as a function
of the pulse length. Again, the approximations are only valid for interaction times up to
100 µs.

The semiclassical calculations are completely independent on the initial waist and de-
pend only on the initial position and momentum. The full quantum calculations do depend
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time τ for various values of the initial waist w0. The line indicates the
phase error when rotation is zero and the Doppler shift from the classical
trajectory is exactly compensated with a chirped laser frequency.

on the size of the cloud, but on the scale of the graph, this dependency is hardly visible.
This means that the error of the semiclassical calculation is much larger than the effect of
the initial cloud size on the interferometer phase. There are thus other effects at play that
are at this point not yet understood. The calculations show that the error that is made
by the semiclassical approximation is a few orders of magnitude larger than the required
resolution (10−7 rad). This approximation is thus highly inappropriate for these kind of
precision measurements and the full quantum calculations have to be used to interpret the
signals.

The same calculations were performed for the situation in which the Doppler shift
associated with the classical trajectory keff · ξ was completely compensated by the chirp
of the laser frequency and the rotation was set to zero. The resulting difference in phase
between the full quantum calculation and the semiclassical phase is given in Figure 7.8 by
the line. The graph clearly shows that this improved compensation hardly has an effect
on the validity of the semiclassical approximation.
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7.7 Conclusions

In this chapter, the signal of a temporal Mach-Zehnder atom interferometer was calculated
by a full integration of the Schrödinger equation. Other than in most calculations, this
work takes into account the finite length of the laser pulses. The calculations show that
the interferometer phase indeed changes with this pulse length, but also that the measured
phase now depends on the shape and size of the initial atomic cloud. Although a final
closed form solution was not obtained, the series of transformations that are derived in
this section allow a series expansion that remains valid to the level of 10−16 (for pulses of
100 µs) and greatly speed up the final numerical calculation of the signal.

Two main conclusions can be drawn from the calculations. The first conclusion is that
the contrast of the considered interferometer (at zero temperature) is quite tolerant to the
choice of the initial atomic cloud size. The range of initial cloud sizes that still give an
interference signal, however, decreases rapidly with the total length of the interferometer
sequence and the effective laser wavenumber. This has to be kept in mind when designing
an even larger interferometer or when higher order photon processes are used that give a
larger spatial separation between the two paths.

The second conclusion is that a semiclassical approach for calculating the interferome-
ter signal gives an error in the calculated phase of approximately 1 µrad, even when very
short pulses of 1 µs are used. This means that in the considered interferometer, a semi-
classical determination of g from the signal is “only” accurate to 13 decimals, still two
orders of magnitude from the intended accuracy. It is possible that a large component
of the difference is common to all atom, such that this error cancels out in a difference
measurement. Further research is necessary to investigate this possibility.

Although the results of the calculations are at this point too extensive for full symbolic
results, the method that is explained in this chapter allows for a full quantum mechanical
calculation of interferometer phases. It is an improvement on traditional semiclassical
approaches and allows the study on new effects that influence the phases.
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Appendix

A.1 Mathematical Tools

This appendix gives a list of operator identities that will be used in following sections.
First, some general equations for two operators Â and B̂ [10, 11]:

eÂB̂e−Â = B̂ + [Â, B̂] +
1

2!
[Â, [Â, B̂]] + ... (A.1)

eÂ+B̂ = eÂeB̂e−
1
2
[Â,B̂] (A.2)

if [Â, [Â, B̂]] = [B̂, [Â, B̂]] = 0.

The following are some commutation relations for r̂ and p̂ in combination with arbitrary

vectors v and w and matrix
⇒
M . These relations can readily be verified by writing all

vectors out in their individual components and then using the well-known commutation
relation between x̂ and p̂x:

[v · r̂, w · r̂] = 0 (A.3)

[v · p̂, w · p̂] = 0 (A.4)

[v · p̂, w · r̂] = −i~v ·w (A.5)

[r̂ · ⇒M r̂,v · r̂] = 0 (A.6)

[r̂ · ⇒M p̂,v · r̂] = −i~r̂ · ⇒Mv (A.7)

[p̂ · ⇒M p̂,v · r̂] = −i~v · ( ⇒M +
⇒
M

T

)p̂ (A.8)

[r̂ · ⇒M r̂,v · p̂] = i~v · ( ⇒M +
⇒
M

T

)r̂ (A.9)

[r̂ · ⇒M p̂,v · p̂] = i~v · ⇒M p̂ (A.10)

[p̂ · ⇒M p̂,v · p̂] = 0 (A.11)

[p̂,
⇒
M r̂] ≡ p̂ · ⇒M r̂ −

( ⇒
M r̂

)
· p̂ = −i~Tr(M) (A.12)

Then using Equation A.1 and the above mentioned commutation relations, we can derive
the following transformations for r̂

ev·r̂r̂e−v·r̂ = r̂ (A.13)

ev·p̂r̂e−v·p̂ = r̂ − i~v (A.14)

er̂·⇒M r̂r̂e−r̂·⇒M r̂ = r̂ (A.15)

ep̂·⇒M p̂r̂e−p̂·⇒M p̂ = r̂ − i~(
⇒
M +

⇒
M

T

)p̂ (A.16)

er̂·⇒M p̂r̂e−r̂·⇒M p̂ = e−i~
⇒
M

T

r̂ (A.17)

and for p:

ev·r̂p̂e−v·r̂ = p̂ + i~v (A.18)
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ev·p̂p̂e−v·p̂ = p̂ (A.19)

er̂·⇒M r̂p̂e−r̂·⇒M r̂ = p̂ + i~(
⇒
M +

⇒
M

T

)r̂ (A.20)

ep̂·⇒M p̂p̂e−p̂·⇒M p̂ = p̂ (A.21)

er̂·⇒M p̂p̂e−r̂·⇒M p̂ = ei~
⇒
M p̂. (A.22)

Finally, using these transformation rules we get the following commutation relation be-
tween an operator that is an arbitrary function of r̂ and p̂ and an operator with a linear
combination of r̂ and p̂ in an exponential:

ev·r̂+w·p̂f(r̂, p̂) = ev·r̂+w·p̂f(r̂, p̂)e−v·r̂−w·p̂ev·r̂+w·p̂

= f(r̂ − i~w, p̂ + i~v)ev·r̂+w·p̂. (A.23)

A.2 Elimination of the external Hamiltonian

Using the transformation rules that were derived in the previous section, it is possible to
transform the Schrödinger equation to an interaction picture in which the motion of the
external Hamiltonian has been eliminated. Consider the external Hamiltonian (Eq. 7.3):

Ĥext =
p̂2

2m
−mg · r̂ − m

2
r̂ · ⇒Γr − (r̂ + R) · ⇒Ωp̂ + V (r̂). (A.24)

We will now perform a series of transformations to eliminate the terms of the external
Hamiltonian one by one analogous to [4] and [5]. The new effective Hamiltonian after each
transformation Û is calculated by

Ĥnew = Û−1

(
ĤoldÛ − i~

d

dt
Û

)
(A.25)

|Ψold〉 = Û |Ψnew〉. (A.26)

To keep the size of the equations limited, we will first ignore the potential V (r̂) and
first derive the transformations that can eliminate the external Hamiltonian. Later, in
Section A.3, the effect of these transformations on the potential is derived.

First we take the transformation

Û1 = e−
i
~ξ·p̂, (A.27)

which is equivalent to a translation over ξ (Eq. A.14). We will see later that a specific
choice of ξ eliminates the linear terms in r̂. The new effective Hamiltonian is:

Ĥ1 =
p̂2

2m
−mg · (r̂ + ξ)− m

2
(r̂ + ξ) · ⇒Γ(r̂ + ξ)

−((r̂ + ξ) + R) · ⇒Ωp̂− ξ̇ · p̂, (A.28)

where the dot over a symbol indicates a time derivative. Then we apply the transformation

Û2 = e
i
~ζ·r̂, (A.29)
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which gives a momentum boost ζ to the system. After combining all terms with equal
powers of r̂ and p̂ we get

Ĥ2 =
p̂2

2m
− m

2
r̂ · ⇒Γr̂ − r̂ · ⇒Ωp̂ +

(
ζ

m
− ⇒

Ω
T

ξ − ⇒
Ω

T

R− ξ̇

)
· p̂ +

(
−mg − m

2
(
⇒
Γ +

⇒
Γ

T

)ξ − ⇒
Ωζ + ζ̇

)
· r̂ +

(
ζ2

2m
−mg · ξ − m

2
ξ · ⇒Γξ − (ξ + R) · ⇒Ωζ − ξ̇ · ζ

)
. (A.30)

We can eliminate the terms that are linear in r̂ and p̂ by choosing

ξ̇ =
ζ

m
+
⇒
Ω

T

ξ +
⇒
Ω

T

R (A.31)

ζ̇ = mg +
m

2
(
⇒
Γ +

⇒
Γ

T

)ξ +
⇒
Ωζ. (A.32)

Closer inspection of these choices reveals that we can write them as

ξ̇ = ∇p̂Ĥext(r̂, p̂)|r̂=ξ,p̂=ζ (A.33)

ζ̇ = −∇r̂Ĥext(r̂, p̂)|r̂=ξ,p̂=ζ. (A.34)

In other words, the transformations eliminate the linear terms in r̂ and p̂ if ξ and ζ in these
transformations obey the Hamilton equations, given by the external Hamiltonian and thus
follow a classical trajectory. Then with the identification of ξ with the classical position
and ζ with the classical momentum, the term in Equation A.30 that is independent of r̂
and p̂ is equal to the classical Lagrangian evaluated over the classical trajectory:

Lcl = − ζ2

2m
+ mg · ξ +

m

2
ξ · ⇒Γξ + (ξ + R) · ⇒Ωζ + ξ̇ · ζ. (A.35)

This term can then be eliminated by the transformation

Û3 = e
i
~

∫ t
0 Lcldt, (A.36)

leaving

Ĥ3 =
p̂2

2m
− m

2
r̂ · ⇒Γr̂ − r̂ · ⇒Ωp̂. (A.37)

Note that we do not have to apply initial conditions on the exact form of ξ and ζ to
make the eliminations work. These terms alone therefore do not necessarily describe the
trajectory of the atom under consideration.

To remove the remaining terms of the external Hamiltonian, we start with the trans-
formation

Û4 = e
i
~ r̂·⇒λ r̂. (A.38)
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In the same manner as before, we leave
⇒
λ free for the moment, but we will see that a

suitable choice will eliminate another term in the Schrödinger equation. Applying this
transformation to Equation A.37 gives

Ĥ4 =
1

2m
(p̂ + (

⇒
λ +

⇒
λ

T

)r̂)2 − m

2
r̂ · ⇒Γr̂ − r̂ · ⇒Ω(p̂ + (

⇒
λ +

⇒
λ

T

)r̂) + r̂ · ⇒̇λr̂

=
p̂2

2m
+ r̂ ·



⇒
λ +

⇒
λ

T

2m
− ⇒

Ω


 p̂ + p̂ ·

⇒
λ +

⇒
λ

T

2m
r̂

+r̂ ·

(

⇒
λ +

⇒
λ

T

)2

2m
− m

2

⇒
Γ −

⇒
Ω(

⇒
λ +

⇒
λ

T

) +
⇒̇
λ


 r̂. (A.39)

Then, if we choose
⇒
λ such that

⇒̇
λ = −(

⇒
λ +

⇒
λ

T

)2

2m
+

m

2

⇒
Γ +

⇒
Ω(

⇒
λ +

⇒
λ

T

) (A.40)

we obtain

Ĥ4 =
p̂2

2m
+ r̂ ·



⇒
λ +

⇒
λ

T

2m
− ⇒

Ω


 p̂ + p̂ ·

⇒
λ +

⇒
λ

T

2m
r̂. (A.41)

Next, the transformation

Û5 = e−
i
~ p̂·⇒µ p̂ (A.42)

Ĥ5 =
p̂2

2m
+ (r̂ + (

⇒
µ +

⇒
µ

T

)p̂) ·


⇒
λ +

⇒
λ

T

2m
− ⇒

Ω


 p̂

+p̂ ·
⇒
λ +

⇒
λ

T

2m
(r̂ + (

⇒
µ +

⇒
µ

T

)p̂)− p̂ · ⇒̇µp̂

= p̂ ·

 1

2m
+ (

⇒
µ +

⇒
µ

T

)



⇒
λ +

⇒
λ

T

2m
− ⇒

Ω


 +

⇒
λ +

⇒
λ

T

2m
(
⇒
µ +

⇒
µ

T

)− ⇒̇
µ


 p̂

+r̂ ·


⇒
λ +

⇒
λ

T

2m
− ⇒

Ω


 p̂ + p̂ ·



⇒
λ +

⇒
λ

T

2m


 r̂

= r̂ ·


⇒
λ +

⇒
λ

T

2m
− ⇒

Ω


 p̂ + p̂ ·



⇒
λ +

⇒
λ

T

2m


 r̂ (A.43)

if we choose for the following relation for
⇒
µ

⇒̇
µ =

1

2m
+ (

⇒
µ +

⇒
µ

T

)



⇒
λ +

⇒
λ

T

2m
− ⇒

Ω


 +

⇒
λ +

⇒
λ

T

2m
(
⇒
µ +

⇒
µ

T

). (A.44)
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Then after commutation of r̂ and p̂ we get

Ĥ5 = r̂ ·


⇒
λ +

⇒
λ

T

m
− ⇒

Ω


 p̂− i~Tr



⇒
λ +

⇒
λ

T

2m


 (A.45)

and the final transformation

Û6 = e
−i
~

∫ t
0 dt′

[
r̂·

(
⇒
λ +

⇒
λ

T

m
−⇒Ω

)
p̂−i~Tr

(
⇒
λ +

⇒
λ

T

2m

)]

(A.46)

leaves
Ĥ6 = 0 (A.47)

A.3 Coordinate Transformations

Now, let’s take a look at the effect of the transformations of Section A.2 on the potential

V. If we take the matrices
⇒
λ and

⇒
µ symmetric, we can summarize the effect of each

subsequent transformation on r̂ and p̂ in Table A.1. In this table two columns are shown
with combinations of r̂ and p̂. One column starts with r̂ and the other with p̂. On each
subsequent row, the result is given that is obtained when the transformation Û−1(...)Û
that is indicated in the first column is applied to the result in the cell above . The lowest
entry in the column of r̂, for example, indicates the result when all 6 transformations have
been applied to r̂. We see that these 6 transformations transform both r̂ and p̂ into a

superposition of the two with coefficients (matrices) that we shall call
⇒
A,

⇒
B,

⇒
C and

⇒
D.

Under the assumption that
⇒
Ω anticommutes with both

⇒
λ and

⇒
µ (

⇒
Ω
⇒
λ = −⇒λ

⇒
Ω) and using

equations A.40 and A.44 it is straightforward to verify that the evolution of the matrices
⇒
A,

⇒
B,

⇒
C and

⇒
D follows

d

dt

( ⇒
A

⇒
B

⇒
C

⇒
D

)
=

⇒
M

( ⇒
A

⇒
B

⇒
C

⇒
D

)
(A.48)

⇒
M ≡

( ⇒
Ω 1
⇒
Γ

⇒
Ω

)
(A.49)

and we can rewrite Equations A.31 and A.32

d

dt

(
ξ

ζ/m

)
=

⇒
M

(
ξ

ζ/m

)
+

( ⇒
ΩR
g

)
. (A.50)

Initial conditions for the matrices arise from the condition that at t=0 the transformations
should reduce to the identity transformation (the atoms did not have time to move):

( ⇒
A

⇒
B

⇒
C

⇒
D

)

t=0

=

(
1 0
0 1

)
(A.51)

(
ξ

ζ/m

)

t=0

=

(
0
0

)
. (A.52)
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trans-
forma- result
tion

r̂ p̂

Û1 r̂ + ξ p̂

Û2 r̂ + ξ p̂ + ζ

Û3 r̂ + ξ p̂ + ζ

Û4 r̂ + ξ 2
⇒
λr̂ + p̂ + ζ

Û5 r̂ + 2
⇒
µp̂ + ξ 2

⇒
λr̂ + (1 + 4

⇒
λ
⇒
µ)p̂ + ζ

Û6 exp
[∫ t

0
dt′

(
2
⇒
λ/m +

⇒
Ω

)]
r̂ 2

⇒
λ exp

[∫ t

0
dt′

(
2
⇒
λ/m +

⇒
Ω

)]
r̂

+2
⇒
µ exp

[
− ∫ t

0
dt′

(
2
⇒
λ/m− ⇒

Ω
)]

p̂ +(1 + 4
⇒
λ
⇒
µ) exp

[
− ∫ t

0
dt′

(
2
⇒
λ/m− ⇒

Ω
)]

p̂

+ξ +ζ

≡ ⇒
Ar̂ + 1

m

⇒
Bp̂ + ξ ≡ m

⇒
Cr̂ +

⇒
Dp̂ + ζ

Table A.1: Effect of the six transformations that are subsequently applied to r̂ (middle column)
and to p̂ (right column). The table gives the result when the transformation is applied to the result
of the previous (entry above).

In Table A.1 only the effect of the transformations on r̂ and p̂ is given. It is however
straightforward to show that we get the same substitutions for any function of r̂ and p̂ by
expanding this function in a Taylor series and inserting 1 = Û Û−1 where necessary:

Û−1V (r̂)Û = Û−1
∑

i

(vi · r̂)i Û =
∑

i

(
vi ·

(
Û−1r̂Û

))i

= V
(
Û−1r̂Û

)
. (A.53)

A.4 Laser Interaction

The laser interaction Hamiltonian in the two level approximation and in rotating wave
coordinates is (Eq. 7.15)

Ĥ ′
laser(r) =

~
2

(
0 ΩReiφ̂(t)

ΩRe−iφ̂(t) 0

)
. (A.54)

We start by taking out the relative phase evolution of the excited state:

Û7 =

(
eiφ̂(t) 0

0 1

)
(A.55)

⇓

Ĥ7 = ~

(
dφ̂(t)

dt
ΩR/2

ΩR/2 0

)
. (A.56)
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Next we go to a system that rotates with the unperturbed Rabi oscillation starting when
the laser pulse is turned on at t1 (τ = t− t1)

Û8 = e
− i

2


 0 ΩR

ΩR 0


τ

=

(
cos(ΩRτ/2) −i sin(ΩRτ/2)
−i sin(ΩRτ/2) cos(ΩRτ/2)

)
(A.57)

⇓

Ĥ8 = ~
dφ̂(t)

dt

(
cos2(ΩRτ/2) −i cos(ΩRτ/2) sin(ΩRτ/2)

i cos(ΩRτ/2) sin(ΩRτ/2) sin2(ΩRτ/2)

)
. (A.58)

The evolution of the wavefunction relative to this ideal Rabi oscillation is obtained by
integration of the Schrödinger equation. The formal solution is given by the evolution
operator

Û9 = T e−
i
~

∫ t0+τ
t0

Ĥ8(t′)dt′ (A.59)

where T indicates a time ordering operator. For slow changes of the phase φ̂(t) we can use
a Dyson series expansion for the evolution operator

Û9(t0, τ) = 1 +
1

i~

t0+τ∫

t0

Ĥ8(t
′)dt′ +

1

(i~)2

t0+τ∫

t0

dt′Ĥ8(t
′)

t0+t′∫

t0

dt′′Ĥ8(t
′′) + .... (A.60)

For the moment, however, we shall leave it unevaluated. To get the laser pulse evolution
operator in the original coordinate system of Equation 7.15 we have to apply the inverse
transformations at the beginning and at the end of the pulse

Ûlaser(t0, τ) = Û7(t0 + τ)Û8(τ)Û9(t0, τ)Û−1
8 (0)Û−1

7 (t0)

=

(
eiφ̂(t0+τ) 0

0 1

)(
Ûee(t0, τ) Ûeg(t0, τ)

Ûge(t0, τ) Ûgg(t0, τ)

)(
e−iφ̂(t0) 0

0 0

)

=

(
eiφ̂(t0+τ)Ûee(t0, τ)e−iφ̂(t0) eiφ̂(t0+τ)Ûeg(t0, τ)

Ûge(t0, τ)e−iφ̂(t0) Ûgg(t0, τ)

)
. (A.61)

Here we only wrote down the laser phase explicitly and summarized the effect of Û8 and
Û9 in the functions Ûij.

A.5 Atom Interferometer

In the two path approximation the total interferometer evolution operator is given by

ÛMZ = Ûlaser(2T + 3τ, τ)Ûlaser(T + τ, 2τ)Ûlaser(0, τ)

=

(
eiφ̂+

3 Û3
eee

−iφ̂0
3 eiφ̂+

3 Û3
eg

Û3
gee

−iφ̂0
3 Û3

gg

)(
0 eiφ̂+

2 Û2
eg

Û2
gee

−iφ̂0
2 0

)(
eiφ̂+

1 Û1
eee

−iφ̂0
1 eiφ̂+

1 Û1
eg

Û1
gee

−iφ̂0
1 Û1

gg

)
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=




eiφ̂+
3 Û3

eee
−iφ̂0

3eiφ̂+
2 Û2

egÛ
1
gee

−iφ̂0
1 eiφ̂+

3 Û3
eee

−iφ̂0
3eiφ̂+

2 Û2
egÛ

1
gg

+ eiφ̂+
3 Û3

egÛ
2
gee

−iφ̂0
2eiφ̂+

1 Û1
eee

−iφ̂0
1 + eiφ̂+

3 Û3
egÛ

2
gee

−iφ̂0
2eiφ̂+

1 Û1
eg

Û3
gee

−iφ̂0
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t1 = 0, t2 = T + τ, t3 = 2T + 3τ (A.63)

τ1 = τ3 = τ, τ2 = 2τ (A.64)

Ûk
ij = Ûij(tk, τk, r̂, p̂) (A.65)

φ̂0
k = φ̂(tk, r̂, p̂), φ̂+

k = φ̂(tk + τk, r̂, p̂). (A.66)

The operator that describes the transition from ground state to ground state is
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where we have added the r̂ and p̂ dependence in the functions Ûij explicitly, because they

have to be replaced when the exponentials in ÛMZ,gg are rearranged. To get one single
phase operator we combine the exponential terms using Eq. A.23
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The operators ĝ1 and ĝ2 describe the amplitudes and small phase corrections of the two
paths of the interferometer. Using Equation A.2 we get an expression for the interferometer
phase

ÛMZ,gg = e−iφ̂0
3eiφ̂+

2
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]
(A.71)
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A.5.1 Short Pulse Limit

In the short pulse limit τ → 0 we can drop the superscripts 0 and + in the phase operators
and simplify the interferometer phase to

φ̂MZ,sp = φ̂1 + φ̂3 − 2φ̂2 − i

2
[φ̂1, φ̂3 − 2φ̂2]. (A.73)

This can be simplified further by filling in the expression for φ Eq. 7.17:
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Because
⇒
A1 = 1 and

⇒
B1 = 0. We then get for the total phase
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+ keff · (ξ1 − 2ξ2 + ξ3) + (θ1 − 2θ2 + θ3), (A.75)

where θ now represents the offset phase of the laser during the pulses. This is the result
that was obtained in [6].

A.6 Eigenfunctions

We see that the interferometer signal is the expectation value of a function of several
operators that are a linear combination of r̂ and p̂ (Eq. 7.25). To evaluate this signal it is
thus very useful to take a look at the eigenvectors of such an operator φ̂ = v · r̂ + w · p̂.
In the r representation the eigenfunctions φ(r) = 〈r|φ〉 of this operator have to satisfy the
differential equation

φ̂φ(r) = (v · r − i~w ·∇) φ(r) = Φφ(r), (A.76)

where Φ are the eigenvalues. It is not difficult to verify that these eigenfunctions are
described by a complex valued 3D-Gaussian:

φ(r) = ei(r−rc)·
⇒
W (r−rc)+ipc·r/~, (A.77)

such that
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This Gaussian φ(r) is thus an eigenfunction of φ̂ if

v + 2~
⇒
W

T

w = 0 (A.79)

with eigenvalues

Φ = −2~w · ⇒Wrc + w · pc = v · rc + w · pc. (A.80)

In the special case that the initial wavefunction is exactly equal to one of these eigenfunc-
tions, the expectation value of any operator that is a function of φ̂ can be obtained by
simply replacing the operators r̂ and p̂ with their initial expectation value rc and pc. In
all other case one has to average over all eigenfunctions with the appropriate weighting
factors.

The matrix
⇒
W as set by Equation A.79 can be obtained from

2~
⇒
W

T

= −v ⊗wT

w ·w + α1 ⊗wT
⊥,1 + α2 ⊗wT

⊥,2, (A.81)

where the notation ⊗ is used for a direct product to emphasize the difference with the
inner product. The vectors w⊥,i are perpendicular to w and the vectors αi can be chosen

freely. In the simplest form αi = 0 the matrix
⇒
W is a projection from w to v but to make

⇒
W invertible, the other components have to be added. It was verified that the choices of
αi have no effect on the calculated phases.

One can create a complete set of eigenfunctions with the free parameter pc such that
any function can be expanded in terms of these eigenfunctions with coefficients

f̃(pc) =

∞∫

−∞

dr3f(r)e−i(r−rc)
⇒
W (r−rc)−ipc·r/~. (A.82)

The expansion of the original wavefunction in these eigenfunctions is thus a modified
Fourier transform.

For the calculations of the interferometer signal, we will be mostly interested in the
transformation of one basis function |φ1〉 to the set of eigenfunctions {|φ2〉} of a different

operator φ̂ with different width
⇒
W 2. For this transformation we have to calculate the

overlap between all of these eigenfunctions, which is done by using the r representation
(Eq. A.77). There is no restriction on the parameter rc so we will take this to be zero in
the following (this has no effect on the overlap integral).
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where the index 12 indicates the difference 1-2 and det is the determinant of the matrix.
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Chapter 8

Concluding Remarks

This thesis describes the work that was done in preparation for an atom interferometer.
Although we did not succeed in getting the interferometer fully operational within the
available time, the construction is basically finished and the interferometer is ready for the
first tests. Apart from the construction of the setup, a lot of insight has been obtained that
should help greatly to get the interferometer operational. At the same time this knowledge
can help in the design of other future experiments.

One crucial development is the insight into the acceptance angle with atomic Bragg scat-
tering. In this thesis we develop a relatively simple two-state model that gives an analytical
expression for the acceptance angle. This expression allows for a direct optimization of the
laser parameters that allows the interferometer to use the maximum number of atoms.

A second important contribution of this thesis is the calculation of the interferometer
phase and the sensitivity to all parameters of the setup. The expressions that are obtained
from these calculations allow for an easy estimate of the required alignment precision and
stability when a disturbance is present in the form of a non-uniform field that interacts with
the atoms or a kinetic effect such as rotation of the setup. Although the numerical values
are given for the earth’s rotation and gravitational field, the calculations are equally valid
for any other interaction potential that is maximally quadratic as a function of position.
Fields that are studied with an atom interferometer, however, are often more localized and
are thus not included in the calculations. If these fields are highly localized, with a very
short interaction time, their effect can be approximated with an additional phase factor
without a further modification of the atomic wavefunction. More extended fields that are
maximally quadratic over a given interaction region can be accounted for by a straight
forward extension of the method described in this thesis by the introduction of additional
sections in the interferometer. Perturbing fields on the other hand are usually not localized
and their effect is very well estimated by the calculations.

From the calculations we find that there are several parameters that have to be very
stable or aligned very precisely to obtain an interference signal. The dominant source of
phase noise is the relative motion of the retroreflecting mirrors of the standing light waves
transverse to the propagation of the atoms. This is already suppressed by passive isolation
and an active feedback loop on the position of the third mirror.

Other sources of noise in the interferometer phase arise from the statistical spread in
atomic parameters. The effect of these fluctuations can be greatly reduced by an optimal
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alignment of the three standing waves. We find that (for 5th order Bragg scattering and
98% contrast) the angles around the atoms propagation axis have to be identical to within
17 µrad and the difference in length between the two interferometer sections can not be
larger than 23 µm. These are very high demands that are not easy to meet. For alignment of
the laser angles we can use the 2D-detector that has an angular resolution of approximately
50 µrad (at 2 m distance). The longitudinal position of the mirrors will have to be set with
an accurate ruler. Neither of these two methods have the required accuracy but they should
be able to set the alignment to within one order of magnitude. The correct settings then
have to be found by a 2D search within the remaining error margins (scanning the position
and angle of one mirror is sufficient). It should be noted that the required contrast for the
mentioned parameter values is relatively high. Probably, a contrast of 50% (this depends
on the actual amount of noise in the setup and the used integration time) is enough to see
an interference signal which would alleviate the demands on the alignment accuracy by a
factor of 5. It is possible to increase the margins of error by decreasing the divergence and
the width of the atom beam. This, however, goes at the expense of the beam flux and
therefore slows the data collection and the alignment process. The margins can also be
increased by a factor of 5 by taking only first order Bragg scattering. The best approach is
then probably to start at first order diffraction and increase the order and the alignment
accuracy in an iterative manner.

A serious concern for the alignment procedure is the low beam flux. During the align-
ment procedure one optimizes the interference contrast. A measurement of the contrast
however requires a scan over one full fringe, e.g, by scanning the position of one of the
mirrors to determine the maximum and the minimum flux in an output port. In the ideal
case that everything is stable ∼10 data points per fringe would suffice with 100 atoms per
point for an signal to noise ratio of 10. One such scan would then already take a several
(∼10) seconds with a flux of 100 atoms per second. Even a relatively small 2D scan can
thus become an arduous task. It is therefore imperative to have the atom flux as high as
possible. There are two possibilities for this. The first option is to increase the diameter
of the second collimating aperture. The maximum transverse velocity is now 0.1 photon
recoil while a maximum of 0.5 recoil still gives a clean 2 path interferometer. The second
option is to optimize the alignment and operation of the MOC. At this moment it is very
difficult to optimize the many parameters of the MOC with only the total flux count as a
feedback parameter. A permanent 2D detector in front of the second collimating aperture
would be of considerable help. An idea for this that came up recently is to place a metal
plate (with a small hole for transmission to the last aperture) under 45 degrees in the
atom beam and accelerate all the electrons that are emitted from its surface with a strong
electric field to an MCP plus phosphor screen perpendicular to the atom beam. If the
electric field is strong enough the electrons go straight to the MCP and give a direct image
of the atom beam.

With some luck it takes a few days to get the interferometer operational and see the
first interference fringes. The first important measurements are then an experimental
verification of the results of the presented theory. The phase term that involves the initial
position of the atom is of special interest as this phase might give some insight in the spatial
coherence of our atom beam. Because of technical difficulties with the high finesse cavity
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it will still take a lot of work before the interferometer can be used for its original goal.
However, there are a lot of other interesting experiments that can be performed with only
slight modifications. A few examples exploit the high sensitivity of our interferometer to
measure properties of helium like its electric polarisability or the quadratic Zeeman effect.
Other possibilities are the use of a newly developed scheme to split the atom in three paths
and to study the possible advantages of a three path interferometer.
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Summary

Atom Interferometry with
Cold Metastable Helium

This thesis describes the atom interferometer that is being constructed in the Coherence
and Quantum Technology group at the Technische Universiteit Eindhoven (Eindhoven
University of Technology). This interferometer is designed to have a macroscopic separation
of several millimeters between the two paths which allows objects and fields to be inserted
into the paths separately. One of the planned experiments is to place a high finesse optical
cavity in one of the arms. The electromagnetic field inside the cavity induces a phase shift
on the atomic wavefunction which is measured by the interferometer. By using a high
quality cavity the phase shift of even a single photon can be measured. This way we can
study the quantum properties of the electromagnetic field inside the cavity.

This thesis describes preparations for this interferometer. The preparations can be
divided in three stages. The Chapters 2, 3 and 4 describe the preparation of the atom
beam. The requirements of a clean two-path interferometer with a clear interference signal
pose some severe restrictions on the atom beam. These requirements are met by using
a setup that comprises four laser cooling sections, followed by an additional transverse
velocity selection stage. The four laser cooling sections are designed to consecutively cool,
slow, focus and compress the atom beam that emerges from a supersonic expansion. After
the two final collimating apertures, we obtain a beam of metastable helium which has
a transverse velocity spread of 0.1 photon recoil (9 mm/s), a well-defined longitudinal
velocity (250 ± 2 m/s) and a total flux of ∼100/s.

The second ingredient for the interferometer is a coherent beam splitting mechanism.
In this interferometer we use atomic Bragg scattering on a standing light wave. In this
process, the atoms are specularly reflected on the node planes of the standing wave if the
angle between the laser and the atom beam is such that the change in atomic momentum
is equal to an even number of photon momenta. In Chapter 5 we investigate how the
maximum number of reflected atoms changes if the laser angle is slightly misaligned from
this condition. It was found that each diffraction order has a finite range of the laser
angle at which there is still a significant fraction of atoms that can be diffracted. The
width of these ranges can very well be estimated by a two state model. Although the
process involves the interaction of many transverse momentum states the parameters of
the process can apparently be chosen such that the effective transitions are limited to
two states. The two relevant states in this case are the states that adiabatically evolve



132 Summary

from the original and the reflected momentum state. Because of the Gaussian profile of
the laser the transitions between these two levels are very well described by the Demkov
model. This was confirmed by comparing the calculated acceptance angle with a large
range of measurements, resulting in excellent agreement. The optimal settings for the
interferometer are those at which the acceptance angle for a single order is equal to 1
photon recoil, the maximum range for single order diffraction. From the two state model
we found that for this optimal acceptance angle the laser waist has to be around 0.4 mm,
almost independent of the diffraction order.

The third and last step before the actual interferometer can be implemented is to make
an estimate of the sensitivity of the interferometer phase and the quality of the interference
signal to all parameters in the setup. This is essential to determine how stable each of the
components needs to be. For these calculations we model the interferometer by four distinct
spatial sections that are separated by the lasers, modeled as thin sheets. The effect of a laser
on the atomic wave on the transition from one section to the next is summarized by a simple
multiplication with a phase factor. The evolution of the atomic wavefunction between two
laser sheets is calculated by a WKB (Wentzel-Kramers-Brillouin) approximation along the
classical trajectories. The model calculates the effects of the direction of the lasers, gravity,
rotation and offset position of the atom on the interferometer phase including all possible
cross effects. It was found that the interferometer phase is most sensitive to the relative
position of the mirrors of the three standing light waves that therefore have to be stabilized
carefully relative to each other. Furthermore, we found that the tolerance on both the angle
(17 µrad) and the position (23 µm) of the lasers is very small.

The final chapter of this thesis is the result of a collaboration with the group of Prof.
M. Kasevich at Stanford University. They are building an atom interferometer that is to
set a new limit on the equivalence principle by measuring the difference in gravitational
acceleration between two species of atoms. They are aiming for a relative accuracy of
10−15. However, the interferometer signal is usually interpreted with a semiclassical model
in which the laser pulses are infinitely short and it is unclear to what accuracy these approx-
imations are valid. Therefore, in the final chapter we perform a full quantum mechanical
calculation of the interference signal where we account for finite length of the laser pulses.
The calculations show that the interferometer phase depends on both the length of the
laser pulses and the size of the initial wavefunction. For typical values of the experimental
parameters these effects can lead to a phase shift that is larger than the target accuracy.
Without a more detailed understanding of the origin of these phase differences, the tar-
get accuracy can not be claimed. Although a final analytical expression was not found,
the procedure that was developed in this chapter provides an excellent basis for further
calculations.



Samenvatting

Atoom interferometrie met
koud metastabiel helium

Dit proefschrift beschrijft de atoom interferometer die wordt gebouwd in the onderzoeks-
groep Coherence and Quantum Technology op de Technische Universiteit Eindhoven. Deze
interferometer is ontworpen om een macroscopische opsplitsing van enkele millimeters
tussen de twee paden te krijgen, zodat voorwerpen en velden in ieder pad afzonderlijk
geplaatst kunnen worden. Een van de geplande experimenten is het plaatsen van een op-
tische trilholte met hoge finesse in een van de armen. Het elektromagnetische veld in deze
trilholte induceert een faseverschil in de atomaire golffunctie die vervolgens met de inter-
ferometer gemeten kan worden. Indien gebruik gemaakt wordt van een trilholte met een
hoge kwaliteitsfactor, kan een faseverschuiving die door een enkel foton opgewekt wordt,
gemeten worden, waardoor quantum eigenschappen van het elektromagnetisch veld in de
trilholte kunnen worden bestudeerd.

Dit proefschrift beschrijft de voorbereidingen voor deze interferometer, die opgedeeld
kunnen worden in drie stadia. Hoofdstukken 2, 3 en 4 beschrijven de preparatie van de
atoombundel. De eis van een “schone” twee-pads interferometer met een duidelijk interfe-
rentie signaal stelt zware beperkingen aan de atoombundel. Aan deze beperkingen wordt
voldaan door een opstelling die bestaat uit vier laserkoeling secties en een additionele
transversale snelheidsselectie. De vier laserkoeling secties zijn ontworpen om achtereenvol-
gens te koelen, te vertragen, te focusseren en te comprimeren. Na twee laatste collimerende
openingen resulteert een bundel van metastabiel helium met een transversale snelheidssprei-
ding van 0,1 maal de foton terugstoot snelheid (9 mm/s), een goed bepaalde longitudinale
snelheid (250 ± 2 m/s) en een totale flux van ongeveer 100 atomen per seconde.

Het tweede benodigde ingrediënt voor de interferometer is een mechanisme om de
atoombundel coherent te splitsen. In dit geval maken we gebruik van het proces van
atomaire Bragg diffractie aan een staande licht golf. De atomen worden gereflecteerd op
de knopen van de staande golf als de hoek tussen de atoombundel en de laser zodanig
is dat de verandering van impuls precies gelijk is aan een even aantal foton terugstoten.
In hoofdstuk 5 onderzoeken we hoe het maximale aantal atomen dat gereflecteerd kan
worden verandert als de hoek van de laser enigszins verkeerd uitgelijnd staat ten opzichte
van deze ideale hoek. We vinden dat elke diffractie orde een bereik heeft voor de laser
hoek waarin een significant deel van de atomen verstrooid kan worden. De breedte van dit
bereik kan erg goed afgeschat worden met een relatief eenvoudig twee-toestanden model.
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Hoewel bij het totale proces vele transversale impuls toestanden betrokken zijn, kunnen
de parameters blijkbaar zo gekozen worden dat de effectieve overgangen beperkt zijn tot
twee toestanden. De relevante toestanden in dit geval zijn de toestanden die adiabatisch
evolueren uit de impuls toestanden met de originele en de gereflecteerde impuls. Door het
Gaussische profiel van de laser kunnen de overgangen tussen deze twee toestanden goed
beschreven worden met het Demkov model. Dit wordt bevestigd door de metingen die
goed overeen komen met de voorspellingen van dit model. De instellingen zijn optimaal
voor de interferometer als de acceptantie hoek voor verstrooiing naar een enkele orde gelijk
is aan één foton terugstoot. Dit is namelijk het maximale bereik voordat de atomen ook
naar andere ordes verstrooid worden. Uit het twee-toestanden model vinden we dat voor
deze optimale waarde een laser waist van ongeveer 0.4 mm gekozen moet worden, vrijwel
onafhankelijk van de diffractie-orde.

De derde en laatste stap voor de daadwerkelijke bouw van de interferometer is een af-
schatting van de gevoeligheid van de interferometer fase en de kwaliteit van het interferentie
signaal voor alle parameters van de opstelling. Dit is essentieel om te bepalen hoe stabiel
de verschillende onderdelen van de opstelling moeten zijn. Voor de berekeningen hebben
we een model genomen waarin de interferometer opgedeeld is in vier secties die geschei-
den zijn door de drie laserbundels, die voorgesteld worden als oneindig dunne vlakken.
Het effect van de lasers op de atomaire golf tijdens de doorgang van een sectie naar de
volgende wordt samengevat door een simpele vermenigvuldiging met een fase factor. De
evolutie tussen twee lasers in wordt berekend met een WKB (Wentzel-Kramers-Brillouin)
benadering langs het klassieke pad van de atomen. Het model berekent de effecten van de
richting van de laserbundel, zwaartekracht, rotatie en initiële off-set positie van de atomen
op de interferometer fase, inclusief alle kruistermen. We vonden dat de interferometer het
gevoeligst is voor de relatieve positie van de drie spiegels van de staande golven, die daarom
goed gestabiliseerd moeten worden ten opzichte van elkaar. Bovendien vonden we dat de
tolerantie voor de hoek (17 µrad) en de positie (23 µm) van de lasers erg klein zijn.

Het laatste hoofdstuk van dit proefschrift is het resultaat van een samenwerking met
de groep van Prof. M. Kasevich van Stanford University. Zij bouwen een atoom interfe-
rometer die een nieuwe grens moet stellen aan het equivalentie principe door het verschil
in versnelling door de zwaartekracht te meten tussen twee atomen van verschillende soort.
De beoogde precisie is 10−15. Echter, de gebruikelijke methode om het interferentie sig-
naal te interpreteren is gebaseerd op een semi-klassieke methode waarin de laserpulsen als
oneindig kort worden beschouwd. Het is onduidelijk wat het effect van deze aannames is
op de nauwkeurigheid van de metingen. Daarom worden in het laatste hoofdstuk volledig
quantum mechanische berekeningen gedaan die wel een eindige lengte van de laser pulsen
meenemen. Deze berekeningen laten zien dat de interferometer fase zowel van de lengte
van de pulsen afhangt als van de breedte van de initiële golffunctie. Voor typische waarden
van de experimentele parameters kunnen deze effecten leiden tot een verandering van de
interferometer fase die groter is dan de beoogde nauwkeurigheid. Zonder een beter begrip
van de oorsprong van dit faseverschil kan de beoogde nauwkeurigheid niet geclaimd wor-
den. Hoewel een definitieve analytische uitdrukking niet verkregen kon worden, biedt de
procedure die in dit hoofdstuk beschreven is een uitstekende basis voor verdere berekenin-
gen.
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Bij deze wil ik graag iedereen bedanken die bijgedragen heeft aan mijn onderzoek en het
tot stand komen van het proefschrift. In het algemeen bedank ik alle leden van de ex-
groep AQT en het huidige CQT die ik tijdens mijn periode heb mogen meemaken voor
de gezellige sfeer en de vele zeer nuttige opmerkingen en enerverende discussies. Maar er
zijn ook vele mensen buiten de groep die een bijdrage hebben geleverd en die ik hiervoor
hartelijk wil bedanken.

Een aantal personen wil ik nog in het bijzonder noemen; Mijn promotor Ton van
Leeuwen voor de vele nuttige opmerkingen en tips over het onderzoek en mijn proef-
schrift en mijn tweede promotor Herman Beijerinck, voornamelijk voor zijn orginisatorische
inzicht. Ik bedank Kenian Domen voor een goede samenwerking van bijna 6 jaar en zijn
welwillendheid om altijd geduldig mee te discussieren over de wildste theorieën en de
soms vervelende problemen. Edgar Vredenbregt voor zijn onmisbare experimentele kennis
en inzichten in het lab. En verder alle overige mensen die een directe bijdrage hebben
geleverd aan het experiment en/of mijn proefschrift: Ton Meesters, Walter van Dijk en
Wilbert Rooijakkers. Dank aan Louis van Moll en Jolanda van de Ven voor de geweldige
technische ondersteuning en Rina Boom voor de administratieve hulp.

Bijzondere dank ook aan Ad Kemper, bijgestaan door Harry en Wim, die zelfs met
tegenwerking van bovenaf steeds bereid was voor advies, uitleg en zelfs de bouw van enkele
elektronische aparaten. Terugkijkend blijkt deze samenwerking zelfs een voorbode van een
fusie tussen de twee groepen.

I would also like to thank Jason Hogan and Mark Kasevich for many very helpful
discussion which helped a great deal in understanding the theory of atom interferometers
and the sometimes unreadable theoretical papers.
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	Contents
	1. Introduction
	2. Atom beam design
	3. Atomic beam diagnostics
	4. Lasers
	5. Atomic bragg scattering
	6. Interferometer theory
	7. Laser pulse length effects in time-based atom interferometers
	Appendix
	8. Concluding remarks
	Summary
	Samenvatting
	Dankwoord
	Curriculum Vitae

