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A CLASSIFICATION OF DUCT MODES BASED ON SURFACE WAVES

Sjoerd W. Rienstra

Department of Mathematics and Computing Science, Eindhoven University of Technology, The Netherlands, s.w.rienstra@tue.nl

Abstract

For the relatively high frequencies relevant in a turbofan engine duct the modes of a lined sec-
tion may be classified in two categories: genuine acoustic 3D duct modes resulting from the
finiteness of the duct geometry, and 2D surface waves that exist only near the wall surface in
a way essentially independent of the rest of the duct. Per frequency and circumferential order
there are at most 4 surface waves. They occur in two kinds: 2 acoustic surface waves that exist
with and without mean flow, and 2 hydrodynamic surface waves that exist only with mean flow.
The number and location of the surface waves depends on the wall impedamckemean flow

Mach number. WheiZ is varied, an acoustic mode may change via small transition zones into

a surface waves and vice versa.

Compared to the acoustic modes, the surface waves behave — for example as a function of
the wall impedance — rather differently as they have their own dynamics. They are therefore
more difficult to find. A method is described to trace all modes by continuatiéh from the
hard-wall values, by starting in an area of the compeglane without surface waves.

1 Introduction

Although a straight duct with uniform velocity profile and impedance wall is a simplifica-
tion, it is an important model of the lined duct of a real turbofan engine (Tyler& Sofrin 1962,
Zorumski 1974, Tester 1973a, Tester 1973b, Tester 1973c, Koch&Mdbhring 1983, Rienstra 1987,
Rademakers 1989).

The relatively easy analytic description of the sound field by means of modes provides much
more insight in global trends like the effects of mean flow, frequency and impedance on the
modal decay rates than any other, more “exact” numerical solutions. This remains true for slowly
varying ducts where the modal concept is still applicable (Rienstra 1999, Rienstra&Eversman
2001).

A further understanding of the modal behaviour is therefore important for both interpretation
and understanding of more complex sound fields. Particularly welcome is a better predicted
behaviour of a mode’s physically most distinctive property, the axial wave number.

This is the aim of the present paper.

The essence of the behaviour to be described below is the same for any lined flow duct of
constant cross section. For simplicity we will restrict our analysis to the prototype case of a
hollow cylindrical duct.



2 Physical model

We consider a circular symmetrical duct of radiRswith a compressible inviscid perfect gas
flow, in dimensional form described by denspy pressurep, velocity v, entropys, and sound-
speect, satisfying

p=—-pV-V, pIV=-Vp 25=0

Sla

where
§=Cylogp—Cplogp, & =yp/p,
while R = Cp — Cy = 28673 JkgK, andy = Cp/Cy = 1.4 (for air).
This flow consists of a uniform mean flow with small perturbations given by

V=Upe+V, p=po+p.0=po+p"

The entropy perturbatios is proportional top’ — c3p’. The mean flow quantitiepo, oo, So, Co
are positive, the velocityg is zero or positive, but less thag. Upon linearization this yields

(% +UoZ)p + poV-v =0 (1a)
po((% + U()(%)V/ +Vp =0 (1b)
(& + Uo)(p —cgp) =0 (1c)

By taking the curl of equation (1b) we find for the vorticity perturbatighs= V xv’
(£ +Uok)E' =0 (1d)
By combining equations (1a-c) we can derive a convected wave equation for the pressure
2 / /
(& +Uo) P —cgv?p =0 (1e)

From equations (1c) and (1d) we see that in uniform flow entropy and vorticity perturbations are
either identically zero, or just convected by the mean floeu ( % + Uozz = 0). Note that in
uniform flow pressure, vorticity and entropy are decoupled, so we can leave here any vorticity
or entropy perturbations unspecified and consider only the pressure field.

We assume time harmonic perturbations with frequebcgnd make dimensionless as fol-
lows

x=%/R, t=cof/R, w=a&R/Co,p =pociRe(pPE™), V =coRe(ve™).

We introduce the mean flow Mach numbdr= Up/cy (0 < M < 1), and the equations (1e,1b)
become the convected reduced wave (or Helmholtz) equatipraimd a relation wittv

(io+ML)?p—-Vv2p=0 (2a)
(iw+MZ)V+Vp=0 (2b)

where
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To the mean flow the duct is hard-walled, but for the acoustic field the duct is lined with an
impedance wall, which means that the ratio of the complex amplitudes of the time harmonic
pressure and normal velocity (directed into the wall) at the wall is prescriped:Zv, wherev
is the radial component afand the complex numbet is the specific impedance of the wall.

However, with flow we have to be careful. In the limit of vanishing viscosity the boundary
layer reduces to a vortex sheet, but the velocity perturbatbtise wall remain different from
the onesearthe wall, being at different sides of the vortex sheet. (The pressure is continuous.)
So when we apply the impedance wall boundary condition to the acoustic field in the flow, we
have to include the kinematic effect of the vortex sheet. This modification was for the first time
correctly given for uniform mean flow along a plane wall by Ingard (1959), and later generalized
for flow along curved surfaces by Myers (1980).

In the present notation, the impedance wall boundary condition with uniform mean flow is
found as follows. If the position of the perturbed vortex sheet is given by

r =1+ Re(n(x, 6) €Y

continuity of streamlines yields the radial velocityon the flow side and the radial velocity,
on the liner side being given by (after linearisation)

v=(ia)—|— M(%)n Uy = lom.

Since the pressure across the vortex sheet is continuous and by definition the impedance bound-
ary condition at the wall is
p = va’

we thus have after elimination gf

ia)v:(ia)+ M%)(g) while p=0if Z=0, at r=1 3)

Note that this equation remains valid fist = 0.

3 Duct Modes

Because of the circular symmetry, the general solution of equation (2a) is given by the Fourier-
Bessel modal sum (Tyler&Sofrin 1962)

o0

P= Y > AwuJmlam,r)e ™ kmx 4

m=—00 u=—00

where J,, is them-th order Bessel function of the first kind (Abramowitz&Stegun 1964 )=
0,£1,£2,..., n = %1, £2,..., and Ay, are modal amplitudes. Sincky, = (—1)™Jy, itis
sufficient to consider here positive only.

Any radial modal wave number is related to the corresponding axial modal wave number

k by the dispersion relation
o + k% = (w — Mk)? (5)



The boundary condition (3) is satisfied by applying the condition to each mode, and assuming
uniform convergenceof series (4) near = 1. This leads to the eigenvalue equation

(0 — Mk)sz(oz) =iwZad, (a) (6)

which has a countable number of solutidns= ky,, in the complexk-plane. The solutions
do not depend on the chosen branchrof « (k) because the combinatienJ/,(«)/In(e) is a
meromorphic function of?. Note that equation (6) is also valid for the problem with zero mean
flow. The governing equations remain linear.

Propagation direction

The modes are counted such thatfior 0 they propagate in positivedirection, and fow < 0
they propagate in negative direction.

As the impedance wall absorbs acoustic energy {fBRe- 0, the modes will usually decay
when propagating away from their source. Therefore, the propagation direction of most modes
is found by considering the sign of iy, ). If this is negative, the mode decays in positive
direction and the mode is right-runnig. If it is positive the mode is left-running.

If the wall is not dissipative, for example # = oo (hard wall) orZ is purely imaginary,
some modes may have a real axial wave number, which means ttiaf,hm= 0 and there is
no direction of decay. Probably the easiest approach in this case is to take a suitable Zimit in
starting from a dissipative situation. Alternatively, without mean flow it is possible to consider
the sign of the modal phase velodity/kn,, but with flow the effect of convection (leading to
the reduced axial wave number; see below) should be accounted for.

Although the sign of Inky,,) is the most common parameter to determine the propagation
direction, there are some subtle problems in the case with mean flow, where the absorption of
acoustic energy by the liner may be compensated by acoustic energy supplied by the mean flow
vortex sheet. These problems are only partly solved (Quinn&Howe 1984, Rienstra 1986), and
we will mention them here.

A vortex sheet separating two regions of mean flow with different velocity is unstable, the
well-known Kelvin-Helmholtz instability. A vortex sheet along a solid wall, on the other hand,
is not unstable, because the wall inhibits any motion normal to the wall. However, if the wall
is not solid, like an impedance wall, and at the same time the wall is not absorbing too much
energy, the vortex sheet seems to be unstable again for certain combinations of impedance and
Mach number. This instability appears mathematically like a mode of the above type, but now
increasing rather than decaying. At first sight an increasing instability cannot be distinguished
from a decaying regular acoustic mode propagating in opposite direction. Therefore, one of the
found modes may have to be interpreted as an instability.

In Rienstra (1986) (or see below, equation 13) it was shown that under certain conditions this
instability can be recognized explicitly. If the frequenays high enough such that the geometry
becomes essentially 2-D, the Mach numbeis low enough, and the impedangeas a function

*Forx # 0 this isn’'t a very stringent condition, as the convergence is greatly acclerated by the exponential, since
Imkm; = O(u), u — oo.

TConsidering the modal group veloci(){j%km)f1 has not yet been shown to be productive. For example, an
inevitable problem is thaZ is alwaysw-dependent.



of w is sufficiently simple (for example, a mass-spring-damper sy&én) =r +iaw — ib/w),

the instability can be recognized analytically, by arguments of causality and continuation in the
complexw-plane. We have no doubt that it is possible to generalize this for more arbitrary cases,
but this has to be done numerically.

4 Analysis

The problem we will be dealing with is a thorough analysis of the behaviour of the axial wave
numbersky,,,, defined by the equations (5) and (6), as a functiorZaind M in the context

of relatively high frequencies occurring in aircraft engine ducts. For this it is convenient to
introduce thelLorentzor Prandtl-Glauerttype transformation that will render the equations as
clean as possible. With

B=+vV1-—M2 x=p8X =pQ,

7a
o = Qy, k:g(o*—M), (72)
B
the mode _ _
eIMX e 19X g (Qyr) (7b)

is scaled such that the asymmetry due to convection is now brought outside the expression as
just a factor. The variables andy are called the reduced axial and radial wave numbers. The
dispersion relation and the eigenvalue equation is now

y2+o2=1 (8a)
(11— Mo)2In(Qy) =ip3Zy I, (Qy) (8b)

with the important special casesa) (the hard wallZ = oo with solutionsQy = +j;, (the
zero’s of J;)), and ) the pressure release wall = 0 with solutionsQy = +jm, (the zero’s
of J), or the additional solutiom = M~. Note that this last solution refers to the velocity
field only, and not to the pressure, becauseZot O this is zero at the wall and therefore zero
everywhere.

To define the complex functiop(o) = +/1 — o2 uniquely, we have to introduce branch cuts
and select a branch. As in any wave problem, the sign of the imaginary part of a wave number
is of primary importance (it selects decaying from increasing waves), we choose the branch cuts
along the lines where Iftyy) = 0. Then we select the branch with (g < 0, by defining
y(0) = 1. See figure 1.

No mean flow
Without mean flowj.e. M = 0, the equations (8) simplify to

y2+o2=1 (9a)
In(wy) =iZy I (wy). (9Db)

Now we can distinguish two important classes of solutions: a class withjnlarge (in a
sense to be explained below), and the complementary class. (dfylims large negative, the



Im(J/) =0 E oeC
L y(0) =1 B
Re(y) <0 | : Re(y) =0
real axis —L_branch cut E/Re(l/) >01 l
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Re(y) =0

Im(y) <0
everywhere |
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Figure 1: Branch cuts and signs f= +/1 — o2 in complex o -plane. The definition ofy (o).
adopted here is the branch of the multi-valued complex square root that corresponds
to Im(y) < 0 forallo. Im(y) = 0 along the branch cuts.(o) ~ —io sign(Reo)
if lo|>1

Bessel functions simplify to increasing exponentials (equation 21), suclltidt, — i, and
the eigenvalue equation (9b) reduces to

1+Zy=0 (10a)

with solutions
o==++1—272"2 (10b)

As y was defined with negative imaginary part, the asymptotics @folm large positive
does not occur. At the same time, from this restrictionyabfollows immediately that we have
only such solutions if Iiz) < 0.

If wislarge, which is the typical situation in aircraft engine duct problems, any solution (10b)
— except for nearly real impedances — produces a largejnand is therefore an approximation
of a solution of (9).

The physical interpretation of these solutions is that the corresponding mode is spatially
confined to the immediate neighbourhood of the wall, as the modal shape fudgtienr)
becomes exponentially decaying away from the wall (equation 21):

In(wyr) e?Im(y)(1-r)
’Jm(wy) oo

In other words, these modes are not really duct modes, but surface waves. From equation (10b)
it follows that there are at most 2 such surface waves, and they exist only4f)lr O.

This implies that the other possible solutions of equation (9), the ones withyimot large,
necessarily occur neai.d. typically within a distanceO(w~1)) the branch cuts of square root
y (o), where In{y) = 0.

Trajectories of these wave numbers, as functioiZ pére plotted in figure 2. To include all
complex values oF, we have drawn two fan-shaped families of curves: one for fixe@Rend
one for fixed IM{2Z), all of course with IniZ) < 0. Note that un-attenuated waves occur only
for purely imaginaryZ.
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Figure 2: Trajectories of for varyingZ = R+iX; M = 0.
FixedR& X = 0:—0.1:—00 FixedX & R=0:01:00 ————— .

Trajectories of all duct mode eigenvalues are plotted in the figures (7), as a function of the
imaginary partX of impedanceZ = R + i X, and variousR, for « = 5, andm = 1. For
illustration, the 2D surface wave approximations are included, and the agreement is seen to be
very good. In fact, if we used a much highey the agreement would have been too good, with
hardly any visible difference. This figure is further discussed in section 5.

With mean flow
With mean flowj.e. M > 0, we have to deal with the full equations

yi4+o2=1 (8a)
(1= Mo)2In(Qy) =iB3Zy J,(Qy) (8b)

Again, we can distinguish two important classes of solutions: a class wiif2jylarge, and the
complementary class. If Ity ) is large negativeJ; / Jn — i (equation 21), and the eigenvalue
equation (8b) reduces to

(1-Mo)?+p3Zy =0. (11)

As y was defined with negative imaginary part, the asymptotics @¢f2p) large positive does
not occur.



If Qis large, which is the typical situation in aircraft engine duct problems, any solution (11)
— except for impedances near the bordering lines — produces a la¢fg/Jrand is therefore an
approximation of a solution of (8).

The physical interpretation of these solutions is again that the corresponding mode is spatial-
ly confined to the immediate neighbourhood of the wall, as the modal shape fudgii@yr)
becomes exponentially decaying away from the wall (equation 21):

In(Qyr) el Im(y)(1-r)
’ In(Qy) I ri/2

In other words, these modes are not really duct modes, but surface*wagsringing the
second term to the right and squaring both sides, equation (11) becomes a polynamdadl in
degree 4. It follows that there are at most 4 such surface waves. Their existence and number
varies withZ and M.

The other possible solutions of equation (8), the ones witftdy not large, necessarily
occur neari(e. typically within a distanceD(w 1)) the branch cuts of square ropto ), where
Im(y) =0.

Trajectories of these wave numbers, as functioZ pére plotted in figure 3. To include all
complex values o, we have drawn two families of curves: one for fixed(Rgand one for
fixed Im(Z). Un-attenuated waves occur for purely imagindrybut in contrast to the no-flow
case, suclz do allow also attenuated modes.

An interesting special case is the incompressible lilit-& 0, Mo = O(1), Z = O(M)),
where the solutions can be given explicitly. Deflde- Mo, ¢ = Z/2M, then we have

(1-92%—-2itRaS)S=0, (12)

with 4 solutions (one in each quadrant)

Sy = e (Im@) <1) (13a)
Ssr=—i e @D (Im(¢) < 1) (13b)
Syg = —i esinfe+i) (Im@) < -1) (13c)
SsL= Qe @ (1m(g) < —1) (13d)

We may now apply, as in Rienstra (1986), the causality arguments of Jones&Morgan (1972),
Crighton&Leppington (1974), and vary the frequenoyto become negative imaginarige.

o = —iv. Atypical impedance of mass-spring-damper type then yigldsr + iaw — ib/w =

r +av + b/v, which is real. As a result, the above wave numb®t —1S,, shifts to the low-

er half of the complex plane, which means that it denotes a right-running, growing wave and
therefore an instability. So for at least some impedances and parameter values, this surface wave
of the first quadrant is an instability. Therefore, we have tentatively called it “hydrodynam-

ic instability” o,. The others are called: a right-running stable hydrodynamic surface wave
oHs, a right-running ordinary surface wavgg and a left-running ordinary surface wawe,.
(“Hydrodynamic” because they exist only with flow.)

*We note in passing that boundary condition (3) is based on the assumption of a thin mean flow boundary layer,
which should of course remain thin compared to the surface wave penetration degth) m.
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Figure 3: Trajectories of for varyingZ = R+ iX; M > 0. (Some specific
values ofZ are indicated.) Fixe®R & X = —00:0.2:00
FixedX & R=0:0.2.00 ————— .

Solutions of equation (11) may be analyzed in great detail, and the results are summarized
in the figures 4, 5, and table 1. The only impedances that may possibly occur (for passive walls)
are with R€Z) > 0. So the imaginanZ-axis is an important borderline, which is mapped
(as far as it allows solutions) to the-plane as the egg-shaped contour and as the real axes,
absolute larger than 1. In tleplane the branch cuts ¢f are important borderlines, where the
2D approximation breaks down, and the solutions become regular duct modes again. (In the
approximation they disappear to the other Riemann sheet.) The branch cuts are mapped to the
Z-plane as the 4 contours that separate the 5 regions of existence of different numbers of surface
waves.

Theeggin the axial wave number plane plays a prominent role, which is not entirely unex-
pected, as the typical radidd —* in reduced wave number corresponds approximately with
the Strouhal numbe®/M to the dimensionless wave numbérand the hydrodynamic wave
numbera/Ug to the dimensionless wave numbers.

Trajectories of all duct mode eigenvalues are plotted in the figures 8, as a function of the
imaginary partX of impedanceZ = R+ i X, and variousR, for o = 5,m = 1, andM = 0.5.
For illustration, the 2D surface wave approximations are included, and the agreement is seen to
be very good. As in figure 7, if we used a much higherthe agreement would have been too
good, with hardly any visible difference. This figure is further discussed in the following section.
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5 Further observations

Suppose, we vary the impedance from hard-wall to hard-wall, via vertical straight lines in the
complex planeZ = R + i X whereR is fixed andX varies betweer-co andoo.

Without mean flow (figure 7), most eigenvalues return to the hard-wall value they started
from. Some, however, form a closed loop such that they meander from their initial hard-wall
value to the next hard-wall value. The loop is closed by the first eigenvalue, which becomes a
surface wave (whekX increases from-oco) and, following a large circular contour, turns back
(when X = 0) to a hard-wall eigenvalue of much higher index. Siage= —w/R >~ —jg,,
the hard-wall return-indexet can be estimated as (see 22)

w
Hret = —= —

7R

NI

m +

Bl

(14)

This circular loop becomes larger and larger whtends to zero, until it becomes unbounded
for R = 0. It shrinks to zero wheR becomes large.

With mean flow (figure 8), the situation is quite different. Not some,rbastof the eigen-
values move up one position. Wh&1is big enough, the acoustic surface waves (withineiipg

10
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Figure 5: Regions of existence of surface waveThick lines map to the imaginarg-axis in

figure 4 (except the part in regidgrwhere no solutions exist). In the figurg, = % is
taken.

typically |o| < M~1) form a closed loop. This loop does not grow to infinity whRnends to
zero, but grows until it approximately coincides with #gg The hydrodynamic surface waves

(outside theegd; typically |o| > M~1) on the other hand, start at a hard-wall valugag oo,
but tends to infinity as follows

iB3Z 4+ 2M
M2
—B3X +ip2R+2M
M2
so they disappear to infinity along lines parallel to the real axis. Only the finite number of modes
between the acoustic and hydrodynamic surface waves return to their initial hard-wall values.

Following whatever contour irZ, the modes inside theggremain inside, and the modes
outside remain outside. So there are only a finite number of hard-wall modes that may turn

==+

(X = —00), (15)

8Note that forM — 0 theeggbecomes infinitely large, pushing the hydrodynamic surface waves away to infinity.

11



into an acoustic surface wave, while the others may become a hydrodynamic surface wave. The
hard-wall modal index.i; separating these modes may be estimated from the fact thegghe
crosses the imaginary axis at= FiM~1, or Qy ~ —QJV1+ M2 = —Jmu- This yields

approximately (see 22)
w
it ——/14+M2—Im+ 1. 16
Herit 7M§B + sM+ 3 (16)

Multi-valued functions and branch points

The above analysis is mainly descriptive, and the results are interpreted with emphasis on their
physical context. The deeper origin of this strange game of musical chairs may therefore remain
in the background.

From a complex-function point of view it is not so strange. If we consider equations (8) or
(9) as the definition of a complex functian = ¢ (Z) of complex variableZ, this function is
evidently multi-valued with an infinite number of branches: each braneh(&df represents a
mode. The branch points — the points where two or more branches coalesce — are fouzd at the
values where the-derivative of equation (8b) or (9b) vansihes (also known as the impedances
with double eigenvalues). If we follow a closed contour in the com@emlane (the contour
may be closed at infinity) such that a branch point is encircled, we arrive at another kiranch (
another eigenvalue) when we return to theve started from.

This is exactly what happens when we trace the contduss R + i X (R fixed) for smaller
and smallerR. We start and end at the sarde= oo, but the smaller théR, the more double
eigenvalues (branch points) are encircled, and the eigenvalue we return to moves higher up in
the list.

An model equation with just the same behaviour is given by
20 =iZ(6?—1) (17a)

with exact solutions

0(Z)=—-iZ2t+1-22 (17b)

and branch points & = £1.

6 How to find all eigenvalues

Based on the above described dynamics of the eigenvalues in the codyplexe, we can
devise a method to find all eigenvalues for givdnm, « and Z.

Assume that the hard-wall values are known. Of course, some effort is to be invested here
too, but since all (reduced) radial eigenval®egn, = j,, are real, independent dfl, and
asymptotically for large: found at fixed intervals, this is relatively easy. Now we can connect
a contour in the compleX-plane from anyZ = oo to the sought value. Then we can trace the
eigenvalues as a function & as follows. Start at a large enoughvalue, take small enough
steps along the contour, use the previous values as starting values, and solve by a simple Newton-
Raphson zero-finding routine the eigenvalue equation at 2gabsition.

As we have seen, in some parts of tAegplane we have a problem: surface waves may
disappear to infinity, and coming from this direction we have to make sure to pick up these

12



eigenvalues somewhere, which may be not so easy. It is therefore easier to take a fatting “
oo” without disappearing surface waves. We propose contours parallel to the imaginary axis, like
was done in figures 7, 8. Fdl = 0 thisisZ = R — ioco, while forM > 0thisisZ = R+ ioo

(note the corresponding up- and down-arrows given in the figures.)

For R = 0 some care is required when upper and lower half plane solutions meet along the
real o -axis, for example at = 0 ando = M1,

7 Exact results

Just for the record, a few exact results on the existence of surface waves can be given. Note that
for imaginaryZ = i X and imaginary radial wave numbers= —it (ando real) equation (8b)
may be rewritten as the real equation

Qtlm1(R27) B Q 2

Sincezln1(2)/1m(2) is monotonically increasing ia > 0, we have forM = 0 exactly two
solutions if—w/m < X < 0 and none otherwise. M # 0, we have no solutions X > 0, and
maybe up to 4 otherwise. There is at least oné ik —Q(1+ M)?/8°m.

8 Large circumferential order m.

The used asymptotic expression (21)Jgfapplies only for fixedn, and is totally inappropriate

for m > O(w). This, however, does not necessarily mean that the surface wave behaviour
immediately disappears, because only the lidim/Jn| — O(1) was essential. It appears
that form ~  the general behaviour remains the same, in particular the occurrence of surface
waves. See figure 6. Fan > O(w) a certain surface wave behaviour may still be recognized,
but not any more described by the above equations.

N W b~ O

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 6: Trajectories of for m =« = 10,M = 0.5, and varyingZ = 0.2+ i X.
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The Annular Duct

For the annular duct with dimensionless hub raditend an impedancg&, atr = 1 andZ;, at
r = h we find the reduced eigenvalue equation

(1= M) (In(QY) Ym(Qyh) — Yn(Qy) In(Qyh))
+iB3Zhy (1 — Mo)?(In(Qy) Y (Qrh) — Yn(Qy) Jn(Q2yh))
—iB%Z1y (1= Mo)?(J5(2y) Ym(Qy h) — Y1 (Qy) In(Qyh))
+ B®Z1Znhy 2 (3(QY) Y (Qyvh) — Y (Q2y) Jn(Qyh) =0 (19)

where Yy, is the m-th order Bessel function of the 2nd kind. By substituting the asymptotic
approximation (23) (and similar for the forms with derivatives), we obtain the surface wave
equation

(Q=Mo)?+ B°Z1y) (L~ Mo)? + B°Zny) = 0. (20)

which is just the product of the surface wave equations at inner and outer duct wall. Depending
on the selected, andZ;,, the mode may be of surface wave type at either duct wall, or at both in
exceptional cases. Therefore, occurrence and behaviour of any surface waves is similar to what
is presented above.

9 Conclusions

An analysis is made of the behaviour of the acoustic modes of a lined duct with and without
uniform mean flow. The lining is assumed to be locally reacting and of impedance type, while
the frequency of the sound field is fixed and given. It is shown that for high dimensionless
frequenciesw (as prevail in lined flow ducts of turbofan engines) and given circumferential
orderm < O(w) we have 3 types of modes.

() An infinite number of genuine acoustic modes, of which the complex axial wave number,
as a function of wall impedanca, is never far away from the hard wall values. (ii) Two acoustic
surface waves, which occur both with and without mean flow. (iii) Two hydrodynamic surface
waves, which occur only with mean flow.

Surface waves are called that way because their field is only significant close to the wall, as
it decays exponentially away from the wall. They are essentially 2D and independent of the duct
geometry. The governing equation is therefore much simpler than for the general duct mode,
and allows a detailed analysis.

The surface waves exist only whéhis in certain areas of the compl&k«plane, which are
given in detail. The reduced axial wave number of the surface waves can be found in the complex
plane in very specific areas, separated bggepshaped border with a typical radius equal to the
hydrodynamic wave number. The acoustic surface waves are found insietggihehe 2nd and
4th quadrantl > 0, et'“*-convention), and the hydrodynamic surface waves are found outside
theeggin the 1st and 3rd quadrant. At least in the incompressible limit and for certain type of
impedances, one hydrodynamic surface waves can be shown to be an instability. It is expected
that this remains true in more general cases.

Relevant for eigenvalue searching routines is the following observation. When a mode is
traced along a path in the compl&xplane, for example from hard-wall value to hard-wall value
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a contour parallel to the imaginary axis, the mode does not always retrun to its original value but
changes position with another mode. This happens when one or more branch points of the axial
wave number, considered as a functionZgfare encircled. These branch points correspond to
the impedances with double eigenvalues.

10 Appendix: Bessel functions

'Z—%mni—%ni
Jn(2)  ——, Z ,Imz<0 21
In(2)Ym(zh) — Ym(2) Im(zh) ~ ! gd-mz z— 00, Imz<0 (23)
rzvh
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4 2(1+«/1+8M2)1/2 M B _
\/—(3+\/ 1+8M2)3/2 14+4/14+8M2 ( ) ( )
» 0 0 ()

oo +i0 Z +ioo 1 -1 (-)
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o0 — Zi% % +io0 1 -1 —i00

_jl/oMBy1i8ME _144/118M2 | 144/118M2

2 /33(1+\/m)1/2 2M 2M

Table 1: Particular values o ando, satisfying equation 11. Entries with dots () indicate
expressions too complicated to be of interest. Entries githindicate that no solution

. . . / 2\1/2
exist. Note that & crossing the real segment, running from/2V M = 44 =
(3+4/1+8M2)3%2 B

causewssrto disappear and —at the same time— reappear on either side- M

1+4/1+8M2°
along the segmenio, 1].
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Figure 7: Trajectories of form=1, 0 =5 M =0, —c0 < Im(2) < oc.
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Figure 8: Trajectories of form=1,w =5, M = 0.5, —00 < Im(Z) < oo.
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