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A CLASSIFICATION OF DUCT MODES BASED ON SURFACE WAVES

Sjoerd W. Rienstra

Department of Mathematics and Computing Science, Eindhoven University of Technology, The Netherlands, s.w.rienstra@tue.nl

Abstract

For the relatively high frequencies relevant in a turbofan engine duct the modes of a lined sec-
tion may be classified in two categories: genuine acoustic 3D duct modes resulting from the
finiteness of the duct geometry, and 2D surface waves that exist only near the wall surface in
a way essentially independent of the rest of the duct. Per frequency and circumferential order
there are at most 4 surface waves. They occur in two kinds: 2 acoustic surface waves that exist
with and without mean flow, and 2 hydrodynamic surface waves that exist only with mean flow.
The number and location of the surface waves depends on the wall impedanceZ and mean flow
Mach number. WhenZ is varied, an acoustic mode may change via small transition zones into
a surface waves and vice versa.

Compared to the acoustic modes, the surface waves behave – for example as a function of
the wall impedance – rather differently as they have their own dynamics. They are therefore
more difficult to find. A method is described to trace all modes by continuation inZ from the
hard-wall values, by starting in an area of the complexZ plane without surface waves.

1 Introduction

Although a straight duct with uniform velocity profile and impedance wall is a simplifica-
tion, it is an important model of the lined duct of a real turbofan engine (Tyler& Sofrin 1962,
Zorumski 1974, Tester 1973a, Tester 1973b, Tester 1973c, Koch&Möhring 1983, Rienstra 1987,
Rademakers 1989).

The relatively easy analytic description of the sound field by means of modes provides much
more insight in global trends like the effects of mean flow, frequency and impedance on the
modal decay rates than any other, more “exact” numerical solutions. This remains true for slowly
varying ducts where the modal concept is still applicable (Rienstra 1999, Rienstra&Eversman
2001).

A further understanding of the modal behaviour is therefore important for both interpretation
and understanding of more complex sound fields. Particularly welcome is a better predicted
behaviour of a mode’s physically most distinctive property, the axial wave number.

This is the aim of the present paper.

The essence of the behaviour to be described below is the same for any lined flow duct of
constant cross section. For simplicity we will restrict our analysis to the prototype case of a
hollow cylindrical duct.
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2 Physical model

We consider a circular symmetrical duct of radiusR with a compressible inviscid perfect gas
flow, in dimensional form described by densityρ̃, pressurep̃, velocity ṽ, entropys̃, and sound-
speedc̃, satisfying

d
dt̃

ρ̃ = −ρ̃∇̃ · ṽ, ρ̃ d
dt̃

ṽ = −∇̃ p̃, d
dt̃

s̃ = 0

where
s̃ = CV log p̃ − CP log ρ̃, c̃2 = γ p̃/ρ̃,

while R = CP − CV = 286.73 J/kg K, andγ = CP/CV = 1.4 (for air).

This flow consists of a uniform mean flow with small perturbations given by

ṽ = U0ex + v′, p̃ = p0 + p′, ρ̃ = ρ0 + ρ ′.

The entropy perturbations′ is proportional top′ − c2
0ρ

′. The mean flow quantitiesp0, ρ0, s0, c0

are positive, the velocityU0 is zero or positive, but less thanc0. Upon linearization this yields

(
∂

∂ t̃
+ U0

∂
∂ x̃

)
ρ ′ + ρ0∇·v′ = 0 (1a)

ρ0
(

∂

∂ t̃
+ U0

∂
∂ x̃

)
v′ + ∇ p′ = 0 (1b)

(
∂

∂ t̃
+ U0

∂
∂ x̃

)
(p′ − c2

0ρ
′) = 0 (1c)

By taking the curl of equation (1b) we find for the vorticity perturbationsξ ′ = ∇×v′

(
∂

∂ t̃
+ U0

∂
∂ x̃

)
ξ ′ = 0 (1d)

By combining equations (1a-c) we can derive a convected wave equation for the pressure

(
∂

∂ t̃
+ U0

∂
∂ x̃

)2
p′ − c2

0∇2p′ = 0 (1e)

From equations (1c) and (1d) we see that in uniform flow entropy and vorticity perturbations are
either identically zero, or just convected by the mean flow (i.e. , ∂

∂ t̃
+ U0

∂
∂ x̃ ≡ 0). Note that in

uniform flow pressure, vorticity and entropy are decoupled, so we can leave here any vorticity
or entropy perturbations unspecified and consider only the pressure field.

We assume time harmonic perturbations with frequencyω̃, and make dimensionless as fol-
lows

x = x̃/R, t = c0t̃/R, ω = ω̃R/c0, p′ = ρ0c
2
0 Re(p eiωt ), v′ = c0 Re(v eiωt).

We introduce the mean flow Mach numberM = U0/c0 (0 ≤ M < 1), and the equations (1e,1b)
become the convected reduced wave (or Helmholtz) equation inp and a relation withv

(
iω + M ∂

∂x

)2
p − ∇2 p = 0 (2a)(

iω + M ∂
∂x

)
v + ∇ p = 0 (2b)

where
∇2 = ∂2

∂x2 + ∂2

∂r 2 + 1
r

∂
∂r + 1

r 2
∂2

∂θ2 .
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To the mean flow the duct is hard-walled, but for the acoustic field the duct is lined with an
impedance wall, which means that the ratio of the complex amplitudes of the time harmonic
pressure and normal velocity (directed into the wall) at the wall is prescribed:p = Zv, wherev

is the radial component ofv and the complex numberZ is the specific impedance of the wall.

However, with flow we have to be careful. In the limit of vanishing viscosity the boundary
layer reduces to a vortex sheet, but the velocity perturbationsat the wall remain different from
the onesnear the wall, being at different sides of the vortex sheet. (The pressure is continuous.)
So when we apply the impedance wall boundary condition to the acoustic field in the flow, we
have to include the kinematic effect of the vortex sheet. This modification was for the first time
correctly given for uniform mean flow along a plane wall by Ingard (1959), and later generalized
for flow along curved surfaces by Myers (1980).

In the present notation, the impedance wall boundary condition with uniform mean flow is
found as follows. If the position of the perturbed vortex sheet is given by

r = 1 + Re(η(x, θ) eiωt)

continuity of streamlines yields the radial velocityv on the flow side and the radial velocityvw

on the liner side being given by (after linearisation)

v = (
iω + M ∂

∂x

)
η vw = iωη.

Since the pressure across the vortex sheet is continuous and by definition the impedance bound-
ary condition at the wall is

p = Zvw,

we thus have after elimination ofη

iωv =
(
iω + M ∂

∂x

)( p

Z

)
, while p = 0 if Z = 0, at r = 1. (3)

Note that this equation remains valid forM = 0.

3 Duct Modes

Because of the circular symmetry, the general solution of equation (2a) is given by the Fourier-
Bessel modal sum (Tyler&Sofrin 1962)

p =
∞∑

m=−∞

∞∑
µ=−∞

′ Amµ Jm(αmµr ) e−imθ−ikmµx (4)

whereJm is them-th order Bessel function of the first kind (Abramowitz&Stegun 1964),m =
0,±1,±2, . . . , µ = ±1,±2, . . . , andAmµ are modal amplitudes. SinceJ−m = (−1)mJm, it is
sufficient to consider here positivem only.

Any radial modal wave numberα is related to the corresponding axial modal wave number
k by the dispersion relation

α2 + k2 = (ω − Mk)2 (5)
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The boundary condition (3) is satisfied by applying the condition to each mode, and assuming
uniform convergence∗ of series (4) nearr = 1. This leads to the eigenvalue equation

(
ω − Mk

)2
Jm(α) = iωZαJ ′

m(α) (6)

which has a countable number of solutionsk = kmµ in the complexk-plane. The solutions
do not depend on the chosen branch ofα = α(k) because the combinationαJ ′

m(α)/Jm(α) is a
meromorphic function ofα2. Note that equation (6) is also valid for the problem with zero mean
flow. The governing equations remain linear.

Propagation direction

The modes are counted such that forµ > 0 they propagate in positivex-direction, and forµ < 0
they propagate in negative direction.

As the impedance wall absorbs acoustic energy if Re(Z) > 0, the modes will usually decay
when propagating away from their source. Therefore, the propagation direction of most modes
is found by considering the sign of Im(kmµ). If this is negative, the mode decays in positive
direction and the mode is right-runnig. If it is positive the mode is left-running.

If the wall is not dissipative, for example ifZ = ∞ (hard wall) orZ is purely imaginary,
some modes may have a real axial wave number, which means that Im(kmµ) = 0 and there is
no direction of decay. Probably the easiest approach in this case is to take a suitable limit inZ,
starting from a dissipative situation. Alternatively, without mean flow it is possible to consider
the sign of the modal phase velocity† ω/kmµ, but with flow the effect of convection (leading to
the reduced axial wave number; see below) should be accounted for.

Although the sign of Im(kmµ) is the most common parameter to determine the propagation
direction, there are some subtle problems in the case with mean flow, where the absorption of
acoustic energy by the liner may be compensated by acoustic energy supplied by the mean flow
vortex sheet. These problems are only partly solved (Quinn&Howe 1984, Rienstra 1986), and
we will mention them here.

A vortex sheet separating two regions of mean flow with different velocity is unstable, the
well-known Kelvin-Helmholtz instability. A vortex sheet along a solid wall, on the other hand,
is not unstable, because the wall inhibits any motion normal to the wall. However, if the wall
is not solid, like an impedance wall, and at the same time the wall is not absorbing too much
energy, the vortex sheet seems to be unstable again for certain combinations of impedance and
Mach number. This instability appears mathematically like a mode of the above type, but now
increasing rather than decaying. At first sight an increasing instability cannot be distinguished
from a decaying regular acoustic mode propagating in opposite direction. Therefore, one of the
found modes may have to be interpreted as an instability.

In Rienstra (1986) (or see below, equation 13) it was shown that under certain conditions this
instability can be recognized explicitly. If the frequencyω is high enough such that the geometry
becomes essentially 2-D, the Mach numberM is low enough, and the impedanceZ as a function

∗For x 6= 0 this isn’t a very stringent condition, as the convergence is greatly acclerated by the exponential, since
Im kmµ = O(µ), µ → ∞.

†Considering the modal group velocity
( d

dω
kmµ

)−1 has not yet been shown to be productive. For example, an
inevitable problem is thatZ is alwaysω-dependent.
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of ω is sufficiently simple (for example, a mass-spring-damper systemZ(ω) = r + iaω − ib/ω),
the instability can be recognized analytically, by arguments of causality and continuation in the
complexω-plane. We have no doubt that it is possible to generalize this for more arbitrary cases,
but this has to be done numerically.

4 Analysis

The problem we will be dealing with is a thorough analysis of the behaviour of the axial wave
numberskmµ, defined by the equations (5) and (6), as a function ofZ and M in the context
of relatively high frequencies occurring in aircraft engine ducts. For this it is convenient to
introduce theLorentzor Prandtl-Glauerttype transformation that will render the equations as
clean as possible. With

β =
√

1 − M2, x = βX, ω = β�,

α = �γ, k = �

β

(
σ − M

)
,

(7a)

the mode
ei�M X e−i�σ X Jm(�γ r ) (7b)

is scaled such that the asymmetry due to convection is now brought outside the expression as
just a factor. The variablesσ andγ are called the reduced axial and radial wave numbers. The
dispersion relation and the eigenvalue equation is now

γ 2 + σ 2 = 1 (8a)

(1 − Mσ )2Jm(�γ ) = iβ3Zγ J ′
m(�γ ) (8b)

with the important special cases: (a) the hard wallZ = ∞ with solutions�γ = ± j ′
mµ (the

zero’s of J ′
m), and (b) the pressure release wallZ = 0 with solutions�γ = ± jmµ (the zero’s

of Jm), or the additional solutionσ = M−1. Note that this last solution refers to the velocity
field only, and not to the pressure, because forZ = 0 this is zero at the wall and therefore zero
everywhere.

To define the complex functionγ (σ ) = √
1 − σ 2 uniquely, we have to introduce branch cuts

and select a branch. As in any wave problem, the sign of the imaginary part of a wave number
is of primary importance (it selects decaying from increasing waves), we choose the branch cuts
along the lines where Im(γ ) = 0. Then we select the branch with Im(γ ) ≤ 0, by defining
γ (0) = 1. See figure 1.

No mean flow

Without mean flow,i.e. M = 0, the equations (8) simplify to

γ 2 + σ 2 = 1 (9a)

Jm(ωγ ) = i Zγ J ′
m(ωγ ). (9b)

Now we can distinguish two important classes of solutions: a class with Im(ωγ ) large (in a
sense to be explained below), and the complementary class. If Im(ωγ ) is large negative, the
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real axis

imaginary
axis

• •

HHj

QQk

?
6

�
��

γ (0) = 1

1−1

Im(γ ) = 0

Im(γ ) = 0Im(γ ) ≤ 0
everywhere

Re(γ ) = 0

Re(γ ) = 0
Re(γ ) > 0

Re(γ ) > 0
Re(γ ) < 0
branch cut

Re(γ ) < 0
branch cut

σ ∈ C

Figure 1: Branch cuts and signs ofγ = √
1 − σ 2 in complex σ -plane. The definition ofγ (σ )

adopted here is the branch of the multi-valued complex square root that corresponds
to Im(γ ) ≤ 0 for all σ . Im(γ ) = 0 along the branch cuts.γ (σ ) ' −iσ sign(Reσ )

if |σ | � 1

.

Bessel functions simplify to increasing exponentials (equation 21), such thatJ ′
m/Jm → i, and

the eigenvalue equation (9b) reduces to

1 + Zγ = 0 (10a)

with solutions
σ = ±

√
1 − Z−2. (10b)

As γ was defined with negative imaginary part, the asymptotics of Im(ωγ ) large positive
does not occur. At the same time, from this restriction onγ it follows immediately that we have
only such solutions if Im(Z) ≤ 0.

If ω is large, which is the typical situation in aircraft engine duct problems, any solution (10b)
– except for nearly real impedances – produces a large Im(ωγ ) and is therefore an approximation
of a solution of (9).

The physical interpretation of these solutions is that the corresponding mode is spatially
confined to the immediate neighbourhood of the wall, as the modal shape functionJm(ωγ r )
becomes exponentially decaying away from the wall (equation 21):

∣∣∣ Jm(ωγ r )

Jm(ωγ )

∣∣∣ ' eω Im(γ )(1−r )

r 1/2
.

In other words, these modes are not really duct modes, but surface waves. From equation (10b)
it follows that there are at most 2 such surface waves, and they exist only if Im(Z) < 0.

This implies that the other possible solutions of equation (9), the ones with Im(ωγ ) not large,
necessarily occur near (i.e. typically within a distanceO(ω−1)) the branch cuts of square root
γ (σ ), where Im(γ ) = 0.

Trajectories of these wave numbers, as function ofZ, are plotted in figure 2. To include all
complex values ofZ, we have drawn two fan-shaped families of curves: one for fixed Re(Z) and
one for fixed Im(Z), all of course with Im(Z) ≤ 0. Note that un-attenuated waves occur only
for purely imaginaryZ.
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Figure 2: Trajectories ofσ for varying Z = R + i X; M = 0.
Fixed R & X = 0:−0.1:−∞ . Fixed X & R = 0:0.1:∞ .

Trajectories of all duct mode eigenvalues are plotted in the figures (7), as a function of the
imaginary partX of impedanceZ = R + i X, and variousR, for ω = 5, andm = 1. For
illustration, the 2D surface wave approximations are included, and the agreement is seen to be
very good. In fact, if we used a much higherω, the agreement would have been too good, with
hardly any visible difference. This figure is further discussed in section 5.

With mean flow

With mean flow,i.e. M > 0, we have to deal with the full equations

γ 2 + σ 2 = 1 (8a)

(1 − Mσ )2Jm(�γ ) = iβ3Zγ J ′
m(�γ ) (8b)

Again, we can distinguish two important classes of solutions: a class with Im(�γ ) large, and the
complementary class. If Im(�γ ) is large negative,J ′

m/Jm → i (equation 21), and the eigenvalue
equation (8b) reduces to

(1 − Mσ )2 + β3Zγ = 0. (11)

As γ was defined with negative imaginary part, the asymptotics of Im(�γ ) large positive does
not occur.
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If � is large, which is the typical situation in aircraft engine duct problems, any solution (11)
– except for impedances near the bordering lines – produces a large Im(�γ ) and is therefore an
approximation of a solution of (8).

The physical interpretation of these solutions is again that the corresponding mode is spatial-
ly confined to the immediate neighbourhood of the wall, as the modal shape functionJm(�γ r )
becomes exponentially decaying away from the wall (equation 21):

∣∣∣ Jm(�γ r )

Jm(�γ )

∣∣∣ ' e� Im(γ )(1−r )

r 1/2
.

In other words, these modes are not really duct modes, but surface waves‡. By bringing the
second term to the right and squaring both sides, equation (11) becomes a polynomial inσ of
degree 4. It follows that there are at most 4 such surface waves. Their existence and number
varies withZ andM.

The other possible solutions of equation (8), the ones with Im(�γ ) not large, necessarily
occur near (i.e. typically within a distanceO(ω−1)) the branch cuts of square rootγ (σ ), where
Im(γ ) = 0.

Trajectories of these wave numbers, as function ofZ, are plotted in figure 3. To include all
complex values ofZ, we have drawn two families of curves: one for fixed Re(Z) and one for
fixed Im(Z). Un-attenuated waves occur for purely imaginaryZ, but in contrast to the no-flow
case, suchZ do allow also attenuated modes.

An interesting special case is the incompressible limit (M → 0, Mσ = O(1), Z = O(M)),
where the solutions can be given explicitly. DefineS = Mσ , ζ = Z/2M, then we have

(1 − S)2 − 2iζ Re(S)S= 0, (12)

with 4 solutions (one in each quadrant)

SH I = i earsinh(ζ−i) (
Im(ζ ) ≤ 1

)
(13a)

SS R= −i e− arsinh(ζ−i) (
Im(ζ ) ≤ 1

)
(13b)

SH S = −i earsinh(ζ+i) (
Im(ζ ) ≤ −1

)
(13c)

SSL = i e− arsinh(ζ+i) (
Im(ζ ) ≤ −1

)
(13d)

We may now apply, as in Rienstra (1986), the causality arguments of Jones&Morgan (1972),
Crighton&Leppington (1974), and vary the frequencyω to become negative imaginary,i.e.
ω = −iν. A typical impedance of mass-spring-damper type then yieldsζ ∼ r + iaω − ib/ω =
r + aν + b/ν, which is real. As a result, the above wave numberωM−1SH I shifts to the low-
er half of the complex plane, which means that it denotes a right-running, growing wave and
therefore an instability. So for at least some impedances and parameter values, this surface wave
of the first quadrant is an instability. Therefore, we have tentatively called it “hydrodynam-
ic instability” σH I . The others are called: a right-running stable hydrodynamic surface wave
σH S, a right-running ordinary surface waveσS R and a left-running ordinary surface waveσSL.
(“Hydrodynamic” because they exist only with flow.)

‡We note in passing that boundary condition (3) is based on the assumption of a thin mean flow boundary layer,
which should of course remain thin compared to the surface wave penetration depth Im(�γ )−1.
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Figure 3: Trajectories ofσ for varying Z = R + i X; M > 0. (Some specific
values ofZ are indicated.) FixedR & X = −∞:0.2:∞ .
Fixed X & R = 0:0.2:∞ .

Solutions of equation (11) may be analyzed in great detail, and the results are summarized
in the figures 4, 5, and table 1. The only impedances that may possibly occur (for passive walls)
are with Re(Z) ≥ 0. So the imaginaryZ-axis is an important borderline, which is mapped
(as far as it allows solutions) to theσ -plane as the egg-shaped contour and as the real axes,
absolute larger than 1. In theσ -plane the branch cuts ofγ are important borderlines, where the
2D approximation breaks down, and the solutions become regular duct modes again. (In the
approximation they disappear to the other Riemann sheet.) The branch cuts are mapped to the
Z-plane as the 4 contours that separate the 5 regions of existence of different numbers of surface
waves.

Theegg in the axial wave number plane plays a prominent role, which is not entirely unex-
pected, as the typical radiusM−1 in reduced wave numberσ corresponds approximately with
the Strouhal numberω/M to the dimensionless wave numbersk and the hydrodynamic wave
numberω̃/U0 to the dimensionless wave numbers.

Trajectories of all duct mode eigenvalues are plotted in the figures 8, as a function of the
imaginary partX of impedanceZ = R + i X, and variousR, for ω = 5, m = 1, andM = 0.5.
For illustration, the 2D surface wave approximations are included, and the agreement is seen to
be very good. As in figure 7, if we used a much higherω, the agreement would have been too
good, with hardly any visible difference. This figure is further discussed in the following section.
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Figure 4: ComplexZ-plane, with regions of different numbers of surface waves.
No solutions inI , σH I ∈ II . . . V , σS R ∈ III . . . V , σSL ∈ IV . . . V , σH S ∈ V.
Thick lines map to the branch cuts in figure 5. In the figure,M = 1

2 is taken.

5 Further observations

Suppose, we vary the impedance from hard-wall to hard-wall, via vertical straight lines in the
complex plane:Z = R + i X whereR is fixed andX varies between−∞ and∞.

Without mean flow (figure 7), most eigenvalues return to the hard-wall value they started
from. Some, however, form a closed loop such that they meander from their initial hard-wall
value to the next hard-wall value. The loop is closed by the first eigenvalue, which becomes a
surface wave (whenX increases from−∞) and, following a large circular contour, turns back
(when X ' 0) to a hard-wall eigenvalue of much higher index. Sinceωγ = −ω/R ' − j ′

mµ,
the hard-wall return-indexµret can be estimated as (see 22)

µret = ω

π R
− 1

2m + 1
4. (14)

This circular loop becomes larger and larger whenR tends to zero, until it becomes unbounded
for R = 0. It shrinks to zero whenR becomes large.

With mean flow (figure 8), the situation is quite different. Not some, butmostof the eigen-
values move up one position. WhenR is big enough, the acoustic surface waves (within theegg;
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Figure 5: Regions of existence of surface waveσ . Thick lines map to the imaginaryZ-axis in
figure 4 (except the part in regionI where no solutions exist). In the figure,M = 1

2 is
taken.

typically |σ | < M−1) form a closed loop. This loop does not grow to infinity whenR tends to
zero, but grows until it approximately coincides with theegg. The hydrodynamic surface waves
(outside theegg§; typically |σ | > M−1) on the other hand, start at a hard-wall value atX = ∞,
but tends to infinity as follows

σ ' ± iβ3Z + 2M

M2

= ±−β3X + iβ3R + 2M

M2
(X → −∞), (15)

so they disappear to infinity along lines parallel to the real axis. Only the finite number of modes
between the acoustic and hydrodynamic surface waves return to their initial hard-wall values.

Following whatever contour inZ, the modes inside theegg remain inside, and the modes
outside remain outside. So there are only a finite number of hard-wall modes that may turn

§Note that forM → 0 theeggbecomes infinitely large, pushing the hydrodynamic surface waves away to infinity.
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into an acoustic surface wave, while the others may become a hydrodynamic surface wave. The
hard-wall modal indexµcrit separating these modes may be estimated from the fact that theegg
crosses the imaginary axis atσ = ∓i M−1, or �γ ' −�

√
1 + M−2 = − j ′

mµ. This yields
approximately (see 22)

µcrit ' ω

π Mβ

√
1 + M2 − 1

2m + 1
4. (16)

Multi-valued functions and branch points

The above analysis is mainly descriptive, and the results are interpreted with emphasis on their
physical context. The deeper origin of this strange game of musical chairs may therefore remain
in the background.

From a complex-function point of view it is not so strange. If we consider equations (8) or
(9) as the definition of a complex functionσ = σ (Z) of complex variableZ, this function is
evidently multi-valued with an infinite number of branches: each branch ofσ (Z) represents a
mode. The branch points – the points where two or more branches coalesce – are found at theZ-
values where theσ -derivative of equation (8b) or (9b) vansihes (also known as the impedances
with double eigenvalues). If we follow a closed contour in the complexZ-plane (the contour
may be closed at infinity) such that a branch point is encircled, we arrive at another branch (i.e.
another eigenvalue) when we return to theZ we started from.

This is exactly what happens when we trace the contoursZ = R + i X (R fixed) for smaller
and smallerR. We start and end at the sameZ = ∞, but the smaller theR, the more double
eigenvalues (branch points) are encircled, and the eigenvalue we return to moves higher up in
the list.

An model equation with just the same behaviour is given by

2σ = i Z(σ 2 − 1) (17a)

with exact solutions
σ (Z) = −i Z−1 ±

√
1 − Z−2 (17b)

and branch points atZ = ±1.

6 How to find all eigenvalues

Based on the above described dynamics of the eigenvalues in the complexZ-plane, we can
devise a method to find all eigenvalues for givenM, m, ω andZ.

Assume that the hard-wall values are known. Of course, some effort is to be invested here
too, but since all (reduced) radial eigenvalues�γmµ = j ′

mµ are real, independent ofM, and
asymptotically for largeµ found at fixed intervals, this is relatively easy. Now we can connect
a contour in the complexZ-plane from anyZ = ∞ to the sought value. Then we can trace the
eigenvalues as a function ofZ as follows. Start at a large enoughZ-value, take small enough
steps along the contour, use the previous values as starting values, and solve by a simple Newton-
Raphson zero-finding routine the eigenvalue equation at eachZ-position.

As we have seen, in some parts of theZ-plane we have a problem: surface waves may
disappear to infinity, and coming from this direction we have to make sure to pick up these

12



eigenvalues somewhere, which may be not so easy. It is therefore easier to take a starting “Z =
∞′′ without disappearing surface waves. We propose contours parallel to the imaginary axis, like
was done in figures 7, 8. ForM = 0 this isZ = R − i∞, while for M > 0 this isZ = R + i∞
(note the corresponding up- and down-arrows given in the figures.)

For R = 0 some care is required when upper and lower half plane solutions meet along the
realσ -axis, for example atσ = 0 andσ = M−1.

7 Exact results

Just for the record, a few exact results on the existence of surface waves can be given. Note that
for imaginaryZ = i X and imaginary radial wave numbersγ = −iτ (andσ real) equation (8b)
may be rewritten as the real equation

�τ Im+1(�τ)

Im(�τ)
= −m − �

β3X

(
1 − Mσ

)2
(18)

Sincez Im+1(z)/Im(z) is monotonically increasing inz ≥ 0, we have forM = 0 exactly two
solutions if−ω/m ≤ X < 0 and none otherwise. IfM 6= 0, we have no solutions ifX > 0, and
maybe up to 4 otherwise. There is at least one ifX < −�(1 ± M)2/β3m.

8 Large circumferential order m.

The used asymptotic expression (21) ofJm applies only for fixedm, and is totally inappropriate
for m ≥ O(ω). This, however, does not necessarily mean that the surface wave behaviour
immediately disappears, because only the limit|J ′m/Jm| → O(1) was essential. It appears
that form ∼ ω the general behaviour remains the same, in particular the occurrence of surface
waves. See figure 6. Form > O(ω) a certain surface wave behaviour may still be recognized,
but not any more described by the above equations.

−5 −4 −3 −2 −1 0 1 2 3 4 5
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4

5

 Z=0.2+ i⋅↓

Figure 6: Trajectories ofσ for m = ω = 10, M = 0.5, and varyingZ = 0.2 + i X.
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The Annular Duct

For the annular duct with dimensionless hub radiush and an impedanceZ1 at r = 1 andZh at
r = h we find the reduced eigenvalue equation

(1 − Mσ )4(Jm(�γ )Ym(�γ h) − Ym(�γ )Jm(�γ h))

+ iβ3Zhγ (1 − Mσ )2(Jm(�γ )Y′
m(�γ h) − Ym(�γ )J ′

m(�γ h))

− iβ3Z1γ (1 − Mσ )2(J ′
m(�γ )Ym(�γ h) − Y′

m(�γ )Jm(�γ h))

+ β6Z1Zhγ
2(J ′

m(�γ )Y′
m(�γ h) − Y′

m(�γ )J ′
m(�γ h)) = 0 (19)

whereYm is the m-th order Bessel function of the 2nd kind. By substituting the asymptotic
approximation (23) (and similar for the forms with derivatives), we obtain the surface wave
equation (

(1 − Mσ )2 + β3Z1γ
)(

(1 − Mσ )2 + β3Zhγ
) = 0. (20)

which is just the product of the surface wave equations at inner and outer duct wall. Depending
on the selectedZ1 andZh, the mode may be of surface wave type at either duct wall, or at both in
exceptional cases. Therefore, occurrence and behaviour of any surface waves is similar to what
is presented above.

9 Conclusions

An analysis is made of the behaviour of the acoustic modes of a lined duct with and without
uniform mean flow. The lining is assumed to be locally reacting and of impedance type, while
the frequency of the sound field is fixed and given. It is shown that for high dimensionless
frequenciesω (as prevail in lined flow ducts of turbofan engines) and given circumferential
orderm ≤ O(ω) we have 3 types of modes.

(i) An infinite number of genuine acoustic modes, of which the complex axial wave number,
as a function of wall impedanceZ, is never far away from the hard wall values. (ii) Two acoustic
surface waves, which occur both with and without mean flow. (iii) Two hydrodynamic surface
waves, which occur only with mean flow.

Surface waves are called that way because their field is only significant close to the wall, as
it decays exponentially away from the wall. They are essentially 2D and independent of the duct
geometry. The governing equation is therefore much simpler than for the general duct mode,
and allows a detailed analysis.

The surface waves exist only whenZ is in certain areas of the complexZ-plane, which are
given in detail. The reduced axial wave number of the surface waves can be found in the complex
plane in very specific areas, separated by anegg-shaped border with a typical radius equal to the
hydrodynamic wave number. The acoustic surface waves are found inside theeggin the 2nd and
4th quadrant (M > 0, e+iωt -convention), and the hydrodynamic surface waves are found outside
theegg in the 1st and 3rd quadrant. At least in the incompressible limit and for certain type of
impedances, one hydrodynamic surface waves can be shown to be an instability. It is expected
that this remains true in more general cases.

Relevant for eigenvalue searching routines is the following observation. When a mode is
traced along a path in the complexZ plane, for example from hard-wall value to hard-wall value

14



a contour parallel to the imaginary axis, the mode does not always retrun to its original value but
changes position with another mode. This happens when one or more branch points of the axial
wave number, considered as a function ofZ, are encircled. These branch points correspond to
the impedances with double eigenvalues.

10 Appendix: Bessel functions

Jm(z) ' eiz− 1
2mπ i− 1

4π i

√
2πz

, z → ∞, Im z < 0 (21)

j ′
mµ ' (µ + 1

2m − 1
4)π, µ → ∞ (22)

Jm(z)Ym(zh) − Ym(z)Jm(zh) ' i

πz
√

h
ei(1−h)z, z → ∞, Im z < 0 (23)
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Z σH I σS R σSL σH S

∞ + 2i M
β3 +0 + i∞ (−) (−) (−)

2i M
β3(1+M2)1/2

i
M − i

M (−) (−)

0 1
M

1
M (−) (−)

4
√

2(1+
√

1+8M2)1/2

(3+
√

1+8M2)3/2
. . . 4M

1+
√

1+8M2
(−) (−)

1
β3 . . . 0 0 (−)

∞ + i0 2
M + i∞ 1 −1 (−)

−2i M
β3(1+M2)1/2

2
M + 1

M

(
3−M2

1+M2

)1/2
2
M − 1

M

(
3−M2

1+M2

)1/2
i
M − i

M

∞ − 2i M
β3

4
M + i∞ 1 −1 −i∞

−i 1
2

√
2 M(3+

√
1+8M2)3/2

β3(1+
√

1+8M2)1/2
. . . . . . −1+

√
1+8M2

2M −1+
√

1+8M2

2M

Table 1: Particular values ofZ and σ , satisfying equation 11. Entries with dots (. . . ) indicate
expressions too complicated to be of interest. Entries with(−) indicate that no solution

exist. Note that aZ crossing the real segment, running from 4
√

2(1+
√

1+8M2)1/2

(3+
√

1+8M2)3/2
to 1

β3 ,

causesσS R to disappear and –at the same time– reappear on either side ofσ = 4M

1+
√

1+8M2
,

along the segment[0, 1].
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Figure 7: Trajectories ofσ for m = 1, ω = 5, M = 0, −∞ < Im(Z) < ∞.
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Figure 8: Trajectories ofσ for m = 1, ω = 5, M = 0.5, −∞ < Im(Z) < ∞.
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