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1 
Introduction 

In this thesis we study a particular scheduling problem, called the generalized 
job shop scheduling problem. Scheduling problems occur in situations where a 
set of activities has to be performed by a set of scarce resources [Baker, 1974]. 
Scheduling theory is concerned with the optimal assignment of these resources 
to the activities over time. Its applications can be found in various areas like pro­
duction planning, personnel planning, computer system control, and time tabling. 

Over the past decades, scheduling theory has been the subject of extensive 
research. Most attention has been paid to deterministic scheduling problems, in 
which all the information that defines a problem instance is known in advance 
with certainty. Most of the deterministic scheduling problems studied in the lit­
erature and also in this thesis are machine scheduling problems, in which the 
resources are usually called machines and the activities operations. The main 
restriction is that a machine can perform at most one operation at a time. 

To solve a practical scheduling problem by mathematical means it is neces­
sary to abstract a model from it. This abstraction must capture the essential ele­
ments of the practical problem in the sense that it should be possible to convert 
a solution obtained for the model into a solution of comparable quality for the 
practical problem. Another requirement is that solutions of satisfactory quality 
for the model can be found in a moderate amount of computation time. A major 
problem regarding the relation between the theory and practice of scheduling is 
that most models considered in the literature are either too simple to reflect re-
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2 Introduction 

ality or too complex to be quickly solvable. In this thesis we intend to reduce 
the gap by proposing a model that is closer to practice and by making some first 
steps in the analysis of this model and in the design of efficient methods for its 
solution. 

Our model contains some features which are not present in most models that 
have been studied in the literature and which lead to a drastic generalization. The 
most important extension of the model relaxes the requirement that each opera­
tion has to be processed by a single machine, which is known in advance. One 
important feature that has received little attention until now is that an operation 
may have to be performed by one machine out of a given operation-dependent set 
of machines, that is, before an operation can be scheduled over time it has to be 
assigned to a certain machine. Another neglected feature is that the processing of 
an operation may need the simultaneous cooperation of several machines. These 
two features are incorporated in the model studied in this thesis. In general, for 
a given operation some machine sets are given, each of which is capable of pro­
cessing the operation. The selection of one such machine set for each operation 
is now part of the scheduling problem. Furthermore, arbitrary precedences be­
tween operations are included. On the other hand, only one optima1ity criterion 
is considered: the minimization of the maximum completion time. 

There are many other aspects that are not reflected in most of the existing 
models and that are not considered in the generalized model studied in this the­
sis either. One could think of non-regular optimality criteria (that is, possibly 
decreasing in some of completion times of the operations), multiple optimality 
criteria, processing times that depend on the sequence in which operations are 
scheduled, or on the time at which they are scheduled, sequence-dependent setup 
times of machines, and preemptable operations. Several of these aspects are rela­
tively easy to incorporate in the model studied here. For instance, non-regular or 
multiple optimality criteria do not lead to substantial changes in the description 
of the modeL Furthermore, some more specialized problem areas like periodic 
scheduling and cyclic scheduling are excluded. 

Since the generalized job shop scheduling is hard to solve, approximative so­
lution methods are considered. Roughly speaking, one can divide approximative 
solution methods in two types. The first type consists of constructive methods 
and the second type of iterative methods. Constructive methods build a single 
schedule, which is usually done by using simple dispatch rules. Such methods 
may be easy to analyze in the sense that a worst-case bound can be derived on 
the length of any schedule obtained. In practice, however, constructive methods 
yield schedules of only moderate quality. This disadvantage is absent in many 
iterative methods, which generate many schedules instead of only a single one. 
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An important subclass of iterative methods is fonned by the class oflocal search 
algorithms. Here, a sequence of schedules is generated, such that each sched­
ule in this sequence is obtained by modifying the previous schedule in the se­
quence. In this thesis we extensively discuss local search methods, which have 
been proven to be quite successful for many optimization problems. We note that 
many hybrid approximative solution methods exist: constructive methods exist 
that use some fonn of local search, and iterative methods that use some fonn of 
construction. 

The remainder of this introductory chapter is organized in the following way. 
Section 1.1 introduces the generalized job shop scheduling problem in an infor­
mal way. Section 1.2 deals with combinatorial optimization and local search. 
Finally, Section 1.3 gives an outline of the thesis. 

1.1 The generalized job shop scheduling problem 

One of the currently most complex machine scheduling models is that of job shop 
scheduling. Here, we are given a set of jobs and a set of machines. Each machine 
can handle at most one job at a time. Each job consists of a chain of operations, 
each of which needs to be processed during an uninterrupted time period of a 
given length on a given machine. The first operation of each job becomes avail­
able at time 0, and each other operation becomes available as soon as the pro­
cessing of its predecessor in the chain has been completed. The purpose is to 
find a schedule, that is, an assignment of the operations to time intervals on the 
machines, such that a given optimality criterion is minimized. 

The model we introduce here is more general and we therefore call it the 
generalized job shop scheduling problem. The main generalization is that an 
operation may be perfonned by several machines simultaneously. Such a set of 
machines that processes an operation simultaneously is called a machine set. A 
second generalization is that an operation may have several alternative machine 
sets, each being capable of processing the operation. One of these machine sets 
has to be selected to perfonn the operation. Here, the processing time of an op­
eration may depend on the selected machine set. A third generalization is that 
an arbitrary precedence relation on the set of operations may be defined, instead 
of the simple precedence relation for the job shop scheduling problem that de­
composes the set of operations into chains. 

The model of the generalized job shop scheduling problem can now be de­
scribed as follows. Given are a set of operations and a set of machines. For each 
operation, a set of machine sets is given; each of these machine sets is capable 
of processing the operation. For each operation and each of its machine sets, 
a processing time is given. Furthennore, a binary precedence relation is given 
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on the set of operations. A precedence between two operations denotes that the 
processing of the second operation cannot start before the processing of the first 
operation has been finished. 

A schedule consists of two parts: an assignment of operations to machine 
sets and an assignment of operations to time intervals. Obviously, given the as­
signment of operations to machine sets, it is sufficient to know the starting time 
of each operation. A schedule is called feasible if each operation is processed 
by one of its machine sets for the required duration of time, if at any time in­
stant no machine takes part in the processing of more than one operation, if the 
precedences are satisfied, and if each starting time is nonnegative. Our goal is to 
find a feasible schedule that minimizes the maximum completion time over all 
operations. 

1.2 Combinatorial optimization and local search 

The generalized job shop scheduling problem belongs to the class of combinato­
rial optimization problems. An optimization problem is either a maximization or 
a minimization problem specified by a class of problem instances. Without loss 
of generality we restrict ourselves to minimization problems. An instance is de­
fined by the implicit specification of a solution space, a totally ordered space of 
possible cost values, and a cost function. The objective is to find a solution with 
minimum cost. An optimization problem is called a combinatorial optimization 
problem if for each instance the solution space is finite or countably infinite. 

The decision variant of a combinatorial minimization problem considers the 
fol1owing question: does there exists a solution in the solution space, the cost of 
which does not exceed a given upper bound? To distinguish between the deci­
sion variant of a combinatorial minimization problem and the problem itself, the 
latter is often called the optimization variant. The decision variant of a combina­
torial minimization problem may belong to NP, the class of decision problems 
that can be solved non-deterministically in polynomial time. It also may belong 
to the subclass P of NP, the class of decision problems that can be solved deter­
ministica11y in polynomial time. A third possibiJity is that it does not belong to 
NP. A decision problem is NP-complete if it belongs to NP and if it is as least 
as difficult as any other problem in NP. If a decision problem is NP-complete, it 
is not possible to solve an arbitrary instance in polynomial time, unless P equals 
NP. The corresponding optimization variant of such a problem is then called 
NP-hard. Solving an instance of an NP-hard optimization problem may need 
large and even impractical amounts of computation time. 

If the problem under consideration is NP-hard, it may be that the instances 
one is interested in have some special structure. In this case it may be that the 
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subclass of instances in question is in fact solvable in polynomial time. There­
fore, it is worth to consider the complexity of special cases of a given general 
problem. In this thesis we apply this approach to the generalized job shop sched­
uling problem. We consider several subproblems, for each of which we either 
prove that it is solvable in polynomial time or that it is still NP-harcl. 

If, after all, the instances one is interested in do not belong to a subprob­
lem that can be solved in polynomial time, two options are left: optimization 
or approximation. Most optimization algorithms proceed by branch and bound. 
For most problems, small problem instances can still be solved in reasonable 
amounts of computation time, but solving larger instances may need enormous 
amounts of computation time, since the time needed to solve an arbitrary instance 
is superpolynomial in the size of the instance. The other option is to resort to ap­
proximation algorithms. An approximation algorithm tries to find a solution, the 
cost of which is near to the optimal cost. However, it is not guaranteed to find an 
optimal solution. 

There are two different types of approximation algorithms. The first type 
consists of constructive methods. Such a method constructs in most cases only 
one solution using some problem specific rules. For many such rules one can 
prove that the ratio between the value of a solution found by this rule and the 
optimal value is bounded from above by a constant. But for many hard com­
binatorial optimization problems this difference may still be large. The second 
type of approximation algorithms consists of iterative methods, which generate 
various solutions, the best of which is often of better quality than the solutions 
found by constructive methods. An important subclass of iterative methods is 
formed by the class of so-called local search methods. A local search algorithm 
starts from a given initial solution, and then iteratively generates new solutions, 
each of which is obtained by modifying some parts of the previous solution. In 
such a way a sequence of solutions is obtained. A neighborhood function spec­
ifies which modifications are allowed. This function implicitly assigns to each 
solution a set of neighboring solutions or neighbors that can be reached from 
this solution. A search strategy specifies for each iteration which neighbor is se­
lected from the neighborhood of the current solution as the next solution in the 
sequence. Most search strategies are such that solutions of good quality are pre­
ferred to solutions of lower quality. In this way many solutions are obtained and 
the best of these often have a relatively good quality. However, much depends 
on how the neighborhood function and the search process are defined. 

Local search methods are generally applicable and obtain good results for 
many hard optimization problems. Local search approaches date back to the late 
1950's, when Bock [1958] and Croes [1958] developed the first link exchange 
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procedures for the traveling salesman problem. Ever since, a large variety of lo­
cal search algorithms has been proposed, each aiming at different remedies to 
the risk of getting stuck in poor local optima. Reeves [1993] provides a com­
prehensive survey of the area; a more detailed treatment is given by Aarts and 
Lenstra [1995]. Many local search methods have been developed for the job shop 
scheduling problem and some of them were quite successful. For this reason we 
may expect that local search will also give good results for the generalized job 
shop scheduling problem. In this thesis we discuss various existing local search 
methods for the job shop scheduling problem and we focus on some aspects of 
local search methods for the generalized job shop scheduling problem. 

1.3 Outline of the thesis 

The remainder of this thesis is organized as follows. Chapter 2 introduces the 
generalized job shop scheduling problem in a formal way. Chapter 3 deals with 
the computational complexity of this problem and of many of its subproblems. 
Chapter 4 describes several types of local search methods and provides a tem­
plate that captures these methods. It is based on a paper by Vaessens, Aarts and 
Lenstra [1995a]. Chapter 5 reviews various local search methods that have been 
developed for the job shop scheduling problem and discusses their performance. 
It is based on a paper by Vaessens, Aarts and Lenstra [1995b]. Finally, Chapter 6 
introduces several neighborhood functions for the generalized job shop sched­
uling problem and deals with some of their properties. Section 6.2 is for a con­
siderable part based on a paper by Wennink and Vaessens [1995]. 



2 
The generalized job shop scheduling 

problem 

In this chapter we introduce a generalization of the job shop scheduling problem. 
In Section 2. 1 we describe a model of this generalization. In Section 2.2 we give 
a classification of subproblems. In Section 2.3 we give the classification of some 
well-known shop scheduling problems. 

2.1 The model 

2.1.1 Basic definitions 

In our model we are given a set of operations and a set of machines. Each oper­
ation needs processing on a subset of machines. For each operation a collection 
of such machine sets are given, one of which has to be selected for processing the 
operation. Furthermore, a precedence relation on the set of operations is given. 
denoting that for some pairs of operations the processing of the second operation 
cannot start before the processing of the first has been finished. A schedule is an 
a1location of operations to subsets of machines and to time intervals. We do not 
allow that the execution of an operation, once started, is interrupted. Our goal is 
to find a schedule such that the maximum completion time over all operations is 
minimized. 

In a formal way the problem is defined as follows. We are given a finite set 
V of operations and a finite set M of machines. For each operation v e V there 
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8 The generalized job shop scheduling problem 

is a non-empty set 'H.(v), each consisting of non-empty subsets of M. For each 
operation v e V and each H e 'H.(v) a processing time p(v, H) eN is given. 
On V a partial order A is defined, that is, a binary, antireflexive, and transitive 
relation. 

A schedule ( K, S) defines for each operation v a machine set K ( v) on which 
it will be processed and a start time S ( v). A schedule is feasible if the following 
restrictions hold: 

VveV: 

V(v, w)eA: 

K(v) e'H.(v) A S(v)eiNU{O}; 

S(v)+ p(v, K (v)) :5 S(w); 

Vv, we V, v;fw :K(v)nK(w);f0:::} 

(2.1) 

(2.2) 

S(v)+ p(v, K(v)) :5 S(w) v S(w)+ p(w, K(w)) :5S(v). 

(2.3) 

Here, requirement 2.1 stipulates that each operation must be processed on one of 
its possible machine sets and that it is not available before time 0. Requirement 
2.2 stipulates that for pairs ( v, w) for which a precedence exists, the processing 
of the second operation cannot start before the processing of the first has been 
completed. Finally, requirement 2.3 stipulates that all machines have capacity 
one, so that the processing of two operations with a common machine in their 
chosen machine sets cannot overlap in time. 

Now the problem is to find a feasible schedule (K, S), such that its length 
(or makespan) 

max S(v)+ p(v, K(v)) 
veV 

is minimized. Such a schedule is called an optimal schedule. 
We now introduce some additional notation, which is used throughout this 

thesis. 
The number of operations is denoted by l and the number of machines by m. 

The set of all subsets of M is denoted by M. If for an operation v e V the number 
of machine sets in 1i ( v) is equal to 1, and if in addition this unique machine set 
consists of one machine only, this machine is denoted by J.L(v). 

The transitive reduction of the precedence relation A is denoted by A. The 
set of operations corresponding to a maximal connected component in the graph 
(V, A) is called a job. The set of all jobs is denoted by .:T and its size is denoted 
by n. The number of operations of a job J e .:Tis denoted by 111. The unique 
job that contains operation v is denoted by J ( v ). 

Given a feasible schedule (K, S), the completion time C(v) of an operation 
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vis defined as C(v)=S(v)+ p(v, K(v)). Furthermore, 

Cmax = maxS(v)+p(v, K(v)). 
veV 

9 

FinaJJy, in some cases we use indices to be able to distinguish between dif­
ferent operations, machines, or jobs. Then the set V of operations is written as 
{vt. ... , Vt}. the set M of machines as {J.Lt. ... , J.Lm}, and the set :J of jobs as 
{JJ, ... , ln}. 

2.1.2 Some elementary properties 

In the following we discuss some elementary properties of schedules, which are 
used throughout this thesis. 

Definition 2.1. 

* A feasible schedule is called left-justified or semi-active if it is not possible 
to complete any operation earlier such that 

* each operation is processed by the same machine set, 

* each other operation is completed as least as early, and 

* on each machine the processing order remains the same. 

* A feasible schedule is caJJed (weakly) active if it is not possible to complete 
any operation earlier such that 

* each operation is processed by the same machine set, 

* each other operation is completed as least as early, and 

* on each machine the processing order of the other operations remains the 
same. 

* A feasible schedule is called strongly active if it is not possible to complete 
any operation earlier such that 

* each other operation is processed by the same machine set, 

* each other operation is completed as least as early, and 

* on each machine the processing order of the other operations remains the 
same. 

* A feasible schedule is called left-optimal if it is not possible to complete any 
operation earlier such that 

* each other operation is completed as least as early. 0 
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Note that we have the following inclusions: each left-optimal schedule is 
strongly active, each strongly active schedule is active, and each active sched­
ule is left-justified. 

The following example illustrates the various properties introduced above. 

Example 2.2. Consider the following instance with 

v - {Vj I j = 1, ... '8}, 
M = {~-t; I i = 1, ... , 3}, and 
A = {(VJ, V2), (V2, VJ), (Vt. V3), (V4, Vs), (V6, V7)}. 

Let the machine sets and processing times be as follows: 

1-l(VJ) = H~-t!l. {~-t2H p(VJ, {~-td) = 2 p(Vt. {~-t2D = 3; 
1t(v2) = H~-ttH p(v2, {~-til)= 3; 
1-l(VJ) = H~-t3ll p(VJ, {~-t3D = 1; 
?-£(v4) = H~-ttl. f~-t2H p(v4, {~-ttl)= 2 p(v4, {~-t2D = 1; 
1-l(vs) = H~-t2l. {~-t3H p(vs, f~-t2D = 1 p(vs, {~-t3D = 1; 
rt(v6) = H~-ttH p(v6. {~-ttD = 2; 
1-l(V7) = H~-tz}} p(v7, {~-tzD = 2; 
rt(vs) = H~-t3H p(vs. {~-tJD = 4. 

Now Figure 2.1 contains various schedules that illustrate the properties intro­
duced in Definition 2.1. D 

We first prove that the definitions of a left-justified schedule and a strongly 
active schedule can be simplified by deleting one of the restrictions. 

Theorem 2.3. A schedule is left-justified if and only if it is not possible to com­
plete any operation earlier such that 

* each operation is processed by the same machine set, and 

* on each machine the processing order remains the same. 

Proof Clearly, if in a schedule no operation can completed earlier such that each 
operation is processed by the same machine set and on each machine the pro­
cessing order remains the same, then this schedule is left-justified. Now sup­
pose that we are given a schedule (K, S) in which an operation v exists that can 
be completed earlier such that each operation is processed by the same machine 
set and on each machine the processing order remains the same. We prove that 
this schedule cannot be left-justified by showing that v can be completed earlier 
even without completing any other operation later. Let (K, S') denote a schedule 
with C'(v) < C(v) for which the processing order on each machine is the same 
as in ( K, S). We prove that there exists a schedule ( K, S") with C" ( v) < C ( v), 
with C" ( w) ::;: C ( w) for all w e V, and with the same processing order on each 
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Jl..l V4 V6 

IL2 Vt V7 not left-justified 

J1..3 Vg ~ ~ 

ILl V4 vz V6 
left-justified 

IL2 Vt V7 
not weakly active 

IL3 Vg I v3 I vs I 

ILl V4 vz V6 
weakly active 

IL2 VJ V7 
not strongly active 

IL3 Vg I vs I ~ 

ILl V4 vz V6 
strongly active 

IL2 VJ I vs I V7 I 
not left-optimal 

IL3 Vg I ~ 

ILl Vi vz V6 
left-optimal 

ILZ I v4 I vs I V7 
not optimal 

IL3 I Vg ~ 

ILl Vt V6 vz 

1L2 I v4 I vs I V7 optimal . 

/1-3 I Vg [§] 
0 1 2 3 4 5 6 7 8 9 10 

Figure 2.1: Illustration of the notions of Definition 2.1. 
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machine as in the schedule ( K, S). Clearly, such a schedule proves that ( K, S) is 
not left-justified. Define (K, S") by S"(w) = min{S(w), S'(w)} for all we V. 
We will show that (K, S") is feasible. Let u, w e V be two operations with 
(u, w) e A or with K(u) n K(w) #= 0 and S(w) 2:: S(u) + p(u, K(u)). Since 
(K, S') is feasible and all orderings are the same as in (K, S), we also have that 
S'(w) 2:: S'(u) + p(u, K(u)). But this implies that S"(w) 2:: S"(u) + p(u, K(u)), 
which proves the feasibility of (K, S"). Now it is clear that C"(v) < C(v), that 
C" ( w) ~ C ( w) for all w e V, and that all orderings in ( K, S") are the same as 
~(K,~. D 

Theorem 2.4. A schedule is strongly active if and only if it is not possible to 
complete any operation earlier such that 

* each other operation is processed by the same machine set and 

* each other operation is completed as least as early. 

Proof. Clearly, if in a schedule no operation can completed earlier such that each 
other operation is processed by the same machine set and each other operation 
is completed as least as early, then this schedule is strongly active. Now suppose 
that we are given a schedule (K, S) in which an operation v exists that can be 
completed earlier such that each other operation is processed by the same ma­
chine set and each other operation is completed as least as early. We prove that 
this schedule cannot be strongly active. If (K, S) is not weakly active, then it 
is also not strongly active, and we are done. So assume (K, S) is weakly active. 
Now, let (K', S') denote a schedule with C'(v) < C(v) and with K'(w) = K(w) 
and C'(w) ~ C(w) for all operations w #= v. If no operation x exists with 
K(x) n K'(v) #= 0 and [S(x), C(x)) n [S'(v), C'(v)) #= 0, then (K, S) is not 
strongly active, since v could be scheduled with smaller completion time with­
out changing S and K for the other operations. If such an x does exist, it must be 
scheduled earlier in (K', S'). But, since K'(x) = K(x), it is then also possible 
to find a schedule (K, S") in which x is scheduled earlier. This contradicts the 
assumption that (K, S) is weakly active. D 

The classes of weakly active and strongly active schedules coincide for prob­
lems in which each operation can only be processed by one fixed machine set. 
Furthennore, each of the schedule classes introduced above contains at least one 
optimal schedule. In contrast, the following classes of weakly and strongly un­
delayed schedules do not necessarily contain an optimal schedule. 
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Definition 2.5. 

* A feasible schedule (K, S) is called a (weakly) undelayed schedule if there 
exists no schedule ( K, S') in which there is an operation v with S' ( v) < S( v) 
such that all machines of the machine set K ( v) are idle (or starting an idle 
period) in (K, S) at time S'(v). 

* A feasible schedule ( K, S) is called a strongly undelayed schedule if there 
exists no schedule (K', S') in which there is an operation v with S'(v) < S(v) 
and K'(w) = K(w) for all w-:/: v, that is such that all machines of the ma­
chine set K'(v) are idle (or starting an idle period) in (K, S) at time S'(v). D 

It is not difficult to see that the problem of deciding whether a given sched­
ule is left-justified, weakly active, strongly active, weakly undelayed, or strongly 
undelayed can be solved in polynomial time. In contrast, the following theorem 
states that deciding whether a given schedule is not left-optimal is NP-complete 
in the strong sense. Therefore, the use of the notion of left -optimality is less prac­
tical. 

Theorem 2.6. Deciding whether a given schedule is not left-optimal is NP-com­
plete in the strong sense. 

Proof. Suppose that we have another schedule in which all operations are com­
pleted at least as early as in the given schedule and in which at least one operation 
is completed earlier. This schedule proves that the given one is not left-optimal. 
Comparing the completion times requires polynomial time, and therefore the de­
cision problem belongs to NP. 

To show completeness we give a polynomial-time reduction from the prob­
lem 3-PARTITION to this decision problem. 

The problem 3-PARTITION is defined as follows: letT = {0, ... , 3t - 1} 
for some t e 1N and let Z e JN; let, for each i e T, a number Zi e 1N be given 
with ~ < z; < i and such that 

3t-l 

LZi = tZ; 
i=O 

the question is whether the set T can be partitioned into t pairwise disjoint sets 
Ti,j e {0, ... , t -1}, such that, for all j e {0, ... ,t -1}, 

LZi = z. 
iETj 

Such a partition is called a 3-partition. 3-PARTITION has been proven NP-com­
plete in the strong sense by Garey and Johnson [1975]. 
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Suppose we are given an instance of the problem 3-PARTITION. We trans­
form this instance into an instance of the generalized job shop scheduling prob­
lem and a schedule of this instance. This is done in such a way that the given 
schedule is not left-optimal if and only if a 3-partition exists. 

The transformation is defined as follows. V, M, and A are defined as 

V ={Vjlj = 0, ... , 3t}, 
M={p,;li = 0, ... , 4t- 1}, and 
A=0. 

The machine sets are taken as follows: 
'Ji(Vj) ={{J~,;}Ii = 0, ... , 4t- 1} if j = 0, ... , 3t- 1; 
'Ji(VJt)={{J~,;Ii = 0, ... , 3t- 1}, {J~,;Ii = 3t, ... , 4t- 1}}. 

The processing times are taken as fo11ows: 

( . { . }) _ { Z if i = 0, ... , 3t - 1 and j = 0, ... , 3t - 1 
P vl' JL, - 'f · 3 4 1 d · 0 3 1 Zj 1 l = t, ... , t- an J = , ... , t-
p(VJt• {p,; li = 0, ... , 3t - 1}) = Z 
p(VJr. {J~,;ji = 3t, ... , 4t- 1}) = Z + 1. 

Now, let the given schedule (K, S) be defined by: 

K(Vj) ={JLj} S(vj) =0 if j = 0, ... , 3t -1; 
K(VJt)={tt;li = 3t, ... , 4t- 1} S(VJt)=O. 

tto vo 

P,t VI 

VJt 

#L3t-1 VJt-1 

IL3t I I 
VJt 

IL3t+I I I 

#L4t-l I I 
0 Z Z+l 0 Z Z+1 

(K, S) (K', S') 

Figure 2.2: Schedules (K, S) and (K', S'). 



2.1. The model 15 

Clearly, VJt has completion time Z + 1 and all other operations have completion 
time Z. Figure 2.2 illustrates this schedule. 

Now suppose that this schedule is not left-optimal. Then there exists a sched­
ule (K', S') with C'(v) ~ C(v) for all operations v e V, and there is at least 
one such v for which inequality holds. Suppose that inequality holds for some 
Vj with j E {0, ... , 3t - 1}. Then Vj should be scheduled on {p,;} for some 
i e { 3t, . . . , 4t - 1}, which implies that VJt should be scheduled on the machine 
set {p,; li = 0, ... , 3t - 1}. On the other hand, when inequality holds for VJtt it 
follows immediately that V31 should be scheduled on {p,;li = 0, ... , 3t -1}. In 
both cases it folJows that each operation Vj with j E {0, ... , 3t- 1} should be 
scheduled on a machine p,; with i e {3t, ... , 4t -1}. The sum of the processing 
times of these operations on the machines p,; with i E {3t, ... , 4t - 1} equals 
tZ. Since every such operation should be completed by Z, this is only possible 
when a 3-partition exists for the given instance of 3-PARTITION. Figure 2.2 also 
illustrates how such a schedule (K', S') must look like. 

On the other hand, when a 3-partition exists for the given 3-PARTITION in­
stance, a schedule (K', S') can be easily found, in which V31 starts at time 0 on 
{p,; li = 0, . . . , 3t - 1} and in which each other operation is scheduled on a ma­
chine p,; for some i E {3t, ... , 4t - 1} with completion time at most Z. This 
schedule proves that (K, S) is not left-optimal. D 

2.1.3 Graph representations 

In this subsection it is shown how the generalized job shop scheduling problem 
can be described by a means of a graph. 

Suppose that the machine set assignment K is known, that is, for each oper­
ation it has been decided by which machine set it will be processed. Then what 
remains is to find a function S. The problem of finding such a function Scan be 
represented by means of a disjunctive graph gK = (V, A, EK) [Roy and Suss­
mann, 1964]. Here, the vertex set V consists of all operations in V, together with 
two dummy vertices s and t, which represent the start and the end of each sched­
ule. The arc set .A consists of the precedence arcs of A, which represent the given 
precedences between the operations, and dummy arcs (s, v) and (v, t) for each 
operation v E V. The edge set E K defined by 

EK = {{v, w}e'Pz(V) I K(v)nK(w);60} 

represents the machine capacity constraints. Here, 'P2(V) denotes the set of all 
subsets of V of size 2. Each vertex v e V has a weight, equal to the processing 
time p(v, K(v)); sand t have no weight 

For each edge { v, w} E E K it has to be decided whether v will be processed 
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before w or w before v. These decisions are represented by a complete orien­
tation. A complete orientation on Ex is a function 0 : Ex ---+ V x V such 
that O({v, w}) e {(v, w), (w, v)} for each {v, w} e Ex; furthermore, we write 
O(Ex) = {O(e) I ee Ex}. Hence, O(Ex) contains for each edge {v, w} e Ex 
a so-called machine arc, which defines the relative position of v and w on their 
common machines. The corresponding digraph 9cx,!J) = (V, AU O(Ex )) is 
called the solution graph. Each arc ( v, w) e A U 0 (Ex) in the solution graph 
represents a constraint of the form S( w) 2:: C ( v). So, 0 (Ex) represents for each 
machine its machine ordering, that is, the order in which it processes the oper­
ations with this machine in their chosen machine set. 

However, the solution graph 9cx.!J) may contain cycles. In this case it is not 
possible to find a schedule ( K, S) in which each pair of operations is scheduled 
in an order corresponding to the orientation 0. Therefore, a complete orientation 
0 is defined to be feasible for machine set assignment Kif the digraph 9(K,!J) is 
acyclic. 

Clearly, each feasible schedule (K, S) uniquely determines a feasible com­
plete orientation, which will be denoted by O(K,S)· Conversely, for each ma­
chine set assignment K and each feasible complete orientation 0 on Ex, there 
is a unique left-justified feasible schedule, in which the start time function will 
be denoted by S(K,!J)· S(K,!J) can be computed by taking S(K.!J)(v) for all v e V 
equal to the length of a longest path from s to v in the digraph 9(X,!J)· Here, the 
length of a path (v1, vz, ••• , vk) is defined as the sum of the processing times 
of the operations vz up to and including Vk- 1. Now, the length of the schedule 
(K, ScK.!J)) equals the length of a longest path from s tot in the digraph. Finding 
an optimal left-justified schedule is now equivalent to finding a feasible complete 
orientation that minimizes the length of a longest s-t path in the corresponding 
digraph. Such a longest s-t path is also called critical path. 

Note that as a result of this we obtained a-ene-to-one correspondence be­
tween left-justified schedules and complete feasible orientations. As we have 
noticed before, to find a schedule of minimum length it is sufficient to consider 
only left-justified schedules. 

Many of the dummy arcs and precedence arcs in the disjunctive graph and 
many of the dummy arcs, precedence arcs, and machine arcs in a solution graph 
are redundant in the sense that they are implied by other arcs. Both graphs can be 
reduced by deleting such implied arcs. The resulting graph is called the transitive 
reduction of the original graph. 

The following example gives an illustration of a disjunctive graph and a cor­
responding solution graph. 
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1 2 3 1 2 3 

Figure 2.3: A disjunctive gmph and a corresponding solution graph. 

Example 2.7. Consider again the instance defined in Example 2.2. Figure 2.3 
gives the transitive reduction of the disjunctive gmph and the solution gmph for 
the machine set assignment and the orientation corresponding to the upper solu­
tion depicted in Figure 2.1. The stmight arrows denote the reduction of the arc 
set A, the dotted lines denote the edge set E K, and the dotted arcs denote the re­
duction of the arc set Q(Ex). D 

We also need to define partial solutions in terms of the gmph representation de­
scribed above. In a partial solution, only for some of the operations the chosen 
machine set is known, and only for some of these opemtions the relative order 
on their common machines is known. More formally, in a partial solution, K ( v} 
is defined for all v e W of a given subset W s;; V; this partial machine set as­
signment is denoted by K I w. Orientations can only be defined for opemtions of 
W; the set 

EKiw = {{v, w}eP2(W) I K(v)nK{w),t:0} 

consists of all edges that can be oriented. 0 ( { v, w}} is defined for all { v, w} e F 
of a subset F ~ EKiw; this partial orientation on a subset F ~ Ex1w is denoted 
by OIF· 

For the partial machine set assignment K I w the corresponding disjunctive 
gmph equals YK!w = (V, A, EKiw>· Each vertex v e W has a weight, equal to 
the processing time p(v, K(v)); each vertex v e V\ W has weight 0. 

For the partial machine set assignment K I w and the partial orientation 0 IF 
the corresponding solution graph equals Y(KiwS21F) = (V, AU OIF(F)), where 
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Olp(F) = {Oip(e) le e F}. The partial orientation OIF is defined to be feasible 
for the partial machine set assignment Klw if the digraph g(Kiw.OIF} is acyclic. 

Clearly, if W = V and F = E K, then the notions and graphs introduced for 
partial solutions are identical to those for complete solutions. 

2.2 Classification 

A subproblem of our general model is specified by its machine characteristics, by 
its operation and precedence characteristics, and by its objective characteristics. 
These specifications are denoted in the form of a three-field classification a IP I y, 
which is introduced in this section. This classification is based on the one given 
by Graham, Lawler, Lenstra and Rinnooy Kan [1979]. The symbol o is used 
to denote the empty symbol, which will be omitted when giving a specification. 
The symbol • is also used to denote the empty symbol, but this one will always 
be written in a specification. 

2.2.1 Machine characteristics 

The first field a = a 1 a2a3a4 specifies the machine characteristics. It is defined 
as follows. 

1. atE{o,J,F,FT(,O}. 

If a 1 = J, then the problem under consideration is a job shop scheduling 
problem. The problem is a flow shop scheduling problem if at = F and a 
permutation flow shop scheduling problem if at= F]'(. If at= 0, then the 
problem is an open shop scheduling problem. The problem types for which 
at =I= o will be defined in Section 2.3. 

2. az elNU{m, •}. 

If az E 1N, then it specifies the number m of machines as part of the problem 
type. If az = m, then the number of machines is also specified as part of the 
problem type, but its value is an unknown constant. If az = •. the number of 
machines is specified as part the problem instance. 

3. a3 elNU{•}. 

If a 3 e 1N, then it specifies an upper bound on the size of all possible machine 
sets: for all operations v e V and for all possible machine sets H e?i(v) we 
have I HI :::;: a3. If a 3 = •, then no upper bound is specified on the size of the 
possible machine sets. 

4. a4 elNU{•}. 

If a4 e lN, then it specifies an upper bound on the number of possible machine 
sets for each operation: for all operations v e V we have I'H(v)l :::;: a4• If 
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a4 = •· then no upper bound is specified on the number of possible machine 
sets. 

2.2.2 Operation and precedence characteristics 

The second field fJ = fJt fh.fJ3fJ4 specifies the operation and precedence charac* 
teristics. It is defined as fol1ows. 

1. {J1 e {o, empty, chain, intree, outtree}. 
The entry fJ1 specifies the precedence relation A. If fJt =empty, then there 
are no precedences. If fJt e {chain, intree, outtree}, then the precedence re* 
lation has the structure of the union of several chains, intrees, or outtrees, 
respectively. If {J1 = o, no restrictions on the precedence relation are given. 

2. fh.e{o,n}U{n=x}withxe1N. 
If {J2 equals n, then the number of jobs is specified as part of the problem 
type, but its value is an unknown constant. If fh. is equal to n = x for some 
x e 1N, then the number of jobs is specified as part of the problem type and 
is equal to x. Otherwise, no restriction on the number of jobs is given. 

3. fJ3 e {o}U{IJI :::x} with x e lN. 
If {J3 equals I J I ::: x for some x e lN, then all jobs consist of at most x oper* 
ations. Otherwise, no restrictions on the size of the jobs are given. 

4. {J4e{o, p(v)fq(H), p(v)fq(IHI), p(v), p(H), p(IHI), 1}. 

* If {J4 = o, then the processing times have no special structure. 

* If {J4 equals p( v) I q (H), we have uniform machine sets. This means that 
each operation has a certain processing requirement, which is denoted 
by p( v ), and that each possible machine set has a certain speed, which is 
denoted by q (H). The resulting processing time is then the ratio of the 
processing requirement of the operation and the speed of the machine set. 

* If {J4 equals p(v)fq(IHI), we have identical machines. Now, in addition 
to the requirement for uniform machine sets, the speed of a machine set 
only depends on its size. 

* If {J4 equals p(v), we have identical machine sets. This means that the 
processing time of an operation does not depend on the machine set that 
processes it, but only on the operation itself. 

* If {J4 e {p(H), p(IHI), 1}, we have uniform machine sets, identical ma­
chines, or identical machine sets, respectively. But now in addition the 
processing requirement of each operation is 1. Hence, the processing 
time of an operation only depends on the machine set it is processed by, 
and not on the operation itself. 
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2.2.3 Objective characteristics 

The third field y = y1 Y2 specifies the characteristics of the objective. 

1. y1 denotes the objective that is to be minimized. In our case this is always 
the makespan Cmax· 

2. Y2 e {o,:::: x} with x eJN. 

If Y2 equals :::: x for some x e IN. then x is a required upper bound on the 
objective, and is given as part of the problem type. In this case the given 
problem is a decision problem. If Y2 equals o, no bound on the objective is 
required, in which case the given problem is an optimization problem. 

2.3 Shop scheduling classification 

In this section we define the classification of some weJI-known shop scheduling 
problems. First, we deal with the job shop and flow shop scheduling problem. 
Next, we discuss the open shop scheduling problem. 

2.3.1 Job shop and flow shop scheduling 

In a job and a flow shop problem there is exactly one possible machine set for 
each operation. In addition, this machine set has size one. Furthermore, each 
job consists of a chain of operations and for each pair of successive operations 
of a job it is required that they use different machines. So, in our terminology, 
the job shop scheduling problem is denoted by J • 1 11 chain ICmax. The job 
shop scheduling problem in which two successive operations may be processed 
by the same machine is denoted by • 111 chain ICmax· 

For the flow shop problem, besides the requirements posed for the job shop 
scheduling problem, some additional requirements have to be satisfied: the op­
erations of each job need to be processed on the machines in the same order and 
each job needs to be processed on each machine ~xactly once. This problem is 
denoted by F • 1 11 chain ICmax. If in addition it is required that each machine 
processes the jobs in the same order, then the problem is a permutation flow shop 
scheduling problem. This problem is denoted by Fn • 111 chain ICmax· 

Note that, if at e {J, F, F."}, we always have that a3 = a4 = 1 and that 
fJt = chain. Hence, not all elements of our classification can be chosen inde­
pendently from their given sets of alternatives. We do not want to eliminate this 
redundancy, however, since we wish to keep the classification sufficiently close 
to the one of Graham, Lawler, Lenstra and Rinnooy Kan [1979]. This kind of 
redundancy occurs also in the definition of the open shop scheduling problem, 
which is subject of the next subsection. 
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2.3.2 Open shop scheduling 

In the open shop scheduling problem each operation v has a unique machine 
JJ,(v) on which it must be processed. Furthermore, the set of operations is parti­
tioned into parts. The set of all parts P is denoted by 'P and, for each v e V, the 
part to which v belongs is denoted by P(v). The partition is such that for each 
part P and each machine JJ, there is exactly one operation in part P that has to be 
processed by machine JJ,. Any two operations belonging to the same part are not 
allowed to be processed simultaneously. There is no precedence relation given 
between the operations. 

In the following we show that the open shop problem can be incorporated 
in our model by considering it as a special case of • 2 II empty ICmax. For this 
purpose we define, besides the given set of machines, for each part P e 'P an ad­
ditional machine JJ,(P). Each operation v e V can be processed on only one 
machine set. This unique machine set has size two and consists of the origi­
nal machine JJ,(v) on which operation v should have processed, and the addi­
tional machine JJ,(P(v)) for the part to which v belongs. Therefore, we have 
1t(v) = {{JJ,(v), JJ,(P(v))}}. Clearly, the additional machines enforce that no 
two operations of the same part can be executed simultaneously. Therefore, each 
solution of this extended problem can be transformed into a solution for the orig­
inal open shop problem by just disregarding the additional machines. 

As a consequence, the open shop scheduling problem is denoted by the spec­
ification 0 • 2 11 empty ICmax· 





3 
Computational complexity of 

subproblems 

The generalized job shop scheduling introduced in the previous chapter is NP­
hard in the strong sense, since it contains the job shop scheduling problem as a 
subproblem, which is already NP-hard in the strong sense [Garey, Johnson and 
Sethi, 1976]. 

In this chapter we investigate the computational complexity of some sub­
problems of the generalized job shop scheduling problem. We consider several 
types of subproblems, each of which is the subject of one section. 

3.1 Fixed lengths 

We discuss the decision problem of whether there exists a schedule of a fixed 
length, which is smat1 in the majority of the cases considered. We consider sev­
eral subproblems, some of which are proven to be solvable in polynomial time, 
and some of which are proven to be NP-complete. 

The main interest for considering decision problems for which a fixed, small 
upper bound on the length is given, lies in the fact that, if the decision problem 
with a fixed upper bound L on the length is NP-complete, then finding a solution 
for the corresponding optimization problem of length smaller than (L + 1)/ L 
times the optimum is NP-hard [Lenstra and Shmoys, 1995]. 

The following indicates why we do not consider problems with a fixed upper 

23 
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bound that have a fixed number of machines. If such a problem has fixed bound L 
on the length and a fixed number m of machines, then there can be at most mL 
operations, since otherwise no schedule of length at most L can exist. Hence, 
the number of operations is bounded from above by a constant. Since also the 
number of possible machine sets and their sizes are bounded from above by a 
constant, the problem is solvable in constant time. Therefore, we assume that the 
number of machines is not fixed when considering problems with a fixed bound 
L on the length. 

We first discuss a subproblem that has a fixed, but arbitrary upper bound on 
the length of the schedule; then we discuss subproblems with fixed upper bound 
1, 2, 3, and 4. Note that an NP-completeness proof for a subproblem of the latter 
type is in most cases easily generalized to the similar subproblem in which the 
bound on the length is one larger. On the other hand, a subproblem that is poly­
nomial solvable for a given upper bound on the length may become NP-complete 
if this upper bound is enlarged by one. Therefore, we consider the subproblems 
with fixed upper bound in order of increasing deadline. 

3.1.1 Arbitrary fixed length 

We prove the following result. 

Theorem 3.1. For every constant L, the problem • 1 • I 1 I Cmax::;: L with the 
extra condition that for every pair ( v, w) e A at least one of the operations v and 
w belongs to a chain of length at least L, is solvable in polynomial time. 

Proof. We give a polynomial-time reduction from this problem to BIPARTITE 

MATCHING, which problem is known to belong to 'P. 
Suppose we are given an instance of the type mentioned above. We transform 

this instance into an instance of BIPARTITE MATCHING in such a way that there 
is a matching of a specified size if and only if there exists a feasible schedule of 
length at most L. 

The transformation is defined as follows. If there exists a chain of length 
larger than L, then construct a trivial bipartite graph for which a matching is re­
quired of impossible size. Otherwise, the vertex set of the bipartite graph is given 
by VU(M x {0, ... , L- 1}). Let VL denote the set of operations that belong to 
a chain of length L, and let, for any v e V£, S(v) denote the (forced) start time 
of v. There is an edge {v, (f.L, t)}(v e V, Jt eM, t e {0, ... , L- 1}) if and only 
if 

{~t} E 1-l(u) and 
max S{u) < t < min S{w). 

uEVL,(u,v)eA WEVL.(V,W)EA 
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Now a matching is required of size I. We claim that there is a matching of size I 
if and only if there exists a feasible schedule of length at most L. 

Suppose that there is a schedule of length at most L. For this schedule we 
define a subset B of the edges in the bipartite graph as follows: 

{v, (J.t, t)} e B if and only if K(v) = {J.t} and S(v) = t. 
Note that B indeed is a subset of the set of edges as defined above. We prove that 
B is a matching of size l in the constructed bipartite graph. Since each operation 
v is scheduled, we must have { v, (J.t, t)} e B for some machine J.t and some start 
time t. Hence, the size of B is I. B is a matching since for each machine J.t and 
for each time t e { 0, . . . , L - 1 } there is at most one operation v with K ( v) = {J.t} 
and S(v) = t. 

Now suppose that there is a matching B of size/. For this matching we define 
a schedule as follows: 

K (v) = {J.t} and S(v) = t if and only if {v, (J.t, t)} e B. 

We have to prove that this schedule is feasible. Clearly, for each machine J.t eM 
and each start time t e {0, ... , L - 1} there is at most one operation v with 
K ( v) = {J.t} and S ( v) = t. The edge set of the bipartite graph is defined in such 
a way that all precedences between operations are satisfied automatically. D 

3.1.2 Length 1 

We prove the following results: 

* •l • II Cmax ~ 1 belongs toP; 

* • • 211 Cmax ~ 1 belongs toP; 

* • 2 3 II Cmax ~ 1 is NP-complete, even if for each operation v the set 'H.(v) 
contains at most one possible machine set of size two. 

Since the first two problems are solvable in polynomial time, • 2 3 II Cmax :::=: 1 
is the most restricted one that has to be considered next. We show that this prob· 
lem is already NP-complete, even under some stronger conditions. First, we deal 
with the two polynomially solvable problems. 

Theorem 3.2. The problem • 1 • II Cmax :::=: 1 belongs toP. 

Proof Suppose we are given an instance of the problem • 1 • II Cmax ~ 1. If 
A :1: 0 or if there exists an operation with processing time larger than 1 on each 
of its machine sets, then no schedule of length at most 1 is possible. Hence, we 
may assume that the given instance is an instance of • 1 • I empty, 1 I Cmax :::=: 1. 
By Theorem 3.1 this problem belongs toP. D 
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Theorem 3.3. The problem • • 2 II Cmax ::S 1 belongs to P. 

Proof. We present a polynomial-time reduction from • • 2 II Cmax S 1 to the 
problem 2SAT, which is known to belong toP. 

Suppose we are given an instance of • • 2 II Cmax ::S 1. We transfonn this 
instance into an instance of 2SAT in such a way that the fonnula of 2SAT is satis­
fiable if and only if there exists a feasible schedule of length at most 1. Without 
loss of generality we assume that there are no precedences between operations 
and that each operation has processing time 1 on each of its machine sets. Fur­
thennore, we assume that 11-l(v}l equals 2 for all v e V. If there is an operation 
v with 11-l(v}l = 1, it is forced to be processed by its unique machine set H(v}. 
In this case we can delete operation v from the instance and furthennore we can 
delete for all other opemtions we V \ {v} those machine sets H(w} from ?i(w) 
that have a non-empty intersection with H(v). By this process of repeatedly re­
moving operations and machine sets we finally arrive at an instance in which ei­
ther an operation v exists with 1l ( v) = 0 or in which 1l ( v) contains two machine 
sets for all operations v. Clearly in the first case no feasible schedule of length 
1 exists. 

Now let for every operation v e V the machine sets of ?i(v) be given by 
H1 (v} and H2(v). The transfonnation is defined as follows. The set of variables 
of the instance of 2SAT is taken equal to V. For every two operations v, we V 
we take the following clauses: 

[v v w] <=> Hz(v) n H2(w) =f:. 0; 

[v v W] <=> H2(v) n Ht (w) =f:. 0; 

[Vvw] <=> Ht(v)nH2(w)=f:.0; 

[V v w] <=> Ht (v) n Ht (w) =f:. 0. 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

Now suppose there is a feasible schedule with length equal to 1. We define 
a corresponding truth assignment t by letting t(v) =true for every v e V if and 
only if v is processed on machine set Ht (v). We have to show that this truth 
assignment satisfies all clauses. Assume we are given a v e V that is processed 
by Ht (v). Then t(v) =true and therefore aU clauses of type (3.1) and (3.2) that 
correspond to v are satisfied. Now let we V\{v} be such that Ht (v}nH2(w)=f:.0. 
Since vis processed by H1 (v) operation w must be processed by H1 (w), which 
means that t(w) =true. Hence, the clause of type (3.3) that corresponds to v 
and w is satisfied. In a similar way one can prove that for every w e V \ { v} 
with H1 ( v) n H1 ( w) =f:. 0 the clause of type (3.4) corresponding to v and w is 
satisfied. Similarly, one can prove that all clauses are satisfied that correspond 
to an operation v E V that is processed by H2 (v). 
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Now suppose that there is a satisfying truth assignment t. Then we define 
a machine set assignment by taking for all v e V K ( v) = Ht ( v) if and only if 
t(v)=true. We have to prove that K(v) n K(w)=0 for all operations v, we V. 
Suppose that there exist two operations v, w e V for which K ( v) n K ( w) :F 0. 
Then one of the clauses of type (3.1 ), (3.2), (3.3), or (3.4) cannot be satisfied. D 

To prove that the problem • 2 3 II Cmax ;::: 1 is NP-complete, even if 'H.( v) 
contains at most one possible machine set of size 2 for all operations v, we give 
a reduction from a restricted version of SATISFIABILITY, in which each clause 
contains two or three literals and in which each literal occurs exactly twice in the 
formula. We can this problem 2-LITERAL-2,3SAT. The following lemma states 
that this problem is NP-complete. 

Lemma 3.4. The problem 2-LITERAL-2,3-SAT is NP-complete. 

Proof. We give a polynomial-time reduction to 2-LITERAL-2,3SAT from the 
NP-complete problem 3-BOUNDED-;:::3SAT [Garey and Johnson, 1979, p. 259]. 

3-BOUNDED-;:::3SAT is a restricted version of SATISFIABILITY, in which each 
clause contains at most three literals and each variable occurs (negated or not) at 
most three times in the formula. 

Suppose we are given an instance of the problem 3-BOUNDED-;:::3sAT. We 
transform this instance into an instance of 2-LITERAL-2,3SAT in such a way 
that 2-LITERAL-2,3SAT is satisfiable if and only if 3-BOUNDED-:S3SAT is. The 
transformation is described by the foHowing algorithm. 

1. If each variable occurs at least once unnegated and at least once negated in 
the formula, go to step 2. Otherwise, there is variable w that occurs only 
unnegated or only negated (or not at all) in the formula. Delete from the for­
mula all clauses in which w occurs and delete w from the variable set; apply 
step 1 again. 

2. If each clause has at least two literals, go to step 3. Otherwise, consider a 
clause with one literal. If there is another c1ause of size one that contains 
the complementary literal, replace the current variable set and formula by a 
trivial unsatisfiable instance of 2-LITERAL-2,3SAT and end the construction. 
Otherwise, delete all clauses that contain the literal and delete the comple­
mentary literal from every clause in which it is contained; remove the corre­
sponding variable from the variable set and return to step 1. 

3. If each literal occurs exactly twice, then end the construction. Otherwise, 
consider a literal w that occurs only once; introduce a new variable uw to the 
variable set and add the tautological clauses [w v uw v uw] and [uw v UwJ 
to the formula; apply step 3 again. 
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It it clear that by each application of step 1, 2, or 3 the current formula is re­
placed by an equivalent one. Furthermore, in step 1 each variable is deleted that 
occurs three times negated or three times unnegated in the formula. After the last 
application of step 2, every clause has two or three literals. When the construc­
tion ends in step 3, each variable occurs exactly twice. Note that this also holds 
for the new variables introduced in this step. D 

We are now able to prove the following theorem. 

Theorem 3.5. The problem • 2 3 II Cma.x ~ 1 is NP-complete, even if for each 
operation v the set 1t(v) contains at most one possible machine set of size 2. 

Proof. We give a polynomial-time reduction from 2-LITERAL-2,3SAT to this 
scheduling problem. 

Suppose we are given an instance of the problem 2-LITERAL-2,3SAT. We 
transform this instance into an instance of the given scheduling problem in such 
a way that there exists a feasible schedule of length at most 1 if and only if the 
formula of 2-LITERAL-2,3SAT is satisfiable. 

The transformation is defined as follows. Let U = {u1, ••• , um} be the set 
of m variables of the instance of 2-LITERAL-2,3SAT and let C = {C1, ••• , Cn} 
be the collection of n clauses over U. Let rj e {2, 3} be the number of liter­
als in clause Cj. j e {1, ... , n}, and Jet the Cjk denote the kth literal of clause 
C j, j E { 1, . . . , n}, k e { 1, . . . , r j}. For each clause C j we define three oper­
ations Xji· Xj2· and Xj3· which correspond to the literals in the clause (except 
perhaps operation Xj3). For each clause Cj we also define two clause machines 
C) and C], and for each variable u; we define four assignment machines ~L!. 
l e {1, ... , 4}. For each operation Xjk• j e {1, ... , n} and k e {1, 2}, we let 
1t(Xjk) contain the machine set {C7}. For each operation Xj3. j e {1, ... , n}, we 

let 1t(Xj3) contain the machine sets {Cj} and {C]}. Now leti e{1, ... , m}. The 
literal Ui occurs twice in a clause, say ui = chk1 = chk2 , with h < h or h = h 
and kt < k2. We let 1t(XiJk1) also contain the machine set {~L}, ~Lt} and 1t(xhk2 ) 

the machine set{#-£], ~Lt}. Similarly, the literal ui occurs twice in a clause, say 
u; =chk3 =Cj4k4, with h <j4 or h=j4 andk3 <k4. We let1t(xhk3) also contain 
the machine set {~Lj, ~L]} and 1t(Xj4k4) the machine set {#J.f, 1-Lf}. Obviously, all 
processing times are 1 and no precedences are given. 

Now suppose that we are given a satisfying truth assignment for the con­
structed formula. Then we define a feasible schedule of length 1 as follows. 
Obviously, every operation has to start at time 0. For every operation x jk that 
corresponds to a true literal Cjk we take K(Xjk) equal to its unique machine set 
that contains two of the four assignment machines. Note that this is possible, 
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since for each variable u1 the two operations corresponding to the literal u1 can 
be processed simultaneously on the assignment machines for variable u;. The 
same argument holds for the two operations corresponding to u1• For all other 
operations Xjk we take K(Xjk) equal to one of the machine sets {C}} or {Cj}. 
Since for each clause C i at least one operation is scheduled on the assignment 
machines, there are at most two operations x ik that have to be scheduled on the 
clause machine {Cj} and {CJ}. The construction of the sets 1-f.(Xjk) is such that it 
is always possible to choose for these two operations two different machine sets 
that contain a clause machine. 

Now suppose that we are given a feasible schedule of length 1. We have to 
define a truth assignment that satisfies all clauses. We assign each variable u; 
the value true if an operation corresponding to literal u; is processed on a pair 
of assignment machines, and false if an operation corresponding to literal u; is 
processed on a pair of assignment machines. Note that by the construction of 
the sets 1-f.(Xjk) it is impossible for a variable u; that an operation corresponding 
to literal u; and an ~peration corresponding to literal u1 are processed on a pair 
of assignment machines simultaneously. Therefore this truth assignment is con­
sistent. Since we have three operations and only two clause machines for each 
clause, at least one of these operations must be processed by a pair of assign­
ment machines. This also holds if the clause contains only two literals, since the 
operation that does not correspond to a literal in the clause must be processed 
on a clause machine. Therefore, each cJause is satisfied by the above truth as­
signment. Note that it is possible that for a variable u; none of its assignment 
machines processes an operation. In this case the value of u; may be chosen ar­
bitrarily, since all clauses are already satisfied. D 

3.1.3 Length 2 

Given the results for the subproblems with upper bound 1 the remaining prob­
lems of interest are 

* •1 • II Cmax :;s2 and 

* • • 2 II Cmax ::s 2. 

In this subsection we show the following results: 

* •l• 11 I Cmax :;s2 belongs toP; 

* • • 1 II Cmax ::S 2 belongs to P; 

* • 1 2 I empty, p( v) I Cmax ::S 2 is NP-complete; 

* • 2 2 I empty, 1 I Cmax ::S 2 is NP-complete. 
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The second result shows that all problems with deadline 2 that have only one 
machine set per operation are solvable in polynomial time. Therefore, each NP­
complete problem will have operations with more than one possible machine set 
The first result shows that • 1 • II Cmax ::: 2 is solvable in polynomial time if all 
processing times are 1. The third result shows that the problem becomes NP­
complete if we drop this restriction, even if each operation has at most two pos­
sible machines it can be processed on, if the processing time of each operation 
does not depend on the machine it is processed on, and if no precedences exist. 
On the other hand, if we drop the condition that machine sets have size one, the 
problem becomes NP-complete, even if each operation has at most two possible 
machine sets of size two and if no precedences exist. This is shown by the fourth 
result. 

Furthermore, note that the two problems that are obtained from the two NP­
complete problems mentioned above by replacing the empty precedence struc­
ture by an arbitrary one are less restricted and therefore remain NP-complete. 

The first result follows immediately from Theorem 3.1. The other results are 
subject of the following theorems. 

Theorem 3.6. The problem • • 1 II Cmax::: 2 belongs to P. 

Proof It is quite straightforward to solve this problem in polynomial time. Let 
an instance of the problem be given. If there is chain of operations (possibly 
consisting of a single operation) for which the sum of the processing times is 
larger than 2, then no schedule of length 2 can exist. So, we may assume that 
for each chain of operations the sum of the processing times is at most 2. We 
now briefly describe the construction of a schedule of length at most 2. First, 
schedule all operations that are contained in a chain for which the sum of the 
processing times equals 2. Clearly, for each such operation there is only one start 
time possible. If it is not possible to schedule all these operations, then a schedule 
of length at most 2 does not exist for the given instance. Otherwise, consider the 
remaining operations with processing time 1 for which no precedences exist. As 
long as there is an operation for which at least one machine in its machine set 
is already occupied by a scheduled operation, try to schedule such an operation 
v. Clearly, at most one possible start time is left for v. If no start time is left, no 
schedule of length 2 is possible. Otherwise, schedule v on the unique interval 
that is stiH open. 

Finally, we obtain a situation in which all unscheduled operations have pro­
cessing time 1 and their machine sets have no machine in common with the ma­
chine set of any scheduled operation. Now we can schedule an arbitrary unsched­
uled operation without loss of genera1ity at start time 0. Again, as long as there 
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is an operation for which at least one machine in its machine set is already occu­
pied by a scheduled operation, try to schedule such an operation in the way de­
scribed above. Such a situation, in which no operation is forced to be scheduled 
at a certain start time, may occur several times; each time an arbitrary operation 
is chosen that starts at time 0. 

Clearly, the above method is correct and an algorithm can be designed that 
runs in polynomial time. Note that this method solves in essence the GRAPH 

2-COLORABILITY PROBLEM, which problem is known to be solvable in poly­
nomial time. D 

Theorem 3.7. •1 2 I empty, p(v) I Cmax ~2 is NP-complete. 

Proof. We give a polynomial-time reduction from 2-LITERAL-2,3SAT to this 
scheduling problem. 

Let an instance of the problem 2-LITERAL-2,3SAT be given as defined in the 
proof of Theorem 3.5. We transform this instance into an instance of the given 
scheduling problem in such a way that there exists a feasible schedule of length 
at most 2 if and only if the formula of 2-LITERAL-2,3SAT is satisfiable. 

For each clause C j with r j = 2 we define one operation x j. For each clause 
Cj with rj =3 we define three operations Xjt. Xj2· and Xj3· which correspond to 
the three literals in the clause. Furthermore, for each variable u e U we define an 
operation u. For each clause C j with r j = 3 we define a clause machine p, j. For 
each variable u we define two assignment machines u and ii. Now the machine 
sets by which the operations can be processed are defined as follows: 

'H(xj)= {{cjt}. {cj2}} and p(Xj) = 1 if Cj eC and rj =2; 
'H(Xjk)={{cjk}, {~tj}} and p(xjlc)= I if Cj eC and rj =3 

and k e {1, 2, 3}; 
'H(u)={{u}, {u}} and p(u)=2 ifueU. 

Now suppose that a satisfying truth assignment t : U -+ {true, false} for 
the constructed formula exists. For each clause C j there is at least one literal c j/c 

with t(Cjk) =true. Choose for each clause Cj such a literal, say cjlci· We now 
define the machine set assignment K by: 

K(xj)={cjki} if rj =2; 
K(xj~c)={cjk} ifrj andk=kj; 
K(xj~c)={P,j} ifrj=3 andk;l=kj; 
K(u)={ii} if t(u)=true; 
K(u)={u} if t(u)=false. 

Since every literal occurs in exactly two clauses, this machine set assignment is 
such that each machine has to process one operation of processing time 2 or at 
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most two operations of processing time l. It is trivial to define the start times for 
the operations such that a feasible schedule of length 2 is obtained. 

Now suppose that a feasible schedule of length at most 2 exists. If the length 
is smaller than 2, the set U is empty and the corresponding empty formula is 
satisfied. Otherwise, we define a truth assignment t by defining for all u e U: 

t(u)=true <=> K(u)={u}. 

We have to show that this truth assignment satisfies all clauses. If r j = 2, we have 
either K(xj) ={cit} or K(xj) = {Cj2}· Without loss of generality assume that 
K(xj) = {cid· If cit= u for some variable u, then we must have K(u) = {u} 
and thus t ( c i 1) = t (u) =true. If c i 1 = u for some variable u, then we must have 
K(u) = {u}; then t(u) =false and thus t(cjt) =true. Hence, in both cases the 
clause C i is satisfied. If r i = 3, there is at least one index k e {1, 2, 3} for which 
K (x jk) = { c ik}, since otherwise machine J.L i would be busy for 3 time units. Let 
ki be such an index. In a similar way as for the case ri =2 it can be shown that 
we must have t ( c jki) =true. Hence clause C i is satisfied. 0 

Theorem 3.8. The problem • 2 2 I empty, 1 I Cmax ~ 2 is NP-complete. 

Proof We give a polynomial-time reduction from 2-LITERAL-2,3SAT to this 
scheduling problem. 

Let an instance of the problem 2-LITERAL-2,3SAT be given as defined in the 
proof of Theorem 3.5. We transform this instance into an instance of the given 
scheduling problem as follows. 

For each clause Cj we define three operations Xjt. Xj2• andxi3• which corre­
spond to the literals in the clause (except perhaps operation XjJ). Furthermore, 
for each variable ui we define two operations vi 1 and v;2• For each clause C i 
we define a clause machines C i and for each variable u; we define four assign­
ment machines J.L~,l e {1, ... , 4}. For each operation Xjkt j E {1, ... , n} and 
k e {1, ... , 3}, we let 1t(Xjk) contain the machine set {Cj}· Each literal Uj, 

i E {1, ... , m}, occurs twice in a clause, say Ui = CiJk1 = Cizk2 , with h < h 
or h =hand kt < k2. We let 1t(Xj1k1) also contain the machine set {J.L}, J.Ln 
and 1t(Xizk) the machine set {J.L~, J.Lf}. Similarly, the literal u; occurs twice in a 
clause, say u; =chk3 =Cj4k4 , with h <j4 or h= j4 and k3 <k4. We let 1t(xht3 ) 

also contain the machine set {J.L}, J.Lfl and 1t(xj4k4) the machine set {J.Lf, J.Lf}. Fi­
naJiy, we take 1t(viJ)={{J.L}, J.Lf}} and 1t(v;2)={{J.Lr, J.Lr}}, i E {l, ... , m}. 

Now suppose that a satisfying truth assignment t : U -+ {true, false} for 
the constructed formula exists. We define a machine set assignment K and a 
start time assignment S as follows. Obviously, we have K ( v; 1) = {J.L}, J.Lt} and 
K(vi2)={J.Lr, J.Lfl for all i e {1, ... , m}. We take the start time for these opera-
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tions equal to 0. For the other operations we define K by: 

K(xjk) = {Cj} if and only if k > ri or t(Cjk)=false. 

Since for every clause C i there is at least one true literal, the clause machine C i 
has to process at most two operations. Their start times are chosen from {0, 1} 
such that they are not equal. Now for every operation x jk that corresponds to a 
literal Cjk with t(Cjk)=true we take K(Xjk) equal to its unique machine set that 
contains two of the four assignment machines, and we take its start time equal 
to 1. Note that this is possible, since for each variable u; the two operations cor­
responding to the literal u; can be processed simultaneously on the assignment 
machines for variable u;. The same argument holds for the two operations cor­
responding to u;. This schedule can be easily checked to be feasible. 

Now suppose that there exists a feasible schedule of length at most 2. We 
have to define a truth assignment t that satisfies all clauses. Note that for every 
i e {1, ... , m} the operations v; 1 and v;2 occupy each machine JL: for one time 
unit(/ e {1, ... , 4}). Therefore, an operation corresponding to literal u; and an 
operation corresponding to literal u; cannot be processed both on their own pair 
of assignment machines. Now for each variable u; we define t(u;) =true if an 
operation corresponding to literal u; is processed on a pair of assignment ma­
chines, and t(u;) =false if an operation corresponding to literal u; is processed 
on a pair of assignment machines. Since for each clause at least one operation 
is processed by a pair of assignment machines, each clause is satisfied by truth 
assignment t. If for a variable u; its assignment machines process only the op­
erations ViJ and Vi2, t(u;) is chosen arbitrarily. 0 

3.1.4 Length 3 
Given the results for the subproblems with upper bound 2 the interesting prob­
lems with upper bound 3 are 

* • 1 • I 1 I Cmax:::: 3 and 

* • • 1 II Cmax :::: 3. 
In this subsection we show the fo11owing results: 

* ell II Cmax:::; 3 belongs toP; 

* • 2 1 I empty, 1 I Cmax:::; 3 is NP-complete; 

* • 1 2 I chain, 1 I Cmax :::; 3 is NP-complete. 

The first result shows that • • 1 II Cmax :::; 3 is solvable in polynomial time if 
an machine sets have size one. The second result shows that, in case machine 
sets may have size two, the problem becomes NP-complete, even if no prece­
dences are allowed and all processing times are 1. The third result shows that 
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the problem • 1 • I 1 I Cmax :::: 3 becomes NP-complete if operations may have 
two machines on which they can be processed and if in addition arbitrary chain 
precedences are allowed. Note that the problem becomes solvable in polynomial 
time again, if we replace these arbitrary chains by a precedence structure that 
satisfies the extra condition of Theorem 3.1. Therefore, in the NP-completeness 
proof for the third result chains have to be defined that do not satisfy this addi­
tional condition. 

The second result was obtained by Krawczyk and Kubale [1985] (see also 
Kubale [1987], Hoogeveen, Van de Velde and Veltman {1994]) by a reduction 
from the EDGE 3-COLORING problem, which has been proven NP-complete by 
Holyer [1981]. The other results are dealt with in the following two theorems. 

Theorem 3.9. The problem • 1 1 II Cmax::;: 3 belongs to P. 

Proof We present a method to determine whether for a given instance a sched­
ule of length at most 3 exists. The method is based on the one for the more re­
stricted problem J • 1 1 I chain I Cmax::;: 3 given by Williamson, Hall, Hoo­
geveen, Hurkens, Lenstra, Sevast'janov and Shmoys [1996]. It consists of two 
parts. First, it is determined whether a schedule of length at most 3 exists for the 
subset of operations that have processing time more than 1 or that take part in 
a precedence. Next, it is investigated whether the remaining operations, which 
have processing time 1 and do not take part in a precedence, can be added to 
this schedule without exceeding length 3. This is possible if and only if the total 
processing requirement of each machine is at most 3. 

The first part is solved by giving a polynomial-time reduction to 2SAT, which 
problem is known to belong toP. We transform the restricted instance, which 
only consists of the operations that have processing time more than 1 or that take 
part in a precedence, into an instance of 2SAT in such a way that the formula of 
2SAT is satisfiable if and only if there exists a feasible schedule of length at most 
3 for this restricted instance. Note that every operation of this restricted instance 
has at most two possible starting times. 

Now the transformation is defined as foHows. The set of variables of the in­
stance of 2SAT consists of elements x(v, k) with v e V and k e {0, 1, 2}. The 
interpretation of x(v, k) =true is that operation v starts at time k. Now the cor­
responding formula F of 2SAT is defined by the following algorithm. 

1. Check whether there exists a sequence VJ , • • • , v1 of operations for some l 
with (vi, Vi+I) e A for all i < land 

l 

LP(V;) > 3. 
i=l 
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If the answer is affirmative, no feasible schedule of length at most 3 is possi­
ble. Take F equal to a trivial unsatisfiable formula and stop. Otherwise, take 
for F the empty formula and go to step 2. 

2. Check whether there exists a sequence v1, • . . , v1 of operations for some l 
with (v;, v;+I) e A for all i < land 

l 

LP(V;) = 3. 
i=I 

If the answer is affirmative, then for each j e { 1, . . . , 1} the starting time 
S (vi) of operation vi must be equal to 

j-I 
LP(V;). 
i=I 

Add to F for each j e {1, ... , 1} the singleton clauses [x(vj. S(vj))] and 
[x(vj. k)] for each k # S(vj) and apply step 2 again. Otherwise, go to step 
3. 

3. Check whether there exists a sequence VI, ... , v1 of operations for some 1 
with (v;, Vi+I) e A for all i < 1 and 

I 

LP(V;)=2. 
i=l 

If the answer is affirmative, then for each j e {1, ... , 1} the starting time 
S(vj) of operation Vj must be equal to T(vj) or 1 + T(vj). where 

j-I 
T(vj) = L p(v;). 

i=I 

Now add to Fa clause [x(vj. T(vj)) v x(vj. 1 + T(vj))] and also a clause 
[X(vj. T(vj)) v x(vj. 1 + T(vj))] for each j e {1, ... , 1}, and a clause 
[X(vj. k)] for each j e {1, ... , 1} and k ¢ {T(vj). 1 + T(vj)}. Further­
more, add to Fa clause [x(vj. T(vj)) v x(vi+I• 1 + T(uj+I))] for each 
j e { 1, . . . , l - 1} to ensure that two operations vi and vi+ I do not over­
lap in time. Apply step 3 again. Otherwise go to step 4. 

4. Next, clauses have to be added to ensure that each machine processes at most 
one operation at a time. If operations v and w have to be processed on the 
same machine, their starting times have to satisfy S(u) + p(v) ::; S(w) or 
S(w) + p(w)::: S(v). Thus, -p(v) < S(v)- S(w) < p(w) cannot be valid. 
Therefore, for any two operations v and w that have to be processed by the 
same machine, add to F for every k, k' e {0, 1, 2} with-p(v) < k-k' < p(w) 
the clause [x(v, k) v x(w, k')]. Go to step 5. 
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5. Finally, replace every singleton clause by a clause in which the element of 
the singleton clause occurs twice. 

Now suppose that for the restricted instance a feasible schedule exists with 
length at most 3. We define a truth assignment t by letting t(x(v, k)) = true 
if and only if v starts at time k. It follows immediately that each clause of F is 
satisfied. 

Now suppose that a satisfying truth assignment t exists for F. Then, for 
each operation v e V, we take its starting time S{v) equal to k if and only if 
t(x(v, k)) =true. We have to show that this definition defines a feasible sched­
ule. The clauses defined in steps 2 and 3 ensure that for each operation v e V 
at most one of x(v, 0), x(v, 1), and x(v, 2) is true. Furthermore, these clauses 
ensure that each pair of operations for which a precedence is defined, are pro­
cessed in the correct order and without overlap in time. The clauses defined in 
step 4 ensure that each machine processes at most one operation at a time. D 

Theorem 3.10. The problem • 1 2 I chain 1 I Cmax:;: 3 is NP-complete. 

Proof We give a polynomial-time reduction from 2-LITERAL-2,3SAT to this 
scheduling problem. 

Let an instance of the problem 2-LITERAL-2,3SAT be given as defined in the 
proof of Theorem 3.5. We transform this instance into an instance of the given 
scheduling problem as follows. 

For each clause C i we define a clause machine C i and four operations x j.k. 

k e { 1, . . . , 4}. For k e { 1, .. . , r i} the operations xi .k correspond to the literals 
Cj,k in clause Cj. Furthermore, for each variable u; we define eighteen assign­
ment operations vL, k e {1, 2} and I e {1, ... , 9}, and eight assignment rna­

chines 11L. k e {1, 2} and l e {1, ... , 4}. For each i e {1, ... , m} and k e {1, 2} 
we define the following precedences: (vi, 1, vi, 2), (vi_3 , vi_4), (vi. 5, vi_6), and 

<{6• {7). 
For each i e {1, ... , m} and k e {1, 2} we define the possible machine sets 

for the operations vL as fo11ows: 

1-l(vL> = H11~.1}}, 
'HC{2> = H11i,2H· 
1-l(Vk 3) = {{J1~ tl}. 
rt<vf4> = H11f3n. 

for each i e {1, ... , m} we define 

1-l(v~ 5) = H11~ 4}}, 

'H(v{6) = H11LH. 
'H(vfs> = H11LH. 
rt<vf9> = H11t3n; 

rt<vb> = H11;,2l· I11bH and rt<vb> = H11L3J, t11~.2H· 
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Figure 3.1: Two essentially different schedules for assignment operations. 

For each operation XJ,k• j e {1, ... , n} and k e {1, ... , 4}, we let1t(xj,k) contain 
the machine set { C i}. Each literal u;, i e { 1, . . . , m}, occurs twice in a clause, 
say u; =Cj(,k1 =ch.k2 , with it <h or h =hand kt <k2. Now we let 1t(xh.k1) 

also contain the machine set {J.Lt3} and 1t(Xh,k2 ) the machine set {J.Lbl· Simi­
larly, each literal u; occurs twice in a clause, say u; =ch.k3 =Cj4 ,J4, with h<j4 
or h = j4 and k3 < k4. Now we let 1t(x iJ,k3) also contain the machine set {J.Lt2} 

and 1t(Xj4.k4 ) the machine set {ttbl· 
Now suppose that a feasible schedule of length at most 3 exists. We have 

to define a truth assignment t that satisfies all clauses. For each i e { 1 , . . . , m} 
there are two essentially different ways for scheduling the operations { 1; these 

are given by Figure 3.1. In the left schedule vL9 and vt9 are the only operations 
for which the start times are not fixed. But they can be chosen such that one 
additional operation can be scheduled on each of the machines J.LL3 and J.L~.3 . A 

similar statement holds for the operations vL8 and vb in the right schedule. Now 

for each variable u; we define t(u;) =true if the assignment operations { 1 are 
scheduled as in the left schedule and t (u;) =false otherwise. We have to show 
that this truth assignment t satisfies all clauses. For each clause Cj there are four 
variables that may be scheduled on clause machine C i. Since the given schedule 
has length 3, at least one operation is scheduled on an assignment machine. Let 
x j.k be such an operation. If it corresponds to an unnegated variable, say u;, it 
is scheduled on machine ttL3 or J.L~. 3 • and hence the assignment operations for 
variable u; must be scheduled as in the left schedule. Therefore, the clause is 
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satisfied. A similar argument holds in case an operation x j,k that is not scheduled 
on the clause machine C i corresponds to a negated variable. 

Now suppose that a satisfying truth assignment t : U ~ {true, false} for the 
constructed formula exists. It should be clear how a feasible schedule of length 
3 has to be constructed. If t(ui) =true, the assignment operations corresponding 
to variable u; are scheduled as in the left schedule; otherwise, they are scheduled 
as in the right schedule. All operations Xj,k with k:::: 'i for which t(cj,k) =true 
are scheduled on their assignment machine, and all remaining operations x j,k are 
scheduled on their clause machine. Since each clause Cj has at least one true lit­
eral, at most three operations remain to be scheduled on the clause machine Cj. 
Hence the length of the schedule is 3. The feasibility of this schedule can be eas­
ily checked. D 

3.1.5 Length 4 

Given the results for the subproblems with upper bound 3 the only remaining 
problem of interest with upper bound 4 is 

•1111 Cmax::S4. 

We have the following results: 

* • 1 1 I empty I Cmax ::::4 belongs to P; 

* J • 11 I chain, 1 I Cmax ::;:4 is NP-complete. 

The first result is trivial: just check whether there is a machine for which the 
sum of the processing times of all operations that it has to process is larger than 
4. Williamson, Hall, Hoogeveen, Hurkens, Lenstra, Sevast'janov and Shmoys 
[1996] show that the problem becomes NP-complete if the empty precedence 
structure is replaced by chains, even in the case that all processing times are 1 and 
the chains satisfy the requirement for the job shop scheduling problem. Clearly, 
this result also implies that •11 I chain, 1 I Cmax:::: 4 is NP-complete. Note how­
ever that this problem becomes solvable in polynomial time again if the prece­
dence structure satisfies the extra condition of Theorem 3.1. 

3.2 Unspecified length 

For the subproblems discussed in this section, no fixed upper bound on the sched­
ule length is given. Here, the subproblems are characterized by fixing an upper 
bound on the number of machines, the size of the machine sets, or the number 
of possible machine sets. In case precedences occur, also an upper bound on 
the number of jobs may be fixed. Furthermore, subproblems are considered for 
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which the processing time does not depend on the machine set it is processed on, 
or for which the processing time of each operation equals 1. 

For each subproblem mentioned we indicate whether it is solvable in poly­
nomial time or NP-hard. In the 1atter case we sometimes also mention when the 
problem is solvable in pseudo-polynomial time. For most of these results we give 
a reference where such an algorithm or proof can be found in the literature. We 
prove the remaining results. 

First, we discuss subproblems in which no precedences occur. Next, we dis­
cuss subproblems in which the precedence graph consists of chains. We do not 
discuss other special types of precedence structures. Note however, that prob­
lems with intrees, with outtrees, or with a general precedence structure are harder 
than the corresponding problems without precedences or with chain precedences. 

3.2.1 No precedences 

Based on the results for the problems studied in the previous subsection we now 
study problems without a fixed bound on the length. The only problems of the 
previous subsection that proved to be solvable in polynomial time for each fixed 
upper bound are the problem of Theorem 3.1 and the problem 

• 1 1 I empty I Cmax.. 

Clearly, the requirement for the precedence relation in the first problem depends 
in general on the fixed deadline. This requirement can only be satisfied for prob­
lems with arbitrary deadline in the case that no precedences exist. Hence, the 
problem 

• 1 • I empty, 1 I Cmax. 
is also stilJ of interest. Both problems are solvable in polynomial time. For the 
latter problem this is shown in the following theorem. 

Theorem 3.11. The problem • I • I empty, 1 I Cmax. is solvable in polynomial 
time. 

Proof. The problem can be solved by constructing for a given instance several in­
stances of the MAXIMUM-FLOW PROBLEM, in which a maximum flow through 
a network has to be determined. Note that the length of an optimal schedule is at 
most l, the number of operations. Now for each possible length L smaiJer than I 
an instance can be constructed as follows. There is a node for each operation and 
for each machine; furthermore, there is a source node and a sink node. An arc 
of capacity 1 is given between the source and each operation node; an arc of ca­
pacity 1 is given between each operation node and each machine node when the 
corresponding machine defines a machine set for the corresponding operation; an 
arc of capacity L is given between each machine node and the sink node. Now 
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the problem is to find the smallest L for which the constructed network allows a 
flow of size l. Each of these flow problems is solvable in a time that is polyno­
mial in the number of nodes of the network. Since the number of nodes in each 
of the networks equals l + m + 2, and at most log l different networks have to be 
constructed, the total running time is polynomial inland m. Clearly, the size of 
an instance is at least min{l, m }. D 

The second problem, in which each operation has to be processed by a unique 
single machine, is trivial: just determine for each machine the sum of the lengths 
of all operations that must be processed on it; the optimal length equals the largest 
of these sums. 

As a consequence of these results only problems with a fixed number of ma­
chines remain to be considered. The problem • 1 • I empty, 1 I Cmax can only 
be made harder by allowing processing times larger than 1, by relaxing the con­
straint on the size of the machine sets, or by allowing more general precedences. 
Generalizations of the latter type are dealt with in the next subsection. Due to 
the fact that the problem • 11 I empty I Cmax is solvable in polynomial time, 

2 1 2 I empty, p(v) I Cmax 

is the minimal interesting problem with a fixed number of machines, with ma­
chine set size one, and with processing times that are not equal to 1 for all opera­
tions. This problem is already NP-hard since it contains PARTITION as a special 
case [Garey and Johnson, 1979]. However, it is generally known that the more 
general problem 

m 1 • I empty, p(v) I Cmax 

is solvable in pseudo-polynomial time. 
We now consider relaxations of •l• I empty, 1 I Cmax in which machine sets 

may have sizes larger than one. For these type of problems we have the following 
results: 

* 2 2 1 I empty I Cmax is solvable in polynomial time; 

* 3 2 1 I empty I Cmax is strongly NP-hard; 

* m • 1 I empty, 1 I Cmax is solvable in polynomial time. 

It is trivial to solve the first problem: first schedule all operations that need both 
machines simultaneously, and then schedule all remaining operations. But with 
three machines instead of two this problem becomes strongly NP-hard. How­
ever, when all processing times are 1, then the problem becomes polynomially 
solvable again, even if a larger fixed number of machines and machine sets of 
arbitrary size are allowed. The second result has been proven by Blazewicz, 
Dell'Olmo, Drozdowski and Speranza [1992] and by Hoogeveen, Van de Velde 
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and Veltman [1994] by a reduction from 3-PARTITION. The third result has been 
obtained by Blazewicz, Drozdowski and Weglarz [1986] and by Hoogeveen, Van 
de Velde and Veltman [1994]. 

3.2.2 Chain precedences 

We first consider problems in which each operation can be processed by exactly 
one machine set, and in which the size of each machine set equals one. Next, 
for each of these problems that have been proven to be solvable in polynomial 
time, we consider generalizations that are obtained by allowing machine set sizes 
larger than one. Thereafter, we consider generalizations of the same problems, 
but now by allowing more than one machine set per operation. Finally, for the 
polynomially solvable subproblems in the two latter classes we consider gener­
alizations in which both machine sets of size larger than one and more than one 
machine set per operation are allowed. 

Problems with chain precedences in which each operation can be processed by 
exactly one machine set and in which the size of this machine set equals one, are 
job shop scheduling problems or generalizations of job shop scheduling prob­
lems in which it is allowed that two consecutive operations of a chain need to 
be processed by the same machine. As we have seen in the previous subsection, 
the problem • 1 1 I empty I Cmax is solvable in polynomial time. Replacing the 
empty precedence structure by chain precedences will make the problem harder. 
The complexity of many subproblems of • 1 1 I chain I Cmax is well known. 

The following problems are solvable in polynomial time: 

* 1 11 I chain I Cmax; 

* 2 1 1 I chain, n I Cmax [Brucker, 1994]; 

* • 1 1 I chain, n = 2 I CmaJt [Akers, 1956; Brucker, 1988]; 

* 12 11 I chain, 1 I CmaJt [Hefetz and Adiri, 1982]; 

* 211 I chain, Ill :S21 CmaJt· 

The first result is trivial. The last result is obtained by generalizing the algorithm 
of Jackson [1956] for the problem 12 1 1 I chain, Ill :S 2 I CmaJt by replacing a 
chain of two operations that have to be processed by the same machine by one 
single operation for which the processing time is the sum of the processing times 
of the two given operations. 

On the other hand, the following problems are NP-hard: 

* J3 1 1 I chain, n = 3 I Cmax [Alberton, 1988]; 

* 211 I chain, 1 I CmaJt [Blazewicz, Lenstra and Rinnooy Kan, 1983; Hooge­
veen, Van de Velde and Veltman, 1994]; 
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* 1211 I chain, p(v, H) :;:2 I Cmax [Lenstra and Rinnooy Kan, 1979]; 

* J3 1 1 I chain, 1 I Cmax [Lenstra and Rinnooy Kan, 1979]; 

* J211 I chain, Ill :;:3 I Cmax [Lenstra, Rinnooy Kan and Brucker, 1977]; 

* J3 1 1 I chain, I J I :;: 2 I Cmax [Lenstra, Rinnooy Kan and Brucker, 1977]. 

Next, we consider problems that are obtained from the five polynomially solv­
able problems mentioned above by relaxing the constraint that each possible ma­
chine set consists of a single machine. Clearly, relaxing the first problem in this 
sense is not possible, and the relaxation of the fourth problem is NP-hard due to 
the fact that 2 1 1 I chain, 1 I Cmax is already NP-hard. The relaxations of the 
remaining three problems are 

* 2 21 I chain, n I Cmax. 

* • • 1 I chain, n = 2 I Cmax, and 

* 2211 chain,IJI :;:21 Cmax, 

and these remain solvable in polynomial time. Clearly, for the first and the third 
problem the size of each machine set is bounded by two. 

The first result is obtained by generalizing the algorithm of Brucker [1994] 
for the problem 211 I chain, n I Cmax. Brucker defines a block as a schedule of 
a special type for a subset of the operations. In such a block two operations start 
at the same time if and only if no other operations start earlier in the block, and 
an operation starts on a machine while leaving the other machine idle if and only 
if no operation starts earlier in the block. A precise definition of a block is given 
in Theorem 3.14. For the problem 2 2 1 I chain, n I Cmax we have to take into 
account also operations that are executed by the two machines simultaneously. 
This is solved by defining additional blocks consisting of a single operation that 
is executed by both machines simultaneously. In a way similar to the proof of 
Brucker, one can prove that Brucker's algorithm runs in polynomial time for the 
problem 2 2 1 I chain, n I Cmax. 

The second result is obtained by generalizing a graphical algorithm for the 
problem • 1 1 I chain, n = 2 I Cmax [Akers, 1956]. This algorithm has to find 
a shortest line consisting of horizontal, vertical and diagonal segments between 
two points in the plane, such that it does not cross certain rectangles in the plane. 
These rectangles are called obstacles and express that the two jobs cannot be 
processed simultaneously when they need the same machine. For the problem 
• • 1 I chain, n = 2 I Cmax we have to take into account that there may be op­
erations that need to be processed on a machine set of size larger than one. This 
is done by defining an obstacle if the machine sets of two operations that do not 



3.2. Unspecified length 43 

belong to the same job have a machine in common, instead of defining an ob­
stacle when two operations have to be processed by the same machine. Clearly, 
checking whether two machine sets have a machine in common can be done in 
polynomial time. 

The third result is obtained by generalizing the algorithm of Jackson [1956] 
for the problem J2 1 1 I chain, IJI::: 2 I Cmax. Besides the modification to ob­
tain an algorithm for 2 1 1 I chain, I J I ::: 2 I Cmax, still further modifications are 
needed to take into account operations that are executed by two machines. This 
is done as follows. All first operations of a job with a machine set of size two are 
scheduled before all operations with a machine set of size one and all last oper­
ations of a job with a machine set of size two are scheduled after all operations 
with a machine set of size one. In between aU remaining operations with a ma­
chine set of size one are scheduled in the same way as dictated by the algorithm 
for 2 1 1 I chain, I J I ::: 2 I Cmax. Here, each operation with a machine set of size 
two is neglected by lowering the size of the corresponding job by one. 

Next, we consider problems that are obtained from the five polynomially solv­
able problems mentioned above by relaxing the constraint that each operation has 
only one possible machine set. Again, relaxing the first problem in this sense is 
not possible, and the relaxation of the fourth problem is NP-hard since the prob­
lem 2 1 1 I chain, 1 I Cmax is already NP-hard. The relaxations of the remaining 
three problems are 

* 2 1 2 I chain, n I Cmax. 

* • 1 • I chain, n = 2 I Cmax• and 

* 2121 chain, 111:::21 Cmax. 

We show that the first problem is solvable in polynomial time when at most two 
jobs are given, but that it is NP-hard in the case of three jobs. Given these results, 
3 1 2 I chain, n = 2 I Cmax is the minimal subproblem of the second problem 
that is stil1 of interest. We show that this problem is already NP-hard. However, 
we also show that even the more general problem 3 1 3 I chain, n = 2 I Cmax is 
solvable in pseudo-polynomial time. Final1y, the third problem is NP-hard. 

Summarizing, we claim the following results: 

* 2 1 2 I chain, n = 2 I Cmax is solvable in polynomial time; 

* 2 1 2 I chain, n = 3 I Cmax is NP-hard; 

* 3 1 2 I chain, n = 2 I Cmax is NP-hard; 

* 3 1 3 I chain, n = 2 I Cmax is solvable in pseudo-polynomial time; 

* 2121 chain, IJI :::21 Cmax is NP-hard. 
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The first result is a corollary of Theorem 3.14, in which it is proven that the more 
general problem 2 2 3 I chain, n = 2 I Cmax is still solvable in polynomial 
time. The second result is a corollary of the fact that the more restricted problem 
212 I chain, n = 3, p(v) I Cmax is already NP-hard, which has been shown by 
Jurisch [1992] and by Brucker, Jurisch and Kramer [1994]. The final result is a 
corollary of the fact that the more restricted problem 212 I empty, p( v) I Cmax is 
already NP-hard (see the previous subsection). The other two results are proven 
in the following two theorems. 

Theorem 3.12. The problem 3 1 2 I chain, n = 2 I Cmax is NP-hard. 

Proof We give a polynomial-time reduction from the PARTITION problem to the 
decision variant of this scheduling problem. 

The PARTITION problem is defined as fol1ows: let T = {0, ... , t - 1} for 
some t E IN and let Z E 1N; Jet, for each i E T, a number z; E IN be given such 
that 

LZi = 2Z; 
ieT 

the question is whether there exists a T' s;;; T such that 

LZi =Z. 
ieT' 

Such a set T' and its complement form a partition ofT. PARTITION is proven 
NP-complete by Karp [1972]. 

Suppose we are given an instance of the problem PARTITION. We transform 
this instance into an instance of the decision variant of the given scheduling prob­
lem in such a way that there exists a feasible schedule of a certain length if and 
only if a partition exists. 

The transformation is defined as follows. V, M, and A are defined as 

V = {v;li=0, ... ,2t-1}U{w;li=0, ... ,2t-l}, 
M = {1, 2, 3}, and 
A = {(v;, Vi+I>Ii = 0, ... , 2t- 2} U {(w;, Wi+I>Ii = 0, ... , 2t- 2}. 

The machine sets and the processing times are taken as follows (i E T): 

1i(V2;) ={{1}, {3}} p(V2it {1}) =2Z + Zi 

'H(v2i+t) ={{1}} 
'H(w2;) ={{2}, {3}} 

fi(W2i+J)={{2}} 

p(v2;, {3}) =2Z 
p(V2i+l• {l}) =2Z 
p(w2;, {2}) =2Z + Z; 
p(w2;, {3}) =2Z 
p(w2i+l• {2})=2Z. 

Now a schedule is required of length at most (4t + l)Z. 
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Now suppose that a schedule (S, K} exists for which the length is not larger 
than (4t + l}Z. Let 

Tt = {i e TIK(vu) = {1}} and 

T2 = {i e TIK(wu) = {2}}. 

We have to prove that Tt and T2 form a partition of T. First, we prove that their 
union is equal toT. Suppose that there exists a j e T\(TJ U T2). Then we have 
K(v2i) = K(Wzj) = {3}. Now, under the assumption S(V2j) < S(wzj) we have 

2j 2t-1 

Cmax > LP(V;, K(v;)) + L p(w;, K(w;)) 
i=O i=2j 

> (2t + 1)2Z, 

which contradicts the assumption that the given schedule has length not larger 
than (4t + l)Z. A similar argument holds when S(v2j) > S(W2j). Next we 
prove that T1 n T2 = 0. We have 

2r-l 2t-l 

2Cmax > L p(v;, K(v;)) + L p(w;, K(w;)) 
i=O i=O 

- 4t . 2Z + L Z; + L Z; 

ieTt ieT2 

- 4t . 2Z + 2Z + L Z; 
ieT,nT2 

> 2(4t + l}Z. 

This can only be true if equality holds in the two inequalities. Hence, T1 nT2 = 0. 
Furthermore, it follows that 

2t-l 2t-l 

L p(v;, K(v;)) = L p(w;, K(w;)) = (4t + l)Z. 
i=O i=O 

On the other hand we have 
2t-l 

L p(v;, K(v;)) = 2t · 2Z + L:z;, 
i=O ieT1 

and therefore 

LZi = z. 
iETt 

Now suppose that a partition (T', T\T') exists of the given instance of PAR­

TITION. From the reasoning above it should be clear that we take for all i E T 

K ( v2;) = { 1} if and only if i e T' and 
K(w2;) = {2} if and only if i E T\T'. 
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The starting times are taken as follows (i e T): 

S(vu) - 2i · 2Z + L Zj; 
jeT',j'S.i-1 

S(vzi+I) - 2(i + l)i · 2Z + L Zj; 
jeT',j'S.i 

S(wz;) - 2i · 2Z + L Zj; 
jeT\T',j'S.i-1 

S(W2i+t) - 2(i + l)i. 2Z + L Zj· 
jeT\T',j'S,i 

What remains is to prove that this schedule is feasible. Since the only opera­
tions on machine 1 are the v operations and the only operations on machine 2 
the w operations, it is easy to check that on machine 1 and on machine 2 no two 
operations overlap. The following proves that for any v operation and any w op­
eration on machine 3 the start time of one of them and the completion time of 
the other differ by at least Z. Let i1 e T' and iz e T\T'. Then for vz;2 and wz;1, 

which are both scheduled on machine 3, we have: 

IS(vz;2)- S{wz;1)1 

- 12iz · 2Z + L: Zj - 2i1 • 2Z L: Zjl 

jeT'.j'S.h-1 jET\T',j<S:iJ-1 

> 12(iz- it)· 2ZI -I L: Zj L: Zjl 
jeT'.j'S:i2-l jET\T',j'S,it-1 

> 4Z -max{ L Zj, :L Zj} 

jET' jET\T' 

- 3Z. 
Since the processing times of both vz;2 and wz;1 on machine 3 are 2Z, we have 
the required result. 0 

Theorem 3.13. The problem 3 1 3 I chain, n = 2 I Cmax is solvable in pseudo­
polynomial time. 

Proof. We describe an algorithm that determines the length of a given instance 
in pseudo-polynomial time. This algorithm is a variant of the one of Giffler and 
Thompson [I %0], in which all active schedules for the job shop scheduling prob­
lem are generated. In this variant we have to deal with the fact that an operation 
can be processed by several machines. Furthermore, to ensure that the algorithm 
runs in pseudo-polynomial time, we introduce a dominance relation. In this way 
we exclude some active schedules that cannot be optimal. 

First we describe an enumeration algorithm that generates all strongly active 
schedules, but in which dominance is not yet taken into account. We assume that 
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the operations of job 1 are numbered 1, ... , It and those of job 2 are numbered 
1, ... , l2. The enumeration algorithm generates partial schedules by construct­
ing them from front to back, that is, for each job in a partial schedule all opera­
tions are scheduled that have index not larger than a particular (job dependent) 
index and no operations with larger index are scheduled. To extend a particular 
partial schedule the following is done. One considers the operation of job 1 that 
in the precedence relation immediately follows the last scheduled one of job 1, 
and the similar operation of job 2, provided they exist. For each of these opera­
tions the earliest possible completion time on any of the machines is determined. 
An operation v and a machine Jl is selected that gives the minimal earliest pos­
sible completion time. The only operation that can prevent v of being scheduled 
on machine Jl with this minimal earliest possible completion time, is the first 
unscheduled operation of the other job. Therefore, each partial schedule can be 
extended in at most two ways. Each time a partial schedule is extended by one 
operation of a particular job on a particular machine, we immediately schedule 
operations of the other job on the other machine as early as possible. This is done 
as long as the length of the extended partial schedule remains the same. In a simi­
lar way as is proven that the algorithm ofGiffler and Thompson [1960] generates 
all active schedules for the job shop scheduling problem, one can prove that this 
algorithm generates all strongly active schedules. 

Clearly, the number of different strongly active schedules generated in this 
way is 0(21). To find a pseudo-polynomial algorithm, the introduction of a dom­
inance relation is needed. To be able to compare two partial schedules as far 
as their possible extensions is concerned, the only relevant information needed 
is the number of scheduled operations of each job and the completion times of 
all jobs and all machines. Therefore, a partial schedule is represented by a 7-
tuple (qJ, q2; cj}, cjz; cm1, cmz, cm3). Here, q1 and q2 represent the number of 
scheduled operations of job 1 and job 2, respectively, cj i denotes the completion 
time of the last operation scheduled on job j, and cm11 denotes the completion 
time of the last operation scheduled on machine Jl. Now we say that 

T =(qt. qz; cj), cjz; cm1, cmz, cm3) dominates 
T f ( f f. •I •I. f I I) = q1, q2 , C)p ch, cm 1, cm2, cm3 

if 

q1 = qi and qz = q2 and 
max(ch, emiL)=:: max(cjj, em~) for all j E {1, 2} and Jl E {1, 2, 3}, 

that is, if on any of the machines neither the next operation of job 1 nor the next 
operation of job 2 can start earlier in the partial solution corresponding to T 1 than 
in the partial solution corresponding to T. Note that only partial schedules are 
compared in which the same operations are scheduled. Clearly, for each exten-
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sion of a dominating partial schedule the same ex~nsion in a dominated schedule 
will lead to a length that is as least as long as in the dominating schedule. Here, 
two extensions are considered the same if the choices of the machines on which 
the remaining operations are scheduled and the sequence of the remaining opera­
tions on each of the machines are identical. Therefore, it is sufficient to consider 
only dominating partial schedules and to discard dominated partial schedules. 

To be able to discard as many dominated schedules as possible, the partial 
schedules in the enumeration tree for which no further extensions have been con­
sidered yet have to be considered in a special order. It is not allowed that a partial 
schedule is considered for further extensions, when another partial schedule ex­
ists that has not been considered for further extensions and in which the number 
of scheduled operations of both job 1 and job 2 is not larger. 

Now consider all possible partial schedules generated by the enumeration al­
gorithm described above in which a particular fixed number of operations of job 
1 and a particular fixed number of operations of job 2 are scheduled, and in which 
no schedule is dominated by another. Let Pmax denote the maximum processing 
time of any of the operations on any of the machines. From the fact that in any 
of the partial schedules generated by the enumeration algorithm cj] and ch dif­
fer by at most Pmax - 1, it follows that 6 Pmax is an upper bound on the number 
of mutually undominating schedules in which a fixed number of operations of 
job 1 and a fixed number of operations of job 2 are scheduled. Since the num­
ber of possibilities to fix the number of operations of job 1 and job 2 is equal to 
(It+ 1) · U2 + 1), the total number of mutually undominating schedules is at most 
(ll + 1) · 02 + 1) · 6Pmax· Now, it follows that the algorithm described above 
runs in pseudo-polynomial time. D 

We now briefly discuss how the complexity of the problems with machine 
set size one changes when we require for each operation that its processing time 
does not depend anymore on the machine set on which it is processed. Obvi­
ously, these problems become easier by posing this extra condition. The prob­
lem 2 1 2 I chain, n = 3 I Cmax remains (weakly) NP-hard when adding this 
extra condition. It is solvable in pseudo-polynomial time, and this also holds for 
the more general problem with an arbitrary but fixed number of jobs and with no 
restrictions on the number of machines and the number of possible machine sets 
per operation. The problem 3 1 2 I chain, n = 2 I Cmax becomes polynomially 
solvable when we add this extra condition. Even the more general subproblem 
• 1 • I chain, n = 2, p(v) I Cmax has been proven solvable in polynomial time. 
However, if we drop the condition that the number of jobs is fixed, then the prob­
lem with only two machines and at most two possible machine sets per operation 
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is already strongly NP-hard. Finally, the problem 2 1 2 I chain, I J I ::; 2 I Cmax 
remains NP-hard if we require that the processing times do not depend on the 
machine set on which an operation is processed. Summarizing, we have the fol­
lowing results: 

* 2 1 2 I chain, n = 3, p(v) I Cmax is NP-hard; 

* • 1 • I chain, n, p(v) I Crnax is solvable in pseudo-polynomial time; 

* • 1 • I chain, n = 2, p(v) I Crnax is solvable in polynomial time; 

* 2 1 2 I chain, p(v) I Crnax is strongly NP-hard; 

* 2 1 2 I chain, Ill ::;2, p(v) I Crnax is NP-hard. 

The first result is proven by Jurisch [1992] and by Brucker, Jurisch and Kra­
mer [1994]. The second result is proven by Meyer [1992], the third by Brucker 
and Schlie [1990], and the fourth by Du, Leung and Young [1991]. The last re­
sult is trivial since the subproblem 212 I empty, p(v) I Crnax is already NP-hard. 

Finally, we consider problems in which for each operation more than one ma­
chine set is given, and in which the size of each machine set may be larger than 
one. 

Since 2 1 2 I chain, n = 2 I Crnax is the most general polynomially solvable 
problem with machine sets of size one, with more than one possible machine 
set per operation, and without any restriction on the processing times, the only 
interesting problem that remains to be considered is the problem 

2 2 3 I chain, n = 2 I Crnax. 

The following theorem shows that this problem is solvable in polynomial time. 

Theorem 3.14. The problem 2 2 3 I chain, n = 2 I Crnax is solvable in polyno­
mial time. 

Proof. We give an algorithm to determine the length for a given instance. This 
algorithm is based on the one for the problem 2 1 1 I chain, n I Crnax given by 
Brucker [1994]. It constructs a directed graph with weighted arcs, in which a 
particular type of path of minimal length has to be found. This length equals the 
length of a schedule of minimal length. 

Before giving the algorithm some notions have to be introduced. A block is 
a schedule on a non-empty subset B of V that satisfies the following conditions: 

* B consists of some consecutive operations of job 1 and of some consecutive 
operations of job 2; 

* for each job the first operation in B starts at time 0; 
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* for each operation in B and for each machine this operation is scheduled on, 
the start time is equal to 0 or to the completion time of another operation on 
this machine; 

* at any time unequal to 0 at most one machine starts the processing of an op­
eration; 

* no operation starts at a time on which the other machine is idle or starts an 
idle period. 

Obviously, there are three types of blocks: 

* a block in which a single operation is processed simultaneously on both ma­
chines; 

* a block in which all operations of job 1 in B are processed by machine 1 and 
all operations of job 2 in B by machine 2; 

* a block in which all operations of job I in B are processed by machine 2 and 
all operations of job 2 in B by machine 1. 

Clearly, each left-justified schedule on V can be composed by the juxtaposition 
of several blocks, so an optimal schedule can be found by considering all pos­
sible juxtapositions of blocks. Therefore, we define the length of a block as the 
completion time of the last operation in this block. Now, the length of a schedule 
on V, which is obtained by the juxtaposition of several blocks, equa1s the sum 
of all lengths of these blocks. 

In order to define the directed weighted graph g = (V, .A) mentioned above, 
we assume that the operations of job 1 are numbered 1, ... , 11 and those of job 
2 are numbered 1, ... , l2. Now we take 

V = {0, ... , /I} x {0, ... , h} and 
.A s;; { ((qJ. q2), (rt, r2)) I q1 =::: rt, q2 =::: r2, (qt, q2) i= (rh r2)}. 

A pair ( (q1, q2), (r1, r2)) constitutes an arc in .A if a block exists on the oper­
ations q1 + 1, ... , rt of job 1 and the operations q2 + 1, ... , r2 of job 2; the 
weight of this arc is equal to the smallest length of all such blocks. Clearly, each 
path from (0, 0) to (It, h) corresponds to a schedule, and the length of this path 
equals the length of the corresponding schedule. This schedule can be obtained 
by the juxtaposition of the blocks associated with the arcs of this path. Further­
more, a shortest path from (0, 0) to (11, h) corresponds to an optimal schedule. 
Thus, to solve the scheduling problem it suffices to find a path of minimal length 
in the graph g. 

It remains to show that constructing the graph g and determining a path of 
minimal length can be done in polynomial time. Clearly, the directed graph g 
has no cycles, so a path of minimal length can be determined in a time, which 
is polynomial in the number of nodes in g. Obviously, this number of nodes is 
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equal to (lt + 1)(12 + 1). The number of arcs in(} is O((IJ + 1)2(12 + 1)2). Com­
puting the length of an arc takes O(lt + l2) time, since for each arc there are at 
most three types of blocks that can define this arc. Clearly, computing the length 
of each of these blocks takes O(lt + l2) time. D 

Now we consider the case in which the processing times of operations do 
not depend on the machine set on which they are processed. The most general 
polynomially solvable problem with machine sets of size one, with more than 
one possible machine set per operation, and with p( v, H)= p( v) is the problem 
• 1 • I chain, n = 2, p(v) I Cmax. The more general problem 

• • • I chain, n = 2, p(v) I Cmax. 

in which no restrictions hold for the machine set sizes, is stiJI solvable in polyno­
mial time. This result can be obtained by generalizing the algorithm of Brucker 
and Schlie [1990] for the problem • 1 • I chain, n = 2, p(v) I Cmax· For this 
the definition of an obstacle has to be slightly modified, such that it is possible 
to deal with machine sets instead of single machines. Since these obstacles can 
still be computed in polynomial time, the problem still belongs toP. 
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4 
Local Search 

Since the introduction oflocal search methods by Bock [1958] and Croes [1958], 
a large variety of local search algorithms has been proposed. Each of these vari­
ants tries to decrease the risk of getting stuck in poor local optima. which is the 
most important disadvantage of the simplest local search algorithm, the deter­
ministic iterative improvement algorithm. At present, there is a proliferation of 
local search algorithms, which, in all their different guises, seem to be based on 
a few basic ideas only. 

In this chapter a local search template is presented that has been designed to 
capture most of the variants proposed in the literature. The aim of the template 
is to provide a classification of the various existing local search algorithms. Fur­
thermore, it should also be sufficiently general to capture new approaches to local 
search and thereby to suggest novel variants. 

The organization of this chapter is as follows. Section 4.1 introduces some 
basic definitions. Section 4.2 considers deterministic iterative improvement al­
gorithms. Section 4.3 presents the local search template, and Section 4.4 shows 
for a number of well-known local search algorithms how they fit into this tem­
plate. Section 4.5 mentions some lesser known or new algorithms that fit into the 
template. Finally, Section 4.6 discusses some complexity issues of local search. 

53 
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4.1 Preliminaries 

An optimization problem is either a maximization or a minimization problem 
specified by a class of problem instances. Without loss of generality we restrict 
ourselves to minimization problems. An instance is defined by the implicit spec­
ification of a triple (S, X, f), where the solution spaceS is the set of all (feasi­
ble) solutions, the cost space X is a totally ordered set of all possible cost values, 
and the cost function f is a mapping f: S-+ X. The optimal cost /opt of an in­
stance is defined by /opt = min{f(s)ls e S}, and the set of optimal solutions 
is denoted by S 0 pt = {s E Slf(s) =/opt}. The objective is to find some solu­
tion Sopt eSopt· An optimization problem is called a combinatoriq,l optimization 
problem if for all instances (S, X, f) the solution space S is finite or countably 
infinite. 

A neighborhood function N is a mapping N: S-+ 'P(S), which specifies 
for each s e S a subset N (s) of S of neighbors of s. A solution s, E S is called a 
local minimum with respect toN if f(s) =:::: j(t) for all t eN(s). Furthermore, 
to distinguish between local minima and elements of Sopt. we call the latter ones 
global minima. A neighborhood function N is called exact if every local mini­
mum with respect toN is also a global minimum. 

In some app1ications of local search algorithms to optimization problems the 
search is not done directly on the solution spaceS, but on a search space, in 
which solutions are represented in one way or another. 

For problems with very few feasible solutions or for which it is even not 
known whether feasible solutions exist, the search space may also contain in­
feasible solutions in addition to feasible ones. In this case, the cost function f 
should be extended in such a way that the a solution of minimum cost automati­
cally corresponds to a feasible solution. The same is true if one wants to include 
partial solutions in the search space. 

Another possibility is that some solutions are represented by more than one 
element in the search space. This occurs very often in applications of genetic 
algorithms, which are discussed in Section 4.4.3. Here, solutions are represented 
by strings over a finite alphabet, and several such strings may represent the same 
solution. 

However, since each problem described by a non-trivial representation can 
be seen as an optimization problem of its own, we consider in the remainder of 
this chapter only problems of the form introduced at the beginning of this section. 
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4.2 Deterministic iterative improvement 

The basic local search algorithm is the so-called deterministic iterative improve­
ment a1gorithm. We assume that an instance of an optimization problem and a 
neighborhood function are given. The deterministic iterative improvement algo­
rithm starts from an initial solution and then continually searches the neighbor­
hood of the current solution for a solution of better quality. If such a solution is 
found, it replaces the current solution. The algorithm terminates as soon as the 
current solution has no neighboring solutions of better quality, at which point a 
locally optimal solution is found. 

The pseudo-Pascal procedure given in Figure 4.1 represents the basic part of 
the deterministic iterative improvement algorithm. Here, the procedure GENER­

ATE NEIGHBOR deterministically generates a solution t from the neighborhood 
N (s) of the current solution s, such that every t EN (s) is generated at most once 
as a neighbor of s. The procedure DETERMINISTIC ITERATIVE IMPROVEMENT 

returns a solution s that is locally optimal with respect to the neighborhood func­
tionN. 

The deterministic iterative improvement algorithm terminates at the first lo­
cal optimum that is found and, in general, the quality of such a local optimum 
may be arbitrarily bad. To improve the quality one can consider applying the 
following ideas. 

* Generating several or all neighbors of the current solution instead of just one 
neighbor in each iteration. If all neighbors are generated and a best one is 
accepted, one obtains a steepest descent or best improvement algorithm. 

* Using more intricate functions to determine a new solution from the current 
solution and its neighbor, for instance, accepting solutions of quality worse 

procedure DETERMINISTIC ITERATIVE IMPROVEMENT (s E S); 
{input: s eS 

output: s eS, s locally optimal w.r.t. N} 
begin 

repeat 
GENERATE NEIGHBOR (s, t,N'); 
if f(t) < f(s) then s := t 

until Vt E N'(s) : /(t) 2:: f(s) 
end 

Figure 4.1: The procedure DETERMINISTIC ITERATIVE IMPROVEMENT. 
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than that of the current solution. The well-known simulated annealing and 
threshold accepting algorithms fall into this category. 

* Replacing the single current solution by a population of current solutions. 
This is the basic idea of genetic algorithms. 

* Alternating between two or more neighborhood functions. Such an algo-
rithm has been proposed by Martin, Otto and Felten [1989]. 

Based on one or more of the above ideas, a considerable number of algorithms 
has been proposed in the literature. In the next section we present a generic local 
search template that captures most of these ideas. 

4.3 A local search template 

Our local search template generalizes the iterative improvement algorithm from 
the previous section in the following ways. 

1. The search may proceed at several levels, each with its own specifications. 

2. The single current solution is replaced by a population of current solutions. 

3. The neighborhood function associated with a single solution is replaced by 
a neighborhood function associated with a cluster of solutions. 

More forma1ly, a population P at a given Ievell is a multi-set of PI solutions 
from S. It represents the current state of the search at Ievell. We will talk about 
point-based local search if, at the first level, P contains one single solution, and 
about population-based local search otherwise. A cluster at Ievell is a q-tuple 
C e set of solutions, such that with each cluster a hyper-neighborhood is asso­
ciated. That is, there is a hyper-neighborhood junction .Ni : sc1 __,. 'P(S) which, 
for each cluster C, defines a set .Ni (C) of neighboring solutions. Here c1 denotes 
the cluster size. In case q = 1, the hyper-neighborhood function reduces to the 
standard neighborhood function of Section 4.1. 

The local search template is defined by the recursive procedure LOCAL 

SEARCH. At each Ievell, this procedure takes a population P as input and uses 
the hyper-neighborhood function Ni to produce a new population P as output. 
This is done in two nested loops: an outer loop of generations and an inner loop 
of iterations. 

The generation loop creates a number of generations of populations until a 
stopping condition is satisfied. In each generation, the procedure GENERATE 

CLUSTERS assembles from the current population P a finite multi-set C of clus­
ters C e PCJ. Hence, each of the q components C 1, ••• , Cq of a cluster C of C 
is a solution from P. 

For each cluster C eC, the iteration loop applies a number of iterations until 
a stopping criterion is satisfied. Each iteration starts with a call of the procedure 
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GENERATE NEIGHBORS, which selects a finite multi-set Q of hyper-neighbors 
of C, that is, each component of Q is an element from .Ni (C). The procedure 
LOCAL SEARCH is then called recursively, with level/ + 1 and population Q as 
its parameters. The result is a modified population Q. After this, the procedure 
REDUCE NEIGHBORS reduces the union of the original cluster C and the new 
population Q into a new cluster C esc,, which then serves as input for the next 
iteration. 

If, at level l, the iteration loop has terminated for all clusters C eC, the proce­
dure CREATE collects the solutions found in (usually) the final iteration for each 
C E C into a single multi-set P of S. The procedure REDUCE POPULATION fi­
nally merges P and P into a new current population P. 

We now give a short description of the procedures and functions used in the 
procedure LOCAL SEARCH, which is shown in Figure 4.2 in pseudo-Pascal. 

* The Boolean function CONTINUE POPULATION GENERATION has the cur­
rent Ievell as input. Based on additional information from previous gener­
ations, it returns the value TRUE as long as new generations of populations 
have to be generated and FALSE otherwise. 

* The procedure GENERATE CLUSTERS has a level l and a population P as 
input and a finite multi-set C ~ sc, as output. It clusters P into a collection C 
of c1-tuples C e PCJ, either deterministically or probabilistically. In this way, 
the hyper-neighborhood function .Ni can be applied indirectly to the given 
population P. 

* The Boolean function CONTINUE ITERATION has a level las input. Based 
on additional information from previous iterations it returns the value TRUE 

as long as iterations have to go on in the iteration loop and FALSE otherwise. 

* The procedure GENERATE NEIGHBORS has a Ievell, a multi-set C of size 
c1, and the hyper-neighborhood function .Ni as input, and a multi-set Q of 
size PI+ I as output. It generates a multi-set Q of neighbors from C using 
.Ni. The basic part of the procedure prescribes how a neighbor of C is to be 
determined, that is, randomly or deterministically, and how many neighbors 
are to be determined. 

* The procedure REDUCE NEIGHBORS has a level l, a q-tuple C, and a Pl+I­
tuple Q as input, and a modified version of C as output. It determines how 
to merge the old cluster C and the collection Q of (modified) neighbors into 
a new cluster C. 

* The procedure CREATE has a Ievell as input and a population P as output. 
It puts a population P together from solutions found in (usually) the final 
iteration for each C e C. 



58 

procedure LOCAL SEARCH (1: integer; P E SP1 ); 

{ input: 1 e IN, P e SPt 

output: P e S Pt } 

begin 
while CONTINUE POPULATION GENERATION (f) do 

begin 
GENERATE CLUSTERS(/, P, C); 
for all C eC do 

begin 
while CONTINUE ITERATION (f) do 

begin 

Local Search 

GENERATE NEIGHBORS(/, C, Ni, Q); 
LOCAL SEARCH (I + 1, Q); 

end; 

REDUCE NEIGHBORS(/, C, Q) 
end 

end; 
CREATE(/, P); 
REDUCE POPULATION (/, P, P) 

end 

Figure 4.2: The procedure LOCAL SEARCH. 

* The procedure REDUCE POPULATION merges P and Pinto a new population 
P. 

To make the recursive procedure finite, we need to define a bott~m Ievell*. 
At this level/*, the Boolean function CONTINUE POPULATION GENERATION 

assumes the value FALSE. The levels I < I* are called active levels. Obviously, 
for the description of a local search algorithm only a specification of the active 
levels is needed. We know of no algorithms that use more than two active levels. 

The next section shows how most local search algorithms proposed in the 
literature fit into our template. 

4.4 Instantiations of the local search template 

The local search template captures most types of local search algorithms pro­
posed in the literature. This is shown by the specification of the bottom level 
l* and, for each active level, by an instantiation of the procedures GENERATE 
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CLUSTERS, REDUCE NEIGHBORS, CREATE and REDUCE POPULATION. The 
other procedures are usually less characteristic of an algorithm; they are instan­
tiated only if they constitute a relevant part of the algorithm. 

In handling the various local search algorithms we distinguish between point­
based and population-based local search and between local search with exactly 
one and more than one active level. 

4.4.1 Single-level point-based local search 

Among point-based local search algorithms with one active level, first the classes 
of threshold and taboo search algorithms are discussed. Next, variable-depth 
search is discussed. 

Threshold a1gorithms and taboo search. Both threshold and taboo search al­
gorithms are characterized by the fact that only one generation is created. Hence, 
they are completely determined by the iteration loop of the procedure LOCAL 

SEARCH. Both algorithms can be instantiated as fo1lows. 

* CONTINUE POPULATION GENERATION returns the value TRUE for the first 
generation and FALSE for each subsequent generation. In this way only one 
generation is created. 

* GENERATE CLUSTERS generaties a single cluster C of size 1 that contains 
the single solution of the 1-tuple P. 

* CREATE sets P equal to the current cluster C. 

* REDUCE POPULATION sets the new population P equal to p. 
We now consider threshold and taboo search algorithms separately. 

In threshold algorithms, a neighbor of a given solution becomes the new current 
solution if the cost difference between the current solution and its neighbor is be­
low a certain threshold t e R. Depending on the nature of the thresholds one dis­
tinguishes three kinds of threshold algorithms: iterative improvement, simulated 
annealing [Kirkpatrick, Gelatt and Vecchi, 1983; Cerny, 1985; Aarts and Korst, 
1989], and threshold accepting [Dueck and Scheuer, 1990]. They are character­
ized by the fo11owing instantiations. 

* Using the neighborhood function N1 GENERATE NEIGHBORS generates a 
multi-set Q that contains only one neighbor Q1• In most cases a neighbor is 
generated randomly; sometimes this is done deterministically. 

* REDUCE NEIGHBORS determines whether the unique component Q1 in Q 
satisfies f(QJ) - f(C1) < t for a certain threshold value t e R, where 
C1 denotes the first (and only) component of C. If the answer is affirmative, 
Q1 replaces the current solution C1; otherwise, C1 remains unchanged. Sev­
eral types of threshold algorithms exist; each of these is characterized by a 
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particular type of threshold. In iterative improvement the thresholds are 0, 
so that only true improvements are accepted. The deterministic iterative im­
provement algorithm introduced in Section 4.2 has the further restriction that 
neighbors are generated deterministically. In threshold accepting the thresh­
olds are nonnegative. They are large in the beginning of the algorithm's exe­
cution and gradually decrease to become 0 in the end. General rules to deter­
mine appropriate thresholds are lacking. In simulated annealing the thresh­
olds are positive and stochastic. Their values equal -TIn u, where T is a 
control parameter (often called 'temperature'), whose value gradually de­
creases in the course of the algorithm's execution according to a 'cooling 
schedule', and u is drawn from a uniform distribution on (0,1]. Each time 
a neighbor is compared with the current solution, u is drawn again. Under 
certain mild conditions simulated annealing is guaranteed to find an optimal 
solution asymptotically. 

Taboo search [Glover, 1989; Glover, 1990; Glover, Taillard and De Werra, 
1993] combines the deterministic iterative improvement algorithm with a possi­
bility to accept cost increasing solutions. In this way the search is directed away 
from local minima, such that other parts of the search space can be explored. This 
is done by selecting at each iteration a solution of minimum cost from a subset of 
permissible neighbors of the current solution. In basic taboo search a neighbor 
is permissible if it is not on the 'taboo list' or satisfies a certain 'aspiration crite­
rion'. The taboo list is often implicitly defined in terms of forbidden moves from 
the current solution to a neighbor. It is recalculated at each iteration. The aspi­
ration criterion expresses possibilities to overrule the taboo-status of a neighbor. 
For details see Glover [1989; 1990] and Glover, TaiiJard and De Werra [1993]. 
Taboo search algorithms are characterized by the foJlowing instantiations. 

* GENERATE NEIGHBORS selects deterministically all neighbors of the current 
solution Ct with respect to Nt by inspecting these in a prespecified order. 

* REDUCE NEIGHBORS determines among all permissible solutions in Q a so­
lution Qj =I= C1 of minimum cost. C1 is then replaced by Qj. 

* CONTINUE ITERATION returns the value TRUE as long as the best solution 
found so far is not of a prescribed quality, or as long as a prescribed number 
of iterations has not yet been reached. Furthermore, when the taboo list con­
tains all neighbors of C 1 and none of these attains the aspiration level, the 
function CONTINUE ITERATION returns the value FALSE. 

When the taboo list contains all neighbors of a current cluster C1 and none of 
these attains the aspiration level, it is impossible to determine a neighbor of C1• 

Some variants of taboo search solve this problem by letting the function CON-
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TINUE ITERATION return the value FALSE. Other variants modify the taboo list 
in such a way that neighbors of the current cluster are removed from the taboo 
list. In this way neighbors of Ct become available again. 

In other variants, the procedure GENERATE NEIGHBORS selects only one 
neighbor per iteration and the function REDUCE NEIGHBORS accepts this neigh­
bor when it is not on the taboo list or attains the aspiration level, and rejects it 
otherwise. But in that case the taboo list has to be significantly larger, so as to 
avoid that the procedure accepts a solution with a cost larger than the current so­
lution too often. However, in this case unacceptably large amounts of memory 
space and computation time would be required. 

Variable-depth search algorithms. In contrast to the above algorithms, a vari­
able-depth search algorithm creates several generations. In each generation a fi­
nite sequence of iterations is generated, in each of which a neighbor of the pre­
vious solution is computed. In principle, each neighbor chosen is a minimum 
cost neighbor of the previous solution. However, in this approach the risk of cy­
cling is large. To avoid cycling, a sort of taboo list is introduced, which prevents 
the search from generating a solution that has occurred in the sequence before. 
Before starting the first iteration in a generation the taboo list is emptied and the 
solution contained in the single cluster is chosen from the solutions that occurred 
in the previous generation. 

There are two main variants to choose the solution that a new generation is 
started with. In the first variant a solution with smallest cost is chosen among 
those generated in the previous generation, but it is not allowed to choose the 
solution that this previous solution was started with. In the second variant the 
first solution is chosen among those generated in the previous generation that has 
smaller cost than the solution that the iteration loop was started with, provided 
that such a solution has been found. Otherwise, an arbitrary solution obtained in 
the previous generation is chosen. 

The instantiations for variable-depth search are as follows. 

* GENERATE CLUSTERS generaties a single cluster C of size 1 that contains 
the single solution of P. 

* GENERATE NEIGHBORS selects all neighbors of the current solution deter­
ministica1ly by inspecting these in a prespecified order. 

* REDUCE NEIGHBORS determines among all solutions in Q not on the taboo 
list a solution Q i :f:. C 1 of minimum cost. C 1 is then replaced by Q i. 

* CREATE sets P equal to the current C = (Ct). where Ct is a solution found 
in the last iteration loop that is different from the solution with which the 
iteration loop started. We mention the following possibilities for choosing 
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C 1, each of which also leads to a different choice for CONTINUE ITERATION. 

1. In the first variant a solution is chosen that has smallest cost among those 
obtained in the last iteration loop. In this case CONTINUE ITERATION 

returns the value TRUE as long as the number of iterations has not yet 
reached a specified upper bound. 

2. In the second variant the first solution is chosen with smaller cost than 
the solution that the iteration loop was started with, provided that such 
a solution has been found. Otherwise, an arbitrary solut~on obtained in 
the last iteration loop is chosen. As soon as a solution is' found that has 
smaller cost than the solution that the iteration loop was started with, 
the loop is terminated by letting CONTINUE ITERATION return the value 
FALSE. 

* REDUCE POPULATION simply selects the best of the two solutions in P and 
P. Ties are broken arbitrarily. 

* In some variants CONTINUE POPULATION GENERATION returns the value 
TRUE as long as the sequence of the costs of solutions in P for the subsequent 
generations is strictly decreasing. Other variants use different rules to stop 
the generation of new generations. 

4.4.2 Multi-level point-based local search 

We now discuss point-based local search algorithms with more than one active 
level. Very few algorithms of this type have been proposed in the literature, and 
the existing ones are often tailored to a specific problem type. Algorithms of this 
type can usually be composed from single-level point-based local search algo­
rithms. For this reason we do not detail the corresponding procedures and func­
tions here. 

Nevertheless, since algorithms of this kind seem to give good results, we 
briefly discuss an example due to Martin, Otto and Felten [ 1989], which is one of 
the first multi-level algorithms. Their algorithm for the traveling salesman prob­
lem uses, in our terminology, two active levels. 

At level 1 they use simulated annealing. Their neighborhood is a subset of 
the 4-exchange neighborhood. After selecting a single neighbor at level 1, at 
level 2 they determine a local minimum with respect to a special 3-exchange 
neighborhood, using any single-level point-based local search algorithm that is 
able to do so. Then this local minimum is compared with the current solution 
at level 1 and is accepted using simulated annealing. The authors attribute the 
power of their algorithm to the fact that, after making a single 4-exchange and 
then applying 3-exchanges until a local optimum is reached, typically many links 
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in the tour have been changed. Algorithms of this type, which use more levels 
in the local search template, seem to be powerful and deserve wider attention. 

4.4.3 Single-level population-based local search 

We now discuss a class of single-level population-based local search algorithms, 
called genetic algorithms. These were first introduced by Holland [1975] and 
have been well described in a textbook by Goldberg [1989]. 

In each generation, first some clusters C of the current population P are cre­
ated. To each C, the hyper-neighborhood function Ni is applied to produce a 
set of new solutions. From these new solutions and the solutions of the current 
population, the low cost solutions are selected to form a new population, which 
then starts up a next generation. The generation loop terminates as soon as some 
stopping criterion, which is usually chosen heuristically, is satisfied. The instan­
tiations for the class of genetic algorithms are as follows. 

* GENERATE CLUSTERS generates from the population P of size Pl a multi­
set C of clusters C of size c1 • In most cases the clusters are formed heuris­
tically and in such a way that solutions with lower cost are contained in a 
cluster with higher probability. Note that a solution in P can occur in more 
than one cluster and even several times in the same cluster. 

* GENERATE NEIGHBORS selects randomly a number of neighbors of the cur­
rent cluster C using the hyper-neighborhood function N1• In many imple­
mentations, this number of neighbors also equals c1• 

* REDUCE NEIGHBORS takes from the current cluster C and from Q the c1 
best solutions to form a new cluster C. 

* CONTINUE ITERATION usually returns the value TRUE for the first iteration 
and FALSE otherwise. In this way, only one set of neighbors is generated for 
each chosen cluster, after which the iteration loop is left. In this case, the 
function REDUCE NEIGHBORS can be skipped, since there is no reason to 
create a new current cluster C when there is one iteration only. 

* CREATE sets P equal to the union of all current clusters C eC. 

* REDUCE POPULATION merges P and Pinto a new population P. In most 
variants, this is done by choosing from P and P exactly Pl elements, with a 
preference for low-cost solutions. 

* CONTINUE POPULATION GENERATION gives the value TRUE for instance 
as long as a certain upper bound on the number of generations has not been 
exceeded, or as long as the population contains different solutions. 
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4.4.4 Multi-level population-based local search 

Few examples of population-based local search algorithms with more than one 
active level are known. Here we discuss the so-called genetic local search ap­
proach [Ulder, Aarts, Bandelt, Van Laarhoven and Pesch, 1990], which is a vari­
ant of the class of genetic algorithms. The only difference is that there is now 
a second active level, in which a point-based hyper-neighborhood function N2: 
S---+ P(S) is used. 

After the computation of a tuple Q of neighbors at the first level, a local min­
imum is computed for each solution Q i at the second level, using the neighbor­
hood function N2• After that, back at Ievell the function REDUCE NEIGHBORS 

is applied to the current Q, which now contains local minima with respect to the 
neighborhood function N2. The instantiations for the second level are as follows. 

* CONTINUE POPULATION GENERATION gives the value TRUE for the first 
generation and FALSE for the subsequent generations. In this way, only one 
generation is created. 

* GENERATE CLUSTERS creates for each solution P; e P a cluster C = (P; ). 

* CREATE sets P equal to the set that, for each cluster, contains a local mini­
mum obtained in the iteration loop for the corresponding cluster. 

* REDUCE POPULATION sets the new population P equal to P. 
CONTINUE ITERATION, REDUCE NEIGHBORS and GENERATE NEIGHBORS are 
the same as the ones specified for the deterministic iterative improvement algo­
rithm. 

4.5 Open spots in the local search template 

When looking at the template one can try to find types of local search algorithms 
that have not been proposed before, or that have no widespread application. In 
this section we mention some of these algorithms, which emerge in a more or 
less natural way from our template. We first deal with single-level point-based 
algorithms and then with single-level population-based algorithms. We do not 
consider multi-level algorithms, since these are composed of single-level ones. 
However, multi-level algorithms are important, as they may have an impressive 
performance. 

4.5.1 Single-level point-based local search 

In almost all known single-level point-based algorithms also the number of clus­
ters equals one. In this case it often happens that several neighbors of a current 
solution are promising while only one neighbor is allowed to be chosen. One 
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would like to postpone the decision of chosing the neighbor for a while until af­
ter a few iterations it becomes clear which of the neighbors is most promising. 
This idea fits in our template in the following way. 

At the beginning of a generation several clusters are generated, each contain­
ing a copy of the solution in the current one-element population P. Then for each 
cluster an iteration loop is started. When this loop terminates depends on how 
CONTINUE ITERATION is chosen. Reasonable points for terminating the itera­
tion loop are when a local optimum has been found or when a given number of 
iterations has been executed. When for each cluster its corresponding iteration 
loop is terminated, a solution must be selected to become the new solution in P. 
It is reasonable to select the best solution that resulted from the various iteration 
loops in the last generation. Next, a new generation is started up. 

4.5.2 Single-level population-based local search 

Below we give some ideas for single-level population-based local search algo­
rithms. A distinction is made between algorithms with cluster size 1, cluster size 
2, and cluster size larger than 2. 

When the duster size is 1, only ordinary neighborhoods can be used. Since 
we have a population-based algorithm, it is reasonable to let the number of clus­
ters be larger than 1. The idea of the following algorithm is that several parallel 
runs of a point-based algorithm are interrupted now and then, and that the runs 
with the worse results are stopped definitely. The remaining runs are continued 
in such a way that one run may proceed in several directions. It is therefore nec­
essary that the point-based algorithm uses some type of randomization. This idea 
fits in our template in the following way. 

At the beginning of a generation several clusters are generated, each contain­
ing a copy from one of the solutions in the current population P. Then for each 
cluster an iteration loop is started, using a point-based algorithm. When this loop 
terminates after the execution of a given number of iterations, a population P is 
formed from the final or from intermediate solutions obtained in the previous it­
erations. The populations P and P are then merged into a new population P, 
using a selection criterion like those used in genetic algorithms. 

AU present genetic algorithms use hyper-neighborhoods that are based on 
clusters of size 2. Furthermore, in a given generation, for each cluster there is 
exactly one iteration in which the hyper-neighborhood is applied. One can think 
of algorithms that use more than one iteration for the same cluster in a given gen­
eration. The execution of iterations in one generation can be stopped after a cer­
tain number of iterations. One can also use another stop criterion. Therefore, we 
define a cluster to be locally optimal with respect to a hyper-neighborhood N if it 
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has no neighbor inN that has lower cost than the solutions of this cluster. Now, 
one can stop the execution of iterations as soon as the current cluster is locally 
optimal. This idea fits into our template in an obvious way. 

Until now, no genetic algorithms have been proposed that use hyper-neigh­
borhoods that are based on clusters of size larger than 2. For many standard 
hyper-neighborhoods based on cluster size 2, it is not difficult to generalize them 
to hyper-neighborhoods based on cluster size 3 or on even larger cluster sizes. 
Whether these generalizations will give computational results of the same quality 
as those for hyper-neighborhoods based on cluster size 2, is not clear at present. 
Here again, this idea obviously fits in our template. 

4.6 The complexity of local search 

Complexity analyses have reveiled a marked difference between the theoretical 
and empirical performance of local search. 

4.6.1 Theoretical results 

Studies of the theoretical performance of local search have exhibited its limita­
tions, at least from a worst-case point of view. The literature presents a number 
of bad examples, for which the following results hold: 

* Minimum exact neighborhoods may be of exponential size. 

* It may take an exponential number of steps to find a local optimum. 

* Final solutions may deviate arbitrarily far from the optimum in cost. 

Johnson, Papadimitriou and Yannakakis [1988] addressed the question how easy 
it is to find a local optimum. They introduced several notions. A local search 
problem L is given by a set of instances, each of which is defined by a finite 
set of solutions, a cost function, and a neighborhood function. This problem be­
longs to the complexity class P .CS of 'polynomial-time local search' problems, 
if polynomial-time algorithms exist, only depending on L, for producing an arbi­
trary solution, for computing the cost of a given solution, and for determining for 
a given solution a neighbor that has lower cost (or reporting that no such neigh­
bor exists). The problem now is to find a local minimum for any given instance. 
Informa11y speaking, P CS defines the class of local search problems for which 
local optimality can be verified in polynomial time. The class P CS is situated 
between the search problem variants of P and NP. However, it has been shown 
that a problem in P .CS cannot be NP-hard, unless NP =co-NP [Johnson, Pa­
padimitriou and Yannakakis, 1988]. 
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Furthermore, the concept of a PLS-reduction has been introduced, which is 
similar to the classical concept of polynomial-time reductions [Garey and John­
son, 1979]. A problem in P CS is PLS-complete if any problem in P CS is PLS­
reducible to it. The PLS-complete problems are the hardest ones in P CS, and if 
one of them can be shown to be solvable in polynomial time, then all the others 
can. 

Since its introduction, the class P CS has received considerable attention, 
and many local search problems have been proven PLS-complete. It is even con­
jectured that PLS-completeness is the normal behavior oflocal search variants of 
NP-hard problems and that more than half of the problems mentioned in Garey 
and Johnson's [1979] NP-completeness catalo~e have PLS-complete variants. 

4.6.2 Empirical results 

Over the years the empirical performance of local search has been extensively 
studied for a large variety of problems. A general conclusion is that local search 
algorithms can find good solutions within low order polynomial running times. 
This conc1usion has been reached in studies for problems of a theoretical as well 
as practical origin. For instance, for the traveling salesman and job shop schedul­
ing problems, local search algorithms have been shown to be the best approxi­
mation algorithms from an empirical point of view, and it appears that for large 
problem instances, the difference with other existing algorithms becomes even 
more pronounced. For many practical problems, for instance in the areas of lo­
gistics, VLSI design, and production planning, local search leads to good solu­
tions in a reasonable amount of time. In addition, its ease of use makes it a flex­
ible industrial problem solving tool. 





5 
Local search for the job shop scheduling 

problem 

In this chapter we survey solution methods for the standard job shop scheduling 
problem with an emphasis on local search. Both deterministic and randomized 
local search methods as well as the proposed neighborhoods are discussed. We 
compare the computational performance of the various methods in terms of their 
effectiveness and efficiency on a standard set of problem instances. 

In Chapter 3 it was mentioned that the job shop scheduling problem is dif­
ficult to solve to optimality. This is witnessed by the fact that a relatively small 
instance with ten jobs, ten machines and hundred operations due to Fisher and 
Thompson [ 1963] remained unsolved until 1986. Many solution methods have 
been proposed, ranging from simple and fast dispatching rules to sophisticated 
branch-and-bound algorithms. During the last decade many different types of 
local search algorithms have been developed, and some of them have proved to 
be very effective. 

This chapter is structured as follows. Section 5.1 deals with some preliminar­
ies. In Section 5.2 methods for the solution of the job shop scheduling problem 
are reviewed. The remainder of the chapter focuses on local search methods to 
tackle the job shop scheduling. Section 5.3 discusses representations and neigh­
borhoods for the problem. Sections 5.4 and 5.5 describe constructive and itera­
tive algorithms with local search, respectively; Section 5.6 describes some other 
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techniques. Section 5.7 contains coQJputational results, and Section 5.8 gives 
some concluding remarks. 

5.1 Preliminaries 

The job shop scheduling problem is a special case of the generalized job shop 
scheduling problem, in which each operation v has to be processed by a given 
single machine J..i(v). The precedence relation A decomposes V into chains of 
operations. It is not allowed that two consecutive operations of a chain have to 
be processed by the same machine. 

Clearly, since each operation has to be processed by a machine that is known 
in advance, the only problem is to find a start time function S or, equivalently, an 
orientation Q of the edge set E = {{v, w} I v, we V, v =/:- w, J.L(v) = J.L(w)}. 

In this chapter we use the notation introduced in Subsection 2.1.4, but we 
omit the machine set assignment K. For instance, a partial solution is only char­
acterized by a partial orientation Ql F for some subset F of E; the corresponding 
solution graph is then denoted by QgiF = (V, AU QIF(F)). 

5.2 Solution approaches 

We give a brief review of the lower bounds and enumeration schemes that are 
used in branch-and-bound methods, and of the approximative approaches that 
yield upper bounds on the optimum. Techniques of the latter type that proceed by 
local search are discussed in the later sections of this chapter. Results on the com­
putational complexity of the job shop scheduling problem have been discussed 
in Chapter 3. 

5.2.1 Lower bounds 

Optimization algorithms for the problem employ some form of tree search. A 
node in the tree is usually characterized by a partial orientation Q on a subset 
F C E. The question is then how to compute a lower bound on the length of 
any feasible schedule corresponding to a completion of Q. 

Nemeti [1964] and many subsequent authors obtained a lower bound by sim­
ply disregarding E\ F and computing the longest path length in the digraph Qglr 

Bratley, Florian and Robillard [1973] obtained the stronger single-machine 
bound by relaxing the capacity constraints of all machines except one. Given a 
machine M', they propose to solve the job shop scheduling problem on the dis­
junctive graph (V, AU QjF(F), {{v, w} I JL(v) = JL(w) = M'} \F). This is a 
single-machine problem, where the arcs in AU QIF(F) define release and de­
livery times for the operations on M' and precedence constraints between them. 
Lageweg, Lenstra and Rinnooy Kan [1977] pointed out that many other lower 
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bounds appear as special cases of this bound. For example, relaxing the capac­
ity constraint of M' gives Nemeti's bound, and allowing preemption gives the 
bound used in current branch-and-bound codes. The bound itself is NP-hard to 
compute but can be found fairly efficiently [Baker and Su, 1974; McMahon and 
Florian, 1975; Lageweg, Lenstra and Rinnooy Kan, 1976; Cartier, 1982]. It has 
been strengthened by Cartier and Pinson [1990], who compute larger release and 
delivery times, and by Tiozzo [1988] and Dauzere-Peres and Lasserre [1993], 
who observe that the arcs also define delays between precedence-related oper­
ations; Balas, Lenstra and Vazacopoulos [1995] develop an algorithm for com­
puting the bound subject to these delayed precedences. 

Fisher, Lageweg, Lenstra and Rinnooy Kan [1983] investigated surrogate 
duality relaxations, in which either the machine capacity constraints or the prece­
dence constraints among the operations of a job are weighted and aggregated into 
a single constraint. Balas [1985] described a first attempt to obtain bounds by 
polyhedral techniques. Applegate and Cook [ 1991] review the valid inequalities 
studied before and gave some new ones. The computational performance of sur­
rogate duality and polyhedral bounds reported until now is disappointing in view 
of what has been achieved for other hard problems. 

5.2.2 Enumeration schemes 

The traditional enumeration scheme generates all active schedules by construct­
ing them from front to back [Giffter and Thompson, 1960]. At each node a ma­
chine on which the earliest possible completion time of any unscheduled opera­
tion is achieved is determined, and all unscheduled operations that can start ear­
lier than this point in time on that machine are selected in turn. 

In recent branch-and-bound algorithms more flexible enumeration schemes 
are used. Carlier and Pinson [ 1989; 1990; 1994] and Applegate and Cook [1991] 
branch by selecting a single edge and orienting it in either of two ways. Brucker, 
Jurisch and Sievers [1994] follow Grabowski's 'block approach'. All these au­
thors apply the preemptive single-machine bound and a host of elimination rules. 
For details we refer to the literature. 

The celebrated 10 x 10 instance of Fisher and Thompson [1963] is within 
easy reach of these methods, but 15 x 15 instances seem to be the current limit. 
The main deficiency of the existing optimization algorithms for job shop sched­
uling is the weakness of the lower bounds. The situation is much brighter with 
respect to finding good upper bounds. 

5.2.3 Upper bounds 

Upper bounds on the optimum are usually obtained by generating a schedule and 
computing its length. An obvious first step is to apply a dispatch rule and to 
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schedule the operations according to some priority function. Haupt [ 1989] sur­
veys such rules. They tend to exhibit an erratic behavior; the procedure 'bidir' 
proposed by Dell' Amico and Trubian [1993] is one of the safer alternatives. The 
next step is then to try to improve the schedule by some sort of local search. 

An entirely different approach is taken by Sevast'janov [1994]. Using the 
vectonum theorem of Steinitz, he develops polynomial-time algorithms for find­
ing an upper bound with an absolute error that is independent of the number of 
jobs. Shmoys, Stein and Wein [ 1994] improve on his results. 

5.3 Solution representations and neighborhood functions 

A local search algorithm consists of the following main ingredients: a represen­
tation of the solutions, a neighborhood function, and a search strategy to guide 
the search in the solution space by means of the exploration of the neighbor­
hoods. In this section, several basic representations and neighborhood functions 
are introduced for the job shop scheduling problem. The next section deals with 
the search strategies. 

For most threshold and taboo search algorithms, only left-justified or active 
schedules are represented. This is done by specifying the start times; of the oper­
ations or, equivalently, the corresponding machine orderings of the operations. 
Also other representations are used, especially in the context of genetic algo­
rithms. 

To be able to define the neighborhood functions, we need some extra notions. 
Given an instance and an operation v, jp(v) and js(v) denote the immediate 
predecessor and successor of v in the precedence relation A, provided they ex­
ist. Given a feasible scheduleS and an operation v, mps(v) and mss(v) denote 
the immediate predecessor and successor of v in the orientation ns, provided 
they exist. If the schedule Sis clear from context, we delete the superscript S. 
Furthermore, jp2(v) denotes jp(jp(v)), provided it exists, and a similar nota­
tion is used for js, mps and mss. Two operations v and ware adjacent when 
S(v) + p(v) = S(w). A block is a maximal sequence of size at least one, con­
sisting of adjacent operations that are processed on the same machine and belong 
to a longest path. An operation of a block is internal if it is neither the first nor 
the last operation of that block. 

Several neighborhood functions have been proposed in the literature. Most 
of these are not defined on a schedule S itself but on the corresponding orienta­
tion ns. If ns is changed into another feasible orientation Q', Sn' is the corre­
sponding neighbor of S. In this way neighbors of a given schedule are always 
left-justified. 

The following properties [Balas, 1969; Matsuo, Suh and Sullivan, 1988; 
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Nowicki and Smutnicki, 1995] are helpful in obtaining reasonable neighborhood 
functions. 

1. Given a feasible orientation, reversing an oriented edge on a longest path in 
the corresponding digraph results again in a feasible orientation. 

2. If reversing a non-critical oriented edge of a feasible orientation Q results in 
a feasible orientation Q', then So• is at least as long as So. 

3. Given a feasible orientation Q, reversing an oriented edge (v, w) between 
two internal operations of a block results in a feasible schedule at least as 
long as So. 

4. Given is a feasible orientation Q. Let v and w be the first two operations of 
the first block of a longest path, and let w be an internal operation. Reversing 
( v, w) results in a feasible schedule at least as long as S0 . The same is true 
in case v and w are the last two operations of the last block of a longest path 
and v is internal. 

In view of these properties, the simplest neighborhood functions are based 
on the reversal of exactly one edge of a given orientation. Van Laarhoven, Aarts 
and Lenstra [1992] propose a neighborhood function N1, which obtains a neigh­
bor by interchanging two adjacent operations of a block. Matsuo, Suh and Sulli­
van [1988] use a neighborhood function N1a with the same interchanges, except 
those involving two internal operations. Nowicki and Smutnicki [1995] use a 
neighborhood function Nib· excluding from N1a the interchange of the first two 
operations of the first block when the second one is internal and the interchange 
of the last two operations of the last block when the first is internal. For Ntb• 
neither a schedule with only one block nor one with only blocks of size one has 
a neighbor; note that such schedules are optimal. 

Dell' Amico and Trubian [1993] propose several neighborhood functions that 
may reverse more than one edge. Their neighborhood function N2 obtains, for 
any two operations v and w = ms ( v) on a longest path, a neighboring orientation 
by permuting mp(v), v and w, or by permuting v, w and ms(w), such that v 
and w are interchanged and a feasible orientation results. Their neighborhood 
function N2a excludes from N2 the solutions for which both v and w = ms(v) 
are internal. Their neighborhood function N3 considers blocks of size at least 
two: a neighbor is obtained by positioning an operation v immediately in front of 
or after the other operations of its block, provided that the resulting orientation is 
feasible; otherwise, v is moved to the left or to the right as long as the orientation 
remains feasible. 

While the above neighborhood functions are based on adjacent interchanges 
or swaps, Balas and Vazacopoulos [1994] propose a neighborhood function N4 
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that uses reinsertions or jumps. More precisely, N4 considers any two operations 
v and w on the same machine such that v occurs prior to w on a longest path. A 
neighbor is obtained by inserting v immediately after w or w immediately be­
fore v. Sufficient conditions are derived under which these new schedules are 
feasible. If mp(v) and ms(w) are both on a longest path, they cannot improve 
the current schedule and are disregarded. 

Adams, Balas and Zawack [1988] propose a neighborhood function Ns, in 
which one machine ordering may be changed completely. For every machine 
M' with an operation on a longest path, a neighbor is obtained by replacing the 
orientation on M' by any other feasible orientation. 

In the following neighborhood functions a neighbor is obtained by chang­
ing several machine orderings at the same time. Relatively sma11 modifications 
are made by the neighborhood function N6 of Matsuo, Suh and Sullivan [1988], 
which reorients at most three edges simultaneously. A neighbor is obtained by 
interchanging two adjacent operations v and w = ms ( v) of a block (except when 
they are both internal) and in addition by interchanging j p1 

( w) and mp(j p1 
( w)) 

for some t 2:: 1 and by interchanging js(v) and ms(js(v)). The latter inter­
changes are executed only if certain additional conditions are satisfied; see their 
paper for details. Aarts, Van Laarhoven, Lenstra and Ulder [1994] use a variant 
N6a with t = 1. 

Applegate and Cook [ 1991] propose a neighborhood function N1 that dras­
tically changes the given orientation. Their neighborhood contains all feasible 
orientations that can be obtained by simultaneously replacing the orientation on 
m - t machines by any other feasible orientation. Here, t is a small number de­
pending on m. 

Storer, Wu and Vaccari [1992] use completely different representations of 
schedules. These are based on a modified version of the Giffter-Thompson algo­
rithm (see Subsection 5.2.2). Suppose that at a certain point the earliest possible 
completion time of any unscheduled operation is equal to C and is achieved by 
operation v, and that Tis the earliest possible start time on machine J.L(v). Then 
all unscheduled operations on J.L( v) that can start no later than T + 8 ( C- T) are 
candidates for the next position on JL(v). Here, 8 is a priori chosen in [0,1) (in ex­
periments 0, 0.05 or 0.1 ); if 8 approaches 1 all active schedules can be generated, 
while 8 = 0 gives only so-called undelayed schedules. Two representations are 
defined. 

The representation R8 represents a schedule by modified processing times 
for the operations. Using these, the modified Giffter-Thompson algorithm with 
the shortest processing time rule as selection rule uniquely determines a feasi­
ble orientation n, and Sn, computed with the original processing times, is the 
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corresponding schedule. The neighborhood function Ns now obtains a neighbor 
by increasing the processing times by amounts of time that are independently 
drawn from a uniform distribution on ( -9, 9). Here, 9 is a priori chosen (in ex­
periments 10, 20 or 50). The representation R9 represents a schedule by dividing 
the scheduling horizon into several time windows (in experiments 5, 10 or 20) 
and assigning one of a given set of dispatch rules to each window. The modified 
Giffler-Thompson algorithm determines a schedule by applying the dispatch rule 
of the corresponding window. The neighborhood function N9 changes the dis­
patch rule for a window of a given schedule. 

Genetic algorithms use two types of representations: the natural one, which 
is also used for the other algorithms, and the more artificial 'string representa­
tions'. 

For the former type of representation Yamada and Nakano [1992] propose a 
hypemeighborhood function Nhl· Given two schedules SandS', Nhl determines 
a neighbor using the Giffler-Thompson algorithm. When this algorithm has to 
choose from two or more operations, it takes, for a sma11 s > 0, the operation 
that is first in S with probability (1 - e) /2, the operation that is first in S' with 
probability (1-s)/2, and a random operation from the other available operations 
with probability s. 

Aarts, Van Laarhoven, Lenstra and Ulder [1994] propose a hypemeighbor­
hood function Nh2· Given two schedules SandS', Nh2 determines a neighbor 
by repeating the following step Lnm/2J times: choose a random arc (w, v) of S' 
and changeS by reversing arc (v, w), provided it belongs to a longest path of S. 

The latter type of representation encodes a schedule or its orientation into 
a string over a finite - usually binary - alphabet. Such representations facil­
itate the application of hypemeighborhood functions involving operations like 
'crossover' and 'mutation'; see Goldberg [1989, pp. 166-175]. There are anum­
ber of drawbacks, however. A schedule or orientation may have several repre­
sentatives, or none. Conversely, a string does not have to represent a schedule, 
and if it does, it may be nontrivial to calculate the corresponding schedule. Al­
though attempts have been made to circumvent these difficulties, the hypemeigh­
borhood functions that operate on strings often have no meaningful effect in the 
context of the underlying problem. We will consider genetic a1gorithms using 
string representations in less detail. 

5.4 Constructive algorithms with local search 

This section deals with the shifting bottleneck procedure and its variants. These 
algorithms construct a complete schedule and apply loca1 search to partial sched­
ules on the way. 
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The basic idea of the algorithms described here is as follows. The algorithm 
goes through m stages. At each stage, it orients all edges between operations 
on a specific machine. In this way, at the beginning of any stage all edges re­
lated to some machines have been oriented, while the edges related to the other 
machines are not yet oriented. Furthermore, at the end of each stage, it reopti­
mizes the current partial schedule. This is usually done by applying iterative best 
improvement using neighborhood function Ns, which revises the orientation on 
a machine scheduled before. Orienting or reorienting the edges related to one 
machine in an optimal way requires the solution of a single-machine problem, 
where the partial schedule defines release and delivery times and delayed prece­
dence constraints. The algorithms discussed hereafter mainly differ by the order 
in which the m machines are considered, by the implementation of iterative best 
improvement, and by the single-machine algorithm used. 

The original shifting bottleneck procedure SB 1 of Adams, Balas and Zawack 
[1988] orients at each stage the edges related to the bottleneck machine. This 
is the unscheduled machine for which the solution value to the corresponding 
single-machine problem is maximum; the delays between precedence-related 
operations are not taken into account. After scheduJing a machine, iterative best 
improvement is applied during three cycles. In each cycle each scheduled ma­
chine is reconsidered once. The first cycle handles the machines in the order in 
which they were sequenced. After a cycle is completed, the machines are re­
ordered according to decreasing solution values to the single-machine problems 
in the last cycle. When aU of the machines have been scheduled, the cycles con­
tinue as long as improvements are found. Furthermore, after a phase of iterative 
best improvement, the orientations on several machines that have no operations 
on a longest path are deleted, and then these machines are rescheduled one by 
one. 

Applegate and Cook [1991] use almost the same algorithm. The main dif­
ference is that at each stage iterative improvement cycles continue until no im­
provement is found. 

Dauzere-Peres and Lasserre [1993] were the first to take the delays between 
precedence-related operations into account. They develop a heuristic for the 
single-machine problem with delayed precedences and incorporate it into a shift­
ing bottleneck variant. 

Balas, Lenstra and Vazacopoulos [ 1995] use their optimization·algorithm for 
the single-machine problem with delayed precedences to determine the bott1e­
neck machine in their procedure SB3. Their local search strategy di.ffers from the 
one of Adams, Balas and Zawack [1988] in some minor details; for instance, the 
number of cycles is limited to six. Again, after scheduling a new machine, they 
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first apply iterative improvement, then delete the orientations on several non­
critical machines, and reschedule these machines one by one. Their extended 
procedure SB4 takes the best solution of SB3 and a variant of SB3 that reverses 

. th~ order of the two reoptimizations procedures: first reschedule some non-criti­
cal machines, then apply regular iterative improvement. 

The procedure SB-GLS proposed by Balas and Vazacopoulos [ 1994] is rather 
different. It reoptimizes partial schedules by applying their variable-depth search 
algorithm GLS (see Subsection 5.5.3) for a limited number of iterations using the 
jump neighborhood function N4. 

The shifting bottleneck procedure and its variants have been incorporated into 
other algorithms. Most of these employ some form of partial enumeration. Dom­
dorf and Pesch [1995] embed a variant in a genetic algorithm; see Section 5.5.4. 

Adams, Balas and Zawack [1988] develop an algorithm PE-SB, which ap­
plies SB 1 to the nodes of a partial enumeration tree. A node corresponds to a 
subset of machines that have been scheduled in a certain way. In each of its de­
scendants one more machine is scheduled. The schedule is obtained by first solv­
ing the single-machine problem, with release and delivery times defined by the 
parent node, and then applying iterative improvement as in SB 1. Descendants 
are created only for a few machines with highest solution values to the single­
machine problem. A penalty function is used to limit the size of the tree. For 
details about the branching rule, the penalty function and the search strategy we 
refer the reader to the original paper. 

Applegate and Cook [1991] develop an algorithm Bottle-t, which employs 
partial enumeration in a different way. Bottle-t applies their shifting bottleneck 
variant described above as long as more than t machine are left unscheduled. For 
the last t machines it branches by selecting each remaining unscheduled machine 
in tum. The values t = 4, 5 and 6 were tested. 

5.5 Iterative algorithms with local search 

The algorithms presented in this section start from one or more given feasible 
schedules and manipulate these in an attempt to find better schedules. They can 
naturally be divided into threshold algorithms, taboo search algorithms, variable­
depth search algorithms, and genetic algorithms. 

5.5.1 Threshold algorithms 

The basic threshold algorithms are iterative improvement, threshold accepting, 
and simulated annealing. We also consider some closely related variants. Unless 
stated otherwise, a schedule is represented in the ordinary way by the starting 
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times or the orientation. 
Iterative improvement is the simplest threshold algorithm. Aarts, Van Laar­

hoven, Lenstra and Ulder [1994] test iterative improvement with the neighbor­
hood functions Nt and N6a. To obtain a fair comparison with other algorithms 
they apply a multi-start strategy, that is, they run the algorithm with several ran­
domly generated start solutions until a limit on the total running time is reached, 
and take the best solution found over all individual runs. 

The algorithm Shuffle of Applegate and Cook [ 1991] uses the neighborhood 
function N1. At each iteration, the schedule on a small number of heuristically 
selected machines remains fixed, and the schedule on the remaining machines is 
optimally revised by their branch-and-bound algorithm 'edge finder'. As initial 
solution they take the result of Bottle-5. 

Storer, Wu and Vaccari [1992] propose a variant of iterative improvement, 
called PSlO, with representation Rs and neighborhood function N8. Given a so­
lution, the function GENERATE NEIGHBORS determines a fixed number of neigh­
bors (in experiments 100 or 200), the best one of which becomes the new so­
lution. They also test a standard iterative first improvement algorithm, called 
HSLlO, with representation R9 and neighborhood function N9 • Neighbors are 
generated randomly; CONTINUE ITERATION gets the value FALSE after a fixed 
number of iterations (in experiments 1000 or 2000). 

Threshold accepting has only been implemented by Aarts, Van Laarhoven, 
Lenstra and Ulder [1994]. Their algorithm TAl uses the neighborhood function 
N1• Threshold values are determined empirically. 

Simulated annealing has been tested by several authors. Van Laarhoven, 
Aarts and Lenstra [1992] use the neighborhood function N1• Aarts, Van Laarho­
ven, Lenstra and Ulder [1994] use Nt (algorithm SAl) and N6a (algorithm SA2). 

Matsuo, Sub and Sullivan's [1988] 'controlled search simulated annealing' 
algorithm SA-II is a bi-level variant, which also incorporates deterministic itera­
tive improvement. Given a schedule S, a neighbor S' is selected using the neigh­
borhood function N6• S' is accepted or rejected by the simulated annealing cri­
terion. In the latter case, S' is subjected to deterministic iterative improvement 
using N6 again, and if the resulting local optimum improves on S, it is accepted 
as the new solution. The algorithm also differs from most other implementations 
of simulated annealing in that the acceptance probability for a schedule that is in­
ferior to the current schedule is independent of the difference in schedule length. 

S.S.2 Taboo search algorithms 

The taboo search algorithm TSl ofTaillard [1994] uses the neighborhood func­
tion N I· After an arc ( v, w) has been reversed, the interchange of w and its rna-
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chine successor is put on the taboo list. Every 15 iterations a new length of the 
taboo list is randomly selected from a range between 8 and 14. The length of a 
neighbor is estimated in such a way that the estimate is exact when both opera­
tions involved are still on a longest path, and that it is a lower bound otherwise. 
Then, from the permissible neighbors the schedule of minimum estimated length 
is selected as the new schedule. 

The algorithm TS2 of Barnes and Chambers [ 1995] also uses N1• Their taboo 
list has a fixed length. If no permissible moves exist, the list is emptied. The 
length of each neighbor is calculated exactly, not estimated. A start solution is 
obtained by taking the best from the active and undelayed schedules obtained by 
applying seven dispatch rules. 

The algorithm TS3 of Dell' Amico and Trubian [1993] uses the union of the 
neighborhoods generated by N2a and N3. The items on the taboo list are forbid­
den reorientations of arcs. Depending on the type of neighbor, one or more such 
items are on the list. The length of the list depends on the fact whether the current 
schedule is shorter than the previous one and the best one, or not. Furthermore, 
the minimal and maximal allowable lengths of the list are changed after a given 
number of iterations. When all neighbors are taboo and do not satisfy the aspira­
tion criterion, a random neighbor is chosen as the next schedule. A start solution 
is obtained by a procedure called 'bidir', which applies list scheduling simulta­
neously from the beginning and the end of the schedule. 

The algorithm TS-B of Nowicki and Smutnicki [1995] combines ta­
boo search with a backtracking scheme. In the taboo search part of their algo­
rithm, the neighborhood function is a variant of Ntb. which only allows reorien­
tations of arcs on a single longest path. The items on the taboo Jist are forbidden 
reorientations of arcs. The length of the list is fixed to 8. If no permissible neigh­
bor exists, the following is done. If there is one neighbor only, which as a conse­
quence is taboo, this one becomes the new schedule. Otherwise, the oldest items 
on the list are removed one by one until there is one non-taboo neighbor, and this 
one is chosen. A start solution is obtained by generating an active schedule using 
the shortest processing time rule or an insertion algorithm. 

The backtracking scheme forces the taboo search to restart from promising 
situations encountered before. Each such restart corresponds with a new gen­
eration in the generation-loop. Each generation consists of one ordinary taboo 
search. At the start of a generation the population P contains at most 5 sched­
ules. At the start of the first generation it contains only one schedule. At the start 
of each generation GENERATE CLUSTERS selects the best schedule contained in 
P. With this schedule a taboo search is started. When this taboo search stops, 
since a maximum number of iterations was reached without improving the best 
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schedule found in the current generation, the following is done. CREATE stores 
all schedules in the population P that improved on the previous best schedule of 
this generation and bad more than one neighboring schedule. REDUCE POPU­

LATION merges P and P such that the updated population P contains the best 
solutions of P and P. However, when for a schedule from this population each 
possible neighbor has been considered in some generated, this schedule is not 
allowed to participate in the updated population P. Furthermore, information is 
stored about these solutions, such that the taboo search in a next generation will 
be directed into direction that is different from the direction of the taboo search 
in the generation this solution was found for the first time. 

5.5.3 Variable-depth search algorithms 

Balas and Vazacopoulos' [1994] guided local search algorithm GLS is based on 
the neighborhood function N4. It differs from the standard variable-depth search 
introduced in Chapter 4 in the sense that trees are used instead of sequences. 
Each node of the tree corresponds to an orientation, and each child node is a 
neighbor of its parent. The number of children of a parent is restricted by a de­
creasing function of the level in the tree. The children are selected using esti­
mates of the lengths of the associated schedules. When a node is obtained by in­
serting an operation just before or after another one, their relative order remains 
fixed in the orientation of all of its descendants. Other parts of the orientation are 
fixed too to ensure that each orientation occurs in at most one node .in the tree. 
The size of the tree is kept small by limiting the number of children, by fixing 
parts of the orientations, and by bounding the depth of the tree by a logarith­
mic function of the number of operations. From the nodes in the tree one with 
sma1Jest length is chosen as the root node for the next tree, provided that it has a 
smaller length than the root of the current tree. Otherwise, a node is chosen that 
differs at least a certain number of reinsertions from the root, where a node with 
smaller length is chosen with higher probability. A start solution is generated by 
a randomized dispatch rule. 

Balas and Vazacopoulos [1994] propose two variants, which we call iterated 
and reiterated guided local search, or IGLS and RGLS-k. Starting from a solu­
tion generated by SB-GLS (see Section 5.4), IGLS repeats reoptimization cycles 
until no improvement is found. Each of these cycles removes the orientation on 
one machine, applies GLS for a limited number of trees, then adds the removed 
machine again, and applies GLS to the complete schedule for a limited number 
of trees. RGLS-k starts from a solution obtained by IGLS and repeats k cycles 
of the following type: remove the orientations on LJffiJ randomly chosen ma­
chines, apply GLS for a limited number of trees, then add the removed machines 
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again by applying SBl (see Section 5.4), and fina11y apply IGLS. 

5.5.4 Genetic algorithms 

The genetic algorithm GAl of Yamada and Nakano [ 1992] detennines, for every 
chosen pair of schedules of the current population, two hypemeighbors by using 
Nht· From these four schedules two are selected for the next population: first the 
best schedule is chosen, and next the best unselected hypemeighbor is chosen. 

Aarts, Van Laarhoven, Lenstra and Ulder [1994] propose a genetic algorithm 
that incorporates iterative first improvement. In each iteration there is a popu­
lation of solutions that are locally optimal with respect to either N1 (algorithm 
GA-111) or N6a (a1gorithm GA-ll2). The population is doubled in size by ap­
plying Nh2 to randomly selected pairs of schedules of the population. Each hy­
pemeighbor is subjected to iterative first improvement, using Nt or N6a. and the 
extended population of local optima is reduced to its original size by choosing 
the best schedules. Then a next iteration is started. Start solutions are generated 
randomly, and iterative first improvement is applied to them before the genetic 
algorithm is started. 

In the work of Davis [1985], Falkenauer and Bouffouix [1991] and Della 
Croce, Tadei and Volta [1995] a string represents for each machine a preference 
list, which defines a preferable ordering of its operations. From such a list a 
schedule is calculated. Davis [1985] and Falkenauer and Bouffouix [1991] re­
strict themselves to undelayed schedules; Della Croce, Tadei and Volta [1995] 
are able to represent other schedules as well. Falkenauer and Bouffouix [1991] 
and Della Croce, Tadei and Volta [1995] use the linear order crossover as hyper­
neighborhood function. See the original papers for details. 

Nakano and Yamada [1991] consider problem instances with exactly one op­
eration for each job-machine pair. For each machine and each pair of jobs, they 
represent the order in which that machine executes those jobs by one bit. Thus, a 
schedule is represented by a string of mn (n - 1) /2 bits. Since such a string may 
not represent a feasible orientation, they propose a method for finding a feasible 
string that is close to a given infeasible one. Two hypemeighbors are obtained 
by cutting two strings at the same point and exchanging their left parts. 

Domdorf and Pesch [1995] propose a 'priority rule based genetic algorithm' 
GA-P, which uses the Giffler-Thompson algorithm. Each element p; in their 
string (PI, ... , Pt-I) denotes a dispatch rule that resolves conflicts in the ith it­
eration of the algorithm. Two hypemeighbors are obtained by cutting two strings 
at the same point and exchanging their left parts. These authors also propose a 
second genetic algorithm, called GA-SB, which uses a shifting bottleneck proce­
dure (see Section 5.4). A solution is represented by a sequence of the machines. 
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A corresponding schedule is generated by a variant of SB 1: each time it has to 
select an unoriented machine, it chooses the first unoriented machine in this se­
quence. The hyperneighborhood function used is the cycle crossover; see Gold­
berg [1989, p. 175]. In contrast to SBl, reoptimization is applied only when Jess 
than six machines are left unscheduled. 

5.6 Other techniques 

5.6.1 Constraint satisfaction 

Constraint satisfaction algorithms consider the decision variant of the job shop 
scheduling problem: given an overall deadline, does there exist a feasible sched­
ule meeting the deadline? Most algorithms of this type apply tree search and 
construct a schedule by assigning start times to the operations one by one. A 
consistency checking process removes inconsistent start times of not yet assigned 
operations. If it appears that a partial schedule cannot be completed to a feasible 
one, a dead end is encountered, and the procedure has to undo several assign­
ments. Variable and value ordering heuristics determine the selection of a next 
operation and its start time. The algorithm stops when a feasible schedule meet­
ing the deadline has been found or been proved not to exist. Note that it is also 
possible to establish lower bounds on the optimum with this technique. 

Sadeh [ 1991] developed an algorithm of this type, but its performance was 
poor. Nuijten and Aarts [1995] designed new variable and value orderings and 
extensive consistency checking techniques. They restart the search from the be­
ginning when a dead end occurs, and they also randomize the selection of a next 
operation and its start time. Their 'randomized constraint satisfaction' algorithm 
RCS performs quite well. 

5.6.2 Neural networks 

Foo and Takefuji [1988a, 1988b] describe a solution approach based on the de­
terministic neural network model with a symmetrically interconnected network, 
introduced by Hopfield and Tank [1985]. The job shop scheduling problem is 
represented by a 2-dimensional matrix of neurons. Zhou, Cherkassky, Baldwin, 
and Olson [1991] develop a neural network algorithm which uses a linear cost 
function instead of a quadratic one. For each operation there is one neuron in the 
network, and also the number of interconnections is linear in the number of oper­
ations. The algorithm improves the results of Foo and Takefuji both in terms of 
solution quality and network complexity. Altogether, applications of neural net­
works to the job shop scheduling problem are at an initial stage, and the reported 
computational results are poor up to now. 
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5. 7 Computational results 

The computational merits of job shop scheduling algorithms have often been 
measured by their performance on the notorious 10 x 10 instance Ff1 0 of Fisher 
and Thompson [1963]. Applegate and Cook [1991] found that several instances 
of Lawrence [1984] (LA21, LA24, LA25, LA27, LA29, LA38, LA40) pose a 
more difficult computational challenge. We have included the available compu­
tational results for these instances and, in addition, for two relatively easy in­
stances (LA2, LA19) and for all remaining 15 x 15 instances of Lawrence (LA36, 
LA37, LA39). Each of these thirteen instances has exactly one operation for each 
job-machine pair. 

Tables 5.1, 5.2, 5.3, 5.4, and 5.5 present the computational results for most 
algorithms discussed in Sections 5.4, 5.5, and 5.6, as far as these are available. 
All results were taken from the literature, with the exception of the results for the 
algorithms of Applegate and Cook [1993], which we obtained using their codes. 
Tables 5.1, 5.2, and 5.3 give the individual results for the thirteen instances, Ta­
ble 5.4 aggregates these results, and Table 5.5 contains the results for four algo­
rithms that were only tested on instance Frt 0. Schedule lengths are printed in 
roman, computation times have been measured in CPU-seconds and are printed 
in italic, and blank spaces denote that no results are available. 

In Tables 5.1, 5.2, and 5.3, the values LB and UB are the best known lower 
and upper bounds on the optimal schedule lengths. We ran the 'edge finder' algo­
rithm of Applegate and Cook [1993] for the instances LA21, LA29, and LA38 to 
obtain better lower bounds than were known before; for LA21 and LA38 this re­
sulted in optimality proofs. The best upper bounds are obtained by one or more 
of the algorithms in the tables, except the one for LA27, which was found by 
Cartier and Pinson [1994], and for LA40, which is due to Applegate and Cook 
[1991]. Note that all instances but one have been solved to optimality. For each 
of the included algorithms, a superscript b followed by a number x indicates that 
the schedule lengths reported are the best ones obtained after x runs of the al­
gorithm; the computation time is the total time over all runs. A superscript m 
indicates that the schedule lengths are means over several runs; in this case, the 
computation time is the average over these runs. A superscript 1 refers to a single 
run. 

For each algorithm and each instance, we computed the relative error, that is, 
the percentage that the schedule length reported is above LB. Table 5.4 presents, 
for each algorithm, the mean and the standard deviation of these relative errors. 
Note that UB has already a mean relative error of 0.18. Table 5.4 also gives, 
for each algorithm, the sum of the computation times for the thirteen instances, 
the computer used, and a computer independent sum of computation times. The 
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Table 5.1: Results for three instances. 
algorithm authors PTIO LA2 LA19 
n 10 10 10 
m 10 5 10 
LB 930 655 842 
UB 930 655 842 
shifting bottleneck 

SB1 1 Adamsetal. 1015 10 720 2 875 7 
SB31 Balas et al. 981 6 667 1 902 4 
SB41 Balas et al. 940 lJ 667 1 878 9 
SB-GLS1 Balas & Vazacopoulos 930 13 666 1 852 12 
PE-SB1 Adamsetal. 930 851 669 12 860 240 
Bottle-41 Applegate & Cook 938 7 667 1 863 10 
Bottle-51 Applegate & Cook 938 7 662 8 847 65 
Bottle-61 Applegate & Cook 938 8 842 201 

! threshold algorithms 

Shuftlel 1 Applegate & Cook 938 25 655 8 842 73 
Shuftle21 Applegate & Cook 938 25 655 8 842 73 
TAlms Aarts et al. 1003 99 693 19 925 94 
SAtmS Aatts et al. 969 99 669 19 855 94 
SA2ms Aarts et al. 977 99 658 19 854 94 
SAI!-..oo Aarts et al. 
SAms Van Laarhoven et al. 985 779 663 JJ7 853 830 
SAbS Van Laarhoven et al. 9513895 655 585 848 4/50 
SA-II1 Matsuo et al. 946 987 655 3 842 ll5 
taboo search 

TSI05 Taillard 930 
TSzi'2 Barnes & Chambers 930 450 655 60 843 450 
TS3ms Dell' Amico & Trubian 948 156 655 19 846 104 
TS3bS Dell' Amico & Trubian 935 779 655 94 842 519 
TS-B1 Nowicki & Smutnicki 930 30 655 8 842 60: 
TS-Bb3 Nowicki & Smutnicki 930 655 842 

variable-depth search • 

GLSb4 Balas & Vazacopoulos 930 153 655 33 842 134 
IGLS1 Balas & Vazacopoulos 930 45 655 8 842 74 
RGLS-51 Bala.~ & Vazacopoulos 930 247 655 8 842 269 
genetic algorithms 
GA-mms Aarts et al. 978 99 668 19 863 94 
GA-II2"'5 Aarts et al. 982 99 659 19 859 94 
GA-112)_.00 Aarts et al. 
GA2ms Della Croce et al. 965 628 685 284 855 65/ 
GA2b5 Della Croce et al. 9463140 680/420 8503255 
GA-P1 Domdorf & Pesch 960 933 681 108 880 191 
GA-SB~ Domdorf & Pesch 938 107 666 16 863 77 
GA-SB::? Domdorf & Pesch 848 161 
constraint satisfaction 
RCSbs Nuijten & Aatts 9302955 655 110 8481455 

schedule length in roman, computation time in seconds in italic 
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Table 5.2: Results for five instances. 
algorithm LA21 LA24 LA25 LA27 LA29 
n IS IS IS 20 20 
m 10 10 10 10 10 
LB 1046 93S 977 123S 1130 
UB 1046 935 977 123S llS7 
shifting bottleneck 
SB1 1 1172 2 1000 25 1048 28 1325 45 1294 48 
SB31 1111 Jl 976 11 1012 13 1272 19 1227 21 
SB41 1071 20 976 20 1012 23 1272 38 1227 39 
SB-GLS1 1048 25 941 26 993 26 1243 30 1182 44 
PE-SB1 1084 362 976 434 1017 430 1291 837 1239 892 
Bottle-41 1094 17 983 26 1029 22 1307 31 1220 31 
Bottle-51 1084 46 983 63 1001 48 1288 92 1220 91 
Bottle-61 1084 301 958 200 1001 100 1286 666 1218 280 
threshold algorithms 
Shuffle! 1 JOSS 955 971 421 997 74 1280 98 1219 95 
Shuffie21 104687478 96S65422 992 98 1269 604 1191 15358 
TAlmS 1104 243 1014 235 1075 255 1289 492 1262 471 
SA1ms 1083 243 962 235 1003 255 1282 492 1233 471 
SA2ms 1078 243 960 235 1019 255 127S 492 122S 471 
SAIL.,00 IOS3 93S 983 1249 1185 
SAms 1067 /99/ 966 2098 1004 2/33 1273 4535 1226 4408 
SAbS 1063 9955 9S2 10490 99210665 126922675 1218 22040 
SA-II1 1071 205 973 199 991 180 1274 286 1196 267 
taboo search 
TS1h5 1047 1240 1170 
TS2h2 1050 480 946 480 988 480 1250 600 1194 600 
TS3ms 1057 199 943 182 980 192 1252 254 1194 281 
TS3h5 1048 994 941 909 979 958 1242 1271 1182 1407 
TS-81 1055 21 948 184 988 155 1259 66 1164 493 
TS-Bh3 1047 939 977 1236 1160 
variable-depth search 
GLSb4 1047 222 938 243 982 330 1236 435 1157 627 
IGLS1 1048 112 937 175 977 224 1240 210 1164 369 
RGLS-51 1046 612 935 682 977 616 1235 315 1164 1062 
genetic algorithms 
GA·IIlmS 1084 243 970 235 1016 255 1303 492 1290 471 
GA-II2m5 1085 243 981 235 1010 255 1300 492 1260 471 
GA-II2)...,. 00 1055 938 985 1265 1217 
GA2m5 1113 1062 1000 1045 1029 1052 1322 1555 1257 1550 
GA2bS 1097 5310 984 5275 1018 5260 1308 7775 1238 7550 
GA-P1 1139 352 1014 352 1014 350 1378 565 1336 570 
GA-ssm2 1074 135 960 137 1008 134 1272 242 1204 241 
GA-SB~ 1074 293 957 289 1007 229 1269 446 1210 453 
constraint satisfaction 
RCS115 1069 7600 942 7385 981 7360 128513950 1208 5660 

schedule length in roman, computation time in seconds in italic 
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Table 5.3: Results for five instances. 
algorithm LA36 LA37 LA38 LA39 LA40 
n 15 15 15 15 15 
m 15 15 15 15 15 
LB 1268 1397 1196 1233 1222 
UB 1268 1397 1196 1233 1222 
shifting bottleneck 
SB1 1 1351 47 1485 61 1280 58 1321 72 1326 77 
SB31 1319 28 1425 26 1318 30 1278 25 1266 26 
SB4t 1319 56 1425 53 1294 59 1278 51 1262 52 
SB-GLS1 1268 55 1397 37 1208 56 1249 48 1242 56 
PE-SB1 1305 735 1423 837 1255 1079 1273 669 1269 899 
Bottle-41 1326 23 1444 14 1299 46 1301 42 1295 22 
Bottle-51 1316 153 1444 56 1299 96 1291 134 1295 24 
Bottle-61 1299 321 1442 562 1268 182 1279 192 1255 154 
threshold algorithms 
Shuffle1 1 1295 171 1437 64 1294 /04 1268 178 1276 43 
Shuflle21 1275 3348 1422 1577 126717799 1257 6745 1238 ISO 
TAI"'5 1385 602 1469 636 1323 636 1305 592 1295 597 
SAI"'5 1307 602 1440 636 1235 636 1258 592 1256 597 
SA2"'5 1308 602 1451 636 1243 636 1263 592 1254 597 
SAif.,..oo 1208 1225 
SA"'5 1300 5346 1442 5287 1227 5480 1258 5766 1247 5373 
SAbs 1293 26730 1433 26435 1215 27400 124828830 123426865 
SA-U1 1292 624 1435 577 1231 672 1251 660 1235 603 
taboo search 
TS1h5 1202 
TS2b2 1278 540 1418 540 1211 540 1237 540 1228 540 
TS3"'5 1289 238 1423 242 1210 257 1254 238 1235 237 
TS3b5 1278 J192 1409 JZIJ 1203 1283 1242 1189 1233 1183 
TS-81 1275 623 1422 443 1209 /65 1235 325 1234 322 
TS-Bb3 1268 1407 1196 1233 1229 
variable-depth search 
GLSb4 1269 455 1400 268 1208 464 1233 577 1233 367 
IGLS1 1268 179 1397 146 1198 299 1233 434 1234 332 
RGLS-51 1268 920 1397 822 1196 1281 1233 1131 1224 1590 
genetic algorithms 
GA-II1"'5 1324 602 1449 636 1285 636 1279 592 1273 597 
GA-112"'5 1310 602 1450 636 1283 636 1279 592 1260 597 
GA-112: .... "" 1248 1233 
GA2"'5 1330 /880 1526 1872 1282 1887 1332 1870 1297 1853 
GA2b5 1305 9400 1519 9360 1273 9435 1315 9350 1278 9265 
GA-P1 1373 524 1498 520 1296 525 1351 525 1321 526 
GA-SB"'2 1317 336 1484 350 1251 336 1282 327 1274 348 
GA-SB~ 1317 688 1446 666 1241 666 1277 687 1252 698 
constraint satisfaction 
RCSbS 129211165 1411/2760 1278 14075 123313620 124112875 

schedule length in roman, computation time in seconds in italic 
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Table 5.4: Summary of results. 

algorithm authors ~.r.e. -IT.r.e. s.c.t. computer c.i.s.c.t. 
LB 
UB 0.18 66 
shifting bottleneck 
SB1 1 Adamsetal. 8.20 2.72 483 VAX780/11 60 
SB31 Balas et al. 4.90 2.52 222 Spare 330 560 
SB41 Balas et al. 3.87 2.24 432 Spare 330 1.100 
SB-GLS1 Balas & Vazacopoulos 1.12 1.23 430 Spare 330 1,100 
PE-SB1 Adamsetal. 3.64 2.25 10,742 VAX780/ll 1,300 
Bottle-41 Applegate & Cook 4.77 2.23 293 SpareELC 730 
Bottle-51 Applegate & Cook 4.03 2.51 884 Spare ELC 2,200 
Bottle-61 Applegate & Cook 3.12 2.09 3,175 Spare ELC 7,900 

threshold algorithms 
Shufllel 1 Applegate & Cook 3.04 2.63 2,307 SpareELC 5,800 
Shuflle21 Applegate & Cook 1.95 1.94 198,685 SpareELC 500.000 
TAlms Aarts et al. 7.72 2.41 4,971 VAX8650 3,500 
SAtmS Aarts et al. 3.39 1.87 4,971 VAX8650 3,500 
SA2ms Aarts et al. 3.43 1.91 4,971 VAX8650 3,500 
SAI]~oo Aarts et al. 0.87 1.29 40,000 VAX8650 30,000 
SAms Van Laarhoven et al. 3.12 2.00 44,/43 VAX785 8,400 
SAbs Van Laarhoven et al. 2.06 1.88 220,715 VAX785 42,000 
SA-111 Matsuo et al. 2.21 1.61 5,378 VAX 780/11 670 

taboo search 
TS1b5 Taillard 
TS2112 Barnes & Chambers 1.08 1.47 5,820 WMRS6000 70,000 
TS3m5 Dell' Amico & Trubian 1.47 1.40 2,598 PC386 1.300 
TS3°5 Dell' Amico & Trubian 0.82 1.18 12,989 PC386 6,500 
TS-81 Nowicki & Smutnicki 0.99 0.90 2,895 AT386DX 1,400 
TS-8113 Nowicki & Smutnicki 0.35 0.74 8,685 AT386DX 4.300 
variable-depth search 
GLS114 BaJa.~ & Vazacopoutos 0.43 0.68 4,306 Spare 330 11.000 
IGLS1 Balas & Vazacopoulos 0.38 0.84 2,606 Spare 330 6,500 
RGLS-51 BaJa.~ & Vazacopoulos 0.24 0.83 9,554 Spare 330 24.000 
genetic algorithms 
GA-mms Aarts et al. 4.94 3.08 4,971 VAX8650 3,500 
GA-112ms Aarts et al. 4.48 2.68 4,971 VAX8650 3,500 
GA-112:_.00 Aarts et al. 40,000 VAX8650 30,000 
GA2ms Della Croce et al. 6.33 2.46 17,189 PC486125 12,000 
GA2b5 Della Croce et al. 5.05 2.48 85,945 PC486125 61,000 
GA-P1 Domdorf & Pesch 8.01 3.99 6.041 DEC3100 9,700 
GA-ssm2 Domdorf & Pesch 3.54 1.63 2.787 DEC3100 4.500 
GA-SB~ Domdorf & Pesch 3.25 1.55 5,523 DEC3100 8,800 

constraint satisfaction 
RCSh5 Nuijten & Aarts 2.06 2.42 110,970 Spare ELC 280.000 

mean (m.r.e.) and standard deviation (s.d.r.e.) of relative error in percents, 
sum of computation times (s.c.t.) and computer independent sum of computation times (c.i.s.c.t.) in 
seconds; computer independent computation times are rough estimates. 
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Figure 5.1: Relation between mean relative error and computer independent sum 
of computation times. 
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Table 5.5: Miscellaneous results for FT10. 
algorithm I authors 1 length time 1 computer 
threshold algorithms 

PSI01 I Storer et al. I 
976 I HSL101 Storer et al. 1006 

genetic algorithms 

GA I b600 I Yamada & Nakano I 930 36f)()()()() I Spare 2 
GA31 Nakano & Yamada 965 

schedule length in roman, computation time in seconds in italic 

latter values were computed using the nonnalization coefficients of Dongarra 
[1993] and must be interpreted with care; their accuracy is at most up to two 
digits. 

Figure 5.1 shows for each algorithm its mean relative error and its computer 
independent sum of computation times. Note that the time axis has a logarithmic 
scale. 

The shifting bottleneck procedure SB1 of Adams, Balas and Zawack [1988] is 
fast but gives poor results. The variants SB3 and SB4 of Balas, Lenstra and Vaza­
copoulos [1995], which take the delayed precedences into account, are more ef­
fective. It is worthwhile to combine the straight shifting bottleneck procedure 
with some fonn of partial enumeration, as is clear from the results obtained by al­
gorithm PE-SB of Adams, Balas and Zawack [1988] and by Bottle-5 and Bottle-
6of Applegate and Cook [1991]. (Note that the values forBottle-t given here dif­
fer from those reported in the original paper: we used the enumeration scheme 
as described in the paper; they implemented a different scheme [Applegate and 
Cook, 1993].) Algorithm SB-GLSofBalasand Vazacopoulos [1994] is in an en­
tirely different category. Apparently, the perfonnance of the shifting bottleneck 
procedure is significantly enhanced if variable-depth search with a fine-grained 
neighborhood function is used to reoptimize partial schedules. 

Among threshold algorithms the best results are obtained by the simulated 
annealing algorithm of Aarts, Van Laarhoven, Lenstra and Ulder [1994] and the 
iterative improvement algorithm Shuffle of Applegate and Cook [1991]. 

Regarding iterative improvement, Aarts, Van Laarhoven, Lenstra and Ulder 
[1994] report that their multi-start algorithm is inferior to threshold accepting 
and simulated annealing. Applegate and Cook's Shuffle algorithm works well, 
due to a neighborhood function that allows major changes in the schedule. We 
used our own outcomes ofBottle-5 as start solutions. The number t of machines 
to fix was chosen such that edge finder could rapidly fill in the remainder of 
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the schedule. We set t=l for FrlO, LA2 and LA19, t=2 for LA21, LA24 and 
LA24, and t=S for the other instances. The results for these values of t are re­
ported under Shuffle!. We also carried out more time consuming runs with t=l 
for FrlO and LA2-LA24, t=3 for LA29, LA36 and LA37, and t=4 for LA27, 
LA38, LA39 and LA40. The outcomes, reported under Shuffle2, are good but 
expensive. Storer, Wu and Vaccari [1992] give very few computational results 
for their variants of iterative improvement. Their results for the instance FrlO 
are poor. It seems that their search strategy or their neighborhood function is not 
powerful enough. 

The threshold accepting algorithm TA 1 of Aarts, Van Laarhoven, Lenstra 
and Ulder [1994] competes with their simulated annealing algorithm in case sim­
ulated annealing finds an optimal schedule. Otherwise, threshold accepting is 
outperformed by simulated annealing. Almost all instances in our table belong 
to the latter category. 

The simulated annealing algorithm SA of Van Laarhoven, Aarts and Lenstra 
[1992] produces reasonable results. Results of the same quality are obtained by 
the algorithms SAl and SA2 of Aarts, Van Laarhoven, Lenstra and Ulder [1994] 
with a standard cooling schedule; an extremely slow cooling schedule (SA1Hoo) 
gives very good results. To compute the mean and the standard deviation of the 
relative errors for the latter cooling schedule, we estimated the values for the 
missing entries. It is remarkable that the standard cooling schedule behaves sim­
ilarly for the neighborhood functions N1 (SAl) and N6a (SA2). Good results 
are obtained by the hi-level variant SA-II of Matsuo, Sub and Sullivan [1988]. 
In comparison to other approximative approaches, simulated annealing may re­
quire large running times, but it yields consistently good solutions with a modest 
amount of human implementation effort and relatively little insight into the com­
binatorial structure of the problem type under consideration. 

The advent of taboo search has changed the picture. Methods of this type 
produce excellent solutions in reasonable times, but these benefits .come at the 
expense of a non-trivial amount of testing and tuning. Although few data are 
available, the algorithm TS 1 of Taillard [1994] seems to perform extremely well. 
Also very good resuJts are obtained by algorithm TS2 of Barnes and Chambers 
[1995]. Dell' Amico and Trubian's [1993] algorithm TS3 obtained even better re­
sults; apparently, their complicated neighborhood function is very effective. The 
algorithm TS-B of Nowicki and Smutnicki [1995], which applies taboo search 
and traces its way back to promising but rejected changes, is one of the current 
champions for job shop scheduling. For our thirteen instances it achieves a mean 
relative error of only 0.35% for the best result out of three runs. 

Like TS-B, the variable-depth search algorithm GLS proposed by Balas and 
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Vazacopoulos [1994] combines conceptual elegance and computational excel­
lence. GLS achieves a mean relative error of 0.43% for the best result out of 
four runs; it needs more time than TS-B, however. The iterated and reiterated 
variants IGLS and RGLS-k, which apply various reoptimization cycles to par­
tial and complete solutions, perform still better. The best results reported so far 
have been obtained by RGLS-5: a single run achieves a mean relative error of 
only 0.28% and finds the optimum for eleven out of thirteen instances. 

For many genetic algorithms no results for our instances are available. Some­
times only the result for FflO is given. Yamada and Nakano [1992] found a 
schedule of length 930 four times among 600 trials. They also tested their algo­
rithm GAl on four 20-job 20-machine instances, but their outcomes are on av­
erage 6.5% above the best known upper bounds [Wennink, 1994; Vazacopoulos, 
1995]. The results obtained by Aarts, Van Laarhoven, Lenstra and Ulder [1994] 
are not very strong. Their algorithm GA-ll2 (using neighborhood function N6a) 
performs slightly better than GA-lll (using N1). 

As for genetic algorithms using string representations, the results obtained 
by Della Croce, Tadei and Volta's [1995] algorithm GA2 (published by Della 
Croce, Tadei and Rolando [1993]) and by Nakano and Yamada's [1991] algo­
rithm GA3 are poor. The algorithm GA-P of Domdorf and Pesch [1995] is even 
worse. Their algorithm GA-SB, which incorporates a shifting bottleneck vari­
ant, produces reasonable results. Values are reported for runs with population 
sizes of 40 and 60. 

The constraint satisfaction algorithm of Nuijten and Aarts [1995] produces 
good results but needs a lot of time. For the neural network approaches no com­
putational results are available that allow a proper comparison with other tech­
niques. 

5.8 Conclusion 

5.8.1 Review 

The local search algorithms discussed in this survey cover a broad range from 
straightforward to rather involved approaches. In general, the best results are 
obtained by taboo search and variable-depth search. The 'reiterated guided local 
search' algorithm of Balas and Vazacopoulos outperforms the other methods in 
terms of solution quality. The algorithm of Nowicki and Smutnicki, which com­
bines taboo search with backtracking, is a close second and needs much less time. 
The recent shifting bottleneck algorithm of Balas and Vazacopoulos, which re­
optimizes partial schedules by variable-depth search, is an effective and very fast 
alternative. 

The other shifting bottleneck variants are not competitive anymore. For job 
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shop scheduling, simulated annealing does not seem to be attractive either. It can 
yield very good solutions, but only if time is of no concern. 

Genetic algorithms perform poorly up to now. Often the neighborhood func­
tion applied in combination with the schedule representation chosen does not 
generate meaningful changes and it is hard to find improvements. Only when 
some kind of local search is embedded at a second level, the computational re­
sults are reasonable. 

Constraint satisfaction is a promising technique and needs further investiga­
tion. It is too early to make an assessment of the use of neural networks for job 
shop scheduling. 

A word of caution is in order regarding the validity of our conclusions. We 
have collected and compared the computational results reported on a set of bench­
mark instances. These problems are just on the borderline of being in reach of 
optimization algorithms. Further experiments on larger instances are required 
to improve our insights into the performance of the various breeds of the local 
search fami1y. 

5.8.2 Preview 

There is still considerable room for improving local search approaches to the job 
shop scheduling problem. As shown in Figure 1, none of the existing algorithms 
achieves an average error of less than 2% within 100 seconds total computation 
time. 

We have observed that many approaches operate at two levels, with, for in­
stance, schedule construction, local search with big changes or partial enumer­
ation at the top level, and local search with smaller changes at the bottom level. 
Such hybrid approaches are in need of a more systematic investigation. It might 
also be interesting to study three-level approaches with neighborhoods of smaller 
size towards the bottom. 

The flexibility of local search and the results reported here provide a promis­
ing basis for the application of local search to more general scheduling problems. 
An example of practical interest is the multi-processor job shop, where each pro­
duction stage has a set of parallel machines rather than a single one. Finding a 
schedule involves assignment as well as sequencing decisions. This is a difficult 
problem, for which no effective solution methods exist. 

Applying local search to large instances of scheduling problems requires the 
design of data structures that allow fast incremental computations of, for exam­
ple, longest paths. Johnson [1990] has shown that sophisticated data structures 
play an important role in the application of local search to large traveling sales­
man problems. 
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Our survey has been predominantly of a computational nature. There are 
several related theoretical questions about the complexity of local search. A cen­
tral concept in this respect is PLS-completeness [Johnson, Papadimitriou and 
Yannakakis, 1988]. Many of the neighborhood functions defined in Section 5.3 
define a PLS-problem, which may be PLS-complete. There are also complexity 
issues regarding the parallel execution of local search. For example, for some 
of the neighborhood functions it may be possible to verify local optimality in 
polylog parallel time. 





6 
Local search for the generalized job shop 

scheduling problem 

In this chapter we discuss a representation and several neighborhood functions 
that can be used in local search methods for the generalized job shop scheduling 
problem. The chapter is structured as follows. Section 6.1 describes the repre­
sentation we want to use and introduces several neighborhood functions. Sec­
tion 6.2 discusses how neighbors and their values can be determined in an effi­
cient way. Section 6.3 deals with the connectivity of the neighborhood functions 
introduced in Section 6.1. 

6.1 Representation and neighborhood functions 

In Chapter 2 we mentioned that in order to find an optimal schedule it is sufficient 
to consider schedules that have some special properties. Depending on these 
properties we distinguished several types of schedules: left-justified schedules, 
weakly active schedules, strongly active schedules, and left-optimal schedules. 
We also showed that there is a one-to-one correspondence between left-justified 
schedules and complete feasible orientations. Obviously, for each weakly ac­
tive schedule there exists a unique complete feasible orientation, and the same 
holds for each strongly active and each left-optimal schedule. But the reverse 
statements are not true in general, since there may exist orientations that do not 
correspond to a weakly active schedule. For this reason we choose to consider 

95 
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complete feasible orientations or, equivalently, left-justified schedules. So the 
representation of schedules considered in this chapter is that of complete feasi­
ble orientations. 

A neighborhood function for the generalized job shop scheduling problem 
must be capable of modifying the chosen machine set for an operation, and it 
must be capable of changing for a given operation the order relative to other op­
erations that have a machine in common with the given operation in their chosen 
machine set. For the most elementary neighborhood function that satisfies these 
conditions a neighbor is obtained as follows: first, choose an operation and delete 
it from all machine orderings; next, assign to this operation a (possibly different) 
machine set; finally, insert this operation in the machine orderings correspond­
ing to the new machine set, such that the resulting orientation is feasible. We 
assume that a solution cannot be a neighbor of itself, so that at least the machine 
orderings of a schedule and each of its neighbors are different. 

More formally, letS denote the solution space consisting of all possible com­
binations of machine set assignments and orientations that are feasible for this 
machine set assignment. Now the elementary neighborhood function N't as in­
troduced above is defined by: 

Nt((K, Q)) = {(K', Q') e s I Q' is feasible forK', n' #- n, 
3v e v : K'IV\{v) = KIV\{v)• 

Q'(EKiv\cvl) = Q(EKiv\Cvl)}, 

for each (K, Q) e S. Obviously, this neighborhood function satisfies the above 
conditions. 

One can think of several variants of this elementary reinsertion neighbor­
hood function. First, we introduce a variant N2, in which an operation is rein­
serted in the best way on any chosen machine set. Next, we introduce another 
variant N3, in which an operation is reinserted in the best way with the best ma­
chine set possible. Finally, for each of the three neighborhood functions intro­
duced above, we define variants in which an operation may get another machine 
set and orientation only if it belongs to a longest path in the solution graph cor­
responding to the current solution. 

The neighborhood function N2 is defined as follows. For each (K, Q) e S 
the neighborhood N2((K, Q)) contains all solutions (K', Q') from N 1 ((K, Q)) 
for which no (K', Q") e N1 ((K, Q)) exists such that a longest path in the solu­
tion graph corresponding to (K', Q") is shorter than a longest path in the solution 
graph corresponding to (K', Q'). So a neighbor is obtained by deleting an oper­
ation from all machine orderings, and then inserting it in one of its machine sets 
in a best possible way. Clearly, N2((K, Q)) is a subset of N1 ((K, Q)) for each 
(K, Q) E S. 
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The neighborhood function N3 is defined as follows. For each (K, 0) e S 
the neighborhood N3 ( ( K, 0)) contains all solutions ( K', O') from N1 ( ( K, Q)) 
for which no (K", 0") e Nj((K, 0)) exists with a shorter longest path in its 
corresponding solution graph than a longest path in the solution graph corre­
sponding to (K', 0'). So now, a neighbor is obtained by deleting an operation 
from all machine orderings, and then inserting it in a machine set in a best possi­
ble way, such that no other neighbor exists with a shorter longest path. Clearly, 
N3((K, 0)) is a subset of N2((K, 0)) for each (K, 0) e S. 

However, a neighbor that is obtained by reinserting an operation v that does 
not belong to a longest path in the solution graph of the current schedule, does 
have a longest path in its solution graph which is at least as long as the longest 
path in the solution graph of the current schedule. The reason for this is that 
the longest path of the current schedule remains present in the solution graph 
of such a neighbor. So it may be profitable to consider only neighbors that are 
obtained by reinserting operations v that belong to a longest (or critical) path 
in the solution graph of the current schedule. We will denote the neighborhood 
functions corresponding to N1, N2. and N3 in which only critical operations may 
be reinserted by Nf, Ni, and Nf, respectively. 

More complicated neighborhood functions can be defined by generalizing 
the basic neighborhood functions described above. For instance, one can define a 
neighborhood function that simultaneously assigns to two operations a (possibly 
different) machine set and finds new machine orderings for the corresponding 
operations. However, we wil1 restrict ourselves to the elementary neighborhood 
functions introduced above. 

For the neighborhood functions described above it is not dear at first sight 
how one should check that a possible neighbor corresponds to a feasible sched­
ule. Furthermore, it is not clear how a best possible neighbor in the sense of the 
neighborhood functions N2 and N3 can be determined efficiently. These ques­
tions are dealt with in the next section. 

6.2 Determination of a neighbor 

In this section we first study how we can identify whether a possible neighbor is 
feasible or not. Next, we study how for the neighborhood functions N2 and N3 
a given operation can be reinserted in the best possible way. Since the methods 
for finding such a best reinsertion have the same behavior for the reinsertion of 
a critical operation as for a non-critical operation, they can also be used to find 
the best reinsertion of a given operation for the neighborhood functions Ni and 
Nf. 

Now suppose for the remainder of this section that we are given a feasible 
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schedule represented by (K, Q) with a corresponding solution graph g. For each 
of the neighborhood functions introduced in the previous section, let v denote the 
operation that is deleted from all machine orderings and is reinserted again on 
possibly a different machine set. The solution graph corresponding to the partial 
solution that is obtained from (K, Q) by deleting v from all machine orderings 
is given by 

g(KIV\{v)•Oip2(V\{v})) • 

In the remainder of this section we use the following abbreviations: 

v- - V\{v}; 

g- = g(Kiv\lvi•Oipl(V\{v})); 

o- = OI'P2(V\(v})· 

Note that operation v is still a node in the graph g-. Clearly, g- is acyclic since 
g is already acyclic. We denote the new machine set of v by K'(v). Now the set 

Q(v) = {w e v- I K'(v) n K(w) "I 0} 

contains all operations whose machine set has a machine in common with the 
new machine set of v. For each of these operations we have to decide whether it 
will be scheduled before or after v. Each of these choices leads to a complete ori­
entation. However, some of these orientations may be infeasible. The feasibility 
is subject of the next subsection. 

6.2.1 Feasibility of neighbors 

In this part we study how we can obtain feasible neighbors. By definition, a rein­
sertion of v leads to a feasible neighbor if and only if the solution graph that is 
obtained from g- by reinserting vis acyclic. Clearly, if Q<~(v) is the set of oper­
ations we Q(v) for which a path from w to v exists in the graph g-, then each 
we Q<~(v) must be scheduled before v. Similarly, if Ql>(v) is the set of opera­
tions w e Q ( v) for which a path from v to w exists in the graph g-, then each 
we Ql>(v) must be scheduled after v. The set of operations w for which it has 
to be decided whether w wiB be scheduled before or after v is thereby reduced 
to 

Q<>(v) ={wE v- I K'(v) n K(w) "I 0, 
no path exists in g- from w to v, 
no path exists in g- from v to w}. 

In the remainder of this chapter we just write Q, Q<~, Ql>, and Q 0 instead of Q(v), 
Q<l(v), Ql>(v), and Q0 (v), respectively, if it is clear which operation v is to be 
reinserted. 

Now a neighbor is defined by selecting a subset L of Q0 of operations that 
are scheduled before v. Such a reinsertion will be denoted by (v, L). The cor-
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responding solution graph gL is obtained from g- by adding arcs (u, v) for all 
u e Q<l U L, and arcs (v, w) for all w e Q \ (Q<I U L). 

The following theorem shows under which conditions on L the correspond­
ing graph g L is acyclic. 

Theorem 6.1. The graph gL is acyclic if and only if x e L or y e Q0 
\ L for 

each pair x, y e Q0 for which an x-y path in g- exists. 

Proof Suppose that there exist operations x, y e Q0 for which an x-y path in 
g- exists and for which we do not have that x e L or y e Q0 

\ L. Then the only 
possibility is that x e Q0 \Landy e L. But then the graph gL contains the arcs 
(y, v) and (v, x). Since the x-y path in g- remains present in gL, we clearly 
have a cycle. 

Conversely, suppose that for each pair x, y e Q 0 with an x-y path in g- we 
have x e Lory e Q0 

\ L. Furthermore, assume that gL contains a cyc1e. Since 
gL is obtained from the acyclic graph g- by adding arcs incident to v, this cycle 
must contain one of the added arcs, and hence it must contain v. There can exist 
three types of cycles, each corresponding to one of the following possibilities: 

1. g- contains a path from v to some u e L. Therefore, gL contains a cycle 
(v, ... , u, v). But this is not possible since such an operation u cannot be 
an element of Q 0

, and hence not of L. 

2. g- contains a path from some w e Q0 
\ L to v. Therefore, gL contains 

a cyc1e (v, w, ... , v). Also this is not possible since such an operation w 
cannot be an element of Q 0

, and hence not of Q 0 
\ L. 

3. g- contains a path from some w e Q 0 
\ L to some u e L, resulting in a 

cyc1e (v, w, ... , u, v) in gL. But because of the existence of a w-u path in 
g- for this u e L and w e Q0 

\ L, we should have w e L or u e Q 0 
\ L. So 

also this situation does not occur. 

Therefore, neither of the three types of cyc1es can exist, which proves that gL is 
acyclic. D 

Now for the neighborhood functions Nt and Nf it is clear how a feasible 
neighbor can be determined. First, choose the operation v that is to be reinserted 
and compute the graph g-. Next, choose the new machine set for this operation 
and determine the corresponding set Q 0

• Finally, choose a subset L of Q0 of 
operations that are to be scheduled before v, such that L satisfies the condition 
of Theorem 6.1. 

The complexity of choosing a feasible reinsertion is determined as follows. 
Let q :::; m be an upper bound on the cardinality of the machine sets H. Com­
puting the graph g- takes O(l) time. The time required to determine the set Q 
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depends on the data structure that is used, but it will not exceed O(ql), which is 
the time required to find for each machine in K' ( v) the operations on the corre­
sponding machine path. When the transitive closure of the graph g- is stored, 
determining the set Q<> from Q takes 0(1) time. Choosing a set L that satisfies 
the condition of Theorem 6.1 takes also 0(1) time. So in total, choosing a feasi­
ble neighbor takes O(ql) time. 

6.2.2 Finding a best reinsertion on a given machine set 

In this subsection we study how an operation can be reinserted in the best pos­
sible way. The criterion used here is the length of the longest s-t path in the 
resulting solution graph. First, we study the case in which the machine set on 
which this operation is to be inserted is given. From the previous subsection 
it follows that the number of possible reinsertions of a given operation v on a 
given machine set K'(v) may be exponential in the size of K'(v). In this sub­
section we will show that we can restrict ourselves to a set of O(l) reinsertions, 
which is guaranteed to contain an optimal one. Furthermore, we show that each 
of these reinsertions results in a feasible solution. Note that by restricting our­
selves to this set of 0(1) reinsertions we may discard some neighboring solutions 
of N2((K, Q)) for which vis scheduled on K'(v). In fact, our method implicitly 
defines a neighborhood function that defines for each schedule a neighborhood 
that is contained in the neighborhood defined by N2. 

Now let a subset L of Q<> be given and assume that the insertion ( v, L) leads 
to a feasible orientation. gL denotes the corresponding acyclic solution graph 
that arises from g- by adding arcs (u, v) for all u E Q<l U L, and arcs (v, w) for 
all w E Q \ ( Q<l U L). Let for any x, y E V the length of longest paths from node 
x to node y in g- and gL be denoted by d-[x, y] and dL[x, y], respectively, 
provided that such paths exist. Note that d-[s, u] and d-[u, t] are defined for 
all u E V, since in g- always paths exist from s to u and from u to t. The length 
of a longest path in the graph g- is equal to d-[s, t], and the length of a longest 
path in the graph gL is equal to dL[s, t]. 

Since gL arises from g- by only adding arcs incident to v, leaving the rest 
of g- unchanged, we have 

dL[s, t] = max{d-[s, t], dL[s, v] + p(v, K'(v)) + dL[v, t]}. (6.1) 

Furthermore, 

dL[s, v] = max{d-[s, v], max (d-[s, u] + p(u, K(u)))} 
ueQ"UL 

= d-[s, v] + max (d-[s, u] + p(u, K(u))- d-[s, v])+, 
ueQ"UL (6.2) 
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and 

dL[v, t] = max{d-[v, t], max (d-[w, t] + p(w, K(w)))} 
weQ\(fl"UL) 

= d-[v, t] + max (d-[w, t] + p(w, K(w))- d-[v, t])+, 
weQ\(Q"UL) (6.3) 

where x+ = max{x, 0}. Substituting (6.2) and (6.3) in (6.1), we get 

dL[s, t] = max{d-[s, t], 

d-[s, v] + p(v, K'(v)) +d-[v, t] 

+ max (d-[s, u] + p(u, K(u))- d-[s, v])+ 
ue{l"UL 

+ max (d-[w, t] + p(w, K(w))- d-[v, t])+}. 
weQ\(Q"'UL) (6.4) 

The problem is to find an L s; Q<> for which dL[s, t] is minimal. Let for all 
ueQ 

au= d-[s, u] + p(u, K(u))- d-[s, v], (6.5) 

bu = d-[u, t] + p(u, K(u))- d-[v, t]. (6.6) 

Then, a;J" can be viewed as the increase of the length of the longest path from s 
to v if v is positioned after u, and b;J" as the increase of the length of the longest 
path from v tot if vis positioned before u. 

The fo1lowing lemma shows that operations in Q"' do not influence the in­
crease of the length of the longest path from s to v. 

Lemma 6.2. If u E Q<~, then au ~ 0. 

Proof. Since u E Q<l there exists a u-v path in the graph g-. As a consequence 
d-[u, v] 2: 0 and d-[s, v] 2: d-[s, u] + p(u, K(u)) + d-[u, v]. But then 

au= d-[s, u] + p(u, K(u))- d-[s, v] 

~ -d-[u, v] 

~o. 

which completes the proof. 

Similarly, we have that b111 ::: 0 if wE Ql>. So now 

0 

!J.(L) = maxat + max b~ (6.7) 
ueL weQ"\L 

is the increase in the length of the longest path from s to t through v when the 
reinsertion ( v, L) is performed. Our goal is to find an L * s; Q<> such that 

!J.(L *) = min !J.(L). (6.8) 
Ls;Q<> 
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In the following we show that some sets L do not have to be considered in order 
to find such an L *. First, we need the following definition. 

Definition 6.3. Let L s;;;; Q0
• Then A(L) denotes the unique maximal subset of 

Q0 such that 

max a~= maxa~. 
ueA(L) ueL 

(6.9) 

0 

Now the following theorem shows that only the sets A(L) have to be con­
sidered in order to find such an L *. 
Theorem 6.4. For each L s;;;; Q0 we have ~(A(L)) :::;: ~(L). 

Proof. Let L s;;;; Q0
• Since L s;;;; A(L) we have 

~(A(L)) - max a~+ max b~ 
ueA(L) weQ'>\A(L) 

< max a+ + max b+ 
ueA(L) u weQ'>\L w 

- maxa~ + max b~ 
ueL weQ'>\L 

- ~(L). 0 

It can easily be seen that for each L s;;;; Q0 we have that L = A(L) if and 
only L satisfies 

maxa~ < min a~. (6.10) 
ueL ueQ'>\L 

Hence, in order to find an optimal set L * we only have to consider sets L that 
satisfy equation (6.1 0). Now the following theorem shows that each such L does 
always lead to a feasible reinsertion. 

Theorem 6.5. Let L s;;;; Q0 satisfy equation (6.10). Then the reinsertion (v, L) 
is feasible. 

Proof. Letx, y e Q0 be such that there exists an x-y path in g-. By Theorem 6.1 
it is sufficient to prove that x e L or y e Q0 

\ L. Since 

ax - d-[s, x] + p(x, K(x))- d-[s, v] 

< d-[s, x] + p(x, K(x)) + d-[x, y] + p(y, K(y))- d-[s, v] 

< d-[s, y] + p(y, K(y))- d-[s, v] 

- ay. 
we have a; :::;: aj, and therefore x e Q0 

\ L and y e L cannot hold simultane­
ously by the choice of L. 0 
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So in order to find an optimal set L"' only sets L have to be considered that 
satisfy equation (6.10). Similarly, one can prove that it is also sufficient to con­
sider sets L that satisfy 

b+ . b+ max w < mm w· 
weQ"\L weL 

(6.11) 

in order to find an optimum, and that each such L results in a feasible reinsertion. 
For each of both possibilities at most I Q(> I+ 1 sets L have to be considered, which 
number is obviously bounded from above by I. All sets L that satisfy equation 
(6.10) (or (6.11)) can be found efficiently in the following way. First, sort the 
operations of Q(> in order of increasing au (or decreasing bu) and then find a set 
L for which C:t.(L) is minimal. Since the operations on each machine path are 
already in the correct order, sorting can be done by merging the O(q) sorted lists 
corresponding to the machines of K'(v). Hence, sorting takes O(llogq) time. 
Now finding an optimal L requires 0(1) time. 

Sorting and selecting an optimal L can be done slightly faster, though the 
total time needed remains O(llogq). The essential modification is that some 
operations are excluded from consideration already during the sorting. To be 
able to explain this modification we introduce the notion of dominance. Oper­
ation y e Q(> is said to dominate x e Q(> if ax ::: ay and hx ::: by; if ax = ay 
and bx = by. some tie-breaker is used to determine which operation dominates 
the other, for example the operation with lowest index. Now let two operations 
x, y e Q(> be given and suppose that y dominates x. Then one can easily check 
that for each L ~ Q(> not containing x nor y the two following inequalities hold: 
C:t.(LU{x, y})::: C:t.(LU{y}) and C:t.(L)::: C:t.(LU{x}). Hence, the sets L that contain 
only one of the operations x and y can be disregarded. This also holds for the 
special type of sets L that satisfy equation (6.10). Similarly, one can check that 
for each undominated operation x with ax ::: 0 and for each set L ~ Q<> not con­
taining x the inequality C:t. ( LU{ x}) ::: C:t. ( L) holds, and that for each undominated 
operation x with hx :::0 and for each set L ~ Q<> not containing x the inequality 
l1(L)::: .6-(LU{x}) holds. Therefore, also operations x with ax :::Oor bx :::0 can 
be disregarded. Summarizing, the only interesting operations are those belong­
ing to the set Qu of undominated operations x with ax > 0 and bx > 0. 

Now suppose that we want to find a set L satisfying equation (6.10) that 
minimizes C:t.(L). From the arguments given above it follows that this can by 
done by simultaneously determining the set Qu ~ Q<> and sorting the opera­
tions u e Qu in order of increasing au. Suppose we want to decide whether 
operation u belongs to Qu, and if so, to insert it in the list of already ordered 
operations of Qu. First, we search among the operations that have been sorted 
already for the operation w with lowest order for which au ::: aw. If such a w 
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does not exist. then we insert u behind the last ordered operation. If such a w 
does exist and if it dominates u. then we discard u. Otherwise, we insert u just 
before w. Next, if u is inserted, then we remove all already sorted operations 
that are dominated by u. We finally obtain the set Qu sorted in order of increas­
ing au. Let the function 1r : { 1, ...• I QuI} ~ Qu denote this order; hence, 
aJr(l) < aJr(2) < ... < aJr(IQUI)· Since Qu only contains undominated operations, 
we also have bJr(l) > bJr(2) > ... > bJr(IQUI>· Now the sets Li, 0::; i::; I Qu J, defined 
by 

ifi = 0 
ifi > 0 

(6.12) 

are the only ones that we have to consider in order to find an optimal set L *. Note 
that the value of A(Li) can be easily determined since 

ifi = 0 
if 1 ::: i ::: I QU I 
if i = IQUJ. 

(6.13) 

Now it is trivial to find a set L; that minimizes A. Similarly, by reversing the 
role of the a and b values, we could have considered the sets L~, 0 ::; i ::; IQu 1. 
defined by 

ifi = 0 
if i > 0. 

(6.14) 

The complexity of finding an optimal feasible reinsertion of an operation v 
on a given machine set K' ( v) is determined as follows. Computing the graph g­
takes 0(1) time. The time required to determine the set Q depends on the data 
structure that is used, but it wi11 not exceed O(ql), which is the time required 
to find for each machine in K'(v) the operations on the corresponding machine 
path. Computing d-[s, u] andd-[u, t] for all u E QU{v} takes O(JAJ+ql) time. 
Since the solution graph is acyclic, a reaching algorithm can be applied to com­
pute the longest paths from one node to all the other nodes in the graph. The time 
required by a reaching algorithm is linear in the number of arcs in the graph. The 
arc set in the reduced solution graph consists of O(l) dummy arcs, O(J A I) prece­
dence arcs, and O(ql) machine arcs. The reaching algorithm is applied twice, 
once for computing d-[s, u] and once for computing d-[u, t]. Computing au 
and bu for all u E Q takes 0(1) time. For both methods described sorting and 
finding an optimal L * can be done in O(llogq) time. Finally, computing gL • 
takes 0(1) time. 

Thus, the total time required to find an optimal reinsertion of an operation v 
on machine set K'(v) is O(IAI + ql). In terms of the number of operations and 
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the number of machines, this is 0(n2 + ml). Note that for problems with prece­
dence chains or precedence trees, and with a fixed upper bound on the size of the 
machine sets, the total running time is O(l). The gain in efficiency as compared 
to the method of trying out all possible reinsertions is highest for larger values 
of q, that is, for problems with large machine sets. 

Now we briefly discuss how an operation v can be reinserted in the best possible 
way when we are free to choose the machine set K' ( v) on which the operation 
v will be processed. From the previous subsection it follows that we can find a 
best reinsertion in O(I'H(v)l· (I AI +ql)) time. However, when p(v, K'(v)) does 
not depend on K'(v) we can do slightly better, since then d-[s, u] and d-[u, t] 
for all u e Q U { v} have to be computed only once. Then the total time needed 
is O(IAI + I'H(v)lql). 

6.3 Connectivity of neighborhood functions 

An interesting property of neighborhood functions is connectivity. This property 
expresses to which extent solutions can be reached from an arbitrary given solu­
tion by making a sequence of transitions such that it starts at the given solution 
and each next solution is a neighbor of the previous one. 

To be more specific we have to introduce several notions. Let a minimization 
problem be given and let the triple (S, X, j) specify an instance of this problem, 
with S the solution space, X the cost space, and f the cost function. For a neigh­
borhood function N :S--+ 'P(S) we define the set AN as 

AN= {(x, y) I xeS, yeN(x)}. 

So AN contains pairs of solutions for which the second solution is a neighbor of 
the first solution. The directed graph gN = (S, AN) is called the neighborhood 
graph corresponding to N. 

Definition 6.6. A neighborhood function N is called strongly connected if the 
corresponding neighborhood graph is strongly connected. A neighborhood func­
tion N is called optimum connected if for each solution there exists a path to an 
optimal solution in the corresponding neighborhood graph. 0 

Note that each strongly connected neighborhood function is also optimum 
connected. 

The extent to which a neighborhood function is connected has consequences 
for local search algorithms. For instance, if a given neighborhood function is not 
optimum connected, then there are solutions for which no sequence of transitions 
leads to an optimal solution. In this case any local search algorithm that starts 
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Figure 6.1: Connectivity of various neighborhood functions. 

with such an initial solution and makes only transitions to neighboring solutions 
is unable to find an optimal solution. Under certain mild conditions the standard 
simulated annealing algorithm asymptoticaHy converges to an optimal solution 
if the neighborhood function is optimum connected [Van Laarhoven, 1988]. 

In the following we discuss the connectivity of the neighborhood functions 
introduced in Section 6.1. Figure 6.1 summarizes to which extent the neighbor· 
hood functions N1, N2, and N3, in which each operation may be reinserted, and 
the neighborhood functions Nf, N2, and Nf, in which only operations may be 
reinserted that are on a longest s·t path in the current schedule, are connected. 
The sign + denotes that a neighborhood function is strongly or optimum con· 
nected and the sign - that it is not. Arrows denote that a result for the connectiv· 
ity of one neighborhood function implies a result for the connectivity of a second 
neighborhood function. Bold circles denote results that are not implied by other 
results. Each of these results is the subject of one of the following theorems. 

First, we consider the neighborhood functions in which all operations may 
be reinserted. The fo1lowing theorem states that the neighborhood function N1 

is strongly connected and therefore also optimum connected. 
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Theorem 6.7 . .Ni is strongly connected. 

Proof. Let an initial schedule (Ko, Oo) and a final schedule (K 1, 01) be given. 
We have to show that we can construct a finite sequence of schedules (K;, 0;) 
leading from (Ko, Oo) to (KJ, OJ). such that (Ki+~t Oi+t) e .Nt((K;, 0;)) for 
all i. We construct this sequence in two stages. The first stage ends with a sched­
ule (K;, 0;) with K; = K 1. In the second stage the machine set assignment 
remains the same and only the orientations are modified. 

The schedules in the first stage are constructed as follows. As long as there 
exists an operation v in the current schedule (K;, 0;) with K;(v) =/: K 1(v), 
reinsert such an operation von machine set K 1(v), resulting in the neighboring 
schedule (Ki+t. Oi+t). Here, each feasible reinsertion may be chosen. 

The schedules in the second stage are constructed as follows. As long as for 
the current schedule ( K 1 , 0;) the set l>;1 defined by 

l>;1 = {{x, y} e'P2(V) IK 1(x) n K 1(y) :/: 0, 
O;({x, y}) :/: OJ({x, y})} 

is non-empty, there is a pair { v, w} of operations such that K 1 ( v) n K 1 ( w) :/: 0, 
O;({v, w}) = (v, w), 0 f({v, w}) = (w, v), and such that no x e V exists with 
(v, x) or(x, w) e AUO; (EK

1
). Choose such a pair {v, w} and reinsert v such that 

the order of v and w is reversed while the order for each other pair of operations 
remains the same. For the resulting orientation Oi+ 1 we have I!Ji+ 1 ,f I = ll>iJ 1-1. 
Since lf>;J I is strictly decreasing for increasing i, we finally reach an orientation 
0; for which l>;t = 0. Clearly, in that case we have 0; = 0 f. 

What remains is to prove that each of the reinsertions in the second stage 
results in a feasible orientation. To achieve the proposed reinsertion the set L of 
operations of Q¢ ( v) that have to be scheduled before v must be equal to 

{x e Q¢(v) I O;({v, x}) = (x, v) or x = w}. 

In view of Theorem 6.1 it is sufficient to prove that x e L or y e Q¢ ( v) \ L for each 
pair x, y E Q¢(v) for which an x-y path in 9(K,,n,) exists. Now let x, y e Q¢(v) 

and assume that there exists an x-y path in 9(K,.n,) and that y e L. Then we 
have to prove that also x e L. Since y e L we have either 0; ( { v, y}) = (y, v) or 
y = w. If O;({v, y}) = (y, v), then there exists an y-v path in 9(K1.n1)· Since 
there is also an x-y path in this graph, there exists an x-v path and therefore 
O;({v, x}) = (x, v) and thus x e L. Now consider the case that y = wand 
assume that 0; ({ v, x}) = ( v, x ). Since there is an x-w path in g(K, .n1 )• there is 
also a v-w path in 9(K1,n1) with at least the operation x between v and w. But 
by the choice of v and w such an x cannot exist. Hence, the assumption that 
O;({v,x}) = (v,x)cannotbetrue. SoO;({v,x}) = (x,v)andthusxeL. 0 
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The following theorem states that in general the neighborhood function N2 is 
not optimum connected and thus not strongly connected either. This also implies 
that N3 is not optimum connected, nor strongly connected. 

Theorem 6.8. There are instances for which N2 is not optimum connected. 

Proof. We give an instance for which N2 is not optimum connected. Let 

V = {v; I i e{la, lb, 2a, 2b, 3a, 3b, 4a, 4b}} 

and let M = {t.t-t. t-t-2}. Let 1t be defined by 

1-l(v·) = { HlltH ifi e{la.lb, 3a, 3b} 
1 {{JL2}} if i e {2a, 2b, 4a, 4b}, 

and let p be defined by 

{ 
1 ifi=3b 

p(v;, {JL(v;)}) = 2 otherwise. 

Let the precedence relation A be as depicted in Figure 6.2. Now consider the 
schedule oflength 12 as depicted in Figure 6.3. It can be easily checked that the 
best reinsertion of Vta or VJb reverses the order of VIa and VJb and leads again to 
a schedule of length 12. A similar property holds for V2a and V2b· v3a and V3b• 

and v4a and V4b. So each best reinsertion gives a schedule which is different from 
the given schedule. For each schedule that is obtained by applying one or more 
of such reinsertions we have that on machine Ill the operations v1a and Vtb are 
processed before V3a and V3b· and on machine Jl2 the operations v2a and Vzb are 
processed before v4a and V4b· The length of each such schedule is 12. Again for 
each of these schedules a best reinsertion reverses two operations in a similar 
way as for the schedule of Figure 6.3. 

Clearly, these schedules are not optimal, since each left-justified schedule in 
which the operations V3a and v3b are processed before Vta and Vtb on machine 
t-t-1, and V4a and V4b are processed before v2a and v2b on machine t-1-2 has only 
length 11. An example of such a schedule is given in Figure 6.4. Obviously, 
such a schedule is optimal. 

Hence, no optimal schedule is reachable from the schedule depicted in Fig-
ure 6.3. D 

V3avV4a 

V3b.6V4b 

Figure 6.2: The precedence relation A on V. 
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ILl 

IL2 

0 1 2 3 4 5 6 7 8 9 10 11 12 

Figure 6.3: A feasible schedule of length 12. 

ILt VJa I VJbl Vta Vtb 

1L2 I V4a V4b V2a V2b 

0 1 2 3 4 5 6 7 8 9 10 11 12 

Figure 6.4: An optimal feasible schedule of length 11. 

Now we consider the neighborhood functions in which only operations on a 
longest path may be reinserted. As a consequence of Theorem 6.8 the neighbor­
hood functions Nf and N) are in general not optimum connected nor strongly 
connected. So the only neighborhood function that remains to be studied isNf. 
First, we show that this neighborhood function is in general not strongly con­
nected. Thereafter, we prove that it is optimum connected. 

Theorem 6.9. There are instances for which Nf is not strongly connected. 

Proof. We give an instance for which Nf is not strongly connected. Let V = 
{VJ, v2, v3} and let M = {ILt. IL2l· Let 11. be defined by 

'H.(v·) _ { H1LtH if i = 1, 
' - {{IL2H ifie{2,3}, 

and Jet p be defined by 

{ 
3 if i = 1 

p( v; ' {IL ( v;)}) = 1 otherwise. 

There are no precedences (A = 0). Now the only decision to be made is about 
the relative order of operations v2 and VJ. The two left-justified schedules corre­
sponding to each of these two orderings have length 3, the length of operation VJ. 

Neither v2 nor v3 are on a longest s-t path. The only operation on a longest path 
is v1, but this operation is the only one on machine IL 1 and there is no decision to 
be made about its order. So none of the two solutions have a neighbor. Hence, 
the corresponding neighborhood graph is not strongly connected. D 



110 Local search for the generalized job shop scheduling problem 

The instance in the proof of the previous theorem may suggest that one can 
still find a sequence of solutions from an arbitrary solution to a solution for which 
the chosen machine sets and the relative orders of all operations on each longest 
s-t path are the same as in a given solution. However, the following instance, 
due to Van Laarhoven [1988], shows that also this is impossible. 

Let V = {vi I i e {1, ... , 6}} and let M = {J.Ltd.tz, p,3}. Let 1t be defined 
by 

{ 

{{p,J}} ifie{l,6}, 
1-l(vi)= Htt2H ifie{2,5}, 

Htt3H if i E {3, 4}, 
and let p(vi, {p,(vi)}) = 1 for all i. Let the precedence relation A be defined by 

A= {(vlt v2), (v2. v3), (v4, vs), (vs, v6)}. 

Since for each operation there is only one machine set it can be processed on, a 
solution is completely characterized by the orientation of the operations. There 
are four possible solutions, corresponding to the schedules depicted in Figure 6.5. 
Clearly, 0 1 is reachable from Oz and Q3 and n2 is reachable from Ot and Q4, 

but Q3 and Q4 are not reachable from any other solution. Since Q3 is the only so­
lution with the longest s-t path (s, VJ. v2, V3, v4, vs, V6, t), no solution with this 
longest path can be reached from another solution. 

Jll ~ ~ ~ ~ 
Jl2 I vz I vs I I vs I vz 

Jl3 ~ ~ ~ ~ 
0 1 2 3 4 5 6 0 1 2 3 4 5 6 

Ot Oz 

Jll ~ ~ I V6 I VJ I 
Jl2 ~ ~ ~ ~ 
Jl3 I V3 I V4 ! ~ ~ 

0 2 3 4 5 6 0 2 3 4 5 6 

Q3 Q4 

Figure 6.5: All possible left-justified schedules. 
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So the only possibility to prove that Nf is optimum connected is by directly 
proving that one can find a sequence of solutions from an arbitrary solution to an 
optimal solution. Theorem 6.11 shows that Nf is optimum connected. In order 
to prove this theorem we need the following lemma. 

Lemma 6.10. Let a schedule (K;, 0;) and an optimal schedule (K., O.) be 
given. Let 

a,t. - {x E v I K; (x) =I= K.(x), X on a longest s-t path in 9(K;,0;)}. 

a;* = {{x,y}E'P2(V) I 
K;(x) = K.(x), K;(y) = K.(y), 
O;({x, y}) =I= O*({x, y}), 
x andy adjacent on a longest s-t path in 9(K1,o1)}. 

lfol* = 0 and oJ. = 0, then the schedule (K;, 0;) is optimal. 

Proof. If ol* = 0, then each operation on a longest s-t path in 9(K;.O;) is pro­
cessed by the same machine in (K;, 0;) as in (K*, 0*). Therefore, oJ* = 0 im­
plies that each pair of adjacent operations x andy on a longest s-t path in 9(K;,O;) 
occurs also in an s-t path in 9cK •. O.>· Since (K*, 0*) is optimal, also (K;, 0;) 
must be optimal. D 

Now we are able to prove the following theorem. 

Theorem 6.11. Nf is optimum connected. 

Proof. Let an initial schedule {K0 , 0 0) be given. We will show that we can con­
struct a finite sequence of schedules (K;, 0;) leading from (K0, 0 0) to an opti­
mal schedule, such that (KHt. O;+t) e N)((K;, 0;)) for all i. Let (K*, n.) be 
an optimal schedule. 

To describe the construction of the sequence, we explain how for a schedule 
(K;, 0;) in the sequence the next schedule (K;+t• O;+t) is obtained. We can 
distinguish three situations. 

1. If oJ* = 0 and or* = 0 forthe schedule (K;, 0; ), then, by Lemma 6.10 this 
schedule is optimal and we are done. 

2. If of* =I= 0, then there is avon a longest s-t path with K;(v) =I= K.(v). Then 
reinsert v on the machine set K * ( v) in an arbitrary way such that the resulting 
schedule (K;+J, QH1) is feasible. 

3. If oJ* = 0 and or* =/= 0, then each operation that occurs on a longest s-t 
path is processed on the same machine set as in (K*, n.). Furthermore, there 
exists at least one pair of adjacent operations v and w on a longest s-t path 
with O;({v, w}) = (v, w) and O*({v, w}) = (w, v). Then (Ki+t. O;+t) is 
obtained by reinserting such a v on the same machine set, and such that the 



112 Local search for the generalized job shop scheduling problem 

order of v and w is reversed while the order for each other pair of operations 
remains the same. This reinsertion is feasible, since it is of the same type as 
the second stage reinsertions in the proof of Theorem 6. 7. 

What remains to show is that this method eventually finds an optimal sched­
ule. Now let the sets ¢J. and ¢'f. be defined by 

¢J. = {x E V I K;(x) =F K.(x)} and 
¢[. = {{x, y}eP2(V) I K;(x) = K.(x), K;(y) = K.(y), 

O;({x, y}) =1: o.({x, y})}. 

Clearly, we have dl. ~ ¢J. and o[. ~¢'f •. In the second situation, we obtain a 
new schedule with 1¢l+t .• l = 1¢!.1 - 1, but for which l¢f+l.•l may be larger 

than 1¢[+1 •• 1· In the third situation, we obtain a schedule with 1¢!+1.•1 = 1¢!.1 
and l¢f+I.•I = 1¢[. 1-1. So (1¢l.l. 1¢1. I) is strictly lexicographically decreasing 
in i. Therefore, we eventually reach a schedule for whiCh both ol. and or. are 
empty. By Lemma 6.10 this schedule must be optimal. 0 
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Samenvatting 

In dit proefschrift bestuderen we een bepaald type schedulingprobleem. In bet 
algemeen treden schedulingproblemen op wanneer een verzameling activiteiten 
uitgevoerd dient te worden door een beperkte verzameling van hulpmiddelen. 
Gedurende de laatste decennia is er veel onderzoek gedaan op het gebied van de­
terministische schedulingproblemen, waarin aJie gegevens die een instantie van 
het probleem beschrijven met zekerheid bekend zijn. Bijzonder veel aandacht is 
besteed aan machine schedulingproblemen, waarin machines de enig mogelijke 
hulpmiddelen zijn. De voomaamste restrictie is dat een machine slechts een ac­
tiviteit tegelijkertijd kan uitvoeren. 

De in de literatuur bestudeerde machine schedulingproblemen zijn in wezen 
wiskundige mode lien voor schedulingproblemen die in de praktijk vaak aanzien­
lijk complexer zijn. Opdat een praktische probleem zo goed mogelijk in een mo­
del weerspiegeld wordt, is bet gewenst dat de essentiele elementen van bet prak­
tische probleem in bet model tot uitdrukking komen. Het probleeni doet zich 
echter voor dat praktische problemen dikwijls zo lastig zijn dat eenvoudige mo­
de lien te ver afstaan van de realiteit en realistische modellen niet meer snel zijn 
op te lossen. 

Een van de meest complexe machine schedulingprobJemen die in de litera­
tour bestudeerd zijn is bet job shop schedulingprobleem. Dit model is echter 
toch nog redelijk beperkt: voor elke activiteit is er precies een machine gege­
ven waarop de activiteit uitgevoerd kan worden. In dit proefschrift beschouwen 
we een uitbreiding van dit model door toe te staan dat iedere activiteit op een 
collectie van machines uitgevoerd kan worden en dat voor iedere activiteit ver­
schi1lende van dergelijke collecties gegeven zijn, waaruit een collectie gekozen 
dient te worden die de activiteit daadwerkelijk uit zal voeren. Deze generalisatie 
van het job shop schedulingprobleem zullen we bet gegeneraliseerde job shop 
schedulingprobleem (GJSSP) noemen. 

Het GJSSP kan informeel als volgt worden beschreven. Gegeven is een ver­
zameling operaties en een verzameling machines. De verzameling operaties re­
presenteert de verzameling van uit te voeren activiteiten. Een operatie dient zon­
der onderbreking uitgevoerd te worden door een collectie van machines. Voor 
elke operatie is een aantal toegestane collecties van machines gegeven die de 
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operatie kunnen uitvoeren. Voor elke operatie en elk van haar toegestane ma­
chinecollecties is een geheeltallige verwerkingstijd gegeven, die aangeeft hoe 
lang de uitvoering van de operatie op de machinecollectie duurt. Verder is er 
een precedentierelatie op de verzameling operaties gedefinieerd, die voor geor­
dende paren van operaties aangeeft dat de uitvoering van de tweede operatie pas 
kan starten nadat de uitvoering van de eerste beeindigd is. Een schedule bestaat 
nu uit een toewijzing van een toegestane machinecollectie en een niet-negatieve 
starttijd aan elk van de operaties. Een toegestaan schedule is een schedule waarin 
geen enkele machine meer dan een operatie tegelijkertijd uitvoert en waarin voor 
elk paar operaties waarvoor een precedentie geldt de uitvoering van de tweede 
operatie niet start voordat de uitvoering van de eerste beeindigd is. De tijdsduur 
die voor een gegeven toegestaan schedule nodig is om alle operaties uit te voeren 
wordt de lengte van bet schedule genoemd. Het probleem bestaat uit bet vinden 
van een toegestaan schedule met een zo klein mogelijke lengte. Een dergelijk 
schedule wordt optimaal genoemd. 

Het vinden van een toegestaan schedule met de kleinst mogelijke lengte is 
in zijn algemeenheid lastig, wat wil zeggen dat het probleem zeer waarschijn­
Jijk niet in polynomiale tijd op te lossen is. Er zijn verscheidene mogelijkheden 
om deze complicatie te omzeilen. Enerzijds is het mogelijk om deelklassen van 
bet GJSSP te bestuderen welke mogelijk wet in polynomiale tijd optimaal op te 
lossen zijn. Anderzijds is het mogelijk om met een schedule genoegen te ne­
men waarvan de lengte wellicht niet optimaal is, maar de optimale lengte wei 
voldoende dicht benadert. Algoritmen om dergelijke schedules te bepalen wor­
den benaderingsalgoritmen genoemd. In dit proefschrift worden beide wegen 
bewandeld. 

In Hoofdstuk 3 bestuderen we deelklassen van bet GJSSP, waarbij we aan­
geven welke deelklassen nog gemakkelijk oplosbaar zijn en welke deelklassen 
lastig zijn. Hierbij pogen we de grens tussen gemakkelijk oplosbare en lastige 
problemen zo scherp mogelijk te markeren. We maken hierbij onderscheid tus­
sen deelklassen die gekarakteriseerd worden door een vaste bovengrens op de 
lengte van bet schedule en deelklassen waarbij een dergelijke bovengrens niet 
gegeven is. 

Vervolgens bestuderen we benaderingsalgoritmen voor het GJSSP zonder 
verdere beperkingen. Hierbij hebben we ons toegespitst op de klasse van lo­
kale zoekalgoritmen. Lokale zoekalgoritmen zijn algemeen toepasbaar en ge­
ven goede resuJtaten voor diverse lastige optimaliseringsproblemen. Zij zijn met 
succes toegepast voor het oplossen van diverse schedulingproblemen. In de lite­
ratuur zijn talrijke lokale zoekalgoritmen bescbreven voor bet oplossen van een 
deelklasse van bet GJSSP, namelijk bet job shop schedulingprobleem. Hierbij 
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!open de resultaten uiteen van bevredigend tot uitstekend. 
In principe begint een Jokaal zoekalgoritme voor een gegeven probleem met 

een initiele oplossing en genereert bet vervolgens een rij van nieuwe oplossin­
gen, zodanig dat iedere oplossing in de rij verkregen is nit de voorgaande op­
Jossing door een deel van deze oplossing te veranderen. Een buurruimtefunctie 
definieert welk:e veranderingen toegestaan zijn. Zij wijst impliciet aan iedere op­
lossing een verzameling van buuroplossingen (of buren) toe die door een toege­
stane verandering vanuit de gegeven oplossing in een stap bereikt kunnen wor­
den. Een zoekstrategie specificeert op welk:e manier een buur uit de buurruimte 
van een oplossing in de rij gekozen wordt als de volgende oplossing in de rij. De 
meeste zoekstrategieen zijn zodanig dat buren van betere kwaliteit geprefereerd 
worden boven buren van minder goede kwaliteit. Op deze manier wordt een rij 
van oplossingen van steeds betere kwaliteit verkregen en de beste oplossing is 
dikwijls van goede kwaliteit. In de loop der tijd zijn er diverse soorten lokale 
zoekalgoritmen ontwikkeld. De meest voorkomende soorten worden in Hoofd­
stuk 4 beschreven aan de hand van een raamwerk waarbinnen vrijwel aile lokale 
zoekalgoritmen passen. 

In Hoofdstuk 5 worden diverse lokale zoekalgoritmen nit de literatuur be­
schreven die ontwikkeld zijn voor het job shop schedulingprobleem. Hun kwa­
liteit wordt beoordeeld aan de hand van de resultaten die gevonden zijn voor der­
tien algemeen beschikbare probleeminstanties. Tevens worden in deze beoorde­
ling de benodigde rekentijden voor het verkrijgen van deze resultaten meegeno­
men. Geconcludeerd mag worden dat algoritmen waarin verschillende combina­
ties van buurruimtefuncties en zoekstrategieen gebruikt worden en algoritmen 
waarin combinaties van lokaal zoeken en partiele aftelling gebruikt worden de 
beste resultaten geven. 

In het laatste hoofdstuk geven we een aanzet die moet leiden tot toepassin­
gen van lokale zoekalgoritmen voor het gegeneraliseerde job shop scheduling­
probleem. We geven een aantal eisen waaraan een buurruimtefunctie minimaal 
moet voldoen, opdat een lokaal zoekalgoritme zich niet beperkt tot het zoeken 
in een te klein deelgebied van de oplossingsruimte en daardoor grote kans loopt 
oplossingen van goede kwaliteit niet te kunnen vinden. Vervolgens beschrijven 
we een aantal buurruimtefuncties die in voldoende mate aan deze eisen voldoen. 
In beginsel wordt bij elk van deze buurruimtefuncties een buur gedefinieerd door 
aan een enkele operatie een eventueel andere toegestane collectie van machines 
toe te wijzen en deze zodanig in te voegen tussen de overige operaties dat het 
geheel weer een toegestaan schedule oplevert. Hierbij mogen de starttijden van 
de overige operaties veranderen, maar blijven de onderlinge volgordes van deze 
operaties gelijk wanneer hun gekozen machinecollecties een machine gemeen 
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hebben. Het invoegen van een operatie kan op verschillende manieren gebeuren. 
We beschouwen de volgende drie mogelijkheden. Bij de eerste mogelijkheid 
mag iedere operatie op ieder van haar machinecollecties op een willekeurig toe­
gestane plaats ingevoegd worden. Bij de tweede mogelijkheid mag iedere ope­
ratie op ieder van haar machinecollecties ingevoegd worden, maar no zijn alleen 
die invoegingen toegestaan die, gegeven de keuze van de machinecollectie, een 
schedule opleveren met de kleinst mogelijke lengte. Bij de derde mogelijkheid 
mag iedere operatie aileen zodanig op een toegestane wijze ingevoegd worden, 
dat er geen andere invoegingen mogelijk zijn waarbij bet resulterende schedule 
een kleinere lengte heeft. Voor de laatste twee buurruimtefuncties wordt een ef­
ficiente methode gegeven om een best mogelijke invoeging te bepalen. Voor elk 
van de drie genoemde buurruimtefuncties is er een klasse van operaties aan te 
geven waarvan een invoeging nooit zal leiden tot een schedule met een kortere 
lengte. We beschouwen daarom bovendien varianten van deze buurruimtefunc­
ties waarin invoegingen van dergelijke operaties niet toegestaan zijn. 

Als laatste onderwerp bestuderen we de bereikbaarheid van deze buurruimte­
functies. Voor een buurruimtefunctie noemen we een oplossing bereikbaar van­
nit een andere oplossing als er een reeks van stappen gemaakt kan worden begin­
nend bij de laatstgenoemde oplossing en eindigend bij de eerstgenoemde, zoda­
nig dat in elke stap van een oplossing naar een boor wordt overgegaan. Van elk 
van de zes buurruimtefuncties voor bet GJSSP geven we aan of vanuit elke wil­
lekeurige oplossing elke andere oplossing bereikt kan worden en of vanuit elke 
wil1ekeurige oplossing een optimale oplossing bereikt kan worden. De eigen­
schap van bereikbaarheid geeft aan in welke mate een lokaal zoekalgoritme in 
staat is de oplossingsruimte te doorzoeken. 
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Stellingen 

beborende bij bet proefschrift 

Generalized Job Shop Scheduling: 

Complexity and Local Search 

van 

Robert Johannes Maria Vaessens 

I 

Om de kwaliteit en de efficientie van door verschillende onderzoekers ontworpen 
benaderingsalgoritmen voor een optimaliseringsprobleem goed te kunnen verge­
Iijken is bet noodzakelijk dat deze algoritmen getest worden op een algemeen 
beschikbare verzameling van probleeminstanties en dat de voor deze tests beno­
digde rekentijden uitgedrukt kunnen worden in een grootheid die niet afhangt van 
de computer waarop deze tests uitgevoerd zijn. 

R.J.M. VAESSENS (1995), Dit proefscbrift, boofdstuk 5. 

II 

Van Laarhoven, Aarts en Lenstra [ 1992] beschouwen een buurruimtefunctie voor 
het job shop scheduling probleem. In Theorem I stellen zij dat het voor elke toe­
gelaten orientatie mogelijk is om een rij van transities binnen de buurruimtegraaf 
te definieren, welke eindigt in een toegelaten orientatie corresponderend met een 
optimaal schedule. Het bewijs van deze stelling is niet correct. De gemaakte fout 
is ecbter eenvoudig te herstellen. 

P.J.M. VAN LAARHOVEN, E.H.L. AARTS, J.K. LENSTRA (1992), Job shop 
scheduling by simulated annealing, Oper. Res. 40, 113-125. 



III 

Aarts en Van Laarhoven [1985] stel1en een koelschema voor hun simulated an­
nealing algoritme voor, waarin het verschil tussen de koelparameters ck en Ct+t 

behorende bij twee opeenvolgende bomogene Markovketens groter is naar mate 
de varian tie ak van de kosten van de opJossingen gevonden in de k-de Markov­
keten kleiner is. Het is te verwachten dat simulated annealing beter werkt als de 
correlatie tussen bet decrement Ck - ck+l en de varian tie ak positief in plaats van 
negatief is. 

E.H.L. AARTS, P.J.M. VAN LAARHOVEN (1985), Statistical cooling: a gen­
eral approach to combinatorial optimization problems, Philips J. of Research 40, 
193-226. 

IV 

Zowel het twee-machine flow shop scheduling probleem als bet twee-machine 
open shop scheduling probleem met transporttijden tussen de operaties van een 
opdracht is NP-lastig in de sterke zin. Dit is zelfs bet geval als geeist wordt dat 
voor elke opdracht de bewerkingstijden van haar beide operaties aan elkaar ge­
lijk zijn. 

R.J .M. VAESSENS, M. DELL' AMICO (1995), Flow and Open Shop Scheduling 
on Two Machines with Transportation 1imes and Machine-Independent Process­
ing 1imes is NP-hard, Ongepubliceerd manuscript 

v 
Zij voor n, r E N en s e IZ de grootheden M; (s) en N; (s) gedefinieerd door 

M~(s)= \xe{O, ... ,r-l}nltx;=sl 
1=1 

en 

N;(s)=llxe{O, ... ,r Wl'j;x;:ssJI· 
Dan geldt: 

M; (s) = I: ( _1 )k (n) (n - 1 ~ s - kr) 
k=O k n 1 

en 



VI 

Beschouw het job shop scheduling probleem waarbij elke opdracht precies een 
operatie op elke machine heeft. De grootte van een instantie van dit probleem 
wordt dus gekarakteriseerd door het aantal opdrachten en het aantal machines. 
Random gegenereerde instanties van dit probleem zijn naar verwachting lasti­
ger optimaal op te lossen naarmate de machinevolgordes van de opdrachten on­
derling een grotere gelijkenis vertonen. Random gegenereerde instanties van bet 
flow shop scheduling probleem zijn derhalve het lastigst op te lossen. 

E. TAILLARD (1993), Benchmarks for basic scheduling problems, European J. 
Oper. Res. 64, 278-285. 

VII 

Zij C een ternaire code van lengte 8 en minimum afstand 4 waarbij voor aile co­
dewoorden c E C de volgende voorwaarden gelden: 

• c + (11102220) E C; 

• 2. c E C; 
• c<l5l(26)(37l(48l E C; 

• c023)(567) E c. 
Hier eisen de derde en vierde voorwaarde dat voor elk codewoord c het woord 
verkregen door de aangegeven permutatie op c toe te passen ook weer een co­
dewoord is. Een dergelijke code C bevat ten hoogste 99 codewoorden. De code 
die de woorden van Figuur 1 bevat en die aan bovenstaande voorwaarden voldoet 
bestaat uit 99 woorden. Deze code is in essentie uniek. 

00000000 
00012221 
01200210 
01201021 
00110022 
00122202 
00101211 

Figuur I: Codewoorden behorende tot een ternaire (8,99,4)-code 

R.J .M. VAESSENS, E.H.L. AARTS, J .H. VAN LINT (1993), Genetic algorithms 
in coding theory- a table for A3(n, d), Discrete Appl. Math. 45, 71-87. 



VIII 

Zij p(d) de door de N.V. Nederlandse Spoorwegen gebanteerde prijs van een 
treinkaartje uit een bepaalde categorie voor een treinreis binnen Nederland over 
een afstand van d kilometers (d e fil). Voor elk van de categorieen dient de func­
tie pte voldoen aan: 

Vdt, dz e fil: p(dt + dz):::: p(dt) + p(dz). 

Dit is echter niet het geval. 

N. V. NEDERLANDSE SPOORWEGEN (1995), NS-Reizigerstarief, 1 januari 1995. 

IX 

Brouwer [1978] concludeert uit de tekst van een affiche van 30 oktober 1843 aan­
gaande de openbare aanbestedingen voor het Jeveren en plaatsen van 388 giet­
ijzeren en 356 hardstenen grenspalen, welke geplaatst dienden te worden op de 
Belgisch-Nederlandse grens, uit bet feit dat de gietijzeren pal en genummerd zijn, 
en uit bet feit dat de paal met nummer I op bet drielandenpunt van Belgie, Duits­
land en Nederland staat, dat de paal met het hoogste nummer, welke nabij de 
monding van het Zwin in de Noordzee tussen Knokke en Cadzand staat, het num­
mer 388 draagt. Er zijn ten minste twee redenen aan te geven waarom deze con­
clusie niet correct is. Bovendien is de bewering van Brouwer dat van de hardste­
nen palen geen voorbeelden meer over zijn onjuist. 

T. BROUWER (1978), Grenspalen in Nederland, De Walburg Pers, Zutphen. 

Proci~s-verbal descriptif de Ia delimitation entre Jes royaumes de Belgique et des 
Pays-Bas, annexe a la convention de limites conclue a Maestricht Je 8 aout 1843, 
Moniteur Beige, 15 april1887, 84-114. 

X 

Men kan de gevaren van wildwaterkanoen aanzienlijk reduceren door de keuze 
van de te bevaren rivier aan te passen aan de kunde van de minst ervaren kanoer. 
Bovendien dient men op de hoogte te zijn van gevaarlijke passages en deze pas 
te bevaren nadat deze na verkenning bevaarbaar geacht worden. 

XI 

Het is een slechte zaak dat in de geschiedenislessen op Limburgse middelbare 
scholen nauwelijks aandacht wordt besteed aan de geschiedenis van bet gebied 
dat thans door de provincie Limburg bestreken wordt. 




