

Specification of tools for message sequence charts

Citation for published version (APA):
Mauw, S., & Meulen, van der, E. A. (1995). Specification of tools for message sequence charts. (Computing
science reports; Vol. 9517). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1995

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/15ce9eb7-5784-4a33-a7c1-466295054e93

ISSN 0926-4515

All rights reserved

Eindhoven Univen;ity of Technology
Department of Mathematics and Computing Science

Specification of tools for Message Sequence Charts

by

S. Mauw and E.A. van der Meulen
95/17

editon;: prof. dr. J.C.M. Baeten
prof.dr. M. Rem

Computing Science Report 95/17
Eindhoven, May 1995

Specification of tools for Message Sequence Charts

s. Mauw' E. A. van der Meulent

"Dept. of Mathematics and Computing Science, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven,

The Netherlands, email: sjouke@win.tue.nl
tDept. of Mathematics and Computing Science, University of

Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The
Netherlands, email: emma@fwi.uva.nl

Abstract. The recent formalization of the semantics of Message Sequence
Charts enables the derivation of tools for MSCs directly from this formal def
inition. We use the ASF+SDF Meta-environment to make a straightforward
implementation of tools for transformation, simulation and requirements test
ing. In this paper we present the complete specification of the tools.

1 Introduction

Message Sequence Charts (MSCs) are a graphical method for the description of the interac
tion between system components [IT94]. Due to the recent formalization [MR94a, MR94b,
IT95J of the semantics of Message Sequence Charts, we can consider MSC as a formal de
scription technique.

Currently, this formalization has already influenced the development of the language (in
particular with respect to composition of MSCs, for which algebraic operators are considered)
and it is expected to also influence the use of MSCs.

Formalization will also have impact on the work of tool builders. The behavior of tools
can be validated against the formal semantics, but even more valuable is the possibility
to generate tools, or prototypes, directly from the formal definitions. This paper is to
be considered a case study in the formal development of computer tools for programming
languages.

In practice, tools for an informally defined language are developed mainly based on
the intuition of the program designer. Unless all people have a common understanding
of the language, this leeds to inconsistent tools. If a formal definition of the language is
available, tools can also be based on the understanding of these formal semantics. This
may lead to more consistent tools, but in practice this only works if the semantics is well
accessible. A better approach would be to automatically implement the formal semantics
of the language. This leeds to correct and consistent tools. A possible problem with this
approach is that necessarily a formal semantics has a high level of abstraction and is not
directed towards possible tools. Thus, automatic implementation of the formal semantics is
not always feasible. An operational semantics and decisions on implementation details may
be needed.

Our aim is to demonstrate how the abstract definitions of the formal semantics of Basic
Message Sequence Charts (BMSCs) can be implemented. BMSCs are Message Sequence
Charts with only the main features: communication and local actions. The techniques
described in this paper transfer straightforward to the complete MSC language. As described
in [MR94a] the semantics of BMSCs is defined by a translation into process algebra. This
translation is defined by means of equations and the axioms defining process algebra are

Proceedings of the ASF+SDF95 workshop on generating tools from algebraic specifications,
May 11 & 12, 1995, CWI, Amsterdam

2 S. Mauw & E. A. van der Meulen

also equations. Therefore, the obvious way of implementing the semantics of MSCs is by
using algebraic specifications [EM85].

We used the ASF+SDF Meta-environment [Kli93] for the implementation. With this
system algebraic specifications can be implemented by means of term rewriting systems.
Furthermore, a complete programming environment for BMSCs can be generated, including
a syntax directed editor J a parser and a pretty printer.

The implementation consists of three parts. The first part consists of an implementa
tion of the static requirements for BMSCs expressed informally in [IT94] and formalized
in [Ren94]. The second part is the translation of BMSCs into process algebra expressions.
This is based On the definition of the semantic functions in [MR94a]. The third part is
the definition of a simulator for BMSCs. Although a simulator is not part of the formal
semantics, it can easily be derived from the operational semantics given in [MR94a]. In fact
the description of the simulator can be regarded as a formal specification of a simulation
tool.

Figure 1 describes the structure of the generated tool set. Boxes denote expressions in
the given language and arrows represent transformations from one language to the other.
Apart from the INPUT language which is plain ASCII, we consider the following languages.
MESSAGES is the language of output messages generated by the requirements checker and
the simulator, BMSC is the language of (parsed) Basic Message Sequence Charts, PA BMSC

is the process algebra theory used for describing the semantics of BMSCs (see [MR94a]) and
BPA is the sub-language of PA BMSC that only contains the normalized PABMSC expres
sions. The generated tools are considered as transformation tools, described by algebraic

I INPUT

symax
Directed
Editor

Parser

_I I Checker
BMSC

Semantics
Calculator

I I Simulator
PA BMSC

~
Normalizer

I BPA I

. I MESSAGES I

_I MESSAGES I

Figure 1: Structure of the tools

specifications. We specified the following tools.

Syntax directed editor and parser The parser converts plain ASCII text into BMSC.

Checker The additional syntax requirements (static semantics) for BMSCs can be checked
with this tool.

Semantics Calculator The semantics of a BMSC is described by a translation into the
process algebra PA BMSC . The Semantics Calculator (or semantics function) computes
the semantics of a BMSC.

Normalizer The normalizer reduces the expression resulting from the previous step to
normal form. This tool makes it possible to inspect the complete behavior of the given
BMSC.

Specification of tools for Message Sequence Charts 3

Simulator Test runs of the BMSC can be generated interactively with the simulator. It
offers the user a choice between all possible continuations. After selecting one event,
it calculates the PA BMSC expression that results after execution of the event.

This paper is structured in the following way. Section 2 contains a description of the
ASF+SDF Meta-environment. In Section 3 we give a short overview of the BMSC language.
Section 4 contains the specification of the static requirements. In Section 5 we define the
process algebra and its specification in ASF+SDF. The Semantics Calculator and Normalizer
are defined in Section 6 and the simulator in Section 7.

Although this paper covers the complete semantics of BMSCs, it is not intended as a self
contained explanation of these semantics. Refer to [MR94aJ for a comprehensive treatment.

Acknowledgements

Thanks are due to Arie van Deursen, Wileo Koorn, Michel Reniers and Eelco Visser for
their assistance during several phases of this project.

2 The ASF+SDF Meta-environment

The ASF+SDF Meta-environment [Kli93J is a programming environment generator based
on algebraic specifications. From a specification of the syntax and semantics of a language
an environment is generated, in its simplest form consisting of a syntax directed editor and
a term rewrite system. The generated environment can be customized further by means of
the language SEAL [Ko092, Ko094J.

2.1 Algebraic Specifications

An algebraic specification consists of a signature, a set of variables and a set of equations.
The signature describes a number of sorts and functions over these sorts. Using these
functions and the variables one can construct terms. The equations define equalities between
these terms.

Consider, e.g., an algebraic specification of the data-structure Booleans. The signature
defines one sort BOOL, two constants of sort BOOL, namely true -t BOOL and false -t

BOOL, one unary function not: BOOL -t BOOL, and two binary functions and: BOOL #
BOOL -t BOOL and or: BOOL # BOOL -t BOOL. Let's assume that a variable Boolover
sort BOOL is declared. From the signature and the variables terms like true, false, Bool,
not (true) , not(BooQ, and(true,false), and(Bool,true), etc. can be derived. The semantics
of the functions "nof', "and" and "or" are defined by equations. We have, for instance,
not (true) = false. A complete specification of this data-structure in ASF+SDF notation will
be given in section 2.2.

The most common strategy for implementing algebraic specifications is via term rewrite
systems (TRSs). An algebraic specification can be transformed into a TRS by interpreting
the equations as rewrite rules from left to right. An algebraic specification of the Booleans
can thus be used to compute the value of a function by rewriting a term to its normal form,
true or false.

The transformation into a TRS sometimes implies that decisions on implementation
details are made, which were not expressed in the algebraic specification. For example, if
we aim at complete TRSs (i.e. TRSs which are confluent and terminating, see [Kl092]), we
need to decide on the implementation of commutative operators and the implementation of

4 S. Mauw & E. A. van der Meulen

sets by ordered lists. Therefore, a completely automatic implementation of an algebraically
specified semantics by means of a TRS is not always feasible.

2.2 The formalism ASF+SOF

When specifying programming languages in an algebraic manner the syntax for function
definitions is found to be too restrictive. The formalism ASF+SDF therefore combines the
algebraic specification formalism ASF with a formalism for defining syntax: SDF. SDF
allows for the combined specification of concrete syntax (like in BNF) and abstract syntax.
Hence, ASF+SDF is a formalism for writing algebraic specifications with user defined syntax.

An ASF+SDF specification consists of a sequence of modules. Each module may contain

Imports of other modules.

Sort declarations defining the sorts of a signature.

Lexical syntax defining layout conventions and lexical tokens.

Context-free syntax defining the concrete syntactic forms of the functions in the signa
ture.

Variables to be used in equations. In general, each variable declarations has the form of
a regular expression and defines the class of all variables whose name is described by
the regular expression.

Equations Conditional equations define the meaning of the functions defined in the contex
free syntax.

Sort declarations, lexical functions, context-free syntax and variables are either part of an
export section in a module or can be declared as hidden. When a module imports another
module the export sections in the syntax definition as well as the equations of the imported
module are visible in the importing module. Hidden sorts, functions or variables cannot be
referred to by the importing module.

Example A simple example specification is given below consisting of the modules Layout
and Booleans. Module Booleans defines the Boolean values and operators. In order to
avoid ambiguities in parsing terms attributes {left} or {right} can be added to function
declarations, defining a function to be left associative or right associative. For instance, the
attribute {left} in BOOL "&" BOOL -t BOOL indicates that the term true & false & true
should be parsed as (true & false) & true rather than true & (false & true). Moreover, the
specifier can indicate by means of priorities rules how terms should be parsed. For instance,
the priority rule in module Booleans states that the operator "not" binds stronger than
the operator "8t' which in turn binds stronger than the operator "I". Hence, the term
not true & false will be parsed as (not true) & false rather than not (true & false). Likewise,
the term true & false I true should be parsed as (true & false) I true. The function with the
attribute {bracket} is added only for grouping and disambiguation, it is not included in
the abstract syntax.

The variable declaration "Bool[I-9']* ---t BOOL" declares an infinite number of vari
ables of sort BOOL. All variables start with the letters Bool followed by zero or more (*)
occurences of numbers and quotes [1-9']. In the equations we use only one variable.

Module Booleans imports module Layout w4ich consists of two lexical functions for
the predefined sort LAYOUT. The upper one defining that spaces (\u), tabs (\t) and

Specification of tools for Message Sequence Charts 5

newlines (\n) are layout, and thus separate tokens. The lower function defines a comment
convention by stating that any string starting with two percentage signs ("% %") followed
by any number of characters other than a newline n\n]), and concluded by a newline ([\n])
is to be considered layout as well.

2.2.1 Booleans

iInports Layout2 .2.2

exports
sorts BOOL
context-free syntax

true -t BOOL
false -t BOOL
BOOL "I" BOOL -t BOOL {left}
BOOL "/it' BOOL -t BOOL {left}
"not" BOOL -t BOOL
"(" BOOL ")" -t BOOL {bracket}

hiddens
variables

Baal [1-9'Jo -t BOOL
priorities

BOOL "I"BOOL -t BOOL < BOOL "/it'BOOL -t BOOL <
"not" BOOL -t BOOL

equations

[.] true 1 Baal =
[2] false 1 Baal =
[3] true & Baal =
[4] false & Baal =

[5J not true

[6] not false

2.2.2 Layout

exports
lexical syntax

true

Baal

Baal

false

false

true

[u\t\nJ -t LAYOUT
"%%"~[\nJ*[\nJ -t LAYOUT

Other features Other features of ASF+SDF will be explained when necessary. In partic
ular1 the use of default equations and the description of list sorts is explained in section 4.l.
More advanced priority rules are referred to in section 5.2.

3 Message Sequence Charts

Message Sequence Charts provide a graphical method for the description of the communica
tion behavior of system components. The ITU-TS (the Telecommunication Standardization
Section of the International Telecommunication Union, the former CCITT) maintains rec
ommendation Z.120 [IT94] which contains the syntax and an informal explanation of the

6 S. Mauw & E. A. van der Meulen

semantics of Message Sequence Charts. A formal semantics based on process algebra has
been proposed in [MR94b]. This proposal has been accepted for standardization by the ITU
[IT95].

3.1 Basic Message Sequence Charts

In this paper we restrict ourselves to the core language of Message Sequence Charts, which
we call Basic Message Sequence Charts (BMSCs). A Basic Message Sequence Chart con
centrates on communications and local actions op.ly. These are the features encountered in
most languages comparable to Message Sequence Charts. Their semantics is described in
[MR94a]. .

A Basic Message Sequence Chart contains a (partial) description of the communication
behavior of a number of instances. An instance is an abstract entity of which one can observe
(part of) the interaction with other instances or with the environment. The Basic Message
Sequence Chart in Figure 2 defines the communication behavior between instances a and b.
This will be the running example in the remainder of this paper. An instance is denoted by
a vertical axis. The time along each axis runs from top to bottom.

A communication between two instances is represented by an arrow which starts at the
sending instance and ends at the receiving instance. In Figure 2 we consider message m
from instance a to instance b and message k which is sent from a to the environment. The
behavior of the environment is not specified. For instance b we also define a local action p.

msc example I

a b

m

k

Figure 2: Example Basic Message Sequence Chart

Although the activities along one single instance axis are completely ordered, we will not
assume a notion of global time. The only dependencies between the timing of the instances
come from the restriction that a message must have been sent before it is received. In
Figure 2 this implies for example that message m is received by b only after it has been sent
by a. Furthermore, it is required that action p is executed before message m is received,
and that message m is sent before message k. For the sending of k and the reception of m
no ordering is specified.

3.2 BMSC syntax

The grammar defining the syntax of textual Basic Message Sequence Charts as presented in
[MR94a] is given in Table 1. The nonterminals <mscid>, <iid>, <mid> and <aid> represent
identifiers. The symbol <> denotes the empty string. The following identifiers are reserved

Specification of tools for Message Sequence Charts 7

keywords: action, endinstance, endmsc, env, from, in, instance, msc, out and to. The
language generated by a non-terminal < x > is denoted by C(< x ».

Table 1: The BNF grammar of Basic Message Sequence Charts
<mse>

<mse body>

<inst def>

<inst body>

<event>

..

.. -

.. -

..

..

mse <mscid>;
<mse body> endmsc;
<> I
<inst def> <mse body>
instance <iid>;
<inst body> endinstance;

<> I
<event> <inst body>
in <mid> from <iid>;
in <mid> from env;
out <mid> to <iid>;
~ut <mid> to env;
action <aid>;

The Basic Message Sequence Chart of Figure 2 has the following textual representation.

mse example1;
instance a;

out m to b;
out k to enVj

endinstance;
instance bi

action Pi
in m from a;

endinstance;

endmscj

The context free syntax for BMSCs is expressed in ASF+SDF in the following specifica
tion. It is easily derived from the BNF grammar.

The first module below defines the Identifiers, which consist of a character followed by
characters and digits. It states that there is an (invisible) mapping from elements of the
sort ID to the sorts MSCID, IID, MID and AID. The second mod ule defines the syntax of
BMSCs.

3.2.1 Identifiers

imports Layoue·2 .2

exports
sorts ID MSCID IID MID AID
lexical syntax

[a-z][a-zO-9]. -+ ID
context-free syntax

ID -+ MSCID
ID -+ IID
ID -+ MID
ID -+ AID

8 S. Mauw & E. A. van der Meulen

3.2.2 BMSC-Syntax

imports Identifiers3
.
2

.
1

exports
sorts MSC MSC-BODY INST-DEF INST-BODY EVENT
context-free syntax

ruse MSCrD "i" MSC-BODY endmsc "j" -+MSC
-+ MSC-BODY

INST-DEF ";" MSC-BODY -+ MSC-BODY
instance IID ";" INST-BODY endinstance -+ INST-DEF

EVENT ";" INST-BODY
in MID from IID
in MID from env
out MID to IID
out MID to env
action AID

3.3 Example

-+ INST-BODY
-+ INST-BODY
-+ EVENT
-+ EVENT
-+ EVENT
-+ EVENT
-+ EVENT

A syntax directed editor for BMSC is generated by the ASF+SoF Meta-environment. From
the definition of the (context-free) syntax of BMSC, a scanner and a parser for BMSC
is created. If the text in the editor is conform the BMSC syntax the parser generates
the corresponding BMSC term. Figure 3 shows a snapshot of the syntax directed editor,
containing the running example of figure 2. Note, that buttons are connected to the editor
for the four other tools. These buttons are created by means of the user interface language
SEAL [Ko092, Ko094J. When a button is selected the corresponding tool is applied to the
BMSC in the editor.

~ BMSC-5yntax : /nfs/adam/adal/emma/SPEC/MS~
tree text ex and hal

seaantics; F=::::::=l1 msc runningex~mp.1!!
Nor.a1iz~, instance a ;
~sil1ul.at~ "~'I' out m to b;

F~"":--'i!!iil out k to en ... ;
(Check iim endinsto!llnce;

~ instence b ;

Iii!: f~t!O~r~~ a;

t~1 e~~~~~sJance
~~i

Figure 3: Syntax directed editor

4 Requirements

Two static requirements for Basic Message Sequence Charts are formulated in [MR94a].
The first is that an instance may be declared only once. The second is that every message
identifier occurs exactly once in an output action and once in a matching input action, or
in case of a communication with the environment a message identifier occurs only once.
In addition we will check whether all instances that are referred to in messages have been
declared. Module Requirements imports two auxiliary modules: Xevents and Messages.

Specification of tools for Message Sequence Charts 9

4.1 Xevents

The specification of the requirements is facilitated when an MSC is represented by a list of
its events. We therefore introduce the sort XEVENT. This is an event extended with the
name of the instance it belongs to. E.g., when instance a sends a message m to instance b,
out m to b, the corresponding extended event is out m from a to h.

The declaration "[" {XEVENT ";"}* "]" -t XEVENTLIST declares a list of zero or more
(*) XEVENTs separated by semicolums (";") and surrounded by square brackets ("[" "1").
The variables declaration "<" xevent">" "*" [0-9J* ---t {X EVENT "i"}* declares variables
over such lists of XEVENTs. Any list of XEVENTs matches variables like <xevent>*,
<xevent>*l, <xevent>*13 etc .. Equation 6 defines the union of two lists of XEVENTs as
a list containing the events of the first list followed by those of the second list.

The functions x€vent, X€VentbodYJ xeventlillt and extend are introduced to derive a list
of extended events from an MSC. Equations 1 through 11 specify the behavior of these
functions.

The function message-name returns an MID LIST , a list containing the message identifier
of an XEVENT. Equations 12 through 15 specify the application of this function to all
xevents describing input or output actions. Equation 16 is a so called -default equation,
marked with the keyword otherwise. Such an equation is only used for rewriting a given
term if no other equation applies. Hence, equation 16 states that the message-name of any
xevent not describing an input or output action equals the empty list D.

Equations 17 and 18 specify that two xevents match, if one of them represents the sending
of a message to an instance and the other one is the xevent for the reception of that message.
The default equation 19 states that applying the predicate matching-xevents to any other
pair of xevents equals false.

4.1.1 Xevents

imports BMSC-Synta."'(3.2.2 Booleans2.2.t

exports
sorts XEVENTLIST XEVENT MID LIST
context-free syntax

"[" {XEVENT ";"}* "I" ..., XEVENTLIST

hiddens

xevents(MSC) ..., XEVENTLIST
xevents "_" body "(" MSC-BODY ")" ..., XEVENTLIST
xevents "_" inst "C' IID "," INST-BODY ")" ..., XEVENTLIST
XEVENTLIST "u" XEVENTLIST ..., XEVENTLIST {left}

in MID from IID to lID
in MID from env to IID
out MID from IID to IID
out MID from IID to env
action AID by IID
extend(IID, EVENT)

message-name(XEVENT)
"[" {MID ","}* 'T
matching-xevents(XEVENT, XEVENT)

-t XEVENT
..., XEVENT
-t XEVENT
-t XEVENT
-t XEVENT
-t XEVENT

-t MIDLIST
..., MIDLIST
..., BOOL

variables
"<"msc-body">" -t MSC-BODY
"<" inst-def'>" "." [0-9]* -t {INST-DEF ";"}*

10 S. Mauw & E. A. van der Meulen

"<" inst-body">"
"<" event">"[O-9J*
"<"xevent">" "*"[0-9].
"<" xevent">" [0-9]*
"<" mscid">"
"<" iid">" [0-91*
"<"mid">"
"<"aid">"

-+ INST-BODY
-+ EVENT
-+ {XEVENT ";"}*
-+ XEVENT
-+ MSCID
-+ IID
-+ MID
-+AID

equations

[1] xevents(msc <mscid>j <msc-body> endmsCj) xeventsbody «msc-body»

[21 xeventsbody 0 D

[31

[4J

[sJ

xeventsbody (instance <iid>j <inst-body> endinstance; <msc-body>) =

xeventsjnst « iid> , < inst-body» u xeventsbody « msc-body>)

xeventsjnst (<iid>,) = []

xevents. t «iid>, <event>; <inst-body» =
IDS

[extend«iid>, <event»] u xevents. t «iid>, <inst-body»
InS

[6J [<xevent>i] u [<xevent>;] = [<xevent>i; <xevent>;]

[7J

[8J

[9J

[10J

[l1J

[12J

[13J

[14J

[lSJ

[16J

extend«iid>l) in <mid> from <iid>2)

extend(<iid>l, in <mid> from env)

extend(<iid>l, out <mid> to <iid>,)

extend(< iid> 1, out < mid> to env)

extend(<iid> I, action <aid»

in <mid> from <iid>2 to < iid> 1

= in <mid> from env to <iid>l

out <mid> from <iid>l to <iid>2

out <mid> from <iid>l to env

= action <aid> by <iid>,

message-name(in <mid> from <iid> 1 to <iid>,) [<mid>]
message-name(in <mid> from env to <iid>2) = [<mid>]

message-name{out <mid> from <iid> I to <iid>,) = [<mid>]

message-name(out <mid> from <iid>l to env) [<mid>]

message-name(<xevent» = [] otherwise

matching-xevents(out <mid> from <iid> 1 to <iid>2J
[17J in <mid> from <iid>1 to <iid>,) = true

matching-xevents(in <mid> from <iid>l to <iid>2,
[18J out <mid> from <iid>. to <iid>,) = true

[19J matching-xevents(<xevent>l, <xevent>2) = false otherwise

Specification of tools for Message Sequence Charts 11

4.2 Messages

Module Messages defines the general syntax of the error messages used in module Require
ments. Note, that these are not messages in the sense of MSC, but messages to inform
the user of the system. Four kinds of messages are distinguished in the lexical syntax. (1)
Opening brackets « followed by a string without the symbol> and concluded by», (2)
Opening brackets « followed by a string without quotes or >, and concluded by quotes.
(3) Quotes followed by a string without> and concluded by». (4) Quotes followed by a
string without quotes or > and concluded by quotes.

This syntax allows for composed messages of sort MESSAGELIST like [« in instance
Ira" an error has been found »J.

The operator U specifies the union of lists of messages.

4.2.1 Messages

imports Layout2.2 .2

exports
sorts MESSAGE MESSAGELIST
lexical syntax

"«"-1>]'''»'' -t MESSAGE
"«"-1\" >]*"\'''' -t MESSAGE
"\''''-1>]'''»'' -t MESSAGE
~'\""""""(\" >1*"\"" --+ MESSAGE

context-free syntax
"I" MESSAGE. "]" -t MESSAGELIST
MESSAGELIST ''U'' MESSAGELIST -t MESSAGELIST {left}

hiddens
variables

ml 0-9]. "." -t MESSAGE.
equations

[1) 1m;] U 1m;] = 1m; m;]

4.3 Requirements specification

The main function in module Requirements is the function check for MSCs. The result of
checking an MSC is CHECKINFO, composed of a boolean value and a possible empty list of
error messages. Two CHECKINFOs can be added by means of the function CHECK INFO
and CHECKINFO. Equation 1 specifies how this is done. The sort MESSAGE is extended
so that identifiers and xevents can be referred to in error messages.

As mentioned before, three requirements will be checked. Equation 2 states that the func
tion check invokes the functions unique-instance-names, inst-declared and check-message
names. Equations 3 to 5 specify the semantics of the functions unique-instances and uinbody'

According to equation 4 an empty MSC-BODY is correct, i.e. all instance names are unique.
If the MSC-BODY consists of an instance definition followed by an MSC-BODY, we check
that the name of the first instance does not occur in the set of declared instance names of
the remaining MSC-BODY. By a recursive call of the function UinbDdy the rest of the BMSC
is checked (equation 5). The error messages are generated by the auxiliary function notin.
Equation 6 states that if a given instance name occurs at any position in a list of instance
names, the Boolean value false and an error message are returned. Otherwise, the Boolean

12 S. Mauw & E. A. van der Meulen

value true and an empty list of error messages are returned (equation 7). Equations 8, 9
and 10 inductively define the auxiliary function declared-instnames, which computes the set
of instance names in an MSC-BODY.

The function inst-declared checks whether instances referred to by input and output
actions have been declared (equation 11). The auxiliary functions refinsts select the names
of all instances referred to by input or output actions of an MSC (equations 12 unto 17).
The function included-in checks if all IIDs in a list do occur in another list of IIDs. If not,
an error-message is generated (equations 18 - 20).

Application of the function check-message-names to an MSC invokes the application of
the functions unique-message-names and check-nonmatching-messages to the corresponding
list of xevents. Equation 23 specifies that unique-message-names selects all pairs of xevents
that mistakenly have the same message name. If such a pair is present, an error message is
generated and the function is recursively applied to the rest of the list. Lists without such
pairs are correct according to equation 24.

Equation 25 specifies that check-nonmatching-messages removes all matching pairs of
input output actions from a list of xevents. If no such pairs are left in the list the function
aux-nonmatching-messages is invoked (equation 26). Applying aux-nonmatching-messages
to an empty list yields the boolean value true and an empty list of error messages. If the
first xevent in the list represents receiving a message from an instance or sending a message
to an instance, no matching action will be present in the rest of the list. Therefore, an error
message is generated and the rest of the list is checked. If the first xevent is any other action,
it is correct and the rest of the list is checked (equations 27 - 30).

4.3.1 Requirements

imports Xevents4 .1 . 1 Messages4
.
2

.
t

exports
sorts CHECKINFO IIDLIST
context-free syntax

check(MSC)
"Check:" BOOL "Errors:" MESSAGELIST
CHECK INFO and CHECK INFO

MESSAGE IID MESSAGE
MESSAGE MID MESSAGE
MESSAGE XEVENT MESSAGE

unique-instance-names "C' MSC tt)"
uin 't_n body "(" MSC-BODY ")"
IID notin IIDLIST
dec1ared-instnames "C' MSC 't)"
declared-instnames "(" MSC-BODY ")"

inst-declared(MSC)
refinsts(MSC)
refinsts(XEVENTLIST)
refinsts(XEVENT)
IIDLIST includedin lIDLIST

"r' {lID ","}* "]"
lID LIST "u" IIDLIST

check-message-names(MSC)
unique-message-names(XEVENTLIST)

-+ CHECK INFO
-+ CHECK INFO
-+ CHECK INFO {left}

-+ MESSAGE
-+ MESSAGE
-+ MESSAGE

-+ CHECK INFO
-+ CHECK INFO
-+ CHECK INFO
-+ IIDLIST
-+ IIDLIST

-+ CHECK INFO
-+ lIDLIST
-+ IIDLIST
-+ IIDLIST
-+ CHECK INFO

-+ IIDLIST
-+ IIDLIST {left}

-+ CHECK INFO
-+ CHECK INFO

Specification of tools for Message Sequence Charts

check-nonmatching-messages(XEVENTLIST) -+ CHECK INFO
aux-nonmatching-messages(XEVENTLIST) -+ CHECK INFO

hiddens
variables

b[0-9]*
m~O-9]*
"<" tnSc">"
"<" 71lSc-body">"
"<" inst-def'>"
"<" inst-body">"
"<" event">" "*" [0-9]*
"<" event">"
xel

-+ BOOL
-+ MESSAGELIST
-+ MSC
-+ MSC-BODY
.:... INST-DEF
-+ INST-BODY
-+ {EVENT ";"}*
-+ EVENT
-+ XEVENTLIST

"<"xevent">""*"[O-9]* -4 {XEVENT "i"}*
"<"xevent">"[O-9J* -4 XEVENT
"<" mscid">" -+ MSCJD
"<"iid">" "*"[0-9]. -t {lID :"/'}*

"<" iid">"[0-9]*
"<"mid">"

-+ IID
-+ IID
-+ MID

"<"aid">"
equations

-+AID

[I] Check: bl Errors: mil and Check: b, Errors: ml,

[2] check(<msc» = unique-instance-names(<msc»
and inst-declared(<msc»
and check-message-names(< msc»

Check: bl & b, Errors: mit u ml,

13

[3]

[4]

unique-instance-names(msc <mscid>; <msc-body> endmscj)

uin body 0

uin body «msc-body»

Check: true Errors: []

[5] uinbody (instance <iid>; <inst-body> endinstance; <msc-body» =
<iid> notin declared-instnames(<msc-body» and uin body «msc-body»

[6] <iid> notin [<iid>;, <iid>, <iid>;] =

Check: false Errors: [«duplicateuinstanceunameu" <iid> "u»]

[7] <iid> notin [<iid>"] Check: true Errors: [] otherwise

[8] declared-instnamesO = []

[9J declared-instnames(instance <iid>; <inst-hody> endinsta,nc€; <msc-body» =
[<iid>] u declared-instnames(<msc-body»

(10] declared-instnames(msc <mscid>; <msc-body> endmsc;) =
declared-instnames(<msc-body»

14 S. Mauw & E. A. van der Meulen

[111 inst-declared(<msc» =
relinsts(< msc» includedin declared-instnames(<msc»

[12J relinsts(<msc» = relinsts(xevents(<msc»)

[13J relinsts(O) = []

[14J relinsts([<xevent>; <xevent>°J) =

relinsts(<xevent» u relinsts([<xevent> oJ)

[151 relinsts(in <mid> from <iid>, to <iid>,) = [<iid>,]

[161

[17J

refinsts(out <mid> from <iid>l to <iid>2) ::;:

relinsts(<xevent» otherwise

[18J [] includedin [<iid> 0] = Check: true Errors: []

[19J [<iid>i, <iid> , <iid>;j inc1udedin [<iid>i, < iid> , <iid>:] =
[<iid>;, <iid>;] includedin [<iid>i, <iid>, <iid>:]

[20J [<iid>, <iid>;] includedin [<iid>;] =
Check: false Errors: [«instanceull <iid> "ullsedubutunotudeclared»] otherwise
and [<iid>;] includedin [<iid>;]

[22J check-message-names(< msc» = unique-message-names(xel)
and check-nonmatching-messages(xel)
when

xel = xevents(< msc>)

unique--message-names([<xevent> i j <xevent>2;
<xevent>;; <xevent>4j

[231 <xevent>;j)
= Check: false

Errors: [«duplicateumessageunameu" <mid> "U»]
and unique-message-names([<xevent>i;

<xevent>.i;
< xevent>;J)

when
[<mid>] = message-name(<xevent>,),
[<mid>] = message-name(<xevent>.),

false = matching-xevents(<xevent>"
<xevent>4)

[24J unique-message-names([<xevent> oJ) = Check: true Errors: [] otherwise

check-nonmatching-messages{[<xevent> i; <xevent>2j
<xevent>,ij <xevent>4j

[251 <xevent>;j)
= check-nonmatching-messages([<xevent> i j

<xevent>jj
<xevent>;])

when
matching-xevents(<xevent>2, <xevent>4) = true

Specification of tools for Message Sequence Charts

[26J check-nonmatching-messages([<xevent> oJ) =

aux-nonmatching-messages([<xevent>"']) otherwise

[27] aux-nonmatching-messages(O) = Check: true Errors: []

[28] aux-nonmatching-messages([in <mid> from <iid>, to <iid>,; <xevent>°J) =
Check: false
Errors: [«noumatchingueventuforu" in <mid> from <iid>1 to <iid>2 IIU»]
and check-nonmatching-messages([<xevent>°J)

[29J aux-nonmatching-messages([out <mid> from <iid>, to <iid>,; <xevent>°J) =

Check: false
Errors: [«noumatchingueventuforu" out <mid> from <iid>l to <iid>2 "u»)
and check-nonmatching-messages([<xevent> oJ)

[30] aux-nonmatching-messages([<xevent>; <xevent>°J) =
Check: true Errors: [] otherwise
and check-nonmatching-messages([<xevent> oJ)

4.4 Example

15

When the Check button in Figure 3 is selected the relevant functions are applied to the
term in the editor and the generated term rewrite system is used to compute the result. A
window will pop up containing this resuJt. Figure 4 shows the result of checking the BMSC
in our running example. Since this term is correct the list of error messages is empty. Next,
suppose that we change the message name k in out k to env of Figure 3 into m. Selecting
the check button then results in the window of Figure 5.

~ Requirements : /nfs/adamladal/emma/~
tree text ex and hel

Figure 4: Result of checking a correct BMSC

~ Requirements : Infs/adamladal/emma/~
tree text ex and hel

Ii Check:
!WI· f'alse
~i~i Errors:
iifl; [«duplicate messae:e name " m " » J ...

II
il

Figure 5: Result of checking a BMSC with a double occurrence of message m

16 S. Mauw & E. A. van der Meulen

5 Process algebra

This section contains the definition of the process algebra PABMSC. First we define the
atomic actions. After that we give the definition of the process algebra PAcand extend it
with the state operator.

5.1 Atomic actions

The process algebra PABMSC is an algebraic theory for the description of process behavior
based on ACP [BW90, BK84]. First we will define the set of atomic actions of PABMsc.

Every (extended) event occurring in a BMSC will be translated into an atomic action
from PA BMSC. Thus we have the atomic actions as displayed in Table 2.

Table 2: The atomic actions of PA BMsc

A

{in(s,r,m) I s,r E IID,m E MID}
{out(s,r,m) I s,r E IID,m E MID}
{out(s,env,m) I s E IID,m E MID}
U{in(env,r,m) IrE IID,m E MID}
{action(i, aid) liE II D, aid E AID}

The description in ASF+SDF of the atomic actions is given in module Atoms. Instead
of defining the sets from Table 2, we define four predicates. The equations defining these
predicates are straightforward.

5.1.1 Atoms

imports PA_Kerne15. 2 .
2 Identifiers3

. 2 . 1 Booleans2
.
2

.
t

exports
context-free syntax

in(IID, IID, MID)
in(env, lID, MID)
out(IID, IID, MID)
out(IID, env, MID)
action(IID, AID)

-+ATOM
-+ ATOM
-+ ATOM
-+ ATOM
-+ ATOM

is-in-atom(ATOM) -+ BOOL
is-out-atom(ATOM) -+ BOOL
is-env(ATOM) -+ BOOL
is-action(ATOM) -+ BOOL

hiddens
variables

atom[0-9]. -+ ATOM

"<"iid">"[O-9J* -+ lID
"<" mid">" [O-9J* -+ MID
"<" aid">" [O-9J* -+ AID

equations

[IJ is-in-atom(in{<iid>l, <iid>2) <mid») true

Specification of tools for Message Sequence Charts 17

[2] is-in-atom(atom) false otherwise

[3] is-out-atom(out(<iid> 1, <iid>2, <mid>)) true
[4] is-out-atom(atom) false otherwise

[5] is-env(in(env, <iid>2, <mid>)) = true

[6] is-env(out«iid>" env, <mid») = true

[7] is-env(atom) false otherwise

[8] is-action(action(<iid>, <aid») true

[9] is-action(atom) = false otherwise

5.2 PAe

The theory PABMSC is an extension of the theory PAe . The signature, :EPA~' of PAe consists
of the following functions.

1. the special constants d and E

2. the set of atomic actions A

3. the unary operator J
4. the binary operators +,., II and IL

The special constant 8 denotes the process that has stopped executing actions and cannot
proceed. This constant is called deadlock. The special constant e denotes the process that
is only capable of terminating successfully. It is called the empty process.

The atomic actions from A are the smallest processes in the description. The actual set
A is defined in Table 2.

The binary operators + and· are called the alternative and sequential composition. The
alternative composition of the processes x and y is the process that either executes process
x or y but not both. The sequential composition of the processes x and y is the process that
first executes process x, and upon completion thereof starts with the execution of process y.

The binary operator II is called the free merge. The free merge of the processes x
and y is the process that executes the processes x and y in parallel. For a finite set D =

{di , .. ·, dn}, the notation II dEDP(d) is an abbreviation for P(d,) II ... II P(dn). If D = 0
then II dEDP(d) = E. For the definition of the merge we use two auxiliary operators. The
termination operator J applied to a process x signals whether or not the process x has an
option to terminate immediately. The binary operator IL is called the left merge. The left
merge of the processes x and y is the process that first has to execute an atomic action from
process x, and upon completion thereof executes the remainder of process x and process y
in parallel.

In the priorities section of module PA-Syntax one finds the line {left: PROCESS II PROCESS
--+ PROCESS, PROCESS IL PROCESS --+ PROCESS} . This means that the operators
merge" II" and left merge" 11." associate from left to right. Moreover, the operator· for
sequential composition binds stronger than either of the merge operators, whereas the merge
operators bind stronger than the operator for alternative composition.

IS S. Mauw & E. A. van der Meulen

5.2.1 PA-Syntax

imports Layout2.2 .2

exports
sorts ATOM PROCESS
context-free syntax

ATOM -+ PROCESS
PROCESS "+" PROCESS -+ PROCESS {right)
PROCESS "." PROCESS -+ PROCESS {right)
"8" -+ PROCESS
"e" -+ PROCESS
PROCESS "II" PROCESS -+ PROCESS {left)
PROCESS "1L" PROCESS -+ PROCESS {left)
",f" "(" PROCESS ")" -+ PROCESS
"(" PROCESS ")" -+ PROCESS {bracket)

priorities
PROCESS "."PROCESS -+ PROCESS> {left:
PROCESS "II"PROCESS -+ PROCESS,
PROCESS "1L"PROCESS -+ PROCESS) >
PROCESS "+"PROCESS -+ PROCESS

For a E Au {6} and processes X, y, Z, the axioms of PA!;"are given in the Table 3.

Table 3: Axioms of PA,
x+y - y+x
(x+y)+z = x+(y+z)
x+x = x
(x+y)·z = x·z+y·z
(x·y)·z = x·(y·z)
x+8 = x
8·x d
X'c x
c· x x

xlly = xil.Y+ylLx+,f(x)·,f(y)
elLx = 8
a,xlLy = a,(xlly)
(x+y)lLz = xlLz+ylLz

,fee) = e
,f(a·x) = 8
,f(x + y) = ,f(x) + ,fey)

Al
A2
A3
A4
A5
A6
A7
AS
A9

TMI
TM2
TM3
TM4

TEl
TE2
TE3

Axioms AI-A9 are well known. The axioms TEI-TE3 express that a process x has an
option to terminate immediately if ,f(x) = e, and that ,f(x) = 8 otherwise. In itself the
termination operator is not very interesting, but in defining the free merge we need this
operator to express the case in which both processes x and yare incapable of executing an
atomic action. Axiom TMI expresses that the free merge of the two processes x and y is
their interleaving. This is expressed in the three summands. The first two state that x and

Specification of tools for Message Sequence Charts 19

y may start executing. The third summand expresses that if both x and y have an option
to terminate, their merge has this option too.

Some problems arise when interpreting the axioms of Table 3 as term rewrite rules.
It is clear that axiom Al hinders termination. If we would simply delete this axiom, we
would not be able to rewrite Ii + a into a, so we add axiom A6a from Table 4. A second
problem is that axiom A8 (x. e = x) is often used from right to left in calculations (e.g.
ali.b = a· eli.b = a· (e II b) = ... = a' b). Therefore, if we give A8 an orientation from left to
right, we must add the axioms TM3a and TE2a.

Finally, in order to simplify expressions we add axioms TM1a and TM1b. Note that all
these axioms are provable for closed process expressions.

Table 4: Additional axioms
Ii + x -" x A6a
ellx x TM1a
x lie = x TM1b
ali.x = a·x TM3a
,Ira) = Ii TE2a

We decided to split up the axioms of PA, over two separate ASF+SDF modules. The
first module PA-Kernel only contains rules which deal with simplification of expressions
containing the special constants. The second module PA contains the rules concerning the
actual rewriting into normal form. The reason is that after translating a BMSC into a
process algebra expression, one is not always interested in a complete reduction into normal
form. The simulator, for example, does not need the normal forms.

It is well known that the complete state space of a parallel process may become very large.
This is the so-called state explosion problem. The normal form of a process corresponds to
its state space, so we will only calculate it when necessary.

5.2.2 PA-Kernel

imports PA_Syntax,·2.1

hiddens
variables

x-t PROCESS
equations

[I] x+ d = x

[2] 5 + x = x
[3] ,s.x ,s

[4] X.e = x

[5] <.x x

[6] X II < x

[7] <lIx x

20 S. Mauw & E. A. van der Meulen

5.2.3 PA

imports PA_Kerne15 .2 . 2

hiddens
variables

a ~ATOM
[xyz] ~ PROCESS

equations

[I] (x + y) + z x+ y+ z

[2] x+x x

[3] (x+y).z x.z+y.z
[4] (x. y) . z = x.y.z

[5] x II y = x IL y + y IL x + v'(x) . v'(y)

[6] e IL x = J

[7] a.xILy a . (x II y)

[8] a IL x a.x

[9] JILx = J

[10] (x+y) IL z = xlLz+ylL z

[11] v'(e) e

[12] v'(a. x) J

[13] v'(a) J

[14] v'(J) J

[IS] v'(x + y) v'(x) + v'(y)

5.3 The state operator AM

A Basic Message Sequence Chart specifies a (finite) number of instances that communicate
by sending and receiving messages. A message is divided into two parts: a message output
and a message input. The correspondence between message outputs and message inputs has
to be defined uniquely by message name identification.

A message input may not be executed before the corresponding message output has been
executed. We introduce an operator AM that enables only those execution paths that respect
the above constraint. The operator AM is an instance of the state operator as can be found
in [BW90]. This operator remembers all message outputs that have been executed in a set
M and only allows a message input if its corresponding message output is in that set.

Before specifying the signature of the state operator, we need a specification of sets of
atomic actions with operators for testing, difference and union.

5.3.1 Atom-Set

imports Atoms5 .1.1

exports
sorts ATOM-SET
context-free syntax

'T' {ATOM ","}* 'T'
elem(ATOM, ATOM-SET)

~ ATOM-SET
~BOOL

Specification of tools for Message Sequence Charts

ATOM-SET "\" ATOM-SET --t ATOM-SET {left}
ATOM-SET ''u'' ATOM-SET --t ATOM-SET {left}
"e' ATOM-SET ")" --t ATOM-SET {bracket}

priorities
ATOM-SET "\"ATOM-SET --t ATOM-SET>
ATOM-SET ''u'' ATOM-SET --t ATOM-SET

hiddens
variables

M [0-9]* --t ATOM-SET
b"*"[O-9] --t {ATOM ","}*
b"+"[O-9] --t {ATOM ","}+
lab) --t ATOM

equations

[I] {b~, a, b;, a, b;} {b~, a, b;, bi}
[2] elem(a, {b;, a, b;}) true

[3J elem(b, M) false otherwise

[4] {b;, a, b;} \ {b;, a, b;} = {b;, b;} \ {b;, b;}

[sJ MI \ M, MI otherwise

[6] {bi} u {b;} = {b;, b;}

5.3.2 State-Operator-Syntax

imports Atom_Set5
.
3

.
1

exports
context-free syntax

",\" "_" ATOM-SET "(" PROCESS ")" --t PROCESS

The axioms for the state operator are given in Table 5.

Table 5: Axioms for the state operator AM
AM(e) e if M - 0 LMI
AM(£) = a if M "10 LM2
AM(a) a LM3
AM(a·x) = a'AM(x) ifaltAoUAi LM4
AM(out(i, j, m) . x) = out(i, j, m) . AMU{ou'(i.j,m)}(x) LM5
AM(in(i, j, m) . x) inri, j, m) . AM\{ou'(i.j,m)}(X) if out(i,j, m) E M LM6

if out(i,j,m) E M
AM(in(i,j,m)'x) = a ifout(i,j,m)ltM LM7
AM(X + y) = AM (x) + AM(Y) LM8

21

Again, some additional axioms are needed in order to get a complete term rewriting
system. These are displayed in Table 6.

The axioms are again partitioned in axioms for simplification (module State-Operator
Kernel) and axioms for reduction to normal form (module State-Operator). The equations
can be derived easily from Tables 5 and 6.

22 S. Mauw & E. A. van der Meulen

Table 6: Auxiliary axioms for the state operator
AM(a! - a
AMCa) = J
AMCautCi,j, m)) = outCi,j, m) . J
AMCinCi,j,m)) = inCi,j,m)
AMCinCi,j,m)) = inCi,j,m).J
AMCinCi,j,m)) J

5.3.3 State-Operator-Kernel

imports State-Operator-SyntaxS
.
3

.
2

hiddens
variables

if a ¢ AD U Ai, M ~ 0
ifa¢ ADUAi , M # 0

if outCi,j,m) EM, M\{outCi,j,m)} = 0
if outCi,j,m) EM, M\{outCi,j,m)} # 0
if outCi,j, m) ¢ M

M [0-9]* -+ ATOM-SET
a -+ ATOM
x -+ PROCESS
"<17 iid">"[O-9]* -7 lID
"<" mid">" --+ MID

equations

(1) AM (0) = e when M = {}

(2) AM (e) = <I when M", {}

(3) AM (0) a

5.3.4 State-Operator

imports State-Operator-Kerne15 .
3

.3

hiddens
variables

M [0-9]* -+ ATOM-SET
a -+ ATOM
[xyz) -+ PROCESS
"<" iid">" [0-9]* --+ lID
"<"mid">" --+ MID

equations

[11 AM (a . x) = a . AM (x)

[21 AM (a) = a

when
is-out-atom(a) = false,

is-in-atom(a) = false

when
M={},

is-out-atom(a) = false,
is-in-atom(a) = false

LM4a
LM4b
LM5a
LM6a
LM6b
LM7a

Specification of tools for Message Sequence Charts 23

[3] AM (a)= a.1i

when
M f. n,

is-out-atom(a) = false,
is-in-atom(a) = false

[4] AM (out(did> I , <iid>2, <mid» . x) =

out«iid>l, <iid>2, <mid». AM U {out«iid>l, <iid>2, <mid»} (x)

[5] AM (out«iid>l, <iid>2, <mid>)) = out«iid>l, <iid>2, <mid».1i

[6] AM (in (<iid>l, <iid>2, <mid» . x)

[7] AM (in«iid> I, <iid>2, <mid»)

[8] AM (in«iid> I, <iid>2, <mid»)

[9] AM (in«iid>lJ <iid>2, <mid». x)

in«iid>IJ <iid>2J <mid»
A (~ . M \ {out«iid>l, <iid>2, <mid»}

when

elem(out«iid>l, <iid>2, <mid», M) = true

in«iid>" <iid>2, <mid»

when

elem(out«iid>" <iid>2, <mid», M) = true,
M\ {out«iid>l, <iid>2, <mid>)} = n

= in«iid>lJ <iid>2, <mid». J

when

elem(out(<iid>" <iid>2, <mid», M) = true,
M\ {out«iid>l, <iid>2, <mid>)} f. n

when

elem(out«iid>l, <iid>2, <mid», M) = false

[10] AM (in«iid> I, <iid>2, <mid») = Ii
when

elem(out«iid>l, <iid>2, <mid», M) = false

6 Translation into process algebra

In this section, we will define a semantic function S that associates to every Basic Message
Sequence Chart in textual format a closed PA BMSC term. Before we give the definition of
this semantic function we need to explain some auxiliary functions. The powerset of a set
S is denoted by IP(S).

The function

Instances: .c«msc» -t IP(.c«inst def»)

24 S. Mauw & E. A. van der Meulen

that associates to a Basic Message Sequence Chart the set containing all instance definitions
of the instances defined in the chart, is defined by

Instances(msc <mscid> j <msc body> endmsc;) Instancesbody(<mse body»

where the function

InstanceSOOdy : C«mse body» --+ JP(C«inst def»)

is defined by

InstaneeSbody (<>) = 0
InstaneeSbody«inst def><mse body» = {<inst def>} U InstanceSbody«mse body»

Next we define the following two functions

Name: C{<inst def» --+ C{<iid»
Body: C{ <inst def» --+ C(<inst body»

These functions associate to an instance definition its name and body.

Name(instance <iid>;<inst body> endinstance;) ::::: <iid>
BodY(instanee <iid>;<inst body> endinstanee;) = <inst body>

6.1 The semantic function

The general idea is that the semantics of a Basic Message Sequence Chart is the free merge
of the semantics of its instances. By this construction we enable all interleavings of the
message outputs and message inputs. However, a message input can only be performed after
its corresponding message output. In order to rule out all interleavings where a message
output is preceded by the corresponding message input we use the state operator AM. We
define the function S from the language generated by < m > to the set of PABMSC terms,
S: C«mse» --+ T(EpA

BMSC
) , by

S[mse) = A0 (II ide! EInstances(~,c) Sin,,[ideJ])

The semantic function Sin,' : C(<inst def» --+ T(EpA) is defined to express the
BMSC

semantics of one instance in separation. In the textual representation of an instance the
atomic actions are specified in the order they are to be executed, thus the semantics of an
instance definition is the sequential composition of its actions.

where for i E C(<iid» the function

SiDdy : C(<inst body» --+ T(EpA)
BMSC

is defined by

Siody[<>] = E:

Stody[<event><inst body>] S;vent[<event>]. stody[<inst body>]

Specification of tools for Message Sequence Charts

and for every i E L(<iid» the function

S;vent : L«event» --t T(EpABMSC)

is defined by

S!vent[in <mid> from <iid>;] = in«iid>,i,<mid»
S!vent[in <mid> from env;] = in(env,i,<mid»
S!vent[out <mid> to <iid>;. = out(i,<iid>,<mid»
S!vent[out <mid> to env;] = out(i,env, <mid»
S!vent [action <aid>;] = action(i, <aid»

25

The translation of the semantic function into ASF+SDF is rather straightforward. The
only problem is that the generalized merge construct (II ide! Elnstances(m,,)) occurring in
the definition of Slmsc] requires higher order functions. Therefore, we combined the gener
alized merge and the application of the function Sin" into one single function II Sin". This
function requires the collection of all instance definitions as input and calculates the parallel
composition of the semantics of these instances. The set of instances is calculated by the
auxiliary function Instances.

Furthermore, notice that we only import the kernel of the process algebra. This means
that we only have the signature and some rules for simplification, but not the defining
equations.

6.1.1 BMSC-Semantics

imports State-Operator-Kernel'·3.3 BMSC-Synta.,,3.2.2
exports

sorts INST-DEF-LIST
context-free syntax

"S' "e' MSC '')''

hiddens

"8' "_" "inst" "(" INST-DEF ")"
I'S' ('" "body" "~,, lID 'T' INST-BODY ")"
HS" "_" "event" "~,, lID lie' EVENT I')"

context-free syntax
"liS" "_" "inst" INST-DEF-LIST
"e' {INST-DEF '''''}* ")"
INST-DEF-LIST ''U'' INST-DEF-LIST
"Instances" (MSC)
"Instances" "_" "body" "e MSC-BODY ")"
"Name" (INST-DEF)
"Body" (INST-DEF)

variables
"<" inst-def'>" "*"[O-.9l* -+ {INST-DEF 'I/'}*
i -t IID
"<"msc">" -+ MSC
"<"msc-body">" -+ MSC-BODY
"<"inst-def'>" -+ INST-DEF
"<"inst-body">" -+ INST-BODY
"<" event">" [0-9J* -+ EVENT
"<" mscid">" --t MSCID
'1<" iid">" -+ lID
"<"mid">" -+ MID
"<" aid">" -+ AID

-t PROCESS
-+ PROCESS
--t PROCESS
-+ PROCESS

--t PROCESS
--t INST-DEF-LIST
--t INST-DEF-LIST {left}
-t INST-DEF-LIST
-t INST-DEF-LIST
--t IID
--t INST-BODY

26 s. Mauw & E. A. van der Meulen

equations

[11 S«mse» = An (!ISinst Instanees«msc»)

[3J IISinst «inst-def» = S. t «inst-def»
IDS

[4J liS. t «inst-def>, <inst-def>") =
JUS

Sinst «inst-def» IllISinst «inst-def>")

[5J Sinst «inst-def»
flame(< inst-def»
~ body (Body(< inst-def>))

i
[6J Sbody 0

[7J S~ody «event>; <inst-body» =

Si (< event» . Si « inst-body>)
event body

i
[8J S (in <mid> from <iid» inC <iid>, i, <mid»

event

[9J Si (in <mid> from env) = inC env, i, < mid>)
event

[IOJ Si (out <mid> to <iid»
event

out(i, <iid>, <mid»

[11J Si (out <mid> to env) = out(i, env, <mid»
event

[12J Si (action < aid>) = aetion(i, < aid>)
event

[13J Instanees(mse <mseid>; <mse-body> endmse;) =
Instane€Sbody «mse-body»

[14J Instaneesbody 0 = 0

[15J Instaneesbody «inst-def>; <mse-body» =

«inst-def» U Instaneesbody «mse-body»

[16J Name(instanee <iid>; <inst-body> endinstanee)

[17J Body(instanee <iid>; <inst-body> endinstanee)

<iid>

<inst-body>

[18J «inst-def>;) U (dnst-def>;) = «inst-def>;, <inst-def>;)

Specification of tools for Message Sequence Charts 27

6.2 Example

The result of applying this translation to the BMSC in the editor of Figure 3 is the process
algebra term A0(out(a,b,m). out(a,env,k) lIaction(b,p). in(a,b,m)). The application of
the merge operator (II) shows that the semantics of the given BMSC is the interleaved
execution of the processes out(a, b, m) . out (a, env, k) and action(b,p) . in(a, b, m)). The
state operator ('\0) in front of the expression enforces that input of message m only occurs
after the corresponding output.

Figure 6 shows the window that appears after having selected the Semantics button.

00 BMSC-5elllantics : Infs/adal'l/adaVe,>IIlllla/5P[C/MSC/H[ld/SelllantiCS I g[J
t~ee text ex and hoi

Figure 6: Result of computing the semantics of a BMSC

6.3 Normalization

The state operator and the merge operator in the expression of Figure 6 can be eliminated.
This is called normalization. The resulting term contains the operators for sequential com
position (.) and alternative composition (+) only. It expresses all possible behaviors of
the BMSC. The normalizer is simply defined by combining the definitions of the semantic
functions and the complete specification of the process algebra.

6.3.1 Normalize

imports BMSC-Semantics6 . 1. 1 PA5 .2 .3 State-Operator5 .3 .4

6.4 Example

Figure 7 shows the effect of pressing the normalize button in the editor of Figure 3. It
expresses the branching structure of the process. First one can make a choice between
executing out (a, b, m) and action(b,p). If one chooses the first option, another choice has to
be made between out (a, env, k) and action(b,p). The rest of the process can be understood
in a similar way.

~ Hormal1ze : Infs/adam/adal/el'lma/5PEC/M5C/N[W/NormallzedS~
tT"ce text ex and hel

out <a. b • .,) •
<out(a,env,k) • actlon(b.p) • i.nCa,b.m)

aetton(b.p) •
(In(a,b,m) • out(a,env,k) • out(a,env,k) • i.n(a,b,""») .

!!Iction(b.p) •
out(o,b,l'l) •

(out(a.env,k) • in(a,b.l'l) ~ in(e,b.",) • out(a.env,k» ...

Figure 7: Result of normalizing the semantics of a BMSC

28 S. Mauw & E. A. van der Meulen

7 A simulator

For large BMSCs, the expressions describing the normalized semantics as in Figure 7 become
quite large and complex. This is the so-called state explosion problem. Therefore, the tools
offer the possibility to walk through the events of a BMSC in any of the admitted orders.
Thus, the user can interactively simulate the behavior of a BMSC. For this purpose we used
the operational semantics for BMSCs from [MR94aJ. This operational semantics defines for
a given BMSC a labeled transition system. The transitions correspond with the events of
the BMSC.

First, we will interpret the definition of the transition rules in an algebraic specification.
After that, we define the additional functions needed to obtain a simulator.

7.1 Transitions

In this section we define a structural operational semantics of Basic Message Sequence
Charts in the style of Plotkin [Pl083J. For this purpose we define action relations on closed
PA BMSC terms.

On the set of PABMSC terms we define a predicate.j.<; T(EpABMSC) and binary relations

-4 <; T(EpABMSC) x T(EpABMSC) for every a EA. These predicates are defined by means
of inference rules, which have the following form.

q

This expression means that for every instantiation of variables in PI, . . . , Pnl q we can con
clude q from PI, ... lPn' If q is a tautology, we omit PI, ... ,Pn and the horizontal bar.

The intuitive idea of the predicate .j. is as follows: t.j. denotes that t has an option to
terminate immediately, i.e. c: is a summand of t. for X,y E T(EpABMSC)' and M ~ A01 the
predicate .j. is defined in Table 7.

Table 7: The predicate .j.

(x + y) .j.

(J(x)).j.

x.j.,y.j.

(x. y) .j. (x + y) ~

The intuitive idea of the binary operator ~ is as follows: t ~ s denotes that the process
t can execute the atomic action a and after this execution step the resulting process is s.
For x,x',y,y' E T(EpA BMSC)' a E A, M <; Ao , i,j E £«iid», and m E £«mid», the

binary relations -4. are defined in Table 8.
We will illustrate the use of these action relations with an example. Consider the following

expression.
A0(out(a, b, k) II in(a, b, k))

We have out(a,b,k)out~b.k)l':, so we can derive out(a,b,k) Ilin(a,b,k)"ut~b.k)l':lIin(a,b,k).
From this we can conclude

a
a -t 0

x ..; x'

x+y ~ X,

x ..; x'

X II y -"t X, II y

Specification of tools for Message Sequence Charts

Table 8: The action relations ..;

y ..; y'

x+y ..; y'

y ..; y'

x II y -"t X II y'

a X -t

x·y -"t

X -"t
xll.y

a
-t

X'
x, .y

x'

x' II y

29

x./-, y ..; yl

a y' x·y -t

a¢AoUAi ! X ..; X'

AM(X) -"t AM (x')

Qut(i,j,m)
X -'-+ (..) M in(i,;,m),

out 1..,J,m E ,X ---r X

(X') A (X) inG4m) A ..
M M out t, ,m

A0 (out(a, b, k) II in(a, b, k)) ou''4
b
,k) A{ ou'(a,b,k)} (c II in(a, b, k))

N h · (b k)in(a.b,k) d d' II' (b k)in(a.b,k) 11Th h ext we ave 1.71. a, l' --t c, an we can enve c 1.1l a, " -t E E. us we ave

In order to see that this expression has the possibility to terminate, we derive E ..1- and thus
(ollo),/-,so

Finally, we conclude that the given process .\.0 (out(a, b, k) II in (a, b, k)) can first execute
out (a, b, k), then execute in(a, b, k) and finally terminate. Note that this is the only ex
ecution sequence that can be derived from the inference rules.

7.2 Algebraic specification of the transition rules

The translation of the transition rules into an algebraic specification needs some explanation.
In the transition rules we defined the transition predicate and the termination predicate.
However, for a simulator we need to know for a given process algebra expression all possible
transitions coming from this expression. Thus we are not interested in the transition relation
itself, but in the function transitions whiCh calculates for a given PROCESS a TRANSI
TIONLIST. A TRANSITION consists of ar ATOM which is the label of the transition and a
PROCESS which is the resulting process after executing the atomic action. Some additional
functions are needed for calculating the list of transitions of a given process.

For example, Table 8 shows that if one wants to calculate the transitions for x + y, one
simply has to calculate the transitions of both X and y (equation 4). The case of x.y is a
bit more involved. By combining the two derivation rules for sequential composition from
Table 8, we obtain equations 5 and 6. If we consider the case that x does not terminate) the
subtle point is that the transitions of x.y are not completely equal to the transitions of x.
The residue after executing an action has to be extended with y. For this purpose we use
the overloaded "." function. The same procedure is carried out for the remaining operators.

The algebraic specification of the predicate terminates is straightforward.

(x')

30 S. Mauw & E. A. van del' Meulen

7.2.1 Transitions

imports BMSC_Semantics6 . t . 1

exports
sorts TRANSITION TRANSITIONLIST
context-free syntax

"-" ATOM "-->" PROCESS
'T' {TRANSITION ","}. "]"
TRANSITIONLIST "U" TRANSITIONLIST
TRANSITIONLIST "." PROCESS

--> TRANSITION
--> TRANSITIONLIST
--> TRANSITIONLIST {left}
--> TRANSITIONLIST

TRANSITIONLIST "II" PROCESS --> TRANSITIONLIST
PROCESS "II" TRANSITIONLIST --> TRANSITIONLIST
"filter" "_" ATOM-SET "C' TRANSITIONLIST ")" --> TRANSITIONLIST
terminates(PROCESS) --> BOO L
transitions(PROCESS) --> TRANSITION LIST

"(" TRANSITION LIST ")" --> TRANSITIONLIST {bracket}
hiddens

variables
M --> ATOM-SET
x --> PROCESS
y --> PROCESS
a --> ATOM
t~O-9J' --> {TRANSITION ","}.
"<" iid">" [O-9J* --+ lID
"<" mid">" [0-9]* --+ MID
"<"aid">"[O-.9]. --+ AID

equations

[lJ transjtjons(~) 0
[2J transi tions(e) 0
[3J transitions(a) [- a --> eJ
[4] transitions(x + y) = transitions(x) U transitions(y)

[5J transitions(x. y) transitions(x) . y u transitions(y)
when

terminates(x) = true

[6] transitions(x . y) = transitions(x) . y

when
terminates(x) = false

[7J transitions(x II y) = transitions(x) II y u x II transitions(y)

[8J transitions(x U. y) = transitions(x) II y

[9] transitions().. M (xl) = filter M (transitions(x»

[10] terminates(e) = true

[11] terminates(a) = false

[12J terminates(8) false

Specification of tools for Message Sequence Charts

[131 terminates(x + y) = terminates(x) I terminates(y)
[14] terminates(x. y) = terminates(x) & terminates(y)

[IS] terminates(v'(x» terminates(x)

[16] terminates(x II y) = terminates(x) & terminates(y)

[17] terminates(AM (x)) = terminates(x)

[18] [tid u [tl,] = [ti" t/,]
[19] D . x []
[20] [-a--> x, tq. Y = [-a--> x. y] U [tq. Y

[21] [] II y = 0
[22] [- a --> x, tq II y = [- a --> x II y] U [tij II Y

[23] y II [] = []
[24] y II [- a --> x, tij = [- a --> y II :Ij u y II [tij

[25] filter M ([ll = []

[26] filterM ([-out«iid>" <iid>" <mid» --> x, tij) =

[-out«iid>l, <iid>" <mid» --> AMU {out(did>t. did>" <mid»} (x)]
U filter M ([tq)

[27] filter M ([- in(<iid>l, <iid>2, <mid» --> x, tm

= [-in«iid>l, <iid>2, <mid»

31

--> AM \ {out(did>l, <iid>" <mid»} (x)]
U filter M ([t4)

when
elem(out{<iid>l, <iid>2, <mid», M) = true

[28] filter M ([-in«iid>l, <iid>" <mid» --> x, t4) = filterM ([tm

when
eJem(out«iid>I' <iid>2, <mid», M) = false

[29] fiJter M ([-a --> x, t4) =

[- a --> AM (x)] U filter M ([1m otherwise

7.3 Simulation

A simulator displays the current state of the BMSC and offers the user a choice between all
possible continuations. Such a STATE consists of three parts. The first component is the
PROCESS under consideration. The second component, NUMBERED-TRLIST, is the list
of transitions associated to this process. The transitions are numbered in order to offer the
user the possibility of choosing such a transition. The third component of the state is an
ATOMLIST which contains the history of the simulation session. It consists of all atomic
actions chosen so far.

32 S. Mauw & E. A. van der Meulen

The function execute accepts a number and a state and calculates the resulting state
after execution of the transition labeled with the given number.

Note that the imported module Naturals is not included in this paper. It defines the
sort NAT with obvious properties.

7.3.1 Simulator

imports Naturals Transitions7
.2. 1

exports
sorts NUMBERED-TRLIST STATE NUMBERED-TRANSITION

ATOMLIST NUMBERED-ATOM NUMBERED-ATOMLIST
context-free syntax

initial-state(PROCESS) --+ STATE
"<" PROCESS ","
NUMBERED-TRLIST ","
ATOMLIST ">" --+ STATE

'T' {ATOM "/'}* 'T'
"(" NAT ")" ATOM
"[" {NUMBERED-ATOM ","}* "]"
ATOMLIST "u" ATOMLIST
execute(NAT, STATE)

--+ ATOMLIST
--+ NUMBERED-ATOM
--+ NUMBERED-ATOMLIST
--+ ATOMLIST
--+ STATE

"(" NAT ")" "-" ATOM "--+" PROCESS --+ NUMBERED-TRANSITION
"[" {NUMBERED-TRANSITION ","}* "]" --+ NUMBERED-TRLIST
number(TRANSITIONLIST) --+ NUMBERED-TRLIST
number-from(NAT, TRANSITIONLIST) --+ NUMBERED-TRLIST

{left }

NUMBERED-TRLIST ''u'' NUMBERED-TRLIST --+ NUMBERED-TRLIST {left}
hiddens

variables
tl
n
a
al

--+ TRANSITIONLIST
--+ NAT
--+ ATOM
--+ ATOMLIST

a[O-9J."*" -t {ATOM ","}*
trjO-9]*"*" --+ {TRANSITION ","}*
ntrjO-9]*"*" --+ {NUMBERED-TRANSITION ","}*
"10-9]* --+ PROCESS
ntl --+ NUMBERED-TRLIST

equations

[lJ number(tl) = number-from(l, tl)

[21

[3J

[4J

[5J

[6J

number-from(n, 0) = []
number-from(n, [- a --+ x, trO]) = [(n) - a --+ x] U number-from(n + 1, [trO])

[ntri] u [ntr;] = [ntri, ntr;]

execute(n, < Xl, [ntri, (n) - a -t X2, ntr;], a1 » =

< l'.!, number(transitions(l'.!)), al u [a] >

[ail u [a;] = [ai, a;]

Specification of tools for Message Sequence Charts 33

7.4 Example

For the running example, represented by the term A0(aut(a, b, m)·out(a, env, k) II actian(b,p)·

in(a,b,m)) the set of transitions is (ut(4',m)A0(aut(a,env,k) Ilactian(b,p). in(a,b,m)),

acti~(b,p) A0(aut(a, b, m).aut(a, env, k) II in(a, b, m))}. This means that executing event aut (a, b, m)
results in the BMSC represented by A0(out(a, env, k) II actian(b,p) ·in(a, b, m)) and that exe
cution of the alternative action actian(b,p) results in A0(out(a, b, m)·out(a, env, k) II in(a, b, m)).
Likewise) the transition sets of the resulting processes can be determined. If the BMSC is
finished, the resulting process is e.

IT we select the simulate button in Figure 3, we obtain three windows from Figure
8. The upper window is the selection window, in which all possible continuations of the
BMSC are displayed. Either event may occur. The middle window displays the list of all
events executed until now. This list is empty. The lower window shows the process algebra
representation of the BMSC under consideration.

!~t~~:~e~W;~~~~i.:~~~~?~~.?E~~~~~s!!~~:2:~~w2~~
«select. ... n event.» [! 1) outla.b,rnl. i

(2 } ,"ction(b.pl 1... i
~ Output : Infs/ada~/adal/e~ma!SPEC/M5C/HEW/Trace' ~

tree text ex ... nd hel

, '.
~i-~tE~~i=f6~~~~~~~~~!.~-~-~~1!.ff(=8~~2H~?~~!:~~~-=====--==~1
~ l ... bd. _ {}(oue({I,b,ml . out({I,env,kl II actlon(b.pl • In(a,b,m)) ... I

I

Figure 8: Starting the simulator

If the user selects the first event, all windows will be updated (see Figure 9). The
selection window now contains a new choice. The trace window contains the chosen event
and the current window contains the process algebra representation of the BMSC resulting
after having executed the event.

«select an event» [(1) OL!t' ... ,env.kl.
(2) actlon(b,p> 1 ...

roo-O-':;t;;;;;t--;'-/~-i';/~d;;':;/~d~i;;;;;;;isPEC-iMSC/H[W/TraC;-]ID
r'--tree-t'e)'t-expand--he1P---~----------~~-'-"-----·-·~1

[oLit,a, b,ml 1 i
, ____ ,_, __ ,_,.,.:-_____ ., ________ . ____________ ~ __ L __________ 'j! 'Hi

I
~.H

I,~ Outpu~..!...!~.!:.~(~,~~~!.~~.!!_~~ma;:~~EE::.~C/~_~~rre~ ____ , __ ~..1
t ... ee text ex lIOnd hel I

I
lambda _ (out(a,b,m) } (out(... env,k) II actiontb.pl . .i.nt ... b.m» ... i

!
:":.- .• !

Figure 9: Result after selecting event number (1) in the previous figure

If we subsequently select the second event, we obtain the situation from Figure 10.

34 S. Mauw & E. A. van der Meulen

«select !!In eyent» ((1) ol,lt(.. ,en kl,
(2) In(",b,m) l~ I

kl!l ou'tput : Infs/adafl'l/adal/~m",a/sPEc/H5c/N,EW/Tl"ac;-gDl
,- tre" t.,,,,t ex and hel ---- --- -1

C cuet .. ,b). I

Ict10n(b.p) 1. i

r!!l-OutP~: /nrs/ad~adal'/~--;;;;;;a;:~~EciM_~~!N[w/[dr;r.t---- .-!lli
tree text ex and hill j

Figure 10: Result after selecting event number (2) in the previous figure

[!j-Sl-;n~il:nor:ui---;-;'n-r;7~am/ ada l/er;;;;;;-isPEC/'MSC:i-NEW/S.@
tr~~t;";I---------'----------'---'-----'--1

.«select an e nt» ((1) in(a,b,m) 1.

Figure 11: Result after selecting event number (1) in the previous figure

Next, we select the first event and obtain the situation from Figure II.
Finally, there's only one remaining event. The result of selecting this event is in Figure

12. It shows that execution of the BMSC is finished.

8 Conclusions

The main objective of this case study was to provide evidence that the formal semantics
definition of Basic Message Sequence Charts can be used to derive tools in a straightforward
way. The translation of the process algebra and the definitions of the semantics functions
into algebraic specifications is easy, but care has to be taken when implementing them as
rewrite rules. In order to obtain a nice term rewriting system, some rules have to be deleted,
added or modified.

We also specified a simulator tool based on the operational semantics for Message Se
quence Charts. The definition of this simulator could serve as a formal specification of such
a tool. Finally, we formalized the static requirements.

By using the ASF+SDF Meta-environment we derived (prototypes of) tools for BMSCs.
It proved to be a flexible programming environment whose capabilities of incremental de
velopment helped in easy prototyping. The possibilities of defining a user interface on top
of the term rewrite engine enables the generation of demonstrable and usable tools.

Specification of tools for Message Sequence Charts

r,.-.------.--------.-.-.... --.-.. ~-·-·-·-·-,
!...~_ SlI11U~~Or-Ul : InfS/a~~~~~_~,!~_'!~_a!:~EC~':I..?CINEW/Sgl
I tree te><t expand h"lp

«select lin event» [J.. I

-------------,-·,---,-,·,-----,--------------.L-1 ~ Output : Infs/ada.III/~~_~!!_~mma/SPEC/MSC/NEW/Tl"ace ~;
I tree te><t 11>< and hel I

(out{ ... b.m>.
IIctlon(b,p),
ou.t{a.env.k.).
In{a,b,m} 1 .. I _________ ~ ___ . _____________________ ----.1.. _________ •

ll!l Output: Infs/adam/adal/emma/SPEC/MSC/NEW/CUT'rent g)]1
~ete-;;:tex-Md"h-;r-------------- ------~---------I

"'..... ,,"10". I

Figure 12: Result after selecting event number (1) in the previous figure

35

The possibility of prototyping makes it easy to explore new versions of MSC in stan
dardization work and to make dialects of MSC for internal use. Changes to the syntax only
require minor modifications to the specification_ Changes with respect to the semantics and
new language features require modification of the formal semantics and a corresponding
modification of the specification.

A disadvantage of the term rewriting paradigm in ASF+SDF is that, sometimes, easy
to understand algebraic rules have to be transformed into a more implementation directed
form_ The transformation into a TRS sometimes implies that decisions on implementation
details are made, which were not expressed in the algebraic specification_ For example, if
we aim at complete TRSs (i.e. TRSs which are confluent and terminating, see [Klo92]), we
need to decide on the implementation of commutative operators and the implementation of
sets by ordered lists. Therefore, a completely automatic implementation of an algebraically
specified semantics by means of a TRS is not always feasible_

The techniques described in this paper can be easily extended to the general setting of
Message Sequence Charts_ Due to the modular description, the framework for Basic Message
Sequence Charts can be reused almost completely.

Starting from the algebraic specifications, there are two ways to proceed with the devel
opment of real tools. The obvious way is to manually translate the functionality expressed in
the equations into efficient code_ The specification can then be used for validation purposes_
The second way is to (semi-) automatically generate efficient programs. This is topic of
ongoing research ([KW93]).

References

[BK84] J.A. Bergstra and J.W. lOop. Process algebra for synchronous communication.
Information B Control, 60:lO9-137, 1984.

[BW90] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theo
retical Computer Science 18_ Cambridge University Press 1 1990.

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specifications, vol. I, Equations
and Initial Semantics_ Springer-Verlag, 1985.

[IT94] ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). lTU
TS, Geneva, 1994.

36

[IT95]

S. Mauw & E. A. van der Meulen

ITU-TS. ITU-TS Recommendation Z.120 Annex B: Algebraic semantics of Mes
sage Sequence Charis. ITU-TS, Geneva, Pub!. Sched. 1995.

[Kli93] P. Klint. A meta-environment for generating programming environments. ACM
Iransactions on Software Engineering Methodology, 2(2):176-201, 1993.

[Klo92] J.W. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay, and T. Maibaum,
editors, Handbook of Logic in Computer Science, volume II, pages }-116. Oxford
University Press, 1992.

[Ko092] J.W.C. Koorn. Connecting semantic tools to a syntax-directed user-interface.
Report P9222, Programming Research Group, University of Amsterdam, 1992.

{Koo94} J.W.C. Koarn. Generating uniform user-interfaces for interactive programming
environments. PhD thesis, University of Amsterdam, 1994. ILLC Dissertation
series 1994-2.

[KW93] J. F. Th. Kamperman and H.R. Walters. ARM, abstract rewriting machine. Tech
nical Report CS-9330, Centrum voor Wiskunde en Informatica, 1993.

[MR94a] S. Mauw and M.A. Reniers. An algebraic semantics of Basic Message Sequence
Charts. The computer journal, 37(4):269-277, 1994.

[MR94b] S. Mauw and M.A. Reniers. An algebraic semantics of Message Sequence Charts.
Experts Meeting SG 10, Turin, TD9009, ITU-TS, 1994. Report CSN94/23, Eind
hoven University of Technology, 1994.

[Pl083] G.D. Plotkin. An operational semantics for CSP. In Proceedings of the Conference
on the Formal Description of Programming Concepts, volume 2, Garmisch, 1983.

[Ren94] M.A. Reniers. Syntax requirements of Message Sequence Charts. Study Group
Meeting SG10, Geneva, TD59, ITU-TS, 1994.

Computing Science Reports

In this series appeared:

93ftll

93/02

93/03

93/04

93/05

93/06

93/07

93/08

93/09

93/10

93/11

93/12

93/13

93/14

93/15

93/16

93/17

93/18

93/19

93/20

93121

93/22

93/23

93/24

93/25

93/26

93127

93/28

93/29

93/30

R. van Geldrop

T. Verhoeff

T. Verhoeff

E.H.L Am,
I.H.M. Karst
P.], Zwietering

J.C.M. Baeten
C. Verltoef

J.P. Veltkamp

P.O. Moerland

I. Verhoosel

K.M. van Hee

K.M. van Hee

K.M. van Hee

K.M. van Hee

K.M. van Hee

I.C.M. Baeten
I.A. Bergstra

1.C.M. Baeten
I.A. Bergstra
R.N. Bol

H. Schepers
1. Hooman

D. Alstein
P. van der Stok

C. Vemoef

G·J. Houben

F.S. de Boer

M. Codish
D.Dams
G. File
M. Bruynooghe

E. Poll

E. de Kogel

E. Poll and Paula Severi

H. Schepers and R. Gerth

W.M.P. van der Aalst

T. lOoks and D. Kratsch

F. Kamareddine and
R. Nederpelt

R. Post and P. De Bra

I. Deogun
T. lOoks
D. Kratsch
H. Muller

Department of Mathematics and Computing Science
Eindhoven University of Technology

Deriving the Aho-Corasick algorithms: a case study into the synergy of program
ming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Detenninistic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming. p. en
A Fonnal Detenninistic Scheduling Model for Hard Real-Time Executions in
DElJOS, p. 32.

Systems Engineering: a Fonna! Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Fonna! Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Fonnal Approach
Part ill: Modeling Methods, p. 101.

Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach Pan V: Specification Language, p. 89.

On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

A Real·Time Process Logic, p. 31.

A Trace·Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real·Time Reliable Multicast in the DEDOS system,
p.19.

A congruence theorem for structured operational
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.21.

A Process Algebra of Concurrent Constraint Progranuning, p. 15.

Freeness Analysis for Logic Programs· And Correctness, p. 24

A Typechecker for Bijective Pure Type Systems. p. 28.

Relational Algebra and F.quatiooal Proofs. p. 23.

Pure Type Systems with Definitions, p. 38.

A Compositional Proof Theory for Fault Tolerant Real·Time Distributed Systems,
p.31.

Multi-dimensional Petri nets, p. 25.

Finding all minimal separators of a graph, p. 11.

A Semantics for a fine A --calculus with de Bruijn indices,
p.49.

GOLD, a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Permutation and Other Graphs,
p. II.

93/31 W. Korver

93/32 H. ten Eike1der and
H. van Geldrop

93/33 L Loyens and J. Moonen

93f34 J.C.M. Baeten and
lA. Bergstra

93f35 W. Ferrer and
P. Severi

93f36 I.C.M. Baeten and
I.A. Bergstra

93f37 I. Bnmekreef
I-P. Katoen
R. Koymans
S.Mauw

93f38 C. Veffioef

93{39 W.P.M. Nuijten
E.H.L Aarts
D.A.A. van Erp Taalman Kip
K.M. van Hee

93/40 P.D.V. van der Stok
M.M.M.P J. Claessen
D. Alstein

93/41 A. Bijlsma

93/42 P.M.P. Rambags

93/43 B.W. Watson

93/44 B.W. Watson

93/45 E.I. Luit
I.M.M. Martin

93/46 T. KIoks
D. Kratsch
J. Spinrad

93/47 W. v.d. Aalst
P. De Bra
G.I. Hooben
Y. Komatzky

93/48 R. Genh

94ft)! P. America
M. van der Kammen
R.P. Nederpelt
0.5. van Roosmalen
H.C.M. de Swart

94/02 F. Kamareddine
R.P. NedeljJelt

94ft)3 LB. Hartman
K.M. van Hee

94104 I.C.M. Baeten
lA. Bergstra

94ft)5 P.2'1tou
J. Hooman

94ftl6 T. Basten
T. Kunz
I. Black
M. Coffin
D. Taylor

94ft)7 K.R. Apt
R.Bol

94ft)8 0.5. van Roosmalen

94ftl9 I.C.M. Baeten
I.A. Bergstra

Derivation of delay insensitive and speed independent CMOS circuits, using
directed commands and production rule selS, p. 40.

On the Correctness of some Algorithms to generate Finite
Automata for Regular Expressions, p. 17.

ILIAS, a sequential language for parallel matrix computations, p. 20.

Real Time Process Algebra with Infmitesimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conservative extension theorem in process algebra, p. 17.

Job Shop Scheduling by Constraint Satisfaction, p. 22.

A Hierarchical Membership Protoool for Synchronous
Distributed Systems, p. 43.

Temporal operators viewed as predicate transfonners, p. 11.

Automatic Verification of Regular Protocols in prr NelS, p. 23.

A taxcmomy of fmite automata construction algorithms, p. 87.

A taxonomy of finite automata minimization algorithms, p. 23.

A precise clock synchronization protocol,p.

Treewidth and Patwidth of Cocomparability graphs of
BOWlded Dimension, p. 14.

Browsing Semantics in the "Tower" Model, p. 19.

Verifying Sequentially Consistent Memory using Interface
Refmement. p. 20.

The objecl-oriented paradigm, p. 28.

Canonical typing and II-«f1version, p. 51.

Application of Marcov Decision Processe to Search
Problems, p. 21.

Graph Isomorphism Models for Non Interleaving Process
Algebra, p. 18.

Fonnal Specification and Compositional Verification of
an Atomic Broadcast Protocol, p. 22.

Time and the Order of Abstract Events in Distributed
Computations, p. 29.

Logic Programming and Negation: A Survey. p. 62.

A Hierarchical Diagrammatic Representation of Class Structure. p. 22.

Process Algebra with Partial Choice. p. 16.

94/10 T. verhoeff

94/11 I. Peleska
C. Huizing
C. Petersohn

94/12 T. Kloks
D. Kratsch
H. MaUer

94/13 R. Selje.

94/14 W. Peremans

94/15 RJ.M. Vaessens
E.H.L Aarts
1.K. Lenstra

94/16 R.e. Backhouse
H. Doornbos

94/17 S.Mauw
M.A. Reniers

94/18 F. Kamareddine
R. Nederpelt

94/19 8.W. Watson

94120 R.8100
F. Kamareddine
R. Nooe<pelt

94121 B.W. Watson

94122 B.W. Watson

94123 S. Mauw and M.A. Reniers

94124 D. Dams
O. Grumberg
R. Genh

94!2S T. Kloks

94126 R.R. Hoogerwoord

94127 S. Mauw and H. Mulder

94128 C.W.A.M. van Overveld
M. Verhoeven

94129 I. Hooman

94/30 I.C.M. Baeten
I.A. Bergstra
Gh. ,stefanescu

94/31 B.W. Watson
R.E. Watson

94/32 JJ. Vereijken

94/33 T. Laan

94/34 R. Bloo
F. Kamareddine
R. Nederpelt

94/35 I.C.M. Baeten
S. Mauw

94/36 F. Karnareddine
R. Nederpelt

94/37 T. Basten
R. Bol
M. Voorhoeve

94/38 A. BijIsma
C.S. Scholten

The testing Paradigm Applied to Network Structure. p. 31.

A Comparison of Ward & Mellor's Transformation
Schema with State· & Activitycharts, p. 30.

Dominoes, p. 14.

A New Method for Integrity Constraint checking in Deductive Databases, p. 34.

Ups and Downs of Type Theory, p. 9.

Job Shop Scheduling by Local Search, p. 21.

Mathematical Induction Made Calculational, p. 36.

An Algebraic Semantics of Basic Message
Sequence Charts, p. 9.

Refming Reduction in the Lambda Calculus, p. 15.

The performance of single-keyword and multiple-keyword pattern matching
algorithms, p. 46.

Beyond p-Reduction in Church's ,\~, p. 22.

An introduction to the Fire engine: A C++ toolkit for Fmite automata and Regular
Expressions.

The design and implementation of the FIRE engine:
A C++ toolki~ for Finite automata and regular Expressions.

An algebraic' semantics of Message Sequence Charts, p. 43.

Abstract Interpretation of Reactive Systems:
Abstractions Preserving 'VCTL·, 3CTL· and en.., p. 28.

On the foundations of functional programming: a programmer's point of view, p.
54.

Regularity of BPA-Systems is Decidable, p. 14.

Stars or Stripes: a comparative study of fmite and
transfinite techniques for surface modelling, p. 20.

Correctness of Real Time Systems by Constructioo, p. 22.

Process Algebra with Feedback, p. 22.

A Boyer-Moore type algorithm for regular expressioo
pattern matching, p. 22.

Fischer's Protocol in Tuned Process Algebra, p. 38.

A fonnalization of the Ramified Type Theory, pAD.

The Barendregt Cube with Definitions and Generalised
Reduction, p. 37.

Delayed choice: an operator for joining Message
Sequence Charts, p. 15.

Canooical typing and II-conversioo in the Barendregt
Cube. p. 19.

Simulating and Analyzing Railway Interlockings in
ExSpect, p. 30.

Point-free substitution, p. to.

94/39 A. Blokhuis
T. KIoks

94/40 D. Alstein

94/41 T. KIoks
D. Kratsch

94/42 J. Engelfriet
1J. Vereijken

94/43 R.e. Backhouse
M. Bijsterveld

94/44 E. Brinksma J. Davies
R. Gerth S. GnU
W. Janssen 8. Jonsson
S.Katz G. Lowe
M. Poel A. PnueH
C. Rump J. Zwiers

94/45 GJ. Houben

94/46 R. Bloo
F. Kamareddine
R. Nederpelt

94/47 R. 8100
F. Kamareddine
R. Nederpelt

94/48 Mathematics of Program
Constructioo Group

94/49 I.C.M. Baeten
lA. Bergstra

94/50 H. Geuvers

94/51 T. KIoks
D. Kratsch
H. Muller

94/52 W. Penczek
R. Kuiper

94/53 R. Gerth
R. Kuiper
D. Peted
W. Penczek

95/01 1J. Lukkien

95!02 M. Berem
R. Bol
I.F. Groote

95,1l3 I.C.M. Baeten
C. Verhoef

95!04 1. Hidders

95/05 P. Severi

95/06 T.W.M. Vossen
M.G.A. Verhoeven
H.M.M. ten Eikelder
E.H.L. Aarts

95/07 G.A.M.deBruyn
O.S. van Roosmalen

95/08 R.8100

95!09 I.C.M. Baeten
I.A. Bergstra

95/10 R.C. Backhouse
R. Verhoeven
O.Weber

On the equivalence covering number of splitgraphs, p. 4.

Distributed Coo-sensus and Hard Real-Time Systems, p.34.

Computing a perfect edge without vertex e1iminatioo
ordering of a ~horda1 bipartite graph. p. 6.

Concatenation of Graphs, p. 7.

Category Theory as Coherently Constructive Lattice
Theory: An lliustratioo, p. 35.

Verifying Sequentially Consistent Memory, p. 160

Tutorial voor de ExSpect-bibliotheek voor "Administratieve Logistiek", p. 43.

The A -cube with classes of lenns modulo conversion,
p. 16.

On I1-conversion in Type Theory, p. 12.

Fixed-Point Calculus, p. 11.

Process Algebra with Propositional Signals, p. 25.

A short and flexible proof of Strong Nonnalazation
for the Calculus of Constructions, P. 2:l.

Usting simplicial vertices and recognizing
diamond-free graphs, p. 4.

Traces and Logic, p. 81

A Partial Order Approach to
Branching Time Logic Model Checking, p. 20.

The Construction of a smaIl CorrummicationUbrary, p.16.

Fonnalizing Process Algebraic Verifications in the Calculus
of Constructions, p.49.

Concrete process algebra, p. 134.

An Isotopic htvariant for Planar Drawings of Cormected Planar Graphs, p. 9.

A Type Inference Algorithm for Pure Type Systems, p.20.

A Quantitative Analysis of Iterated Local Search, p.23.

Drawing Execution Graphs by Parsing, p. 10.

Preservation of Stroog Nonnalisation for Explicit Substitution, p. 12.

Discrete Time Process Algebra, p. 20

Mathfpad: A System for On-Line Prepararation of Mathematical
Dorumenu, p. 15

l !

95/11 R. Selje.

95/12 S. Mauw and M. Reniers

95/13 B.W. Watson and G. Zwaan

95/14 A. Panse, C. Verhoef.
S.F.M. Vlijrnen (eds.)

95/15 P. Nieben and W. Penczek

95/16 D. Dams, O. Grumberg, R. Gerth

Deductive Database Systems and integrity constraint checking, p. 36.

Empty Interworkings and Refinement
Semantics of Interworkings Revised. p. 19.

A taxonomy of sublinear multiple keyword pattern matching algorithms, p. 26.

De proceedings: ACP'9S, p.

On the Connection of Partial Order Logics and Partial Order Reductioo Methods,
p.12

Abstract Interpretation of Reactive Systems: Preservation of CTL·, p. 27.

	1. Introduction
	2. The ASF+SDF Meta-environment
	2.1 Algebraic Specifications
	2.2 The formalism ASF+SDF
	3. Message Sequence Charts
	3.1 Basic Message Sequence Charts
	3.2 BMSC syntax
	3.3 Example
	4. Requirements
	4.1 Xevents
	4.2 Messages
	4.3 Requirements specification
	4.4 Example
	5. Process algebra
	5.1 Atomic actions
	5.2 PAe-psilon
	5.3 The state operator lambda-m
	6. Translation into process algebra
	6.1 The semantic functions
	6.2 Example
	6.3 Normalization
	6.4 Example
	7. A simulator
	7.1 Transitions
	7.2 Algebraic specification of the transition rules
	7.3 Simulation
	7.4 Example
	8. Conclusions
	References

