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THE EXPLICIT SOLUTIONS OF LINEAR LEFT-INVARIANT
SECOND ORDER STOCHASTIC EVOLUTION EQUATIONS ON

THE 2D-EUCLIDEAN MOTION GROUP

REMCO DUITS AND MARKUS VAN ALMSICK

Abstract. We provide the solutions of linear, left-invariant, 2nd-order sto-
chastic evolution equations on the 2D-Euclidean motion group. These solu-

tions are given by group-convolution with the corresponding Green’s functions

that we derive in explicit form in Fourier space. A particular case coincides
with the hitherto unsolved forward Kolmogorov equation of the so-called di-

rection process, the exact solution of which is required in the field of image

analysis for modeling the propagation of lines and contours. By approximating
the left-invariant base elements of the generators by left-invariant generators

of a Heisenberg-type group, we derive simple, analytic approximations of the

Green’s functions. We provide the explicit connection and a comparison be-
tween these approximations and the exact solutions. Finally, we explain the

connection between the exact solutions and previous numerical implementa-
tions, which we generalize to cope with all linear, left-invariant, 2nd-order

stochastic evolution equations.

1. Introduction

Pixel-independent image analysis usually starts with the sampling of an image
f ∈ L2(R2) by a function ψ ∈ L2(R2) via f 7→ (ψ, f)L2(R2). To probe an image
at every location x ∈ R2 and in every direction eiθ ∈ T one translates and rotates
an anisotropic test function by means of a representation g 7→ Ug of the Euclidean
motion group Ugψ(y) = ψ(R−1

θ (y − x)), g = (x, eiθ). The result of such an image
sampling is a function Uf ∈ L2(G) on the Euclidean motion group manifold G =
R2 o T, which is given by Uf (g) = (Ugψ, f). Throughout this article we refer to
function Uf as the orientation score of image f .

The generation of orientation scores and the reconstruction of images thereof has
been the subject of previous publications. The subsequent section 2 will provide a
brief overview and an embedding in wavelet theory. For the remainder of the article
we assume the orientation score as given and focus on operations on Uf that are
inspired by stochastic processes modeling the propagation of lines and contours.
As a class of left invariant operators we consider in section 3 all linear, second
order, left-invariant evolution equations and their resolvents on L2(R2 o T), which
correspond to Forward Kolmogorov equations of left-invariant stochastic processes
on the Euclidean motion group.
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2 REMCO DUITS AND MARKUS VAN ALMSICK

First we show that the solutions of these partial differential equations are given
by a convolution with the corresponding Green’s function. Then we provide explicit
formulas for these Green’s functions. To cope with the cyclic boundary conditions
in θ we follow two separate approaches. In the first approach, we expand the
Green’s kernel in series of Mathieu functions as described in the literature about
the Mathieu equation [31]. The resulting series of Mathieu functions converges
only slowly for group elements near the unity element, but we utilize this solution
for a generalization of a numerical algorithm of direction process by August [3]
and derive a new and exact computation scheme1. In the second approach, we
unwrap the torus T in θ and solve the partial differential equations for absorbing
θ-boundaries at infinity to eventually map the solution back onto the torus T.
Adding all mapped branches of the solution renders the Green’s function for cyclic
boundaries as a sum of rapidly decaying terms. Both approaches are described
for the special case of the direction process in section 4 and for all other cases in
section 5.

In section 4.3 we approximate the left invariant base elements of the Euclidean
group generators by left-invariant generators of a Heisenberg-type group. The re-
sulting equations render simple, analytic approximations of the exact Green’s func-
tions and provide explicit and simple formulas for the modes of so-called completion
fields, which are the probability distributions of stochastic processes on R2 oT with
given source and given sink.

The numeric algorithm that solves all linear, left-invariant, 2nd-order stochastic
evolution equations on a discrete grid in Fourier space and its relation to our first
analytic approach is the subject of the last section 6.

2. Orientation Scores

In many image analysis applications an object Uf ∈ L2(G) defined on the 2D-
Euclidean motion group G = R2 o T is constructed from a 2D-grey-value image
f ∈ L2(R2). Such an object provides an overview of all local orientations in an
image. This is important for image analysis and perceptual organization, [27], [19],
[30], [15], [13], [41], [34], [4] and is inspired by our own visual system, in which
receptive fields exist that are tuned to various locations and orientations, [37], [6].
In addition to the approach given in the introduction other schemes to construct
Uf : R2 o T → C from an image f : R2 → R exist, but only few methods put
emphasis on the stability of the inverse transformation Uf 7→ f .

In this paragraph we provide an example on how to obtain such an object Uf
from an image f . This leads to the concept of invertible orientation scores, which we
developed in previous work, [9], [13], [11], and which we briefly explain here. An ori-
entation score Uf : R2 o T → C of an image f : R2 → R is obtained by means of an
anisotropic convolution kernel ψ : R2 → C via Uf (g) =

∫
R2 ψ(R−1

θ (x− y))f(y) dy,
g = (x, eiθ) ∈ G = R2 o T, Rθ ∈ SO(2). This differs from standard contin-
uous wavelet theory, see for example [28] and [2], where the wavelet transform
is constructed by means of a quasi-regular representation of the similitude group
Rd o T× R+, which is unitary, irreducible and square integrable (admitting the ap-
plication of the more general results in [21]), in the sense that we do allow a stable
reconstruction already at a single scale orientation score for a proper choice of ψ. In

1We provide the complete bi-orthogonal base of eigenvectors of the matrix in this linear
algorithm.
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standard wavelet reconstruction schemes it is not possible to obtain an image f in a
well-posed manner from a “fixed scale layer”, that is fromWψf(·, ·, σ) ∈ L2(R2oT),
for fixed σ > 0.2 The general wavelet reconstruction results [21] do not apply to
the transform f 7→ Uf , since the left regular representation of the Euclidean mo-
tion group on L2(R2) is reducible. In earlier work we therefore provided a general
theory [9], [7], [8], to construct wavelet transforms associated with admissible vec-
tors/ distributions.3 With these wavelet transforms we construct orientation scores
Uf : R2 o T → C by means of admissible line detecting vectors4 ψ ∈ L2(R2) such
that these transforms are unitary in a reproducing kernel Hilbert space CGK , which
is a closed subspace of L2(G).

With this well-posed, unitary transformation between the space of images and
the space of orientation scores at hand, we can perform image processing via orien-
tation scores, see [11], [13], [27]. For the remainder of the article we assume that the
object Uf is some given function in L2(R2 oT) and we write U ∈ L2(R2 oT) rather
than Uf ∈ CGK . For all image analysis applications where an object Uf ∈ L2(R2oT)
is constructed from an image f ∈ L2(R2), operators on the object U ∈ L2(R2 o T)
must be left invariant to ensure Euclidean invariant image processing [9]p.153. This
applies also to the cases where the original image cannot be reconstructed in a stable
manner as in channel representations [18] and steerable tensorvoting [20].

3. Left Invariant Evolution Equations on the Euclidean Motion
Group

In order to construct the left invariant evolution equations on the Euclidean
Motion group and to understand their structure we first compute the left invariant
vector fields and their commutators on the Euclidean motion group. This struc-
ture has more or less been overlooked in previous work on the forward Kolmogorov
equation of the well-known direction process, [32], [36], [42] and [3]. This struc-
ture will be relevant for our derivation of the solution of this evolution equation.
Moreover, it provides a full overview on linear second order left invariant evolution
equations on the Euclidean motion group and thereby it provides more general and
alternative left invariant stochastic processes on the Euclidean motion group.

Let G = R2 o T be the Euclidean Motion group with group product

g g′ = (x, eiθ)(x′, eiθ
′
) = (x +Rθx′, ei(θ+θ

′)) , g = (x, eiθ), g′ = (x′, eiθ
′
) ∈ R2 o T,

with unity element e = (0, 1) and Rθ =
(

cos θ − sin θ
sin θ cos θ

)
. Let {ex, ey} be a

positively oriented orthonormal base in R2. Let eθ be a unit tangent vector at the
unit element of T. Then the tangent space at the unity element Te(G) is spanned
by

(3.1) Te(G) = {A1, A2, A3} := {eθ, ex, ey}.

2The same problem arises in linear scale space theory where it is impossible to reconstruct the
original image in a stable L2-preserving matter from a fixed scale restriction uα

f (·, s) of a scale

space representation uα
f : Rd × R+ → R obtained by an evolution equation on Rd generated by

−(−∆)α, 0 < α ≤ 1, [12].
3Depending whether images are assumed to be band-limited or not, for details see [8].
4Or rather admissible distributions ψ ∈ H−(1+ε),2(R2), ε > 0 if one does not want a restriction

to bandlimited images.
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As we will see this basis yields the following left invariant vector fields on G,
{eθ, eξ, eη} which are defined by

(3.2)
eθ(x, eiθ) = eθ,
eξ(x, eiθ) = cos θ ex + sin θ ey ,
eη(x, eiθ) = − sin θ ex + cos θ ey ,

where we identified Tg=(x,eiθ)(R2, eiθ) with Te(R2, ei0) and Tg=(x,eiθ)(x,T) with
Te(0,T), by means of parallel transport (on R2 respectively T). The tangent space
Te(G) is a 3D Lie algebra equipped with Lie product

[A,B] = lim
t↓0

a(t)b(t)(a(t))−1(b(t))−1 − e

t2
,

where t 7→ a(t) resp. t 7→ b(t) are any smooth curves in G with a(0) = b(0) = e
and a′(0) = A and b′(0) = B. The Lie products of the base elements in (3.1) are

[A1, A2] = A3, [A1, A3] = −A2, [A2, A3] = 0 .

The left respectively right regular representations of G onto L2(G) are given by
L : G → B(L2(G)) : g 7→ Lg and R : G → B(L2(G)) : g 7→ Rg, where Lg and
Rg are given by LgΦ(h) = Φ(g−1h) and RgΦ(h) = Φ(hg), for all g, h ∈ G and
Φ ∈ L2(G). An operator Φ on L2(G) is called left invariant if it commutes with the
left-regular representation, that is Φ◦Lg = Lg ◦Φ for all g ∈ G. A vector field (now
considered as differential operators) Ã on G is called left invariant if it satisfies

Ãgφ = Ãe(φ ◦ Lg) = Ãe(h 7→ φ(g h)) ,

for all infinitely differentiable functions φ ∈ C∞
c (Ωg) where Ωg is an open set around

g within G and with the left multiplication Lg : G→ G given by Lg(h) = g h.
Recall that the linear space of left-invariant vector fields L(G) equipped with the

Lie product [Ã, B̃] = ÃB̃−B̃Ã is isomorphic to Te(G) by means of the isomorphism

Te(G) 3 A↔ Ã ∈ L(G) ⇔ Ãg(φ) = A(φ ◦ Lg) = A(h 7→ φ(g h))

for all smooth φ : G ⊃ Ωg → R. By means of the derivative of the right regular
representation dR : Te(G) → L(G) which is given by

(dR(A)Φ)(g) = lim
t→0

(Rexp(tA)Φ)(g)− Φ(g)
t

, A ∈ Te(G),Φ ∈ L2(G), g ∈ G.

we obtain the corresponding basis of left-invariant vector fields on G:

{Ã1, Ã2, Ã3} := {dR(A1),dR(A2),dR(A3)}

or explicitly in coordinates

{Ã1, Ã2, Ã3} = {∂θ, ∂ξ, ∂η} = {∂θ, cos θ ∂x + sin θ ∂y,− sin θ ∂x + cos θ ∂y}

and indeed the Lie products of these basis elements are

(3.3) [Ã1, Ã2] = Ã3, [Ã1, Ã3] = −Ã2, [Ã2, Ã3] = 0 .

In this article we will derive exact analytic solutions and close analytic approxima-
tions which are much more tangible/easier to compute of the following 2nd order
linear left invariant evolution equations

(3.4)

{
∂t℘ = A ℘ ,
lim
t↓0

℘(·, t) = U(·) , in L2(R2 o T).
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where the negative definite generator A acting on L2(G) is given by

(3.5) A = −
3∑
i=1

aiÃi +
3∑

i,j=1

DijÃiÃj ai, Dij ∈ R, i = 1, . . . , 3.

where we are only interested in the case where the constant matrix D is a semi-
positive diagonal matrix, i.e. Dij = Diiδij , with Dii ≥ 0, i = 1, . . . 3 in which case
the generator becomes

(3.6) A =
[
−a1∂θ − a2∂ξ − a3∂η +D11(∂θ)2 +D22(∂ξ)2 +D33(∂η)2

]
.

The first order part of the generator takes care of transport (convection) and the
second order part takes care of diffusion in the Euclidean motion group G. Note
that the non-commutative nature of the Euclidean motion group, recall (3.3) makes
these evolution equations complicated. Furthermore we note that these evolution
equations are indeed left invariant as their generator is left-invariant (since it is
constructed by linear combinations of products of left invariant vector fields).

The motivation for considering these left invariant evolution equation comes from
probability theory. Consider the following stochastic equation on R2 o T

(3.7)
{
∂tg(t) = a(g(t), t) +B(g(t), t)ξ(t)
g(0) = g0,

with ξ = (ξ1, ξ2, ξ3), where the components are independent random variables ξi

which are Gaussian white noise distributed. The solution of which is given by

(3.8) g(t) = g0 +
∫ t

0

a(g(s), s)ds +
∫ t

0

B(g(s), s)ξ(s)ds.

For the exact meaning of the Stochastic differential equation (3.7) and the corre-
sponding stochastic integral (3.8) and further details on stochastic processes see
[33]. In this article we shall only consider the case where B(g(s), s) and a(g(s), s)
are left invariant and not explicitly dependent on s. In this case it does not matter
whether one uses Stranovitch or Itŏ calculus for the stochastic integrals and by
Itŏ’s formula for functions on the process t 7→ (t, g(t)) we obtain the following left
invariant evolution equation for the transition densities

(3.9) ∂tp(g, t |g0, t0) = −
∑
i=1

Ãiaip(g, t|g0, t0) +
1
2

3∑
i,j=1

ÃiÃj [BBT ]ijp(g, t|g0, t0)

which is known as the Forward Kolmogorov equation of the stochastic process given
by (3.7). In equation (3.9) we omitted the dependence of ai and Bij on g because
we have shown that to ensure left-invariance of the generator the components of
a and B with respect to the basis {Ãi}3i=1 must be constant, [38]. The Forward
Kolmogorov equations of left invariant stochastic processes (with constant a, B,
D = 1

2B
TB) are given by (3.4) and (3.5). These transition densities (3.9) are to be

considered as limiting distributions of conditional probability densities of discrete
processes (random walks) on the Euclidean motion group. Consider for example
the special case of the well-known direction process [32], [4], [41] where a random
walker moves in the spatial plane along its current direction in the spatial plane
(that is along ξ = x cos θ+ y sin θ) and where the average curvature of its path5 is

5That is κ = 1
L

R L
0 k(s) ds = 1

L

R L
0 |θ̇(s)| ds ∼ N (0, σ2), which explains the N in (3.10).
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Gaussian distributed with variance σ2 = 2D11

(3.10)


eiθ(sk+∆s) = ei(θ(sk)+∆s η), Var(η) = N σ2

x(sk + ∆s) = x(sk) + ∆s
(

cos θ(sk)
sin θ(sk)

)
∆s = L

N , with L ∼ NE(α), k = 0, . . . , N − 1.

The corresponding forward Kolmogorov equation is a special case (namely put
a1 = a3 = D22 = D33 = 0) of (3.4) and (3.5).

In Section 4 we shall consider these evolution equations and provide the exact
analytic solutions (and even more tangible analytic approximations) of both the
evolution equations and their resolvent equations, which were strongly required
(but not yet found) in the fields of applied mathematics and image analysis.

In Section 5 we also derive explicit solutions for other cases such as D22 =
D33 = D11 = 0 (convection without diffusion), a1 = a3 = 0 and D22 = D33 > 0 (a
forward-Kolomogorov equation of a direction process including isotropic diffusion in
the plane), and the case a1 = a2 = a3 = 0, Dii > 0, i = 1, 2, 3 (only diffusion). Fur-
thermore in Section 6 we discuss an efficient method to compute the exact Green’s
functions in all cases (with periodic boundary conditions), where we explicitly put
the connection with the exact solutions (with periodic boundary conditions) in the
special cases above. We also point to Appendix A where we use Fourier transform
on the Euclidean motion group R2 o T rather than Fourier transform on R2 to
obtain alternative (but analogue) formulas for the solutions.

In Sections 4 & 5 we shall use the following conventions:

• The unit-step function u : R → R is given by u(x) = 1 if x > 0 and u(x) = 0
if x < 0 and u(0) = 1

2 .
• Fourier transform F : L2(R2) → L2(R2), is almost everywhere defined by

[F(f)](ω) = f̂(ω) =
1

(2π)

∫
R2
f(x) e−iω·x dx .

We use the following notation for Euclidean/polar coordinates in spatial and
Fourier domain, respectively: x = (x, y) = (r cosφ, r sinφ), ω = (ωx, ωy) =
(ρ cosϕ, ρ sinϕ), with φ, ϕ ∈ [0, 2π), r, ρ>0.

• Let G = R2 o T be the Euclidean motion group, then D(G) represents the
vector space consisting of all infinitely differentiable functions with com-
pact support within G. Let a be a point on the manifold G The Dirac
distribution δa : D(G) → C is given by 〈δa, φ〉 = δa(φ) = φ(a). Note that
D(G) = D(R2)⊗D(T) and we write6

δg′ = δ(x′,y′,eiθ′ ) = δxx′ ⊗ δyy′ ⊗ δθθ′ .

• The Gaussian kernel Gds : Rd → R+ at scale s = 1
2σ

2 is given by

(3.11) Gds(x) =
1

(4πs)d/2
e−

‖x‖2
4s .

6The upper indices in the Dirac distributions in the right hand side are indices to clarify the
domain of the test functions on which these Dirac distributions apply.
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4. The Special Case of the Direction process

In this section we consider the following evolution process7

(4.1)


∂t℘ = A℘ =

(
−∂ξ +D11(∂θ)2

)
℘

℘(·, ·, 0, t) = ℘(·, ·, 2π, t) for all t > 0.
℘(·, ·, ·, 0) = U(·)
℘(·, t) ∈ L2(G), for all t > 0.

which is the forward Kolmogorov equation of the direction process, with probability
density ℘ : G×R+ → R+, traveling time T and initial condition U ∈ L2(G). How-
ever if T is negatively exponentially distributed8 T ∼ NE(α), i.e. the probability
density of the Random variable T is given by t 7→ αe−αt, with expected traveling
time E(T ) = 1

α then the unconditional probability density p of finding an oriented
particle with orientation θ and position b is given by

p(g) = p(b, θ) =
∫∞
0
℘(b, θ|T = t)p(T = t) dt

= α
∫∞
0

[etAU ](b, θ)e−tα dt = −α[(A− αI)−1U ](b, θ).

So by application of the Laplace transform with respect to traveling time we obtain
for the unconditional probability density p

(4.2)


(
∂ξ −D11(∂θ)2 + α

)
p = αU, U ∈ L2(G)

p(·, ·, 0) = p(·, ·, 2π)
p ∈ L2(G),

which is the resolvent equation of the strongly continuous (cf. Jørgensen [26], lemma
3.4 and more detailed in [14]IV.4.5), semi-group on L2(G) given by (4.1).

The problem (4.1) was first formulated (in the context of elastica in computer
vision) by Mumford, cf.[32]p.297 who conjectured from further results in his paper
that the solution may be expressed in elliptic functions of some kind, but did not
provide it. In image analysis Thornber, Williams and Jakobs [41], [36] claimed
to have found the analytic solution of this problem, but this claim is misleading:
We show that their kernels are Green’s functions of left-invariant evolution equa-
tions on a group of Heisenberg-type rather than Green’s functions of Left-invariant
evolution equations on the Euclidean motion group! Consequently they obtained
approximations of the true problem and we will analyze the quality of these useful
approximations for different parameter values and we provide generalizations and
improvements (see Appendix B).

Here we shall present the exact solution of both (4.2) and (4.1) in an explicit
form by means of Fourier expansions (in theta direction we use cosine elliptic func-
tions, i.e. even Mathieu functions), which coincides with Mumford’s conjecture
[32] p.497 on the existence of such a solution. At first sight these exact solutions
may not seem very useful from the engineering point of view (but appearances
are deceptive as their practical relevance become clear in section 6). Therefore, in
section 4.2 we unwrap the torus yielding much more tangible solutions. Then we
relate these solutions to the exact ones, yielding extremely accurate and tangible
approximations of the exact solutions. Moreover in section 4.3 we will consider
local Heisenberg-group approximations of the Euclidean motion group and solve
for the Green’s functions of the involved resolvent equations in spatial and Fourier

7We use short notation for partial derivatives ∂θ = ∂
∂θ

.
8Which must be the case in a Markov proces, as the only continuous memoryless distribution

is the negatively exponential distribution.
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domain, yielding somewhat more practical approximations of solutions for Green’s
functions of the resolvent equations. Finally we use these solutions to compute
so-called completion fields.

Both the generator A and the operators A−αI and A−∂t of the evolution system
(4.1) are Hörmander operators of the second type. By the results of Hebisch [22] it
now follows that the solution is a G-convolution in distributional sense:

(4.3) ℘(·, t) = δexp(−t∂ξ) ∗ K̃t ∗ U,

where the kernels K̃t ∈ L2(H) (for Gaussian estimates on K̃t and more details
see [22] Theorem 1.2, p.3), with H the Lie group generated by the Lie algebra
generated by Yj,k = {adk(∂ξ)∂θ} = {∂θ, ∂η}, k = 0, 1, so H = G and if we define
Kt = δexp(−t∂ξ) ∗ K̃t we get an ordinary9 G-convolution with this kernel which is
smooth on G\{e} due to hypo-ellipticity of A− ∂t. So we have

℘(g, t) = (Kt ∗G U)(g),

for all g ∈ G and all t > 0. Furthermore, the solution of (4.2) is a G-convolution
with a Green’s function Sα,D11 within L1(G) ∩ L2(G) which is (by a theorem of
Hörmander, cf.[24]) smooth on G \ {e}:

(4.4)

p(g) = (Sα,D11 ∗G U)(g) =
∫
G

Sα,D11(h
−1g)U(h) dµG(h)

= 1
2π

∫
R2

2π∫
0

Sα,D11(R
−1
θ′ (x− x′), ei(θ−θ

′)) U(x′, eiθ
′
) dx′dθ′

for all g = (x, eiθ) ∈ G, where µG denotes the left invariant Haar measure of
the Euclidean motion group, for details see [9]p.164. This Green’s function g 7→
Sα,D11(g), g = (x, y, eiθ) ∈ R2 o T satisfies

(4.5)


(
∂ξ −D11(∂θ)2 + α

)
Sα,D11 = α δe,

Sα,D11(·, ·, 0) = Sα,D11(·, ·, 2π)
Sα,D11 ∈ L2(G) ∩ L1(G).

Notice that the Green’s functions Kt and Sα,D11 are connected via Laplace trans-
form: Sα,D11 = αL(t 7→ Kt)(α).

4.1. Explicit Exact Solution of the Direction process . As the solution of
(4.2) is given by a G-convolution with the Green’s function Sα,D11 , recall (4.4), it
suffices to derive the unique solution of (4.5).

The first step is to perform a Fourier transform only with respect to the spatial
part ≡ R2 of G = R2 o T, which yields Ŝα,D11 ∈ L2(G) ∩ C(G) given by

Ŝα,D11(ω1, ω2, θ) = F [Sα,D11(·, ·, θ)](ω1, ω2).

9This is due to the fact that {∂θ, ∂η} (are not commutative and) generate the full Lie algebra
of G. Consider for example the case where G = R2 and A = (∂x)2 + ∂y , then H = (R, 0) 6= G and

(4.3) reads (etAf)(x, y) =
R

R Gt(x− v)f(v, y− t)dv = δexp(−t∂y) ∗Gt ∗ f(x, y), which is a singular

convolution. Notice that in this case the Green’s function of the resolvent is only singular at the
origin as we have −λ(A−λI)−1f = Sλ ∗f , where Sλ(x, y) = λL(t 7→ (δexp(−t∂y) ∗Gt)(x, y))(λ) =

λGy(x)e−λy u(y).
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Then Ŝα,D11 satisfies

(4.6)


(
cos θ(iωx) + sin θ(iωy)−D11(∂θ)2 + α

)
Ŝα,D11(ωx, ωy, ·) = 1

2π δ
θ
0 ,

Ŝα,D11(ωx, ωy, 0) = Ŝα,D11(ωx, ωy, 2π), for all (ωx, ωy) ∈ R2

Ŝα,D11 ∈ L2(G) ∩ C(G),

where we notice that F(δe) = 1
2π 1R2⊗δ0. Furthermore, we notice that the operator

Bωx,ωy
= cos θ(iωx) + sin θ(iωy)−D11(∂θ)2 + α,

for (ωx, ωy) ∈ R2 fixed is not a normal (so in particular not self-adjoint) operator
on L2(T). However, it does satisfy

(4.7) B∗ωx,ωy
Θ = Bωx,ωyΘ for all Θ ∈ L2(T).

The second step is to determine the complete base of bi-orthogonal eigenfunctions
within L2(T) of operator Bωx,ωy

.

(4.8) Bωx,ωyΘ = λΘ ⇔
(
cos θ(iωx) + sin θ(iωy)−D11(∂θ)2 + α

)
Θ = λΘ,

with Θ(0) = Θ(2π). Let ϕ ∈ [0, 2π) be the polar angle in the Fourier domain, i.e.
ϕ = arg(ωx + iωy) and cosϕ = ωx

‖ω‖ , sinϕ = ωy

‖ω‖ so then we have

i‖ω‖ cos(θ − ϕ) = i(ωx cos θ + ωy sin θ)

and thereby (4.8) can be written{ (
∂2
θ − i‖ω‖

D11
cos(θ − ϕ)− α

D11

)
Θ(θ) = − λ

D11
Θ(θ)

Θ(0) = Θ(2π) .

Now set

z =
θ − ϕ

2
∈ [0, π) and y(z) = y

(
θ − ϕ

2

)
= Θ(θ),

then we have { (
1
4∂

2
z − i‖ω‖

D11
cos(2z)− α

D11

)
y(z) = − λ

D11
y(z)

y(0) = y(π) .

or equivalently

(4.9)
{
y′′(z)− 2h2 cos(2z)y(z) + a y(z) = 0, a = 4(−α+λ)

D11
, h2 = 2‖ω‖

D11
i,

y(0) = y(π) .

which is the well-known equation of Mathieu, cf.[31] and [1](Chapter 20). A com-
plete system of eigenfunctions consists of cosine elliptic functions cen given by
(4.10)

cen(z;h2) = 2
1
2

∞∑
r=−∞

(1+δr0)−1cn2r(h
2) cos((n+2r)z), with lim

r→∞
|c2r|

1
r = 0, n ∈ N∪{0},

where the Floquet exponent ν ∈ N∪{0}, recall Floquet’s Theorem10 [31] p.101. An
alternative complete system of eigen functions are the Mathieu elliptic functions

(4.11) me2n(z;h2) =
∞∑

r=−∞
cν=2n
2r (h2)ei(2n+2r)z

10Due to the periodicity constraint the only allowed exponents are ν ∈ N ∪ {0}
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which satisfies men(z;h2) = 2
1
2 cen(z;h2) for n ∈ N ∪ {0} and me−n(z;h2) =

i−1 2
1
2 sen(z;h2), where se2n(z;h2) denotes the sine-elliptic function (for details see

[31]) for n ∈ N. By setting

A2n
0 (h2) = 2−

1
2 c2n−2n(h

2)
Amr (h2) = 2

1
2 cmr−m(h2) for r 6= 0,m = 0, 1, 2, . . .

the Floquet-solutions (4.10) can be rewritten into

ce2n(z;h2) =
∞∑
r=0

A2n
2r (h

2) cos(2rz)

ce2n+1(z;h2) =
∞∑
r=0

A2n+1
2r+1 (h2) cos((2r + 1)z)

The coefficients {c2n2r } and {Amr } are determined by the 2-fold recursion systems:11

(4.12){
(a2n(h2)− 4r2)c2n2r − h2(c2n2r+2 + c2n2r−2) = 0, r ∈ Z, n ∈ Z
lim

r→±∞
|c2n2r |

1
r = 0,

 a2n(h2)A2n
0 − h2A2n

2 = 0,
(a2n(h2)− 4)A2n

2 − h2(2A2n
0 +A2n

4 ) = 0,
(a2n(h2)− 4r2)A2n

2r − h2(A2n
2r−2 +A2n

2r+2) = 0, r ∈ N\{1}, n ∈ N ∪ {0}{
(a2n+1(h2)− 1− h2)A2n+1

1 − h2A2n+1
3 = 0,

(a2n+1(h2)− (2r + 1)2)A2n+1
2r+1 − h2(A2n+1

2r−1 +A2n+1
2r+3 ) = 0, r ∈ N, n ∈ N ∪ {0}

where the corresponding eigenvalues an(h2), n = 0, 1, . . ., are the countable solu-
tions12 of the characteristic equations containing continued fractions:

(4.13)
0 = −a+−2h4//(22 − a) +−h2//(42 − a) + . . . for ν even
0 = 1 + h2 − h4//(32 − a)− h4//(52 − a)− . . . for ν odd .

Since these eigenvalues are analytical with respect to h2 (with convergence radius
ρn) they can be expanded in Taylor expansions in h2 (the cases n 6= 1 even in h4),
see [31] p.120-121 or [1] p.730. Here we only give the expansions for n 6= 1, 2 (for
the cases n = 1, 2, see [1] p.730)

(4.14) an(h2) = n2 +
1

2(n2 − 1)
h4 +

5n2 + 7
32(n2 − 1)3(n2 − 4)

h8 +O(h12)

The convergence radius ρ0 ≈ 1.4688 and ρ2 ≈ 3.7699 is limited by the radius of the
branching points of the analytic functions ρ 7→ a(ρ) and

(4.15) lim inf
n→∞

ρn
n2

≥ 2.041823,

11These recursions follow directly by substitution of (4.10) in the Mathieu-equation (4.9).
12The numeration in n is rather a numeration over the eigenfunctions than a numeration over

the Floquet exponents. As the only different relevant solutions are ν = 1 (the odd cases) and

ν = 0 (the even cases).
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cf. [5] and [40]. The eigenfunctions {cen}n∈N∪{0} and {me2n}n∈Z both form a
complete bi-orthogonal system in L2([0, π)):

(4.16)
(cen, cem) =

π∫
0

cen(z)cem(z) dz = δnm
π
2 , n,m = 0, 1, 2, 3, . . . ,

( ˇme2n,me2m) =
π∫
0

me2n(−z)me2m(z) dz = δnmπ n,m ∈ Z.

Moreover if a function f is Lebesgue-integrable on the interval [0, π], we have for
every ν > 0 and corresponding non-singular value of h2 that

(4.17)
f(z) =

∞∑
n=0

1
π

π∫
0

f(τ)meν+2n(−τ ;h2)dτ meν+2n(z;h2),

f(z) =
∞∑
n=0

2
π

π∫
0

f(τ)ceν+n(τ ;h2)dτ ceν+n(z;h2)

where for h = 0 the resulting Fourier series respectively Fourier cosine series

f(z) =
∞∑
n=0

1
π

π∫
0

f(τ)e−i(ν+2n)τdτ ei(ν+2n)t,

f(z) =
∞∑
n=0

2
π(1+δn0)

π∫
0

f(τ) cos((ν + 2n)τ)dτ cos((ν + 2n)τ)

are uniformly converging on [0, π], from which it can be deduced that all convergence
and summation properties (including the Gibss phenomenon) on standard Fourier
series is carried over to the Mathieu series expansions, see [31] Satz 16, page 128.
Note that the bi-orthogonality of the eigenfunctions follows from property (4.7):

(Θn,Θm) =
1
λn

(Bωx,ωy
Θn,Θm) =

1
λn

(Θn,Bωx,ωy
Θm) =

(
λm
λn

)
(Θn,Θm),

so we have

(4.18) either 1− λm
λn

= 0 or (Θn,Θm) = 0 ,

where we notice that operator Bωx,ωy
is coercive even for α = 0, so λn 6= 0 for

all n ∈ N. We stress that the bi-orthogonality only holds for eigenfunctions with
different eigenvalues. For Mathieu-equations with real-valued parameter h, it is
well-known that the corresponding real-valued eigenvalues are distinct. For the case
of purely imaginary h2 however, there exist countable many distinct singular values
(ρn)i = h2

2n, n = 0, 1, 2, . . . of purely imaginary h2 ∈ R+i where the characteris-
tic equation has double branching points where the two eigenvalues a4n(h2) and
a4n+2(h2) merge, leading to two linearly independent eigenfunctions ce4n(·;h2

2n)
and ce4n+2(·;h2

2n) with the same eigen value. According to (4.18) these eigenfunc-
tions need not be bi-orthogonal to each other. Moreover, at these points (4.16) is
no longer valid for m = n.The singular values h2

2n = (ρ2n)i are the only branching
points on the imaginary axis, and by (4.15) the series {h2

2n}n∈N∪{0} does not con-
tain a density point. The other branching points where a2n+1(h2) and a2n+3(h2)
coincide do not lie on the imaginary (nor real) axis, for a complete overview via as-
ymptotic analysis we refer to [25], for precise numerical computation of the branch-
ing points we refer to [5]. Although the odd branching points do not lie on the
imaginary axis they do provide the convergence radii ρ2n+1 = |h2

2n+1| of the Taylor
expansions in (4.14). If the purely imaginary h2 passes a branching point h2

n the
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eigenvalues a4n and a4n+2 become complex conjugate and in these cases one can
use the following asymptotic formulae (for derivation see [25] p.117-119)

(4.19) a2m+2(q) = a2m(q) ∼ 2q+2(2m+1)
√
−q− 1

4
(2m2+2m+1)+O

[
(−q)

−1
2

]
,

with q = h2 and m = 2n and where the real part of (−q) 1
2 is positive, by placing a

branch cut on the positive real axis, so
√
−ti = e

1
2 (log t−π

2 i) for t > 0. For example,
this asymptotic formula (m = 2) gives a4(20i) = a6(20i) = 28.37 + 8.38i whereas
the exact eigenvalues are (to given precision) 28.96 ± 8.35i, where we notice that
the branching point where a4 and a6 coincide is given by q = h2 ≈ 17.3831 i. Recall
that the convergence radii grow with the order of n2, so the asymptotic formula
will become much more accurate for higher values of n.

So we conclude that a complete set of solutions of the eigen value problem (4.8)
is given by {

Θn(θ) = cen( θ−ϕ2 , h2) h2 = i 2ρ
D11

, ρ = ‖ω‖,
−λn(h2) = −α− an(h2)D11

4 < 0 n = 0, 1, 2 . . .

and that {Θn} form a complete bi-orthogonal base on L2([0, 2π]) (or rather L2(T))
as long as h2 is unequal to the branching points h2

2n.

Theorem 4.1. The Green’s function Sα,D11 ∈ C∞(G\{e}) of the direction process,
i.e. the unique solution of

(
∂ξ −D11(∂θ)2 + α

)
Sα,D11 = α δe,

Sα,D11(·, ·, 0) = Sα,D11(·, ·, 2π)
Sα,D11 ∈ L2(G) ∩ L1(G).

is given by
(4.20)

Sα,D11(x, y, θ) = F−1

ω 7→ α

π2

∞∑
n=0

cen
(
−ϕ
2 , i 2ρ

D11

)
cen
(
θ−ϕ
2 , i 2ρ

D11

)
λn

 (x, y),

with ω = (ρ cosϕ, ρ sinϕ) and where the series converges in L2−sense. The Green’s
function Sα,D11 is indeed a probability kernel as we have

Sα,D11 ≥ 0 and ‖Sα,D11‖L1(G) = 1 for all α > 0

Proof. Because {Θn} forms a complete bi-orthogonal system on L2([0, 2π]) we have

(4.21) 2−1 δ0 =
∞∑
n=0

Θn(0)Θn(·)
π

in the distributional sense on D([0, 2π)), i.e. we have

2−1〈δ0, φ〉 = lim
N→∞

(
1
π

N∑
n=0

Θn(0)Θn(·), φ) = 2−1φ(0),

for all φ ∈ D([0, 2π)).
Now by the above derivations and (4.21) we have

Bωx,ωy

∞∑
n=0

Θn(0)Θn(·)
πλn

=
∞∑
n=0

λn
λn

Θn(0)Θn(·)
π

= 2−1 δ0 = 2−1 δ0,



LINEAR LEFT-INVARIANT EVOLUTIONS ON THE 2D-EUCLIDEAN MOTION GROUP 13

for all ωx ∈ R and all ωy ∈ R and thereby we indeed get

〈
(
∂ξ −D11(∂θ)2 + α

)
Sα,D11 , φ 〉 = 〈 F

(
∂ξ −D11(∂θ)2 + α

)
Sα,D11 ,F [φ] 〉

= 〈ω 7→ Bωx,ωy
Ŝα,D11(ω, ·),F [φ1]⊗ φ2 〉

= 〈 1
2π ⊗ 2α

∞∑
n=0

λn

λn

Θn(0)Θn(·)
π ,F [φ1]⊗ φ2 〉

= φ2(0) α2π
∫

R2

F [φ1](ω) dω = αφ2(0)φ1(0) = αφ(e)

for all test functions φ = φ1 ⊗ φ2 ∈ D(R2) ⊗ D(T). Now since D(R2)⊗D(T) =
D(R2 o T) the result follows. Note that the series in (4.20) converges both in
L2−sense and uniformly on all compact sub-domains of [0, π] × R2 that do not
cross the lines

(4.22) ‖ω‖ =
D11h

2
2n

2i
=
D11ρ2n

2
,

where the series is not defined, as cen is uniformly bounded and λn = O(an) =
O(n2), recall (4.14). Further, we note the rings (4.22) are a set of zero measure,
so initially the solution Sα,D11 is almost everywhere given by (4.20), and since
(Hörmander) it must be smooth on G \ {e} it is everywhere given by (4.20).

Finally we notice that α > 0 and −A + αI > 0 imply that −α(A − αI)−1 > 0
and thereby13 Sα,D11 > 0, moreover a simple calculation yields∫

G

Sα,D11(g) dg = 2π
2π∫
0

Ŝα,D11(0, 0, θ)dθ = α
2π

2π∫
0

( ∞∑
n=0

e+ϕn ie(θ−ϕ)n i

n2+α

)
dθ

= α
2π

∞∑
n=0

2π∫
0

ei nθ

n2+αdθ = α
α = 1 .

�

Remark 4.2. In stead of using the bi-orthogonal base (4.10) we may as well use the
bi-orthogonal base (4.11) in which case the solution can be written

(4.23) Ŝα,D11(ω, θ) =
α

4π2

∑
n∈Z

me2n

(
−ϕ
2 , 2iρ

D11

)
me2n

(
−θ+ϕ

2 , 2iρ
D11

)
α+ a2n(q)D11

4

, q =
2iρ
D11

.

Analogue to the above we can construct the analytic solution of the time evolu-
tion process (4.1) which follows from Theorem 4.1 and inverse Laplace transform.

Theorem 4.3. The Green’s function SD11 = etAδe of the direction process (4.1) is
given by

SD11(x, y, θ, t) = F−1

ω 7→
∞∑
n=0

e
−t an(h2)D11

4

2π2
cen

(
−ϕ
2
,

2ρi
D11

)
cen

(
θ−ϕ

2
,

2ρi
D11

) (x, y),

with SD11 > 0 and ‖SD11(·, ·, ·, t)‖L1(G) = 1 for all t > 0. This solution has the
property that the solutions of the direction process (4.1) depend continuously on
D11 ≥ 0, i.e.

SD11 → δxt ⊗ δy0 ⊗ δθ0
in distributional sense as D11 ↓ 0.

13These positive operators satisfy both ∀U∈L2(G)(AU,U) > 0 and U > 0 ⇒ AU > 0.
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Proof. The first part follows from Theorem 4.1 by means of inverse Laplace trans-
form. With respect to the second part we mention that if D11 = 0 we obviously
have Sα,D11=0 = δxt ⊗ δ0, i.e. the distributional Green’s function of the direction
process with D11 is a deterministic unit speed transport of the δ-distribution in G
along the direction ξ which is along the x-axis at θ = 0.

Now we consider the case D11 > 0 with D11 tending to zero, then by means of
the asymptotic formula for an(q) for |q| large, [1]p.726 we have an(q) ∼ −2q, so

(4.24) e−t
an(h2)D11

4 → eiρt ,

where we recall that h2 = 2iρ
D11

, and by (4.16) we have that

∞∑
n=0

cen
(
−ϕ

2 ,
2ρ i
D11

)
cen

(
θ−ϕ

2 , 2ρ i
D11

)
= π

2 δ
θ
0

for all ρ,D11 > 0, in distributional sense on D([0, 2π)). Now lim
D11↓0

ŜD11(ωx, ωy, θ) is

independent of ωy and therefore it follows by the asymptotic behavior (4.24) that

SD11 → F−1

[
e−iωxt ⊗ 1

2π
⊗ δθ0

]
= δxt ⊗ δy0 ⊗ δθ0

in distributional sense on D(R2 o T) as D11 ↓ 0. �

4.2. Unwrapping the Torus . From the computational point of view there ex-
ist several disadvantages of the exact solutions in Theorem 4.1 and Theorem 4.3.
First it requires a lot of samplings from various periodic Mathieu-functions with
imaginary parameters and the standard expansions of the coefficients in h2 = i 2ρ

D11

are only valid before the first branching point. Secondly, the bi-orthogonal series
expansion slowly converges close to unity element where the Green’s function has
a singularity.

To overcome these computational deficiencies we firstly assume θ ∈ R rather than
θ ∈ [0, 2π) and replace the periodic boundary conditions in (4.2) by the condition

(4.25) p(·, θ) → 0 unformly on compact domains within R2 as |θ| → ∞,

and secondly we can expand the exact Green’s function Sα,D11 as an infinite sum
over 2π-shifts of the solution S∞α,D11

for the unbounded case:

(4.26) Sα,D11(x, y, e
iθ) = lim

N→∞

N∑
k=−N

S∞α,D11
(x, y, θ − 2kπ)

Typically, D11/α is small and this sum may be truncated at k = 0: For D11/α
small the homotopy number of the path of an orientation of the random walker is
most likely to be 0. However, theoretically the further D11/α > 0 increases, the
larger the probability that the orientation of the random walker makes one or more
rounds on the torus, that is the more terms are required in the series expansion
in (4.26). For parameter ranges relevant for image analysis applications the series
can already be truncated at N = 0, 1 or at the most at N = 2 for almost exact
approximation.

The following lemma will be used to construct the unique solution S∞D11,α
:

R2 × R → R+ which satisfies (4.25).
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Lemma 4.4. Let β > 0 and let a, c ∈ R. Then the unique Green’s function
G ∈ C∞(R \ {0, 0, 0},C) that satisfies

(4.27)
{

(−i a sin θ + (∂θ)2 − i c cos θ − β)G = δ0
G(θ) → 0 as |θ| → ∞

is given by

(4.28)
G(θ) = 1

iW−4β,2iR

[
meν

(
γ
2 , 2iR

)
me−ν

(
γ−θ

2 , 2iR
)

u(θ)

+me−ν
(
γ
2 , 2iR

)
meν

(
γ−θ

2 , 2iR
)

u(−θ)
]

with R =
√
a2 + c2 > 0, with γ = arg(c+ i a) and where the non-periodic complex-

valued Mathieu function are given by

me±ν(z, 2iR) = ceν(z, 2iR)± iseν(z, 2iR) =
∞∑

r=−∞
c±ν2r (2iR)ei(±ν+2r)z

with ν the Floquet exponent14 of the Mathieu equation15 ν = ν(−4β, 2iR) and where
W−4β,2iR equals the Wronskian of z 7→ ceν(z, 2iR) and z 7→ seν(z, 2iR).

Proof. The system (4.27) is equivalent to{
((∂θ)2 − i R cos(θ − γ)− β)G = δ0
G(θ) → 0 as |θ| → ∞

The linear space of infinitely differentiable solutions of

G′′(θ)− (i R cos(θ − γ) + β)G(θ) = 0

is spanned by {θ 7→ meν
(
γ−θ

2 , 2iR
)
, θ 7→ me−ν

(
γ−θ

2 , 2iR
)
}. Now we notice

that ν = ν(−4β, 2iR), for β > 0, R > 0 lies on the positive imaginary axis,
and as a result the only solutions that vanish as θ → +∞ are given by θ 7→
meν

(
γ−θ

2 , 2iR
)
, whereas the only solutions that vanish as θ → −∞ are given by

θ 7→ me−ν
(
γ−θ

2 , 2iR
)
. Furthermore by the Hörmander theorem it follows that G

must be infinitely differentiable outside the origin, so we must have

(4.29) G(θ) = C1meν

(
γ − θ

2
, 2iR

)
u(−θ) + C2me−ν

(
γ − θ

2
, 2iR

)
u(θ),

where we recall that u is the unit step function (or Heaviside’s distribution). By
applying Fourier transform with respect to θ it directly follows that Ĝ ∈ L1(R) and
thereby it follows that G must be a continuous function vanishing at infinity. Now
G is continuous at θ = 0 iff C1 = λ me−ν

(
γ
2 , 2iR

)
, C2 = λ meν

(
γ
2 , 2iR

)
for some

λ 6= 0, to be determined. The constant λ directly follows by substitution of (4.29)

14Since the Floquet exponents come in conjugate pairs and since the Mathieu exponent ν(a, q)
is purely imaginary for purely imaginary q (for proof see [10] Appendix A Lemma A.3 ) we may
assume that the Floquet exponent for imaginary parameter q lies on the positive imaginary axis.

This convention is used throughout this article. For details on how to compute the Floquet
exponent ν(a, q) of Mathieu’s equation, see [1]p.727-728.

15Since we dropped the periodicity constraint we no longer have ν ∈ N.
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in (4.27):

(4.30)

δ0 = (−i a sin θ + (∂θ)2 − i c cos θ − β)G
= −λ

2 (meν(γ2 , 2iR)me′−ν(
γ
2 , 2iR)−me−ν(γ2 , 2iR)me′ν(

γ
2 , 2iR))δ0

+0 · u(−θ) + 0 · u(θ) + λG(θ)(δ′0 − δ′0)

= −(λ/2)W [meν(·, 2iR),me−ν(·, 2iR)]δ0
= iλW [ceν(·, 2iR), seν(·, 2iR)]δ0 = iλW−4β,2iR δ0,

where the Wronsky determinant is given by W [p, q] = pq′ − qp′ from which the
result follows. �

Now by setting γ = ϕ, R = ρ
D11

and β = α
D11

(recall that ρ and ϕ are the
polar coordinates in the Fourier domain, i.e. ω = (ρ cosϕ, ρ sinϕ)) we obtain the
following result:

Theorem 4.5. The solution S∞α,D11
: R3 \ {0, 0, 0} of the problem

(
∂ξ −D11(∂θ)2 + α

)
S∞α,D11

= αδe,

S∞α,D11
(·, ·, θ) → 0 uniformly on compacta as |θ| → ∞

S∞α,D11
∈ L1(R3),

is given by

S∞α,D11
(x, y, θ) = F−1[(ωx, ωy) 7→ Ŝ∞α,D11

(ωx, ωy, θ)](x, y)

where

Ŝ∞α,D11
(ωx, ωy, θ) = −α

2πD11

1
iW−4α

D11
,

2iρ
D11

[
meν

(
ϕ
2 , i

2ρ
D11

)
me−ν

(
ϕ−θ
2 , i 2ρ

D11

)
u(θ)

+ me−ν
(
ϕ
2 , i

2ρ
D11

)
meν

(
ϕ−θ
2 , i 2ρ

D11

)
u(−θ)

]
.

with Floquet exponent ν = ν
(
−4α
D11

, 2iρ
D11

)
Notice that Ŝ∞α,D11

has a much simpler form than the Fourier transform of the
true Green’s function with periodic boundary conditions (4.20) and clearly (4.26)
together with Theorem 4.5 is preferable over Theorem 4.1 as the series converges
much faster and now we no longer have numerical problems nearby the branching
points on the imaginary axis, that is on the circles ρ = ‖ω‖ = D11%2n

2 (recall (4.22)).

4.2.1. Singularities of the Green functions at the unity element. The function Ŝ∞α,D11
(·, θ)

vanishes at ‖ω‖ → ∞ for all θ ∈ R, but rather slowly and S∞α,D11
has a singularity

at its origin (the unity element e). This singularity has disadvantages in computer
vision applications and can be avoided by applying some extra spatial isotropic
diffusion s > 0:

(4.31)
es∂

2
ξ+s∂2

ηS∞α,D11
(x, y, θ) = (es∆S∞α,D11

)(x, y, θ)
= F−1[(ωx, ωy) 7→ e−s ρ

2
Ŝ∞α,D11

(ωx, ωy, θ)](x, y),

with diffusion constant s > 0, see for example Figure 7 where we plotted the Green’s
functions and the corresponding Gaussian window in the Fourier domain. In general
we notice that the left invariant operators

U 7→ −αesB(A− αI)−1U
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or U 7→ −αesBetAU with A =
∑3
i=1−αiAi + Dii(Ai)2 and B =

∑3
i=1 D̃ii(Ai)2,

with s D̃ii relatively small, are more suitable for image analysis purposes since their
Green’s functions do not have singularities at the unity element.

In the next section we shall derive a nice approximation Tα,D11(·, θ) of the un-
wrapped Green’s function S∞α,D11

(·, θ) in closed form in both spatial and Fourier do-
main. The Fourier transform of this nice approximation T̂α,D11(·, θ) again does not
converge quickly to zero at infinity, but the difference Ŝ∞α,D11

(·, θ)−T̂α,D11(·, θ) does.
This can be used to evaluate the true Green’s function Sα,D11 recall (4.26) near its
singularity without introducing extra diffusion. So the approximation T̂α,D11 is used
to obtain accurate sampling of the exact Green’s function by means of a discrete
Fourier transform, without introducing any extra spatial isotropic diffusion. We
used this idea to obtain Figure 8. See also Figure 9.

4.3. Analytic Approximations . The base element of the generator: {Ãi}3i=1

can be approximated by

(4.32) {Ã1, Ã2, Ã3} ≈ {Â1, Â2, Â3} = {∂θ, ∂x + θ∂y,−θ∂x + ∂y}

simply by approximation cos θ ≈ 1 and sin θ ≈ θ. At first sight this approximation
may seem rather crude, but as we will clearly show at the end of this section it leads
to a close approximation of the true the Green’s function of the direction process
as long as D11/α is small. In section B in the Appendix we summarize a further
improvement of this approximation using polar coordinates, see also [38]. Here we
explicitly derive the Green’s functions (in spatial and Fourier domain) obtained
by approximation (4.32) which are easier to compare with the exact solutions.
The explicit form of these Green’s function in the spatial domain (for the special
case κ0 = 0), as will be given in Theorem 4.6, is already given in [36], (without
proof) where the authors incorrectly claim that this solution is the exact analytic
Green’s function of the direction process. By Theorem 4.6 (with explicit proof and
derivation) we provide important insight from a group theoretical point of view.
For more details concerning these analytic approximations we refer to subsection
4.9.1, Theorem 22, and to the first author’s thesis [9] [Ch. 4.9.2] .

The approximative base elements of the generator

(4.33) {(Â1)2, Â1, Â2, Â3} = {(∂θ)2, ∂θ, ∂x + θ∂y,−θ∂x + ∂y, },

do generate a finite dimensional nil-potent Lie algebra of Heisenberg type, in con-
trast to the Lie algebra of the true generators of the direction process(!), which is
spanned by

(4.34) {∂x, ∂θ, ∂y,−θ∂y,−θ∂x, ∂x∂θ, ∂y∂θ, (∂x)2, (∂y)2, (∂θ)2}.

Using this important observation we get:

Theorem 4.6. Let Tα,κ0,D11 : G→ R be the Green’s function of the operator

(4.35) α−1(αI − Â) := α−1

(
αI −D11(Â1)2 +

3∑
i=1

aiÂi

)
,

with (a1, a2, a3) = (κ0, 1, 0), i.e. it is the unique solution of

(4.36)

(
αI −D11(Â1)2 +

3∑
i=1

aiÂi

)
Tα,κ0,D11 = α δe
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which is infinitely differentiable on G \ {e}. It is a strictly positive function, with16

(4.37) ‖Tα,κ0,D11‖L1(G) ≈ ‖Tα,κ0,D11‖L1(R2×R) = 1

for all α,D11, κ0 > 0, and is given by

(4.38) Tα,κ0,D11(x, y, θ) = α

√
3

2D11πx2
e−αxe

− 3(xθ−2y)2+x2(θ−κ0x)2

4x3D11 u(x).

Proof. First we notice that by means Hörmander’s Theorem, [24]Theorem 1.1, p.149
that the operator given in (4.35) is hypo-elliptic and consequently Tα,κ0,D11 is in-
finitely differentiable on G \ {e}.

On G \ {e} we have

(4.39)

(
αI −D11(Â1)2 +

2∑
i=1

aiÂi

)
Tα,κ0,D11 = 0

Or equivalently, again on G \ {e}

(4.40) ∂xTα,κ0,D11 = B Tα,κ0,D11

where the generator B = Â+ ∂x − αI is given by

(4.41) B =
(
−αI +D11(∂θ)2 − θ∂y − κ0∂θ

)
.

Moreover we have by (4.36) that

(4.42) 〈(αI − Â)Tα,κ0,D11 , φ〉 = (Tα,κ0,D11 , (αI − Â)φ)L2(G) = αφ(e),

for all rapidly decaying test functions φ ∈ S(G). In particularly for φ = η ⊗ φ̃,
φ(x, y, θ) = η(x)φ̃(y, θ), with φ̃ ∈ S(R × S1) arbitrary and η ∈ S(G) with η(x) =
2
∫∞
x
Gε(z)dz for x ≥ 0, recall (3.11), which gives us by taking the limit ε ↓ 0 that

(4.43) lim
x↓0
〈Tα,κ0,D11(x, ·, ·), φ̃〉 = αη(0)φ̃(0, 0) = α φ̃(0, 0),

for all φ̃ ∈ S(R × S1). So we conclude that Tα,κ0,D11 , for x > 0, satisfies the
following evolution system

(4.44)

{
∂xTα,κ0,D11 = B Tα,κ0,D11

lim
x↓0

Tα,κ0,D11(x, ·, ·) = α δ0,0.

Moreover, B lies within the nil-potent Lie algebra spanned by17

{αI, x∂θ, x2∂y, xθ∂y, x∂
2
θ , x

2∂θ∂y, x
3∂2
y}.

As a result by cf. [39]Theorem 3.18.11,p.243, or by the Campbell-Baker-Hausdorff
formula, there exist a sequence of constants {ci}6i=1 such that

exBδe = e−αxe−c6x∂θe−c5x
2∂ye−c1xθ∂yec2x∂

2
θ ec3x

2∂θ∂yec4x
3∂2

yδ(0,0)

and thereby we have
Tα,κ0,D11 (x, y, θ) =

αe−αx

4πx

r
c2(c4x2)−(c3x)2

2

e

− 1
4πx

�
θ−c6x y−c1x(θ−c6x)−c5x2

� c2
c3
2 x

c3
2 x c4x2

! 
θ−c6x

y−c1x(θ−c6x)−c5x2

!

16The approximation is very accurate for D11
α

is small, which is usually the case in applications.
17The base elements all have the same physical dimension: Length.
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for x > 0. Substitution of this expression in (4.40) yields

c1 =
1
2
, c2 = D11, c3 = 0, c4 =

D11

12
, c5 =

κ0

2
, c6 = κ0,

which completes the proof of Theorem 4.6. �

In order to compare this approximation to the exact solution we would like to get
the Fourier transform (with respect to the spatial variables (x, y)) of the Green’s
function. Since this not easily obtained by direct computation, we follow the same
approach as in subsection 4.2 for the exact solution where we unwrapped the torus.

Lemma 4.7. Let β > 0 and let a ∈ R and let c ∈ C. Then the unique (continuous)
Green’s function G ∈ C∞(R,C) which satisfies

(4.45)
{

(−i a θ + (∂θ)2 − c)G = δ0
G(θ) → 0 as |θ| → ∞

is given by G(θ) = e−
√

c|θ|

2
√
c

for a = 0 and for a 6= 0 it is given by

(4.46)
G(θ) = −2π

3√
a isgn(a)−1

[
Ai
(

c

(ia)
2
3
e

i sgn(a)2π
3

)
Ai
(
c+iaθ

(ia)
2
3

)
u(θ)

+Ai
(

c

(ia)
2
3

)
Ai
(
c+iaθ

(ia)
2
3
e

i sgn(a)2π
3

)
u(−θ)

]
, θ 6= 0,

with Ai(z) the Airy function of the first kind given by

Ai(z) =
1
π

√
z

3
K1/3(

2
3
z

3
2 ),

where K1/3 is the modified Bessel function of the second kind. Integration of the
Green’s function yields

(4.47)

∞∫
−∞

G(θ)dθ = 2π
3
√

a2 (i)sgn(a)

[
Ai

(
c

(ia)
2
3

)
e

i sgn(a)2π
3 I

(
c

(ia)
2
3
e

i sgn(a)2π
3

)
−I
(

c

(ia)
2
3

)
Ai

(
c

(ia)
2
3
e

i sgn(a)2π
3

)]
where I(z) =

∞∫
z

Ai(v)dv = π(Ai(z)Gi′(z)−Ai′(z)Gi(z)), cf. [1]p.448.

Proof. We only consider the non-trivial case a 6= 0. It is sufficient to consider the
case c ∈ R, since the general case c ∈ C follows by analytic continuation. Notice
with this respect that z 7→ Ai(z) is an entire analytic function on C. For c real-
valued we have that if θ 7→ f(θ) is a solution of

(4.48) (−a θ i− (∂θ)2 − c)f = 0

then so is θ 7→ f(−θ) a solution of (4.48). This is easily verified by substitution
and conjugation. The general solution of (4.48) is given by

f(θ) = c1Ai
(
c+ i a θ

(ia)
2
3

)
+ c2Ai

(
c+ i a θ

(ia)
2
3
e

i sgn(a)2π
3

)
where we notice that the Wronskian

(4.49) W [Ai(z),Ai(ze
i sgn(a)2π

3 )] =
1
2π
esgn(a) πi

6 ,
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cf. p.446 [1]. Furthermore, for c real-valued we have

Ai
(
c− i a θ

(ia)
2
3

)
= Ai

(
c+ i a θ

(ia)
2
3

)
= Ai

(
c+ i a θ

(ia)
2
3
e

i sgn(a)2π
3

)
.

Since Ai
(
c+i a θ

(ia)
2
3

)
is the only solution of (4.48) with the property f(θ) → 0 as

θ →∞ we must have

(4.50) G(θ) = c1Ai
(
c+ i a θ

(ia)
2
3

)
u(θ) + c2Ai

(
c + i a θ
(ia)

2
3

e
i sgn(a)2π

3

)
u(−θ).

It follows by means of Fourier transform that F [G] ∈ L1(R) and as result G
is a continuous function vanishing at infinity, and thereby we must have c1 =

λAi
(

c

(ia)
2
3
e

i sgn(a)2π
3

)
and c2 = λAi

(
c

(ia)
2
3

)
, for some 0 6= λ ∈ C which we again

determine by means of substitution of (4.50) in (4.48) yielding

λ(i a)
1
3

[
Ai
(

c

(ia)
2
3
e

i sgn(a)2π
3

)
Ai′
(

c

(ia)
2
3

)
−Ai′

(
c

(ia)
2
3
e

i sgn(a)2π
3

)
Ai
(

c

(ia)
2
3

)]
δ0 = δ0,

from which we deduce together with (4.49) that λ = 2π
3√
a i(sgn(a)−1)

. Finally we notice
that (4.47) follows by direct computation where we notice that z 7→ Ai(z) is entire
analytic, which allows us to change the path of integration. �

By setting a = wy

D11
and c = i wx+α

D11
in Lemma 4.7 we obtain the following result,

which is similar to Theorem 4.5 and enables us to compare the exact solution S∞α,D11

with its Heisenberg approximation Tα,D11 via the Fourier domain.

Theorem 4.8. The solution Tα,D11 : R3 \ {0, 0, 0} of the problem

(4.51)


(
∂x + θ∂y −D11(∂θ)2 + α

)
Tα,D11 = αδe,

Tα,D11(·, ·, θ) → 0 uniformly on compacta as |θ| → ∞
Tα,D11 ∈ L1(R3),

is given by Tα,D11(x, y, θ) = F−1[(ωx, ωy) 7→ T̂α,D11(ωx, ωy, θ)](x, y) where T̂α,D11 ∈
C(R,C) is given by

T̂α,D11(ωx, ωy, θ) = α
D11

3

√
D11

ωy i
sgn(ωy)−1 [

Ai
(

1
3√D11

i wx+α

(i ωy)
2
3
e

i sgn(ωy)2π

3

)
Ai
(

1
3√D11

i ωx+α+i ωyθ

(i ωy)
2
3

)
u(θ)

+ Ai
(

1
3√D11

i wx+α

(i wy)
2
3

)
Ai
(

1
3√D11

i wx+α+i ωyθ

(i wy)
2
3

e
i sgn(wy)2π

3

)
u(−θ)

]
which holds for ωy 6= 0 and for ωy = 0 we have and

T̂α,D11(ωx, 0, θ) =
1
4π

√
α

D11
(α−1 iωx + 1)−1/2e

−
q

iωx+α
D11

|θ|

Remark 4.9. By means of straightforward computation and an asymptotic expan-
sion of the Airy function, see [1]p.448, formula 10.4.59:

Ai(z) ∼ 1
2
√
π
z−

1
4 e−ξ

∞∑
k=0

(−1)kckξ−k with ξ =
2
3
z

3
2 , ck =

Γ(3k+ 1
2 )

54kk!Γ(k+ 1
2 )
, | arg(z)| < π,
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it follows that T̂α,D11 is everywhere continuous, since
(4.52)

lim
ωy↓0

T̂α,D11(ωx, ωy, θ) =
1
4π

√
α

D11
(α−1 iωx + 1)−1/2e

−
q

iωx+α
D11

|θ| = T̂α,D11(ωx, 0, θ),

with in particular

T̂α,D11(0, 0, θ1) = 1
2π‖T (·, ·, θ1)‖L1(R2)

= 1
2π

∞∫
0

∞∫
−∞

Tα,D11(x, y, θ1) dxdy = 1
4π

√
α
D11

e
−
√

α
D11

|θ1|,

which is the probability density that a random walker (with initial orientation θ = 0)
of the approximative direction process stays in the plane θ = θ1. Notice that the
larger D11, the smaller the probability-density that the random walker stays within
the plane θ = 0, and also the larger its expected lifetime E(T ) = (1/α) the smaller
the probability that the oriented particle remains in the plane θ = 0.

Figures 5, 7 give an illustration of the quality of the approximation in respec-
tively Fourier and spatial domain. See Figure 8 for illustrations of (and comparison
between) the Green’s functions in the spatial domain. For plots of the marginals of
the error between the exact Sα,D11,κ0 and approximative Green’s function Tα,D11,κ0 ,
see Figure 9

These figures show that for D11/α > 0 sufficiently small Tα,D11 is a good ap-
proximation of S∞α,D11

, which is (for D11 > 0 reasonably small) extremely close
(differences can be neglected) to a periodic function in θ. Nevertheless for large
D11/α, say D11/α > 5, the tails of the Green’s functions behave differently, which
is to be expected as in the Heisenberg-type approximation the random walker must
progress in positive x direction x > 0, whereas in the exact case random walkers are
allowed to turn around in negative x-direction (although very unlikely), see Figure
6 and Figure 7. In the Heisenberg-type approximation the traveling time of the
unit speed random walker is negative exponentially distributed along the x-axis,
whereas in the exact case the unit speed random walker is negative exponentially
distributed along its path (parameterized by the arc-length parameter s > 0). If
D11/α is sufficiently small the total length of the path is close to the length of its
projection on the x-axis.

4.4. Computation of Completion fields. The concept of a completion field is
well-known in image analysis, see for example [36], [42], [4], [11]. The idea is simple:
Consider two left-invariant stochastic processes on the Euclidean motion group,
one with forward convection say its forward Kolmogorov equation is generated by
A and one with the same stochastic behavior but with backward convection, i.e.
its forward Kolmogorov equation is generated by the adjoint of A∗ of A. Then we
want to compute the probability that random walker from both stochastic processes
collide. This collision probability density is given by

Φ(U) = (A− αI)−1U(A∗ − αI)−1W U,W ∈ L2(G) ∩ L1(G)

where U,W are initial distributions. This collision probability is called a completion
field as it serves as a model for perceptual organization in the sense that elongated
local image fragments are completed in a more global coherent structure. These
initial distributions can for example be obtained from an image by means of a
well-posed invertible wavelet transform constructed by a reducible representation
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Figure 1. The shading in these plots denotes the marginal
of the analytic completion field approximation (4.53) obtained
via integration over θ for x ∈ (0, 2), y ∈ (−0.2, 0.8)
i.e.

∫
R T

x0=0,y0=0,θ0
D11=0.5,θ0=2,κ0=0(x, y, θ)T

x1=2,y1=0.5,θ1
D11=0.5,θ1=2,κ1=0(−x, y,−θ)dθ

for θ0 = 0◦, 15◦, 30◦ from top to bottom, and for θ1 = −15◦, 0◦, 15◦

from left to right. The lines drawn on top of these completion fields
are the modes (4.54), the optimal connecting lines.

of the Euclidean motion group as explained in [11]. Alternatives are lifting using
the interesting framework of curve indicator random fields [3] or (more ad-hoc) by
putting a limited set of delta distributions after tresholding some end-point detector
or putting them simply by hand [42]. Here we do not go into detail on how these
initial distributions can be obtained, but only consider the case U = δ(0,0,θ0) and
W = δ(x1,y1,θ1), x1, y1 ∈ R. In this case we obtain by means of Theorem 4.6 the
following approximations of the completion fields:

(4.53)

(
α (Â− αI)−1δx0,θ0

)
(x, y, θ)

(
α (Â∗ − αI)−1δx1,θ1

)
(x, y, θ)

= Tα,κ0,D11 ;x0,θ0(x, y, θ)Tα,κ1,D11 ;−x1,θ1(−x, y,−θ),
with corresponding modes, which neither depends on D11, nor on α and only on
the difference κ0 − κ1, given by

(4.54)

y(x) = xθ0 + x3

x3
1
(−2y1 + x1(θ0 − θ1)) + x2

x2
1
(3y1 + x1(θ1 − 2θ0)),

+x(κ0−κ1)
2x3

1

(
−2x4 + 5x3x1 − 4x2x2

1 + x3
1x
)

θ(x) = θ0 + 2 x
x2
1
(3y1 + x1(θ1 − 2θ0))− 3x

2

x3
1
(2y1 + x1(θ1 − θ0))

+ (κ0−κ1)
x3
1

(
−3x4 + 6x3x1 + xx3

1 − 4x2
1x

2
)
,

where x ∈ [0, x1] and y(0) = 0, θ(0) = θ0 and y(x1) = y1, θ(x1) = −θ1 and
dy
dx (0) = θ0 and dy

dx (x1) = −θ1. See Figure 1.

5. The Explicit Green’s Functions for the other Cases

5.1. The Convection Case: D11 = D22 = D33 = 0. This case is relatively
simple as there is no diffusion/stochastic behavior, a random walker starting at
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(x0, y0, e
iθ0) will follow the exponential curves parameterized by

(5.1)

t 7→ exp(t(
3∑
i=1

aiAi)) = (x0 + a3
a1

(cos(a1t+ θ0)− cos θ0) + a2
a1

(sin(a1t+θ0)− sin θ0),

y0+ a3
a1

(sin(a1t+θ0)− sin θ0)− a2
a1

(cos(a1t+θ0)−cos θ0), ei(a1t+θ0)),

for a1 6= 0 which is a circular spiral with radius
√
a2
2+a

2
3

a1
and central point

(−a3

a1
cos θ0 −

a2

a1
sin θ0 + x0,

a2

a1
cos θ0 −

a3

a1
sin θ0 + y0),

These curves are well-known, for formal derivation of the exponential map we refer
to [9]Appendix 7.6 p.228. For a1 = 0 we get a straight line in the plane θ = θ0:

t 7→ exp(t(a2A2+a3A3)) = (x0+t a2 cos θ0−t a3 sin θ0, y0+t a2 sin θ0+t a3 cos θ0, eiθ0),

which also follows by taking the limit a1 → 0 in (5.1).

5.2. The Diffusion Case: a1 = a2 = a3 = 0: The Heat kernels on the
2D Euclidean Motion Group. First we consider the case a1 = a2 = a3 =
0, where the first diffusion coefficient does not vanish, i.e. D11 > 0 this means
that we explicitly compute the diffusion kernels Kt (and their Laplace transforms
Kα = α

∫∞
0
e−αtKtdt) on the 2D-Euclidean motion group. Again we first consider

θ ∈ R and apply the boundary condition that solutions must uniformly vanish as
r =

√
x2 + y2 →∞.

Theorem 5.1. The solution K∞
α,D11,D22,D33

: R3 \ {0, 0, 0} of the problem

(5.2)


(
−D11(∂θ)2 −D22(∂η)2 −D33(∂ξ)2 + α I

)
K∞
α,D11,D22,D33

= −α δe,
K∞
α,D11,D22,D33

(·, ·, θ) → 0 uniformly on compacta as |θ| → ∞
K∞
α,D11,D22,D33

∈ L1(R3),

is given by

K∞
α,D11,D22,D33

(x, y, θ) = F−1[(ωx, ωy) 7→ K̂∞
α,D11,D22,D33

(ωx, ωy, θ)](x, y)

where

K̂∞
α,D11,D22,κ0

(ωx, ωy, θ) = −α
2πD11

1
iW−(α+(1/2)(D22+D33)ρ2)

D11
,
(D22−D33)ρ2

4 D11[
meν

(
ϕ, (D22−D33)ρ

2

4D11

)
me−ν

(
ϕ− θ, (D22−D33)ρ

2

4D11

)
u(θ)

+ me−ν
(
ϕ, (D22−D33)ρ

2

4D11

)
meν

(
ϕ− θ, (D22−D33)ρ

2

4D11

)
u(−θ)

]
.

with ω = (ρ cosφ, ρ sinφ) and Floquet exponent ν
(
−(α+(1/2)(D22+D33)ρ

2)
D11

, (D22−D33)ρ
2

4D11

)
.

Proof. The calculations below show us that we arrive in a similar problem as in
the direction process case and consequently the rest of the proof of this theorem is
an analogue matter as the proof of Corollary 4.5 and its corresponding lemma 4.4.
For all α > 0, D11 > 0, D22 > 0, D33 > 0 we have

(D22(∂ξ)2 +D33(∂η)2 +D11(∂θ)2 − αI)K = −αδe ⇔
(−D22ρ

2 cos2(ϕ− θ)−D33ρ
2 sin2(ϕ− θ) +D11(∂θ)2 − αI)K̂ = − α

2π δ
θ
0 ⇔

(−D33ρ
2 + (D33 −D22)ρ2 cos2(ϕ− θ) +D11(∂θ)2 − αI)K̂ = − α

2π δ
θ
0 ⇔

((∂θ)2 + aI − 2q cos(2(φ− θ)))K̂ = − α
2πD11

δθ0
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where a = −
(
α+(ρ2/2)(D22+D33)

D11

)
and q = ρ2

(
D22−D33

4D11

)
. So again it boils down

to finding the Green’s function of a Mathieu equation. Nevertheless we notice that
the parameter q now lies on the real-axis rather than on the imaginary axis. �

Now we consider the case θ ∈ [0, 2π] again with periodic boundary conditions
and compute the heat-kernels on the Euclidean motion group:

Theorem 5.2. Let D11, D22, D33 > 0, then the heat kernels KD11,D22,D33
t on the

Euclidean motion group which satisfy

(5.3)


∂tK =

(
D11(∂θ)2 +D22(∂ξ)2 +D33(∂η)2

)
K

K(·, ·, 0, t) = K(·, ·, 2π, t) for all t > 0.
K(·, ·, ·, 0) = δe
K(·, t) ∈ L1(G), for all t > 0.

are given by

KD11,D22,D33
t (b1, b2, eiθ) := K(b1, b2, eiθ, t) = F−1[ω 7→ K̂D11,D22,D33

t (ω, eiθ)](b1, b2)

where

K̂D11,D22,D33
t (ω, eiθ) = e−t(1/2)(D22+D33)ρ

2

( ∞∑
n=0

cen(ϕ, q)cen(ϕ− θ, q)
π

e−tan(q)D11

)

with q = ρ2(D22−D33)
4D11

and an(q) the Mathieu Characteristic (with Floquet exponent
n) and with the property that KD11,D22,D33

t > 0 and

‖KD11,D22,D33
t ‖L1(G) =

2π∫
0

K̂D11,D22,D33
t (0, eiθ) dθ =

∞∑
n=0

(2π)−1

2π∫
0

einθdθe−t n
2D11 = 1.

Consider the case where D11 ↓ 0, then again an(q) ∼ −2q as q →∞ and

lim
D11↓0

K̂D11,D22,D33
t (ω, eiθ) = e−

t
2 (D22+D33)(ω

2
x+ω2

y)e−
t
2 (D22−D33)(ω

2
x−ω

2
y)δθ0

= e−t(D22ω
2
x+D33ω

2
y)δθ0 = K̂0,D22,D33

t (ω, eiθ)δθ0 .

Finally we notice that the case D11 = 0 yields the following operation on L2(G):

(K̂0,D22,D33
t ∗GU)(g) =

∫
R2

GD22,D33
t (R−1

θ (x−x′))U(x′, eiθ)dx′ =(ReiθGD22,D33
t ∗R2f)(x)

g = (x, eiθ), where GD22,D33
t (x, y) = Gd=1

tD22
(x) Gd=1

tD33
(y) equals the anisotropic

Gaussian kernel, recall (3.11), and where Reiθφ(x) = φ(R−1
θ x) is the left regular

action of SO(2) in L2(R2), which corresponds to anisotropic diffusion in each fixed
orientation layer U(·, ·, θ) where the axes of anisotropy coincide with the ξ and
η-axis. This operation is for example used in image analysis in the framework
of channel smoothing [16], [11]. We stress that also the diffusion kernels with
D11 > 0 are interesting for computer vision applications such as the frameworks
of tensor voting, channel representations and invertible orientation scores as they
allow different orientation layers to interfere.
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5.3. The Generalized Direction Process: The cases a2 6= 0, a3 = 0, D11 > 0,
D22 = D33 > 0 .
Consider the case a1 = κ0 ≥ 0, a2 6= 0, a3 = 0, D11 > 0, D22 = D33 > 0, this means
that we add extra isotropic diffusion and an angular drift κ0 ≥ 0 into the direction
process. Again we consider θ ∈ R with the boundary condition that solutions must
uniformly vanish as r =

√
x2 + y2 →∞.

Theorem 5.3. The solution S∞α,D11
: R3 \ {0, 0, 0} of the problem

(5.4)


(
∂ξ + κ0∂θ −D11(∂θ)2 −D22(∂η)2 −D22(∂ξ)2 + α I

)
S∞α,D11

= αδe,

S∞α,D11
(·, ·, θ) → 0 uniformly on compacta as |θ| → ∞

S∞α,D11
∈ L1(R3),

is given by

S∞α,D11,D22,κ0
(x, y, θ) = F−1[(ωx, ωy) 7→ Ŝ∞α,D11,D22,κ0

(ωx, ωy, θ)](x, y)

where

Ŝ∞α,D11,D22,κ0
(ωx, ωy, θ) = −α

2πD11iW−4(α+D22ρ2)
D11

−
κ2
0

D2
11

,i
2ρ

D11

[

e
κ0θ
2D11 meν

(
ϕ
2 , i

2ρ
D11

)
me−ν

(
ϕ−θ
2 , i 2ρ

D11

)
u(θ)

+ e
κ0θ
2D11 me−ν

(
ϕ
2 , i

2ρ
D11

)
meν

(
ϕ−θ
2 , i 2ρ

D11

)
u(−θ)

]
.

with Floquet exponent ν = ν
(
−4 (α+D22ρ

2)
D11

− κ2
0

D2
11
, i 2ρ
D11

)
.

Proof. As we generalize the results in Lemma 4.4 and Corollary 4.5, we follow the
same construction. First we notice that the linear space of solution of

(5.5)
(
(∂θ)2 + k∂θ − iR cos(ϕ− θ)− β

)
G(θ) = 0 , R ∈ R, k ∈ R, β > 0,

is spanned by the two Floquet solutions:

{e kθ
2 meν(

d− θ

2
, 2iR), e

kθ
2 me−ν(

d− θ

2
, 2iR)}

where ν = ν(−k2 − 4β, 2iR) equals the Floquet exponent. Now again we search
for the unique direction within that span that vanishes at θ → ∞. Since ν(−k2 −
4β, 2iR) is positively imaginary, the only candidate is θ 7→ e

kθ
2 me−ν(ϕ−θ2 , 2iR).

The question remains whether meν(ϕ−θ2 , 2iR) dominates the exploding factor e
kθ
2

as θ → +∞. This only holds if

(5.6)
k

2
+ i

ν(−k2 − 4β, 2iR)
2

< 0.

which indeed turns out to be the case

k

2
+i
ν(−k2 − 4β, 2iR)

2
<
k

2
+i
ν(−k2 − 4β, 0)

2
=
k

2
+i

√
−k2 − 4β

2
=
k

2
−
√
k2 + 4β

2
< 0.

Similarly all solution of (5.5) that converge for θ → −∞ are spanned by e
kθ
2 me−ν(ϕ−θ2 , 2iR).

Again we obtain the Green’s function by continuous connection of the two solutions
for θ < 0 and θ > 0, where we put k = κ0

D11
, β = α+D22ρ

2

D11
and R = ρ

D11
. What
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remains is the calculation of the scaling factor λ, recall the proof of Lemma 4.4.
Analogue to (4.30) we get

α
2πD11

δ0 = λ
[
−κ0

2 me−ν
(
ϕ
2 , i

2ρ
D11

)
meν

(
ϕ
2 , i

2ρ
D11

)
+ κ0

2 me−ν
(
ϕ
2 , i

2ρ
D11

)
meν

(
ϕ
2 , i

2ρ
D11

)
− 1

2

(
meν

(
ϕ
2 , 2iR

)
me′−ν

(
ϕ
2 , 2iR

)
−me−ν

(
ϕ
2 , 2iR

)
me′ν

(
ϕ
2 , 2iR

))]
δ0

so −iλW−4β′,2iR δ0 = αD11
2π δ0, so λ = −αD11

2πiW−4β′,2iR
, with β′ = −4(α+D22ρ

2)
D11

− κ2
0

D2
11

. �

6. Numerical Scheme for the General Case ai > 0, Dii > 0 and its
relation to the exact analytic solutions

The following numerical scheme is a generalization of the numerical scheme pro-
posed by Jonas August for the direction process, [3]. As explained in [9] this
scheme is preferable over finite element methods. The reason for this is the non-
commutativity of the Euclidean motion group in combination with the fact that
the generator contains both a convection and diffusion part.18 Another advantage
of this scheme over others, such as the algorithm by Zweck et al. [42], is that it is
directly related to the exact analytic solutions presented in this paper as we will
show explicitly for the Direction process case a2 = 1, a1 = a3 = 0, D22 = D33 = 0.

The goal is to obtain a numerical approximation of the exact solution of

(6.1) α(αI −A)−1U = W ,U ∈ L2(G),

where the generator A is given in the general form (3.6) without further assumptions
on the parameters ai > 0, Dii > 0. As explained before the solution is given by
a G-convolution with the corresponding Green’s function. After explaining this
scheme, we focus on the Direction process case to show the connection with the
exact solution (4.1). We give the explicit inverse of the matrix to be inverted within
that scheme and we provide the full system of eigen functions of this matrix, which
directly correspond to the exact solution (4.1). Although not considered here we
notice that exactly the same can be done for the other cases where we provide exact
solutions. First we write

(6.2)
F [W (·, eiθ)](ω) = Ŵ (ω, eiθ) =

∞∑
l=−∞

Ŵ l(ω)eilθ

F [U(·, eiθ)](ω) = Û(ω, eiθ) =
∞∑

l=−∞
Û l(ω)eilθ

Then by substituting (6.2) into (6.1) we obtain the following 4-fold recursion

(6.3)

(α+l2D11+i a1l + ρ2

2
(D22 + D33))Ŵ

l(ω) +
a2(i ωx+ωy)+a3(i ωy−ωx)

2
Ŵ l−1(ω)

+
a2(i ωx−ωy)+a3(i ωy+ωx)

2
Ŵ l+1(ω)− D22(i ωx+ωy)2+D33(i ωy−ωx)2

4
Ŵ l−2(ω)

−D22(i ωx−ωy)2+D33(i ωy+ωx)2

4
Ŵ l+2(ω) = α Û l(ω)

which can be rewritten in polar coordinates

(6.4)
(α+ ila1 +D11l

2 + ρ2

2 (D22 +D33)) W̃ l(ρ) + ρ
2 (ia2 − a3) W̃ l−1(ρ)+

ρ
2 (ia2 + a3) W̃ l+1(ρ) + ρ2

4 (D22 −D33) (W̃ l+2(ρ) + W̃ l−2(ρ)) = α Ũ l(ρ)

18If one insists on using a finite element method a sensible approach is to alternate the non-

commuting diffusion and convection part with very small step-sizes such that the CBH-formula
can be numerically truncated, es(Diff+Conv) ≈ esDiffesConv, which is the rationale behind the

algorithm presented by Zweck[42].
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for all l = 0, 1, 2, . . . with W̃ l(ρ) = eilϕŴ l(ω) and Ũ l(ρ) = eilϕÛ l(ω), with ω =
(ρ cosϕ, ρ sinϕ). Notice that equation (6.4) can easily be written in matrix-form,
where a 5-band matrix must be inverted. For explicit representation of this 5-
band matrix where the spatial Fourier transform in (6.2) is replaced by the discrete
Fourier Transform we refer to [9]p.230. Here we stick to a Fourier series on T and
the continuous Fourier transform on R2 and obtain after truncation of the series at
N ∈ N the following (2N + 1)× (2N + 1) matrix equation:
(6.5)

p−N q + t r 0 0 0 0
q − t p−N+1 q + t r 0 0 0

r
. .

.
. .

.
. .

. r 0 0

0
.
.
. q − t p0 q + t r 0

0 0 r
. . .

. . .
. . . r

0 0 0 r q − t pN−1 q + t
0 0 0 0 r q − t pN





W̃−N (ρ)

W̃−N+1(ρ)

.

.

.

W̃0(ρ)

.

.

.

W̃ N−1(ρ)

W̃ N (ρ)

 =
4α
D11



Ũ−N (ρ)

Ũ−N+1(ρ)

.

.

.

Ũ0(ρ)

.

.

.

ŨN−1(ρ)

ŨN (ρ)


where pl = (2l)2 + 4α+2ρ2(D22+D33)+4ia1l

D11
, r = ρ2(D22−D33)

D11
q = 2ρa2i

D11
and t = 2a3ρ

D11

For the sake of simplicity and illustration we will only consider the direction
process case with a2 = 1, a1 = a3 = 0, D22 = D33 = 0 (although we stress that
the other cases can be treated similarly). In this case we have pl = (2l)2 + 4α

D11
,

r = 0 q = 2ρi
D11

and t = 0 and thereby the recursion (6.3) is 2-fold and the equation
requires the inversion of a 3-band matrix, the complete eigen system (for N →∞)
of which is given by {

vl = {c2n2l (q)}Nn=−N N →∞
λl = a2l(q) + 4α

D11
l ∈ Z,

where a2l(q) and c2n2l (q) are respectively the Mathieu Characteristic and Mathieu
coefficients, recall (4.12) which can considered as an eigenvalue problem of a 3-
band matrix. The eigen vectors form a bi-orthogonal base in `2(Z) and the basis
transforms between the orthogonal standard basis ε = {el}l∈Z in `2(Z) (which cor-
responds to {θ 7→ eilθ}l∈Z ∈ L2([0, 2π))) and the bi-orthogonal basis of eigenvectors
β = {vl}l∈Z (which corresponds to {θ 7→ me2n(ϕ−θ2 , q)}l∈Z) is

Sεα = 1√
2π

(
v1 | v2 | v3 | . . .

)
Sαε = 1√

2π
(Sεα)T ,

where we stress that the transpose does not include a conjugation so Sαε = (Sεα)−1 =
(Sεα)†. To this end we notice that

∑∞
l=−∞ c2r2l (q)c

2s
2l (q) = δrs ,which directly follows

from the bi-orthogonality of the corresponding Mathieu-functions in L2([0, π]). Now

ŵ =
4α
D11

(SεαΛSαε )−1u =
4α
D11

(SεαΛ−1Sαε )û

where Λ = diag({λl}) and where ŵ = {Ŵ l}l∈Z and û = {Û l}l∈Z, so the general
solution of (6.5) is given by

W̃ l(ρ) = 1
2π

4α
D11

(Sαε )lm δ
m
n

1
a2n(q)+ 4α

D11

(Sεα)np Ũ
p(ρ) = α

2π

∑
n∈Z

∑
p∈Z

c2n
2l (q)c2n

2p (q)

λn(ρ) Ũp(ρ),
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with λn(ρ) = α+
a2n

�
2ρi
D11

�
D11

4 where we used the summation convention for double
indices. As a result we have

(6.6)

Ŵ (ω, θ) =
∑
l∈Z

Ŵ l(ω)eilθ =
∑
l∈Z

eil(θ−ϕ)W̃ l(ρ)

= α
2π lim

N→∞

N∑
n=−N

(
N∑

l=−N

c2n
2l (q)eil(θ−ϕ)

λn(ρ)

)(
N∑

p=−N
c2n2p (q) e

ipϕ Ûp(ρ)

)
= α

2π

∑
n∈Z

me2n( θ−ϕ
2 ,q)

λn(ρ)

∑
p∈Z

c2n2p (q) e
ipϕ Ûp(ρ) ,

with q = 2ρi
D11

and ω = (ρ cosϕ, ρ sinϕ). Now if we put Ûp = 1
2π for all p ∈ Z (i.e.

U = δe) we get the impuls response, i.e. the Green’s function

Ŝα,D11(ω, θ) =
α

(2π)2
∑
n∈Z

me2n

(
ϕ
2 ,

2ρi
D11

)
me2n

(
θ−ϕ

2 , 2ρi
D11

)
λn(ρ)

,

which is indeed the exact solution (4.23) in Theorem 4.1, where we recall that
W = Sα,D11 ∗G U . The advantage of (6.6) is that it is efficient and does not require
orientation interpolations. For some examples of Green functions for various sets
of parameters see Figure 2.
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Appendix A. Simple Expressions for the Exact Solutions in terms of
the Fourier transform on the Euclidean Motion Group.

In this section we will use the Fourier transform on the Euclidean Motion group,
rather than the Fourier transform on R2 as done in Theorem 4.1 and Theorem
5.3, to get explicit expressions for the Green’s functions on the Euclidean Motion
group. Although these expressions are similar to the ones we previously derived, this
approach provides further insight in the underlying group structure and moreover it
provides a short-cut to Mathieu’s equation. For the sake of illustration we restrict
ourselves to generalized direction process as discussed in subsection 5.3. However
the same can be achieved for the general case {ai}3i=1 ∈ R3, {Dii}3i=1 ∈ (R+)3.

According to [35] all unitary irreducible representations of the 2D-Euclidean
Motion group G = R2 o T are defined on L2(S1) and they are given by

Vpg f(y) = e−ip(x,y)f(A−1y), f ∈ L2(S1), g = (x, eiθ) ∈ G, p > 0,

for almost every y = (cosφ, sinφ) ∈ S1. Notice that each such unitary representa-
tion can be identified with its matrix-elements

(A.1) (ηn,Vpg ηm) = V pmn(g) = in−me−i(nθ+(m−n)φ)Jn−m(ρa)
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Figure 2. Left-invariant evolutions on the Euclidean Motion
group yields graphical sketching for image analysis. Computation
of the xy-marginals (integration over θ from 0 to 2π) of the Green
function Sa1,a2,a3,x0,y0,θ0

α,D11,D22,D33
= es∆α(−A + αI)−1δ(x0,y0,θ0), where A

is the generator in its general form (3.6) for different parameter
settings. We used Fast Fourier Transform-on a 64 × 64 × 64
grid in the algorithm of section 6 (we put s = σ2

2 > 0 (4.31) with
σ > 0 in the order of magnitude of 1 pixel). Respective (from
(a) to (f)) parameter settings are (α; a1, a2, a3;D11, D22, D33) =
( 1
64 ; 0, 1, 0; ( 2π

128 )2, 0, 0), ( 1
64 ; 0, 1, 0; ( 2π

128 )2, 0, 0), ( 1
64 ; 0.1, 1, 0; ( 2π

128 )2, 0, 0),
( 1
40

; 1
32

, 1, 0; 0, 0.1, 0.4), ( 1
40

; 1
32

, 1, 0; 0, 0.4, 0.1), ( 1
40

; 1
32

, 1, 0;
�

2π
128

�2
, 0.4, 0.1).

In all cases the initial condition is U = δe, except for the case (b)
where U = δx0 ⊗ δy0 ⊗ δθθ0 with θ0 = π/6. The top row illustrates
the left-invariance of the evolution equations, the bottom 2 rows
(last row is a contour plot of the same Greens functions (d,e,f))
show spatial and angular diffusion. Figures (e) and (f) reveal the
non-commutativity of angular and anisotropic spatial diffusion.
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with respect to the orthonormal base {ηn}n∈Z := {θ 7→ ei nθ}n∈Z. Consequently, the
Fourier transform on the Euclidean motion group FG : L2(G) → L2(T2(L2(S1)), pdp),
where T2 = {A ∈ B(L2(S1)) | ‖A‖22 = trace(A∗A) <∞}, is given by

[FGf ](p) =
∫
G

f(g)V pg−1dµG(g),

and its inverse is almost everywhere given by [F−1
G f̂ ](g) =

∫∞
0

trace{f̂(p)V pg } pdp.
This Fourier transform is unitary as by Parceval’s identity we have

‖f‖2L2(G) =

∞∫
0

‖FGf(p)‖22pdp = ‖FGf‖2L2(T2(L2(S1)),pdp)
.

Now it is straightforward (use left invariance of the Haar-measure and switch the
order of integration) to show that

FG(f1 ∗G f2) = FGf1 FGf2.

As a result the solution of the generalized direction process W = (A − αI)−1U is
given by

(A.2) W = F−1
G [FGSa1,a2,D11,D22,α FGU ].

where Sa1,a2,D11,D22,α equals the Green’s function. So (A.2) together with (A.1)
provide a simple alternative (but as we will see similar) algorithm to the algorithm
discussed in section 6 if we are able to compute the matrix-coefficients of the Fourier
transform of the Green’s function. We shall need the following lemma

Lemma A.1. For all p > 0 and all h ∈ G and all f ∈ L2(G), we have

[FGRhf ](p) = V ph [FGf ](p)

Consequently we have

FG[dR(A)f ](p) = dV p(A)[FGf ](p)

for all A ∈ Te(G), f ∈ L2(G) and p > 0. So in particular

(A.3)
dV p(A1) = −ip cosφ
dV p(A2) = −ip sinφ
dV p(A3) = ∂φ

Proof. With respect to the first equality we notice that

[FGRhf ](p) =
∫
G

f(gh)V pg−1dµG(g) =
∫
G

f(g′)V ph V
p
(g′)−1dµG(g′) = V ph [FGf ](p).

Now the second equality follows by the first as we have

FG[lim
t→0

RetA − I

t
f ](p) = lim

t→0

(
V p
etA − I

t

)
[FGf ](p) = dV p(A)[FGf ](p),

now the special cases (A.3) follow by direct computation. �

Consequently, by applying the Fourier transform on both sides of the resolvent
equation directly leads to Mathieu’s equation:
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Theorem A.2. The Fourier transform of the Green’s function FGSa1,a2,D11,D22,α

satisfies

(a1∂φ − ia2p cosφ+D22p
2 +D11(∂φ)2 + α)[FGSa1,a2,D11,D22,α](p) = I,

and thereby the matrix representation of the operator FGSa1,a2,D11,D22,α yields a
similar matrix as in equation (6.5).

Appendix B. Analytic Approximations of The Green’s function by
means of Cylindrical Coordinates

First express the left invariant vector fields on R2 o T in cylindrical coordinates:

(B.1)


Ã1 = ∂θ
Ã2 = cos(θ − φ)∂r + 1

r sin(θ − φ)∂φ,
Ã3 = − sin(θ − φ)∂r + 1

r cos(θ − φ)∂φ,

which enables us to write the objective equation

−(D11(Ã1)2 −
3∑
i=1

αiÃi − αI)Sα,{ai},D11 = α δe,

with a1 = κ0, a2 = 1, a3 = 0, in cylindrical coordinates:(
cos(θ − φ)∂r +

1
r

sin(θ − φ)∂φ + κ0∂θ −D11(∂θ)2 + αI

)
Sα,κ0,D11 = α δe .

By approximating

(B.2) cos(θ − φ) ≈ 1 and sin(θ − φ) ≈ (θ − φ),

we get the following approximations of the left invariant generators (B.1):

(B.3) Ă1 = ∂θ, Ă2 = ∂r + (θ − φ) 1
r∂φ, Ă3 = −(θ − φ)∂r + 1

r∂φ,

and we obtain the following equation for the approximation T̆α,κ0,D11 of the Green’s
function Sα,D11 (or rather S∞α,D11

) of the resolvent of the forward Kolmogorov equa-
tion:

(B.4)
(

1 ∂r +
1
r
(θ − φ)∂φ + κ0∂θ −D11(∂θ)2 + αI

)
T̆α,κ0,D11 = α δe .

Notice that the approximation T̆α,κ0,D11 ≈ S∞α,κ0,D11
is better than the approxima-

tion Tα,κ0,D11 ≈ S∞α,κ0,D11
. Especially for high angular drifts, see figure 3, where

we plotted the projections of the corresponding exponential curves on top of the
xy-marginals of Sα,κ0,D11 , T̆α,κ0,D11 , Tα,κ0,D11 . For example the characteristics cor-
responding to T̆α,κ0,D11 are given by

(B.5)

 θ̇ = κ0

φ̇ = 1
r (θ − φ)

ṙ = 1
⇒

 x(s) = s cos
(
κ0s
2

)
y(s) = s sin

(
κ0s
2

)
θ(s) = κ0s

The substitution{
v(r) = r
w(r) = rφ

⇒


d
dr T̆α,κ0,D11 =

(
1 d
dv + φ d

dw

)
T̆α,κ0,D11(w, v, θ)

∣∣∣
w=rφ,v=r

d
dφ T̆α,κ0,D11 = r d

dw T̆α,κ0,D11(w, v, θ)
∣∣∣
w=rφ,v=r
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Figure 3. A comparison between the xy-marginals of the exact so-

lution Sα,κ0,D11 of the direction process with angular drift (bottom

row a1 = κ0 = 0.2, top row κ0 = 0.05), with D11 = σ2

2
, σ = 0.1,

((a2, a3) = (1, 0), D33 = D22 = 0) (see C, F) and the xy-marginal

of the cartesian Tα,κ0,D11 (see A, D) and polar T̆α,κ0,D11 (see B, E)

Heisenberg approximation. In fact the xy-marginal of these Heisen-

berg approximations are analytically given by
R

R T̆α,κ0,D11(r, φ, θ) dθ =

3
4πD11r3 e

−
−12θ2−12rθκ0+r2(3κ2

0+16αD)
16rD11 and

R
R Tα,κ0,D11(x, y, θ) dθ =

3
4πD11x3 e

−
(1/2)y2−12x2yκ0+x4(3κ2

0+16αD11)

16x3D11 . For comparison the cor-

responding exponential curves t 7→ (κ−1
0 sin κ0t, κ

−1
0 (1−cos κ0t), κ0t),

t 7→ (t, κ0
2

t2, κ0t), t 7→ (t cos(κ0t
2

), t sin(κ0t
2

), κ0t) are plotted on top.

Note that for processes with angular drift κ0 6= 0 the Heisenberg ap-

proximation in polar coordinates yields a better approximation.
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Figure 4. Contour plots of the θ = 0 and θ = π/2
slice of the Fourier transformed analytic Green function
Ŝ∞,a1,a2,a3
α,D11,D22,D33

(ωx, ωy, θ) for α = 1/20, D11 = 1/2 and a2 = 1.
Other parameters are 0. Contour lines are at increments of 0.1.

with T̆α,κ0,D11(r, rφ, θ) = T̆α,{ai},D11(r cosφ, r sinφ, θ) gives(
∂v + θ∂w + κ0∂θ −D11∂

2
θ + α

)
T̆α,κ0,D11 = αδe

and thereby by means of Theorem 4.6 we obtain the solution:

(B.6)
T̆α,κ0,D11(r, φ, θ) = T̆α,κ0,D11(r, rφ, θ) = Tα,κ0,D11(r, rφ, θ)

= α
√

3
2πD11r2

e−αr e−
3(θ−2φ)2+(θ−κ0r)2

4rD11 .
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Figure 5. Top row: The solid line denotes the real component
of the analytic Green function Ŝα,D11(ωx, ωy, 0) for α = 1/20,
D11 = 1/2 and a2 = 1 along the ωx-axis on the left and along
the ωy-axis on the right. The line with long dashing represents the
real component of Ŝ∞,a1,a2,a3

α,D11,D22,D33
(ωx, ωy, 0). The line with short

dashing stands for the approximation T̂α,D11(ωx, ωy, 0), where we
recall (4.52). For these extreme parameter settings the approxi-
mations are relatively poor, see also Figure 6. Bottom row: same
settings as top row, but now for D11 = 1/2 and α = 1/10. Note
that the smaller D11/α, the better the approximations.

0 π/4 π/2 3π/4 π

1

2

3

4
Ŝ

θ

Figure 6. The solid line denotes the real part of the Fourier
transform of the true Green function Ŝα,D11(0, 0, θ) for α = 1/20,
D11 = 1/2 and a2 = 1 along the θ-axis. The dashed line
represents the real component of Ŝ∞α,D11

(0, 0, θ) and equivalently
T̂α,D11(0, 0, θ) with their components outside the θ-interval [−π, π]
mapped back onto the torus domain to ensure periodic boundary
condition at θ = ±π. In this extreme case the series (4.26) can be
truncated at N = 4 to obtain a close approximation.
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