

A distributed spanning tree algorithm for topology-aware
networks
Citation for published version (APA):
Mooij, A. J., Goga, N., & Wesselink, J. W. (2003). A distributed spanning tree algorithm for topology-aware
networks. (Computer science reports; Vol. 0309). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2003

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/864801cc-68c8-4dc2-95a8-9daf626a88da

A Distributed Spanning Tree Algorithm
for Topology-Aware Networks

Arjan J. Mooij, Nicolae Goga, and Wieger Wesselink

Technische Universiteit Eindhoven
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract. A topology-aware network is a dynamic network in which the
nodes can detect whether locally topology changes occur. Many modern
networks, like IEEE 1394.1, are topology-aware networks. We present a
distributed algorithm for computing and maintaining an arbitrary span-
ning tree in such a topology-aware network. Although usually minimal
spanning trees are studied, in practice arbitrary spanning trees are often
sufficient. Since our algorithm is not involved in the detection of topology
changes, it performs better than the spanning tree algorithms in standards
like IEEE 802.1. Because reasoning about distributed algorithms is rather
tricky, we use a systematic approach to prove our algorithm.

1 Introduction

A spanning tree of a connected graph is a connected acyclic subgraph that con-
tains all the nodes of the graph. In the literature many algorithms are described for
computing spanning trees. However, most of these algorithms consider the com-
putation of the more specific minimum spanning trees. A minimum spanning tree
of a connected weighted graph is a minimum-weight spanning tree of the graph. In
many applications, it is sufficient to consider the weaker arbitrary spanning trees.

Such an application of arbitrary spanning trees can be found in (intercon-
nected) Local Area Networks (LANs). A LAN, sometimes called a bus, is a network
that interconnects a (usually) limited number of devices. To lift this limitation,
the LANs themselves can be interconnected by a special device called bridge.
It turns out to be useful to organize the LANs and bridges in a spanning tree,
since it defines a (unique) path between any two nodes, which is handsome for
e.g. routing messages between the LANs. Especially in case bridges can be added
and removed dynamically, a distributed algorithm to (automatically) maintain the
spanning tree is indispensable. Such algorithm is sometimes called self-configuring
in the sense that the algorithm maintains the spanning tree under additions and
removals of bridges.

Examples of this bridge concept for interconnecting LANs can be found in
the IEEE 802.1 MAC Bridge Standard and the upcoming IEEE 1394.1 Standard
for High Performance Serial Bus Bridges. The spanning tree algorithm1 in the

1 We studied this algorithm as a case study of the project “Improving the Quality of
Protocol Standards”, funded by the NWO under project number 016.023.015.

2

IEEE 1394.1 draft standard can (and is expected to) benefit from the IEEE 1394
standard feature that all devices on a bus are signalled whenever a device (e.g. a
bridge) is added to or removed from the bus. This feature can be used to detect
whether locally a topology change has occurred in the interconnected network by
the dynamic addition or removal of a bridge. Since the IEEE 802 standard does
not provide such feature, the spanning tree algorithm in the IEEE 802.1 standard
is also involved in the detection of topology changes in the network.

In this article we focus on networks in which nodes can locally detect whether
additions and removals of a connected edge have occurred. We call such network a
topology-aware network. An IEEE 1394.1 interconnected network can be mapped
on such network by representing bridges as nodes, and by representing the (phys-
ical) connection between two bridges as edges.

We present a distributed algorithm for computing and maintaining an arbi-
trary spanning tree in a topology-aware network in which each node has a unique
identity. The algorithm is not restricted to IEEE 1394.1 interconnected networks.
Since the algorithm does not have to deal with the detection of topology changes,
it performs better than the algorithm used in the IEEE 802.1 standard. Since
we developed the algorithm from scratch, it is simpler than the algorithm in the
IEEE 1394.1 draft standard. Since we consider arbitrary spanning trees, it is less
centralized than the minimum spanning tree algorithms in the literature.

We will pay much attention to the formalization of our algorithm. Our attempts
[1,2] to verify the spanning tree algorithm in the IEEE 1394.1 draft standard show
that the verification of this kind of algorithms is non-trivial. A full verification
using model-checking techniques (see [1]) turned out to be infeasible due to an
enormous state space. But using manual formal development techniques, at least
a variant of the algorithm could be proved (see [2]). Based on these experiences,
we decided to proof the correctness of our algorithm in a systematic manual way.

Section 2 presents a summary of the literature regarding spanning trees. Sec-
tion 3 describes our spanning tree algorithm for topology-aware networks in an
informal way, including an example. Section 4 complements Section 3 by presenting
an outline of a formal derivation of the algorithm, starting from its specification.
Partial correctness, stabilization and complexity are also addressed in this section.
Section 5 gives the conclusions.

2 Summary of the literature

In this section we summarize some literature regarding spanning tree algorithms.
There are some general requirements for the existence of distributed algorithms
for computing spanning trees. According to [3], it is possible to develop such min-
imum spanning tree algorithm for graphs in which the minimum spanning tree
is uniquely determined, and this is the case if all edge weights are distinct. [4]
even states that for graphs with neither distinct edge weights nor distinct node
identities, no such spanning tree algorithm exists that uses a bounded number of
messages. In what follows, we first discuss some algorithms for the two types of

3

spanning trees, and afterwards we discuss the implications for our algorithm.

Many of the algorithms for minimum spanning trees are based on one of the two
classical algorithms for computing spanning trees: Kruskal’s algorithm and Prim’s
algorithm (see e.g. [3,5]). Kruskal’s algorithm builds fragments of the spanning tree
which are themselves spanning trees. Initially each node is a single node fragment;
then the algorithm successively adds an edge with minimal weight that combines
two disjoint fragments.

In Prim’s algorithm a single tree is formed. Initially a root node is chosen; then
the algorithm successively adds an edge with minimal weight that extends the tree
with a node that is not in the tree. Prim’s algorithm has a more centralized nature
than Kruskal’s algorithm. Because in practice distributivity is a desired property,
Kruskal’s algorithm is usually preferred over Prim’s algorithm. Many distributed
spanning tree algorithms have been derived from Kruskal’s algorithm (e.g. [4,6]).

Many of the algorithms for arbitrary spanning trees are so-called self-stabilizing
algorithms (e.g. [7,8]). We will concentrate on the spanning tree algorithm in the
IEEE 802.1 standard, which is described in [8,9]. It is of special interest to us,
because it is used on a large scale in practice for interconnecting networks; and
thus it has the validation given by practice.

To compute (and maintain) the spanning tree, every few seconds each bridge
broadcasts its unique identity. One bridge is elected as the root of the tree, namely
the bridge with the minimal identity. Then the tree is constructed by including
for each bridge a shortest path to the root. In the case of ties, the bridge with
the smallest identity wins. Even after the spanning tree has been computed, the
algorithm continues to periodically send messages in order to detect topology
changes and to maintain the spanning tree.

The algorithm converges in time proportional to the diameter of the extended
LAN, and requires a small amount of memory per bridge and communications
bandwidth per LAN, independently of the size of the network. However, the actual
performance of the algorithm depends on (worst-case) parameters of the underly-
ing network. Some variants of this algorithm have been proposed in the literature
(e.g. [10,11]).

For our algorithm, we do not consider a weighted graph, and hence we need
to assume (and exploit) that all nodes have a unique identity. We will develop
an algorithm that is similar to the one used in the IEEE 802.1 standard, but
with a better performance regarding the number of messages and their size. Our
algorithm can also be considered as a variant of [10] such that it does not depend
on the maximum possible network size. We will present and prove our algorithm
in the next two sections.

3 The algorithm

In this section we present our distributed spanning tree algorithm for topology-
aware networks. The algorithm stabilizes if (during a sufficiently large period of

4

5

4

b a

c d

b a

c d

b a

c d

b a

c d
3

21

Fig. 1. Topology changes

time) no more topology changes occur. Since these topology changes can partition
the network, we extend the notion of a spanning tree to a spanning forest, i.e. a
(disjoint) collection of spanning trees.

We assume that the nodes in the network are computational units with a
unique identity, and that messages can be sent between neighbor nodes, i.e. nodes
that are directly connected by an edge. To that end we consider the edges as
buffered bidirectional first-in-first-out communication channels.

For simplicity reasons, we restrict the topology changes to additions and re-
movals of edges such that between any two nodes there is at most one edge, and
such that there are no self-loops. We expect that the algorithm can easily be ex-
tended for networks with self-loops and multiple edges, and for topology changes
like the addition and removal of nodes.

The nodes in a topology-aware network can detect whether locally topology
changes occur, i.e. additions or removals of connected edges. Each node eventually
detects such topology changes between the node and any other node, but inde-
pendently of that other node, and before the node uses the edge (if any) between
them for communication. When an edge is removed, all messages in the corre-
sponding bidirectional communication channel (and buffers) are removed. Similar
assumptions can also be found in other papers (e.g. [6,12]), but usually there are
some subtle differences.

To get an idea of the potential of the topology changes, we briefly consider
them using the example networks in Figure 1. These networks contain the four
nodes a, b, c and d. The edges in the networks are represented by lines between
the nodes, and the edges in the spanning forests are represented by arrows from
nodes to their parent node (if any).

If an edge is added to the network, it might be necessary to extend the forest;
if this is necessary it suffices to extend the forest with that edge (see cases 1 and
2). Removal of an edge from the network that is no part of the forest does not
involve a change in the forest (see case 3). Removal of an edge that is a part of
the forest involves removing that edge from the forest, therewith splitting a tree
into two trees (see case 4). However, if these two trees are in the same component
of the network, the forest must be extended (see case 5). Note that nodes a and
b cannot locally detect whether the removal of the edge between nodes a and b is
a case 4 or a case 5 removal (see the dashed lines). In general this also holds for
the addition of an edge.

5

Although it turns out to be relatively simple to develop an algorithm that
maintains a spanning forest as long as the topology changes are restricted to addi-
tions of edges, it becomes far more complicated if edges can also be removed. This
turns out to be a common problem in spanning tree algorithms for “dynamic”
topologies, e.g. [10,6].

We define a spanning forest on a network as a directed subgraph of the network
in which all nodes are contained, in which each node has at most one parent, in
which there are no cycles, and in which each two connected nodes in the network
belong to the same tree in the forest. This specification of a spanning forest can
be expressed more locally (see also Section 4.1) in terms of the following three
local variables per node v:

– parent.v of type node identity extended with a special element⊥. This variable
is used to ensure that each node has at most one parent in the directed sub-
graph, and to identify roots in the directed subgraph. It indicates the neighbor
(if any) of the node that is its direct parent in the directed subgraph. In case
a node has no parent, i.e. it is a root in the directed subgraph, this variable
has the special value ⊥.

– dist.v of type natural. This variable is used to ensure that the directed sub-
graph (in which each node has at most one parent) is a forest (i.e. it contains
no cycles) by requiring dist.(parent.v) < dist.v for non-root nodes v. Then
we could derive (using the transitivity of <) the contradiction dist.v < dist.v
for all nodes v in a cycle; so there are no cycles. In our algorithm, dist.v can
even be interpreted as the distance to the root of the tree.

– root.v of type node identity. This variable is used to ensure that the forest is
spanning, i.e. any two neighbor nodes belong to the same tree in the forest.
To that end we assign unique identities to the trees in the forest. Using that
each node has a unique identity we choose to identify the trees by the identity
of their one-and-only root-node. So we require root.v = v for each root-node
v of a tree, and root.v = root.w for each two neighbor nodes v and w in the
network.

Our algorithm mainly consists of two parts: a basic algorithm and a removal
algorithm. The basic algorithm is a (relatively simple) local algorithm that main-
tains a spanning forest as long as the topology changes are restricted to the ad-
dition of edges. Upon removal of an edge, the removal algorithm intervenes such
that afterwards the basic algorithm can again behave correctly.

In [12] a similar algorithm structure is proposed, namely to use a basic algo-
rithm for static networks and requiring that upon each topology change a reset
procedure is started. Exploiting the specifics of our application, we use a basic
algorithm that can deal with at least the edge additions, and hence we only start
such reset procedure in some specific edge removal cases.

In the coming sections we first describe the basic algorithm and afterwards we
extend it with the removal algorithm.

6

3.1 Basic algorithm

The basic algorithm has to maintain a spanning forest as long as no edges are
removed. To that end neighbor nodes will send each other so-called M-messages
(for normal Maintenance of the spanning forest) containing their (root, dist) value.
Upon receival of such message (r, d) from node w by node v, node v can decide to
assign (parent.v, root.v, dist.v) the value (w, r, d + 1) such that node w becomes
its parent. To guarantee that the algorithm will stabilize, this assignment will
only be performed if the receiving node’s (root, dist) value will really decrease, i.e.
its root becomes smaller, or its root remains equal and its dist becomes smaller.
Whenever a node changes its (root, dist) value, it will send an M-message to its
neighbors.

We assume that initially the network and the spanning forest contain no edges,
so each node is a root-node and for each node v we have parent.v, root.v, dist.v =⊥
, v, 0. During execution of the algorithm edges can be added. When an edge has
been added, the nodes that are connected to that edge will be signalled by the
topology-aware network. This signalling of a node must eventually result in the
node sending an M-message over the edge to start the algorithm over the edge.
So we obtain the following basic algorithm:

do forever
[] 〈(∃ arrived M-message from w) ∧ (no topology change with node w has occurred) →

receive the oldest M-message (r, d) from neighbor w〉
if (r, d + 1) < (root.v, dist.v) then

parent.v, root.v, dist.v := w, r, d + 1
send an M-message (root.v, dist.v) to all neighbors except w

else skip fi

[] a neighbor w has been connected →
send an M-message (root.v, dist.v) to w

od

If two actions are surrounded by a pair 〈 and 〉, these actions must be executed
as a single atomic action. Note that a node only becomes active upon an event
like an arriving M-message or a topology change.

To improve the performance of the algorithm, and to keep the buffers of the
incoming M-messages small, all M-messages from a node except the most recent
message may be removed. Note that the (root, dist) value of a node never increases,
and that handling an arrived M-message results in a decrease of this value or a
decrease in the number of messages. Hence this algorithm stabilizes if (during a
sufficiently large period of time) no more topology changes occur. We will discuss
this in more detail in section 4.1.

3.2 Removal algorithm

In this section we extend the set of topology changes that we consider with the
removal of edges. We generalize the procedure for handling the addition of an edge
as described above, such that it can handle a mixture of additions and removals
of an edge between two nodes. In this way it remains sufficient to detect whether
at least one topology change has occurred between the node and another node, as

7

long as it can also be detected whether there is currently an edge between them.
So it is not necessary to detect each individual topology change.

Only when a node has handled all topology changes between the node and
another node, the node may use the edge (if any) between them for communication.
In particular, if an edge has been removed, attempts to send or receive messages
via the edge must be ignored.

Upon a (physical) topology change between two nodes, all messages between
those nodes are automatically removed. When the nodes handle a topology change,
they must ensure that the edge between them is not in the spanning forest. If there
is currently an edge between the two nodes, the nodes must send an M-message to
each other to (re-)start the algorithm over the edge. So we extend the algorithm
with:

[] topology changes have occurred between nodes v and w →
“ensure that w is not the parent of v”
send an M-message (root.v, dist.v) to w

Then we continue with “ensure that w is not the parent of v”. If w is currently
the parent of node v, the node must find another suitable parent or it must become
a root-node. If the node “knows” (e.g. by storing the last arrived M-message per
neighbor) a neighbor with a smaller (root, dist), the node can restore the parent
relation by updating its (parent, root, dist) value such that the neighbor becomes
its parent, while maintaining the descendingness of its (root, dist) value. If a node
must become a root-node, it must increase its (root, dist) value to (v, 0), which
potentially endangers stabilization. Below we will describe this case in more detail;
so we obtain:

“ensure that w is not the parent of v” ≡
if w 6= parent.v →

skip
[] 〈(∃ neighbor u : u 6= w ∧ (root.u, dist.u) < (root.v, dist.v)) →

choose such neighbor u
parent.v, root.v, dist.v := u, root.u, dist.u + 1〉
send an M-message (root.v, dist.v) to all neighbors except u, w

[] w = parent.v →
start removal algorithm

fi

If a node must become a root-node, it must increase its (root, dist) value. This
turns out to be allowed (see also section 4.2) if:

– all neighbors will send an M-message to the node;
– there are no children of the node; and
– all messages that were previously sent by the node have been removed.

In particular, all current children of the node must ensure that this node is
not their parent. This recursive behavior leads to a removal algorithm that has a
more global nature than the basic algorithm.

Recall that stabilization of the basic algorithm depends on the fact that the
(root, dist) value is descending as long as there are no topology changes. To main-
tain stabilization under increasing (root, dist) values, such increase is only allowed
in a terminating algorithm that is initiated upon handling a topology change. Since
the removal algorithm is initiated upon handling a topology change, what remains

8

is to show termination. We will deal with this after describing the algorithm.

One may wonder whether handling the removal of an edge can also be done
using a local algorithm (like the basic algorithm). This turns out to be compli-
cated without seriously endangering stabilization. Global behavior related to the
removal of an edge that is in the spanning tree also occurs in algorithms like [6]
(contributed to inconsistent identification of the trees) and [8] (contributed to root
values that are nodes which are not in the tree).

If a node must become a root-node, it starts the removal algorithm by sending
an R-message (for starting the Removal algorithm) to all non-parent neighbors.
Then it waits to receive an ER-message (for indicating the End of the Removal
algorithm) from all non-parent neighbors, indicating that the node can safely in-
crease its (root, dist) value according to that node. After increasing its (root, dist)
value, the basic algorithm must be restarted by sending an M-message to all neigh-
bors. Thus we obtain:

start removal algorithm ≡
send R-message to all neighbors except w
receive an ER-message from all neighbors except w
parent.v, root.v, dist.v :=⊥, v, 0
send an M-message (root.v, dist.v) to all neighbors except w

If a node receives an R-message from its parent, it first completes handling the
currently handled event (if any), and then it starts a similar algorithm, which is
described below. If a node receives an R-message from a non-parent node, it delays
handling the currently handled event for handling the R-message. In particular it
must be able to handle such R-message when it is executing the removal algorithm
for its parent-node, even when the node has not yet handled a topology change
on the edge (which can then easily be combined).

[] ∃ an arrived R-message from neighbor w →
receive an R-message from w
“ensure that w is not the parent of v”
send an ER-message to w
send an M-message (root.v, dist.v) to neighbor w

Upon arrival of an R-message or an ER-message via an edge all previously
arrived M-messages via the edge must be removed. This enables the removal al-
gorithm to respond to these messages without being hindered by earlier arrived
M-messages. Removing older M-messages is not harmful for the correctness of the
algorithm, because both an R-message and an ER-message “promise” a new M-
message.

Note that the removal algorithm is executed within a finite tree, since the R-
messages are propagated over the child-relation, all nodes have at most one parent
(in fact fixed during execution of the removal algorithm), and the initiator has no
parent. Then termination is guaranteed since eventually the leaf-nodes are reached,
which initiates the ER-messages being sent over the (former) parent-relation to
the initiator. This completes the removal algorithm.

9

1

 a,0

add a~b

b,0

 a,1

a b c
(_, a, 0) (b, b, 1)

 (b, a, 2)

(_, b, 0)

(a, a, 1)

4

c,0 b,0

ER

R
rem a~b

cba

(_, b, 0)

 (_, c, 0)

(_, a, 0) (a, a, 1) (b, a, 2)

 (b, b, 1)

rem c~d

dc
3

 (a, a, 1)(b, a, 2)

d
2

c

add c~d

a,1 a,2

(b, a, 2) (a, a, 1)

dcba

 b,1

ER

R
R

ER c,0

 b,0 c,0

a,2

5

a,1

rem a~b

(_, c, 0)

(_, b, 0)

(_, a, 0)

(c, a, 3)

(d, a, 2)

(b, a, 2) (a, a, 1) (a, a, 1)

(b, b, 1)

Fig. 2. Example

It is possible to combine some M-messages (by sending the M-message earlier)
with the R- and ER-messages. This can reduce the number of messages that have
to be sent at the cost of some extra buffering. In doing so the algorithm can even
be adapted such that it saves some parts of the structure of the tree, by declaring
the node that initiates the removal algorithm to be the root of the underlying tree
structure, instead of decomposing the tree structure into singleton trees.

3.3 Example

To get an operational idea of how this algorithm can behave, Figure 2 describes
some possible behavior of the algorithm. It is based on the topology changes
that were described in Figure 1. We define the following total order on the node-
identities: a ≤ b ≤ c ≤ d. The three-tuples represent (parent, root, dist) values (in
which “⊥” is denoted by “ ”), and the M-messages are labelled with their (r, d)
content. For the topology changes (and corresponding signalling) the following
kind of abbreviations are used: “add a ∼ d” for the “addition of an edge between
nodes a and d”, and “rem a ∼ d” for the “removal of an edge between nodes a
and d”.

10

3.4 Messages

We introduced three types of messages: M-, R- and ER-messages. We already
noted that we can reduce the number of messages that are sent by the algorithm,
by combining the R- and ER-messages with an M-message. Then we only need
one type of message which contains the following fields:

– a type of the (combined) message;
– a root of type node identity; and
– a distance of type natural.

To compare our algorithm with [8], recall that that algorithm continues to send
messages periodically in order to detect topology changes. Since sending messages
in our algorithm is always triggered by a topology change, the total amount of
messages that sent by for our algorithm is lower in case there is a relatively small
number of topology changes. Furthermore, the messages that are used by our
algorithm are smaller than the ones used by [8].

3.5 Forwarding data

If a node is not involved in the removal algorithm, it can possibly do some higher-
level functionality (e.g. forwarding data) using the currently existing forest. The
“waiting time”, i.e. the period during which it cannot do so, is the duration of
the removal algorithm. In our algorithm this is dynamically determined for each
node that is involved in the removal algorithm using the ER-messages. In [8], for
example, the waiting time depends on the (theoretical) maximum number of nodes
in the network. Such static waiting time usually involves a larger overhead than
a dynamic one.

4 A proof

Complementary to the informal presentation of the algorithm, in this section we
prove the algorithm by sketching how it can be derived from its specification. The
techniques that we use are based on [13], which in turn is based on Owicki-Gries
theory. For proving the algorithm, we will annotate (versions of) the algorithm
with assertions, i.e. predicates on the state space, which do not influence the
control flow of the algorithm. To proof that an assertions is correct, additional
assertions can be introduced (which correctness must afterwards be proved). Ac-
cording to the Owicki-Gries theory, an assertion is correct if it is established by
the preceding statement and maintained by the statements in the other nodes. For
progress issues, which are not covered by this theory, we will use variant functions.

We will derive the algorithm in different chunks than the ones we used to
present it in section 3. We will first focus on handling the M-messages, which is
the “core” of the algorithm. Then we will focus on initialization and handling the
topology changes, including the removal algorithm. Note that the basic algorithm
from section 3 consists of the core of the algorithm and handling the addition of
edges.

11

To make the proof more compact, we will sometimes deviate from good deriva-
tion practice by making early design decisions, and skipping details of the proofs.
Usually we will not explicitly mention the type of the variables, but as a conven-
tion we use r, r′, u, v and w for nodes, m and m′ for messages, and d and d′ for
naturals.

4.1 Core of the algorithm

In this section we will develop the core of the algorithm. We start by specifying
formal requirements. Then we will develop a partially correct algorithm, i.e. an
algorithm for which upon stabilization the requirements have been established.
And finally we will adapt this partially correct algorithm to guarantee that it
stabilizes, without (undesired) deadlocks.

Specification We start the development with a formal specification. Recall that
we consider a network in which each node has a unique identity, and in which there
are no self-loops nor multiple edges. In section 3 we already informally explained
how the variables parent, root and dist can be used to specify a spanning forest
on such network. To formalize this, we introduce a binary irreflexive symmetric
relation ∼, such that v ∼ w ≡ “v and w are neighbors in the network”. Then
using (∀v : v 6=⊥) and parent.v =⊥ ≡ “v is a root-node”, the specification of a
spanning forest can be rephrased as (the conjunction of):

0 : (∀v, w : parent.v 6= w ∨ v ∼ w)
1 : (∀v, w : parent.v 6= w ∨ dist.w < dist.v)
2 : (∀v : parent.v 6=⊥ ∨ root.v = v)
3 : (∀v, w : v 6∼ w ∨ root.v ≤ root.w)

In requirement 3 one might expect the term root.v = root.w instead of the
term root.v ≤ root.w. Both versions of requirement 3 are equivalent, but our
choice is formally weaker and simplifies the rest of the derivation.

A distributed algorithm must be developed that stabilizes in a state satisfying
these requirements if (during a sufficiently large period of time) no more topology
changes occur.

We assume the following behavior of the (physical) topology changes: Upon
addition or removal of an edge between nodes v and w, the corresponding bidi-
rectional communication channel (and its buffers) are cleared, and both nodes v
and w are signalled, all in one atomic step. Note that it is still the case that the
two nodes independently detect whether they have been signalled.

To make this signalling more explicit, we introduce for nodes v and w boolean
variables S.v.w and S.w.v in nodes v and w respectively, such that signalling
corresponds to assignment S.v.w, S.w.v := true, true. A send or a receive over
a channel v ∼ w by a node v reduces to a skip as long as S.v.w holds, i.e. as long
as node v has received a signal from a topology change between nodes v and w
which it has not yet “handled”. Node v can re-establish ¬S.v.w, by handling the
topology changes between nodes v and w.

12

Partial correctness The algorithm we want to develop has to establish these
requirements upon stabilization. Recall that the algorithm we presented in section
3 stabilizes when all topology changes have been handled and all messages have
been removed.

Before we continue, we will first introduce the following abbreviation for mes-
sages: v

m−→ w denotes that “there exists an M-message m from node v to node w”.
We assume that a sent message will eventually arrive, unless a topology change
occurs between the two nodes. To simplify the (future) system invariants, we split
“receiving a message” from a communication channel into “reading the message”
and “removing the message” from the communication channel. By reading a mes-
sage, a node can obtain the contents of the message, and by removing the message
it is removed from the communication channel.

To develop an algorithm that establishes the requirements upon stabilization,
we will weaken the requirements into a set of system invariants such that upon
stabilization the requirements are implied. We first weaken requirements 1 and 3,
which contain variables of both node v and node w, with a disjunct (∃m : w

m−→ v).
Then for (the weakened) requirements 0, 1 and 3, which can be endangered by
a topology change, we introduce a disjunct S.v.w if node v can easily restore
the requirement upon an assignment S.v.w := false, and similarly for a disjunct
S.w.v. So we will use the following system invariants:

P0 : (∀v, w : parent.v 6= w ∨ v ∼ w ∨ S.v.w)

P1 : (∀v, w : parent.v 6= w ∨ dist.w < dist.v ∨ (∃m : w
m−→ v) ∨ S.v.w ∨ S.w.v)

P2 : (∀v : parent.v 6=⊥ ∨ root.v = v)

P3 : (∀v, w : v 6∼ w ∨ root.v ≤ root.w ∨ (∃m : w
m−→ v) ∨ S.w.v)

Note that when there are no more messages, and all topology changes have
been handled, these invariants imply the requirements. Under maintenance of
these invariants, the algorithm we will develop must remove messages and handle
topology changes.

We first focus on removing (arrived) M-messages. Upon removing an M-message,
maintenance of invariants P1 and P3 can be endangered due to disjunct (∃m :
w

m−→ v); this is our starting point of the development. By applying standard
techniques and by making design decisions, we developed an algorithm that re-
moves one M-message at a time by imposing the following invariant (related to
P1 and P3) on the contents of the M-messages:

P4 : (∀d, r, v, w : w
(r,d)−→ v ⇒ (r ≤ root.w ∧ dist.w ≤ d) ∨ E

(r,d)
w→v)

with Em
w→v ≡ “there is an M-message more recent than m from node w to v”. We

developed the following algorithm:

13

do forever
[] 〈(∃ an arrived M-message from w) ∧ ¬S.v.w →

read the oldest M-message (r, d) from neighbor w〉
{dist.w ≤ d ∨ E(r,d)

w→v ∨ S.v.w ∨ S.w.v}{v ∼ w ∨ S.v.w}
{v 6∼ w ∨ r ≤ root.w ∨ E(r,d)

w→v ∨ S.w.v}{w 6=⊥}
if r ≤ root.v →

{dist.w ≤ d ∨ E(r,d)
w→v ∨ S.v.w ∨ S.w.v}{v ∼ w ∨ S.v.w}

{v 6∼ w ∨ r ≤ root.w ∨ E(r,d)
w→v ∨ S.w.v}{w 6=⊥}{r ≤ root.v}

〈 send an M-message (r, d + 1) to all neighbors
parent.v, root.v, dist.v := w, r, d + 1〉

[] root.v ≤ r ∧ (parent.v 6= w ∨ d < dist.v ∨ S.v.w) →
skip

fi

{parent.v 6= w ∨ dist.w < dist.v ∨ E(r,d)
w→v ∨ S.v.w ∨ S.w.v}

{v 6∼ w ∨ root.v ≤ root.w ∨ E(r,d)
w→v ∨ S.w.v}

remove M-message (r, d) from node w
od

To be able to check the partial correctness proof more easily, we annotated the
algorithm with assertions between brackets ({...}). Note that for maintenance of
the invariants under assignment parent.v, root.v, dist.v := w, r, d + 1, we intro-
duced three extra pre-assertions, and the send-statement. It turns out that we
need disjunct S.v.w in the second guard of the selection for future invariant P8.

Stabilization We will modify the algorithm such that it is guaranteed to stabilize
when there are no more topology changes. Of course this modification must be
such that partial correctness is maintained, which is guaranteed when we only
restrict the possible behavior of the algorithm. We will do so by strengthening the
guards of the selection.

To ensure stabilization we can impose a well-founded function on the state
space of the system and adapt the algorithm such that the function is a variant
function for the algorithm, i.e. it decreases in each execution of the algorithm.

Using these techniques we will guarantee stabilization of this algorithm. We
impose as variant function the four-tuple [(#v, w : S.v.w), (

∑
v : root.v), (

∑
v :

dist.v), (# messages in the system)] with the lexicographical order, in which # is
used as “the number of”-quantifier. Although we seem to assume that the addition
is defined on node identities, in fact we are only using addition as an abbreviation
of concatenation with the lexicographical order.

To ensure that this function is well-founded we require that each of its four
components is bounded from below and assume that there is a total order on the
node identities. Note that the set of possible node identities is finite (it is contained
in the set of node-identities and current root values) and hence bounded from
below, and all dist values are bounded from below if we require system invariant:

P5 : (∀v : 0 ≤ dist.v)

For maintenance of this invariant we require the following system invariant:

P6 : (∀d, r, v, w : v
(r,d)−→ w ⇒ −1 ≤ d)

Thanks to invariant P5, this invariant is maintained by the algorithm.

14

Before we ensure that the function is decreasing under execution of the al-
gorithm, note that the remove-statement in isolation decreases the function.
So we only have to ensure descendence under the other statements. Note that
the only possibly increasing statement is the first guarded command of the se-
lection. Because in that case the number of messages can possibly increase, we
require that (root.v, dist.v) decreases, by strengthening its guard r ≤ root.v into
(r, d + 1) < (root.v, dist.v). Thus we obtain:

do forever
[] 〈(∃ an arrived M-message from w) ∧ ¬S.v.w →

read the oldest M-message (r, d) from neighbor w〉
if (r, d + 1) < (root.v, dist.v) →

〈 send an M-message (r, d + 1) to all neighbors
parent.v, root.v, dist.v := w, r, d + 1〉

[] root.v ≤ r ∧ (parent.v 6= w ∨ d < dist.v ∨ S.v.w) →
skip

fi
remove M-message (r, d) from node w

od

Deadlock What remains is to ensure that the algorithm cannot deadlock when
it is handling an M-message. Therefore we have to ensure that we have as a
pre-assertion of the selection that one of its guards holds, i.e. the disjunction of
the guards holds. Using some (elementary) calculation this can be simplified into
parent.v 6= w ∨ r < root.v ∨ d < dist.v ∨ S.v.w. It turns out to be easier to
deal with this condition by slightly strengthening it into parent.v 6= w ∨ (r, d) <
(root.v, dist.v) ∨ S.v.w. We require this as condition on the arrived M-messages
(r, d) by requiring invariant P7:

P7 : (∀d, r, v, w : w
(r,d)−→ v ⇒ parent.v 6= w ∨ (r, d) < (root.v, dist.v) ∨ S.v.w)

Maintenance of this invariant under an assignment to (root.v, dist.v) is guar-
anteed since the M-messages are received in descending order of their content,
namely by receiving the oldest message first. For maintenance under the creation
of a new M-message (by node w) we require an additional invariant

P8 : (∀v, w : parent.v 6= w ∨ (root.w, dist.w) < (root.v, dist.v) ∨ S.v.w)

Using the descendence of the (root, dist) values, maintenance of this invariant
under an assignment to (root.w, dist.w) is guaranteed. For maintenance under
an assignment to (root.v, dist.v) we require a (slightly strengthened) additional
invariant:

P9 : (∀d, r, v, w : w
(r,d)−→ v ⇒ (root.w, dist.w) ≤ (r, d))

Maintenance of this invariant is guaranteed using the descendence of the (root, dist)
values. Note that none of the invariants P7, P8 and P9 is redundant.

15

Another type of deadlock can be in the communication channels if the buffers
are too small, so we require that all communication channels have a sufficiently
large buffer. We can exploit the fact that some non-recent M-messages can be
removed (without endangering the invariants), by using a buffer in which upon
arrival of an M-message, older (unread) M-messages are removed.

Note that we did not change the algorithm in this subsection, so the core algo-
rithm for handling the M-messages is just the last printed algorithm. All invariants
in this section can be initialized by requiring initially (parent.v, root.v, dist.v) =
(⊥, v, 0) for each node v and by having no edges nor messages.

The core of the algorithm as presented in section 3.1 is a deterministic version
(that prefers minimal distances to the root) of this algorithm, in which the follow-
ing program transformations have been applied: Moving the local action remove
to the preceding read, and moving the (local) assignment to before the atomic
brackets. Furthermore using the descendence of (root, dist) values, invariant P9

and the guards of the selection, nodes do not need to send an M-message to neigh-
bor w since it will be ignored. Such program transformations maintain correctness
of the algorithm, but not the correctness of the assertions and the invariants.

4.2 Handling topology changes

In this section we discuss the influence of the topology changes on the algorithm.
First note that all assertions and invariants from the previous section are main-
tained under (physical) topology changes. What remains is to develop a procedure
for handling topology changes. For compactness reasons, we will do so in a less-
detailed way. Most details of the removal algorithm are already described in section
3, but using the formal treatment of the core of the algorithm in section 4.1, we
can derive various conditions (just mentioned earlier) from the system invariants.

In case S.v.w holds, node v must establish ¬S.v.w by handling the topology
changes between nodes v and w, but again under maintenance of the invariants.
If there is currently an edge between those two nodes, invariant P3 (and the
corresponding assertions) can be maintained by sending an M-message over the
edge. Invariants P0, P1, P7, P8 are maintained if the node ensures that parent.v 6=
w holds and by introducing an additional invariant (∀v, w : S.v.w ⇒ parent.w 6=
v ∨ S.w.v) for invariant P1.

What remains is when a node v has to establish parent.v 6= w, while currently
parent.v = w holds. If there is a known (from previously handled M-messages)
neighbor u with a smaller (root.u, dist.u) than (root.v, dist.v), that neighbor can
become the parent after the node sent an M-message to all neighbors (invariants
P0, P3, P8 and P9). Otherwise the node must become a root-node and hence (by
invariant P2) it must increase its root value to v. Since this only occurs upon
handling a topology change, it maintains descendence of the variant function; but
it possibly endangers some invariants, so we require as pre-assertions:

16

– for P3: (∀u : v 6∼ u ∨ (∃m : u
m−→ v) ∨ S.u.v)

– for P8: (∀u : parent.u 6= v ∨ S.u.v)
– for P9: ¬(∃m,u : v

m−→ u)

For the edge v ∼ w on which the topology change occurred that is being
handled by node v, we introduce invariants (∀v, w : S.v.w ⇒ v 6∼ w ∨ (∃m : w

m−→
v) ∨ S.w.v) and (∀v, w : S.v.w ⇒ ¬(∃m : v

m−→ w)). Note that these invariants
are both initialized and maintained.

Note that for invariant P8 the current children of the node must also possibly
increase their root. For stabilization this is only allowed upon handling a topology
change; it is the removal algorithm that establishes the link with the topology
change.

Since for invariant P9 some M-messages might have been removed, the node
must, after increasing its root, send its neighbors an M-message (invariant P3).
The rest of the details of the removal algorithm can be found in section 3.2.

4.3 Complexity

If there are no more topology changes or executing removal algorithms, the al-
gorithm will stabilize from the root-nodes (i.e. the nodes with minimal identity).
Note that a node with minimal identity will never change its (root, dist) and hence
will never send an M-message. When all messages sent by this node have been re-
ceived by its direct neighbors, these neighbors will never send a message and hence
the first node has stabilized; and so on. Thus the algorithm stabilizes in a time
proportional to the maximal minimum distance from the root-node to another
node. As with [8] this is proportional to the diameter of the network.

5 Conclusions

In this article we presented an algorithm for computing and maintaining a span-
ning tree in a topology-aware network, i.e. a network in which nodes can locally
detect the addition and removal of a connected edge. The topology-awareness
was used to clearly separate the detection of topology changes and the spanning
tree algorithm. We included a formalization and a proof of the correctness of the
algorithm.

Compared to similar algorithms that are used in practice for interconnecting
LANs, the algorithm improves on performance, and in the waiting time in which
data cannot be forwarded through the network. The algorithm does not require
any configuration or tuning of network dependent parameters.

A number of assumptions were made about the topology changes in the net-
work. For example, a recently added edge may not be used for communication by
a node until the node has handled all topology changes. A topic for further work
is to investigate whether these assumptions can be weakened. We expect that the
algorithm can at least easily be extended for dealing with self-loops and multiple
edges.

17

References

1. Langevelde, I.v., Romijn, J., Goga, N.: Founding FireWire Bridges through Promela
Prototyping. In: Proceedings Formal Methods for Parallel Programming: Theory
and Applications, IEEE Computer Society Press (2003)

2. Mooij, A.J., Wesselink, W.: A formal analysis of a dynamic distributed spanning tree
algorithm. Computer science report, Technische Universiteit Eindhoven, Eindhoven
(2003) To appear.

3. Bertsekas, D.P., Gallager, R.G.: Data Networks. Prentice-Hall International, Engle-
wood Cliffs (1992)

4. Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-
weight spanning trees. ACM Transactions on Programming Languages and Systems
(TOPLAS) 5 (1983) 66–77

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to algorithms. MIT Press,
USA (1990)

6. Cheng, C., Cimet, I.A., Kumar, S.P.R.: A protocol to maintain a minimum span-
ning tree in a dynamic topology. In: Symposium proceedings on Communications
architectures and protocols, ACM Press (1988) 330–337

7. Afek, Y., Kutten, S., Yung, M.: The local detection paradigm and its applications
to self-stabilization. Theoretical Computer Science 186 (1997) 199–229

8. Perlman, R.: An algorithm for distributed computation of a spanning tree in an
extended LAN. ACM SIGCOMM Computer Communication Review 15 (1985) 44–
53

9. Perlman, R.: Interconnections: bridges, routers, switches, and internetworking pro-
tocols. Addison-Wesley, Amsterdam (2000)

10. Arora, A., Gouda, M.G.: Distributed reset. IEEE Transactions on Computers 43
(1994) 1026–1039

11. Hart, J.: Extending the IEEE 802.1 MAC bridge standard to remote bridge. IEEE
Network Magazine (1988)

12. Afek, Y., Awerbuch, B., Gafni, E.: Applying static network protocols to dynamic
networks. In: 28th Annual Symposium on Foundations of Computer Science, IEEE
(1987) 358–370

13. Feijen, W.H.J., Gasteren, A.J.M.v.: On a method of multiprogramming. Springer-
Verlag (1999)

	1. Introduction
	2. Summary of the literature
	3. The algorithm
	4. A proof
	5. Conclusions
	References

