

A framework for the conceptual modeling of discrete dynamic
systems
Citation for published version (APA):
Dietz, J. L. G., & Hee, van, K. M. (1986). A framework for the conceptual modeling of discrete dynamic systems.
(Computing science notes; Vol. 8605). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1986

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/a50663d6-608f-4593-80ce-eee5df76bcaa

A Framework for the Conceptual

Modeling of Discrete Dynamic

Systems.

by Jan L.G. Dietz

Kees M. van Hee

86/05

October 1986

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing

Science Section of the Department of

Mathematics and Computing Science of

Eindhoven University of Technology.

Since many of these notes are preliminary

versions or may be published elsewhere, they

have a limited distribution only and are not

for review.

Copies of these notes are available from the

author or the editor.

Eindhoven University of Technology

Department of Mathematics and Computing Science

P.O. Box 513

5600 MB EINDHOVEN

The Netherlands

All rights reserved

editor: F.A.J. van Neerven

A FR4~EWOlUc FOR THE CONCllPTUAL MODELING OF

DISCRETE DYNAMIC SYSTEMS

Jan L.G. Dietz Kees M. van Hee

Dept. of Industrial Engineering Dept. of Computing Science

Eindhoven University of Technology

P.O. Box 513

5600 MB EINDHOVEN, The Netherlands

Universes of Discourse are representatives of the class of

discrete dynamic systems. The complete and precise description

of a Universe of Discourse therefore agrees with the

specification of the structural and behavioural knowledge of a

discrete dynamic syste~

In this paper a framework is developed for the specification of

discrete dynamic systems, including aggregates of communicating

systems.

Ways of knowledge acquisition are discussed, leading also to the

distinction of several typical kinds of systems. Among them are

information systems.

Finally a first order language is reviewed as a vehicle for

expressing knowledge about a discrete dynamic syste~

The paper concludes with the presentation of some illustrative

examples.

1

1. Introduction

The, commonly accepted, observation being made that an

information system acquires, contains and provides knowledge

about some other system, one is faced with the problem of

adequately modeling this latter system such that the knowledge

about it can be clearly defined and precisely expressed.

In the past years a lot of research has been devoted to systems

modeling, particularly to the conceptual modeling and formal

specifying of system dynamics (e.g. [StH085], [SoKu85], [Ze82],

[VeFu85), [MyW080). The research on which this paper reports

also falls in this category. It presents a general framework in

which the distinct kinds and degrees of knowledge can be

discussed clearly and easily. We have called the framework

SMARTIE and the kind of systems it is meant to deal with:

discrete dynamic systems.

A discrete dynamic system is a system that is at each moment in

one of a set of states. At some moments it performs a transition

to a, not necessarily different, new state. A transition is

triggered by a set of stimuli, called actions, that are exercised

on the system at a particular moment. A transition is supposed to

be executed instantaneously. The new state only depends on the

present state and the set of actions. At the same time the system

may produce a set of reactions, which may be considered as

stimuli provided by the system to its environment. The set of

reactions to be produced depends only on the set of input actions

and the state before the transition. The set of reactions is also

offered to a transfer mechanism, which transforms it into a,

": possibly empty, set of input stimuli.

The occurence of an input stimulus is called an event. An event

thus consists of an action and a time stamp. An event is said to

happen if the clock time equals the time stamp of the event.

The system maintains an agenda of events. To this agenda events

can be added by the environment and by the system itself (namely

by means of the transfer mechanism).

2

. ~ ~".

The last possibility allows a system to move through its state

space without any influence from the environment.

Transitions are executed by a transition mechanism. This

transition mechanism constantly inspects the agenda and comes

into operation as soon as there are events happening. The number

of transitions in a finite interval of time will be finite. This

is the reason for calling the systems we study discrete.

The framework of a discrete dynamic system appears to be a

generic model for many real life systems, being able to capture

all relevant aspects of these systems. We call a real life system

to be modelled an object system.

The generic model will be presented, as a 7-tuple

<S,M,A,R,T,I,E). The knowledge about an object system is modeled

as the specification of the seven distinct components. Usually

the knowledge of a system will be incomplete, e.g. because one

does not know the future events from the environment.

It is also often the case that one only has partial knowledge of

the transition mechanism. For instance, one knows that given a

set of actions and a particular state, the system will perform a

transition to one of a set of states. However, one does not know

exactly which one.

There may be several reasons for constructing conceptual models

of object systems. Among these we find the next ones:

to support the design of the object system,

to support the design of an information system that can be

used to monitor and/or control the object system.

By monitoring is meant: keeping track of the process of the

system, i.e. the sequence of states. Controlling means that the

information system generates events for the object system.

The conceptual model of a system captures all knowledge that is

available and thought relevant. In dealing with the acquisition

of knowledge we distinguish between structural knowledge and

behavioural knowledge.

3

By structural knowledge is meant all knowledge of a generic kind,

e.g. the transition mechanism.

The structural knowledge of an existing object system is usually

gained through a process of observation, hypothesizing and

verifying hypotheses. When dealing with the design of an

information system, the acquisition of the structural knowledge

is done during the requirements engineering phase.

By behavioural knowledge is meant all knowledge of a factual

kind, e.g. the state of the system at some moment.

We take the position that the only observable behavioural

knowledge is the sequence of output stimuli of the object system.

All other behavioural knowledge is deduced from the structural

knowledge and the observations. Therefore one has to make sure in

the requirements engineering phase that the information, which

the information system has to provide, is deducible from the

knowledge that can be acquired. The design of the mechanisms for

gathering observations and disseminating output messages is part

of the next phase, the functional design of the information

system.

In section 2 we define a discrete dynamic system formally. Here

we also consider the aggregation of a set of discrete dynamic

systems into a new one. Section 3 discusses the knowledge one

could have of discrete dynamic systems. Section 4 discusses some

typical c14sses of discrete dynamic systems. In section 5 we

consider the expression of the knowledge of a dds using first

order languages. Finally, in section 6, we present some examples.

4

2. Definition of discrete dynam!c systems.

The time domain of the systems we consider will be denoted by

R+ , the set of non-negative real numbers.

Definition 2.1

A discrete dynamic system (dds) is a 7-tuple

where

<' S, M, A, R, T, I, E >

S: a set called the state space.

A: a set called the action space.

R: a set called the reaction space.

M: a pair of function-valued functions <MT, MR> called

the lIIotor where

MT E P-(A) -+ (S -+ S) the transition function,

MR E P (A) -+ (S -+ PeR» the response function.

T: a function, T E P (R).... P (A* R+), the transfer function

such that 3 E >0: V B C R : V <a,d> E T(B) : d > E ,

where d is a delay time.

l: an element of S , called the initial state.

E: a subset of A* R+ - " such that V t c:- JR+:

II {<a,t' '> I <a, t' > E E A t" ~ t} is finite,

and V <a, t> E E : t > 0

this set is called the external event set.

A mechanical appreciation of a dds is as follows.

From the environment actions are imposed upon the system. An

action occuring at a particular moment is called an event. Note

that there may be more events at the same time. At time 0 adds

is in its initial state and it will stay there until the first

moment at which there is an external event.

5

Then the .otor is activated and the system will move

instantaneously to the ·new.state. The output, which is a set of

reactions, is sent to the environment, and the transfer

function determines a set of new events called feedback events.

Their time stamps are relative to the time of the transition,

i.e. these feedback events are added to the agenda of events

with a time stamp that is the sum of the actual time and the

delay time. Then the system stays in its new state until the

clock arrives at the next moment for which there are events,

external or feedback events. Since the delay times of the feed­

back events are bounded from 0 and since in each finite time

interval there are at most finitely many external events, adds

has in each time interval at most finitely many transitions.

Formally the behaviour of a dds is described as follows.

Definition 2.2

Let <S, M, A, R, T, I, E> be adds.

X E IN ... lR+--;

(Note: instead

IN is the set of

of T (n) we will

natural numbers

also write --Tn)

Tn is the time-stamp belonging to the n-th time in

the life of the dds that the dds is, or will be, activated.

ct E lR+'" P (A)

ct (t) is the set of actions, exercised upon the dds at time t.

4> E lR+'" P (A * lR~
4> (t) is the agenda of events, both external events and

feed-back events, to be fed to the dds after t.

6

a t= JR+ -+ S

a is called the process of the dds.

a (t) denotes the state of the dds at time t.

p E 1'+ p (R) ____ _

p (t)is the set of reactions the dds gives to the

at time t.

such that : '0 =0, a('0)=0, ~ ('0)= E, a ('0)= I , p('0)= 0 ;

and for n E:iN :

min { t I 3 a E A : (a,t> E

{a I (a, 'n+1> E ~ ('n)}

{<a,t)

(:J d

a ('n+1)= MT

p ('n+1)= MR

(t:·> 'n+1 " l(a,t>

<a,d> E T (p ('n+1»"

(a ('n+1» (a ('n»

(a ('n+1» (a ('n»

and for t E 1'+

a (t)= 0 if, (:3 n E N t= Tn)

~ (t)= ~ (.n) if 'n ;;; t < Tn+l

a (t)= a ('n) if 'n
;;; t < 'n+1

p (t)= 0 if -, (:l n E N t= ,) n

~ (

'n+1 +d = t)};

Up to now we considered only one dds interacting with its

environment. Often we encounter several interacting dss's. The

interactions are modeled as transfers of reactions from one dds

to another. Of course there may be communication with the

environments also. An example of interacting dds's is an object

system with its information syste~

It also appears often useful to decompose a large dds into

several interacting dds's.

We will consider a construction to build an aggregate dds from a

set of dds's and a communication function that describes the

interactions.

7

,. ,

Definition 2.3

Let F be a dds-valued function with a finite domain J.

Let F (j) be denoted by

Let C be a function-valued function with domain J * J

such that V G,j> E J * J C (i,j) E P (Ri) ... P (Aj* JR+)

A C (i,j) (0)= 0 ; Cjj = Tj ;

(Note: we will write Cij instead of C (i,j)).

The aggregate dds with respect to F and C is

<5, M, A, R, T, I, E>

such that:

5 {s I s is a function on J and V jE J: s(j)E 5j }

R {<r,j > I j E JAr E Rj }

I a function on J and V j' <:: J< t·· (j:) = -I' .,'
J

E = { «a,j>,t> I j EJ A <a,t> E Ej }

M <MT, MR>, such that if Bj
then for all s E 5 :

{al <a,j> E B for all BeA},

MT (B) (s) = s' where s' is a function on J and

V jE J : s' (j) = MTj (Bj) (s(j)), and

MR (B) (s) = {<r,j>·I· j EJ ArE MRj (Bj)(s(j))}

T a function, TE P (R) ... P (A * JR+) such that

if Hj = {r I <r, j > E H}

for all HeR, then

T (H) = { «a, j> , t> I j E J A3 i E J

8

• It is easy to verify that an aggregate dds is indeed a dds. The

function C is called the co .. unication function. It generates

events with a time stamp that is relative to the time of the

transition, i.e. these events are added to the respective agendas

of events with a time stamp that is the sum of the actual time

and the relative time (which must be considered as a, possibly

very small, delay time).

If we want to decompose a dds we go the other way round, i.e. we

first identify J and then we define F.

If we want to consider a component-dds in isolation then we have

to know next to its external events also the events it will

receive from the other components and consider the union of these

sets as the external event set for the dds.

The behaviour functions tT,a ,¢ ,cr and-p) of a component dds are

denoted by indexing the function name with j. Thus, e.g. CTj

denotes the T-c-function of component ddsj"

As a final remark we note that the framework is also applicable

for a discrete time domain, i.e. N , because N c m.+ •

9

~ Knowledge of ~ discrete dynamic system

The structure and behaviour of a discrete dynamic system are

conceptualized according to the SMARTIE-framework. The

specifications of the components of <8, M, A, R, T, I, E> define

the structure and behaviour of the dds. We call these

specifications the knowledge we have about the dds.

Usually the specifications are incomplete, meaning that there is

only partial knowledge of (components of) the dds. For example,

the component E will rarely be known in practice.

We distinguish between two kinds of knowledge, structural

knowledge and behavioural knowledge.

By structural knowledge we mean all knowledge of a generic kind.

In accordance with definition 2.1 this is the specification of

the components 8, M, A, Rand T.

All knowledge of a factual kind is called behavioural knowledge.

In accordance with definition 2.2 this is the set of

specifications of the functions et , ~ ,a and p •

Note that the behavioural knowledge is completely determined by,

and thus can be derived from, the structural knowledge and the

specifications of I and E. In practice however, I and E are

rarely known, and the only way of acquiring behavioural knowledge

is by observing the behaviour of the dds.

We define the behavioural knowledge obtained by observing the

behaviour of a dds up to time t as a function KOB with JR+ as

domain, and for each t E JR+:

KOB (t)= < IA (t), l: (t), lP (t» , where

IA (t)c {et (q) q <t } ,

E (t)e {a (q) q <t } ,

lP (tk {p (q) q <t }

We take the position that only p is observable, and that et and

a may be deduced from the observed p together with the

available structural knowledge. With regard to ~ , we note that

as far as the feedback events are concerned, ~ may also be

deduced from p and the available structural knowledge.

10

Structural knowledgj can be acquired in two different ways.

Either there. is somehow a priori knowledge available (e.g.

because the system is designed), or the structural knowledge is

deduced from observed behaviour through a process of

hypothesizing and verifying of hypotheses.

A system ddsl is said to be structurally identical to a system

dds2 if the structural knowledge of ddsl equals the structural

knowledge of dds2.

A system dds2 is said to be behaviourally identical to a system

ddsl if Pi = P2

A system dds2 is said to be identical to a system ddsl if it is

both structurally and behaviourally identical to ddsl.

Note, that to know that two systems are identical does not imply

that there is complete knowledge of the components of

<S, M, A, R, T, I, E>.

A system dds2 that is identical to a system ddsl can be used as a

.odel for the system ddsl. This means that one can acquire

knowledge about ddsl by observing the behaviour of dds2.

If the system dds2 consists of symbolic structures (symbolizing

concepts that refer to a physical world), we call it a conceptual

syste ... Consequently, dds2 is called a conceptual model of ddsl.

Suitable and well-known materialization media for symbolic

structures are the human brains, digital electronic circuits and

pencil and paper.

If dds2 is a conceptual system, and if it is structurally

identical to a system ddsl, then dds2 embodies the structural

knowledge of ddsl. A well-known use of systems of the type of

dds2 can be found in discrete simulation. The system dds2 is then

called a simulation .odel of ddsl. Any behaviour of a system that

is structurally identical to ddsl can be simulated through suited

choices of the components I and E of dds2.

1 1

. :. - ~' ""

,. '_', _._,,.,:>._....,,..;_c'-_~~._,_'-. _"C'>';;'-""". __ ~_ ·_cc"-__ -"-~_-"":· ,,_ . -

~ Some classes of discrete dynamic systell.S.

A dds is called a set-valued-state-systea if there is some

universe of elements U such that 8 = P (U)

Most of the systems we consider are set-valued-state-systems.

A dds is called an autonomous system if it satisfies the next

conditions

1) 3 a E A

Z) VB c R

E {(a

B " 0

l)}

T (B) " 0

A clock is a perfect example of an autonomous system. A

specification will be given in section 6.

A dds is called a slave system if it satisfies the next

conditions

1) A E 8

Z) V s E 8 V Be A MT (B) (s) s /:, B, where /:,

is the symmetric set difference

3) V HeR : T (H) = 0

Thus a slave system is a system that only maintains a state, such

that state maintenance consists of direct insertion and deletion

of elements.

We consider a pair of systems dds1 and ddsZ. The system dds1 is

any discrete dynamic system. The system ddsZ is a conceptual

system.

We call ddsZ an information system of dds1, if the next condition

is satisfied :

there is a correspondence function y : 8 1 '" 8 Z' and

there is a delay function CO : JR+ ... JR+ , such that

V t E JR+: Y (01 (t)) = 0z (t + OCt)), and

1Z

The system dds2 usually is called the object system of ddsl.

We distinguish between three kinds of information systems, named

passive monitoring systems, active monitoring systems and control

systems respectively.

An information system is called a passive monitoring system if

the next conditions are met :

object system information system

L-__ d_d_s_l ____ ~---'~---C-l-2------~·IL ____ d_d_S_2 __ ~
1) dds2 is a slave system

VB cAl: MRI (B)(s)::::l (MT I (B)(s) t; s) ;

3) V t E 1R+: VH c Rl : C12 (H)= {<r, o(t» IrE H}.

Condition 2 expresses that every state change of ddsl is made

observable to dds2 by adding it to the response of ddsl.

Condition 3 expresses that every such state change is directly

supplied as input to dds2.

A passive monitoring system thus keeps track of the process of

the object system. We say that dds2 is able to postdict the

system ddsl, by which we mean that dds2 can provide information

about the past process of ddsl. All registrative information

systems are' passive monitoring systems.

Dependent on the specification of 0 , one may distinguish two

special cases

13

1) <I (t) d + (t - :\2 (t»,

where \ is an additional behaviour function, defined as

\ E :iR-I-c'+:R-I-,

\f t E :R+:V n EN: Tn :;; t < Tn+l -+ \ (t) = Tn'

thus \ denotes the time stamp belonging to the most

recent activation of the dds,

and

where d is'a delay constant.

This case is called batch monitoring: only at particular

moments T2 (n) dds2 undergoes a state change, such that

the new state corresponds to the last state of ddsl,

i.e. y (G1 (T2 (n» = G2 (T2 (n) + d).

2) <I (q= d,

where d ,is a, usually small, constant.

This case is called real-time .onitoring.

An information system is called an active monitoring system if

the function C12 is specified as follows :

v s E Sl : VB E Ai : C12 (MR1(B) (s» = {<a,<I (t»1 aEB}

expressing that copies of the actions imposed upon ddsl are

passed to dds2.

Such a system is not only able to postdict the object system,

but also to predict it. An information system that computes the

trajectory of a heavenly body is an example of an active

monitoring system.

A system dds2 is called a control system of a system ddsl if it

is a monitoring system (either active or passive) and if C21 is

specified as f9,I~ows
, ;I~;"-;-'-

14

object system information system

ddsl dds2

Example of contro1 systems are production control systems,

inventory control systems and airline reservations systems.

15

~ Knowledge expression

In this section a way of specifying the components of

<S, M, A, R, T, I, E> is discussed.

Several disciplines deal with state spaces.

In control theory for instance, a state space is usually a linear

space. In database theory a state space is expressed using a

datamodel such as the relational model.

A promising approach to the representation of both Sand M is

offered by first order languages. In fact most data modeling

languages can be considered as a restricted form of a first order

language (fol) with some sugared syntax (cf. [Re82j).

We will consider here the expressive power of a fol for

describing state spaces and transition mechanisms. We adopt a

standard approach for defining fol's from [ChLe73)] (see also

[LI84]), and start with a syntax definition.

Alphabet

- constants U

- variables X

- n-ary function symbols Fn ,n E {l,2, ••• }

- n-ary predicate symbols n E (1,2, ••• }

- quantifiers : 3 , V

- logical operators : v A , ;~
relational operators ~

- arithmetic operators +

- punctuation symbols: (,

Terms

;:;

*

)

- constants

- if t 1 ' ••• ,

f (t l , ... ,

and variables are terms;

tn are terms and f E FD

t n) is a term;

- if tl and t2 are terms then

<

?-'~

> =

div, mod

,

then

(t 1+t2), (t 1-t2), (t 1*t2), (t 1divt 2), (t1modt 2) are te~ms

16

Atoms

- the symbols 8:' and ~

- if t 1> ••• , tn are terms and p E pn then

p (t 1 , ••• , t n) is an atom;

- if t1 and t2 are terms then (t 1=t 2), (t1/t2)

(t 1<t2), (t1 t 2), (t 1>t2), (t 1 ~ t 2) are atoms

Formulas

- if Q is an atom then Q is a formula ;

- if Q and R are formulas then (Q A R), (Q v, R),

(,Q), (Q -+,R) and (Q ~ R) are formulas;

- if Q is a formula and x is a variable then

(V x : Q) and (3 x : Q) are formulas.

For simplicity we assume that we restrict interpretations of a

fol to cases where the domain of the interpretation is the set of

integers. Furthermore, we assume that for all interpretations the

truth values of 8. and <!> are true and false respectively.

Interpretations can be defined as formulated in [ChLe73]. With

this choice we have to represent objects in the real world by

integers. Sometimes it is not useful to consider arithmetic

operations on integers that are used as object identifiers,

however it is syntactically correct. We will restrict our

attention to" inte,pretations where the relational and arithmetic

operators have their usual meaning.

To demonstrate the power and weakness of a fol we give some

examples.

Example 1.

Consider a state space described by the relational model. Suppose

there are two relations P and Q with attribute sets {A,B} and

{A,B,C} respectively. Further let {A} be a key for P and {A,C}

for Q. Finally assume that referential integrity is required from

Q to P according to attribute A, i.e. each A-value of a tuple in

Q must occur in the set of A-values of all tuples in P.

17

We may express this state space using predicate symbols P, Q, A,

Band C and some set of vari"bles X including x, y, w, z and u.

The scheme for this state space is expressed by the following

c.lauses

-Vx:Vy: p (x,y) A(x) A B(y)

(note that this clause can be expressed by two Horn clauses)

-vx:Vy v z : Q (x,y,z) A(x)A B(y) A C(z).

Now the relations are defined. We continue with the key

constraints.

V x: V y: V z: P(x,y) A P(x,z).... y=z

V x: V y: V w: V z: Q(x,y,z) A Q(x,w,z,) '-> y=w.

The referential integrity is defined by

v·x: V y: V z: p(x,y,z) ... 3u: Q(x,u).

In Horn clauses we could formulate the last formula using a

Skolem function symbol :

Vx: V y: Vz: p(x,y,z) ... Q(x,f (x,y,z)).

Example 2.

Suppose we want to express the summation of a function f over

some set of elements of U satisfying a predicate p.

Informally this could be written as :

Y
L

z=x
x (p(z)). f(z) where X is the

characteristic function, i.e. X (true) = 1 and X (false) =0.

We introduce in F2 the function symbol Z and we postulate:

18

V x: V y: x > y ~ L (X,y) = 0

A (X '" Y A p(X) ~): (x,y)=f(x)+ L (x+l,y»

A (X "'- Y A 1 p(X)~ L (x,y)= L (x+l,y».

If we restrict ourselves to first order languages then we have to

define summation for each function f and each predicate p

separately, in a similar way. However what we usually need is a

generic function L that has two extra arguments: a function f

and a predicate p.

This is only possible if we allow quantification over Fn and Pn

(n E: {l,2, ••• }). In that case we could postulate

Vf E Fl: V p E: pI: V x E: u: V y E: U:

x :> y ~ L (f,p,x,y) =0

A «x '" y A p(x» ~ L (f,p,x,y)=f(x)+ L (f ,p,x+l ,y»

A «x '" y A , p(x» ~ L (f,p,x,y)= l: (f,p,x+l,y».

We may simulate this in a first order language .~y introducing two

extra variables i and j, a new function symbol f E F2 and a new

predicate symbol p E: p2. Further L has to be an element of F4.

Then we define:

V i: V j: V x: V y:

x > y ~ L (i,j,x,y)=o

A «x '" y A P (j ,x» ~ L (i ,j ,x,y)= f (i,x)+ l: (i,j ,x+l,y»

A «x '"
-y A 'p (j ,x» ~ l: (i,j,x,y)= L (i,j ,x+l,y».

If we want to use l: for a special func tion f and a predicate p

then we have to add for some values ul ' u2 E: U:

V x f(x) f (ul'x)

V x p(x) p (u2'x).

Now we are allowed to use l: (ul'u2,a,b) in other formulas, where

a and b are constants or variables.

To overcome the problems sketched above we will extend our

language with a construct for summation by adding to the

definition of terms :

19

. , -'--- ,--

for a variable x, a formula Q and a term t

E x: Q t

is also a term.

The meaning of such a term is the integer value that is the sum

of all values of t obtained by substituting for x a constant such

that Q has the val ue true.

Specification of ~A and!.

A state space is characterized by a set of closed formulas

[cf. L184]. This set is called the scheme of the state space. A

state is a set of ground atoas i.e. predicate symbols with

constants as arguments. Recall that the domain of interpretation

is the set of integers. All the ground atoms in a state are given

the value true, while all ground atoms not contained in the state

are given the value false. This evaluation is called the closed

world assumption [cf. L184, Re84]. All atoms of the form tl r t2

where r is a relational operator and tl and t2 are terms with

constants substituted for variables are evaluated according to

the rules of arithmetic.

Thus each state defines a truth evaluation for all ground atoms

and hence for all closed formulas. If all formulas of a scheme

evaluate to true for a given state, then the state is called

consistent with the scheme. We use ~he notation s cons sch to

express that the state s is consistent with scheme sch.

A state space S characterized by a scheme sch is defined by

S = { sis is a state and s cons sch}

An action space and a reaction space are described as sets of

ground atoms from the same language. Often it is advisable to use

different predicate symbols for the three spaces.

Specification ~ ~ and .!..

We will consider a construction to define sets of ground atoms

20

where

p is a predicate symbol of pll. xl' xn are variables. g is

set of ground atoms and Q is a formula having at most xl' x n
as free variables.

It is the set of all ground atoms with predicate symbol p and

constants al' an.such that the formula that is obtained by

substituting a 1 an for xl' xn in Q evaluates to true with

respect to the set of ground atoms g. Recall that we consider

only interpretations where all ground atoms in g have the value

true and all ground atoms not in g have the value false.

The general form of the definition of MT(B)(s) is

MT (B) (s) = tift cons sch

= s otherwise

where t is a finite union of sets of ground atoms constructed in

the way decribed above with g = suB.

For s E Sand B C A we define MR(B)(s) also as a finite union of

sets of the form given above with g = s v B.

Finally T is constructed in a similar way by sets of the form

{ < p (x 1 x n). t > I g I Q }

where only xl xn and t may occur as free variables in Q. and

g is the argument of the function T.

h Examples.

Example 1: Stepping robots

Consider a grid. defined as a set of grid points :

((x.y) I x E :N AyE :N A 0 ~ X < mAO :; y < n }

On this grid k robots are located (k < m.n).

No two robots can be located at the same point at any time.

Robots can move across the grid by making moves from one point to

21

;.'f\ 'tU:

another. If thereare.segeral "moves for a robot to be performed

at the same time these~t~>-aci;.~~.t"_ted into one new move. Moves

can only be performed ifth"!!'"'reSuLting placement of robots is

feasible.

Every robot remembers its not performed moves, and will get

another chance to perform them.

The robots are triggered by external events to make moves and

also by unperformed moves from the past.

This situation can be viewed as a dds. The structural knowledge

is expressed below.

s
The fact that robot r is located at point (x,y) is expressed by

the atom pos (r,x,y) where pos is a predicate symbol in p3.

A state is a set of such atoms.

The scheme is de£ined by

Vr:vx:vy pos (r, x, y)'" 1 :;; r:;; k A 0:;; X < m A

0 :;; y < n

V v V w V x V y pos (v,x,y) A pos (w,x,y) ... v = w

V r V w V x V y V z pos (r,w,x) A pos (r,y,z)

... w yA X = Z

V r 3 x 3 y : 1 :;; r ~ k ... pos (r,x,y).

A

An elementary step is called a move and denoted by move (r,i,j)

where r denotes a robot and i and j the movements in the

directons of the first and second coordinate respectively.

Let A be defined by :

A = { move (r,i,j) I 1:;; r:;; k Ai> 0 j > 0 }.

The steps will be made modulo m for the first coordinate and

modulo n for the second one.

R

The reaction space is equal to the action space, i.e. R A.

22

K

The motor of the dds, the pair <MT, MR>, is defined using the

following abbreviations

h (r) 1: i e (1: j move (r, i ,j) i)

and

v (r) = 1: t e (1: j move (r,i,j) j)

Note that h accumulates moves in the direction of the first

coordinate and v in de second one.

Consider a set B c A and a state s that is consistent with the

scheme. Define a set of ground atoms t by :

t = { pos (r;a,b) I suB 1 ~ r ~; kA :3 x J y :3 w

pos (r,x,y) A h (r) w Av (r) = z A

a = (x+w) mod m A b (y+z) mod n }.

If t and the scheme are consistent then

MT(B)(s) = t and MR(B)(s) = 0
else

MT(B)(S) = sand MR(B)(S) = {move (r,w,z)

w h (r) mod m A z = v (r) mod n A w f- 0 Az f- o}

T

Finally we define T. We offer three possibilities.

First we consider the situation that there is no feedback; i.e

'<I HeR: T(H) = 0. Hence unperformed moves are discarded.

Secondly we consider a function T that produces feedback events

for all not performed moves with the same time delay d, i.e.

T(H) = { < move (r,w,z) , d > I H I move (r,w,z) }.

3

Note that only if there are other events occurring before these

feedback events it is possible that these feedback events lead to

performing moves.

Thirdly we consider a function T that produces feedback events as

23

z

was done in the second case, but now the time delays of these

events will be different. The time delays assigned are

proportional to the robot numbers, i.e.

T(H) = { < move (r,w,z) , r.d > I H I move (r,w,z) }

Note that this definition of T makes it possible that unperformed

moves are performed at a future point in time without external

events occurring in the mean time leading to robot moves.

Example 2: Clock

A simple example of an autonomous system, the behaviour of the

arm indicating the seconds of a clock, is specified as follows :

s
The scheme is denoted by :

V x time (x) 0;;; X A X < 60

V x time (x) A time (y)... x = y.

Hence there is only one ground atom in each state that indicates

time.

A

The action space consists of all ground atoms with predicate name

step

A = { step (x) I 8 }.

Each step (x) denotes a mOve forward of the arm with x seconds

modulo 60.

R

The reaction space consists of only one reaction

R = {done (1) }.

ItT

For B -'C A and s EO S :

MT(B)(s) {time (x) I suB I 3 Y : time (y) A

x = «1: i : step (i) : i) + y) mod 60 }.

Hence all steps are accumulated.

24

HR

For B C A and s E S :

MR(B)(S) = { done (1) I s V B I step (1) }

if and only if step (1) was given the clock will give a reaction.

T

Every reaction of the type done (1) leads to a feedback event of

action type step (1) precisely one second later

T ({ done (1) }) = { < step (1) , 1 > }

If we define the initial state to be: I = time (0), the clock may

be started by any action of the type step (1).

25

References

[ChLe73]

[L184]

[MyWo80]

[Re84]

[SoKu8S]

[StRo8S]

Chang, C.L., Lee, R.C.T.,

Symbolic Logic and Mechanical Theorem Proving,

Academic Press 1973.

Lloyd, J.W.,

Foundations of Logic Programming,

Springer-Verlag 1984.

Mylopoulos, J., Wong, R.K.T.,

Some features of the TAXIS model,

sixt into conf. on Very Large Data Bases,

october 1980

Reiter, R.,

Towards a Logical Reconstruction of Relational

Database,

in : Brodie, M.L., Mylopoulos, J., Schmidt, J.W.,

(eds.) On Conceptual Modeling, Springer-Verlag,

NY, 1984

Solvberg, A, Kung, C.H.,

On structural and behavioural modeling

of reality,

in

[StMe85]

Studer, R., Rorndasch, A.,

Modeling Static and Dynamic Aspects of

Information Systems,

in :

[StMe8S]

26

[StMe85 J

[VeFu85]

[Ze82]

Steel jr., t.B., Meersman, R. (eds),

Proc. IFIP TC 2.6 WC on Database Semantics

(DS - 1),

North-Holland Publ., 1985

Veloso, P.A.S., Furtado, A.L.,

Towards simpler and yet complete formal

specifications,

in :

Sernadas, A., Bubenko jr., J., Olive, A. (eds),

Information Systems Theoretical and Formal

Aspects, Elseviers Science Publ., Amsterdam, 1985

Zeigler, B.P.

System Theoretic Foundations of Modeling and Simulation

in : Elzas, M.S., Deren, T.I., Zeigler B.P.,

(eds.) Simulation and Model based Methodologies :

an Integrative View, Nato ASI Series, Springer­

Verlag 1982.

27

. .
", ·_-' -~ __ ;:-,,~,,_ ,; ... "- _~_.".r"~ ", .'_-"'.' __ .:_~

COMPUTING SCIENCE NOTES

In this series appeared

Nr.

85/01

85/02

85/03

85/04

86/01

86/02

86/03

86/04

86/05

Author(s)

R. H. Mak

\"I.M.C.J. van Overveld

W.J.M. Lemrnens

T. Verhoeff

H.M.J.L. Schols

R. Koymans

G.A. Bussing

K.M. van Hee

M. Voorhoeve

Rob Hoogerwoord

G.J. Houben

J. Paredaens

K.M. van Hee

Jan L.G. Dietz

Kees M. van-Hee

Title

The Formal Specification and

Derivation of CMOS-circuits

On arithmetic operations with

M-aut-of-N-codes

Use of a Computer for Evaluation

of Flow Films

Delay insensitive Directed Trace

Structures Satisfy the Foam

Rubber Wrapper Postulate

Specifying Message Passing and

Real-time Systems

ELISA, A Language for Formal

Specification of Information

Systems

Some Reflections on the Implementation

of Trace Structures

The Partition of an Information

System in Several Parallel

Systems

A Framework for the Conceptual

Modeling of Discrete Dynamic

Systems

	1. Introduction
	2. Definition of discrete dynamic systems
	3. Knowledge of a discrete dynamic system
	4. Some classes of discrete dynamic systems
	5. Knowledge expression
	6. Examples
	References

