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Summary

In this research, the hybrid χ (Chi) formalism has been developed. The hybrid χ formalism
is suited to modeling, simulation and verification of hybrid systems. The semantics of
hybrid χ is defined by means of deduction rules (in SOS style) that associate a hybrid
transition system with a χ process. A set of axioms is presented for a notion of equivalence
(bisimilation). The hybrid χ formalism integrates concepts from dynamics and control
theory with concepts from computer science, in particular from process algebra and hybrid
automata. It integrates ease of modeling with a straightforward semantics. Its ‘consistent
equation semantics’ enforces state changes to be consistent with delay predicates, that
combine the invariant and flow clauses of hybrid automata. Ease of modeling is ensured by
means of the following concepts: 1) different classes of variables: discrete and continuous, of
subclass jumping or non-jumping, and algebraic; 2) strong time determinism of alternative
composition in combination with delayable guards; 3) integration of urgent and non-urgent
actions; 4) differential algebraic equations as a process term as in mathematics; 5) steady-
state initialization; and 6) several user-friendly syntactic extensions. Furthermore, the
hybrid χ formalism incorporates several concepts for complex system specification: 1)
process terms for scoping that integrate abstraction, local variables, local channels and
local recursion definitions; 2) process definition and instantiation that enable process re-
use, encapsulation, hierarchical and/or modular composition of processes; and 3) different
interaction mechanisms: handshake synchronization and synchronous communication that
allow interaction between processes without sharing variables, and shared variables that
enable modular composition of continuous-time or hybrid processes.

In process algebra, linearization is a transformation of a recursive specification into
a linear representation, i.e., a kind of normal form that is convenient for many forms of
analysis. A first step towards the linearization of a reasonable subset of the hybrid χ
language has been carried out in the form of elimination theorems for a number of χ
operators.

Furthermore, a formal translation of a subset of χ to hybrid automata and vice versa
has been defined. It is proved that any transition of a χ model can be mimicked by a
transition in the corresponding hybrid automaton model and vice versa, which indicates
that the translation as defined is correct. The translation from χ to hybrid automata
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enables verification of χ models using existing hybrid automata based verification tools.
For the purpose of simulation and verification of χ models, tools have been developed.

The stepper tool generates generalized transitions given a χ process. Based on this step-
per, a symbolic simulator has been developed. Finally, the translation from χ to hybrid
automata has been automated. The χ formalism is illustrated by means of examples taken
from several application domains. Case studies have been conducted to test the developed
tools.



Samenvatting

In dit onderzoek is het hybride χ (Chi) formalisme ontworpen. Dit formalisme is geschikt
voor het modelleren, simuleren en verifiëren van hybride systemen. De semantiek van
hybride χ is definiëerd met behulp van deductieregels (in SOS stijl) die een hybride tran-
sitiesysteem associëren met een χ process. Een set van axioma’s is gedefinieerd voor een
notie van gelijkheid (bisimulatie). Het hybride χ formalisme integreert concepten uit de
dynamica en regeltheorie met concepten uit de informatica, in het bijzonder concepten uit
de proces algebra en de theorie van hybride automaten. Het formalisme integreert de een-
voud van modelleren met een duidelijke semantiek. De ‘consistente vergelijking semantiek’
zorgt ervoor dat toestandsveranderingen consistent zijn met delay predicaten, die de in-
variant en flow clauses van hybride automaten omvatten. De eenvoud van modelleren is
gegarandeerd door de volgende concepten: 1) verschillende klassen van variabelen: discreet
en continu, met sub-klassen jumping en niet-jumping, en algebraisch; 2) sterk tijddeter-
minisme van de alternative compositie operator in combinatie met delayable guards; 3)
integratie van urgente en niet-urgente acties; 4) algebraische differentiaalvergelijkingen als
procestermen zoals in de wiskunde; 5) steady-state initializatie; en 6) verschillende ge-
bruiksvriendelijke syntactische extensies. Verder omvat het hybride χ formalisme verschil-
lende concepten voor de specificatie van complexe systemen: 1) procestermen voor scoping
die abstractie, lokale variabelen, lokale kanalen en lokale recursiedefinities integreren; 2)
procesdefinitie en procesinstantiatie die het hergebruiken van processen, encapsulatie, hi-
erarchische en/of modulaire compositie van processen mogelijk maken; en 3) verschillende
interactiemechanismen: handshake synchronizatie en handshake communicatie die inter-
actie tussen processen zonder shared variabelen mogelijk maken, en shared variabelen die
modulaire compositie van continue-tijd of hybride processen mogelijk maken.

In de proces algebra is linearizatie een tranformatie van een recursieve specificatie naar
een lineaire representatie, ofwel een soort van normaalvorm die handig is voor veel vormen
van analyse. Een eerste stap in de richting van linearizatie van een redelijke subset van
het hybride χ formalisme is genomen in de vorm van eliminatietheorema’s voor een aantal
χ operators.

Verder is een formele translatie van een subset van χ naar hybride automaten en visa
versa gedefinieerd. Het is bewezen dat iedere transitie van een χ model nagebootst kan
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worden door een transitie van het corresponderende hybride automaten model en visa
versa. Dit geeft aan dat de gedefinieerde translatie correct is. De translatie van χ naar
hybride automaten maakt verificatie van χ modellen gebruik makend van bestaande veri-
ficatiegereedschappen voor hybride automaten mogelijk.

Voor simulatie en verificatie van χ modellen zijn gereedschappen ontwikkeld. Het ‘step-
per gereedschap’ genereert gegeneralizeerde transities gegeven een χ proces. Gebaseerd op
het stepper gereedschap is een symbolische simulator ontwikkeld. Verder is de translatie
van χ naar hybride automaten geautomatiseerd.

Het χ formalisme is geillustreerd met behulp van voorbeelden uit verschillende toepass-
ingsgebieden. Case studies zijn uitgevoerd om de ontwikkelde gereedschappen te testen.



Sommario

In questa ricerca è stato sviluppato il formalismo dell’hybrid χ (Chi). Tale formalismo
adatto per modellare, simulare e verificare i sistemi ibridi. Le semantiche dell’hybrid χ
sono definite per mezzo di regole deduttive (in stile SOS) che associano un sistema a
transizione ibrida con un processo Chi. È stato presentato un insieme di assiomi, per un
concetto di bisimilarità. Il formalismo hybrid χ integra concetti della dinamica e della
teoria dei controlli con concetti informatici, in particolare dell’algebra dei processi e degli
automi ibridi. Presenta facilità di modellizzazione insieme ad una semantica lineare. Le
sue semantiche di equazioni consistenti obbligano i cambi di stato ad essere consistenti con
i predicati di ritardo, che combinano gli invarianti e le proposizioni di flusso invarianti degli
automi ibridi. La facilità di modellizzazione è garantita dai seguenti concetti: 1) differenti
classi di variabili: discrete e continue, di jumping e non-jumping di sottoclassi, e algebriche;
2) forte determinismo temporale della composizione alternativa in combinazioni con guards
ritardabili; 3) integrazione di azioni urgenti e non urgenti; 4) equazioni algebriche differen-
ziali come un termine di processo, come in matematica; 5) inizializzazione steady-state; e
6) numerose espressioni sintattiche user-friendly. Inoltre, il formalismo dell’hybrid χ in-
corpora diversi concetti per la specifica di sistemi complessi: 1) termini di processo per
scoping che integrano l’astrazione, le variabili locali, canali locali e definizioni di ricorsione
locale; 2) definizione ed istanziazione dei processi che permette il riutilizzo dei processi,
l’incapsulamento, la composizione gerarchica e/o modulare dei processi; e 3) differenti
meccanismi di interazione: sincronizzazione handshake e comunicazione sincrona, che per-
mettono l’interazione tra processi senza condivisione di variabili, e variabili condivise che
permettono la composizione modulare dei processi continui nel tempo o ibridi.

Nell’algebra dei processi, la linearizzazione è una trasformazione di una specifica ricor-
siva in una rappresentazione lineare, cioè un tipo di forma normale che è vantaggiosa per
molte analisi. Un primo passo verso la linearizzazione di un ragionevole sottoinsieme del
linguaggio χ è stato messo in pratica nella forma dei teoremi di eliminazione, per alcuni
operatori di χ.

Inoltre, è stata definita la traduzione formale di un sottoinsieme di χ agli automi ibridi e
vice versa. È stato provato che ogni transizione di un modello χ può essere “mimicked” da
una transizione nel corrispondente automa ibrido e vice versa, il che indica la correttezza
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della traduzione per come è stata definita. La traduzione del χ agli automi ibridi perme-
tte la verifica dei modelli χ usando gli strumenti di verifica esistenti basati sugli automi
ibridi. Sono stati sviluppati degli strumenti informatici per la simulazione e verifica dei
modelli χ. Lo strumento Stepper genera transizioni generalizzate. Basato Stepper, sono
stati sviluppati due simulatori: un simulatore simbolico e un simulatore numerico basato
sull’interfaccia Simulink delle funzioni S. Infine, è stata automatizzata la transizione da χ
agli automi ibridi. Il formalismo χ è illustrato attraverso esempi tratti da parecchi campi
di applicazione. Gli strumenti sviluppati sono stati validati per mezzo di alcuni casi di
studio.
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CHAPTER

ONE

Introduction

Hybrid systems related research is based on two, originally different, world views: on the
one hand the dynamics and control (DC) world view, and on the other hand the computer
science (CS) world view.

The DC world view is that of a predominantly continuous-time system, which is modeled
by means of differential (algebraic) equations, or by means of a set of trajectories. Hybrid
phenomena are modeled by means of discontinuous functions and/or switched equation
systems. The evolution of a hybrid system in the continuous-time domain is considered as
a set of piecewise continuous functions of time (one for each variable).

Analysis and synthesis of hybrid systems in the DC domain are done, among others,
by means of piecewise affine (PWA) systems, mixed logic dynamical (MLD) systems or
linear complementarity (LC) systems, see [HSB01] for an overview relating these different
classes, and see Chapter 5 for a translation of PWA systems to hybrid χ (Chi). A different
framework to consider hybrid systems are differential (algebraic) equations with discontin-
uous right-hand sides, the semantics of which can be defined using differential inclusions.
Such differential inclusions allow modeling of relays, valves or any kind of on/off switch-
ing elements at a high level of abstraction in control systems with so-called sliding modes
[Fil88, Utk92].

The CS world view is that of a predominantly discrete-event system. A well-known
model is a (hybrid) automaton, but modeling of discrete-event systems is also based on,
among others, process algebra, Petri nets, and data flow languages. For modeling and
analysis of hybrid phenomena, discrete-event formalisms are extended in different ways with
some form of differential (algebraic) equations. The most influential hybrid system model
is that of a hybrid automaton such as defined in [NOSY92, ACH+95, AHH96, Hen00b,
vdSS00, LSV03, LJS+03]. An essential difference between such a hybrid automaton and
a DC hybrid system model is that where in the DC hybrid model there are no actions,
in the hybrid automaton, discontinuities take place mainly by means of (labeled) actions.
By means of actions, the hybrid automaton switches from one mode/location to another
mode/location.
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Chapter 1. Introduction

1.1 The χ formalism

Clearly, hybrid systems represent a domain where the DC and CS world views meet, and
we believe that a formalism that integrates the DC and CS world views is a valuable
contribution towards integration of the DC and CS methods, techniques, and tools. The
hybrid χ formalism is such a formalism. On the one hand, it can deal with continuous-time
systems, PWA/MLD/LC systems, and hybrid systems based on sets of ordinary differential
equations using discontinuous functions in combination with algebraic constraints (the DC
approach). On the other hand, it can deal with discrete-event systems, without continuous
variables or differential equations, and with hybrid systems in which discontinuities take
place (mainly) by means of actions (the CS approach).

The intended use of hybrid χ is for modeling, simulation, verification, and real-time
control. Its application domain ranges from physical phenomena, such as dry friction, to
large and complex manufacturing systems. Although the semantics is formally defined,
including a solution concept, the straightforward and elegant syntax and semantics is also
highly suited to non-computer scientists. In the remainder of this thesis, we usually refer
to hybrid χ as χ.

The most important concepts in χ are summarized below:

1. Integration between the DC and CS world views:

• The DC world view in χ allows modeling of hybrid phenomena by means of
discontinuous functions and/or switched equation systems. For this purpose,
χ has introduced the category of algebraic variables, the trajectory of which
can be discontinuous. Furthermore, the convex equality operator, defined in
[vBPNR04], but not explained in detail in this thesis, allows modeling of differ-
ential inclusions according to the Filippov solution concept [Fil88]. The solution
concept has been formalized in χ.

• The CS world view in χ allows modeling of hybrid phenomena in a way that
is strongly influenced by hybrid automata. In this respect, the new hybrid
χ formalism differs considerably from its predecessor defined in [SvBM+03a]
which was quite different from hybrid automata. In the χ formalism described
in this thesis, the ‘consistent equation semantics’ enforces changes in the values
of variables to be consistent with delay predicates, that combine the invariant
and flow clauses of hybrid automata. This is expressed by the property p ‖
x = e ↔ p[e/x] ‖ x = e, that, although not yet proved, we expect to hold.
Here, ‖ denotes parallel composition, x = e is a mathematical equation, p[e/x]
denotes the process term obtained from p by substituting every free occurrence
of variable x by its defining expression e, and p ↔ q means that the two process
terms p and q are bisimilar, that is they have the same behavior. For example:
x := y ‖ y = 1 is bisimilar to x := 1 ‖ y = 1, where x := y denotes an assignment
of the value of y to variable x. A difference between the consistent equation
semantics and the semantics of hybrid automata is that where the χ semantics
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considers ẋ= 1∧ ẋ= 2 to be an inconsistent process term, the hybrid automaton
can enter the location with flow clause ẋ = 1 ∧ ẋ = 2 , but cannot delay in this
location. The inconsistent process in a hybrid automaton is a location with
invariant false. A translation from the hybrid automaton model defined in
[Hen00b] to χ can be found in Chapter 5. This translation assumes that the
flow clauses of the hybrid automaton cannot evaluate to false.

2. Integration of a straightforward semantics and ease of modeling.

An important aspect is the conceptual similarity with hybrid automata as mentioned
in the previous item. The concepts from hybrid automata have been extended in
several ways to facilitate modeling. Where hybrid automata in general either have
locations (e.g. [ACH+95, AHH96, Hen00b]) or discrete variables (e.g. [LJS+03]),
and in addition either jumping or non-jumping continuous variables, χ has, among
others, the following categories of variables:

• Discrete variables, which facilitate compact readable specifications. In hybrid
automata such variables are sometimes mimicked by real valued variables with
a derivative of zero. However, for non-real valued variables, such as variables of
type string, the concept of a zero derivative cannot be used.

• Jumping continuous variables, that correspond to the continuous variables of hy-
brid automata as defined in, for example, [Hen00b]. The values of these variables
are in principle allowed to jump (change) arbitrarily in an action transition, as
long as the resulting values satisfy the action (jump) predicate, and the result-
ing process is consistent. Consider for example a system with three variables:
x, y, z. If the value of x should change to 1, and the other variables should re-
main unchanged, the action (jump) predicate should be x′ = 1∧ y′ = y ∧ z′ = z,
or x+ = 1 ∧ y+ = y− ∧ z+ = z−, depending on the syntax, where v′ and v+

denote the value of variable v after execution of the action, and v and v− de-
note the value of variable v before execution of the action. Restrictions of the
type v+ = v− clutter the models, and are therefore often omitted in informal
hybrid automata specifications. In order to allow fully formal models, without
the clutter associated with the restrictions on non-jumping variables, χ has an
additional class of variables: the non-jumping continuous variables.

• Non-jumping continuous variables, that correspond to the continuous variables
of hybrid automata as defined by, for example, the input language of the tool
HyTech [HHWT95]. The values of these variables are not allowed to change
in action transitions, unless their changes are explicitly specified, for example
by means of assigning a new value to such a variable.

• Algebraic variables, that can have discontinuous trajectories, as already dis-
cussed in the item on integration between the DC and CS world views.
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There are also jumping discrete variables (used for the description of communication),
(jumping) dotted continuous variables, and a predefined (non-jumping) variable de-
noting the current (model) time. For a full overview of the categories of variables in
χ and their meaning, the readers is referred to 2.2.

Other concepts that enable integration of a straightforward semantics and ease of
modeling are:

• Strong time-deterministic alternative composition operator. Where in many
process algebras the passage of time can result in making a choice between
the two operands of the choice or alternative composition operator, in χ, the
passage of time can never result in such a choice. In the case of weak time-
determinism, the alternative composition ẋ = 1 [] x := 1 (other languages may
use the + or ⊕ operators instead of []) can non-deterministically choose between
doing a delay according to and resulting in ẋ = 1, or doing the (undelayable)
action x := 1. Strong time deterministic alternative composition means that
alternative composition can delay only if both process terms can delay together,
so that ẋ = 1 [] x := 1 can only do the (non-delayable) action x := 1, and then
terminate. Hybrid automata have a comparable choice mechanism, apart from
initialization. In a hybrid automaton, action transitions cannot disappear as
a result of time passing. They can only be disabled for the period of time
that the associated guard evaluates to false in the valuation prescribed by the
trajectory of the variables. Also, time passing cannot result in the choice of a
different location. The only changes in a hybrid automaton as a result of time
passing are changes in the values of the variables. Only initially, depending on
the initial edges and invariants, different initial locations may be selected as a
result of time passing. Note that this does not imply that the χ formalism (or a
hybrid automaton) is time deterministic. In the case of equations with multiple
solutions, such as in x2 = 1, delaying can take place according to any of the
allowed solutions.

• Delayable guards. Where many process algebras have non-delayable guards, χ
has delayable guards. A non-delayable guard cannot perform a delay when it
is false. A delayable guard can delay when it is false until it becomes true, and
thus facilitates modeling. Consider for example a valve α that must be switched
on when the temperature T exceeds Tmax. Using a delayable guard, this can be
modeled simply by T ≥ Tmax → α := true.

Delayable guards ensure that in b→ h ! b, the value of expression b that is sent
via channel h is always true. Note that h ! b can either do the send action, or
delay for an arbitrary period of time. Non-delayable guards may lead to un-
intuitive behavior, because the value of b that is sent may be false. Consider
the process term:

x := 0; (ẋ = 1 ‖ (x ≤ 3→ h !x [] ∆10) ‖ ∆5; h ? y),
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where ∆ s can delay for t time-units (t ≤ s) to ∆ s − t, and ∆ 0 can terminate
by means of an internal action.

Using non-delayable guards, the process term can perform the assignment, fol-
lowed by a delay of at most 5, and after an internal action transforms into

ẋ = 1 ‖ (h !x [] ∆5) ‖ h ? y.

The guard that was true has disappeared at the start of the delay. If the
communication via channel h takes place now, a value of 5 is sent, which does
not conform to x ≤ 3.

Using delayable guards on the other hand, the process term can do the assign-
ment followed by a delay of at most 3, and transforms into:

ẋ = 1 ‖ (x ≤ 3→ h !x [] ∆7) ‖ ∆2; h ? y,

where the value of x is 3. Communication is still not possible. After a delay of
2, followed by an internal action, the process term transforms into:

ẋ = 1 ‖ (x ≤ 3→ h !x [] ∆5) ‖ h ? y,

where the value of x is 5, and after another delay of 5 it transforms into:

ẋ = 1 ‖ (x ≤ 3→ h !x [] ∆0) ‖ h ? y.

The time-out takes place, leading to: ẋ = 1 ‖ h ? y. Due to the delayable guard,
that does not disappear while delaying, the communication does not take place,
because the guard cannot be satisfied.

• Integrated urgent and non-urgent actions. Where most hybrid automata have
non-urgent actions only, the χ formalism has both non-urgent actions and urgent
actions. The concept of urgency is defined in a very flexible way: non-delayable
actions are by definition urgent and delayable actions are non-urgent. This is
achieved without any additional operators. The concept of urgency is built into
the individual parallel composition operator, alternative composition operator,
and guard operator. Consider the non-delayable action x := 1. The following
three process terms

– ẋ = 1 ‖ x := 1

– ẋ = 1 [] x := 1

– ẋ = 1 ‖ x ≤ 0→ x := 1

can each execute only the action x := 1, assuming that the value of x is initially
non-positive. Consider now the delayable action [x := 1]. The following three
process terms

– ẋ = 1 ‖ [x := 1]

5
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– ẋ = 1 [] [x := 1]

– ẋ = 1 ‖ x ≤ 0→ [x := 1]

can each execute either the action x := 1 or perform a delay, assuming again
that the value of x is initially non-positive.

Communication on channels can also be urgent and non-urgent as in Uppaal.
This is achieved by means of an operator that partitions the set of channels
into a set of urgent and a set of non-urgent channels. For the urgent channels,
communication must take place as soon as it becomes possible, whereas for
the non-urgent channels, no such preference for communication is assumed (see
Section 2.4.8).

• Non-causal equations as in mathematics. Differential algebraic equations are
process terms in hybrid χ. Therefore, they are modeled in χ in the same way
as in mathematics.

• Steady state initialization. Dynamical analysis of physical systems often starts
in initial steady-state conditions. This means that the initial state is such that
all derivatives are zero. In χ, steady state initialization can be easily expressed
by means of the signal emission operator. For example, ẋ = 0 y ẋ = −x + 1
represents the steady state initialization (ẋ = 0 ) of model ẋ = −x + 1. This
means that this model only allows behavior for the case that initially ẋ = 0
holds, which implies that the initial value of x must be 1. In general, steady
state initialization is not possible in this way for hybrid automata, because ini-
tial edges and invariants are usually predicates over variables, not derivatives.
However, when the equations are straightforward enough, the modeler can ex-
plicitly calculate steady state conditions. In the example, variable x could be
initialized to 1.

• Syntactic extensions. Ease of modeling is further supported in χ by extension
of the set of orthogonal core process terms with additional process terms for
ease of modeling. These additional process terms are defined by means of a
straightforward translation into the core process terms.

3. Concepts for complex system specification:

• Process terms for scoping that integrate abstraction, local variables, local chan-
nels and local recursion definitions.

• Parameterized process definition and process instantiation that enable:

– process re-use, and

– encapsulation, hierarchical and/or modular composition of processes.

• CSP communication and synchronization concepts that allow synchronization
and communication without sharing of variables.

• Shared variables, that enable modular composition of continuous or hybrid pro-
cesses.

6



1.2. Analysis of hybrid systems

The history of the χ formalism dates back quite some time. It was originally designed
as a modeling and simulation language for specification of discrete-event, continuous-time
or combined discrete-event/continuous-time models. The first simulator [NA98], however,
was suited to discrete-event models only. The simulator was successfully applied to a large
number of industrial cases, such as an integrated circuit manufacturing plant, a brewery,
and process industry plants [vBvdHR02]. Later, the hybrid language and simulator were
developed [Fáb99, vBR00]. For the purpose of verification, the discrete-event part of the
language was mapped onto the process algebra χσ by means of a syntactical translation.
The semantics of χσ was defined using a structured operational semantics style (SOS),
bisimulation relations were derived, and a model checker was built [BK02]. In this way,
verification of discrete-event χ models was made possible [BK00]. The χ formalism defined
in this thesis integrates the modeling language and the verification formalism. It integrates,
extends and improves the syntax and semantics defined in [SvBM+03b] and [SvBM+03a].

1.2 Analysis of hybrid systems

In literature, many formal techniques for reasoning about the correctness of hybrid systems
have been proposed [HHWT97, ABDM00, Fre05]. The goal of these formal techniques is
to prove that the hybrid system (described in a formalism) performs as expected. One
of the most successful formalisms for hybrid system verification is the theory of hybrid
automata. Since the χ formalism is closely related to theory of hybrid automata, formal
translations between them (in both directions) have been defined. The translation from
hybrid automata to χ aims to show that the χ formalism is at least as expressive as
the theory of hybrid automata. The translation from a reasonable subset of χ to hybrid
automata enables verification of χ specifications using existing hybrid automata based
verification tools. This translation has also been automated.

As an alternative to analyze χ specifications using hybrid automata based verification
tools, χ simulators can be used to simulate χ specifications. Recently, a symbolic simulator
has been developed for χ.

Like in ACPsrt
hs [BM05] and HyPA [CR05], a set of basic terms (in χ) has been defined

into which many closed terms can be rewritten using χ properties. This is so-called elim-
ination, which is a useful step for algebraic analysis, because it reduces the complexity of
specifications (without recursion variables) by transforming them into simpler forms. The
elimination result allows to eliminate the parallel composition from many χ specifications,
and it can be regarded as a preprocessing step for the linearization (transformation of a
recursive specification into linear form) of χ processes.

1.3 Outline

The remainder of this thesis is organized as follows. Chapter 2 describes the syntax and
informal semantics of the χ formalism. In Chapter 3, the semantics of χ is formally

7
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specified, and a notion of equivalence is defined, which is shown to be a congruence for
all χ operators. Furthermore, some useful properties of closed χ process terms are given
in the same chapter. Several examples in Chapter 4 illustrate the use of the formalism.
Translations between χ and other formalisms can be found in Chapter 5. Chapter 6
outlines the architecture and the functionality of the newly developed tools for χ. Some
case studies of χ specifications are analyzed in Chapter 7. The elimination result of χ is
shown in Chapter 8. Chapter 9 discusses related work, and Chapter 10 terminates with
conclusions and points out directions for future work. Full proofs are presented in the
appendices.
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CHAPTER

TWO

Syntax and informal semantics of the Chi
formalism

This section presents a concise definition of the syntax and informal semantics of χ. The
syntax definition is incomplete in the sense that the syntax of predicates, expressions, etc.
is defined on a high level of abstraction. This is done because different implementations
of χ, such as tools for simulation, verification, or real-time control, may impose different
syntactical restrictions. The intention of this chapter is to define the χ formalism that
encompasses a variety of (future) tools without posing unnecessary syntactical restrictions.

2.1 Syntax of processes

A χ process is a triple 〈p, σ, E〉, where p denotes a process term, σ denotes a valuation,
and E denotes an environment. The syntax of process terms is introduced in Section 2.3.
A valuation is a partial function from variables to values. Syntactically, a valuation is
denoted by a set of pairs {x0 7→ c0, . . . , xn 7→ cn}, where xi denotes a variable and ci its
value.

An environment E is a tuple (C, J, L, H, R), where C denotes the set of continuous
variables, J denotes the set of jumping variables, L denotes the set of algebraic variables,
H denotes the set of channels, and R denotes a recursion definition. A recursion definition
is a partial function from recursion variables to process terms. Syntactically, a recursive
process definition is denoted by a set of pairs {X0 7→ p0, . . . ,Xm 7→ pm}, where Xi denotes
a recursion variable and pi the process term defining it.

To ensure that the variables, channels and recursion variables occurring in χ processes
are defined, each χ process 〈p, σ, (C, J, L,H,R)〉 must satisfy the following requirements:

• All variables occurring free in p or in the range of R must be either in the domain of
σ, in set L, or in case of dotted variables ẋ, their undotted counterparts x must be
in C.

• All channels occurring free in p or in the range of R must be in H.

• All recursion variables occurring free in p or in the range of R must be in the domain
of R.

9
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• The predefined variable time must be in the domain of σ, and not in any of the sets
C, J , and L.

• Finally, continuous variables must have a value: C ⊆ dom(σ) \ {time}, jumping
variables must be defined: J ⊆ (dom(σ) \ {time}) ∪ L, and algebraic variables, re-
cursion variables and the other variables must be disjoint: dom(σ) ∩ L = ∅ and
(dom(σ) ∪ L) ∩ dom(R) = ∅.

2.2 Informal semantics of processes

The behavior of χ processes is defined in terms of actions and delays. Actions define
instantaneous changes, where time does not change, to the values of variables. Delays
involve the passing of time, where for all variables their trajectory as a function of time is
defined. The valuation σ and the environment E, together define the variables that exist
in the χ process and the variable classes to which they belong.

The variables are grouped into different classes with respect to the delay behavior and
action behavior. With respect to the delay behavior, the variables are divided into the
following classes:

• The discrete variables, the values of which remain constant while delaying.

• The continuous variables, the values of which change according to an absolutely
continuous function1 of time while delaying. The values of continuous variables are
further restricted by delay predicates, that are usually in the form of differential
algebraic equations.

• The dotted continuous variables, the values of which change according to an inte-
grable, possibly discontinuous function of time while delaying. The relation between
the dotted continuous variables and the continuous variables is explained in Sec-
tion 3.3.2.

• The algebraic variables, that behave in a similar way as continuous variables. The
differences are that algebraic variables may change according to a discontinuous func-
tion of time, and algebraic variables are not allowed to occur as dotted variables.

• The predefined variable ‘time’, that denotes the current time.

With respect to the action behavior, the variables are divided into two classes:

1A function f(x) is continuous at x ∈X provided that for all ε > 0, there exists δ > 0 so that |x− y| ≤ δ
implies |f(x)− f(y)| ≤ ε. Roughly speaking, for single-valued functions this means that we can draw the
graph of the function without taking the pencil of the paper. The class of absolutely continuous functions
consists of continuous functions which are differentiable almost everywhere in Lebesgue sense. This class
includes the differentiable functions.

10
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• The non-jumping variables, the values of which by default do not change in actions.
The changes of non-jumping variables need to be explicitly specified.

• The jumping variables, the values of which by default can jump to arbitrary values
in actions. The values after jumping can be restricted by means of action predicates,
send and receive process terms, or delay predicates (equations).

The discrete and continuous variable classes can be divided into jumping and non-
jumping versions. For the other classes, such a division is not possible: the dotted contin-
uous and algebraic variables are by definition jumping with respect to the action behavior,
and the predefined variable time is by definition non-jumping.

Further explanation on the semantics of the behavior of the different classes of variables
is found in Section 3.3.1 on the action predicate, in Section 3.3.2 on the delay predicate,
in Section 3.3.3 on the send and receive process terms, and in Section 3.4.6 on parallel
composition.

The valuation σ captures the values of those variables that are relevant for determining
the future behaviors of a process. The domain of the valuation σ in a χ process 〈p, σ, E〉
consists of the discrete variables, the continuous variables, and the predefined non-jumping
variable time. The dotted continuous variables and the algebraic variables are not included
in the domain of σ, because their values depend only on the process term p, possibly to-
gether with the values of the other variables. The values of the dotted continuous and
algebraic variables are included in the so called ‘extended valuation’. This extended valu-
ation is required, among others, to ensure consistency of χ processes.

The consistency requirement enforces constraints on χ processes comparable to invari-
ants in hybrid automata. Informally, in χ, the delay predicates (equations) must always
hold. Consistency ensures that in x := 1 ‖ y = x, assuming that y is a jumping variable, the
values of x and y are 1 after assigning 1 to x, independently of the initial value of y. Con-
sistency also ensures that inconsistent processes cannot be reached, e.g. in x := 1 ‖ x = 2,
the assignment to x cannot be executed. In fact, in χ, only consistent processes can per-
form action or delay transitions, and the result of an action or delay transition is always a
consistent process.

Consistency is related to extended valuations in the following way: a χ process 〈p,σ,E〉
is consistent with extended valuation ξ, where ξ is the valuation σ extended with the
(valuation for the) algebraic and dotted variables as defined by environment E, if the
delay predicates u in p and the predicates u of signal emission operators in p hold when
evaluated in extended valuation ξ.

For a χ process 〈p, σ, (C, J, L, H, R)〉, the combination of the variable classes for the
delay and action behavior leads to the following classes of variables:

• The set of discrete variables D is dom(σ) \ (C ∪ {time}),

– the set of non-jumping discrete variables is D \ J ,

– the set of jumping discrete variables is D ∩ J .

11
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• The set of continuous variables is C,

– the set of non-jumping continuous variables is C \ J ,

– the set of jumping continuous variables is C ∩ J .

• The set of (jumping) dotted continuous variables is Ċ, where Ċ denotes the set{ẋ|x ∈
C}.

• The set of (jumping) algebraic variables is L.

• The predefined (non-jumping) variable denoting the current time is time.

Note that it is possible to have D∩J 6= ∅ and L∩J 6= ∅. Such jumping discrete or jumping
algebraic variables can occur as an artefact of the parallel composition of a send and a
receive process term, where the receive process term assigns the received value to a discrete
or algebraic variable, see Sections 3.3.3 and 3.4.6. From a modeling perspective, discrete
and algebraic variables are in principle never explicitly declared as jumping. Discrete
variables are not declared as jumping, because their value is not determined by equations,
and therefore their values need not change when the value of a variable occurring in an
equation changes due to an action. Algebraic variables are not declared as jumping, because
they are by definition jumping. In fact, there is no difference between the behavior of an
algebraic variable that is in set J and one that is not in the set.

Consider, for example, the process 〈 n := 1 ‖ y = n, {n 7→ 0, time 7→ 0}, (∅, ∅, {y}, ∅,
∅) 〉 consisting of the discrete variable n, the predefined variable time, the algebraic variable
y, and no continuous variables. Initially, the value of n equals 0, and thus the value of y
equals 0. After the assignment of 1 to n, the equation y = n should still hold, and thus
the value of y jumps to 1. The process terms and operators used in this model, and their
informal semantics are discussed in the Sections 2.3 and 2.4.

2.3 Syntax of process terms

Process terms p ∈ P (without pext ∈ Pext, see the table below) are the ‘core’ elements of
the χ formalism. In Section 2.5, the syntax of χ process terms is extended with process
terms Pext to ensure better readability of χ models. The semantics of those process terms
is defined in terms of the core process terms given in this section.

The set of process terms P is defined by the following grammar for the process terms
p ∈ P :

p ::= W : r � la | u | δ | ⊥
| [p] | uy p | p; p | b→ p | p [] p
| p ‖ p | h !! en | h ?? xn | ∂A(p) | υH (p)
| X | ιJ+(p)
| |[V σ⊥,C ,L ‘|’p ]| | |[H H ‘|’p ]| | |[R R ‘|’p ]|
| pext

12
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Here, r is a predicate over variables (including the variable time), dotted continuous
variables, and ‘−’ superscripted variables (including the dotted variables, e.g. ẋ). The
action label la is taken from a given set Alabel which at least contains the special action
label τ representing the internal or silent step. Furthermore, u and b are both predicates
over variables (including the variable time) and dotted continuous variables; en denotes
the expressions e1, . . . , en, and xn denotes the (non-dotted) variables x1, . . . , xn such that
time 6∈ {xn}. For n= 0, h !!en and h??xn can be written h !! and h??, respectively, where h
is a channel. Finally, A is a set of actions, H is a set of channels, X is a recursion variable,
R is a recursion definition as defined in Section 2.1, W , J +, C , L are sets of (non-dotted)
variables such that time 6∈ W and time 6∈ J +, and σ⊥ is a valuation that also allows the
undefined ‘value’ ⊥. It is specified as {x0 7→ c0, . . . , xn 7→ cn}, where xi denotes a variable
and ci a value or ⊥.

As is common practice in mathematics, the comma in predicates denotes conjunction.
E.g. u1, u2 denotes the predicate u1 ∧ u2. Also, both e1 ≤ ẋ ≤ e2 and ẋ ∈ [e1, e2] can be
used instead of ẋ ≥ e1 , ẋ ≤ e2, and likewise for strict inequalities and open intervals.

The operators are listed in descending order of their binding strength as follows {y
, → }, ; , {‖, []}. The operators inside the braces have equal binding strength. In addition,
operators of equal binding strength associate to the right, and parentheses may be used to
group expressions. For example, p; q ; r means p; (q ; r). An informal, concise explanation
of this syntax is given below. Section 3 gives a more detailed account of their meaning.

2.4 Informal semantics of process terms

Strictly speaking, a χ process term p cannot perform actions nor delays. Only the χ process
〈p,σ,E〉, that is obtained by adding a valuation and an environment to p, can, in principle,
perform actions and delays. Therefore, when we informally refer to a process term that
performs actions or delays, we refer to the process term together with a valuation and
environment.

2.4.1 Manipulating the values of variables

In χ, there are several classes of variables, and there are several means to change the value
of a variable, depending on the class of variable. The main means for changing the value
of a variable are the action predicate, for instantaneous changes, and the delay predicate,
for the changes of variables over time.

Action predicates An instantaneous change of the value of a discrete or continuous variable
in χ is always connected to the execution of an action. In action predicates, the action is
represented by a label. Other types of action are related to communication, which is treated
below in the paragraph on parallelism. Action predicate W : r� la denotes instantaneous
changes to the variables from set W , by means of an action labeled la, such that predicate
r is satisfied. The predefined global variable time cannot be assigned. The non-jumping

13
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variables that are not mentioned in W remain unchanged, and the jumping variables,
dotted continuous variables, and algebraic variables may obtain ‘arbitrary’ values, provided
that the predicate r is satisfied and the process remains consistent.

A ‘−’ superscripted occurrence of a variable refers to the value of the variable in the ex-
tended valuation prior to execution of the action predicate, and a normal (un-superscripted)
occurrence of a variable refers to the value of that variable in the extended valuation that
results from the execution of the action predicate. A predicate r is satisfied if evaluating
the ‘−’ superscripted variables in the original extended valuation and evaluating the normal
occurrences of the variables in the obtained extended valuation means that the predicate is
true. The reason to use an extended valuation for evaluating action predicate r is that in
such predicates also algebraic and dotted continuous variables may be used. Note that it
can be the case that different instantaneous changes satisfy the predicate, this may result
in non-determinism.

Note that the (multi-)assignment is not a primitive in χ, as for example in [BK02].
This is because action predicates are more expressive than assignments. An assignment
can be expressed as an action predicate (see Section 2.5.2), but not the other way around.
Consider for example the action predicate {x} : x ∈ [0, 1] � τ , that changes the value of
x to a value in the interval [0, 1]. Also, the predicate of an action predicate may consist
of a conjunction of implicit equations, e.g. {x} : f1(x−,x) = 0 ∧ . . . ∧ fn(x−,x) = 0� τ .
The solution of such a system of equations, if present, need not always be expressible in
an explicit form. The system may also have multiple solutions.

Delay predicates In principle, continuous and algebraic variables change arbitrarily over
time when delaying, although, depending on the class of the variable, they may have to
respect some continuity requirements, see Section 3.3.2 for more details. A delay predicate
u, usually in the form of a differential algebraic equation, restricts the allowed behavior
of the continuous and algebraic variables in such a way that the value of the predicate
remains true over time. Delay predicates in the form of x ≥ e, where x is a variable, e
an expression, and instead of ≥, also ≤, >,< can be used, are comparable to invariants in
hybrid automata.

2.4.2 Deadlock and inconsistency

In χ, only consistent processes can do action or delay transitions, and the result of an
action or delay transition is always a consistent process. Some process terms are consistent
for certain valuations and inconsistent for other valuations. E.g. the delay predicate
process term x≥ 0 is consistent for all values of x greater or equal to zero, and inconsistent
otherwise. There are also process terms that are consistent or inconsistent for all valuations.
The inconsistent process term ⊥ is inconsistent for all valuations. It cannot perform any
transition.

The deadlock process term δ cannot perform actions or delays. It is however consistent.
Both process terms are needed for the specification of properties only.
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2.4.3 Any delay operator

Besides the specification of delay by means of delay predicates, arbitrary delay can be
described by means of the any delay operator [p]. The resulting behavior is such that
arbitrary delays are allowed. When [p] delays, p remains unchanged and its delay behavior
is ignored. The action behavior of p remains unchanged in [p].

2.4.4 Signal emission

Signal emission operator process term u y p behaves as p for those extended valuations
where u holds. The process term is inconsistent with extended valuations for which u does
not hold.

2.4.5 Sequential composition

The sequential composition of process terms p and q behaves as process term p until p
terminates, and then continues to behave as process term q.

2.4.6 Conditional

The guarded process term b→ p can do whatever actions p can do under the condition that
the guard b evaluates to true using the current extended valuation. The guarded process
term can delay according to p under the condition that for the intermediate extended
valuations during the delay, the guard b holds. The guarded process term can perform
arbitrary delays under the condition that for the intermediate valuations during the delay,
possibly excluding the first and last valuation, the guard b does not hold.

2.4.7 Choice

The alternative composition operator [] allows a non-deterministic choice between different
actions of a process. With respect to time behavior, the participants in the alternative
composition have to synchronize. This means that the trajectories of the variables have
to be agreed upon by both participants. This means that [] is a strong time-deterministic
choice operator.

2.4.8 Parallelism

Parallelism can be specified by means of the parallel composition operator ‖. Parallel
processes interact by means of shared variables or by means of synchronous point-to-point
communication/synchronization via a channel. Channels are denoted as labels (identifiers).
The parallel composition p ‖ q synchronizes the time behavior of p and q, interleaves
the action behavior (including the instantaneous changes of variables) of p and q, and
synchronizes matching send and receive actions. The synchronization of time behavior
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means that only the time behaviors that are allowed by both p and q are allowed by their
parallel composition. The consistent equation semantics of χ enforces that actions by p (or
q) are allowed only if the values of the variables before and after the actions are consistent
with the other process term q (or p). This means, among others, that the delay predicates
of q must hold before and after execution of an action by p.

By means of the send process term h !! e1, . . . , en, for n ≥ 1, the values of expressions
e1, . . . , en (evaluated w.r.t. the extended valuation) are sent via channel h. For n = 0, this
reduces to h !! and nothing is sent via the channel. By means of the receive process term
h ?? x1, . . . , xn, for n ≥ 1, values for x1, . . . , xn are received from channel h. We assume
that all variables in the sequence xn are syntactically different: xi ≡ xj =⇒ i = j. For
n = 0, this reduces to h ??, and nothing is received via the channel. Communication in χ
is the sending of values by one parallel process via a channel to another parallel process,
where the received values (if any) are stored in variables. For communication, the acts
of sending and receiving (values) have to take place in different parallel processes at the
same moment in time. In case no values are sent and received, we refer to synchronization
instead of communication.

In order to be able to model open systems (i.e. systems that interface with the environ-
ment), it is necessary not to enforce communication via the external channels of the model
(e.g. the channels that send or receive from the environment). For communication via
internal channels, however, the communication of matching send and receive actions, often
is not only an option, but an obligation. In such models, the separate occurrence of the
send action and the receive action via an internal channel is undesired. The encapsulation
operator ∂A, where A ⊆ A \ {τ} is a set of actions (A is the set of all possible actions
and τ is the predefined internal action), is introduced to block the actions from the set A.
In order to assure that, for internal channels, only the synchronous execution of matching
send and receive actions takes place, one can simply put all send and receive actions via
internal channels in the set A.

In principle the channels in χ are non-urgent. This means that communication does
not necessarily take place as soon as possible. In order to describe also urgent channels,
the urgent communication operator υH (p), where H ⊆ H is a set of channel labels, ensures
that p can only delay in case no communication or synchronization of send and receive
actions via a channel from H is possible.

Note that a different kind of urgency can be achieved by means of undelayable process
terms. The χ semantics ensures that actions of undelayable process terms have priority
over delays. For example in ẋ = 1 ‖ x := 1 and ẋ = 1 [] x := 1, the assignment cannot delay.
Therefore, it must be executed before a delay is possible. Also in h !! ‖ ẋ = 1, or h !! ‖ h ??,
or h !! ‖ [h ??], the parallel composition cannot delay because h !! cannot delay. Therefore,
a send action must be executed before a delay may be possible. Process term [h !!] ‖ [h ??],
however, can do a communication action (or send or receive action), but it can also delay.
To enforce the synchronization, the encapsulation operator is used; to enforce this as soon
as possible, the urgent communication operator is used: υ{h}([h !!] ‖ [h ??]).
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2.4.9 Recursive definitions

Process term X denotes a recursion variable (identifier) that is defined either in the envi-
ronment of the process, or in a recursion scope operator process term |[R . . . | p ]|, see below.
Among others, it is used to model repetition. Recursion variable X can do whatever the
process term of its definition can do.

2.4.10 Jump enabling operator

Jump enabling operator ιJ+(p), where J + denotes a set of variables, is used to (re)define
the variables in set J + as jumping variables.

2.4.11 Hierarchical modeling

Thus far, it has been assumed that all variables that are allowed to occur in a χ process
term are either declared in the valuation or in the environment (in the set L). To support
the hierarchical modeling of systems, it is convenient to allow local declarations of variables.
For this purpose, the variable scope operator process term |[V σ⊥,C ,L | p ]| is introduced,
where σ⊥ denotes a valuation of local variables, where values may be undefined (⊥), C
denotes a set of local (non-jumping) continuous variables, and L denotes a set of local
algebraic variables. The set of local discrete variables is dom(σ⊥) \ C . We assume C ⊆
dom(σ⊥), dom(σ⊥)∩L = ∅, and C ∩L = ∅. It is allowed that the local variables have been
declared on a more global level already. Any occurrence of a variable from dom(σ⊥)∪ Ċ ∪L
in process term p refers to the local variable and not to any more global declaration of the
same variable name.

For similar purposes, local channels can be declared by means of a channel scope process
term |[H H | p ]|, and local recursive definitions by means of a recursion scope process term
|[R R | p ]|. The channel scope process term |[H H | p ]| is used to declare the channels from
the set H ⊆ H to be local. Communication actions via those local channels are abstracted
from (replaced by internal action τ), and the separate send and receive actions via local
channels are blocked. The recursion scope process term |[R R | p ]| is used to declare local
recursion definitions R ⊆ R (see Section 3.1 for the definition of R).

2.5 Syntactic extensions

For many of the χ processes, process terms and operators introduced before, there is
additional, more user-friendly syntax available, the so-called syntactic extensions. In this
section, all of these syntactic extensions are expressed in terms of the syntax introduced
in the previous sections.

2.5.1 Processes

Notation
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〈 disc s1, . . . , sk
, cont x1, . . . , xn
, alg z1, . . . , zm
, chan h1, . . . , hl
, i
, X1 7→ p1, . . . , Xr 7→ pr
| p
〉,

where s1, . . . , sk denote the discrete variables, x1, . . . ,xn denote the non-jumping continuous
variables, z1, . . . , zm denote the algebraic variables, h1, . . . , hl denote the urgent channels, i
denotes an initialization predicate that restricts the allowed values of the variables initially,
X1 7→ p1, . . . , Xr 7→ pr denote the recursion definitions, and p is a process term, is an
abbreviation for the set of χ processes defined by:

〈 ∂Aia
(υ{h1,...,hl}((i ∧ time = 0) y p))

, σsxt
, ( {x1, . . . , xn}
, ∅
, {z1, . . . , zm}
, {h1, . . . , hl}
, {X1 7→ p1, . . . , Xr 7→ pr}
)
〉,

namely for each valuation σsxt , with dom(σsxt) = {s1, . . . , sk , x1, . . . , xn , time}, a separate χ
process. In the χ process, Aia represents the internal send and receive actions via channels
h1, . . . , hl.

In the notation defined above, it is required that the discrete, continuous, and algebraic
variables are all different. Besides the declared variables, the existence of the predefined
reserved global variable time which denotes the current time, the value of which is initially
zero, is assumed. This variable cannot be declared. It can only be used in expressions in
process term p, or in p1, . . . , pr.

As a shorthand, the keyword preceding variables of a certain type is omitted when
there are no variables of that type, and the keyword chan is omitted when there are
no channel declarations. Also the initialization predicate i and the recursive definitions
X1 7→ p1, . . . , Xr 7→ pr may be omitted, indicating a predicate that always holds and an
empty list of recursive definitions, respectively.

2.5.2 Process terms

For many of the core process terms introduced before, there is additional, more user-friendly
syntax available. The set of process terms Pext is defined by the following grammar for the
process terms pext ∈ Pext and p ∈ P :
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pext ::= skip | xn := en | h ! en | h ? xn
| ∆d(p) | ∆d | ∗p | b ∗→ p
| (jump ym ‘|’p)
| |[ disc sk, cont xn, alg zl, chan hm, i, LR ‘|’p ]|
| lp(xk , hm , en)

The operators of p and pext are listed in descending order of their binding strength as
follows: {∗, ∗→ ,y, → }, ; , {‖, []}.

Skip Process term skip is an abbreviation for an action predicate that can perform an
internal action (τ), such that only the jumping variables can change.

skip , ∅ : true� τ

Multi-assignment Multi-assignment xn := en for n ≥ 1 is an abbreviation for an internal
action that changes variables x1, . . . , xn to the values of expressions e1, . . . , en, respectively.
For n = 1, this gives an assignment x := e.

xn := en , {xn} : x1 = e−1 ∧ · · · ∧ xn = e−n � τ

Here e− denotes the result of replacing all variables xi in e by their ‘−’ superscripted version
x−i . For example, process term x := 2x+ yz is defined as {x} : x = 2x− + y−z− � τ , and
process term x, y := x+ y, x− y is defined as {x, y} : (x = x− + y−) ∧ (y = x− − y−)� τ .

Delayable send and receive Process terms h ! en, and h ? xn are the respective delayable
counterparts of h !! en and h ?? xn. They are defined by means of the any delay operator
[p], which adds arbitrary delay behavior to p.

h ! en , [h !! en] h ? xn , [h ?? xn]

Delay operators By means of the delay operator ∆d(p), a process term is forced to delay
for the amount of time units specified by the value of numerical expression d, and then
proceeds as p. The abbreviation ∆d denotes a process term that first delays for d time
units, and then terminates by means of an internal action τ . The fact that process term
∆d terminates by means of an action ensures that time-outs enforce a choice in alternative
composition. The value of expression d is evaluated at the first delay or action by ∆d.

∆d(p) , |[V {t 7→ ⊥}, ∅, ∅ | t = time + dy time ≥ t→ p ]|
∆d , ∆d(skip)

In the definition of ∆d(p), t denotes a fresh variable, not occurring free in p. Delays are
only defined for non-negative values of d. Therefore, we assume that the value of d in the
extended valuation is non-negative.
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Repetition operators Process term ∗p represents the infinite repetition of process term p.
Guarded repetition b

∗→ p can be interpreted as ‘while b do p’.

∗p , |[R {X 7→ p; X} | X ]|
b
∗→ p , |[R {X 7→ b→ skip; p; X [] ¬b→ skip} | X ]|

In the definition of ∗p and b
∗→ p, recursion variable X denotes a fresh recursion variable

not occurring free in p.

Jump enabling operator Jump enabling operator (jump ym | p), where ym denotes a comma
separated list of variables, is used to redefine the variables ym as jumping variables.

(jump ym | p) , ι{ym}(p)

Modeling scope operator The modeling scope operator process term

|[ disc sk, cont xn, alg zl, chan hm, i, LR ‘|’p ]|

is used to declare a scope consisting of local discrete variables s1, . . . , sk, local (non-jumping)
continuous variables x1, . . . ,xn, local algebraic variables z1, . . . , zl, local channels h1, . . . ,hm,
initialization predicate i, and local recursion definition list LR. The variables all have to
be different.

|[ disc sk
, cont xn
, alg zl
, chan hm
, i
, LR
| p
]|

,

|[V σsx
, {x1, . . . , xn}
, {z1, . . . , zl}
| |[H {h1, . . . , hm}
| υ{h1,...,hm}(|[R {LR} | iy p ]|)
]|

]|

Here LR denotes the recursion definitions X1 7→ p1, . . . , Xr 7→ pr, σsx denotes a valuation
with dom(σsx ) = {s1, . . . , sk , x1, . . . , xn}, and σsx is undefined for all elements from its
domain: ∀v∈dom(σsx ) σsx (v) = ⊥.

In a similar way as defined for χ processes, the keyword preceding variables of a certain
type is omitted when there are no variables of that type, and the keyword chan is omitted
when there are no local channel declarations. Also the initialization predicate i and the
recursion definitions may be omitted, indicating a predicate that always holds and an
empty list of recursion definitions, respectively.
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Process instantiation Process instantiation process term lp(xk,hm, en), where lp denotes
a process label, enables (re)-use of a process definition. A process definition is specified
once, but it can be instantiated many times, possibly with different parameters: external
variables xk, external channels hm, and expressions en.

Chi specifications in which process instantiations lp(xk,hm, en) are used have the fol-
lowing structure:

pd1
...
pd j

〈 disc . . . , cont . . . , alg . . . , chan . . . , i, LR | q 〉,

where for each process instantiation lp(xk,hm,en) occurring in process term q, a matching
process definition pd j of the form

lp(ext x′k, chan h′m, val vn) = p

must be present among the j process definitions pd1 . . . pd j. Here lp denotes a process
label, xk denotes the ‘actual external’ variables x1, . . . , xk, hm denotes the ‘actual external’
channels h1, . . . , hm, en denotes the expressions e1, . . . , en, x′k denotes the ‘formal external’
variables x′1, . . . , x

′
k, h′m denotes the ‘formal external’ channels h′1, . . . , h

′
m, and vn denotes

the ‘value parameters’ v1, . . . , vn.
The only free variables and free channels that are allowed in process term p are the

formal external variables x′k, the formal external channels h′m, and the value parameters
vn. We assume that the formal external variables x′k and the value parameters vn are
different.

Formally, the syntactic translation of process instantiation

lp(xk,hm, en)

with corresponding process definition

lp(ext x′k, chan h′m, val vn) = p

is given by

|[V {v1 7→ ⊥, . . . , vn 7→ ⊥}, ∅, ∅
| vn = wn y p
]| [xk,hm, en/x′k,h′m,wn].

Notation q[xk,hm, en/x
′
k,h

′
m,wn] denotes the process term obtained from q ∈ P by sub-

stitution of the (free) variables x′k by xk, of the (free) channels h′m by hm, and of the
(free) variables wn by expressions en.

The variables wn are assumed to be fresh with respect to x′k and vn. The substitution
is defined in such a way that no variables from xk or en, and no channels from hm become
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bound. If substitution would cause new bindings, the local variable or local channel that
a variable or channel from xk, en, or hm would become bound to, is renamed into a fresh
variable or fresh channel before the substitution takes place.

The translation declares the value parameters vn as local discrete variables with initial
values en. By convention, however, process term p normally does not change the values of
these variables.

2.6 Data types

The χ formalism is statically strongly typed. Besides the classification of variables as de-
fined before, all variables have a type. The type of a variable defines the allowed values of
the variable and the allowed operations on the variable. The atomic types are nat (nat-
ural numbers, including zero), int (integers), real (real-valued numbers), bool (booleans),
string (strings), and enum (enumerations). Type constructors operate on existing types
to create structured types. The χ formalism defines type constructors to create sets, lists,
array tuples, record tuples, dictionaries, functions, and distributions (for stochastic mod-
els). Channels also have a type that indicates the type of data that is communicated via
the channel. Pure synchronization channels, that do not communicate data, are of the
predefined type void. The χ type system is strictly enforced in the χ tools. However, since
the type system is not formalized, it is omitted from the specifications in this paper.
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CHAPTER

THREE

Semantics of the Chi formalism

This section presents the structured operational semantics (SOS [Plo81]) of χ. It associates
a hybrid transition system [CRH02] with a χ process.

3.1 General description of the SOS

The main purpose of SOS is to define the behavior of χ processes at a certain chosen level of
abstraction. The meaning of a χ process depends on the values of the variables and on the
environment. A set V of variables, and a set H of channel labels are assumed. The values
of the variables at a specific moment in time are captured by means of a valuation, i.e., a
partial function from the variables to the set of values Λ (containing at least the booleans B
and the reals R). The set of all valuations is denoted Σ: Σ = V 7→ Λ, where notation V 7→ Λ
denotes the set of all partial functions from V to Λ. We assume σ ∈ Σ for all χ processes
〈p, σ, E〉. Extended valuations also include the values of dotted continuous variables and
the algebraic variables. The set of all extended valuations is denoted Σ̇: Σ̇ = (V ∪ V̇) 7→ Λ,
where V̇ denotes the set of all dotted variables. The set T =R≥0 is used to represent points
in time. The set of environments E is defined as E = P(V) × P(V) × P(V) × P(H) ×R,
where P(V) denotes the powerset of variables, P(H) denotes the powerset of channels,
and R = X 7→ p denotes the set of all partial functions of recursion variables X to process
terms p.

The SOS is chosen to represent the following:

1. Discrete behavior by means of action transitions:

(a) −→ ⊆ (P × Σ × E) × (Σ̇ × A × Σ̇) × (P × Σ × E), where A denotes the set
of actions, and is defined as A = Alabel ∪ Acom. The set of action labels Alabel

includes at least the pre-defined internal action τ . The set of communication
actions Acom is defined as Acom = {isa(h, cs), ira(h, cs ,W ), ca(h, cs) | h ∈H, cs ∈
Λ∗, W ⊆ V}, where isa, ira, and ca denote action labels for the internal send
action, the internal receive action, and the communication action respectively,
h ∈ H denotes a channel, cs ∈ Λ∗ denotes a list [c1, . . . , cn] of values, and W

denotes a set of variables. The intuition of an action transition 〈p, σ, E〉 ξ,a,ξ′−−−→
〈p′, σ′, E ′〉 is that the process 〈p, σ, E〉 executes the discrete action a ∈ A with
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extended valuations ξ and ξ′ and thereby transforms into the process 〈p′, σ′,E ′〉,
where σ′ and E ′ denote the accompanying valuation and environment of the
process term p′, respectively, after the discrete action a is executed.

(b) −→ 〈X, , 〉 ⊆ (P × Σ × E) × (Σ̇ × A × Σ̇) × (Σ × E). The intuition of a

(termination) transition 〈p, σ, E〉 ξ,a,ξ′−−−→ 〈X, σ′, E ′〉 is that the process 〈p, σ, E〉
executes the discrete action a with extended valuations ξ and ξ′ and thereby
transforms into the terminated process 〈X, σ′, E ′〉.

2. Continuous behavior by means of time transitions: 7−→ ⊆ (P ×Σ×E)× (T × (T 7→
Σ̇))× (P ×Σ× E). The intuition of a time transition 〈p, σ,E〉 t,ρ7−→ 〈p′, σ′, E ′〉 is that
during the time transition, the extended valuation at each time-point s ∈ [0, t] is
given by ρ(s). At the end-point t, the resulting process is 〈p′, σ′, E ′〉.

3. Consistency by means of a predicate:  ⊆ (P × Σ× E)× Σ̇. The intuition of the

consistency predicate 〈p, σ, E〉 ξ
 is that the process term p is consistent with the

extended valuation ξ in environment E.

The following properties of the semantics can be found in Section 3.5:

• For all transitions, the domain of the valuation σ equals the domain of valuation σ′,
and environment E equals environment E ′, i.e. the environment is never changed in
a transition.

• For all action transitions 〈p, σ, E〉 ξ,a,ξ′−−−→ 〈X, σ′, E ′〉 and 〈p, σ, E〉 ξ,a,ξ′−−−→ 〈p′, σ′, E ′〉:
dom(σ) ⊆ dom(ξ), dom(ξ) = dom(ξ′), extended valuation ξ restricted to dom(σ)
equals valuation σ, and extended ξ′ restricted to dom(σ′) equals valuation σ′.

• For all time transitions 〈p, σ, E〉 t,ρ7−→ 〈p, σ′, E ′〉: dom(ρ) = [0, t], and for all variables
x ∈ dom(σ), the value in the resulting valuation σ′(x) equals the value of the variable
in the end-point of the trajectory ρ(t)(x).

• For all consistency predicates 〈p, σ,E〉 ξ
 : extended valuation ξ restricted to dom(σ)

equals valuation σ.

The relations and predicates mentioned above are defined through so-called deduction
rules. A deduction rule is of the form H

r
, where H is a number of hypotheses separated by

commas and r is the result of the rule. The result of a deduction rule can be derived if all
of its hypotheses are derived. In case the set of hypotheses is empty, the deduction rule is
called an axiom.

In order to increase the readability of the χ deduction rules, some additional abbre-

viations are used. Notation E  〈p, σ〉 ξ,a,ξ′−−−→ 〈q, σ′〉, where q ∈ P ∪ {X} is an abbrevi-

ation for 〈p, σ, E〉 ξ,a,ξ′−−−→ 〈q, σ′, E〉, notation E  〈p, σ〉 t,ρ7−→ 〈q, σ′〉 is an abbreviation for

〈p, σ, E〉 t,ρ7−→ 〈q, σ′, E〉, and notation E  〈p, σ〉 ξ
 is an abbreviation for 〈p, σ, E〉 ξ

 .
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Notation E  f1, . . . , fn, where fi represents one of the previously defined transition

relations (of the forms 〈p,σ〉 ξ,a,ξ
′

−−−→ 〈q,σ′〉 or 〈p,σ〉 t,ρ7−→ 〈q,σ′〉 or 〈p,σ〉 ξ
 ) is an abbreviation

for E  f1, . . . , E  fn.
Notation

E ′  〈p1, σ1〉
ξ1,a1,ξ′1−−−−→

〈 q11
...
q1n

, σ′1

〉
, . . . , 〈pm, σm〉

ξm,am,ξ′m−−−−−→

〈 qm1
...

qmn

, σ′m

〉
, C

E  〈r, σ〉 ξ,b,ξ′−−−→

〈 s1
...
sn

, σ′

〉

where qj i, si ∈ P ∪ {X}, pi, r ∈ P , and C denotes an optional hypothesis that must be
satisfied in the deduction rule, is an abbreviation for the following rules (one for each i):

E ′  〈p1, σ1〉
ξ1,a1,ξ′1−−−−→ 〈q1i, σ

′
1〉, . . . , 〈pm, σm〉

ξm,am,ξ′m−−−−−→ 〈qmi, σ′m〉, C

E  〈r, σ〉 ξ,b,ξ′−−−→ 〈si, σ′〉

The notation H
R

, where R is a number of results separated by commas, is an abbreviation
for a set of deduction rules of the form H

r
; one for each r ∈ R, and notation E

H
r

is an
abbreviation for E H

E  r .

Furthermore, notation 〈p,σ,E〉 ca(h,∗)
9 denotes (@ξ,cs,ξ′,p′,σ′,E′ 〈p,σ,E〉

ξ,ca(h,cs),ξ′−−−−−−−→〈p′,σ′,E ′〉)
∧ (@ξ,cs,ξ′,σ′,E′ 〈p, σ, E〉

ξ,ca(h,cs),ξ′−−−−−−−→ 〈X, σ′, E ′〉), and notation 〈p, σ, E〉 α−→ 〈p′, σ′, E ′〉 is an

abbreviation for 〈p, σ, E〉 ξ,a,ξ′−−−→ 〈p′, σ′, E ′〉 for some ξ, a, and ξ′.

3.2 Notations and mathematical definitions

Notations f ∈M → G and g ∈M 7→ G define function f , dom(f) = M , and partial (or f
induced) function g, dom(g) ⊆M , both with range G.

3.2.1 Operators on functions

Based on [LSV03], the following definitions of operators �, ∪, and ↓ applied on functions
are used. If f is a function, dom(f) and range(f) denote the domain and range of f ,
respectively. If S is a set, f � S denotes the restriction of f to S, that is, the function g
with dom(g) = dom(f) ∩ S, such that g(c) = f(c) for each c ∈ dom(g).

If f and g are functions with dom(f) ∩ dom(g) = ∅, then f ∪ g denotes the unique
function h with dom(h) = dom(f)∪ dom(g) satisfying the condition: for each c ∈ dom(h),
if c ∈ dom(f) then h(c) = f(c), and h(c) = g(c) otherwise.

If f is a function whose range is a set of functions and S is a set, then f ↓ S denotes the
function g with dom(g) = dom(f) such that g(c) = f(c) � S for each c ∈ dom(g). If f is a
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function whose range is a set of functions, all of which have a particular element d in their
domain, then f ↓ d denotes the function g with dom(g) = dom(f) such that g(c) = f(c)(d)
for each c ∈ dom(g).

3.2.2 Notations

Let x ∈ V be a variable, S, C, L ⊆ V be sets of variables, σ ∈ Σ be a valuation, e be an
expression over variables and constants, and t ∈ T be a time-point, then the following
notations are defined:

• σ(x) denotes the value of variable x in valuation σ. We use the similar notation σ(e)
to denote the value of expression e evaluated in valuation σ.

• Ṡ denotes the set of dotted variables {ẋ | x ∈ S}.

• ξĊL ∈ (Ċ ∪ L)→ Λ denotes an arbitrary valuation with domain Ċ ∪ L.

• ξσ is an abbreviation for ξ � dom(σ).

• Function Ξ∈ (Σ×P(V)×P(V)×P(V))→P(Σ̇) returns a set of extended valuations,
given a valuation, a set of continuous variables, a set of jumping variables, and a set
of algebraic variables. Formally, function Ξ is defined as:

Ξ(σ,C, J, L) = {ξ | dom(ξ) = dom(σ) ∪ Ċ ∪ L, ∀x∈dom(σ)\J ξ(x) = σ(x)}.

The values of the variables in ξ are defined as follows: the values of the variables in
dom(σ) \ J are given by σ. The jumping variables J , the dotted variables Ċ and the
algebraic variables L have arbitrary values.

• ΩσEt, where environment E denotes the tuple (C, J, L,H,R), is an abbreviation for
ΩFG(σ,C, L, true, t). Here, ΩFG is the solution function as defined in Section 3.3.2.

• ρσ is an abbreviation for ρ ↓ dom(σ).

3.3 Deduction rules for atomic process terms

3.3.1 Action predicate

Action predicate process term W : r � la denotes instantaneous changes to the variables
from set W , by means of an action labeled la ∈ Alabel, such that predicate r over variables
from the domains of the extended valuations ξ− and ξ′ is satisfied, see Rule 1, where
ξ, ξ′ ∈ (dom(σ) ∪ Ċ ∪ L)→ Λ, and ξ− is defined below.

The values of the variables from dom(σ) in ξ are given by σ. The dotted variables Ċ

and the algebraic variables L in ξ can in principle take any value (ξ = σ ∪ ξĊL) as long as
the action predicate r is satisfied (ξ− ∪ ξ′ |= r). Variables occurring with a ‘−’ superscript
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3.3. Deduction rules for atomic process terms

in r are evaluated in ξ−, which denotes the extended valuation with the values of variables
before the discrete change. Extended valuation ξ− is defined as dom(ξ−) = {x− | x ∈
dom(ξ)}, and ξ−(x−) = ξ(x). For extended valuation ξ′, the values of the discrete and the
non-jumping variables (dom(σ) \ (J ∪W )) are given by σ. The jumping variables J , the
variables from set W , the dotted variables Ċ and the algebraic variables L are allowed to
change such that the action predicate is satisfied. Since there are no time transition rules
defined for action predicates, this means that action predicates cannot perform any time
transitions.

Rule 2 states that action predicates are always consistent with any extended valuation
σ ∪ ξĊL with respect to σ in any environment E.

ξ = σ ∪ ξĊL , ξ′ ∈ Ξ(σ,C, J ∪W,L), ξ− ∪ ξ′ |= r

(C, J, L,H,R)  〈W : r � la, σ〉
ξ , la , ξ′−−−−−→ 〈X, ξ′σ〉

1

(C, J, L,H,R)  〈W : r � la, σ〉
σ∪ξĊL
 

2

3.3.2 Delay predicate

Delay predicate u is a predicate over variables and dotted continuous variables.

ρ ∈ ΩFG(σ,C, L, u, t)

(C, J, L,H,R)  〈u, σ〉 t,ρ7−→ 〈u, ρσ(t)〉
3

σ ∪ ξĊL |= u

(C, J, L,H,R)  〈u, σ〉 σ∪ξ
ĊL

 
4

Function ΩFG ∈ Σ×P(V)×P(V)×U ×T →P(T 7→ Σ̇), where U denotes the set of all
predicates over V and V̇ , returns a set of trajectories from time to an extended valuation
for the variables and dotted variables, given a valuation representing the current values of
the discrete and continuous variables, the set of continuous variables, the set of algebraic
variables, a delay predicate and a time point that denotes the duration of the trajectory.
Formally, the function ΩFG is defined as:

ΩFG(σ,C, L, u, t) =
{ ρ
| ρ ∈ [0, t]→ ((dom(σ) ∪ Ċ ∪ L)→ Λ)
, t ≥ 0
, ∀s ∈ [0, t] : ρ(s) |= u
, ∀x ∈ dom(σ) \ ({time} ∪ C) : ρ ↓ x is a constant function.
, ∀x ∈ dom(σ) : (ρ ↓ x)(0) = σ(x)
, ∀x ∈ L : ρ ↓ x ∈ F
, ∀x ∈ C : ρ ↓ ẋ is an integrable function in the

Lesbesgue sense.
, ∀s ∈ [0, t], x ∈ C : (ρ ↓ x)(s) = (ρ ↓ x)(0) +

∫ s
0

(ρ ↓ ẋ)(s′)ds′

, ∀x ∈ C : (ρ ↓ x, ρ ↓ ẋ) ∈ G
, ∀s ∈ [0, t] : ρ(s)(time) = σ(time) + s
}
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The trajectory ρ is a function from the time interval [0, t], where t ≥ 0, to a valuation,
where the domain of each valuation consists of all variables and dotted continuous variables.
The trajectory ρ satisfies the predicate u for all time points of its domain (∀s∈[0,t] ρ(s) |= u).
The trajectory of each discrete variable x∈ dom(σ)\ ({time}∪C) is restricted to a constant
function. The initial value (starting-point) of the trajectory of each discrete and continuous
variable equals the value of that variable in σ (∀x∈dom(σ) (ρ ↓ x)(0) = σ(x)).

The trajectories of the algebraic variables (ρ ↓ x for x∈L) are required to be functions of
type F . This set of functions is a parameter of the solution concept of χ. The definition of
the trajectory as ρ ∈ [0, t]→ ((dom(σ)∪ Ċ ∪L)→ Λ) ensures that ∀x∈L (ρ ↓ x) ∈ [0, t]→ Λ.
Having the set F as a parameter of the solution concept allows us to restrict F to, for
instance, the set of piecewise constant functions, if this would be required for certain
properties to hold.

The trajectories of the dotted variables are required to be integrable. This ensures that
the integral

∫ s
0

(ρ ↓ ẋ)(s′)ds′ is defined. The relation between the trajectory of a continuous
variable x and the trajectory of its ‘derivative’ ẋ is given by the Caratheodory solution
concept [Fil88]: (ρ ↓ x)(s) = (ρ ↓ x)(0) +

∫ s
0

(ρ ↓ ẋ)(s′)ds′. Note that this integral relation
can hold only for those continuous variables for which ρ ↓ x is an absolutely continuous
function. Thus the solution function ΩFG restricts the trajectory ρ ↓ x of every continuous
variable x to an absolutely continuous function, but it does allow a non-smooth trajectory
for a continuous variable in the case that the trajectory of its ‘derivative’ ρ ↓ ẋ is non-
smooth or even discontinuous, as in, for example, 〈 cont y, y = 0 | ẏ = step(time − 1) 〉,
where step(x) equals 0 for x ≤ 0 and 1 for x > 0.

The disadvantage of the Caratheodory solution concept is that it introduces spurious
solutions in a higher index system such as 〈 cont y, alg z | y = time, z = ẏ 〉. Here, one
could argue that the trajectory for z should be the constant function 1. The Caratheodory
solution concept, however, allows trajectories for z that are 1, except for discontinuity
points, where any other value is allowed. Such spurious discontinuities in ρ ↓ ẋ, in the case
that the trajectory of a differential variable x is smooth, and thus ρ ↓ x is differentiable,
on some interval I, can be prevented in two ways.

First, by changing the model to 〈 cont y, z | y = time, z = ẏ 〉. Defining z as a continuous
variable requires its trajectory to be (absolutely) continuous.

Second, by restricting the solution concept. This can be done by restricting set G in the
requirement ∀x∈C (ρ ↓ x,ρ ↓ ẋ)∈G, where G is a parameter of the χ solution concept. Defin-
ing G = {(f, f ′) | ∀I⊆dom(f) f is differentiable on I ⇒ f ′ � I is the derivative function of f �
I}, where I denotes some interval, requires the solution function ρ ↓ ẋ for the dotted vari-
able ẋ to be indeed the derivative function of the solution function ρ ↓ x for the differential
variable x, for all intervals where ρ ↓ x is differentiable. This prevents spurious discontinu-
ities from occurring in higher index systems as discussed above. The disadvantage of this
set G is that for instance the delay predicate (time = 1 ⇒ ẋ = 1) ∧ (time 6= 1 ⇒ ẋ = 0)
has no solution for x (ρ ↓ x) on the interval [0, t], for t > 1, starting from a valuation in
which time = 0. A constant function of time for x with domain [0, t] for t > 0, which is
a solution for G = {(f, f ′) | true}, is not a solution for the restricted version of G defined
above, because the derivative function (here ρ ↓ ẋ) of a constant function (here ρ ↓ x) is
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always zero, and therefore the valuation at time point 1 (ρ(1)) does not satisfy the delay
predicate.

The properties derived in Section 3.5.2 are valid for all parameters F and G. For the
translation of a hybrid automaton to χ as defined in Section 5.2, differentiable functions are
assumed for the trajectories of the continuous variables: G= {(f,f ′)|f is differentiable, and
f ′ is the derivative function of f}. In this way, the semantics of the χ translation corre-
sponds to the semantics of the hybrid automaton. For the examples in Section 4, dif-
ferentiability would be too strong a restriction. Therefore, piecewise continuous func-
tions for the trajectories of the algebraic and dotted variables are assumed: F = {f | f
is a piecewise continuous function}, G = {(f, f ′) | f ′ is a piecewise continuous function}.

There is no fundamental reason for this choice. Another possibility would have been not
to define additional restrictions: F = {f | true}, G = {(f, f ′) | true}. For a model with
just one solution such as: 〈 cont x, alg y | ẋ = y, y = step(time− 1) 〉, the solution is the
same for both cases of F and G. For a model that allows infinitely many solutions, such
as 〈 cont x, alg y | true 〉, there would obviously be a difference.

In some deduction rules describing delay behavior, abbreviation ΩσEt, which denotes
ΩFG(σ,C,L, true, t), is used as a hypothesis. The true predicate does not restrict t and the
trajectory ρ other than by means of the default restrictions. Among others, the discrete
variables remain constant, and the trajectory of each continuous variable is an absolutely
continuous function that starts with the value of the continuous variable in σ.

3.3.3 Send and receive

Send and receive process terms h !!en and h ??xn denote undelayable sending of expression
en via channel h, and undelayable receiving of information via channel h into variable(s)
xn, respectively.

The values of expressions e1, . . . , en which are sent via channel h are evaluated in
extended valuation ξ, see Rule 5, where en denotes e1, . . . , en, [ξ(en)] denotes the list of
values [ξ(e1), . . . , ξ(en)] for n ≥ 1, and ξ(e) denotes the value of expression e for extended
valuation ξ. The case that n equals 0, represents the case where nothing is sent via the
channel, and e0 and [ξ(e0)] denote an empty expression and an empty list, respectively.
For n ≥ 1, the receive process term h ??x1, . . . , xn can receive the list of values [c1, . . . , cn],
see Rule 6, where xn denotes x1, . . . , xn, {xn} denotes the set {x1, . . . , xn} , [cn] denotes the
list of values [c1, . . . , cn], and ξ′(xn) = cn is an abbreviation for ξ′(x1) = c1, . . . , ξ

′(xn) = cn.
For n = 0, nothing is received, so that x0 and c0 are empty, and ξ′(x0) = c0 always holds.

ξ = σ ∪ ξĊL , ξ′ ∈ Ξ(σ,C, J, L)

(C, J, L,H,R)  〈h !! en, σ〉
ξ , isa(h,[ξ(en)]), ξ′−−−−−−−−−−−→ 〈X, ξ′σ〉

5

ξ = σ ∪ ξĊL , ξ′ ∈ Ξ(σ,C, J ∪ {xn}, L), ξ′(xn) = cn

(C, J, L,H,R)  〈h ?? xn, σ〉
ξ, ira(h,[cn],{xn}), ξ′−−−−−−−−−−−−→ 〈X, ξ′σ〉

6
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(C, J, L,H,R)  〈h !! en, σ〉
σ∪ξĊL
 

7

(C, J, L,H,R)  〈h ?? xn, σ〉
σ∪ξĊL
 

8

3.3.4 Deadlock and inconsistent process term

Process term δ cannot perform any action transitions, nor time transitions. It is, however,
consistent for arbitrary extended valuations σ ∪ ξĊL.

(C, J, L,H,R)  〈δ, σ〉 σ∪ξ
ĊL

 
9

There are no rules for the inconsistent process term ⊥. Therefore, it cannot do actions tran-
sition, nor time transitions, and it is inconsistent for all valuations and environments. Pro-
cess term ⊥ originates from the process algebra with propositional signals ACPps ([BB97]).

3.4 Deduction rules for operators

3.4.1 Any delay operator

The any delay operator [p] allows arbitrary time transitions, that need to satisfy only the
general solution function (ΩσEt) requirements, regardless of the time transitions allowed
by p (see Rule 11). A requirement can be the trajectory of each continuous variable is an
absolutely continuous function that starts with the value of the continuous variable in σ.
This means the values of continuous variables can change according to such a trajectory.
The any delay operator does not affect the action behavior of p (see Rule 10). Process term

[p] is consistent with any extended valuation σ ∪ ξĊL with respect to σ in any environment
E (see Rule 12).

E

〈p, σ〉 α−→ 〈X
p′
, σ′〉

〈[p], σ〉 α−→ 〈X
p′
, σ′〉

10 E
ρ ∈ ΩσEt

〈[p], σ〉 t,ρ7−→ 〈[p], ρσ(t)〉
11

(C, J, L,H,R)  〈[p], σ〉 σ∪ξ
ĊL

 
12

3.4.2 Signal emission operator

The signal emission operator u y p ensures that p starts its behavior from an extended
valuation ξ in which initialization predicate u is satisfied. This operator was inspired by
the signal emission operator from the process algebra with propositional signals ACPps

[BB97], which was also used in [BM05].
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E

〈p, σ〉 ξ,a,ξ′−−−→ 〈X
p′
, σ′〉, ξ |= u

〈uy p, σ〉 ξ,a,ξ′−−−→ 〈X
p′
, σ′〉

13 E
〈p, σ〉 t,ρ7−→ 〈p′, σ′〉, ρ(0) |= u

〈 uy p, σ〉 t,ρ7−→ 〈p′, σ′〉
14

E
〈p, σ〉 ξ

 , ξ |= u

〈 uy p, σ〉 ξ
 

15

3.4.3 Sequential composition operator

The sequential composition of process terms p and q behaves as process term p until p
terminates, and then continues to behave as process term q. When p terminates, its right-
hand extended valuation ξ′ must be consistent with q (see Rule 16).

E
〈p, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉, 〈q, σ′〉 ξ′

 

〈p; q, σ〉 ξ,a,ξ′−−−→ 〈q, σ′〉
16 E

〈p, σ〉 α−→ 〈p′, σ′〉
〈p; q, σ〉 α−→ 〈p′ ; q, σ′〉

17

E
〈p, σ〉 t,ρ7−→ 〈p′, σ′〉

〈p; q, σ〉 t,ρ7−→ 〈p′ ; q, σ′〉
18 E

〈p, σ〉 ξ
 

〈p; q, σ〉 ξ
 

19

3.4.4 Guard operator

The guarded process term b → p can do whatever actions p can do under the condition
that the guard evaluates to true using extended valuation ξ. Evaluating the guard in ξ
ensures that when guard operators are nested with signal emission operators, actions can
be executed only if all predicates of the signal emission operators and all guards hold,
independently of the order. Furthermore, the values of the dotted variables and algebraic
variables are defined in ξ, whereas they are not defined in σ.

The guarded process term can delay according to p under the condition that for all
intermediate valuations the guard evaluates to true (∀s∈[0,t] ρ(s) |= b, see Rule 21).

The guarded process term can perform arbitrary delays under the condition that for
the intermediate valuations, possibly excluding the first and last valuation, the guard does
not hold ( ∀s∈(0,t) ρ(s) |= ¬b). This ensures that, for example, the process 〈 disc x, x = 1 |
time ≥ x → skip 〉 behaves as expected: it can first do a time transition of 1, such that
the value of the current time time becomes 1, and thereafter it can do a τ action to the
terminated process. If the condition in Rule 22 would be ∀s∈[0,t] ρ(s) |= ¬b, then a time
transition of 1 would be impossible. This is because the value of the guard should then
also be false for the last time point of the time transition, so that the point where the

value of time equals 1 could not be reached. The condition ρ(0) |= b⇒ 〈p, σ〉 0,ρ�{0}7−→ 〈p′, σ′〉
in Rule 22, which states that p must be able to delay for a duration of 0 if the guard is
initially true, ensures that undelayable actions in p have priority over delay behavior of a
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guard that is initially true and continues as false. The condition ρ(t) |= b⇒ 〈p, ρσ(t)〉 ρ(t)
 

in Rule 22 requires consistency if the guard holds in the end-point of the trajectory. This
ensures that it is impossible to delay to an inconsistent state.

Finally, b→ p is consistent with extended valuations for which b holds and with which p
is consistent (Rule 23), and with extended valuations for which b does not hold (Rule 24).

E

〈p, σ〉 ξ,a,ξ′−−−→ 〈X
p′
, σ′〉, ξ |= b

〈b→ p, σ〉 ξ,a,ξ′−−−→ 〈X
p′
, σ′〉

20 E
〈p, σ〉 t,ρ7−→ 〈p′, σ′〉, ∀s∈[0,t] ρ(s) |= b

〈b→ p, σ〉 t,ρ7−→ 〈b→ p′, σ′〉
21

E

ρ ∈ ΩσEt , ∀s∈(0,t) ρ(s) |= ¬b,
∃s∈[0,t] ρ(s) |= ¬b,

ρ(0) |= b⇒ 〈p, σ〉 0,ρ�{0}7−→ 〈p′, σ′〉,
ρ(t) |= b⇒ 〈p, ρσ(t)〉 ρ(t)

 

〈b→ p, σ〉 t,ρ7−→ 〈b→ p, ρσ(t)〉
22

E
〈p, σ〉 ξ

 , ξ |= b

〈b→ p, σ〉 ξ
 

23
σ ∪ ξĊL |= ¬b

(C, J, L,H,R)  〈b→ p, σ〉 σ∪ξ
ĊL

 
24

3.4.5 Alternative composition operator

Applying the alternative composition operator to process terms p and q models a non-
deterministic choice between p and q for action transitions. Process term p can perform
action transitions only if the initial extended valuation is consistent with q, as specified in
Rule 25. Consider for example the following process term: y = 1 [] x := y. This corresponds
to a hybrid automaton with one location with flow predicate true, invariant y = 1, and an
urgent outgoing edge with jump condition x := y. The invariant y = 1 ensures that the
value of y equals 1 when the outgoing edge is taken.

The passage of time cannot result in making a choice between p and q, since the time
transitions of the process terms p and q have to synchronize to obtain the time transition
(with the same time step t and trajectory ρ) of their alternative composition as defined by
Rule 26.

E

〈p, σ〉 ξ,a,ξ′−−−→ 〈X
p′
, σ′〉, 〈q, σ〉 ξ

 

〈p [] q, σ〉 ξ,a,ξ′−−−→ 〈X
p′
, σ′〉, 〈q [] p, σ〉 ξ,a,ξ′−−−→ 〈X

p′
, σ′〉

25

E
〈p, σ〉 t,ρ7−→ 〈p′, σ′〉, 〈q, σ〉 t,ρ7−→ 〈q′, σ′〉

〈p [] q, σ〉 t,ρ7−→ 〈p′ [] q′, σ′〉
26 E

〈p, σ〉 ξ
 , 〈q, σ〉 ξ

 

〈p [] q, σ〉 ξ
 

27
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3.4.6 Parallel composition operator

The parallel composition of process terms p and q has as its behavior with respect to action
transitions the interleaving of the behaviors of p and q (see Rule 29). Process term p can
only perform action transitions from an extended valuation ξ which is consistent with q.
Furthermore, the resulting extended valuation ξ′ must be consistent with q (see Rule 29).

The parallel composition allows the synchronization of matching send and receive ac-
tions. A send action isa(h, cs) and a receive action ira(h′, cs ′, W ) match iff h = h′ and
cs = cs ′; i.e. the channels used for sending and receiving are the same, and also the values
sent and the values received are identical. Furthermore, the resulting extended valuations
ξ′ of both the send action and the receive action have to be the same. In order to be able
to receive values in variables of the same scope as the send process term, the variables of
which the value changes due to the receive action are passed on to the send process term.
This is achieved by means of set W on the receive action, and the addition of this set W
to the set of jumping variables in the environment where the send action takes place (see
Rule 28). The result of the synchronization is a communication action that is represented
by ca(h, cs) as defined by Rule 28.

The time transitions of the process terms that are put in parallel have to synchronize
in the same way as for alternative composition, see Rules 26 and 30.

(C, J ∪W,L,H,R)  〈p, σ〉 ξ,isa(h,cs),ξ′−−−−−−−→

〈X
p′

X
p′

, σ′

〉
,

(C, J, L,H,R)  〈q, σ〉 ξ,ira(h,cs,W ),ξ′−−−−−−−−−→

〈X
X
q′

q′

, σ′

〉

(C, J, L,H,R)  〈p ‖ q, σ〉 ξ,ca(h,cs),ξ′−−−−−−−→

〈 X
p′

q′

p′ ‖ q′
, σ′

〉
,

〈q ‖ p, σ〉 ξ,ca(h,cs),ξ′−−−−−−−→

〈 X
p′

q′

q′ ‖ p′
, σ′

〉

28

E

〈q, σ〉 ξ
 , 〈p, σ〉 ξ,a,ξ′−−−→ 〈X

p′
, σ′〉, 〈q, σ′〉 ξ′

 

〈p ‖ q, σ〉 ξ,a,ξ′−−−→ 〈 q
p′ ‖ q , σ

′〉, 〈q ‖ p, σ〉 ξ,a,ξ′−−−→ 〈 q
q ‖ p′ , σ

′〉
29

E
〈p, σ〉 t,ρ7−→ 〈p′, σ′〉, 〈q, σ〉 t,ρ7−→ 〈q′, σ′〉

〈p ‖ q, σ〉 t,ρ7−→ 〈p′ ‖ q′, σ′〉
30
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E
〈p, σ〉 ξ

 , 〈q, σ〉 ξ
 

〈p ‖ q, σ〉 ξ
 

31

3.4.7 Action encapsulation operator

The behavior of the action encapsulation applied to a process term, ∂A(p), is the same as
the behavior of its argument with the restriction that actions from the set A (A⊆A\ {τ})
cannot be executed (see Rule 32). Action encapsulation has no effect on time transitions
and consistency, as defined by Rules 33 and 34.

E

〈p, σ〉 ξ,a,ξ′−−−→ 〈X
p′
, σ′〉, a 6∈ A

〈∂A(p), σ〉 ξ,a,ξ′−−−→ 〈 X
∂A(p′)

, σ′〉
32

E
〈p, σ〉 t,ρ7−→ 〈p′, σ′〉

〈∂A(p), σ〉 t,ρ7−→ 〈∂A(p′), σ′〉
33 E

〈p, σ〉 ξ
 

〈∂A(p), σ〉 ξ
 

34

3.4.8 Urgent communication operator

The urgent communication operator υH (p) gives communication actions via channels from
set H ⊆ H a higher priority than time transitions. Action behavior and consistency are
not affected by the urgent communication operator, see Rules 35 and 36. Time transitions
are allowed only if at each intermediate state while delaying no communication actions via
channels from H are possible.

E

〈p, σ〉 α−→ 〈X
p′
, σ′〉

〈υH (p), σ〉 α−→ 〈 X
υH (p′)

, σ′〉
35 E

〈p, σ〉 ξ
 

〈υH (p), σ〉 ξ
 

36

E

〈p, σ〉 t,ρ7−→ 〈p′, σ′〉, 〈p, σ〉 ca(h,∗)
9 , ∀s∈[0,t) (〈p, σ〉 s,ρ�[0,s]7−→ 〈ps, σs〉,

〈ps, σs〉
t−s,ρ−s7−→ 〈p′, σ′〉,

∀h∈H 〈ps, σs, E〉
ca(h,∗)
9 )

〈υH (p), σ〉 t,ρ7−→ 〈υH (p′), σ′〉
37

where ρ−s denotes the trajectory ρ shifted left by s time-units and starting at 0: dom(ρ−s) =
[0, t− s], assuming dom(ρ) = [0, t], and ∀t′∈dom(ρ−s) ρ−s(t

′) = ρ(t′ + s).
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3.4.9 Recursion variable

A recursion variable process term X behaves as the process term given by R(X). Here
R(X) is the process term that is defined for recursion variable X in function R. This
is equivalent to syntactically replacing recursion variable X by its defining process term
R(X). Function R can be defined in the environment of the χ process directly, or by means
of the recursion scope operator, see Section 3.4.13.

(C, J, L,H,R)

〈R(X), σ〉 α−→ 〈X
p′
, σ′〉

〈X, σ〉 α−→ 〈X
p′
, σ′〉

38

(C, J, L,H,R)
〈R(X), σ〉 t,ρ7−→ 〈p′, σ′〉
〈X, σ〉 t,ρ7−→ 〈p′, σ′〉

39

(C, J, L,H,R)
〈R(X), σ〉 ξ

 

〈X, σ〉 ξ
 

40

3.4.10 Jump enabling operator

The jump enabling operator applied to a process term p with set J + (ιJ+(p)) behaves
the same as its argument in an environment where the variables from set J + are jumping
variables.

(C, J ∪ J +, L,H,R)  〈p, σ〉 α−→ 〈X
p′
, σ′〉

(C, J, L,H,R)  〈ιJ+(p), σ〉 α−→ 〈 X
ιJ+(p′)

, σ′〉
41

(C, J ∪ J +, L,H,R)  〈p, σ〉 t,ρ7−→ 〈p′, σ′〉
(C, J, L,H,R)  〈ιJ+(p), σ〉 t,ρ7−→ 〈ιJ+(p′), σ′〉

42

(C, J ∪ J +, L,H,R)  〈p, σ〉 ξ
 

(C, J, L,H,R)  〈ιJ+(p), σ〉 ξ
 

43

3.4.11 Variable scope operator

By means of the variable scope operator, local variables are introduced in a χ process. A
variable scope operator process term

|[V σdx⊥ , {x}, {g} | p ]|,
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that is used in an environment (C, J,L,H,R), with valuation σ, and where σdx⊥ denotes a
local valuation that may have undefined values and that has domain {d,x}, d denotes the
local discrete variables d1, . . . , dk, x denotes the local (non-jumping) continuous variables
x1, . . . , xn, and g denotes the local algebraic variables g1, . . . , gm, behaves as p after taking
the union of the respective categories (discrete, continuous and algebraic) of local and
global variables and taking the union of the local and global valuation. To ensure that all
local variables are fresh with respect to the global variables, the local variables are first
renamed. Thus d′, x′, g′, in the rules below, denote fresh variables d′1, . . . , d

′
k, x

′
1, . . . , x

′
n,

g′1, . . . , g
′
m with respect to dom(σ) ∪ L ∪ {d} ∪ {x} ∪ {g}. Notation p[d′, x′, g′/d, x, g]

denotes the process term that is obtained by substitution of the (free) variables d,x, g in
p by the fresh variables d′,x′,g′, respectively, choosing the fresh variables d′,x′,g′ in such
a way that they remain free in p. After execution of an action or a delay transition, the
local variables of the variable scope operator are renamed back to their original names.
Note that the variables used in the recursion definitions R are not renamed to ensure that
the bindings of these variables remain unchanged. In this way, the variables occurring
in recursion definitions are bound statically, as is illustrated by the following example χ
process:

〈|[V {n 7→ 2}, ∅, ∅ | X ; z := n ]|
, {n 7→ 0, y 7→ 0, z 7→ 0}
, (∅, ∅, ∅, ∅, {X 7→ n := 1; y := n})
〉.

The process defines the variables n, y, z that are initialized to 0, a recursion definition
X 7→ n := 1; y := n, and a variable scope operator that redefines n as a local variable that
is initialized to 2. When the process term X ; z := n terminates, the value of y equals
1, and the value of z equals 2. The recursion variable X is executed in the scope of its
definition.

The variable scope operator is the only operator that affects the set of continuous
variables C and the set of algebraic variables L from the environment. In this way, it
is ensured that the discrete, continuous, or algebraic variables in any χ process 〈p, σ, E〉
remain discrete, continuous, or algebraic, respectively. Continuous variables, on the other
hand, can change from non-jumping continuous variables to jumping continuous variables,
using the jump enabling operator (see Section 3.4.10).

The local variables are invisible outside of the scope operator. This is done by means
of data abstraction. For action transitions, data abstraction takes place by restricting the
extended valuations, and the valuation of the resulting process, to the global variables,
and by keeping only the global variables in the set W of the internal receive actions. For
time transitions, data abstraction takes place by restricting the trajectory to the global
variables. In this way, all changes to local variables are removed.

Action transition abstraction function κ ∈ Σ×P(V̇)×P(V)× Σ̇×A× Σ̇→ Σ̇×A× Σ̇
is defined as follows. For arbitrary receive actions ira(h, cs ,W ):

κσĊL(ξ, ira(h, cs ,W ), ξ′) = ξσĊL , ira(h, cs ,W ∩ (dom(σ) ∪ L)), ξ′
σĊL

,
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and for all other actions:
κσĊL(ξ, a, ξ′) = ξσĊL, a, ξ

′
σĊL

,

where extended valuations ξσĊL and ξ′
σĊL

denote ξ � (dom(σ) ∪ Ċ ∪ L) and ξ′ � (dom(σ) ∪
Ċ ∪L), respectively. Furthermore, in the rules below, the following abbreviations are used:
valuation σ′σ denotes σ′ � dom(σ), and trajectory ρσĊL denotes ρ ↓ (dom(σ) ∪ Ċ ∪ L).

Valuation σdx⊥ ∈ {d,x} 7→ (Λ∪{⊥}) and valuation σd′x′ ∈ {d′,x′} 7→ Λ define the same
values for all (renamed) variables for which σdx⊥ is defined. For the undefined variables in
σdx⊥ , σd′x′ has an arbitrary value: ∀v∈dom(σdx⊥ ) σdx⊥(v) 6=⊥⇒ σd′x′(v[d′,x′/d,x]) = σdx⊥(v),
where v[d′,x′/d,x] denotes the renamed version of variable v.

(C ∪ {x′}, J, L ∪ {g′}, H,R)  〈p[d′,x′,g′/d,x,g], σ ∪ σd′x′〉
ξ,a,ξ′−−−→ 〈X

p′
, σ′〉

(C, J, L,H,R)  〈|[V σdx⊥ , {x}, {g} | p ]|, σ〉
κσĊL(ξ,a,ξ′)
−−−−−−−→

〈 X
|[V (σ′ � {d′,x′})[d,x/d′,x′], {x}, {g} | p′[d,x,g/d′,x′,g′] ]| , σ

′
σ〉

44

(C ∪ {x′}, J, L ∪ {g′}, H,R)  〈p[d′,x′,g′/d,x,g], σ ∪ σd′x′〉
t,ρ7−→ 〈p′, σ′〉

(C, J, L,H,R)  〈|[V σdx⊥ , {x}, {g} | p ]|, σ〉
t,ρσĊL7−→

〈|[V (σ′ � {d′,x′})[d,x/d′,x′], {x}, {g} | p′[d,x,g/d′,x′,g′] ]|, σ′σ〉

45

(C ∪ {x′}, J, L ∪ {g′}, H,R)  〈p[d′,x′,g′/d,x,g], σ ∪ σd′x′〉
ξ
 

(C, J, L,H,R)  〈|[V σdx⊥ , {x}, {g} | p ]|, σ〉
ξσĊL 

46

3.4.12 Channel scope operator

By means of the channel scope operator, local channels can be introduced in a χ process.
By means of action abstraction, communication actions on local channels are made invisible
outside of the scope operator.

Action abstraction takes place by substituting communication actions ca(h, cs) using
a local channel by internal τ actions (see Rule 47). The internal send and receive actions
(isa(h,cs) and ira(h,cs ,W )) on a local channel h are blocked, because Rule 47 only specifies
behavior for communication actions ca(h, cs). Therefore, these internal send and receive
actions are not visible outside of the scope operator. Function ch ∈ A→H ∪{⊥} extracts
the channel label from an action. It is defined as ch(ca(h, cs)) = h, ch(isa(h, cs)) = h,
ch(ira(h, cs ,W )) = h, and ch(la) = ⊥, where la ∈ Alabel. Note that no renaming is applied
to action a in Rule 48, because this action cannot refer to local channels.

The local channels h occurring in p are renamed to fresh channels h′ in a similar way
as for the local variables in the variable scope operator. Also here, in the channel scope
operator, renaming does not take place in the recursion definitions R to ensure that the
bindings of channels in R remain unchanged.
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(C, J, L,H ∪ {h′}, R)  〈p[h′/h], σ〉 ξ,ca(h,cs),ξ′−−−−−−−→ 〈X
p′
, σ′〉, h ∈ {h′}

(C, J, L,H,R)  〈|[H {h} | p ]|, σ〉 ξ,τ,ξ′−−−→ 〈 X
|[H {h} | p′[h/h′] ]| , σ

′〉
47

(C, J, L,H ∪ {h′}, R)  〈p[h′/h], σ〉 ξ,a,ξ′−−−→ 〈X
p′
, σ′〉, ch(a) 6∈ {h′}

(C, J, L,H,R)  〈|[H {h} | p ]|, σ〉 ξ,a,ξ′−−−→ 〈 X
|[H {h} | p′[h/h′] ]| , σ

′〉
48

(C, J, L,H ∪ {h′}, R)  〈p[h′/h], σ〉 t,ρ7−→ 〈p′, σ′〉
(C, J, L,H,R)  〈|[H {h} | p ]|, σ〉 t,ρ7−→ 〈|[H {h} | p′[h/h′] ]|, σ′〉

49

(C, J, L,H ∪ {h′}, R)  〈p[h′/h], σ〉 ξ
 

(C, J, L,H,R)  〈|[H {h} | p ]|, σ〉 ξ
 

50

3.4.13 Recursion scope operator

By means of the recursion scope operator, local recursion definitions are introduced in a χ
process. The application of the recursion scope operator to a process term p with a ‘global’
valuation σ and a ‘global’ environment (C, J, L, H, R) behaves as p after the addition of
local recursion definitions to the global recursion definitions. In the rules below, X 7→ q
denotes the recursion definitions X1 7→ q1, . . . ,Xr 7→ qr. To prevent redefinition of recursion
definitions already existing in the environment, the local recursion variables X are renamed
to fresh variables X′ with respect to the variables from the domain of R.

(C, J, L,H,R ∪ {X′ 7→ q[X′/X]})  〈p[X′/X], σ〉 α−→ 〈X
p′
, σ′〉

(C, J, L,H,R)  〈|[R {X 7→ q} | p ]|, σ〉 α−→ 〈 X
|[R {X 7→ q} | p′[X/X′] ]| , σ

′〉
51

(C, J, L,H,R ∪ {X′ 7→ q[X′/X]})  〈p[X′/X], σ〉 t,ρ7−→ 〈p′, σ′〉
(C, J, L,H,R)  〈|[R {X 7→ q} | p ]|, σ〉 t,ρ7−→ 〈|[R {X 7→ q} | p′[X/X′] ]|, σ′〉

52

(C, J, L,H,R ∪ {X′ 7→ q[X′/X]})  〈p[X′/X], σ〉 ξ
 

(C, J, L,H,R)  〈|[R {X 7→ q} | p ]|, σ〉 ξ
 

53

Consider, for example, the process term |[RX 7→ Y, Y 7→ x := 0 | |[R Y 7→ x := 1 | X ]|]|.
Local recursion variable Y with definition Y 7→ x := 1 conflicts with the recursion variable
definition Y 7→ x := 0 from the outer scope. The renaming of the local variable in the rules
of the recursion scope operator ensures that the process term behaves as |[R X 7→ Y, Y 7→
x := 0 | |[R Z 7→ x := 1 | X ]|]|. Thus, the value of variable x becomes 0.
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3.5 Validation of the semantics

First we consider the well-definedness of the semantics in Section 3.5.1. Then, in Sec-
tion 3.5.2, some properties of the χ semantics are given. In Section 3.5.3, a notion of
equivalence is defined, called stateless bisimilarity [MRG05], which is similar to the well-
known notion of bisimilarity [Par81, Mil80]. It is also shown that this relation is an equiv-
alence and a congruence for all χ operators. Some useful properties of closed χ process
terms are given in Section 3.5.4. Many of these properties express intuitions about the
meaning of the χ operators such as the commutativity and associativity of the alternative
composition and the parallel composition operator. Other properties are introduced for
the purpose of simplifying χ models. Both the examples treated in the next chapter and
the properties treated in this section add to the level of confidence one has with respect to
the ‘correctness’ of the semantics.

3.5.1 Well-definedness of the semantics

Well-definedness of the term deduction system means that the system defines a unique
transition system for each closed process term. In the term deduction system of χ, negative
premises are used in Rule 37 of the urgent communication operator. As a consequence it
is not obvious at first sight whether the term deduction system defines a unique transition
system for each closed process term. Well-definedness of the term deduction system can
be obtained by providing a stratification [BV95, MRG05]. A stratification is a metric
on formulae that, for each deduction rule of the transition system specification, does not
increase from conclusion to all positive premises and strictly decreases from conclusion to
negative premises.

We define the mapping that associates with every positive termination transition, action
transition and positive consistency predicate the value 0 and with every positive time
transition the value 1. Then, it is not hard to see that the χ deduction rules of the
transition system specification are stratifiable.

3.5.2 Properties of the semantics

In this section, some useful properties about the semantics of χ are introduced. The proofs
of these properties are given from in Appendix A.1 to Appendix A.6. The properties are
applied in the remainder of the chapter, especially in the proofs of the properties defined
in Section 3.5.4.

With the current set of deduction rules for the semantics of χ, the left-hand (ξ) and
right-hand (ξ′) extended valuation restricted to the domain of σ are always the same as
the initial (σ) and resulting (σ′) valuation of an action transition, respectively. A similar
reasoning applies to the first and last valuation of a trajectory on a time transition and
the initial and resulting valuation, respectively. Also note that the environment is never
changed in a transition, and that the extended valuation in the consistency predicate
restricted to the model variables is the same as the initial valuation.
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The following lemma captures these facts.

Lemma 3.5.1 Let p and p′ be closed process terms, σ, σ′ be valuations, ξ, ξ′ be extended
valuations, E and E ′ be environments, a be an action, ρ be a trajectory, and t ∈ T . Then

〈p, σ, E〉 ξ,a,ξ′−−−→ 〈X
p′
, σ′, E ′〉 ⇒ dom(σ) = dom(σ′) ∧ ξσ = σ ∧ ξ′σ′ = σ′

∧ E = E ′,

〈p, σ, E〉 t,ρ7−→ 〈p′, σ′, E ′〉 ⇒ dom(ρ) = [0, t] ∧ ρσ(0) = σ ∧ ρσ′(t) = σ′

∧ E = E ′,

〈p, σ, E〉 ξ
 ⇒ ξσ = σ.

The χ processes that can perform action or time transitions are consistent (the consis-
tency predicate holds).

Lemma 3.5.2 Let p and p′ be closed process terms, σ and σ′ be valuations, E and E ′ be
environments, ξ and ξ′ be extended valuations and a be an action. Then

〈p, σ, E〉 ξ,a,ξ′−−−→ ⇒ 〈p, σ, E〉 ξ
 ,

where 〈p, σ, E〉 ξ,a,ξ′−−−→ is an abbreviation for ∃p′,σ′,E′ 〈p, σ, E〉
ξ,a,ξ′−−−→ 〈X

p′
, σ′, E ′〉.

Lemma 3.5.3 Let p and p′ be closed process terms, σ and σ′ be valuations, E and E ′ be
environments, t ∈ T , and ρ be a trajectory. Then,

〈p, σ, E〉 t,ρ7−→ ⇒ 〈p, σ, E〉 ρ(0)
 ,

where 〈p, σ, E〉 t,ρ7−→ is an abbreviation for ∃p′,σ′,E′ 〈p, σ, E〉
t,ρ7−→ 〈p′, σ′, E ′〉.

Lemma 3.5.4 Let p and p′ be closed process terms, σ and σ′ be valuations, E and E ′ be
environments, ξ and ξ′ be extended valuations and a be an action. Then

〈p, σ, E〉 ξ,a,ξ′−−−→ 〈p′, σ′, E ′〉 ⇒ 〈p′, σ′, E ′〉 ξ′

 .

Lemma 3.5.5 Let p and p′ be closed process terms, σ and σ′ be valuations, E and E ′ be
environments, t ∈ T , and ρ be a trajectory. Then,

〈p, σ, E〉 t,ρ7−→ 〈p′, σ′, E ′〉 ⇒ 〈p′, σ′, E ′〉 ρ(t)
 .

The following lemma shows that any variation in the set of jumping variables in the
environment of a consistent χ process has no effect on the consistency predicate.

Lemma 3.5.6 Let p be a closed process term, σ be a valuation, C,J,W,L be sets of various
classes of χ variables such that J and W ⊆ dom(σ) \ {time}, H be a set of channels, R be
a recursion definition, and ξ be an extended valuation. Then

〈p, σ, (C, J, L,H,R)〉 ξ
 ⇔ 〈p, σ, (C, J ∪W,L,H,R)〉 ξ

 .
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3.5.3 Stateless bisimilarity

Two closed χ process terms are considered equivalent if they have the same behavior (in
the bisimulation sense) in case both are considered, from the current state, the valuation
of model variables and the same environment. We also assume that the valuation (of the
current state) contains at least the free occurrences of variables in the two closed χ process
terms being equivalent.

Definition 3.5.1 (Stateless bisimilarity) A stateless bisimulation relation on closed
process terms is a relation R ⊆ P × P such that for all (p, q) ∈ R, the following holds:

1. ∀σ,E,ξ,a,ξ′,σ′,E′ 〈p, σ, E〉
ξ,a,ξ′−−−→ 〈X, σ′, E ′〉

⇔ 〈q, σ, E〉 ξ,a,ξ′−−−→ 〈X, σ′, E ′〉,

2. ∀σ,E,ξ,a,ξ′,p′,σ′,E′ 〈p, σ, E〉
ξ,a,ξ′−−−→ 〈p′, σ′, E ′〉

⇒ ∃q′ 〈q, σ, E〉
ξ,a,ξ′−−−→ 〈q′, σ′, E ′〉 ∧ (p′, q′) ∈ R,

3. ∀σ,E,ξ,a,ξ′,q′,σ′,E′ 〈q, σ, E〉
ξ,a,ξ′−−−→ 〈q′, σ′, E ′〉

⇒ ∃p′ 〈p, σ, E〉
ξ,a,ξ′−−−→ 〈p′, σ′, E ′〉 ∧ (p′, q′) ∈ R,

4. ∀σ,E,t,ρ,p′,σ′,E′ 〈p, σ, E〉
t,ρ7−→ 〈p′, σ′, E ′〉

⇒ ∃q′ 〈q, σ, E〉
t,ρ7−→ 〈q′, σ′, E ′〉 ∧ (p′, q′) ∈ R,

5. ∀σ,E,t,ρ,q′,σ′,E′ 〈q, σ, E〉
t,ρ7−→ 〈q′, σ′, E ′〉

⇒ ∃p′ 〈p, σ, E〉
t,ρ7−→ 〈p′, σ′, E ′〉 ∧ (p′, q′) ∈ R,

6. ∀σ,E,ξ 〈p, σ, E〉
ξ
 ⇔ 〈q, σ, E〉 ξ

 .

Two closed process terms p and q are stateless bisimilar, denoted by p ↔ q, if there exists
a stateless bisimulation relation R such that (p, q) ∈ R.

As a consequence of Lemma 3.5.1, the definition of stateless bisimilarity can be simpli-
fied considerably. Yet, with in mind future extensions of the χ formalism, it might well be
the case that these properties of the semantics are lost. Since we would prefer not to redo
all the coming proofs (in such a future), this presentation was chosen.

Stateless bisimilarity is proved to be a congruence with respect to all χ operators. As
a consequence, algebraic reasoning is facilitated, since it is allowed to replace equals by
equals in any context.

Theorem 3.5.1 (Congruence) Stateless bisimilarity is a congruence with respect to all
χ operators.

PROOF. See Appendix A.7.
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3.5.4 Properties of the Chi operators

In this section, some properties of the operators of χ that hold with respect to stateless
bisimilarity are discussed. Most of these correspond well with our intuitions, and hence
this can be considered as an additional validation of the semantics. It is not our intention
to provide a complete list of such properties (complete in the sense that every equiva-
lence between closed process terms is derivable from those properties). The proofs of the
properties from this section are given from Appendix B.1 to Appendix B.8.

Proposition 3.5.1 (Any delay operator) The following properties hold for all closed
process terms p ∈ P and predicate u:

[p] ↔ [[p]] [u] ↔ true

Multiple applications of the any delay operator are equivalent to a single application.
The application of the any delay operator to a delay predicate u is equivalent to a predicate
true.

Proposition 3.5.2 (Signal emission operator) The following properties hold for all
closed process terms p ∈ P and predicates u, u′:

true y p ↔ p uy u ↔ u
false y p ↔ ⊥ uy (u′ y p) ↔ (u ∧ u′) y p

If a true predicate is emitted, the process term is simply executed. If falsity holds
initially, the process term is inconsistent. There is no effect if a predicate u is emitted to
itself. A concatenation of signal emissions leads to a signal emission with conjunction of
predicates.

Proposition 3.5.3 (Alternative composition) The following properties hold for all
closed process terms p, q, r ∈ P :

p [] true ↔ p (p [] q) [] r ↔ p [] (q [] r)
p [] p ↔ p [p [] q] ↔ [p] [] [q]
p [] q ↔ q [] p

Delay predicate true is a zero element for alternative composition.The alternative compo-
sition is idempotent, commutative and associative. The property p [] δ ↔ p does not hold.
Consider, for example p = true. Then p [] δ cannot perform any time transitions, while p
can perform arbitrary time transitions. Property p [] δ ↔ δ does not hold either. Consider,
for example p = skip. Then p [] δ can perform a τ transition, while δ cannot. The any
delay operator distributes over the alternative composition.

Proposition 3.5.4 (Guard operator) The following properties hold for closed process
terms p, q ∈ P and guard b:

true→ p ↔ p b→ ⊥ ↔ ¬b
false→ p ↔ true b→ (p [] q) ↔ b→ p [] b→ q
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If a process term is guarded by a true predicate, the process term is simply executed.
In case a process term is guarded by a false predicate, process term false→ p can perform
any time transition, hence equals a true predicate. An inconsistent process term that
is guarded by any guard is equivalent to the negation of the guard. By rewriting this
property as u ↔ ¬u→⊥, where the delay predicate u and guard b share the same syntax,
it becomes clear that the delay predicate is not a primitive. Finally, the guard distributes
over the alternative composition operator.

Proposition 3.5.5 (Sequential composition) The following properties hold for all
closed process terms p, q, r ∈ P , guard b, and predicate u:

δ ; p ↔ δ b→ (p; q) ↔ (b→ p); q
(p; q); r ↔ p; (q ; r) u; p ↔ u
(p [] q); r ↔ p; r [] q ; r [p]; q ↔ [p; q]

A deadlock process term followed by some other process terms is equivalent to the
deadlock process term itself since the deadlock process term does not terminate successfully,
i.e., deadlock is a left-zero element for sequential composition. Sequential composition is
associative. Also, a delay predicate u followed by some other process terms is equivalent
to the delay predicate u itself since the delay predicate u does not terminate successfully.
Alternative composition distributes over sequential composition from the left, but not from
the right. A guard distributes to the left argument of a sequential composition. The any
delay operator distributes to the right argument of a sequential composition.

Proposition 3.5.6 (Parallel composition) The following properties hold for all closed
process terms p, q, r ∈ P and predicates u, u′:

p ‖ q ↔ q ‖ p u ‖ u′ ↔ u ∧ u′
(p ‖ q) ‖ r ↔ p ‖ (q ‖ r)

Parallel composition is commutative and associative. The parallel composition of two
delay predicates is the same as the conjunction of the delay predicates.

Proposition 3.5.7 (Action encapsulation operator) The following properties hold for
all closed process terms p, q ∈ P , guard b, predicate u and sets of actions A, A′:

∂A(δ) ↔ δ ∂A(p; q) ↔ ∂A(p); ∂A(q)
∂∅(p) ↔ p ∂A(u) ↔ u
∂A(∂A′(p)) ↔ ∂A∪A′(p) ∂A([p]) ↔ [∂A(p)]
∂A(p [] q) ↔ ∂A(p) [] ∂A(q) ∂A(b→ p) ↔ b→ ∂A(p)

Process term δ is a zero element for the action encapsulation operator. If there are
no actions to be encapsulated, the application of the action encapsulation operator to a
process term p has no effect. Encapsulation of actions distributes over the alternative
composition operator and the sequential composition operator. Action encapsulation has
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Chapter 3. Semantics of the Chi formalism

no effect on delay predicates. Multiple applications of the action encapsulation operator
are equivalent to a single application where all the actions to be encapsulated are combined
using union of sets of actions. The order of the application of the any delay operator and
the action encapsulation operator to a process term is irrelevant. A guard distributes over
action encapsulation.

Proposition 3.5.8 (Inconsistent process) The following properties hold for all closed
process terms p ∈ P , predicate u and set of action A:

uy ⊥ ↔ ⊥ ⊥; p ↔ ⊥
p [] ⊥ ↔ ⊥ skip; ⊥ ↔ δ
p ‖ ⊥ ↔ ⊥ ⊥ ↔ false
∂A(⊥) ↔ ⊥

The inconsistent process term is a zero element for the signal emission operator, alter-
native composition, parallel composition and the action encapsulation operator. It is also
a left-zero element for sequential composition. Going on as ⊥ after performing an action
transition, for example skip, is impossible. Since ⊥ and false predicate cannot perform any
transition, both process terms are equivalent.

44



CHAPTER

FOUR

Examples of hybrid Chi models

In this chapter, the χ formalism is illustrated by several examples taken from various
application domains.

4.1 Tank controller

Figure 4.1 shows a liquid storage tank with a volume controller VC . The incoming flow Qi

can be controlled by means of a valve n. The outgoing flow is given by equation Qo =
√
V .

The volume controller maintains the volume V of the liquid in the tank between 2 and 10.

The χ model of the volume controller and the storage tank is as follows:

〈 disc n, cont V, alg Qi, Qo

, n = 0, V = 10

| V̇ = Qi −Qo

, Qi = n · 5
, Qo =

√
V

‖ ∗( V ≤ 2→ n := 1; V ≥ 10→ n := 0 )
〉

Initially, the volume in the tank equals 10, and the valve is closed (n= 0). The outgoing
flow Qo is given by equation Qo =

√
V . When the volume equals 2, the valve is opened

(V ≤ 2 → n := 1). When the volume in the tank equals 10, the valve is closed again
(V ≥ 10→ n := 0).

Figure 4.1 shows (a part of) the hybrid transition system of the tank controller. The
circles represent the states, arrows −→ represent action transitions that are labelled as
defined in Chapter 3, and arrows 7−→ represent time transitions. The labels (flows) of
the time transitions are represented graphically. Constant tf denotes the value −5ln(15)−
5ln(5−

√
10) + 5ln(5 +

√
10) + 5ln(23) + 5ln(5−

√
2)− 5ln(5 +

√
2).
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V

n
Qi

Qo

VC

Figure 4.1: Tank controller.

4.2 Diode

An ideal diode can either block or conduct the current. When it blocks, the diode voltage
v ≤ 0, and the current i = 0. When it conducts, the diode voltage v = 0, and the current
i ≥ 0. Figure 4.3 shows the characteristics of an ideal diode.

|[ block 7→ i = 0, v ≤ 0 [] [skip]; conduct
, conduct 7→ v = 0, i ≥ 0 [] [skip]; block
| skip; block [] skip; conduct
]|

The modes of the diode are each specified by means of a mode definition for the modes
block and conduct. Initially, the diode can be in either one of the two modes, depending on
its environment; or more specific, depending on, among others, voltage or current sources
in its environment. The alternative composition operator is used in combination with the
skip internal action to select one of the two modes. The skip process term is needed because
alternative composition makes a choice only by means of an action. The any delay operator
in [skip] is needed because otherwise the assignment and the alternative composition would
not be able to delay. If v = 0 and i = 0, the modes block and conduct can both delay. In
this case, a non-deterministic choice between the two modes is made. The diode can also
be specified in χ as follows:

Using χ, the process term modeling the diode is a single delay predicate:

(v ≤ 0 ∧ i = 0) ∨ (i ≥ 0 ∧ v = 0)

The difference between the two specifications is that in the first specification, a delay
transition must take place within a mode. In case of a mode switch, the delay transition
is ‘divided’ into two separate delay transitions: one delay transition according to the first
mode, until the time point where the mode switch occurs, and another delay transition
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{ time 7→ 2
√
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√
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√
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√
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Figure 4.2: Hybrid transition system of the tanklevel controller.
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v

conduct

i

block

Figure 4.3: Characteristics of an ideal diode.

according to the second mode. This limits the length of the delay transitions. The second
specification does not limit the length of delay transitions. Here, a ‘mode switch’ can
occur within a delay transition. The difference between the two specifications is that
in the first specification, mode switches can take place only by means of an (internal)
action. Therefore, the delay transitions in each mode are interleaved with actions for mode
switching. In the second specification, no actions are needed for ‘mode switching’: ‘mode
switches’ can occur within a single delay transition.

4.3 Half wave rectifier circuit

Figure 4.4 shows a half wave rectifier circuit. It consists of a diode D, two resistors with
resistance R0 and R1, respectively, a capacitor with capacity C0, and a voltage source with
voltage v0. The model is a parallel composition of a diode D, two resistors R0 and R1,
modeled by two process instantiation of process definition R and a capacitor C. In the χ
model, symbols f , π, C0, R0 and R1 denote constants.

i2i0
R0

C0

D

vG

i1

v2

v0

R1

v1

Figure 4.4: Half wave rectifier circuit.

The χ model is as follows:

〈 cont vG, v0, v1, v2, i0, i1, i2
, v2 = 0
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4.3. Half wave rectifier circuit

| v0 = sin(2πf time)
‖ R(i0, v0, v1, R0)
‖ D(i0, v1, v2)
‖ C(i1, v2, vG, C0)
‖ R(i2, v2, vG, R1)
‖ vG = 0
‖ i0 = i1 + i2
〉

The process definitions of a diode D, a resistor R, and a capacitor C follow below.

D(ext i, vin, vout) =
|[ block 7→ i = 0, vout ≥ vin [] [skip]; conduct
, conduct 7→ vin = vout , i ≥ 0 [] [skip]; block
| skip; block [] skip; conduct
]|

R(ext i, vin, vout, val R) = |[ vin − vout = iR ]|

Note that the same identifier R is used to denote both the value parameter and the
process name in the resistor model. Using a different name for the value parameter, e.g.
R0:

R(ext i, vin, vout, val R0) = |[ vin − vout = iR0 ]|

does not change the meaning of the model. The capacitor model is:

C(ext i, vin, vout, val C) = |[ cont v | v = vin − vout , Cv̇ = i ]|

After replacing the process instantiations by their process bodies as defined in Sec-
tion 2.5.2, the following χ process is obtained:

〈 cont vG, v0, v1, v2, i0, i1, i2
, v2 = 0
| v0 = sin(2πf time)
‖ |[ disc R, R = R0

| v0 − v1 = i0R
]|
‖ |[ block 7→ i0 = 0, v2 ≥ v1 [] [skip]; conduct
, conduct 7→ v1 = v2 , i0 ≥ 0 [] [skip]; block
| skip; block [] skip; conduct
]|
‖ |[ disc C, cont v, C = C0

| v = v2 − vG , Cv̇ = i1
]|
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‖ |[ disc R, R = R1

| v2 − vG = i2R
]|
‖ vG = 0
‖ i0 = i1 + i2
〉

4.4 A game of billiards

Figure 4.5 shows a billiard table of dimensions l and h with a ball, as defined in [ACH+95].
Initially, the position and velocity of the ball are given by (x0, y0) and (vx0, vy0), respectively.
If the ball reaches a vertical side it rebounds, i.e. the sign of the horizontal velocity
component vx changes. The same occurs with the vertical velocity component vy when the
ball reaches a horizontal side. The combination of the signs of velocity components gives
four different directions of movements.

y

y0

vy

h

vx

v

0
x0

0

x

l

Figure 4.5: Billiard table

The movement of the ball is modeled by the following χ model, where l, h, x0, y0,
vx0, and vy0 denote constants. Each possible combination of directions is represented by a
recursion definition. The recursion variables RU , LU , LD , and RD correspond with the
directions right-up, left-up, left-down, and right-down, respectively.

The relation between the position (x, y) and the velocity (vx, vy) is given by ẋ = vx,
and ẏ = vy. When a collision occurs, the velocity changes instantaneously.

〈 disc vx, vy , cont x, y
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4.5. Constrained pendulum

, vx = vx0, vy = vy0, x = x0, y = y0

, RU 7→ x ≤ l, y ≤ h [] x = l → vx := −vx ; LU
[] y = h → vy := −vy ; RD

, LU 7→ x ≥ 0, y ≤ h [] x = 0 → vx := −vx ; RU
[] y = h → vy := −vy ; LD

, LD 7→ x ≥ 0, y ≥ 0 [] x = 0 → vx := −vx ; RD
[] y = 0 → vy := −vy ; LU

, RD 7→ x ≤ l, y ≥ 0 [] x = l → vx := −vx ; LD
[] y = 0 → vy := −vy ; RU

| ẋ = vx, ẏ = vy ‖ RU
〉

When the ball hits a corner, the sign of the horizontal and the sign of the vertical velocity
component are changed sequentially in a arbitrary order, requiring two mode changes.

In the following model, the four recursion definitions are merged into one definition
with ODE ẋ = vx, ẏ = vy. The any delay operator [. . . ] around the assignments, e.g.
[vx := −vx], is required. Without the any delay operator, the assignment and thus the
alternative composition cannot delay.

〈 disc vx, vy , cont x, y
, vx = vx0, vy = vy0, x = x0, y = y0

| ∗ ( ẋ = vx, ẏ = vy, 0 ≤ x ≤ l, 0 ≤ y ≤ h
[] (x = 0 ∨ x = l)→ [vx := −vx]
[] (y = 0 ∨ y = h)→ [vy := −vy]
)

〉

4.5 Constrained pendulum

Figure 4.6 shows a constrained pendulum that is also defined in [vdSS00, BH04]. The
equations of motion of this pendulum are given by Equation 4.1. The angle between the
pendulum and the vertical is denoted by θ, ω denotes the angular velocity of the pendulum,
and l denotes the distance between the rotation point and the mass.

θ̇ = ω

mlω̇ = −mg sin(θ)− dlω
(4.1)

The mass and maximum length of the pendulum are represented by m and L, respec-
tively. The damping coefficient and the acceleration due to gravity are denoted by d and
g. The angle of the constraint is denoted by θp. In order to keep the example as small
and clear as possible, it is assumed that θp ≥ 0 and |θ| ≤ π/2. Also, it is assumed that the
pendulum always remains in a straight line from the rotation point to the end point. The
χ model is:
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Figure 4.6: Constrained Pendulum.

〈 cont θ, ω, alg l
, θ = θ0, ω = ω0

, long 7→ l = L, θ ≤ θp [] [ω := L
Ls
ω]; short

, short 7→ l = Ls , θ ≥ θp [] [ω := Ls

L
ω]; long

| (skip; long [] skip; short)

‖ θ̇ = ω
, mlω̇ = −mg sin(θ)− dlω
〉,

where θ0 and ω0 denote constants representing the initial values of θ and ω, respectively.
When θ ≤ θp or θ ≥ θp, the pendulum can delay in mode long or short, respectively.
In mode long, the assignment ω := L

Ls
ω can be executed only if the new state after the

assignment to ω is consistent with the constraints l = Ls , θ ≥ θp of mode short, because a
process cannot enter an inconsistent state. Therefore, mode switches are possible only for
θ = θp. The any delay operator applied on the assignment in [ω := L

Ls
ω] is needed, because

otherwise the assignment and the alternative composition would not be able to delay. Note
that the model allows infinite switching between modes long and short, without progress of
time, when θ = θp. This switching behavior can, in principle, be avoided by guarding the
delayable assignments [ω := L

Ls
ω] and [ω := Ls

L
ω] with (non-trivial) conditions that prevent

mode switching when no delay behavior is possible in the new mode.

4.6 Dry friction phenomenon

Figure 4.7 shows a driving force Fd applied to a body on a flat surface with frictional force
Ff . When the body is moving with positive velocity v, the frictional force is given by Ff =
µFN, where FN =mg. When the velocity of the body equals zero and −µ0FN ≤ Fd ≤ µ0FN,
where µ0 > µ, the frictional force neutralizes the applied driving force.
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vFf

FN

Fd

Figure 4.7: Dry Friction.

In the χ specification of the dry friction phenomenon, modes neg, stop, and pos are
specified by means of mode definitions. Mode stop can be maintained for as long as the
delay predicate v = 0,−µ0FN ≤ Fd ≤ µ0FN can delay. One of the two skip actions can be
executed when the corresponding guard Fd ≤ −µ0FN or Fd ≥ µ0FN becomes true, and the
state is consistent with the constraints v ≤ 0 or v ≥ 0 of the respective mode neg or pos
that is activated after the skip action.

The mode pos (or neg) is maintained until the guard Fd < µ0FN (or Fd > −µ0FN)
becomes true. The skip action after the guard cannot delay. Therefore, when the guard
becomes true, the skip action must be executed. Subsequently, mode stop becomes active
again.

Initially either mode neg, stop or pos is chosen by means of the internal skip action
(skip; neg [] skip; stop [] skip; pos), based on the initial values of v and Fd. Identifier f
denotes some function ∈ R→ R; m, FN , µ0 , µ (µ0 > µ) denote constants.

〈 cont x, v, alg Fd

, x = 0, v = 0
, stop 7→v = 0, −µ0FN ≤ Fd ≤ µ0FN [] [Fd ≤ −µ0FN → skip]; neg

[] [Fd ≥ µ0FN → skip]; pos
, pos 7→ mv̇ = Fd − µFN , v ≥ 0 [] Fd < µ0FN → skip; stop

[] [Fd ≤ −µ0FN → skip]; neg
, neg 7→ mv̇ = Fd + µFN , v ≤ 0 [] Fd > −µ0FN → skip; stop

[] [Fd ≥ µ0FN → skip]; pos
| Fd = f(time), ẋ = v
‖ skip; neg [] skip; stop [] skip; pos
〉

4.7 Railroad gate control

Consider a train on a circular track, a gate and a controller. When the train approaches
the gate, the controller must lower the gate. The controller has a reaction delay u of at
most 5 time units. After the train has passed the gate the controller must raise the gate.
The purpose of the model is to determine whether or not the gate is always fully lowered
when the train is at a certain distance from the gate. Figures 4.8, 4.9, and 4.10 show
automaton models of the train, gate and controller respectively. Together, they form the
rail gate control system as defined in [Hen00b]. Note that in a vertex, the predicate at
the top denotes the flow predicate, and the predicate at the bottom denotes the invariant
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predicate of the vertex. Furthermore, as usual, event labels of edges which do not have to
synchronize with other edges, and init predicates false are omitted in the figures.

x = 0 ∧ x′ = x
exit

Far

−50 ≤ ẋ ≤ −40

x ≥ 1000

Near

Past

x ≥ −100

−50 ≤ ẋ ≤ −30

−50 ≤ ẋ ≤ −30

x ≥ 0

x = −100∧
1900 ≤ x′ ≤ 4900

x ≤ 5000
x = 1000∧
x′ = x

approach

Figure 4.8: Train Automaton.

The χ model takes into account that there is only one train on the circular track, as
defined in [Hen00b], which implies that the transitions of the self loops of the controller
automaton can never occur. Figure 4.11 shows the iconic χ model of the railroad gate con-
troller. The dashed lines with arrow heads represent synchronization channels (approach,
exit , raise, lower), no data is communicated.

The following process is a formal specification of the informal iconic model from Fig-
ure 4.11. Variable x and y are initialized to a value ≤ 5000 and 90, respectively. The
maximum reaction delay (5 time units) of the controller is specified in its process instan-
tiation C.

〈 cont x, y
, chan approach, exit , raise, lower
, 1000 ≤ x ≤ 5000, y = 90
| Train(x, approach, exit)
‖ Gate(y, raise, lower)
‖ C(approach, exit , raise, lower , 5)
〉

The train is modeled by the following process definition:
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Figure 4.9: Gate Automaton.

Train(ext x, chan approach, exit) =
|[ ∗( (ẋ ∈ [−40,−50] [] x = 1000→ approach !!)

; (ẋ ∈ [−30,−50] [] x = −100→ exit !!; x : x ∈ [1900, 4900])
)

]|

The process definition consists of an infinite loop ∗(· · · ). The velocity ẋ of the train can be
any function of time, the value of which remains between −50 and −40. The process waits
until the train has reached position x = 1000 and then synchronizes with the controller
(approach !!). The train is now approaching the gate. If the train has reached the exit
position, such that x = −100, the process synchronizes with the controller, the position x
of the train is reset to a value between 1900 and 4900, and the loop is re-executed.

The gate is modeled by the following process definition:

Gate(ext y, chan raise, lower) =
|[ disc n, n = 0
| ẏ = n
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Figure 4.10: Control Automaton.

C

Train

approachlower

Gate raise exit

Figure 4.11: Iconic χ model of the railroad gate controller.

‖ ∗( n < 0 ∧ y ≤ 0→ n := 0
[] n > 0 ∧ y ≥ 90→ n := 0
[] raise ?; n := 9
[] lower ?; n := −9
)

]|

It consists of a parallel composition of an equation (ẏ = n), where n denotes a local discrete
variable, and an infinite loop. This infinite loop is an alternative composition of four process
terms. The first process term waits until the gate is lowered (y = 0) and then stops the gate
from lowering (n := 0). The second process term waits until the gate is raised (y = 90).
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4.8. Glider take-off

The third and fourth process term wait for synchronization with the controller in order to
raise or lower the gate (raise ? and lower ?, respectively). The four process terms delay in
parallel until y becomes equal to 0 or 90, or one of the synchronizations (raise ? or lower ?)
succeeds.
The controller is modeled by the following process definition:

C(chan approach, exit , raise, lower , val u) =
|[ disc atr , atr = false
| ∗( approach ?; atr := false; (∆u [] [skip]); ∆ t; lower !!

[] exit ?; atr := true
[] atr → (∆u [] [skip]); atr := false; raise !!
)

]|

The main part is an infinite loop of three alternatives. The process waits for one of the
following events to occur: an approaching train (approach ?), a leaving train (exit ?), or if
atr is true, the end of the reaction delay (∆u [] [skip]) that precedes raising of the gate.
Process term ∆u [] [skip], where u denotes the maximum reaction delay in the controller,
models a non-deterministic delay between 0 and u.

Boolean variable atr is true if and only if the hybrid automaton that models the con-
troller is in control mode (vertex) ‘About to raise’. Note that variable z in the hybrid
automaton is used to model a clock. In χ, clocks need not be modeled explicitly. Delay
process terms ∆u are used for that purpose.

4.8 Glider take-off

Figure 4.12 shows a glider that is towed off the ground by a tow plane. The position,
velocity and acceleration of the tow plane are given by x1, v1, a, respectively. The position
and velocity of the glider are given by x2 and v2.

x2, v2 x1, v1, a

lmin

Figure 4.12: Glider take-off.

Initially, the tow plane and glider are standing still at a distance of lmin. After one
unit of time, the tow plane very slowly accelerates (a := 0.02) until the tow cable is at its
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maximum length of lmax. At that moment, the velocity of the glider jumps discontinuously
to the velocity of the tow plane. We assume the mass of the glider to be considerably
smaller than the mass of the tow plane. The tow plane then accelerates (a := 0.5) until
its velocity is at vmax. After another t units of time, the glider releases the tow cable, and
continues on its own. Its velocity is then assumed to be determined by the air resistance,
which is proportional to the squared velocity (kv2

2), and the propelling forces F , which we
assume constant in the model below:

〈 disc s, a, cont x1, x2, v1, v2

, s = stop, a = 0, x1 = lmin, x2 = 0, v1 = 0
| ẋ1 = v1 , ẋ2 = v2 , v̇1 = m1a
‖s = stop → v2 = 0
‖s = tow → v2 = v1

‖s = fly → v̇2 = F − kv2
2

‖ ∆1; a := 0.02
; x1 − x2 ≥ lmax → (jump v2 | s := tow)
; a := 0.5; v1 ≥ vmax → a := 0
; ∆t; s := fly

〉

In the model, m1 is a constant denoting the mass of the towing plane, k is some constant,
and enumeration variable s denotes the state of the glider. When the distance between
the tow plane and the glider becomes equal to the maximum length of the cable, the glider
abruptly starts moving. This is modeled by (jump v2 | s := tow). The jump enabling
operator (jump v2 | . . . ) enables jumps for continuous variable v2 when assignment s :=
tow) is executed. This is necessary, because v2 is declared as a (non-jumping) continuous
variable. The only assignment where v2 must be able to jump is the assignment s := tow,
because then v2 must discontinuously change to the value of v1 in order to satisfy equation
v2 = v1 that must hold for s = tow. In this example, the relation v2 = v1 in mode tow

is so straightforward, that the jumping behavior of variable v2 when mode tow becomes
active can also be modeled explicitly by means of a multi-assignment (s, v2 := tow, v1)
instead of (jump v2 | s := tow). The model with the jump enabling operator is more
general, because it can also be used in cases where the algebraic constraints are so complex
that it becomes difficult, or impossible, to explicitly calculate the new value of the jumping
variable after the discontinuity.

4.9 Bottle filling system

The bottle filling system from Figure 7.1 consists of a liquid storage tank, and two identical
bottle filling lines.

The bottles are filled with liquid from the storage tank. A control system keeps the
volume VT in the storage tank between 2 and 10, and the pH level (acidity) of the liquid
in the storage tank between 7 and 7.1. The liquid in the storage tank slowly becomes less
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Qu Qa , ca

VT , n, c, pH

QF2QF1

Figure 4.13: The bottle filling system.

acidic (pH level increases). To correct this, a strong acid is dribbled into the storage tank
when the acidity of the liquid becomes too low (pH ≥ 7.1).

Figure 4.14 shows the iconic model of the bottle filling system. The lines ending in a
small circle represent shared variables (VT, QF1 , QF1).

QF2

F

VT VT

F

QF1

T

Figure 4.14: Iconic representation of the bottle filling system model.

The acid and liquid supply processes are not modeled, since we consider the acid and
liquid always to be available, and we are not interested in the amount of acid or liquid that
is used. The χ specification of the bottle filling system is as follows:

〈 cont VT , alg QF1, QF2

, VT = 2
| T (VT, QF1, QF2)
‖ F (VT, QF1)
‖ F (VT, QF2)
〉
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The storage tank and the two bottle filling lines are connected by means of the variables
QF1, and QF2, respectively. Since a bottle may start filling only if the storage tank contains
at least a volume of 0.7, the volume VT of the storage tank is available in both bottle filling
processes.

The molar quantity and molar concentration of the acid in the storage tank are denoted
by n and c, respectively, where n = cV . The incoming flows of liquid and acid of the liquid
storage tank T are denoted by Qu and Qa, respectively. The outgoing flows to the two
bottle filling processes are denoted by QF1 and QF2, respectively.

It is assumed that the liquids are incompressible, and that the volumes of the fluids
remain the same when they are mixed. In such a case, the volume V of the mixed liquid
equals the sum of its components which leads to the following equation

V̇ = Qu +Qa −QF1 −QF2.

Next, the mass balance (actually mol balance) for the dissolved substance is derived. Acid
comes into the tank by means of the flows Qu and Qa. Acid leaves the tank in outgoing
flows QF1 and QF2. Because the concentrations are in [mol/m3], they can be directly
multiplied with the flows (in [m3/s]), which leads to

ṅ = cuQu + caQa − cQF1 − cQF2,

where cu and ca denote the concentrations of acid in the flows Qu and Qa. The gradual
reduction of the acidity of the liquid is modeled by means of a constant Kloss, which leads
to

ṅ = cuQu + caQa − cQF1 − cQF2 −KlossV .

It is assumed that the acid is completely decomposed. Taking into account that the units
of c are in [mol/m3] instead of [mol/l], the pH is given by

pH = − log c/1000.

The χ specification of the liquid storage tank follows below, where symbols Qseta, Qsetu,
ca, cu, and Kloss denote constants:

T (ext V,QF1, QF2)
|[ disc α, β, cont n, alg pH , c, Qa, Qu

, α = 0, β = 0, pH = 7

| V̇ = Qu +Qa −QF1 −QF2

, ṅ = cuQu + caQa − cQF1 − cQF2 −KlossV
, n = cV
, pH = − log c/1000
, Qa = αQseta

, Qu = βQsetu

‖ ∗( pH ≥ 7.1→ α := 1; pH ≤ 7→ α := 0 )
‖ ∗( V ≤ 2→ β := 1; V ≥ 10→ β := 0 )
]|
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The model of the liquid storage tank T illustrates that a differential variable, such as
variable n, is not necessarily initialized. In this case, instead, the algebraic variable pH
is initialized (pH = 7). The continuous variables of the bottle filling system with tank T ,
can be declared in different ways.

In most cases, the differential variables, in this case V and n, are declared as (non-
jumping) continuous variables. The other variables, not occurring with a dot (derivative)
are then declared as algebraic variables. This ensures that the differential variables can
be assigned new values, causing discontinuities. The algebraic variables will then simul-
taneously jump to their new values satisfying the equations. This declaration scheme is
used in process T . Note that variable V is an external variable that is declared as a (non-
jumping) continuous variable in the preceding χ process that defines the complete bottle
filling system. Note that even though pH is an algebraic variable, which is not normally
assigned new values, pH can be initialized, in this case to a value of 7, in the initialization
predicate.

In process T , the only discontinuities in continuous variables occur in the flows QF1,
QF2, Qa, and Qu, that are switched on and off discontinuously in process T , and in process
F that follows below. Therefore, the algebraic variables apart from these flows could just
as well have been declared as (non-jumping) continuous variables as in cont n, pH , c.

The behavior of the model is explained as follows. Initially, the pH of the liquid in the
storage tank equals 7. It is assumed that the pH level of the incoming liquid is 7 or more,
since the acidity controller can only make the acidity of the storage tank increase, causing
the pH to decrease. If the pH value exceeds the maximum value (pH ≥ 7.1), the acid valve
is opened (α := 1) so that acid is dribbled into the tank. Dribbling of the acid continues
until the pH value comes back at 7, and the valve is closed (α := 0). In a similar way, the
controller tries to keep the level of the storage tank between 2 and 10.

The model of a bottle filling line follows below, where symbols QsetF, and ttr denote
constants.

F (ext VT, QF) =
|[ disc α, cont V
, α = 0, V = 0

| V̇ = QF

, QF = αQsetF

‖ ∗( VT ≥ 0.7→ α := 1

; α = 1
∗→ ( V ≥ 1→ α := 0

[] VT ≤ 0.5→ α := 0; VT ≥ 0.7→ α := 1
)

; ∆ttr ; V := 0
)

]|

The valve switching the flow QF is modeled by means of the discrete variable α. When
the volume in the storage tank is at least 0.7, the bottle filling process can be started (α :=
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1). Filling stops when the volume in the storage tank drops below 0.5 (VT ≤ 0.5→ α := 0).
Filling resumes when the volume in the storage tank is at least 0.7. Filling also stops when
the bottle is full (V ≥ 1→ α := 0). The time needed to place a new bottle under the filling
nozzle is given by ttr. After that, the bottle volume is reset to 0, which models the arrival
of a new bottle, and the filling process is repeated.

4.10 Conveyor system

Figure 4.15 shows a conveyor system that is used for transportation and buffering of boxes.
It consists of a line of conveyor belts driven by motors. Each conveyor belt is equipped
with a sensor (represented in the figure by a small rectangle), that detects the presence of
a box.

lb

V V

x

lc
ls

Figure 4.15: The conveyor system.
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Figure 4.16: Iconic model of the conveyor system.
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Figure 4.16 shows the iconic model of a generator G, two conveyor belts V and the
associated control processes C. Processes VE and CE are added to obtain a closed system;
they do not model actual behavior. The model is a simplified version of the model treated in
[vBGR97]. The dashed lines with arrow heads represent directed synchronization channels
(pc0, pc1, pc2), the solid lines with arrow heads represent directed communication channels
(p0, p1, p2), and the lines ending in a small circle represent shared variables (s0, s1, v0, v1).
The χ specification of the iconic model from Figure 4.16 is as follows:

〈 disc sG, s0, s1, ls, v0, v1

, chan pc0, pc1, pc2, p0, p1, p2

, s0 = false, s1 = false, ls = 2, v0 = 0, v1 = 0
| G(pc0, p0)
‖ C(v0, s0, pc0, pc1)
‖ C(v1, s1, pc1, pc2)
‖ CE(pc2)
‖ V (sG, s0, v0, p0, p1, 10, 15, ls)
‖ V (s0, s1, v1, p1, p2, 10, 15, ls)
‖ VE(s1, p2, 10, ls)
〉 ,

where ls represents the distance ls as shown in Figure 4.15. Channels p0, p1, p2 are used to
communicate box numbers. Channels pc0, pc1, pc2 are directed synchronization channels.
Variables s0, s1, v0, v1 are shared variables, where s0 and s1 represent the sensors that
indicate the presence of a box, and v0 and v1 are actuators that determine the velocity of
the respective conveyors. The process definitions are:

G(chan pco, po) =
|[ disc box , box = 1
| ∗( pco !; po ! box ; box := box + 1 )
]|

C(ext v, s, chan pci, pco) =
|[ ∗( v := 1; ¬s→ pci ?; s→ v := 0; pco ! )
]|

V (ext sprev, s, v, chan pi, po , val lb, lc, ls) =
|[ disc box , cont x
, box = 0, x = −1
| box = 0→ ẋ = 0 ‖ box 6= 0→ ẋ = v
‖ ∗( pi ? box ; x := 0

; x ≥ lb − ls → sprev := false
; x ≥ lc − ls → s := true
; x ≥ lc → po ! box ; x, box := −1, 0
)

]|
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CE(chan pci) = |[ ∗( pci ? ) ]|

VE(ext sprev , chan pi , val lb, ls) =
|[ disc box
| ∗( pi ? box ; ∆(lb − ls); sprev := false )
]|

After replacing the process instantiations by their process bodies as defined in Sec-
tion 2.5.2, the following χ process is obtained:

〈 disc sG, s0, s1, ls, v0, v1

, chan pc0, pc1, pc2, p0, p1, p2

, s0 = false, s1 = false, ls = 2, v0 = 0, v1 = 0
| |[ disc box , box = 1
| ∗( pc0 !; p0 ! box ; box := box + 1 )
]|
‖ |[ ∗( v0 := 1; ¬s0 → pc0 ?; s0 → v0 := 0; pc1 ! )]|
‖ |[ ∗( v1 := 1; ¬s1 → pc1 ?; s1 → v1 := 0; pc2 ! )]|
‖ |[ ∗( pc2 ? ) ]|
‖|[ disc box , lb, lc, ls , cont x
, box = 0, x = −1, lb = 10, lc = 15, ls = ls
| box = 0→ ẋ = 0 ‖ box 6= 0→ ẋ = v0

‖ ∗( p0 ? box ; x := 0
; x ≥ lb − ls → sG := false
; x ≥ lc − ls → s0 := true
; x ≥ lc → p1 ! box ; x, box := −1, 0
)

]|
‖ |[ disc box | ∗( pc2 ? box ) ]|
‖|[ disc box , lb, lc, ls , cont x
, box = 0, x = −1, lb = 10, lc = 15, ls = ls
| box = 0→ ẋ = 0 ‖ box 6= 0→ ẋ = v1

‖ ∗( p1 ? box ; x := 0
; x ≥ lb − ls → s0 := false
; x ≥ lc − ls → s1 := true
; x ≥ lc → p2 ! box ; x, box := −1, 0
)

]|
‖ |[ disc lb, ls, box
, lb = 10, ls = ls
| ∗( p2 ? box ; ∆(lb − ls); s1 := false )
]|
〉
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In the process body of the first instantiation of control process C, first the conveyor
is switched on (v0 := 1), where v0 is the actuator that determines the velocity of the first
conveyor belt. The process subsequently waits until the sensor is off (¬s0, where ¬ means
logical not). Initially, the conveyor is empty and the sensor is off. The process then waits
until it can synchronize with the preceding control process by executing pc0 ?. This means
that a box may enter the conveyor. Subsequently, the process waits until the box has
reached the sensor position (s0) so that the sensor is on (value of s0 equals true). Then
the conveyor is switched off (s0 → v0 := 0). Subsequently, the control process tries to
synchronize with the next control process (pc1 !). After execution of the synchronization
(pc1 ! in the first control process, simultaneous with pc1 ? in the second control process),
the repetition is re-executed, and the conveyor is switched on again.

In the conveyor process V , variable x models the position of the front of the box on
the conveyor, and variable box stores the identification number of the box. Identification
number 0 means that there is no box on the conveyor. In that case, the value of variable
x equals and remains -1 (box = 0→ ẋ = 0. When there is a box on the conveyor, it moves
with velocity v (box 6= 0→ ẋ = v). The physical representation of variables lb, lc, and ls
is shown in Figure 4.15. The value parameters lb, lc, ls in the process definition of V are
defined as local discrete variables (lb, lc, ls) in the translation of the process instantiation,
in accordance with the translation rules defined in Section 2.5.2. Value parameter ls is
renamed to ls by prefixing it with an underscore, because it conflicts with the global
variable ls that is used in the process instantiations (e.g. V (sG, s0, v0, p0, p1,10,15, ls)). The
values of the local discrete variables lb, lc, and ls are defined by initialization predicate
lb = 10, lc = 15, ls = ls.

In the infinite repetition of the process body of the first instantiation of the conveyor
process, the process starts by waiting until it can receive a box, and initializes the position
of the box to 0 (p0 ? box ; x := 0). When x = lb − ls, the back end of the box has just
passed the sensor of the previous “conveyor”, which in this case is generator process G.
Subsequently, the sensor of the previous conveyor (sprev in the process definition of V ,
sG in the first conveyor) is switched off. After that, the conveyor process waits until the
box has reached the sensor of the conveyor (x ≥ lc − ls), and the sensor is switched on
(s0 := true). Finally, when the box has reached the end of the conveyor (x = lc), the box
is sent to the next conveyor (p1 ! box ), and the loop is re-executed. Simultaneously with
execution of p1 ! box by the first conveyor, the second conveyor executes p1 ? box . The box
has now crossed the boundary of the two conveyors, and its position is registered by the
second conveyor process.

The last conveyor process VE is always on, meaning that the belt moves with velocity
1. Therefore, the duration of a box on this conveyor is given by ∆(lb − ls).

An alternative specification of conveyor process V follows below. In this model, when a
box enters a conveyor (pi ? box ), a new continuous variable x with initial value 0 is created
by means of the scope operator |[ icont x, x = 0 | · · · ]|. The position of the box is defined
by equation ẋ = v until x ≥ lb− ls. Then, sensor sprev is switched off (sprev := false), which
causes the alternative composition (ẋ = v [] x ≥ lb − ls → sprev := false) to terminate. The
difference between this conveyor model and the previous model, is that in the previous
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model, absence of a box was modeled by means of predicate ẋ = 0, whereas in the model
below, absence of the conveyor means that variable x, which models the position of the
front of the conveyor, does not exist.

V (ext sprev, s, v, chan pi, po , val lb, lc, ls) =
|[ disc box
| ∗( pi ? box

; |[ cont x, x = 0
| (ẋ = v [] x ≥ lb − ls → sprev := false)
; (ẋ = v [] x ≥ lc − ls → s := true)
; (ẋ = v [] x ≥ lc → po ! box )
]|

)
]|

4.11 Discrete-event model of a manufacturing line

A manufacturing line consists of a generator G, distributer D, two manufacturing cells C ,
and an assembling machine MA. Figure 4.17 shows the iconic model of the manufacturing
line. Processes R and E are added to obtain a closed system; they do not model actual
behavior.

dc1 cm1

cm2
dr

megd

dc2

C

MA EG D

R

C

Figure 4.17: Iconic model of a manufacturing line.

The manufacturing line is modeled as follows, where tgen, tout, ptmin1, ptmax1, ptmin2,
ptmax2, ptmin3, ptmax3, ptmin4, ptmax4, and pt denote constants.

〈 G(gd , tgen)
‖ D(gd , dc1 , dc2 , dr , tout)
‖ R(dr)
‖ C (dc1 , cm1 , ptmin1, ptmax1,N1 , ptmin2, ptmax2)
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‖ C (dc2 , cm2 , ptmin3, ptmax3,N2 , ptmin4, ptmax4)
‖MA(cm1 , cm2 ,me, pt)
‖ E(me)
〉

G(chan gd , val tgen) = |[ disc x, x = false | ∗(∆tgen ; gd !x) ]|

D(chan gd , dc1 , dc2 , dr , val tout) =
|[ disc x
| ∗(gd ? x; (dc1 !x [] dc2 !x [] ∆tout ; dr !x))
]|

R(chan dr) = |[ disc x | ∗(dr ? x) ]|

MA(chan cm1 , cm2 ,me , val pt) =
|[ disc x, y
| ∗((cm1 ? x ‖ cm2 ? y); ∆pt ; me !x)
]|

E(chan me) = |[ disc x | ∗(me ? x) ]|

Every tgen time units (assuming tgen ≥ tout, see process D), a product is generated by
generator G. A product is modeled by a boolean variable x that is initially false. The
boolean indicates whether the product has done the second round in a manufacturing
cell C. A product enters the manufacturing line via channel gd . The distributor tries
to send a product either via channel dc1 or channel dc2 . In case this is not possible
within tout time units, the product is rejected and sent to reject process R via channel dr
(dc1 !x [] dc2 !x [] ∆tout ; dr !x). Process R consumes the rejected products (∗(dr ? x)).

A manufacturing cell C, shown in Figure 4.18, consists of two machines (Mrw, M) and
a N -place FIFO (first-in-first-out) buffer B.

mb outbm

mm

in BMrw M

Figure 4.18: Iconic model of a manufacturing cell C.

The χ specification of the manufacturing cell is as follows:

C (chan in, out , val ptmin1, ptmax1,N , ptmin2, ptmax2)
|[ chan mb, bm,mm
| Mrw(in,mb,mm, ptmin1, ptmax1)
‖ B(mb, bm,N )
‖M(bm, out ,mm, ptmin2, ptmax2)
]|
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Products enter the cell via channel in. The routing of a product in the manufacturing
cell is as follows: Mrw, B, M , Mrw, B, M . Products leave the manufacturing cell via
channel out . The process definitions of the buffer and the machines are given by

B(chan in, out , val N ) =
|[ disc x
, xs = [ ]
| ∗( len(xs) < N → in ? x; xs := xs ++[x]

[] len(xs) > 0 → out ! hd(xs); xs := tl(xs)
)

]|

Mrw(chan in, out ,mm, val ptmin, ptmax) =
|[ disc x, pt
| ∗((in ? x [] mm ? x; x := true); pt : pt ∈ [ptmin, ptmax]; ∆pt ; out !x)
]|

M(chan in, out ,mm, val ptmin, ptmax) =
|[ disc x, pt
| ∗(in ? x; pt : pt ∈ [ptmin, ptmax]; ∆pt ; (x→ out !x [] ¬x→ mm !x))
]|

The buffer can store up to N products, which are stored in a list xs (len(xs) <
N → in ? x; xs := xs ++[x]), where [x] denotes a list with one element x, and ++ de-
notes list concatenation. The empty list is denoted by [ ]. If the buffer is not empty,
the first product in the buffer can be sent to the machine via channel out (len(xs) >
0 → out ! hd(xs); xs := tl(xs)), where hd(xs) denotes the first element (head) of list xs ,
and tl(xs) denotes the remainder (tail) of list xs without its first element. Machine Mrw

receives products from channels in and mm. A product received from mm is assigned the
value true, which indicates that this product is processed by machine Mrw for the second
time (in ? x [] mm ? x; x := true). The machine has a processing time between ptmin and
ptmax time units (pt : pt ∈ [ptmin, ptmax]; ∆pt). Processed products are sent via channel
out to the buffer B. Machine M receives products via channel in, and processes them for
pt time units. Depending on the value of product variable x, the product is sent either
via channel mm to machine Mrw (x equals false) or it leaves the manufacturing cell via
channel out (x equals true) (x→ out !x [] ¬x→ mm !x).

After processing in one of the two manufacturing cells C , products are sent to machine
MA. Machine MA waits to receive one product via channel cm1 , and one product via
channel cm2 , in a non-deterministic order (cm1 ? x ‖ cm2 ? y). After processing these two
products (∆pt), the combination of them leaves the manufacturing line via channel out
(out !x). Process E consumes the processed products.
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CHAPTER

FIVE

Translations between other formalisms and Chi

In this chapter, we investigate the connections between other formalisms and χ. One of the
formalisms to describe hybrid systems are piecewise affine systems. General translation
schemes from continuous-time piecewise affine systems and discrete-time piecewise affine
systems to χ are defined, which show that these formalisms are closely related. Another
formalism to describe hybrid systems is the theory of hybrid automata. Formal translations
between the theory of hybrid automata and χ (in both directions) have been defined. The
translation from hybrid automata to χ aims to show that the χ formalism is at least as
expressive as the theory of hybrid automata. The translation from a reasonable subset
(χsub) of χ to hybrid automata enables verification of χsub specifications using existing
hybrid automata based verification tools. Furthermore, it is proved that any transition of
a χsub specification can be mimicked by a transition in the corresponding hybrid automaton
and vice versa, which indicates that the translation as defined in this chapter is correct.

5.1 Translations of piecewise affine systems to Chi

In this section, two general translation schemes are given. One scheme defines the trans-
lation of continuous-time piecewise affine systems to a χ specification. The other scheme
defines a translation of discrete-time piecewise affine systems to χ.

5.1.1 Continuous-time PWA

Continuous-time piecewise affine systems are described by N systems of affine differential
equations

ẋ(t) = Aix(t) +Biu(t) + fi
y(t) = Cix(t) +Diu(t) + gi

for

[
x(t)
u(t)

]
∈ Ωi ,

where i (i = 1, . . . , N) is the number of the mode. Each mode i is defined in a region
Ωi, which is a convex polyhedron, given by a finite number of linear inequalities, in the
input/state space. Here, u(t) ∈ Rm, x(t) ∈ Rn, and y(t) ∈ Rl denote the input, state and
output, respectively, at time t. Furthermore, fi, and gi denote constants. In each mode,
the trajectories of the state variables x are continuous functions of time. The trajectories
of the input/output variables in a mode may be discontinuous functions of time.
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Continuous-time PWA systems using the Caratheodory solution concept, can be trans-
lated to χ as follows:

〈 cont x, alg y
, x = x0

| (Ω1 ⇒ ẋ = A1x+B1u+ f1 , y = C1x+D1u+ g1)
∧
...
∧ (ΩN ⇒ ẋ = ANx+BNu+ fN , y = CNx+DNu+ gN )
〉

The state variables x are modeled in χ by means of (non-jumping) continuous variables,
with initial value x0. The output variables y are modeled by means of algebraic variables.
The behavior of u is not specified, as in the original PWA model. In the χ model, u could
denote a function of time, or u could be defined as an algebraic variable, and additional
equations specifying the behavior of u could be added. The behavior associated to a mode
i is described by means of a delay predicate (Ωi⇒ ẋ=Aix+Biu+ fi , y = Cix+Diu+ gi).

5.1.2 Discrete-time PWA

Discrete-time PWA systems are described by

x(k + 1) = Aix(k) +Biu(k) + fi
y(k) = Cix(k) +Diu(k) + gi

for

[
x(k)
u(k)

]
∈ Ωi,

i = 1, . . . , N . Here, u(k) ∈ Rm, x(k) ∈ Rn, and y(k) ∈ Rl denote the input, state and
output, respectively, at the k’th time-point. Discrete-time PWA systems can be translated
to χ as follows:

〈 disc x, y, k
, x = x0, k = 0
| ∗( ( Ω1 → 〈x, y〉 := 〈A1x+B1u.k + f1, C1x+D1u.k + g1〉

[]
...
[] ΩN → 〈x, y〉 := 〈ANx+BNu.k + fN , CNx+DNu.k + gN〉
)

; k := k + 1
)

〉

The state variables x are modeled in χ by means of discrete variables, and are initialized
to x0. The output variables y and variable k are also modeled by means of discrete
variables. We assume u to denote an array of points, such that u.i denotes the value of u
at the i’th time-point. In the repetition ∗( ), the state and output variables are assigned

70



5.2. Translation of a hybrid automaton to Chi

new values according to one of the modes. Subsequently, k is increased by one. The
behavior associated to a mode is described by means of a multiple assignment 〈x, y〉 :=
〈Aix + Biu.k + fi, Cix + Diu.k + gi〉. The alternative composition of the behavior of the
modes allows the state and output variables to be assigned new values according to the
mode for which the corresponding guard (Ωi) holds.

Example: Integrator An integrator with upper saturation can be modeled as a discrete-
time PWA model as follows:

x(k + 1) =

{
x(k) + u(k) if x(k) + u(k) ≤ 1
1 if x(k) + u(k) ≥ 1

y(k) = x(k)

This model can be translated to χ as follows:

〈 disc x, y, k
, x = x0, k = 0
| ∗( ( x+ u.k ≤ 1→ x, y := x+ u.k, x

[] x+ u.k ≥ 1→ x, y := 1, x
)

; k := k + 1
)

〉

5.2 Translation of a hybrid automaton to Chi

In this section, the hybrid automaton model of [Hen00b] is related to the χ formalism.

5.2.1 Description hybrid automaton

A hybrid automaton [Hen00b] consists of the following components:

• A finite set of (real-valued) variables X = {x1, . . . ,xn}, the set Ẋ = {ẋ1, . . . , ẋn} which
denotes the first derivatives of these variables, and the set X ′ = {x′1, . . . , x′n} which
denotes the primed variables that represent values at the conclusion of a discrete
change.

• A finite directed multi-graph (V,E), where V denotes a set of vertices (control modes)
and E denotes a set of edges (control switches).

• Three vertex labeling functions init, inv, and flow that assign to each control mode
v ∈ V a predicate for initial, invariant and flow conditions, respectively. The free
variables of the initial and invariant predicates are from X. The free variables of the
flow predicates are from X ∪ Ẋ.
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• An edge labeling function jump, that assigns to each edge e ∈ E, a jump condition
which is a predicate whose free variables are from X ∪X ′.

• A finite set Σ of events, and an edge labeling function event : E → Σ that assigns to
each edge an event.

In order to translate a hybrid automaton to χ, two additional functions are defined on
a hybrid automaton: function edges ∈ V → P(E) returns a set of outgoing edges for a
location, and function target ∈ E → V returns the target vertex of an edge. Furthermore,
the function T translates a jump predicate to the predicate r of a χ action predicate (W :
r � la) by renaming variables occurring without a prime in a jump predicate to variables
with superscript ‘−’, and renaming variables occurring with a prime ‘′’ to variables without
the prime. E.g. T (x′ = 2x+ y ∧ x ≥ 0∧ y′ = y) becomes x = 2x− + y− ∧ x− ≥ 0∧ y = y−.
In the latter expression, x− and y− refer to the values of x and y, respectively, before the
discrete jump, and x and y refer to the value of variables x and y after the discrete jump.
The class of hybrid automata to be translated to χ is restricted to the hybrid automata
without initial time non-determinism. In this section, we consider hybrid automata where
the initial condition of all but one control modes equals false. The one control mode with
the initial condition that may be not equal to false is called the initial control mode.

Furthermore, it should be possible to rewrite each flow predicate into one of the follow-
ing forms: ẋ = f(x), ẋ ∈ f(x) or the predicate true. This means that we do not consider
flow predicates such as false, or ẋ = 0 ∧ ẋ = 1.

5.2.2 Translation scheme

Consider a hybrid automaton model which belongs to the class of automata as defined in the
previous section, with n variables (X = {x1, . . . , xn}), k control modes (V = {v1, . . . , vk}),
and one initial control mode v1. The translation to a corresponding χ specification is
defined as follows:

〈 cont x1, . . . , xn
, init(v1)
, v1 7→ flow(v1) ∧ inv(v1) []

([]e:e∈edges(v1) [∅ : T (jump(e))� event(e)]; target(e))
...

, vk 7→ flow(vk) ∧ inv(vk) []
([]e:e∈edges(vk) [∅ : T (jump(e))� event(e)]; target(e))

| (jump x1, . . . , xn | v1)
〉

The variables x1, . . . , xn are declared as continuous variables. These variables are initialized
by means of initialization predicate init(v1). By means of the jump enabling operator
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Off

ẋ = −0.1x
x ≥ 18

On

ẋ = 5− 0.1x
x ≤ 22

x = 20

x < 19

x > 21

Figure 5.1: A hybrid automaton model of a thermostat

process term (jump x1, . . . , xn | . . .), all variables become jumping. I.e., in principle they
may change arbitrarily during action transitions.

A vertex vi of the hybrid automaton model is translated using a corresponding recursion
variable vi in the χ model. The process term associated with this recursion variable consists
of the alternative composition of the process term describing the continuous behavior of
the vertex, and the alternative compositions of all individual process terms of the outgoing
edges of this vertex. Below, these process terms are explained in more detail.

The continuous behavior of a vertex vi is translated to a delay predicate in χ, consisting
of the conjunction of the flow predicate and the invariant of the vertex. For each outgoing
edge, the jump predicate of that edge is translated to an action predicate labelled with
the event label of the edge (∅ : T (jump(e))� event(e)). Since all variables are allowed to
jump, the set W of the action predicate equals the empty set. The semantics of a hybrid
automaton is such that when a guard of an edge is enabled, the transition via this edge
can be taken, but it is not required to take this transition. Therefore, the action predicate
associated with the edge is made delayable using the any delay operator [ ]. After the
transition, the behavior is specified by the recursion variable associated with the target
vertex (target(e)).

Note that for set E = {e1, . . . , ek}, notation []e:e∈E [∅ : T (jump(e))� event(e)]; target(e),
denotes the process term [∅ : T (jump(e1))� event(e1)]; target(e1) [] . . . [] [∅ : T (jump(ek))�
event(ek)]; target(ek).

This straightforward translation of a hybrid automaton to a χ model shows that χ
is expressive enough to model phenomena that are usually studied by means of a hybrid
automaton. The translation scheme is illustrated by means of an example in the next
section.

5.2.3 A thermostat

This example shows the translation of a hybrid automaton model of a thermostat to χ.
The hybrid automaton is shown in Figure 5.1. Variable x represents the temperature. The
control modes are On and Off . Initially, the temperature equals 20 degrees, and the heater
is off (control mode Off ). The temperature falls according to the flow condition ẋ=−0.1x.
According to the jump condition x < 19, the heater may go on as soon as the temperature
falls below 19 degrees. The invariant condition x ≥ 18 ensures that at the latest the heater
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∧ x′ = xx < 19

τ

τ

x > 21 ∧ x′ = x
On

flow:
ẋ = 5− 0.1x
inv:

x ≤ 22

falseOff
flow:
ẋ = −0.1x

inv:
x ≥ 18

x = 20

Figure 5.2: Complete hybrid automaton model of a thermostat

will go on when the temperature equals 18 degrees. In the control mode On, the heater
is on, and the temperature rises according to the flow condition ẋ = 5 − 0.1x. When the
temperature rises above 21 degrees, the heater may turn off. Due to the invariant condition
x ≤ 22, at the latest the heater will turn off when the temperature equals 22 degrees.

Figure 5.1 is taken from [Hen00b], where the usual informal notation is used: events on
the edges are ignored, and the initial and jump conditions are incomplete. In particular,
in Figure 5.1 both edges should have an event label, the initial condition of mode On
equals false, and the jump conditions of the edges should have been x < 19 ∧ x′ = x
and x > 21 ∧ x′ = x, respectively. The complete, formal hybrid automata model of the
thermostat is shown in Figure 5.2. Using the translation scheme, this model is translated
to χ, which results in the following χ specification:

〈 cont x
, x = 20
, Off 7→ ẋ = −0.1x ∧ x ≥ 18 [] [∅ : x < 19 ∧ x = x− � τ ]; On
, On 7→ ẋ = 5− 0.1x ∧ x ≤ 22 [] [∅ : x > 21 ∧ x = x− � τ ]; Off
| (jump x | Off )
〉 .

Since the value of variable x does not change during action transitions, the model can
be simplified to

〈 cont x
, x = 20
, Off 7→ ẋ = −0.1x ∧ x ≥ 18 [] [∅ : x < 19� τ ]; On
, On 7→ ẋ = 5− 0.1x ∧ x ≤ 22 [] [∅ : x > 21� τ ]; Off
| Off
〉 .

5.3 Translation of Chi to hybrid automata

In this section, the translation from χ to hybrid automata is defined.
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Many different hybrid automata definitions exist. Some definitions require solutions for
the continuous variables to be differential functions, e.g. [Hen00b, AHH96]. Other defini-
tions allow the more general case of piecewise differential functions, e.g. [vdSS00]. Most
hybrid automata definitions do not define urgent transitions, or they define urgent transi-
tions in a restrictive way, as in [HHWT95]. In [NOSY92], urgent transitions are defined in
a general way, using a predicate that defines the maximum sojourn time in a location, but
instead of invariants and flow clauses, evolution functions are used. With respect to the
meaning of jump clauses, that define the behavior of the variables in action transitions,
differences also occur: where in [Hen00b] the variables can in principle perform arbitrary
jumps unless restricted by the jump predicate, in [HHWT95], variables in principle remain
unchanged unless changes are enforced by the jump predicate.

None of these hybrid automata definitions is expressive enough to be used as the target
for the translation of hybrid χ. Therefore, the translation uses a target hybrid automata
definition, which will be defined in Section 5.3.2, that uses features from different hybrid
automata definitions. In particular, the definition of the jump predicate in combination
with a set of changeable variables is based on [AHH96], the solution concept that allows
piecewise differentiable functions is based on [vdSS00], and the definition of urgent transi-
tions was inspired by [NOSY92].

The translation is defined only for a subset of χ. For instance, the guard operator is
not translated as an operator, but the guarded atomic process terms are translated. Also
the scope operators of χ are not translated.

This section is organized as follows: In Section 5.3.1, the subset of χ to be translated is
defined. Section 5.3.2 presents the syntax and semantics of the hybrid automata definition.
The translation from the subset of χ these hybrid automata is defined in Section 5.3.3. In
Section 5.3.4, its is proved that any transition of a χ model can be mimicked by a transition
in the corresponding hybrid automaton and vice versa. This indicates that the translation
is correct. The translation is illustrated by means of an example of a bottle filling system
in Section 5.3.5.

5.3.1 The χsub language

The subset χsub of the χ language that is translated consists of processes 〈p, σ, (dom(σ) \
{time}, J, ∅, H, ∅)〉, where p ∈ Psub consists of the guarded atomic process terms: guarded
action predicate b → W : r � la, guarded send b → h !! en, guarded receive b → h ?? xn,
delay predicate u, consistent deadlock process term δ, and guarded inconsistent process
term b → ⊥, the unary operators the any delay [ ], repetition ∗, encapsulation ∂A( ),
urgent communication υH ( ) and jump enabling ιJ+ , and the binary operators sequential
composition ; , alternative composition [], and parallel composition ‖. Formally, Psub is
defined by:

Psub ::= u | δ | b→ ⊥ | b→ W : r � la | b→ h !! en | b→ h ?? xn
| [Psub] | ∗Psub | ιJ+(Psub) | Psub ; Psub | Psub [] Psub | Psub ‖ Psub

| ∂A(Psub) | υH (Psub)
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In χsub processes, there are no discrete variables (dom(σ) = C ∪ {time}), no algebraic
variables (L = ∅), and no recursion variables (R = ∅). This subset is, in addition to the
restrictions in Chapter 2, further restricted such that dotted continuous variables are not
allowed to occur in action predicates or guards. This restriction is in order to simplify
some proofs. Furthermore, dotted continuous variables are not allowed to occur in the
expressions of h !! en (for simplicity).

In χ, the guard operator can be applied to arbitrary process terms. Since it is not
possible to translate the guard operator in a general way, the process terms to which the
guard operator can be applied are restricted to the inconsistent process term, the action
predicate, undelayable send and undelayable receive process terms.

In Chapter 2, the semantics of the repetition operator is defined in terms of the re-
cursion scope operator. For simplicity, in Appendix C.1, the deduction rules for the rep-
etition operator are given, such that when using these rules, the following property holds
∗p ↔ |[R {X 7→ p; X} | X ]|. The semantics of the solution function Ω of χsub equals the solu-
tion function ΩFG of χ. In χsub, function Ω is defined as ΩFG ∈Σ×P(V)×P(V)×U ×T →
P(T 7→ Σ̇), where U denotes the set of all predicates over V and V̇ , returns a set of tra-
jectories from time to an extended valuation for the variables and dotted variables, given
a valuation representing the current values of continuous variables, the set of continuous
variables, a delay predicate and a time point that denotes the duration of the trajectory.
Formally, function Ω is defined as:

Ω(σ,C, ∅, u, t) =
{ ρ
| ρ ∈ [0, t]→ ((dom(σ) ∪ Ċ)→ Λ)
, t ≥ 0
, ∀s∈[0,t] : ρ(s) |= u
, ∀x∈dom(σ) : (ρ ↓ x)(0) = σ(x)
, ∀x∈C : ρ ↓ ẋ is an integrable function in the

Lesbesgue sense.
, ∀s∈[0,t],x∈C : (ρ ↓ x)(s) = (ρ ↓ x)(0) +

∫ s
0

(ρ ↓ ẋ)(s′)ds′

, ∀x ∈ C : (ρ ↓ x, ρ ↓ ẋ) ∈ G
, ∀s∈[0,t] : ρ(s)(time) = σ(time) + s
}

We do not further explain the meaning of the solution function Ω, because it is defined
based on the solution function ΩFG , which is already explained in detail in Chapter 3. The
way we obtain the solution function Ω from the solution function ΩFG is by filling in the
set L, which is empty, and restricting the dom(σ) in such a way that it does not contain
any discrete variable. This corresponds to the restriction on χsub.

5.3.2 Hybrid automata definition

In this section, the syntax and semantics of hybrid automata is given.
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5.3.2.1 Syntax

A hybrid automaton HA consists of the following components:

• A finite set of (real-valued) variables X = {x1, . . . ,xn}, the set Ẋ = {ẋ1, . . . , ẋn} which
denotes the first derivatives of the variables w.r.t. time, and the set X ′ = {x′1, . . . , x′n}
which denotes the primed variables that represent values at the conclusion of a dis-
crete change.

• A finite directed multi-graph (V,E), where V denotes a set of vertices (also referred
to as control modes or locations) and E denotes a set of edges (control switches).

• Three vertex labeling functions init, inv, and flow that assign to each location v ∈ V
a predicate for initial conditions, invariants and flow conditions, respectively. The
free variables of the initial and invariant predicates are from X. The free variables
of the flow predicates are from X ∪ Ẋ.

• An edge labeling function jump, that assigns to each edge e ∈ E a set of variables
(⊆ X) which are allowed to change and a jump condition which is a predicate whose
free variables are from X ∪X ′.

• An edge labeling function guard, that assigns to each edge e ∈ E a guard which is a
predicate whose free variables are from X.

• An edge labeling function urgent ∈ E → {true, false}, that assigns to each edge a
boolean: true for an urgent edge, and false for a non-urgent edge.

• A finite set Σ of events, and an edge labeling function event ∈ E → Σ that assigns
to each edge an event.

Usually, an edge e is represented as e = (v, v′), which identifies a source location
v ∈ V and a target location v′ ∈ V . This representation cannot be used in case of
multi-edges (multiple edges with the same source location and target location). To deal
with these, two additional functions are defined: function source ∈ E → V returns the
source location of a given edge, and function target ∈ E → V returns the target loca-
tion of a given edge. This results in the following hybrid automata definition: HA =
(X,V, init, inv, flow,E, source, target,urgent, guard, jump,Σ, event).

5.3.2.2 Semantics

The semantics of a hybrid automaton is defined in terms of a timed transition system. In
this transition system, two kinds of transition relations are defined: action transitions and
time transitions.

• an action transition is labelled with an action label from an action label set to indicate
that the transition may take place on performing that action;
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• a time transition is labelled with an non-negative real number to indicate that the
transition takes place on idling for that number of time units.

Let HA = (X, V, init, inv, flow, E, source, target, urgent, guard, jump, Σ, event) be
a hybrid automaton. Then a state of HA is a pair (v, α) ∈ V × (X 7→ Λ). A state (v, α)
of HA is admissible if α |= inv(v), and a state (v, α) of HA is initial if it is admissible
and α |= init(v). Here, notation α |= ϕ denotes the truth value obtained by evaluating the
predicate ϕ in α, i.e. replacing in ϕ all occurrences of all variables x ∈ X by α(x).

The transition system interpretation of HA, written |[ HA ]|, is the timed transition
system (Q,Q0,Σ,−→ , 7−→), where

• Q is the set of admissible states of HA;

• Q0 is the set of initial states of HA;

• Σ is the set of events;

• −→ ⊆ Q× Σ×Q is the action transition relation. For l ∈ Σ, (v, α), (v′, α′) ∈ Q,

(v, α)
l−→ (v′, α′)⇔ ∃e∈E ( source(e) = v, target(e) = v′, event(e) = l,

α |= guard(e), (α, α′) |= jump(e))

• 7−→⊆ Q × R≥0 × Q is the time transition relation. For r ∈ R≥0, (v, α), (v′, α′) ∈ Q:

(v, α)
r7−→ (v′, α′) iff

– v = v′,

– ∃ρ:[0,r]→(X∪Ẋ 7→Λ) such that

∗ ρα(0) = α, ρα′(r) = α′,

∗ ∀t∈[0,r]

{
ρ(t) |= inv(v) ∧ flow(v)

∀x∈X (ρ ↓ x)(t) = (ρ ↓ x)(0) +
∫ t

0
(ρ ↓ ẋ)(s)ds

∗ ∀e∈E (source(e) = v ∧ urgent(e)) =⇒ ∀t∈[0,r) ρ(t) |= ¬guard(e),

where notation (α, α′) |= jump(e) is defined as follows: Let jump(e) = (W, pred), then
notation (α,α′) |= jump(e) is defined as (α,α′) |= pred∧α � (dom(α) \W ) = α′ � (dom(α′) \
W ), where notation (α,α′) |=ϕ denotes the truth value obtained by evaluating the predicate
ϕ by replacing in ϕ all occurrences of all variables x ∈ X by α(x), and by replacing in ϕ
all occurrences of all variables x ∈ X ′ by α′(x).

5.3.3 The translation

The translation function HA ∈ χsub→ HA is defined in terms of function T ∈ P(V)×P →
HAfrag that translates a χsub process term p with a set of jumping continuous variables J to
a corresponding hybrid automaton fragment HAfrag. Function T is further defined below.
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Hybrid automaton fragment A hybrid automaton fragment HAfrag is a tuple (V, v0, inv,
flow, done, E, source, target, urgent, guard, jump, Σ, event), where V , inv, flow, E,
source, target, guard, urgent, jump, Σ, and event are defined as in the hybrid automation
definition. Location v0 ∈ V is the initial location of the hybrid automaton fragment, and
function done ∈ V → {true, false} assigns to each location v ∈ V a status (also known as
done condition) that partitions the locations into terminating locations (status is true), and
non-terminating locations (status is false). The distinction between terminating and non-
terminating locations is needed in the definition of the translation of some χsub operators
(e.g. sequential composition and repetition). Note that hybrid automaton fragment is
defined at the level of χsub process terms, there is no transition system generated by a
hybrid automaton fragment.

Auxiliary functions on hybrid automaton fragments In the translation of hybrid chi process
terms with a set of jumping continuous variables to hybrid automaton fragments, we fre-
quently combine hybrid automaton fragments for which the sets of node names are not
disjoint and for which the sets of edge names are not disjoint. This presents us with a
technical problem in case we simply wish to use such nodes in the combination. To over-
come this technicality we introduce functions L∗ and R∗ that rename nodes and edges in
such a way that for any two hybrid automata fragments HAp and HAq we have that the
nodes of L∗(HAp) and R∗(HAq) are disjoint and that the edges of these hybrid automaton
fragments are disjoint.

Let HA = (V, v0, inv, flow, done, E, source, target, urgent, guard, jump, Σ, event) be
a hybrid automaton fragment. Then we define L∗(HA) = (Vl, vl0, invl, flowl, donel, El,
sourcel, targetl, urgentl, guardl, jumpl, Σl, eventl) where Vl = {(l, v) | v ∈ V }, vl0 = (l, v0),
for all v ∈ V , invl(l, v) = inv(v), flowl(l, v) = flow(v), and donel(l, v) = done(v), El = {(l, e) |
e∈E}, for all e∈E, sourcel(l, e) = (l, source(e)), targetl(l, e) = (l, target(e)), urgentl(l, e) =
urgent(e), guardl(l, e) = guard(e), jumpl(l, e) = jump(e), Σl = Σ and eventl(l, e) = event(e).
The function R∗ is defined similarly.

Graphical representation In our graphical representation of hybrid automaton fragments,
only the initial location of the hybrid automaton fragment has an incoming arrow. The
terminating locations are drawn with double circles. Single arrows represent non-urgent
edges, and double arrows represent urgent edges.

Variables used in the hybrid automaton A channel has a type. This defines a number of
expressions to be sent or a number of variables to be received in (e.g. h !! 1, 2 and h ??x, y)
via a channel. We refer to the number of expressions to be sent or the number of variables
to be received via a channel as the number of arguments of the channel. For simplicity, the
set of channel names H with the number of arguments of each channel (denoted by ar(h)
for h ∈ H) which is used in the χ specification under consideration is assumed. Using this
set, valuation σ and the set of continuous variables C, the set of variables of the hybrid
automaton is defined as X = dom(σ) ∪ DC ∪ Hvar. The set of variables DC consists of

79



Chapter 5. Translations between other formalisms and Chi

the variables of C prefixed with ′d′: DC = {dc | c ∈ C}. The set Hvar consists of ar(h)
additional variables for each channel from H: Hvar = {h′1, · · · , h′ar(h) | h ∈H}. It is assumed

that the sets dom(σ), DC , and Hvar are pairwise disjoint.

Translation function HA Function HA is now defined as follows: Let TJ(p) = (Vp,v0p ,
invp, flowp, donep, Ep, sourcep, targetp, urgentp, guardp, jumpp, Σp, eventp) be the hybrid
automaton fragment of p with the set of jumping continuous variables J , and X as defined
before. Then the hybrid automaton corresponding to the χsub process 〈p, σ, (C, J, ∅,H, ∅)〉
is HA(〈p, σ, (C,J,∅,H,∅)〉) = (X, Vp, init, invp, flow, Ep, sourcep, targetp, urgentp, guardp,
jumpp, Σp, eventp), where

∀v∈Vp : init(v) =

{
M(σ) if v = v0p ,

false otherwise,

∀v∈Vp : flow(v) = flowp ∧ ˙time = 1.

FunctionM maps a valuation {x0 7→ c0, . . . , xn 7→ cn} to a predicate x0 = c0∧ · · · ∧xn = cn.
E.g. M({x 7→ 1, y 7→ 2}) = (x = 1 ∧ y = 2).

5.3.3.1 Translation of atomic process terms of χsub

In this section, the translation of the atomic process terms of χsub to the corresponding
hybrid automaton fragments is defined. Notation Xaux is defined as Xaux = DC ∪Hvar.

Delay predicate u A delay predicate u restricts the allowed behavior of the variables in
such a way that the value of the predicate remains true over time. Since u can only perform
time transitions, TJ(u) has only one location without outgoing edges.

TJ(u) = ({v0}, v0, inv, flow, done, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅),

where inv(v0) = u[DC/Ċ], flow(v0) = u, and done(v0) = false. Predicate u[DC/Ċ] is
the predicate u where all occurrences of ċ are replaced by a variable dc from DC . E.g.
(ẋ = −x+ 1 ∧ x ≥ 0 ∧ y ∈ [0, 1])[DC/Ċ] = (dx = −x+ 1 ∧ x ≥ 0 ∧ y ∈ [0, 1]).

In χ, it is not possible to reach a state in which the delay predicate evaluates to false,
while in hybrid automata, it is possible to reach a state in which the flow condition does not
hold. For example, in the semantics of χsub, the delay predicate ẋ = 0 ∧ ẋ = 1 denotes an
inconsistent process, i.e., a process that cannot be reached. To overcome this semantical
difference, the invariant is used to prevent entrance in case there is no solution for the
delay predicate. As invariants cannot contain dotted variables, these dotted variables are
replaced by variables from DC (inv(v0) = u[DC/Ċ]).

Consistent deadlock δ and guarded inconsistent process term b → ⊥ Since process term δ
can neither perform any action transitions, nor time transitions, TJ(δ) has one location
with flow condition false, invariant true, and no outgoing edges.

TJ(δ) = ({v0}, v0, inv, flow, done, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅),
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v0

flow : u

inv : u[DC/Ċ]

Figure 5.3: Hybrid automaton fragment for delay predicate u.

where inv(v0) = true, flow(v0) = false, and done(v0) = false.

v0

flow : false
inv : true

v0

flow : ¬b
inv : ¬b

Figure 5.4: Hybrid automaton fragments for δ and b→ ⊥.

Let b denote a guard, and b → ⊥ denote a guarded inconsistent process term b → ⊥.
We know (see Proposition 3.5.4) that the guarded inconsistent process term b → ⊥ is
equivalent to the negation of the guard b. Then

TJ(b→ ⊥) = TJ(¬b).

Since δ cannot perform any kind of transitions, the process term b→ δ can only perform
an arbitrary time transition while its guard is false. This process term is not useful for the
purpose of modeling. Hence, the process term b→ δ is not translated.

Guarded action predicate Let b denote a guard and let W : r � la denote an action pred-
icate. Then guarded action predicate b → W : r � la behaves as the action predicate
W : r � la if b = true. If b = false, it can perform arbitrary time transitions. An action
predicate W : r � la allows instantaneous changes to the variables from the set W ∪ J in
such a way that the predicate r is satisfied. The values of variables not in the set W ∪ J
remain unchanged.

TJ(b→ W : r � la) = ({v0, v1}, v0, inv, flow, done,
{e}, source, target, urgent, guard, jump, {la}, event),

where inv(v0) = true, inv(v1) = true,
flow(v0) = true, flow(v1) = false,
done(v0) = false, done(v1) = true,

source(e) = v0,
target(e) = v1,
urgent(e) = true,
guard(e) = b,
jump(e) = (Xaux ∪W ∪ J, ζW∪J(r)),
event(e) = la.
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A guarded action predicate can only delay while its guard is false. Only for the end-
point of the trajectory the guard may become true. Therefore, the flow condition of location
v0 is true, and the urgent edge e is guarded with b.

The difference in notation of a jump predicate in the χsub language and the syntax
of hybrid automata defined in Section 5.3.2.1 requires function ζW∪J . Function ζW∪J
renames variables of W ∪ J in r to variables with superscript “′”, and replaces variables
occurring with a “−” superscript in r to variables without any superscript. E.g. ζ{x}(x+y=
x− + y− + 5) becomes x′ + y = x+ y + 5. The set of variables which is allowed to change
is given by Xaux ∪W ∪ J . Edge e is labelled with the action label la.

v0

flow : true
inv : true

v1

flow : false
inv : true

lab, (W ∪ J ∪Xaux, ζW∪J(r))
Figure 5.5: Hybrid automaton fragment for b→ W : r � la.

Guarded send and guarded receive Guarded send and guarded receive process terms b→
h !!en and b→ h??xn behave as h !!en and h??xn if b= true. If b= false, they can perform
arbitrary time transitions. Process terms h !! en and h ?? xn denote undelayable sending of
expression en via channel h, and undelayable receiving of information via channel h into
variable(s) xn, respectively. Let h denote an arbitrary channel, h′n denote the variables
h′1, . . . , h

′
n, and en denote the expressions e1, . . . , en.

TJ(b→ h !! en) = ({v0, v1}, v0, inv, flow, done,
{e}, source, target, urgent, guard, jump, {isa(h)}, event),

where inv(v0) = true, inv(v1) = true,
flow(v0) = true, flow(v1) = false,
done(v0) = false, done(v1) = true,

source(e) = v0,
target(e) = v1,
urgent(e) = true,
guard(e) = b,

jump(e) =

(
J ∪Xaux,

n∧
i=1

ei = h′i

)
,

event(e) = isa(h).
The above translation results in a timed transition system that differs from the χ-

semantics in the sense that the label of the transition is different. In χ, besides the channel
name, also the value of the expressions is an argument of the isa-action. The only way to
achieve the same for the hybrid automaton, is to introduce a potentially infinite number of
edges, one for each possible value for en. This is not allowed in hybrid automata. Therefore,
we have introduced auxiliary variables h′n (with n the arity of the channel h). The sole
purpose of these variables is to store the values of the expressions en.
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v0

flow : true
inv : true

v1

flow : false
inv : true

b,(
J ∪Xaux,

n∧
i=1

ei = h′i

)
,

isa(h)
Figure 5.6: Hybrid automaton fragment for b→ h !! en.

Let xn denote the variables x1, . . . , xn. Then

TJ(b→ h ?? xn) = ({v0, v1}, v0, inv, flow, done, {e},
source, target, urgent, guard, jump, {ira(h, {xn})}, event),

where init = (∅, true),
inv(v0) = true, inv(v1) = true,
flow(v0) = true, flow(v1) = false,
done(v0) = false, done(v1) = true,

source(e) = v0,
target(e) = v1,
urgent(e) = true,
guard(e) = b,
jump(e) = ({xn} ∪ J ∪Xaux,

n∧
i=1

h′i = x′i),

event(e) = ira(h, {xn}).

v0

flow : true
inv : true

v1

flow : false
inv : true

b,(
{xn} ∪ J ∪Xaux,

n∧
i=1

h′i = x′i

)
,

ira(h, {xn})
Figure 5.7: Hybrid automaton fragment for b→ h ?? xn.

5.3.3.2 Translation of operators of χsub

In this section, the translation of the χsub operators to hybrid automaton fragments is
defined. We let p, q be closed process terms, and we use TJ(i) = (Xi, Vi, v0i , invi, flowi,
donei, Ei, sourcei, targeti, urgenti, guardi, jumpi, Σi, eventi) to denote the hybrid automa-
ton fragment of i, for i ∈ {p, q}.

In the translations, notation fpq is used as an abbreviation for fp ∪ fq, where f ∈ {inv,
flow, done, E, source, target, urgent, guard, jump, Σ, event} and operator ∪ is defined as
follows: If f and g are functions with dom(f)∩ dom(g) = ∅, then f ∪ g denotes the unique
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function h with dom(h) = dom(f)∪ dom(g) satisfying the condition: for each c ∈ dom(h),
if c ∈ dom(f) then h(c) = f(c), and h(c) = g(c) otherwise.

Any delay operator By means of the any delay operator [p], time transitions of arbitrary
duration are allowed for the behavior of p. Time transitions of p itself are neglected. The
any delay operator does not affect the action behavior of p. Let L∗(TJ(p)) = (Vp, vp0, invp,
flowp, donep, Ep, sourcep, targetp, urgentp, guardp, jumpp, Σp, eventp) and v0p = vp0, then

TJ([p]) = ({v′0p} ∪ Vp, v
′
0p , inv ∪ invp, flow ∪ flowp, done ∪ donep,

E ∪ Ep, source ∪ sourcep, target ∪ targetp, urgent ∪ urgentp,
guard ∪ guardp, jump ∪ jumpp,Σp, event ∪ eventp),

where dom(inv) = dom(flow) = dom(done) = {v′0p},
inv(v′0p) = true, flow(v′0p) = true, done(v′0p) = donep(v0p),

E = {e′ | e ∈ Ep, sourcep(e) = v0p}, E ∩ Ep = ∅,
dom(source) = dom(target) = dom(urgent) = dom(guard) =
dom(jump) = dom(event) = E,
∀e′∈E : source(e′) = v′0p ,

target(e′) = targetp(e),
urgent(e′) = false,
guard(e′) = guardp(e),
jump(e′) = jumpp(e),
event(e′) = eventp(e).

The automaton fragment TJ([p]) may start with an arbitrary delay. We introduce an
additional location v′0p to TJ(p) to play the role of the original initial location but now with
arbitrary initial delay. Therefore, the invariant and the flow condition of v′0p are set to
true. Also v′0p becomes the initial location of TJ([p]). Observe that any transition from v′0p
ends up in a location of TJ(p). Also, any urgent edge from v′0p is turned into a non-urgent
one.

Sequential composition operator The sequential composition of process terms p and q be-
haves as process term p until p terminates, and then continues to behave as process term q.
Let L∗(TJ(p)) = (Vp, vp0, invp, flowp, donep, Ep, sourcep, targetp, urgentp, guardp, jumpp,
Σp, eventp), R∗(TJ(q)) = (Vq, vq0, invq, flowq, doneq, Eq, sourceq, targetq, urgentq, guardq,
jumpq, Σq, eventq), v0p = vp0, and v0q = vq0, then

TJ(p; q) = (V, v0p , invpq � V, flowpq � V, donepq � V,Epq, Epq, sourcepq,
target ∪ targetq, urgentpq, guardpq, jumppq,Σpq, eventpq),

where V = {v | v ∈ Vp,¬donep(v)} ∪ Vq, dom(target) = Ep

∀e∈Ep : target(e) =

{
v0q if donep(targetp(e)),

targetp(e) otherwise.
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The initial location of TJ(p; q) is the initial location of TJ(p). The end-points of the
edges that go to terminating locations of TJ(p) are reconnected to the initial location of
TJ(q) (i.e. v0q). The terminating locations of TJ(p) are removed. This is safe since we
never create hybrid automaton fragments with outgoing edges in terminating locations.
The behavior of TJ(p; q) is straightforward: first p is executed, then q. Upon termination
of p, the invariants of the initial location of q must hold.

From the above definition it follows that if the hybrid automaton fragment for p has no
terminating locations, i.e. ∀v∈Vp :¬donep(v), then the locations from TJ(q) are unreachable.
Hence, TJ(p; q) and TJ(p) are identical apart from the unreachable locations/edges.

Alternative composition operator The delay behavior of TJ(p [] q) is the intersection of
the respective delay behaviors of p and q. The action behavior is a non-deterministic
choice between the first action allowed by p and the first action allowed by q. Let
L∗(TJ(p)) = (Vp, vp0, invp, flowp, donep, Ep, sourcep, targetp, urgentp, guardp, jumpp, Σp,
eventp), R∗(TJ(q)) = (Vq, vq0, invq, flowq, doneq, Eq, sourceq, targetq, urgentq, guardq,
jumpq, Σq, eventq), v0p = vp0, and v0q = vq0, then

TJ(p [] q) = ({v0} ∪ Vpq, v0, inv ∪ invpq, flow ∪ flowpq, done ∪ donepq,
E ∪ Epq, source ∪ sourcepq, target ∪ targetpq,
urgent ∪ urgentpq, guard ∪ guardpq, jump ∪ jumppq,Σpq,
event ∪ eventpq),

where dom(inv) = dom(flow) = dom(done) = {v0},
inv(v0) = invp(v0p) ∧ invq(v0q), flow(v0) = flowp(v0p) ∧ flowq(v0q),
done(v0) = donep(v0p) ∧ doneq(v0q),
E = {e′ | e ∈ Epq, sourcepq(e) ∈ {v0p , v0q}}, E ∩ Epq = ∅,
dom(source) = dom(target) = dom(urgent) = dom(guard) =
dom(jump) = dom(event) = E,
∀e′∈E : source(e′) = v0, target(e′) = targetpq(e),

urgent(e′) = urgentpq(e), guard(e′) = guardpq(e),
jump(e′) = jumppq(e), event(e′) = eventpq(e).

The invariant, flow and done conditions of the initial location v0 of TJ(p [] q) are the
conjunction of the invariants, flow conditions and done conditions of v0p and v0q , respec-
tively. The recursion condition of v0 is the union of the recursion conditions of v0p and v0q .
All outgoing edges from the original initial nodes, i.e., v0p an v0q , are copied to the new
initial node with their original target.

It can be the case that the original initial nodes are not reachable anymore. In that
case, they can of course be removed from the hybrid automaton fragment.

Parallel composition operator The parallel composition of process terms p and q has as its
behavior with respect to action transitions the interleaving of the behaviors of p and q.
The parallel composition allows the synchronization of matching send and receive actions.
A send action isa(h, cs) and a receive action ira(h′, cs ′,W ) match iff h = h′ and cs = cs ′;
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i.e. the channels used for sending and receiving are the same, and also the values sent and
the values received are identical. The time transitions of the process terms that are put in
parallel have to synchronize to obtain the time transition (with the same time step t and
trajectory ρ) of their parallel composition

Let γ : Σp × Σq → {ca(h) | h ∈ H} be defined as follows: for any channel name h and
any xn

γ(isa(h), ira(h, {xn})) = ca(h) if isa(h) ∈ Σp and ira(h, {xn}) ∈ Σq,
γ(ira(h, {xn}), isa(h)) = ca(h) if ira(h, {xn}) ∈ Σp and isa(h) ∈ Σq,

and undefined otherwise.

Also, let L∗(TJ(p)) = (Vp, vp0, invp, flowp, donep, Ep, sourcep, targetp, urgentp, guardp,
jumpp, Σp, eventp), R∗(TJ(q)) = (Vq, vq0, invq, flowq, doneq, Eq, sourceq, targetq, urgentq,
guardq, jumpq, Σq, eventq), v0p = vp0, and v0q = vq0, then

TJ(p ‖ q) = (V, (v0p , v0q), inv ∪ invpq, flow ∪ flowpq, done ∪ donepq,
E, source ∪ sourcepq, target ∪ targetpq, urgent ∪ urgentpq,
guard ∪ guardpq, jump ∪ jumppq,Σ, event ∪ eventpq),

where V done
p = {vp ∈ Vp | done(vp)}
V done
q = {vq ∈ Vq | done(vq)}
V ′ = (Vp \ V done

p )× (Vq \ V done
q ) ∪ Vp ∪ Vq

vdone 6∈ V ′, V = V ′ ∪ {vdone},
dom(inv) = dom(flow) = dom(done) = V \ Vpq,
inv(vdone) = true, flow(vdone) = false, done(vdone) = true,

∀(vp,vq)∈(Vp\V done
p )×(Vq\V done

q ) inv(vp, vq) = invp(vp) ∧ invq(vq),
flow(vp, vq) = flowp(vp) ∧ flowq(vq),
done(vp, vq) = donep(vp) ∧ doneq(vq),

E = (Ep × (Vq \ V done
q )) ∪ ((Vp \ V done

p )× Eq) ∪ Ep ∪ Eq
∪ {(ep, eq) ∈ Ep × Eq | γ(event(ep), event(eq)) defined},

dom(source) = dom(target) = dom(urgent) = dom(guard) =
dom(jump) = dom(event) = E \ Epq,
Σ = Σp ∪ Σq ∪ range(γ),

∀(ep,vq)∈E : source(ep, vq) = (sourcep(ep), vq),

target(ep, vq) =

{
(targetp(ep), vq) if ¬donep(targetp(ep)),

vq if donep(targetp(ep)),

urgent(ep, vq) = urgentp(ep), guard(ep, vq) = guardp(ep),
jump(ep, vq) = jumpp(ep), event(ep, vq) = eventp(ep),
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∀(vp,eq)∈E : source(vp, eq) = (vp, sourceq(eq)),

target(vp, eq) =

{
(vp, targetq(eq)) if ¬doneq(targetq(eq)),

vp if doneq(targetq(eq)),

urgent(vp, eq) = urgentq(eq), guard(vp, eq) = guardq(eq),
jump(vp, eq) = jumpq(eq), event(vp, eq) = eventq(eq),

∀(ep,eq)∈E :
source(ep, eq) = (sourcep(ep), sourceq(eq)),

target(ep, eq) =



(targetp(ep), targetq(eq)) if ¬donep(targetp(ep)) and

¬doneq(targetq(eq)),

targetq(eq) if donep(targetp(ep)) and

¬doneq(targetq(eq)),

targetp(ep) if ¬donep(targetp(ep)) and

doneq(targetq(eq)),

vdone if donep(targetp(ep)) and

doneq(targetq(eq)),

urgent(ep, eq) = urgentp(ep) ∨ urgentq(eq),
guard(ep, eq) = guardp(ep) ∧ guardq(eq),
jump(ep, eq) = jumpp(ep) ∧ jumpq(eq),
event(ep, eq) = γ(eventp(ep), event(eq)).

Let jumpp(ep) = (Wp, rp) and jumpq(eq) = (Wq, rq), then notation jumpp(ep) ∧ jumpq(eq)
is defined as (Wp ∪Wq, rp ∧ rq).

In this translation, an additional terminating location vdone is introduced. Besides the
terminating locations, locations of two hybrid automaton fragments (TJ(p) and TJ(q))
are conjoined. The conjunction of the invariants, and the conjunction of the flow and
done conditions apply. Action transitions from the components are interleaved, apart
from the synchronization of matching send and receive actions, in which they are executed
simultaneously. If the synchronization of matching send and receive actions can terminate
successfully, the control of the hybrid automaton fragment (TJ(p ‖ q)) ends up in the
terminating location vdone.

Repetition operator Process term ∗p represents the infinite repetition of process term p.
Let L∗(TJ(p)) = (Vp, vp0, invp, flowp, donep, Ep, sourcep, targetp, urgentp, guardp, jumpp,
Σp, eventp) and v0p = vp0, then

TJ(∗p) = (V, v0p , invp � V, flowp � V, donep � V,
Ep, sourcep, target, urgentp, guardp, jumpp,Σp, eventp),

where V = {v | v ∈ Vp,¬donep(v)}, dom(target) = Ep

∀e∈Ep : target(e) =

{
v0p if donep(targetp(e)),

targetp(e) otherwise.
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The end-points of the edges that go to terminating locations are reconnected to the
initial location v0p . The terminating locations are removed. As mentioned previously,
this is safe, because we never create hybrid automaton fragments with outgoing edges in
terminating locations.

Jump enabling operator The jump enabling operator applied to a process term p with set
J+ (ιJ+(p)) behaves the same as its argument in an environment where the variables from
set J+ become jumping variables.

Action encapsulation operator The behavior of the action encapsulation applied to a pro-
cess term ∂A(p) is the same as the behavior of its argument with the restriction that actions
from the set A (A ⊆ A \ {τ}) cannot be executed. Let L∗(TJ(p)) = (Vp, vp0, invp, flowp,
donep, Ep, sourcep, targetp, urgentp, guardp, jumpp, Σp, eventp) and v0p = vp0, then

TJ(∂A(p)) = (Vp, v0p , invp, flowp, donep,
Ep, sourcep, targetp, urgentp, guardp, jumpp,Σp, eventp),

where ∀e∈Ep : jump(e) =

{
(∅, false) if eventp(e) ∈ A,

jumpp(e) otherwise.

If the event label of an edge is in the set of A, then the jump condition of that edge is
replaced by a predicate false with an empty set of variables that are allowed to change.

Urgent communication operator The urgent communication operator υH (p) gives commu-
nication actions via channels from set H ⊆H a higher priority than time transitions. Action
behavior and consistency are not affected by the urgent communication operator. Time
transitions are allowed only if at each intermediate state while delaying no communication
actions via channels from H are possible. Let L∗(TJ(p)) = (Vp, vp0, invp, flowp, donep, Ep,
sourcep, targetp, urgentp, guardp, jumpp, Σp, eventp) and v0p = vp0, then

TJ(υH (p)) = (Vp, v0p , invp, flowp, donep,
Ep, sourcep, targetp, urgent, guardp, jumpp,Σp, eventp),

where ∀e∈Ep : urgent(e) =

{
true if eventp(e) = ca(h) for some h ∈ H ,

urgentp(e) otherwise.

If the event label of an edge is ca(h), where h ∈ H , then the edge becomes urgent.

5.3.4 Correctness of the translation

In this section, it is proved that any transition of a χ specification can be mimicked by
a transition in the corresponding hybrid automaton model and vice versa. This indicates
that the translation as defined in this chapter is correct.
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In the operational semantics of χ (see also Chapter 3), a consistency predicate plays
an important role. The following theorems state the relationship between consistency in χ
and admissibility of states in hybrid automata.

Theorem 5.3.1 Let p be a closed process term, v0 be the initial location of TJ(p), α and σ
be valuations such that σ=α � dom(σ), ξ be an extended valuation such that σ= ξ � dom(σ),
and E = (C, J, ∅, H, ∅) be an environment. Then

(v0, α) is an admissible state of |[HA(〈p, σ, E〉) ]| ⇔ 〈p, σ, E〉 ξ
 

for some extended valuation ξ.

PROOF. See Appendix C.2.

Theorem 5.3.2 Let p be a closed process term, σ be a valuation, ξ, ξ′ be extended val-
uations, E = (C, J, ∅, H, ∅) be an environment, a be an action label, t ∈ T , and ρ be a
trajectory. Then

〈p, σ, E〉 ξ,a,ξ′−−−→ ⇒ (v0, α) is an admissible state of |[HA(〈p, σ, E〉) ]|

〈p, σ, E〉 t,ρ7−→ ⇒ (v0, α) is an admissible state of |[HA(〈p, σ, E〉) ]|

where v0 is the initial location of TJ(p) and α is any valuation such that σ = α � dom(σ).

PROOF. (Sketch) These follow from Lemma 3.5.2 and Lemma 3.5.3 (using Lemma 3.5.1)
and Theorem 5.3.1.

The following theorem states that the solution concepts of χ and the definition of hybrid
automata that is used in this chapter are closely related.

Theorem 5.3.3 ρ ∈ ΩFG(σ, C, ∅, u, t) if and only if ρ′ is a solution of the delay predicate
u in the hybrid automaton model, where ρ = ρ′ ↓ (dom(σ) ∪ Ċ).

PROOF. (Sketch) This follows from the function Ω and the semantics of a hybrid au-
tomaton.

The following theorems state that for any transition in the hybrid transition system asso-
ciated with a χ process, there is a corresponding transition in the timed transition system
of the hybrid automaton that is obtained by the translation defined in this chapter, and
vice versa. The proofs of the Theorems 5.3.4 and 5.3.5 are given in Appendices C.3 and
C.4.

According to the result of each χ deduction rule in Section 3.3 and Section 3.4 , the
environment associating to a χ process is never changed in a transition. Hence, we consider
this fact for the following theorems.
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Theorem 5.3.4 Let p and p′ be closed process terms, σ, σ′, α, α′ be valuations such that
σ = α � dom(σ) and σ′ = α′ � dom(σ′), ξ, ξ′ be extended valuations, E = (C, J, ∅, H, ∅) be
an environment, and v0 be the initial location of TJ(p). Then

1. for any non-communication action a

〈p, σ, E〉 ξ,a,ξ′−−−→ 〈X
p′
, σ′, E〉 ⇒ |[HA(〈p, σ, E〉) ]||= (v0, α)

a−→ (
v′0
v′′0
, α′)

2. 〈p, σ, E〉 ξ,isa(h,cs),ξ′−−−−−−−→ 〈X
p′
, σ′, E〉 ⇒ |[HA(〈p, σ, E〉) ]||= (v0, α)

isa(h)−−−→ (
v′0
v′′0
, α′)

∧ α′(h1) = cs1 ∧ · · · ∧ α′(hn) = csn

3. 〈p, σ, E〉 ξ,ira(h,cs,Y ),ξ′−−−−−−−−→ 〈X
p′
, σ′, E〉 ⇒

|[HA(〈p, σ, E〉) ]||= (v0, α)
ira(h,Y )−−−−→ (

v′0
v′′0
, α′)

4. 〈p, σ, E〉 ξ,ca(h,cs),ξ′−−−−−−−→ 〈X
p′
, σ′, E〉 ⇒ |[HA(〈p, σ, E〉) ]||= (v0, α)

ca(h)−−−→ (
v′0
v′′0
, α′)

∧ α′(h1) = cs1 ∧ · · · ∧ α′(hn) = csn

5. 〈p, σ, E〉 t,ρ7−→ 〈p′, σ′, E ′〉 ⇒ |[HA(〈p′, σ, E〉) ]||= ρ′ : (v0, α)
t7−→ (v0, α

′)

where v′0 is a terminating location of TJ(p), v′′0 is the initial location of TJ(p′) and
ρ′ : [0, t]→ (X 7→ Λ) is a trajectory such that ρ = ρ′ ↓ (dom(σ) ∪ Ċ).

Theorem 5.3.5 Let p be a closed process term, σ, σ′, α, α′ be valuations such that σ = α �
dom(σ) and σ′ = α′ � dom(σ′), and E = (C, J, ∅, H, ∅) be an environment. Let v0, v′0 and
v′′0 be the initial location, a terminating location and a non-terminating location of TJ(p),
respectively. Then

1. for any non-communication action a

|[HA(〈p, σ, E〉) ]||= (v0, α)
a−→ (

v′0
v′′0
, α′) ⇒ ∃ξ,ξ′ 〈p, σ, E〉

ξ,a,ξ′−−−→ 〈X
p′
, σ′, E〉

2. |[HA(〈p, σ, E〉) ]| |= (v0, α)
isa(h)−−−→ (

v′0
v′′0
, α′) ⇒

∃ξ,ξ′,cs 〈p, σ, E〉
ξ,isa(h,cs),ξ′−−−−−−−→ 〈X

p′
, σ′, E〉 ∧ α′(h1) = cs1 ∧ · · · ∧ α′(hn) = csn

3. |[HA(〈p, σ,E〉) ]||= (v0, α)
ira(h,Y )−−−−→ (

v′0
v′′0
, α′)⇒∃ξ,ξ′,cs : 〈p, σ,E〉 ξ,ira(h,cs,Y ),ξ′−−−−−−−−→ 〈X

p′
, σ′,E〉
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4. |[HA(〈p, σ, E〉) ]||= (v0, α)
ca(h)−−−→ (

v′0
v′′0
, α′)⇒

∃ξ,ξ′,cs : 〈p, σ, E〉 ξ,ca(h,cs),ξ′−−−−−−−→ 〈X
p′
, σ′, E〉 ∧ α′(h1) = cs1 ∧ · · · ∧ α′(hn) = csn

5. |[HA(〈p, σ, E〉) ]||= ρ′ : (v0, α)
t7−→ (v0, α

′)⇒ 〈p, σ, E〉 t,ρ7−→ 〈p′, σ′, E〉

where p′ is some closed process term such that v′′0 is the initial location of TJ(p′) and
ρ′ : [0, t]→ (X 7→ Λ) is a trajectory such that ρ = ρ′ ↓ (dom(σ) ∪ Ċ).

5.3.5 Example: Bottle filling system

The bottle filling system from Figure 5.8 consists of a liquid storage tank and a bottle
filling line.

Qu Qa , ca

VT , n, c, pH

QF2QF1

Figure 5.8: The bottle filling system.

The bottles are filled with liquid from the storage tank. A control system keeps the
volume V in the storage tank between 1 and 10, and the pH level (acidity) of the liquid
in the storage tank between 7 and 7.1. The liquid in the storage tank slowly becomes less
acidic (pH level increases). To correct this, a strong acid is dribbled into the storage tank
when the acidity of the liquid becomes too low (pH ≥ 7.1).

The acid and liquid supply processes are not modeled, since we consider the acid always
to be available, and we are not interested in the amount of acid that is used. The χ
specification of the bottle filling system is as follows, where symbols Qseta, Qsetu, , Vsetb,
ttr, ca, cu, and Kloss denote constants:

〈 disc tnext, Qa, Qu, QF , cont n, V, Vb , pH , c
, tnext = 0, Qa = 0, Qu = 0, QF = 0, V = 0, Vb = 2, pH = 7
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| V̇ = Qu +Qa −QF

, ṅ = cuQu + caQa − cQF −KlossV
, n = cV
, pH = − log c/1000

, V̇b = QF

‖ ∗( pH ≥ 7.1→ Qa := Qseta ; pH ≤ 7→ Qa := 0 )
‖ ∗( V ≤ 1→ Qu := Qsetu ; V ≥ 10→ Qu := 0 )
‖ ∗( [V < 2→ start !! 1 [] V ≥ 2→ start !! 2] )
‖ ∗( start ?QsetF ; Vb ≥ Vsetb → QF, tnext := 0, time + ttr

; time ≥ tnext → Vb := 0
)

〉

The storage tank and the bottle filling line are connected by means of variable QF.
Depending on the volume in the tank, the bottles are filled with a different rate.

The molar quantity and molar concentration of the acid in the storage tank are denoted
by n and c, respectively, where n = cV . The incoming flows of liquid and acid to the liquid
storage tank are denoted by Qu and Qa, respectively. The outgoing flow to the bottle filling
process is denoted by QF.

It is assumed that the liquids are incompressible, and that the volumes of the fluids
remain the same when they are mixed. In such a case, the volume V of the mixed liquid
equals the sum of its components which leads to the following equation

V̇ = Qu +Qa −QF.

Next, the mass balance (actually mol balance) for the dissolved substance is derived. Acid
comes into the tank by means of the flows Qu and Qa. Acid leaves the tank in outgoing
flow QF. Because the concentrations are in [mol/m3], they can be directly multiplied with
the flows (in [m3/s]), which leads to

ṅ = cuQu + caQa − cQF,

where cu and ca denote the concentrations of acid in the flows Qu and Qa.
The gradual reduction of the acidity of the liquid is modeled by means of a constant

Kloss, which leads to
ṅ = cuQu + caQa − cQF −KlossV .

It is assumed that the acid is completely decomposed. Taking into account that the units
of c are in [mol/m3] instead of [mol/l], the pH is given by

pH = − log c/1000.

The behavior of the pH controller model is explained as follows. Initially, the pH of
the liquid in the storage tank equals 7. It is assumed that the pH level of the incoming
liquid is 7 or more, since the acidity controller can only make the acidity of the storage
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tank increase, causing the pH to decrease. If the pH value exceeds the maximum value
(pH ≥ 7.1), the acid valve is opened (Qa := Qseta) so that acid is dribbled into the tank.
Dribbling of the acid continues until the pH value comes back at 7, where after the valve
is closed (Qa := 0). In a similar way, the volume controller tries to keep the level of the
storage tank between 5 and 10.

The behavior of the filling controller model is explained as follows. Depending on
the volume in the tank, the bottles filling rate is adjusted ([V < 2 → start !! 1 [] V ≥
2 → start !! 2]). The filled rate is communicated to the bottle filling process via channel
start .

The bottle filling process is started (QF :=QsetF) when the volume to be filled is received
from the filling controller (start ? Vsetb). When the bottle is full (V ≥ Vsetb), the valve is
closed, and the arrival time of the next bottle (tnext) is calculated QF, tnext := 0, time + ttr.
The time needed to place a new bottle under the filling nozzle is given by ttr. At the arrival
time of the next bottle, the bottle volume is reset to 0, which models the arrival of a new
bottle, and the filling process is repeated.

The χ model of the bottle filling system cannot be translated directly. Using properties
as defined in Section 3.5.4, guarded (multi-) assignments are rewritten to guarded action
predicates (b → xn := en , b → {xn} : x1 = e−1 ∧ · · · ∧ xn = e−n � τ), unguarded (multi-
) assignments are rewritten to guarded action predicates with guard true and delayable
receive process terms are rewritten in terms of the guarded undelayable receive process term
and the any delay operator (h ? xn , [true → h ?? xn]). Discrete variables are rewritten
to continuous variables, and for each discrete variable x, there is an additional equation
of the form ẋ = 0. In principle, algebraic variables may jump arbitrarily during action
transitions, while continuous variables may not jump unless specified in a action predicate.
If there are no discontinuities in the trajectories of an algebraic variable, this variable can
also be declared as a jumping continuous variable. Since there are no discontinuities in the
trajectories of the algebraic variables pH and c, and these variables do not jump during
the action transitions, they can be declared as (non-jumping) continuous variables. This
results in the following χ specification:

〈 cont tnext, Qa, Qu, QF, n, V, Vb, pH , c
, tnext = 0, Qa = 0, Qu = 0, QF = 0, V = 0, Vb = 2, pH = 7

| V̇ = Qu +Qa −QF

∧ ṅ = cuQu + caQa − cQF −KlossV
∧ n = cV
∧ pH = − log c/1000

∧ V̇b = QF

∧ṫnext = 0 ∧ Q̇a = 0 ∧ Q̇u = 0 ∧ Q̇F = 0
‖ ∗( pH ≥ 7.1→ {Qa} : Qa = Qseta ; pH ≤ 7→ {Qa} : Qa = 0 )
‖ ∗( V ≤ 1→ {Qu} : Qu = Qsetu ; V ≥ 10→ {Qu} : Qu = 0 )
‖ ∗( [V < 2→ start !! 1 [] V ≥ 2→ start !! 2] )
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‖ ∗( [true→ start ??QF]; Vb ≥ Vsetb → {QF, tnext} : QF = 0 ∧ tnext = time + tr
; time ≥ tnext → {Vb} : Vb = 0
)

〉

Hybrid automaton of the bottle filling system The hybrid automaton of the complete bottle
filling system consists of 16 reachable locations and 16 edges connecting them. For the
purpose of illustration, only the hybrid automaton fragments of the subcomponents (pH ,
volume and filling controllers, the bottle filling process) are shown instead of their parallel
composition. In the figures, a graphical notation similar to the notation for hybrid au-
tomata as defined in [HHWT95] is used. In this notation, the unreachable locations and
edges are omitted, the initial location of the hybrid automaton fragment is represented
as a circle with an incoming unlabelled arrow, terminating locations are represented as
double circles, and the double edges represent urgent edges. In the examples below, the
translations of process terms to hybrid automata fragments are given for the case J = ∅.

The hybrid automaton fragments of the pH controller and the volume controller are
shown in Figures 5.9 and 5.10, respectively. Figures 5.11 and 5.12 show the hybrid

v0

flow : true
inv : true

v2

flow : true
inv : true

e0,
pH ≥ 7.1,

({Qa} ∪Xaux, Q
′
a = Qseta),

τ

e1,
pH ≤ 7,

({Qa} ∪Xaux, Q
′
a = 0),

τ
Figure 5.9: Hybrid automaton fragment of the pH controller.

automaton fragments of the filling controller and the bottle filling process. The hybrid
automaton fragment of the parallel composition of the filling controller and the filling line
is shown in Figure 5.13, where EQ denotes V̇ = Qu +Qa−QF ∧ ṅ = cuQu + caQa− cQF−
KlossV ∧ n = cV ∧ pH = − log c/1000 ∧ V̇b = QF ∧ ṫnext = 0 ∧ Q̇a = 0 ∧ Q̇u = 0 ∧ Q̇F = 0
, EQDC denotes dV = Qu + Qa − QF ∧ dn = cuQu + caQa − cQF − KlossV ∧ n = cV ∧
pH = − log c/1000 ∧ dV b = QF ∧ dtnext = 0 ∧ dQa = 0 ∧ dQu = 0 ∧ dQF = 0, and Xaux

denotes {dV , dn, pH , dV b, dtnext, dQa, dQu, dQF, start1}.

94



5.3. Translation of Chi to hybrid automata

v4

flow : true
inv : true

v6

flow : true
inv : true

e2,
V ≤ 1,

({Qu} ∪Xaux, Q
′
u = Qsetu),

τ

e3,
V ≥ 10,

({Qu} ∪Xaux, Q
′
u = 0),

τ
Figure 5.10: Hybrid automaton fragment of the volume controller.

alt0

flow : true
inv : true

e4a,
V < 2,

(Xaux, start1
′ = 1),

isa(start)

e5a,
V ≥ 2,

(Xaux, start1
′ = 2),

isa(start)Figure 5.11: Hybrid automaton fragment of fill controller.

v12

flow : true
inv : true

v16

flow : true
inv : true

v18

flow : true
inv : true

e6,
true,

({QF} ∪Xaux, Q
′
F = start ′1),

ira(start , QF)

e8,
Vb ≥ Vsetb,

({QF, tnext} ∪Xaux,
Q′F = 0 ∧ t′next = time + tr),

τ

e9,
time ≥ tnext,

({Vb} ∪Xaux, V
′

b = 0),
τ

Figure 5.12: Hybrid automaton fragment of filling line.
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alt0v12

flow : EQ
inv : EQDC

alt0v16

flow : EQ
inv : EQDC

alt0v18

flow : EQ
inv : EQDC

(e4a, e6),
V < 2,

({QF} ∪Xaux, start ′1 = 1 ∧Q′F = start ′1),
ca(start)

(e5a, e6),
V ≥ 2,

({QF} ∪Xaux, start ′1 = 2 ∧Q′F = start ′1),
ca(start)

(alt0, e8),
Vb ≥ Vsetb,

({QF, tnext} ∪Xaux,
Q′F = 0 ∧ t′next = time + tr),

τ

(alt0, e9),
time ≥ tnext,

({Vb} ∪Xaux, V
′

b = 0),
τ

Figure 5.13: Hybrid automaton fragment of parallel composition of fill controller and filling
line.
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CHAPTER

SIX

Tool support

In this chapter, tools developed for the hybrid χ formalism are described. We do not
describe the implementation of the χ toolset but confine ourselves to its theoretical foun-
dations and its architecture. At a global level, the χ toolset consists of the following
components:

• Stepper The stepper computes the semantics of a χ process as defined in Chapter 3.
That is, given a process, the stepper computes the set of possible steps (see Section 6.1
for the definition of steps) and transitions.

• Simulator The simulator provides functionality to simulate χ specifications.

• Chi2HA translator The Chi2HA translator implements the translation function from
Section 5.3.3.

The χ toolset is integrated with third-party tools for

• computation of solutions of action predicates and delay predicates,

• visualization of simulation results,

• visualization of the hybrid automata that are obtained using the Chi2HA translator,

• verification of properties of the hybrid automata obtained using the Chi2HA trans-
lator, and thus the translated χ specifications.

This chapter is organized as follows. In Section 6.1, the stepper is formally defined. The
symbolic simulator is described in Section 6.2, and in Section 6.3 the Chi2HA translator
is described.

6.1 Formal definition of stepper

The stepper computes the semantics of a χ process as defined in Chapter 3. That is, given
a process, the stepper computes the set of possible steps. The stepper consists of three
main functions: function S which returns a set of steps given a χ process, function Tr
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which returns a set of transitions given a step, and function Tr′ which returns a reduced
set of transitions.

Steps are generalised transitions. Analogous to transitions, there are two types of steps:

• action steps,

• time steps.

An action step represents zero or more action transitions and a time step represents zero or
more time transitions. An action step (p,σ,E, cp,Wp, rp, lap,C

b
p,C

a
p , p
′) consists of the χ pro-

cess itself (p, σ,E), the condition (guards) cp that should hold, the set of variables Wp that
may change, the predicate rp describing the discrete updates, the performed action label lap,
the consistency requirements before the action Cb

p, the consistency requirements after the

action Ca
p , and the resulting process term p′. A time step (p, σ, E, c

[0]
p , c

(0,t)
p , c

[t]
p , c

[0,t]
p , cp, p

′)

consist of the χ process itself (p, σ,E), the predicate c
[0]
p that should hold at the startpoint

of the time transitions, the predicate c
(0,t)
p that should hold at all time points between

the start- and endpoint of the time transitions, the predicate c
[t]
p that should hold at the

endpoint of the time transitions, the predicate c
[0,t]
p that should hold at all timepoints (in-

cluding the start- and endpoint) of the time transitions, the predicate cp that should hold
at least at one timepoint of the time transition, and the resulting process term p′.

Function Tr returns the set of transitions given a χ process. In general, the set of
transitions of a χ specification is infinite. For instance, action predicate {x} : true � τ
has an infinite number of solutions for variable x (assuming that the type of x contains an
infinite number of elements). The same holds for delay predicates that can have an infinite
number of solutions. The number of time transitions a χ process can have might also be
infinite: if a process can delay for t time units, then, for every 0 ≤ t′ ≤ t, it can delay for t′

time units too. Since the time domain of χ is the set of real numbers, there are infinitely
many time transitions.

Function Tr′ returns a reduced set of transitions. Instead of returning all time transi-
tions of a time step, for each trajectory only the time transition with longest duration is
returned. Although this reduced set of transitions can still be infinite, in practice, this is
rarely the case.

The subset χsub of the χ language for which the stepper functions are defined consists
of processes 〈p, σ, (C, J, L,H,R)〉, where p ∈ PT. Here, PT is defined by:

PT ::= W : r � la | h !! en | h ?? xn | u | δ | ⊥ | [PT]
| uy PT | PT ; PT | b→ PT | PT [] PT | PT ‖ PT

| ∂A(PT) | υH (PT) | X | ιJ+(PT)

The syntax of the χ processes is restricted such that there are no scope operators, and
the set A of actions to be encapsulated is restricted as follows: ∀x,y∈Λ∗,h∈H isa(h, [x]) ∈
A =⇒ isa(h, [y]) ∈ A and ∀x,y∈Λ∗,h∈H,vset⊆P(V) ira(h, [x], vset) ∈ A =⇒ ira(h, [y], vset) ∈ A.
The intuition of this restriction is that action encapsulation is based on channel names and
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not on the values sent or received. Finally, the use of recursion is restricted to guarded
recursion [Mil80, Mil82].

An implementation of the stepper functions may impose additional restrictions on the
χsub syntax. For instance, for an implementation of function Tr′ a (symbolic) solver is
needed to compute the solutions of action predicates, the solution of delay predicates,
and the maximum duration of a time transition. Depending on the solver that is used,
additional restrictions may be required.

6.1.1 Function S
Function S returns the set of steps given a χsub process. It is defined as S(p, σ, E) =
{(p, σ,E, fa)|fa ∈ Sa(p,E)} ∪ {(p, σ,E, fd)|fd ∈ Sd(p,E)}. Given a χ process, functions Sa

and Sd return the action step fragments and the time step fragments, respectively. The
(only) difference between an action (time) step fragment and an action (time) step is that
in the latter the χsub process (p, σ, E) is included. Step fragments are introduced in order
to increase the readability of the definitions of functions Sa and Sd which are defined below.

Function Sa Function Sa returns a set of action step fragments of a χsub process. Formally,
it is defined as follows.

Sa(〈W : r � la, E〉) = {(true,W, r, la, true, true,X)}
Sa(〈h !! en, E〉) = {(true, ∅, true, isa(h, [en]), true, true,X)}
Sa(〈h ?? xn, E〉) = {(true, {xn}, true, ira(h, [xn])), true, true,X)}
Sa(〈u,E〉 = ∅
Sa(〈δ, E〉 = ∅
Sa(〈⊥, E〉 = ∅
Sa(〈[p], E〉) = Sa(〈p, E〉)
Sa(〈uy p, E〉) = {(u ∧ cp,Wp, rp, lap, C

b
p, C

a
p , p

′)
|(cp,Wp, rp, lap, C

b
p, C

a
p , p

′) ∈ Sa(〈p, E〉)}
Sa(〈p; q, E〉) = {(cp,Wp, rp, lap, C

b
p, C

a
p ∧ Cc(q, E), q)

|(cp,Wp, rp, lap, C
b
p, C

a
p ,X) ∈ Sa(〈p, E〉)}

∪ {(cp,Wp, rp, lap, C
b
p, C

a
p , p

′ ; q)
|(cp,Wp, rp, lap, C

b
p, C

a
p , p

′) ∈ Sa(〈p, E〉), p′ 6= X}
Sa(〈b→ p, E〉) = {(b ∧ cp,Wp, rp, lap, C

b
p, C

a
p , p

′)
|(cp,Wp, rp, lap, C

b
p, C

a
p , p

′) ∈ Sa(〈p, E〉)}
Sa(〈p [] q, E〉) = {(cp,Wp, rp, lap, C

b
p ∧ Cc(q, E), Ca

p , p
′)

|(cp,Wp, rp, lap, C
b
p, C

a
p , p

′) ∈ Sa(〈p, E〉)}
∪ {cq,Wq, rq, laq, C

b
q ∧ Cc(p, E), Ca

q , q
′)

|(cq,Wq, rq, laq, C
b
q , C

a
q , q
′) ∈ Sa(〈q, E〉)}
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Sa(〈p ‖ q, E〉) = {(cp,Wp, rp, lap, C
b
p ∧ Cc(q, E), Ca

p ∧ Cc(q, E),
q

p′ ‖ q )

|(cp,Wp, rp, lap, C
b
p, C

a
p ,
X
p′

) ∈ Sa(〈p, E〉), p′ 6= X}

∪ {(cq,Wq, rq, laq, C
b
q ∧ Cc(p, E), Ca

q ∧ Cc(p, E),
p

p ‖ q′ )

|(cq,Wq, rq, laq, C
b
q , C

a
q ,
X
q′

) ∈ Sa(〈q, E〉), q′ 6= X}

∪ {(cp ∧ cq, {xn}, rp ∧ rq ∧ xn = e−n , ca(h, [en]), Cb
p ∧ Cb

q , C
a
p ∧ Ca

q ,

X
p′

q′

p′ ‖ q′
)

|(cp,Wp, rp, isa(h, [en]), Cb
p, C

a
p ,

X
p′

X
p′

) ∈ Sa(〈p, (C, J ∪ {xn}, L,H,R)〉)

, (cq,Wq, rq, ira(h, [xn]), Cb
q , C

a
q ,

X
X
q′

q′

) ∈ Sa(〈q, E〉)

, p′ 6= X, q′ 6= X}

∪ {(cp ∧ cq, {xn}, rp ∧ rq ∧ xn = e−n , ca(h, [en]), Cb
p ∧ Cb

q , C
a
p ∧ Ca

q ,

X
p′

q′

q′ ‖ p′
)

|(cp,Wp, rp, ira(h, [xn]), Cb
p, C

a
p ,

X
p′

X
p′

) ∈ Sa(〈p, E〉)

, (cq,Wq, rq, isa(h, [en]), Cb
q , C

a
q ,

X
X
q′

q′

) ∈ Sa(〈q, (C, J ∪ {xn}, L,H,R)〉)

, p′ 6= X, q′ 6= X}

Sa(〈∂A(p), E〉) = {(cp,Wp, rp, lap, C
b
p, C

a
p ,
X

∂A(p′)
)

|(cp,Wp, rp, lap, C
b
p, C

a
p ,
X
p′

) ∈ Sa(〈p, E〉), lap 6∈ A, p′ 6= X}

Sa(〈υH (p), E〉) = {(cp,Wp, rp, lap, C
b
p, C

a
p ,

X
υH (p′)

)

|(cp,Wp, rp, lap, C
b
p, C

a
p ,
X
p′

) ∈ Sa(〈p, E〉), p′ 6= X}

Sa(〈X, (C, J, L,H,R)〉) = Sa(〈R(X), (C, J, L,H,R)〉)
Sa(〈ιJ+(p), (C, J, L,H,R)〉) = Sa(〈p, (C, J ∪ J +, L,H,R)〉)
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Notation [en] denotes the list of expressions [e1, . . . , en] for n ≥ 1. In case that n equals 0,
[en] denotes an empty list. Notation xn = e−n denotes the predicate x1 = e−1 ∧ · · · ∧xn = e−n .

Function Cc returns the consistency predicate which has to be satisfied in order for p
to be consistent. Formally, it is defined as follows.

Cc(W : r � la, E) = true
Cc(h !! en, E) = true
Cc(h ?? xn, E) = true
Cc(u,E) = u
Cc(δ, E) = true
Cc(⊥, E) = false
Cc([p], E) = true
Cc(uy p, E) = u ∧ Cc(p, E)
Cc(p; q, E) = Cc(p, E)
Cc(b→ p, E) = (b ∧ Cc(p, E)) ∨ ¬b
Cc(p [] q, E) = Cc(p, E) ∧ Cc(q, E)
Cc(p ‖ q, E) = Cc(p, E) ∧ Cc(q, E)
Cc(∂A(p), E) = Cc(p, E)
Cc(υH (p), E) = Cc(p, E)
Cc(X, (C, J, L,H,R)) = Cc(R(X), (C, J, L,H,R))
Cc(ιJ+(p), (C, J, L,H,R)) = Cc(p, (C, J ∪ J +, L,H,R))

Theorem 6.1.1 Let p ∈ PT, σ be a valuation, ξ be an extended valuation such that σ =
ξ � dom(σ), and E be an environment. Then

ξ |= Cc(p, E)⇒ 〈p, σ, E〉 ξ
 .

PROOF. See Appendix D.2.

As a conjecture, we have that 〈p, σ, E〉 ξ
 ⇒ ξ |= Cc(p, E).

For the definition of the Sa function, in addition to the propositions as presented in
Section 3.5, the following two lemmas are used.

The first lemma shows that regarding termination and action transitions, the behavior
of the guard operator and the signal emission operator is the same.

Lemma 6.1.1 Let p ∈ P , b be a guard, σ, σ′ be valuations, ξ, ξ′ be extended valuations, a
be an action label and E,E ′ be environments. Then

〈b→ p, σ, E〉 ξ,a,ξ′−−−→ 〈X
p′
, σ′, E ′〉 ⇐⇒ 〈by p, σ, E〉 ξ,a,ξ′−−−→ 〈X

p′
, σ′, E ′〉.

PROOF. Since the termination and action transition rules defined for the guard opeartor
and the signal emission operator are the same, the lemma holds trivially.
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The second lemma shows that, for termination and action transitions, nesting of guards
is the same as the conjuction of guards.

Lemma 6.1.2 Let p ∈ P , b, b′ be guards, σ, σ′ be valuations, ξ, ξ′ be extended valuations,
a be an action label and E,E ′ be environments. Then

〈b→ b′ → p, σ, E〉 ξ,a,ξ′−−−→ 〈X
p′
, σ′, E ′〉 ⇐⇒ 〈b ∧ b′ → p, σ, E〉 ξ,a,ξ′−−−→ 〈X

p′
, σ′, E ′〉.

PROOF. Since the termination and action transition rules defined for the guard opera-
tor and the signal emission operator are the same, it follows directly from Lemma B.2.4
(conditions 1 – 3).

Function Sd Function Sd returns a set of time step fragments of a χsub process. Formally,
it is defined as follows.
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6.1. Formal definition of stepper

Sd(〈W : r � la, E〉) = ∅
Sd(〈h !! en, E〉) = ∅
Sd(〈h ?? xn, E〉) = ∅
Sd(〈u,E〉 = {(u, u, u, u, true, u)}
Sd(〈δ, E〉 = ∅
Sd(〈⊥, E〉 = ∅
Sd(〈[p], E〉) = {(true, true, true, true, true, [p])}
Sd(〈uy p, E〉) = {(u ∧ c[0]

p , c
(0,t)
p , c

[t]
p , c

[0,t]
p , cp, p

′)

|(c[0]
p , c

(0,t)
p , c

[t]
p , c

[0,t]
p , cp, p

′) ∈ Sd(p, E)}
Sd(〈p; q, E〉) = {(c[0]

p , c
(0,t)
p , c

[t]
p , c

[0,t]
p , cp, p

′ ; q)

|(c[0]
p , c

(0,t)
p , c

[t]
p , c

[0,t]
p , cp, p

′) ∈ Sd(p, E)}
Sd(〈b→ p, E〉) = {(b ∧ c[0]

p , b ∧ c(0,t)
p , b ∧ c[t]

p , b ∧ c[0,t]
p , cp, b→ p′)

|(c[0]
p , c

(0,t)
p , c

[t]
p , c

[0,t]
p , cp, p

′) ∈ Sd(p, E)}
∪ {(b =⇒ c

[0]
p ,¬b, b =⇒ Cc(〈p, E〉), true,¬b, b→ p)

|(c[0]
p , c

(0,t)
p , c

[t]
p , c

[0,t]
p , cp, p

′) ∈ Sd(p, E)}
Sd(〈p [] q, E〉) = {(c[0]

p ∧ c[0]
q , c

(0,t)
p ∧ c(0,t)

q , c
[t]
p ∧ c[t]

q , c
[0,t]
p ∧ c[0,t]

q , cp ∧ cq, p′ [] q′)
|(c[0]

p , c
(0,t)
p , c

[t]
p , c

[0,t]
p , cp, p

′) ∈ Sd(p, E)

, (c
[0]
q , c

(0,t)
q , c

[t]
q , c

[0,t]
q , cq, q

′) ∈ Sd(q, E)}
Sd(〈p ‖ q, E〉) = {(c[0]

p ∧ c[0]
q , c

(0,t)
p ∧ c(0,t)

q , c
[t]
p ∧ c[t]

q , c
[0,t]
p ∧ c[0,t]

q , cp ∧ cq, p′ ‖ q′)
|(c[0]

p , c
(0,t)
p , c

[t]
p , c

[0,t]
p , cp, p

′) ∈ Sd(p, E)

, (c
[0]
q , c

(0,t)
q , c

[t]
q , c

[0,t]
q , cq, q

′) ∈ Sd(q, E)}
Sd(〈∂A(p), E〉) = {(c[0]

p , c
(0,t)
p , c

[t]
p , c

[0,t]
p , cp, ∂A(p′))

|(c[0]
p , c

(0,t)
p , c

[t]
p , c

[0,t]
p , cp, p

′) ∈ Sd(p, E)}
Sd(〈υH (p), E〉) = {(c[0]

p ∧ ¬cu
p, c

(0,t)
p ∧ ¬cu

p, c
[t]
p , c

[0,t]
p , cp, υH (p′))

|(c[0]
p , c

(0,t)
p , c

[t]
p , c

[0,t]
p , cp, p

′) ∈ Sd(p, E)}
Sd(〈X, (C, J, L,H,R)〉) = Sd(〈R(X), (C, J, L,H,R)〉)
Sd(〈ιJ+(p), (C, J, L,H,R)〉) = {(c[0]

p , c
(0,t)
p , c

[t]
p , c

[0,t]
p , cp, ιJ+(p′))

|(c[0]
p , c

(0,t)
p , c

[t]
p , c

[0,t]
p , cp, p

′) ∈ Sd(〈p, (C, J ∪ J +, L,H,R)〉)}

Here, cu
p is defined as cu

p =∨
c : c ∈ {cp | (c

[0]
p , c

(0,t)
p , c

[t]
p , c

[0,t]
p , c′p, ps) ∈ Sd(p, E),

(c
[0]
ps , c

(0,t)
ps , c

[t]
ps , c

[0,t]
ps , cps , p

′) ∈ Sd(ps, E),
(cp,Wp, rp, ca(h, [en]), Cb

p, C
a
p , p

′) ∈ Sa(〈ps, E〉)}

c,

where [en] denotes a list of expressions, and h denotes a channel.

6.1.2 Transition functions

Function Tr returns a set of transitions given a χsub process. It is defined as Tr = Tra ∪Trd.
Function Tra is defined as follows.
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Tra(p, σ, (C, J, L,H,R)) =

{〈p, σ, (C, J, L,H,R)〉
ξ,Mtr(ξ,lap,ξ

′),ξ′

−−−−−−−−−→ 〈p′, ξ′σ, (C, J, L,H,R)〉
|(cp,Wp, rp, lap, C

b
p, C

a
p , p

′) ∈ Sa(〈p, E〉)
, ξ = σ ∪ ξĊL, ξ |= cp, ξ

′ ∈ Ξ(σ,C, J ∪Wp, L), ξ− ∪ ξ′ |= rp, ξ |= Cb
p, ξ
′ |= Ca

p , }

FunctionMtr is defined as follows, where [en] denotes a list of expressions, [cn] denotes
a list of values, [xn] denotes a list of variables, and h denotes a channel:

Mtr(ξ, la, ξ
′) =


isa(h, [ξ(en)]) if la ≡ isa(h, [en])

ira(h, [ξ′(xn)], {xn}) if la ≡ ira(h, [xn])

ca(h, [ξ(en)]) if la ≡ ca(h, [en])

la otherwise.
Function Trd is defined as follows.

Trd(p, σ, (C, J, L,H,R)) =

{〈p, σ, (C, J, L,H,R)〉 t,ρ7−→ 〈p′, ρσ, (C, J, L,H,R)〉
|(c[0]

p , c
(0,t)
p , c

[t]
p , c

[0,t]
p , cp, p

′) ∈ Sd(〈p, E〉)
, ρ ∈ ΩFG(σ,C, L, c

[0,t]
p , t), ρ(0) |= c

[0]
p ,∀s∈(0,t)ρ(s) |= c

(0,t)
p , ρ(t) |= c

[t]
p ,∃s∈[0,t]ρ(s) |= cp}

Function Tr′ is defined as Tr′ = Tra ∪ Tr′d, where function Tr′d is defined as follows.

Tr′d(p, σ, (C, J, L,H,R)) =

{〈p, σ, (C, J, L,H,R)〉 tmax,ρ7−→ 〈p′, ρσ, (C, J, L,H,R)〉
|〈p, σ, (C, J, L,H,R)〉 tmax,ρ7−→ 〈p′, ρσ, (C, J, L,H,R)〉 ∈ Trd(p, σ, (C, J, L,H,R))

,@t>tmax,ρ′ ( 〈p, σ, (C, J, L,H,R)〉 t,ρ′7−→ 〈p′′, ρ′σ, (C, J, L,H,R)〉 ∈ Trd(p, σ, (C, J, L,H,R))
, ρ′ � [0, tmax] = ρ)

}.

Theorem 6.1.2 Let p, p′ ∈ PT, σ, σ′ be valuations, ξ, ξ′ be extended valuations, a be an
action label, and E be an environment. Then

〈p, σ, E〉 ξ,a,ξ′−−−→ 〈X
p′
, σ′, E〉 ∈ Tra(p, σ, E)⇒ 〈p, σ, E〉 ξ,a,ξ′−−−→ 〈X

p′
, σ′, E〉.

PROOF. See Appendix D.3.

As a conjecture, we have that 〈p, σ,E〉 ξ,a,ξ′−−−→ 〈X
p′
, σ′, E〉 ⇒ 〈p, σ,E〉 ξ,a,ξ′−−−→ 〈X

p′
, σ′, E〉 ∈

Tra(p, σ, E).

Conjecture 6.1.1 Let p, p′ ∈ PT, σ, σ′ be valuations, t ∈ T , ρ be a trajectory, and E be
an environment. Then

〈p, σ, E〉 t,ρ7−→ 〈p′, σ′, E〉 ∈ Trd(p, σ, E)⇒ 〈p, σ, E〉 t,ρ7−→ 〈p′, σ′, E〉.
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PROOF. See Appendix D.4.

As another conjecture, we have that 〈p, σ,E〉 t,ρ7−→ 〈p′, σ′,E〉 ⇒ 〈p, σ,E〉 t,ρ7−→ 〈p′, σ′,E〉 ∈
Trd(p, σ, E).

6.2 Simulator

Simulation is a powerful method to analyse the dynamic behavior of a model. In this sec-
tion, a simulator is defined which is mainly based on the stepper functions from Section 6.1.
Using pseudocode, the simulator is defined as follows.

Simulate(〈p, σ, E〉) =
while p 6= X do

transitions := Tr′(〈p, σ, E〉)
if transitions = ∅ then

return deadlock
else

transition := pick(transitions)
〈p, σ, E〉 := GetState(transition)

endif
endwhile
return simulation ended

Given a χsub process 〈ps,σ,E〉, function Tr′ returns the set of possible transitions transitions .
The process deadlocks (return deadlock) if the set of transitions is empty. Otherwise, a
transition (transition) is selected (non-deterministically) from the set of transitions. The
resulting state of the transition is obtained by means of function GetState. If the process is
terminated (p = X), the simulation is succesfully terminated (return simulation ended).

6.3 Chi2HA translator

The translation from χ to hybrid automata with urgency is formally defined in Section 5.3.
Since a manual translation of a χ specification is quite laborous and therefore error-prone,
this translation has been automated.

For the purpose of visualization of the hybrid automata obtained by this translation and
automatic verification of some properties of them using tools based on hybrid automata,
codegenerators have been developed.

6.4 Third party tools

The χ toolset is designed in such a way that it can be integrated with third party tools. The
main reason for this is to reuse existing applications and libraries. For the implementation
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of the tools, the Python [Pyt05] programming language has been used.
Currently, the χ tools are integrated with four different tools: Maple, Gnuplot, Graphviz,

and PHAver.
For the computation of solutions of action predicates and delay predicates, and the max-

imum duration of time transitions, the symbolic solving capabilities of the mathematical
package Maple [Map] are used.

For the vizualization of simulation results, in particular the trajectories of time tran-
sitions, the portable command-line driven interactive data and function plotting utility
Gnuplot [Gnu] is used.

For visualization of the hybrid transition systems obtained by means of the simula-
tor and the hybrid automata that are obtained by means of the Chi2HA translator, the
Graphviz tools are used. Graphviz [EN00] is an open toolkit for graph visualization. It is
developed at AT&T Labs-Research. The Graphviz tools use a common language to specify
attributed graphs. This language is called Libgraph, but is probably better known as the
dot format, after its best-known application. Graphviz provides tools for graph filtering
and graph rendering. The filtering tools can be batch-oriented as well as interactive. For
our application, visualization of hybrid automata, we only need a small part of the func-
tionality offered by Graphviz. For instance, in the hybrid automaton definition there are
only tree types of nodes/locations(initial, termination and normal) and two different types
of edges (urgent and non-urgent) in our graphs.

For verification purposes, PHAVer (Polyhedral Hybrid Automaton Verifyer) [Fre05] is
used (for details we refer to Section 7.2). PHAVer is a tool for analyzing linear hybrid
I/O-automata.
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CHAPTER

SEVEN

Analysis of hybrid systems: Case studies

7.1 Case study using simulator

Figure 7.1 shows a bottle filling line taken from [?]. It consists of a storage tank that is
continuously filled with a flow Qin, a conveyor belt that supplies empty bottles, and a valve
that is opened when an empty bottle is below the filling nozzle, and is closed when the
bottle is full. When a bottle has been filled, the conveyor starts moving to put the next
bottle under the filling nozzle, which takes one unit of time. When the storage tank is not
empty, the bottle filling flow Q equals Qset. When the storage tank is empty, the bottle
filling flow equals the flow Qin. We assume Qin < Qset.

Figure 7.1: Filling Line

The model is defined below. The constants VT0, VTmax, and VBmax define the initial
volume of the storage tank, and the maximum volume of the storage tank, and the filling
volume of the bottles, respectively. The constants Qin, and Qset, define the value of the
flow that is used to fill the storage tank, and the maximum value of the bottle filling flow
Q.

〈 disc x,Q
, cont VT, VB

, x = 0.0, Q = 0.0, VT = VT0, VB = 0.0
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, closed 7→ V̇T = Qin, VT ≤ VTmax [] open ?Q; opened

, opened 7→ ((V̇T = Qin −Q, VT ≥ 0.0 ‖ VT ≤ VTmax)
[] close ?Q; closed
[] [{Q} : Q = 1.5� c]; openedempty
)

, openedempty 7→ (V̇T = 0.0, VT = 0.0
[] close ?Q; closed
)

, moving 7→ ({VB, x} : VB = 0.0, x = time + 1.0� a
; time ≥ x→ skip; open !Qset ; filling
)

, filling 7→ (VB ≥ VBmax → close ! 0.0; moving)

| closed ‖ moving ‖ V̇B = Q
〉

The storage tank is modelled by means of recursion variables / modes: closed , opened ,
and openedempty that correspond to the valve being open, the valve being closed, and
the valve being opened while the storage tank is empty. In the mode opened , the storage
tank is usually not empty. When the storage tank is empty in mode opened , the delayable
skip statement [skip] may be executed causing the next mode to be openedempty . Due to
the consistent equation semantics, the skip statement can be executed only if the delay
predicate in the next mode openedempty holds. This means, among others, that VT = 0.0
must hold. Therefore, the transition to mode openedempty can be taken only when the
storage tank is empty. The initial mode is closed .

The conveyor is modelled by means of recursion variables / modes moving and filling .
In mode moving , the conveyor supplies an empty bottle in 1 unit of time ({VB, x} : VB =
0.0, x = time + 1.0 � a; time ≥ x → skip. Then it synchronizes with the storage tank
process by means of the send statement open!Qset, and it proceeds in mode filling . When
the bottle is filled in mode filling (VB ≥ VBmax), the process synchronizes with the storage
tank to close the valve and returns to mode moving. The initial mode is moving . Figure
7.2 shows the result of a simulation run of the model using the following values for the
constants: VT0 = 5.0, VBmax = 10.0, VTmax = 20.0, Qin = 1.5, and Qset = 3.0,

7.2 Analysis of χsub specifications using PHAVer

Hybrid systems can be modeled as hybrid automata and verified using reachability analysis
techniques. Over the past years, various hybrid systems techniques (hybrid automata
based) and tools (e.g. HyTech [HHWT97], PHAVer [Fre05] and d/dt [ABDM00]) have
been successfully introduced into the verification of hybrid systems.

PHAVer (Polyhedral Hybrid Automaton Verifyer) is a tool for analyzing linear hy-
brid I/O-automata (i.e., a sub-class of hybrid I/O-automata and see the definition in
Section 7.2.2) with the following characteristics:
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Figure 7.2: Simulation results of model FillingLine.

1. exact and robust arithmetic based on the Parma Polyhedra Library,

2. on-the-fly overapproximation of piecewise affine dynamics,

3. conservative limiting of bits and constraints in polyhedral computations,

4. support for compositional and assume-guarantee reasoning.

PHAVer appears to be well suited for verifying χsub specifications. In Section 5.3, a
class of hybrid automata has been defined that is expressive enough to be used to give the
interpretations of χsub in hybrid automata. This class of hybrid automata is closely related
to various classes of hybrid automata, e.g., hybrid I/O-automata [LSV03]. This class of
hybrid automata is in the following referred to as HAu, where the u represents urgency. A
formal translation of χsub to hybrid automata HAu has been defined in Section 5.3. This
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translation enables verification of χsub specifications using existing hybrid automata based
verification tools. Currently, we use PHAVer as an verification engine for χsub specifications.

7.2.1 Hybrid I/O-automata

In this section, the syntax and semantics of hybrid I/O-automata (based on [FHK04,
Fre04a]) are given.

In the definition of hybrid I/O-automata, some functions and notations may be used.
Given a set Var of variables, a valuation β ∈ Var→ R maps a real number to each variable.
Let V(Var) denote the set of valuations over Var. An activity is a function f ∈ R≥0 → V
in C∞ (i.e. a function is C∞ if the n-th derivative exists and is continuous for all n) and
describes the change of valuations over time. Let act(Var) denote the set of activities over
Var. Let f + t for f ∈ act(Var) and t ∈ R≥0 be defined by (f + t)(d) = f(d+ t), d ∈ R≥0.
A set S ⊆ act(Var) of activities is time invariant if for all f ∈ S, t ∈ R≥0 : f + t ∈ S.

A hybrid I/O-automaton [Fre04a] HIOA = (Loc,VarS,VarI,VarO,Lab,→,Act, Inv, Init)
consists of the following components:

• A finite set Loc of locations.

• Finite and disjoint sets of state and input variables, VarS and VarI, and of output
variables VarO ⊆ VarS, and let Var = VarS ∪ VarI.

• A finite set Lab of labels.

• A finite set of discrete transitions→⊆ Loc×Lab× 2V(Var)×V(Var)×Loc. A transition
(l, a, µ, l′) ∈→ is also written as l

a,µ−→ H l′.

• A mapping (a labelling function) Act : Loc→ 2act(Var) from locations to time invariant
sets of activities.

• A mapping Inv : Loc→ 2V(Var) from locations to sets of valuations.

• A set Init ⊆ Loc× V(Var) of initial states.

The semantics of a hybrid I/O-automaton is defined in terms of a timed transition sys-
tem. Let HIOA = (Loc,VarS,VarI,VarO,Lab,→,Act, Inv, Init) be a hybrid I/O-automaton.
A state of HIOA is a pair (l, v) ∈ Loc × V(Var) of a location and a valuation. The tran-
sition system interpretation of HIOA, written |[ HIOA ]|, is the timed transition system
(Loc,VarS,VarI,VarO,Σ

′,→LH , Init), where Σ′ = Lab ∪ R≥0 ∪ {ε} and →LH is the union

of
a−→ , for a ∈ Σ′;

• (l, v)
a−→ LH (l′, v′) iff l

a,µ−→ H l′, (v, v′) ∈ µ, v ∈ Inv(l), v′ ∈ Inv(l′) (discrete transitions),

• (l, v)
t−→ LH (l′, v′) iff l = l′ and there exists f ∈ Act(l), f(0) = v, f(t) = v′, and ∀t′,

0 ≤ t′ ≤ t : f(t′) ∈ Inv(l) (timed transitions),
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• (l, v)
ε−→ LH (l′, v′) iff l = l′, v � VarS = v′ � VarS, and v, v′ ∈ Inv(l) (environment

transitions).

In this transition system, three kinds of transition relations are defined. They are
differentiated by their label, the time elapse involved, and a special label ε that represents
changes in the input variables by the environment.

7.2.2 Relating hybrid automata HAu to hybrid I/O-automata

This section outlines the main differences (in both syntax and semantics) between hybrid
automata HAu and hybrid I/O-automata.

There are several syntactical and semantical differences between hybrid automata HAu

and hybrid I/O-automata. They can be summarized as follows:

• Some syntactical differences involve the definition of the invariants, initial condi-
tions, etc. In the definition of hybrid automata HAu, we introduce predicates (e.g.
for invariants and initial conditions) into the locations of automata to restrict the
behaviors of locations. Predicates are introduced as symbolic representations of sets
of valuations. For instance, we consider predicate x > 5 as a symbolic representation
of an infinite set of valuations {x 7→ 6.5, x 7→ 7.1, x 7→ 8.3, . . .}. On the other hand,
in the definition of hybrid I/O-automata, sets of valuations are explicitly introduced
into the locations of automata to restrict the behaviors of locations.

• Urgent transitions are defined in the semantics of hybrid automata HAu, but they
are not defined in the semantics of hybrid I/O-automata.

• Action transitions can also be guarded in the semantics of hybrid automata HAu.
This feature is not explicitly defined in the semantics of hybrid I/O-automata. In
the definition of hybrid I/O-automata, the guard is implicitly embedded in the reset
map.

• A special transition (labelled with ε) is defined in the semantics of hybrid I/O-
automata. It represents changes in input variables by the environment (see also
[FHK04]).

The equivalence between a sub-class of hybrid automata HAu and a sub-class of hybrid
I/O-automata is given in this section.

Theorem 7.2.1 Let v1, v2 be locations, σ, σ′ be valuations such that range(σ), range(σ′)
∈ R, t ∈ R≥0, ρ be a trajectory such that ρσ(0) = σ ,and ρσ(t) = σ′, HAu = (X, V, init,
inv, flow, E, source, target, urgent, guard, jump, Σ, event) be a hybrid automaton HAu

as defined in Section 5.3, and HIOA = (Loc,VarS,VarI,VarO,Lab,→,Act, Inv, Init) be a
hybrid I/O-automaton (as defined in Section 7.2.1). If

1. X = VarS,
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2. V = Loc,

3. VarI = VarO = ∅,

4. Lab = Σ,

5. ∀e∈E : urgent(e) = false,

6. ∀σ,σ′ : source(e) = l, (σ, σ′) |= (jump(e) ∧ guard(e))
⇒ (source(e), event(e), (σ, σ′), target(e)) ∈→,

7. ∀l,l′∈Loc,a∈Lab,σ,σ′ : (l, a, (σ,σ′), l′) ∈→ ⇒ ∃e∈E : source(e) = l, target(e) = l′, (σ,σ′) |=
jump(e) ∧ guard(e), event(e) = a,

8. ∀σ,v∈V : σ |= init(v)⇔ (v, σ) ∈ Init(v),

9. ∀σ,v∈V : σ |= inv(v)⇔ (v, σ) ∈ Inv(v),

10. ∀ρ,t∈dom(ρ),v∈V : ρ(t) |= inv(v) ∧ flow(v)(t)⇒ ρ ∈ Act(v),

11. ∀ρ,v∈V : ρ ∈ Act(v)⇒ ∀t∈dom(ρ)ρ(t) |= inv(v) ∧ flow(v)(t),

then we have

1. |[ HAu ]||= (v1, σ)
a−→ (v2, σ

′) ⇔ |[ HIOA ]||= (v1, σ)
a−→ LH (v2, σ

′) ,

2. |[ HAu ]||= (v1, σ)
t7−→ (v1, σ

′) ⇔ |[ HIOA ]||= (v1, σ)
t−→ LH (v1, σ

′) .

PROOF. (Sketch). Theorem 7.2.1.1. First, we assume to have |[HAu ]||= (v1, σ)
a−→ (v2, σ

′),
which means that there exists an edge e with source location v1, target location v2, event
a, and a guard and a jump condition that hold for α and α′. It follows from the hypothesis,
there exists a transition ∈→ such that |[ HIOA ]||= (v1, σ)

a−→ LH (v2, σ
′) holds. Second, the

proof for |[ HIOA ]||= (v1, σ)
a−→ LH (v2, σ

′) ⇒ |[ HAu ]||= (v1, σ)
a−→ (v2, σ

′) is similar to the
first case.

Theorem 7.2.1.2. First, we assume to have |[ HAu ]||= (v1, σ)
t7−→ (v1, σ

′), which means
that there is a ρ such that ∀t∈dom(ρ)ρ(t) |= inv(v1)∧ flow(v1)(t). It follows from the hypoth-

esis that ρ ∈ Act(v1). Hence, (v1, σ)
t−→ LH (v1, σ

′) is in |[ HIOA ]|. Second, the proof for
|[ HIOA ]||= (v1, σ)

a−→ LH (v2, σ
′) ⇒ |[ HAu ]||= (v1, σ)

a−→ (v2, σ
′) is similar to the first case.

Since PHAVer is a tool for analyzing linear hybrid I/O-automata (i.e., a sub-class
of hybrid I/O-automata), this section gives the definition of a linear constraint, a linear
formula (based on [FHK04]), a linear hybrid automaton HAu, and a linear hybrid I/O-
automaton (taken from [FHK04]).

A linear constraint over a set of variables X is of the form
∑

i aivi + b ♦ 0, with ai, b ∈ Z,
vi ∈ X, and ♦ ∈ {<,≤,=}. For a given valuation σ of X such that range(σ) ∈ R, a linear
constraint φ yields a boolean value on whether φ is satisfied (σ |= φ) or not. A linear

112



7.2. Analysis of χsub specifications using PHAVer

formula (also known as linear predicate) is a boolean combination of linear constraints. A
linear hybrid I/O-automaton is a hybrid I/O-automaton (as defined in Section 7.2.1) in
which the invariants are given by linear formulas over Var, the state transformations are
given by by a linear formulas over Var∪Var′ (Var′ = {x′ | x ∈ Var}), and the activities are
given by linear formulas (also known as linear predicate) over the time derivatives of the
state variables, i.e., over ˙Vars = {ẋ | x ∈ Vars}.

Similarly, a linear hybrid automaton HAu can be obtained from a hybrid automaton
HAu by restricting the predicates involved in the invariants, jump conditions, guards and
flow conditions to be linear.

It is not hard to see that Theorem 7.2.1 also holds for the linear hybrid automaton HAu

and linear hybrid I/O-automaton trivially, because we only restrict the automata HAu and
HIOA to be linear.

Next, we discuss the relations between (linear) hybrid automata, (linear) hybrid I/O-
automata and the input language of PHAVer.

Theorem 7.2.1 describes the relation between (linear) hybrid automata HAu and (lin-
ear) hybrid I/O-automata. The input language of PHAVer (not formally defined) is a
straightforward textual representation of linear hybrid I/O-automata [Fre04b]. Further-
more, the syntax of PHAVer’s representation of automata (the input language) additionally
allows guarded action transitions between two locations, i.e. a linear formula trans rel over
Var ∪ Var′ is guarded by another linear formula guard over Var, and the conjunction of
the two linear formulas guard ∧ trans rel correspondes to the linear formula µ as defined
in Section 7.2.2. The syntax of the input language of PHAVer (allowing guarded action
transitions) makes it easy to give a straightforward textual representation of linear hybrid
I/O-automata in PHAVer.

7.2.3 Example

The verification of a χsub specification using PHAVer is illustrated by means of an example:
the water level monitor, which is taken from [ACH+95]. We first model the water-level
monitor in χsub, then we translate the water-level monitor in χsub to a hybrid automaton
HAu.

The water level in a tank is controlled through a monitor, which continuously senses the
water level and turns a pump on and off. When the pump is off, the water level, denoted
by variable the y, drops by 2 units per second; when the pump is on, the water level rises
by 1 per second. There is a time delay of 2 time units between the time that the monitor
signals to change the status of the pump and time that the change becomes effective (this
is modeled by the variable x). Initially the water level is 1 and the pump is turned on.
The water-level monitor is modelled in χsub as follows:

〈 cont x, y
, x = 0, y = 1
| ẋ = 1
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‖ ∗( ( ẏ = 1 ∧ y ≤ 10 [] [y ≥ 10→ {x} : x = 0� τ ] )
; ( ẏ = 1 ∧ x ≤ 2 [] [x ≥ 2→ {∅} : true� τ ] )
; ( ẏ = −2 ∧ y ≥ 5 [] [y ≤ 5→ {x} : x = 0� τ ] )
; ( ẏ = −2 ∧ x ≤ 2 [] [x ≥ 2→ {∅} : true� τ ] )
)

〉

This specification is translated into a hybrid automaton HAu, the graphical representa-
tion of the hybrid automaton HAu is shown in Figure 7.3. This graphical representation is
similar to the one as it was shown in [ACH+95], see Figure 7.4. The graphical representa-
tion of the hybrid automaton HAu contains more predicates as a result of the translation.
However these additional predicates do not influence the behavior of the hybrid automaton
HAu.

x = 0,
time = 0

y = 1,

x = 2,

({dy, dx}, true),

τ

v0e1aa,

v0alt2

flow: ẋ = 1 ∧ ẏ = −2 ∧ y ≥ 5 ∧ ˙time = 1
inv: dx = 1 ∧ dy = −2 ∧ y ≥ 5

v0alt0

flow: ẋ = 1 ∧ ẏ = 1 ∧ y ≤ 10 ∧ ˙time = 1
inv: dx = 1 ∧ dy = 1 ∧ y ≤ 10

v0e3aa,

x = 2,

({dy, dx}, true),

τ

v0alt1

flow: ẋ = 1 ∧ ẏ = 1 ∧ x ≤ 2 ∧ ˙time = 1
inv: dx = 1 ∧ dy = 1 ∧ x ≤ 2

v0alt3

flow: ẋ = 1 ∧ ẏ = −2 ∧ x ≤ 2 ∧ ˙time = 1
inv: dx = 1 ∧ dy = −2 ∧ x ≤ 2

v0e0aa,

y = 10,

({x, dy, dx}, x′ = 0),

τ

v0e2aa,

y = 5,

({x, dy, dx}, x′ = 0),

τ

Figure 7.3: Generated water-level monitor automaton.
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y = 1

0

ẋ = 1, ẏ = 1
y ≤ 10

3

ẋ = 1, ẏ = −2
x ≤ 2

1

ẋ = 1, ẏ = 1
x ≤ 2

2

ẋ = 1, ẏ = −2
y ≥ 5

y = 10,
x := 0,

x = 2, y = 5,
x := 0,

x = 2,

Figure 7.4: Water-level monitor automaton [ACH+95].

This hybrid automaton HAu is linear, which means there exists a corresponding linear
hybrid I/O-automaton (see also Theorem 7.2.1) that can be verified using PHAVer. Figure
7.5 shows such a corresponding linear hybrid I/O-automaton of the hybrid automaton HAu

described in the PHAVer input language. The safety property that the water level has to
be kept between 1 < y < 12 has been verified using PHAVer. PHAVer reported that this
safety property held in all locations of the corresponding linear hybrid I/O-automaton. By
Theorem 7.2.1, we know that this safety property also holds in the hybrid automaton HAu.
From Section 5.3.4, we know that any transition of a χsub specification can be mimicked by
a transition in the corresponding hybrid automaton HAu and vice versa, which indicates
this safety property also holds in the original χsub specification.
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automaton watermonitor
state_var: y, x, time, dy, dx;
synclabs: t;

loc v0alt0: while dx == 1 & dy == 1 & y <= 10
wait {x == 1 & y == 1 & y’ <= 10 & time == 1};
when y == 10 do {x’ == 0 & y’ == y & time’ == time} sync t goto v0alt1;

loc v0alt1: while dx == 1 & dy == 1 & x <= 2
wait {x == 1 & y == 1 & x’ <= 2 & time == 1};
when x == 2 do {y’ == y & x’ == x & time’ == time} sync t goto v0alt2;

loc v0alt2: while dx == 1 & dy == -2 & y >= 5
wait {x == 1 & y == -2 & y’ >= 5 & time == 1};
when y == 5 do {x’ == 0 & y’ == y & time’ == time} sync t goto v0alt3;

loc v0alt3: while dx == 1 & dy == -2 & x <= 2
wait {x == 1 & y == -2 & x’ <= 2 & time == 1};
when x == 2 do {y’ == y & x’ == x & time’ == time} sync t goto v0alt0;

initially: v0alt0 & y == 1 & x == 0;
end

sys = watermonitor;
reg = sys.reachable;
reg.print;

forbidden = sys.{v0alt0 & y>12|y<0 , v0alt1 & y>12|y<0 ,
v0alt2 & y>12|y<0 , v0alt3 & y>12|y<0};

/* Safety property: the water level has to be kept for 1< y <12 */

echo "";
reg.intersection_assign(forbidden);
echo "Intersection with forbidden states:";
reg.is_empty;

Figure 7.5: PHAVer code of the water-level monitor.
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CHAPTER

EIGHT

Elimination in Chi

As we have seen in Section 7.2, the formal translation from a reasonable subset (χsub) of
χ to hybrid automata HAu enables verification of χsub specifications using existing hybrid
automaton based verification tools. The full χ formalism, however, is much richer.

The fact that the χ formalism is such a rich language potentially complicates the
development of tools for χ, because the implementations have to deal with all possible
combinations of the χ atomic process terms and the operators that are defined on them.
This is, where the process algebraic approach of equational reasoning, that allows rewriting
specifications to a simpler form, is essential.

Thus, we investigate the possibilties to develop efficient algorithms for the linearization
of hybrid χ processes. In process algebras, linearization is a transformation of a recursive
specification into a linear representation, i.e., a kind of normal form that is convenient for
many forms of analysis. Note that these linear representations are expressed as recursive
specifications as well, but they use only a small subset of the full process algebra. In
general, such linear representations can also be considered very compact representations
of a possibly infinite state space. The original recursive specification and its transforma-
tion are required to be bisimilar, which ensures that the relevant specification properties
are preserved. Related works in this direction can be found in [Use02], [vdBRC04] and
[BvBR06].

It is a quite difficult task to develop efficient algorithms for the linearization of hybrid
χ processes. Our first attempt in this direction is to prove an elimination theorem for χ.
Like in many process algebras (e.g. in ACP), it is possible to define a set of basic terms
(without recursion definitions) and prove that all closed process terms are derivably equal
to some basic terms, which makes it easier to perform inductive reasoning on the structure
of a closed term. This is the so-called elimination thereom. Elimination in χ can also be
regarded as our first step towards the linearization of χ processes.

In this chapter, we present a sub-language of χ (which we call χS for simplicity), which
allows us to define a set of basic terms into which each closed term of χS can be rewritten.
This eases the proofs of properties and the analysis of specifications described in χS, because
many operators can be eliminated and any closed process term of χS can be rewritten
into an equivalent term that uses only a few basic operators. We also show that parallel
composition can be eliminated from all closed terms of χS. After the elimination of the
parallel composition, we can use algebraic reasoning to analyze relevant properties of the
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specification that we are interested in.
However, we are unable to define a set of basic terms into which each closed term of χ

can be rewritten. One reason for this is the fact that the semantics of the guard operator
leads to problems for the proof of the elimination thereom (see Section 8.3).

Whether it is possible to define a set of basic terms into which each closed term of χ
can be rewritten, and to develop algorithms for the linearization of hybrid χ processes, are
topics for future research.

8.1 The semantics of communication process term

In χ, the parallel composition allows the synchronization of matching send and receive
actions. The result of the synchronization is a communication action. The syntax of the
communication is given in terms of other language elements (send process term, receive
process term, the parallel composition, and the action encapsulation operator).

With the goal of eliminating parallel composition, we need an atomic process term
which represents communication (i.e. without such a communication process term, it is
not possible to prove the elimination theorem for the parallel composition).

Let ca(h,en,xn) denote a communication process term, where h is a channel, en denotes
the expressions e1, . . . , en; xn denotes the (non-dotted) variables x1, . . . , xn such that time 6∈
{xn}. We provide the deduction rules for the communication process term ca(h, en,xn) as
follows:

ξ = σ ∪ ξĊL , ξ′ ∈ Ξ(σ,C, J ∪ {xn}, L), ξ′(xn) = ξ(en)

(C, J, L,H,R)  〈ca(h, en,xn), σ〉 ξ,ca(h,[ξ(en)]),ξ′−−−−−−−−−→ 〈X, ξ′σ〉
54

(C, J, L,H,R)  〈ca(h, en,xn), σ〉 σ∪ξ
ĊL

 
55

Then, the following lemma captures the fact that the communication process term can
be expressed by other language elements.

Lemma 8.1.1 For arbitrary channel h, expression(s) en, and variable(s) xn, we have

ca(h, en,xn) ↔ ∂{isa(h,cs),ira(h,cs,W )|h∈H,cs∈Λ∗,W⊆V}(h !! en ‖ h ?? xn).

PROOF. (Sketch) This follows from Rules 28, 32, 54, and 55.

8.2 Sub-language of χ

The set of process terms S is defined by the following grammar for the process terms s ∈ S
and pbs ∈ Pbs:

pbs ::= W : r � la | h !! en | h ?? xn | ca(h, en,xn) | δ,
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s ::= b→ pbs | u | [s] | s; s | s [] s | s ‖ s | ∂A(s),

where b is a guard, W is a set of variables, la is an action label; r, u are predicates, h
is a channel, en denotes the expressions e1, . . . , en; xn denotes the (non-dotted) variables
x1, . . . , xn such that time 6∈ {xn}, and A is a set of actions.

8.3 Elimination

Definition 8.3.1 (Basic terms) The set of basic terms N is defined by the following gram-
mar for process terms n ∈ N :

n ::= u | b→ pbs | [b→ pbs] | b→ pbs ; n | [b→ pbs ; n] | n [] n.

Theorem 8.3.1 (Elimination) For terms from the set S, there is a basic term which is
derivably equal (i.e. ∀s:s∈S ∃q:q∈N s ↔ q).

PROOF. This follows from Proposition 8.3.2 to Proposition 8.3.4 with induction on the
structure of s ∈ S. The proofs for the cases s ≡ u and s ≡ b→ p∗, where u is a predicate,
b is a guard, and p∗ ∈ Pbs, are trivial.

Proposition 8.3.1 (Any delay operator) Let p ∈ N , then ∃q:q∈N [p] ↔ q.

PROOF. See Appendix E.1.

Proposition 8.3.2 (Sequential composition operator) Let p1,p2 ∈N , then ∃q:q∈N p1 ; p2 ↔ q.

PROOF. See Appendix E.2.

Proposition 8.3.3 (Alternative composition operator) Let p1, p2 ∈ N , then ∃q:q∈N p1 []
p2 ↔ q.

PROOF. It is trivial, because [] of two terms in N is by definition also a term in N .

Proposition 8.3.4 (Parallel composition operator) Let p1,p2 ∈N , then ∃q:q∈N p1 ‖ p2 ↔ q.

PROOF. It follows directly from Lemma 8.4.3.

Proposition 8.3.5 (Action encapsulation operator) Let A be a set of actions and p ∈ N ,
then ∃q:q∈N ∂A(p) ↔ q.
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PROOF. See Appendix E.3.

We cannot prove the following proposition for the guard operator: For arbritary guard
bc and p ∈ P , then ∃q:q∈P b → p ↔ q. The reason is that we have no basic terms for
b→ (b′ → p), where b′ is a guard. One might think that the property b→ (b′ → p) ↔ b ∧
b′→ p holds. However, it does not hold. As a counter-example (to show that this property
does not hold), we consider the following process terms time 6= 1 → false → skip (first
process term), and time 6= 1 ∧ false→ skip (second process term) for the initial valuation
{time 7→ 1}. The first process term cannot perform any time transition except for time
zero (i.e. zero-time transition), because the first guard (i.e. time 6= 1) is initially false, but
it becomes true for the subsequent time-points. We do not have a deduction rule that
can be applied for this case. On the other hand, if we only consider time transitions, the
conjunction of guards (i.e. time 6= 1 ∧ false) of the second process term is always false,
because the guard false never holds. According to Rule 22, the second process term can
perform arbitray time transitions starting from the initial valuation. Hence, the two process
terms are not bisimilar.

We have the intuition that the property bc → (b′c → p) ↔ bc ∧l b
′
c → p will hold by

introducing the concatenation of trajectories/time property to χ semantics, where bc and
b′c are closed guards (e.g. x ≥ 3 and x = 3 are closed guards; x > 3 and x 6= 3 are open
guards), and ∧l denotes the logical AND operator between two closed guards with the
left-to-right evaluation. It is defined as follows:

bc ∧l b
′
c = bc for bc ∈ {false,⊥} and bc ∧l b

′
c = b′c if bc = true.

Making use of this property, we believe that we can prove that the following proposition:
For arbritary closed guard bc and p ∈ P , then ∃q:q∈P bc → p ↔ q. Nevertheless, the proof
for such a proposition for the guard operator is considered as future work.

8.4 Additional properties

The following lemmas are introduced for calculation purposes.

Lemma 8.4.1 For arbitrary guards b1, b2, channel h, expression(s) en, variable(s) xn, and
p1, p2 such that (p1 ≡ h !! en ∧ p2 ≡ h ?? xn) ∨ (p1 ≡ h ?? xn ∧ p2 ≡ h !! en), we have

b1 → p1 ‖ b2 → p2 ↔ (b1 → p1 ; b2 → p2) [] (b2 → p2 ; b1 → p1) [] [b1 ∧ b2 → ca(h, en,xn)].

One might think that the application of the any delay operator to the process term
b1∧ b2→ ca(h,en,xn) (let us say process term p3≡ b1∧ b2→ ca(h,en,xn)) breaks the bisimi-
larity. However, it does not, because for the case that both guards (i.e. b1 and b2) of p3 eval-
uate to true, such an application adds arbitrary delay behavior to p3. If this is the case, it is
not possible for (b1→ p1 ; b2→ p2) [] (b2→ p2 ; b1→ p1) [] [b1 ∧ b2→ ca(h,en,xn)] to perform
any time transitions, because both process terms (b1→ p1 ; b2→ p2) and (b2→ p2 ; b1→ p1)
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cannot perform any time transitions. Also notice that process term b→ p∗, for any guard
b and an undelayable process term p∗, can perform arbitrary time transitions only if b
evaluates to false.

PROOF. See Appendix E.4.

Lemma 8.4.2 Let A be a set of actions and p∗ ∈ Pbs, then ∃q:q∈Pbs
∂A(p∗) ↔ q.

PROOF. See Appendix E.5.

For ease of proofs of Proposition 8.3.4, the following lemma (in the form of s1 ‖ s2 ↔ s3)
is introduced. Since the following lemma is rather complex, we first briefly introduce some
notations used in the lemma.

1. From Proposition 3.5.3, we know that the alternative composition is commutative
and associative. We can define a generalized alternative composition operator. For
a finite index set I, the notation []i∈I xi represents the alternative composition of the
process terms xi for i ∈ I. If I = ∅, then []i∈I xi = true. Therefore, every basic term
can be written in the form:

N ::= ([]i∈I ui) [] ([]j∈J bj → pj) [] ([]k∈K [bk → pk]) [] ([]l∈L bl → pl ; nl) []

([]m∈M [bm → pm ; nm]),

for some finite index sets I,J,K,L,M , where ui are predicates, bj, bk, bl, bm are guards,
pj, pk, pl, pm ∈ Pbs and nl, nm ∈ N .

2. For any basic term (let us say) s1, we can write s1 ≡ ([]i∈I ui) [] ([]j∈J bj → pj) []
([]k∈K [bk → pk]) [] ([]l∈L bl → pl ; nl) [] ([]m∈M [bm → pm ; nm]), where []i∈I ui represent
delay predicates; []j∈J bj → pj represent guarded process terms which can perform
termination transitions, communicate with other process terms in a parallel context
or perform arbitrary time transitions if the guards bj are false; []k∈K [bk→ pk] represent
guarded process terms which can perform termination transitions, communicate with
other process terms in a parallel context or perform arbitrary time transitions; []l∈L
bl → pl ; nl represent guarded process terms which can perform action transitions,
communicate with other process terms in a parallel context or perform arbitrary
time transitions if the guards bl are false; and []m∈M [bm→ pm ; nm] represent guarded
process terms which can perform action transitions, communicate with other process
terms in a parallel context or perform arbitrary time transitions.

3. Process term s3 is a basic term which is bisimilar to the parallel composition of s1

and s2. It consists of four main parts:

(a) delay predicates;

(b) transitions from the left argument of the parallel composition (i.e. s1);
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(c) transitions from the right argument of the parallel composition (i.e. s2);

(d) communications between the left argument (i.e. s1) and right argument (i.e. s2)
of the parallel composition.

4. In process term s3, the notation ΓA,B is used. For given index sets A and B, we
define ΓA,B to be the index set of pairs of indices from A and B of which the cor-
responding process terms can communicate. That is, ΓA,B = {(a, b) ∈ A × B |
((pa ≡ ha !! ena ∧ pb ≡ hb ?? xnb) ∨ (pa ≡ ha ?? xna ∧ pb ≡ hb !! enb)) ∧ ha = hb} for
A,B ∈ {J,K, L,M, J∗, K∗, L∗,M∗}, where ha and hb are channels, ena and enb are
expression(s), and xna and xnb are variable(s). For (a, b) ∈ ΓA,B, pa ‖ pb ↔ pa ; pb []
pb ; pa [] ca(h, en , xn) for some h, en , and xn (this bisimilarity follows directly from
Lemma 8.4.1). Then we define hab = h, enab = en and xnab = xn.

Lemma 8.4.3 For some finite index sets I, J,K,L,M, I∗, J∗,K∗,L∗,M∗, arbritary predi-
cates ui, ui∗, arbritary guards bj, bk , bl, bm, bj∗ , bk∗ , bl∗ , bm∗; pj, pk, pl, pm, pj∗ , pk∗ , pl∗ , pm∗ ∈
Pbs;nl, nl∗ , nm, nm∗ ∈N , s1≡ ([]i∈I ui) [] ([]j∈J bj→ pj) [] ([]k∈K [bk→ pk]) [] ([]l∈L bl→ pl ; nl) []
([]m∈M [bm → pm ; nm]), s2 ≡ ([]i∗∈I∗ ui∗) [] ([]j∗∈J∗ bj∗ → pj∗) [] ([]k∗∈K∗ [bk∗ → pk∗ ]) [] ([]l∗∈L∗
bl∗ → pl∗ ; nl∗) [] ([]m∗∈M∗ [bm∗ → pm∗ ; nm∗ ]), we have s1 ‖ s2 ↔ s3, where

s3 (without comments) ≡
([]i∈I ui) [] ([]i∗∈I∗ ui∗)
[] ([]j∈J bj → pj ; s2)
[] ([]k∈K [bk → pk ; s2])
[] ([]l∈L bl → pl ; (nl ‖ s2))
[] ([]m∈M [bm → pm]; (nm ‖ s2))
[] ([]j∗∈J∗ bj∗ → pj∗ ; s1)
[] ([]k∗∈K∗ [bk∗ → pk∗ ; s1])
[] ([]l∗∈L∗ bl∗ → pl∗ ; (nl∗ ‖ s1))
[] ([]m∗∈M∗ [bm∗ → pm∗ ]; (nm∗ ‖ s1))
[] ([](j,j∗)∈ΓJ,J∗

[bj ∧ bj∗ → ca(hjj∗ , enjj∗ ,xnjj∗ )])

[] ([](j,k∗)∈ΓJ,K∗
[bj ∧ bk∗ → ca(hjk∗ , enjk∗ ,xnjk∗ )])

[] ([](j,l∗)∈ΓJ,L∗
[bj ∧ bl∗ → ca(hjl∗ , enjl∗ ,xnjl∗ ); nl∗ ])

[] ([](j,m∗)∈ΓJ,M∗
[bj ∧ bm∗ → ca(hjm∗ , enjm∗ ,xnjm∗ ); nm∗ ])

[] ([](k,j∗)∈ΓK,J∗
[bk∧bj∗ → ca(hkj∗ ,enkj∗ ,xnkj∗ )])

[] ([](k,k∗)∈ΓK,K∗
[bk ∧ bk∗ → ca(hkk∗ , enkk∗ ,xnkk∗ )])

[] ([](k,l∗)∈ΓK,L∗
[bk ∧ bl∗ → ca(hkl∗ , enkl∗ ,xnkl∗ ); nl∗ ])

[] ([](k,m∗)∈ΓK,M∗
[bk ∧ bm∗ → ca(hkm∗ , enkm∗ ,xnkm∗ ); nm∗ ])

[] ([](l,j∗)∈ΓL,J∗
[bl∧bj∗ → ca(hlj∗ , enlj∗ ,xnlj∗ ); nl])

[] ([](l,k∗)∈ΓL,K∗
[bl ∧ bk∗ → ca(hlk∗ , enlk∗ ,xnlk∗ ); nl])

[] ([](l,l∗)∈ΓL,L∗
[bl ∧ bl∗ → ca(hll∗ , enll∗ ,xnll∗ ); (nl ‖ nl∗)])

[] ([](l,m∗)∈ΓL,M∗
[bl ∧ bm∗ → ca(hlm∗ , enlm∗ ,xnlm∗ ); (nl ‖ nm∗)])

[] ([](m,j∗)∈ΓM,J∗
[bm ∧ bj∗ → ca(hmj∗ , enmj∗ ,xnmj∗ ); nm])
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[] ([](m,k∗)∈ΓM,K∗
[bm ∧ bk∗ → ca(hmk∗ , enmk∗ ,xnmk∗ ); nm])

[] ([](m,l∗)∈ΓM,L∗
[bm ∧ bl∗ → ca(hml∗ , enml∗ , xnml∗ ); (nm ‖ nl∗)])

[] ([](m,m∗)∈ΓM,M∗
[bm ∧ bm∗ → ca(hmm∗ , enmm∗ ,xnmm∗ ); (nm ‖ nm∗)])

[] ([](j∗,j)∈ΓJ∗,J
[bj∗ ∧ bj → ca(hj∗j, enj∗j ,xnj∗j)])

[] ([](j∗,k)ΓJ∗,K
[bj∗ ∧ bk → ca(hj∗k, enj∗k ,xnj∗k)])

[] ([](j∗,l)∈ΓJ∗,L
[bj∗ ∧ bl → ca(hj∗l, enj∗l ,xnj∗l); nl])

[] ([](j∗,m)∈ΓJ∗,M
[bj∗ ∧ bm → ca(hj∗m, enj∗m ,xnj∗m); nm])

[] ([](k∗,j)∈ΓK∗,J
[bk∗ ∧ bj → ca(hk∗j, enk∗j ,xnk∗j)])

[] ([](k∗,k)∈ΓK∗,K
[bk∗ ∧ bk → ca(hk∗k, enk∗k ,xnk∗k)])

[] ([](k∗,l)∈ΓK∗,L
[bk∗∧ bl → ca(hk∗l, enk∗l ,xnk∗l); nl])

[] ([](k∗,m)∈ΓK∗,M
[bk∗ ∧ bm → ca(hk∗m, enk∗m , xnk∗m); nm])

[] ([](l∗,j)∈ΓL∗,J
[bl∗∧bj → ca(hl∗j, enl∗j ,xnl∗j); nl∗ ])

[] ([](l∗,k)∈ΓL∗,K
[bl∗ ∧ bk → ca(hl∗k, enl∗k ,xnl∗k); nl∗ ])

[] ([](l∗,l)∈ΓL∗,L
[bl∗ ∧ bl → ca(hl∗l, enl∗l ,xnl∗l); (nl∗ ‖ nl)])

[] ([](l∗,m)∈ΓL∗,M
[bl∗ ∧ bm → ca(hl∗m, enl∗m ,xnl∗m); (nl∗ ‖ nm)])

[] ([](m∗,j)∈ΓM∗,J
[bm∗ ∧ bj → ca(hm∗j, enm∗j ,xnm∗j); nm∗ ])

[] ([](m∗,k)∈ΓM∗,K
[bm∗ ∧ bk → ca(hm∗k, enm∗k ,xnm∗k); nm∗ ])

[] ([](m∗,l)∈ΓM∗,L
[bm∗ ∧ bl → ca(hm∗l, enm∗l ,xnm∗l); (nm∗ ‖ nl)])

[] ([](m∗,m)∈ΓM∗,M
[bm∗ ∧ bm → ca(hm∗m, enm∗m ,xnm∗m); (nm∗ ‖ nm)]), and

s3 (with comments) ≡

• part (a)
([]i∈I ui) [] ([]i∗∈I∗ ui∗)

– the alternative composition of delay predicates from the set I and I∗

• part (b)
[] ([]j∈J bj → pj ; s2)

– the possibility of a process term from the set J which performs a termination
transition, and then continues as s2

[] ([]k∈K [bk → pk ; s2])

– the possibility of a process term from the set K which performs a termination
transition, and then continues as s2

[] ([]l∈L bl → pl ; (nl ‖ s2))

– the possibility of a process term from the set L which performs a termination
transition, and then continues as nl ‖ s2

[] ([]m∈M [bm → pm]; (nm ‖ s2))
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– the possibility of a process term from the set M which performs a termination
transition, and then continues as nm ‖ s2

• part (c)
[] ([]j∗∈J∗ bj∗ → pj∗ ; s1)

– the possibility of a process term from the set J∗ which performs a termination
transition, and then continues as s1

[] ([]k∗∈K∗ [bk∗ → pk∗ ; s1])

– the possibility of a process term from the set K∗ which performs a termination
transition, and then continues as s1

[] ([]l∗∈L∗ bl∗ → pl∗ ; (nl∗ ‖ s1))

– the possibility of a process term from the set L∗ which performs a termination
transition, and then continues as nl∗ ‖ s1

[] ([]m∗∈M∗ [bm∗ → pm∗ ]; (nm∗ ‖ s1))

– the possibility of a process term from the set M∗ which performs a termination
transition, and then continues as nm∗ ‖ s1

• part (d)
[] ([](j,j∗)∈ΓJ,J∗

[bj ∧ bj∗ → ca(hjj∗ , enjj∗ ,xnjj∗ )])

[] ([](j,k∗)∈ΓJ,K∗
[bj ∧ bk∗ → ca(hjk∗ , enjk∗ ,xnjk∗ )])

[] ([](j,l∗)∈ΓJ,L∗
[bj ∧ bl∗ → ca(hjl∗ , enjl∗ ,xnjl∗ ); nl∗ ])

[] ([](j,m∗)∈ΓJ,M∗
[bj ∧ bm∗ → ca(hjm∗ , enjm∗ ,xnjm∗ ); nm∗ ])

– the possibilities of process terms from the pairs of sets J and R∗ which commu-
nicate, where R∗∈{J∗,K∗,L∗,M∗}

[] ([](k,j∗)∈ΓK,J∗
[bk∧bj∗ → ca(hkj∗ ,enkj∗ ,xnkj∗ )])

[] ([](k,k∗)∈ΓK,K∗
[bk ∧ bk∗ → ca(hkk∗ , enkk∗ ,xnkk∗ )])

[] ([](k,l∗)∈ΓK,L∗
[bk ∧ bl∗ → ca(hkl∗ , enkl∗ ,xnkl∗ ); nl∗ ])

[] ([](k,m∗)∈ΓK,M∗
[bk ∧ bm∗ → ca(hkm∗ , enkm∗ ,xnkm∗ ); nm∗ ])

– the possibilities of process terms from the pairs of sets K and R∗ which commu-
nicate

[] ([](l,j∗)∈ΓL,J∗
[bl∧bj∗ → ca(hlj∗ , enlj∗ ,xnlj∗ ); nl])

[] ([](l,k∗)∈ΓL,K∗
[bl ∧ bk∗ → ca(hlk∗ , enlk∗ ,xnlk∗ ); nl])

[] ([](l,l∗)∈ΓL,L∗
[bl ∧ bl∗ → ca(hll∗ , enll∗ ,xnll∗ ); (nl ‖ nl∗)])

[] ([](l,m∗)∈ΓL,M∗
[bl ∧ bm∗ → ca(hlm∗ , enlm∗ ,xnlm∗ ); (nl ‖ nm∗)])
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– the possibilities of process terms from the pairs of sets L and R∗ which commu-
nicate

[] ([](m,j∗)∈ΓM,J∗
[bm ∧ bj∗ → ca(hmj∗ , enmj∗ ,xnmj∗ ); nm])

[] ([](m,k∗)∈ΓM,K∗
[bm ∧ bk∗ → ca(hmk∗ , enmk∗ ,xnmk∗ ); nm])

[] ([](m,l∗)∈ΓM,L∗
[bm ∧ bl∗ → ca(hml∗ , enml∗ , xnml∗ ); (nm ‖ nl∗)])

[] ([](m,m∗)∈ΓM,M∗
[bm ∧ bm∗ → ca(hmm∗ , enmm∗ ,xnmm∗ ); (nm ‖ nm∗)])

– the possibilities of process terms from the pairs of sets M and R∗ which com-
municate

[] ([](j∗,j)∈ΓJ∗,J
[bj∗ ∧ bj → ca(hj∗j, enj∗j ,xnj∗j)])

[] ([](j∗,k)ΓJ∗,K
[bj∗ ∧ bk → ca(hj∗k, enj∗k ,xnj∗k)])

[] ([](j∗,l)∈ΓJ∗,L
[bj∗ ∧ bl → ca(hj∗l, enj∗l ,xnj∗l); nl])

[] ([](j∗,m)∈ΓJ∗,M
[bj∗ ∧ bm → ca(h, enj∗m ,xnj∗m); nm])

– the possibilities of process terms from the pairs of sets J∗ and R which commu-
nicate, where R ∈ {J ,K,L,M}

[] ([](k∗,j)∈ΓK∗,J
[bk∗ ∧ bj → ca(hk∗j, enk∗j ,xnk∗j)])

[] ([](k∗,k)∈ΓK∗,K
[bk∗ ∧ bk → ca(hk∗k, enk∗k ,xnk∗k)])

[] ([](k∗,l)∈ΓK∗,L
[bk∗∧ bl → ca(hk∗l, enk∗l ,xnk∗l); nl])

[] ([](k∗,m)∈ΓK∗,M
[bk∗ ∧ bm → ca(hk∗m, enk∗m , xnk∗m); nm])

– the possibilities of process terms from the pairs of sets K∗ and R which commu-
nicate

[] ([](l∗,j)∈ΓL∗,J
[bl∗∧bj → ca(hl∗j, enl∗j ,xnl∗j); nl∗ ])

[] ([](l∗,k)∈ΓL∗,K
[bl∗ ∧ bk → ca(hl∗k, enl∗k ,xnl∗k); nl∗ ])

[] ([](l∗,l)∈ΓL∗,L
[bl∗ ∧ bl → ca(hl∗l, enl∗l ,xnl∗l); (nl∗ ‖ nl)])

[] ([](l∗,m)∈ΓL∗,M
[bl∗ ∧ bm → ca(hl∗m, enl∗m ,xnl∗m); (nl∗ ‖ nm)])

– the possibilities of process terms from the pairs of sets L∗ and R which commu-
nicate

[] ([](m∗,j)∈ΓM∗,J
[bm∗ ∧ bj → ca(hm∗j, enm∗j ,xnm∗j); nm∗ ])

[] ([](m∗,k)∈ΓM∗,K
[bm∗ ∧ bk → ca(hm∗k, enm∗k ,xnm∗k); nm∗ ])

[] ([](m∗,l)∈ΓM∗,L
[bm∗ ∧ bl → ca(hm∗l, enm∗l ,xnm∗l); (nm∗ ‖ nl)])

[] ([](m∗,m)∈ΓM∗,M
[bm∗ ∧ bm → ca(hm∗m, enm∗m ,xnm∗m); (nm∗ ‖ nm)]).

– the possibilities of process terms from the pairs of sets M∗ and R which com-
municate
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One might think that the application of the any delay operator to all sub-process terms
of s3 which represent communications (e.g. [](j,j∗)∈ΓJ,J∗

[bj ∧ bj∗ → ca(hjj∗ , enjj∗ ,xnjj∗ )])

introduces additional behavior to s3. As in Lemma 8.4.1, it is safe to apply the any delay
operator to all sub-process terms of s3 which represent communications without adding
behavior to them. We do this, because it can simplify the proofs for time transitions and
consistency remarkably.

PROOF. See Appendix E.6.

8.5 Example

This section is intended to show how to eliminate the parallel composition operators from
a χ specification modeling a system GME consisting of a generator G, a machine M and
an exit E.

For reasons of brevity, the system is simplified considerably. The generator G sends
lots 2 to the machine M via a channel h1 if the guard b is true. Otherwise, lots 3 are sent
instead. The machine M receives lots via channel h1 and immediately sends them to exit
via channel h2.

The process terms modeling G,M and E are as follows:

G ≡ b→ h1 !! 2 [] ¬b→ h1 !! 3

M ≡ [true→ h1 ?? x]; h2 !!x,

E ≡ [true→ h2 ?? x′].

The process term modeling the system GME system is as follows:

GME ≡ G ‖M ‖ E.

8.5.1 Rewriting of the system GME

Since G,M,E ∈N , from Proposition 8.3.4, we know that there exists a process term which
is bisimilar to G ‖M ‖ E in which the parallel composition is eliminated.

First, we write G ‖M as Q (i.e. Q≡ (b→ h1 !! 2 [] ¬b→ h1 !! 3) ‖ [true→ h1 ??x]; h2 !!x).
Using the χ properties from Section 3.5.4, it is not hard to see that we can obtain

Q ↔ b→ h1 !! 2; M
[] ¬b→ h1 !! 3; M
[] [true→ h1 ?? x]; (h2 !!x ‖ G)
[] [b→ ca(h1, 2, x); h2 !!x]
[] [¬b→ ca(h1, 3, x); h2 !!x]
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with
h2 !!x ‖ G ↔ h2 !!x; G

[] b→ h1 !! 2; h2 !!x
[] ¬b→ h1 !! 3; h2 !!x.

We write

Q′ ≡ b→ h1 !! 2; M
[] ¬b→ h1 !! 3; M
[] [true→ h1 ?? x]; (h2 !!x; G [] b→ h1 !! 2; h2 !!x [] ¬b→ h1 !! 3; h2 !!x)
[] [b→ ca(h1, 2, x); h2 !!x]
[] [¬b→ ca(h1, 3, x); h2 !!x],

where Q′ ↔ Q, and process term Q′ does not contain any parallel composition opera-
tors. Let R ≡ h2 !!x; G [] b→ h1 !! 2; h2 !!x [] ¬b→ h1 !! 3; h2 !!x, then we can have

(G ‖M) ‖ E ↔ Q′ ‖ E ↔ b→ h1 !! 2; (M ‖ E)
[] ¬b→ h1 !! 3; (M ‖ E)
[] [true→ h1 ?? x]; (R ‖ E)
[] [b→ ca(h1, 2, x)]; (h2 !!x ‖ E)
[] [¬b→ ca(h1, 3, x)]; (h2 !!x ‖ E)
[] E ; Q′

with
M ‖ E ↔ [true→ h1 ?? x]; (h2 !!x ‖ E) [] E ; M
R ‖ E ↔ h2 !!x; (G ‖ E)

[] b→ h1 !! 2; (h2 !!x ‖ E)
[] ¬b→ h1 !! 3; (h2 !!x ‖ E)
[] E ; R
[] [true→ ca(h2, x, x

′); G]
h2 !!x ‖ E ↔ h2 !!x; E [] E ; h2 !!x [] [true→ ca(h2, x, x

′)]

with
G ‖ E ↔ b→ h1 !! 2; E [] ¬b→ h1 !! 3; E [] E ; G.

As we have shown above, there exists a process term which is bisimilar to the pro-
cess term modeling the system GME (G ‖ M ‖ E) in which the parallel composition is
eliminated.
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Related work

The χ formalism is a hybrid process algebra, and is thus related to the other hybrid
process algebras: HyPA [CR05], process algebra for hybrid systems ACPsrt

hs [BM05], the
φ-Calculus [RS03], the hybrid formalisms based on CSP [Jif94, CJR96], and the process
algebra from [Ver95].

The latter three process algebras [Jif94, CJR96, Ver95] differ from χ in that they do not
have shared variables. Shared variables are essential for modular specification of continuous
and hybrid systems. The two CSP based formalisms also differ from the other process
algebras in that they use a denotational semantics instead of an operational semantics. An
operational semantics is generally believed to be more intuitive and easier to understand
than a denotational semantics [AFV01].

The φ-calculus is a hybrid extension of Milner’s π-calculus [Mil99]. The hybrid ex-
tension allows processes to interact with continuous environments. The semantics of the
φ-calculus is based on timed transition systems. The φ-calculus differs from the other pro-
cess algebras in that continuous behavior is not defined by means of predicates in process
expressions. Instead, continuous behavior is defined by means of an environment.

In φ-calculus, an embedded (hybrid) system is a pair consisting of an environment and
a process expression. An environment consists of a state, a dynamic system (specified by
differential equations), and an invariant predicate. Environmental actions are used to reset
the state, change the dynamic system to a new one, and update the invariant predicate. In
this way, the φ-calculus can deal with dynamically reconfigurable processes. The resulting
differential equations are required to be autonomous. This limits the specification of con-
tinuous systems, using the φ-calculus, to that of ordinary differential equations (ODEs).
In the environment, only time transitions can be executed.

The φ-calculus has a maximal progress (or urgent) semantics, which means the system
can perform a time transition if and only if the process expression of the system cannot
perform any environmental action during such a time transition. This differs from the
more flexible concept of urgency as defined in χ, where non-delayable actions have priority
over delayable actions.

The relation between χ, hybrid automata, HyPA and ACPsrt
hs is discussed below. When

comparing χ to hybrid automata, it should be kept in mind that many different hybrid
automaton definitions exist. Some definitions require solutions for the continuous variables
to be differentiable functions, e.g. in [Hen00b, AHH96]. Other definitions allow the more
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general case of piecewise differentiable or piecewise continuous functions, e.g. in [vdSS00].
In [LSV03], for each variable a dynamic type can be defined, which allows among others
solutions in the form of discontinuous functions. Most definitions of hybrid automata do
not define urgent transitions, or they define urgent transitions in a restrictive way (non-
guarded), as in [HHWT95]. In [NOSY92], urgent transitions are defined in a general way,
using a predicate that defines the maximum sojourn time in a location. However, instead
of invariants and flow clauses, evolution functions are used in locations. With respect to
the meaning of jump clauses, that define the behavior of the variables in action transitions,
differences also occur: where in [Hen00b] the variables can in principle perform arbitrary
jumps unless restricted by the jump predicate, in [HHWT95], variables in principle remain
unchanged unless changes are enforced by the jump predicate. Most hybrid automata
distinguish between flow clauses, or vector fields, and invariants. In [HHWT98], however,
invariants and flow clauses are combined into one predicate (as in ACPsrt

hs , HyPA, and χ).
Finally, some hybrid automata have a precisely defined syntax, in particular the input
languages of the verification tools PHAver [Fre05] and HyTech [HHWT95]. Many other
hybrid automata are mainly semantical models, such as the hybrid automata defined in
[LSV03] and [LJS+03].

Where HyPA is a conservative extension of ACP from [BW90], and ACPsrt
hs is a conserva-

tive extension of a combination of the process algebra with continuous relative timing from
[BM02] and the process algebra with propositional signals from [BB97], hybrid χ is not an
extension of any previously existing process algebra. Hybrid χ has been proven to be an op-
erational conservative extension of timed χ in [vBMR+05]. The semantics of hybrid χ and
timed χ, which is derived from hybrid χ, differs considerably from the semantics of their
discrete-event predecessor χσ as defined in [BK02]. Where χσ has non-delayable guards,
a weak time-deterministic alternative composition operator, urgent actions only, and no
(global) time variable, the semantics of χ as defined in this paper has delayable guards, a
strong time-deterministic alternative composition operator, urgent and non-urgent actions,
and a global variable denoting the model time.

The integration between the DC and CS world views in χ was inspired by HyPA. Also,
the use of delay predicates as atomic process term was inspired by HyPA. The χ formalism
and ACPsrt

hs were both strongly influenced by hybrid automata. ACPsrt
hs , χ, and hybrid

automata share the ‘consistent equation semantics’. For a hybrid automaton, the invariant
of the current location should hold in the current state, and transitions to a new state
and new location are allowed only if the invariant of the new location holds in the new
state. Correspondingly, in ACPsrt

hs and χ, the equations (delay predicates) of the process
term should be consistent with the current state, and transitions to a new process term
are allowed only if the equations (delay predicates) of the new process term are consistent
with the new state. The hybrid automaton defined in [ACH+95] has a different semantics
in that it allows transitions to a new location only if the invariant of the current location
holds in the current state and in the new state. The signal emission operator in χ was
inspired by the signal emission operator from ACPsrt

hs , which in its turn comes from the
process algebra with relative timing from [BM02].

Some differences between χ, hybrid automata, ACPsrt
hs , and HyPA are:
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• Where some hybrid automata and ACPsrt
hs use continuous variables that are allowed

to jump arbitrarily in an action transition with a true reset predicate, and other
hybrid automata and HyPA use continuous variables that are not allowed to jump
in an action transition, unless explicitly specified, χ uses both classes of continuous
variables. Furthermore, χ adds discrete and algebraic variables. Some hybrid au-
tomata (e.g. see [LJS+03]) also define discrete variables (instead of locations). The
behavior of the algebraic variables from χ is related to the external variables from
the semantical hybrid automata defined in [LSV03]. The external variables are not
part of the state, and they can have a dynamic type that allows discontinuous trajec-
tories. However, discrete transitions (action transitions) are defined only on internal
variables, and the concept of internal and external variables is linked to visibility
and hiding in [LSV03]. In χ, all variables can be used in action predicates, and the
different classes of variables and hiding/abstraction are orthogonal concepts.

• Where in ACPsrt
hs and the hybrid automaton definition from [HHWT98] the dotted

variables (derivatives) are part of the state (valuation), in HyPA, other hybrid au-
tomata, and χ they are not. The reason for this in χ is that the valuation together
with the process term and the environment represent all that is needed to be able
to determine future behavior. The values of the dotted variables are not needed for
this purpose. For the same reason, algebraic variables are not part of the valuation
in χ. Their values are determined completely by the process term.

• Where HyPA does not specify a solution concept for algebraic differential equations,
and ACPsrt

hs requires differentiability of the trajectories of the continuous variables,
the χ semantics defines a solution concept that is parameterized with the type of
trajectories allowed. In this paper, piecewise continuous functions for the trajectories
of the algebraic and dotted variables are allowed. The parametrization of the solution
concept in χ is related to the dynamic type present in [LSV03]. Of course, since the
solution concept of HyPA is a parameter of the semantics, it could use the solution
concept defined in χ.

• Where in χ the passage of time cannot make a choice between the operands of
alternative composition, in ACPsrt

hs , the passage of time can enforce such a choice.
In HyPA, the passage of time will always make a choice between the operands of
the choice operator. This corresponds to the initial behavior of a hybrid automaton:
depending on the initial state, a non-deterministic choice can be made for the first
location where continuous behavior or discrete behavior may take place. After this
first choice, a hybrid automaton cannot change location as a result of time passing,
nor can outgoing edges disappear as a result of time passing.

• The syntactic extensions present in χ are unavailable in the other three formalisms,
apart from the delay operator, which is also available in ACPsrt

hs . However, in ACPsrt
hs ,

the expression defining the amount of delay cannot contain variables. Furthermore,
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the scope operators, and process definition and instantiation process terms for com-
plex system specification are available only in χ, apart from the variable scope oper-
ator which is added to HyPA in [vdBRC04].

An interesting question is whether the χ functionality could have been obtained by
extending HyPA and ACPsrt

hs with the χ scope operators, with the χ urgent communication
operator, and with similar syntactic extensions as defined in χ. This approach suffers from
fundamental limitations. The most important of these are:

• The algebraic variables present in χ cannot be incorporated in this way, because their
functionality is reflected in the operational semantics of several process terms.

• The χ solution concept is quite different from the solution concept in ACPsrt
hs .

• The semantics of the guards in χ (delayable) is fundamentally different from the
semantics of the guards in HyPA and ACPsrt

hs (non-delayable).

• The flexibility of urgency in χ, where non-delayable actions have priority over de-
layable actions, is obtained by a carefully defined semantics of several operators (al-
ternative composition, parallel composition, guard). It cannot be obtained by means
of extensions to ACPsrt

hs or HyPA.

• The consistent equation semantics of χ is fundamentally different from the HyPA
semantics, where equations can (temporarily) become inconsistent as a result of ac-
tions.

The additional functionality of χ makes axiomatization more difficult, when compared to
ACPsrt

hs and HyPA. When it comes to tool support, the additional functionality offered by
χ probably means additional efforts for implementation. At this moment, it is difficult to
further compare the expected efforts required for tool implementations of χ, ACPsrt

hs and
HyPA.

Other formalisms for hybrid system specification are hybrid Petri nets [DA01, FGM01],
and formalisms based on hybrid automata such as Charon [ADE+03] and Masaccio [Hen00a].
There are many differences and similarities between χ and these other formalisms. The
main difference, however, between χ and other formalisms, including the process algebras
and hybrid automata discussed before, is that we consider χ to be overall better suited
to modeling. This may mean that certain phenomena can be modeled in χ whereas they
cannot be modeled in another formalism, or that certain phenomena can be modeled more
concisely or more intuitively in χ.

Which systems can be modeled in χ and not in other formalisms, or the other way
round, is difficult to establish. It also depends on the notion of equivalence. For example,
the equation y = step(t− 1), where y is an algebraic variable, t denotes time and step is a
discontinuous function such that step(x) is 0 for x < 0 and 1 for x≥ 0, cannot be specified,
or does not have the required behavior, in many formalisms. The required behavior can
however be approximated by introducing an additional action to model the discontinuity.
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As another example, steady state initialization, as in ẋ = 0 y ẋ = −x + 1, cannot be
expressed in most formalisms. When the equations are straightforward enough, however,
the same effect can be obtained by direct initializations. In this example, by initializing
variable x to 1.

The following properties make χ highly suited to modeling:

1. The integration between the DC and CS world views as explained in Section 1. In
this respect χ differs from the other formalisms mentioned above, apart from HyPA
and the hybrid automata such as defined in [vdSS00].

2. The combination of concise and intuitive language primitives, well suited to modeling,
with a straightforward semantics, well suited to verification. This was in fact the
biggest challenge in the design of χ. After numerous attempts to define the language
primitives with associated syntax and semantics, it appeared that either the language
was well suited to modeling, but with complex semantics, unsuited to verification; or
the semantics was straightforward and elegant, but at the same time the language
was cumbersome for modeling. The reason for this apparent contradiction is that
the requirements for language primitives for verification and the requirements for
language primitives for modeling are not the same.

3. The relatively large number of operators dedicated to the modeling of discrete-event
behavior: This makes it easy to abstract from continuous behavior and specify timed
discrete-event models, without any continuous variables and without differential (al-
gebraic) equations. In this respect, χ has much in common with the hybrid formalisms
based on CSP [Jif94, CJR96], and with ACPsrt

hs .

4. Process instantiation, based on the modeling scope operator: this enables hierarchi-
cal composition of processes. It also provides encapsulation and data hiding, and
it enables re-use of processes: parameterized processes can be defined once and in-
stantiated many times with the same or different parameters. In this respect, the
χ formalism is related to Charon and Masaccio, which allow components to be de-
fined and instantiated. The χ formalism, being a process algebra, does not only
allow parallel composition (as Charon and Masaccio) and sequential composition (as
Masaccio), but allows in principle any combination of process terms by means of the
χ operators.

Local variables, variable and/or action abstraction are present also in other for-
malisms. Hybrid I/O automata [LSV03] define both action abstraction and variable
abstraction, which are referred to as hiding of external actions and external vari-
ables. Hybrid (I/O) automata, however, need to be ‘compatible’ to allow parallel
composition. Hybrid I/O automata, for example, require disjointness of the internal
variables of the automata in parallel composition.

In χ, the concepts of variable abstraction and channel abstraction (comparable with
action abstraction in other formalisms) are integrated in the modeling scope operator,
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which also provides a local scope for variables, channels, and recursion definitions.
In this respect, the χ modeling scope operator is a high level modeling primitive un-
available in the other hybrid formalisms. Also, there are no compatibility restrictions
on processes for parallel composition. Modular composition of processes is further
supported by means of different interaction mechanisms. Processes can interact in
three different ways:

• By means of shared variables, which is the main interaction mechanism for
continuous-time processes consisting of systems of differential algebraic equa-
tions. Interaction between processes in Charon and Masaccio also takes place
by means of shared variables. Synchronization by means of actions is, however,
not supported.

• By means of channel based ‘handshake synchronization’. It is comparable to
actions in (hybrid) (I/O) automata and actions in ACP-based process algebras.
A difference is that actions can be used to express synchronization between two
or more processes. The synchronization mechanism used in χ is CSP [Hoa78]
based. A channel can be shared by any number of processes, but synchronization
always occurs on a point-to-point basis, so between exactly two processes. An-
other difference is that the interaction mechanism in χ also allows synchronous
communication, as explained below, whereas actions are strictly used for syn-
chronization.

• By means of synchronous communication, which is the CSP interaction mech-
anism that combines synchronization with data-transfer, as also used in [Jif94,
CJR96].
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Conclusions and future work

The χ formalism differs considerably from other formalisms. On the one hand, it supports
the dynamics and control way of hybrid systems modeling by means of discontinuous
functions and/or switched equation systems, possibly leading to discontinuous trajectories.
On the other hand, it supports the computer science way of hybrid systems modeling, where
actions are used to model discontinuities. With respect to the computer science way of
modeling, the χ formalism is heavily influenced by hybrid automata. The two formalisms
both have a choice mechanism where, apart from initialization in a hybrid automaton, the
passage of time cannot result in choices between operands (χ) or choices between locations
or outgoing edges (hybrid automata). The χ formalism also shares the consistency concept
with many hybrid automata: state changes in χ need to be consistent with delay predicates,
which include the invariant and flow clauses of hybrid automata.

The χ formalism combines ease of modeling with a straightforward, formal semantics.
Ease of modeling is ensured by means of different classes of variables, such as discrete,
non-jumping continuous, jumping continuous and algebraic variables; by means of its de-
layable guard that ensures that the guard always holds when the first action of the guarded
process term occurs; by means of its integration of urgent (non-delayable) and non-urgent
(delayable) actions on the one hand, and urgent and non-urgent channels on the other
hand; by means of allowing the modeling of differential algebraic equations as a process
term as in mathematics; by means of allowing straightforward steady-state initialization;
and by means of several user-friendly syntactic extensions.

The χ formalism is suited to modeling, simulation and verification of: (timed) discrete-
event systems without (differential) equations, continuous-time systems consisting of ordi-
nary differential equations with algebraic constraints, and combined discrete-event/continuous-
time systems. It is especially suited to the specification and analysis of complex systems.
This is achieved by means of the process terms for scoping, that integrate abstraction, local
variables, local channels and local recursion definitions; by means of the process definition
and instantiation syntactic extensions that enable process re-use, encapsulation, hierarchi-
cal and/or modular composition of processes; and by means of the different interaction
mechanisms, namely handshake synchronization and synchronous communication that are
mainly intended for discrete-event processes that do not share variables, and shared vari-
ables that are mainly intended for interaction between continuous-time or hybrid processes.

In literature, many formal techniques for reasoning about the correctness of hybrid
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systems have been proposed. The goal of these formal techniques is to prove that the
hybrid system performs as expected. One of the most successful formalisms for hybrid
system verification is the theory of hybrid automata. Since the χ formalism is closely
related to theory of hybrid automata, formal translations between them (in both directions)
have been defined. The translation from hybrid automata to χ aims to show that the χ
formalism is at least as expressive as the theory of hybrid automata. The translation
from a reasonable subset of χ to hybrid automata enables verification of χ specifications
using existing hybrid automata based verification tools. This translation has also been
automated.

As an alternative to analyse χ specifications using hybrid automata based verification
tools, χ simulators can be used to simulate χ specifications. Recently, a symbolic simulator
has been developed for χ.

Like in ACPsrt
hs and HyPA, a set of basic terms (in χ) has been defined into which many

closed terms can be rewritten using χ properties. This is so-called elimination, which
is a useful step for algebraic analysis, because it reduces the complexity of specifications
(without recursion variables) by transforming them into simpler forms. The elimination
result allows to eliminate the parallel composition from many χ specifications, and it can
be regarded as a preprocessing step for the linearization (transformation of a recursive
specification into linear form) of χ processes.
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APPENDIX

A

Proofs of properties of the Chi semantics

Since a deduction rule A may consist of some sub-deduction rules, we use the notation
Rule A.i.s to indicate the sub-deduction rule that has been applied in the proofs, where A
represents a deduction rule number, i represents an index, and s indicates the left or right
result.

Consider the following deduction rule A:

〈p, σ, E〉 ξ,a,ξ′−−−→ 〈
p′11
...
p′1n

, σ′, E〉, 〈q, σ, E〉 ξ,a,ξ′−−−→ 〈
q′11
...
q′1n

, σ′, E〉

〈l, σ, E〉 ξ,a,ξ′−−−→ 〈
l′11
...
l′1n

, σ′, E〉, 〈r, σ, E〉 ξ,a,ξ′−−−→ 〈
r′11
...
r′1n

, σ′, E〉

(A)

Rule A.1.l refers to the following sub-deduction rule of deduction rule A:

〈p, σ, E〉 ξ,a,ξ′−−−→ 〈p′11, σ
′, E〉, 〈q, σ, E〉 ξ,a,ξ′−−−→ 〈q′11, σ

′, E〉

〈l, σ, E〉 ξ,a,ξ′−−−→ 〈l′11, σ
′, E〉

Similarly, Rule A.n.r refers to the following sub-deduction rule of deduction rule A:

〈p, σ, E〉 ξ,a,ξ′−−−→ 〈p′1n, σ′, E〉, 〈q, σ, E〉
ξ,a,ξ′−−−→ 〈q′1n, σ′, E〉

〈r, σ, E〉 ξ,a,ξ′−−−→ 〈r′1n, σ′, E〉

Note that i and/or s can be omitted in the notation Rule A.i.s when there is no such a
sub-deduction rule.

A.1 Proof of Lemma 3.5.1
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Let p and p′ be closed process terms, σ, σ′ be valuations, ξ, ξ′ be extended valuations, E and
E ′ be environments, a be an action, ρ be a trajectory, and t ∈ T . Then

〈p, σ, E〉 ξ,a,ξ′−−−→ 〈 , σ′, E ′〉 ⇒ dom(σ) = dom(σ′) ∧ ξσ = σ ∧ ξ′σ′ = σ′

∧E = E ′,

〈p, σ, E〉 t,ρ7−→ 〈p′, σ′, E ′〉 ⇒ dom(ρ) = [0, t] ∧ ρσ(0) = σ ∧ ρσ′(t) = σ′

∧E = E ′,

〈p, σ, E〉 ξ
 ⇒ ξσ = σ,

where 〈p, σ, E〉 ξ,a,ξ′−−−→ 〈 , σ′, E ′〉 is an abbreviation for 〈p, σ, E〉 ξ,a,ξ′−−−→ 〈X
p′
, σ′, E ′〉 for some

p′.

PROOF. We prove this lemma by induction on the depth of the proof of the transition in
the left-hand-side of the implication and case distinction on the deduction rule applied last
in such a proof. The proof for the equality E = E ′ in the right-hand-side of the implication
is trivial, because the equality E = E ′ holds necessarily according to the result of each χ
deduction rule. Therefore, we do not give the proof of this equality for each rule. In what
follows, we write E ′ as E.

Firstly, we give the proofs for 〈p, σ, E〉 ξ,a,ξ′−−−→ 〈 , σ′, E〉 ⇒ dom(σ) = dom(σ′) ∧ ξσ =
σ ∧ ξ′σ′ = σ′. We do not explicitly separate the base cases and the inductive steps.

The rule applied last is

• Rule 1. Then ξ = σ ∪ ξĊL for some ξĊL ∈ (Ċ ∪ L) 7→ Λ and σ′ = ξ′σ, where ξ′σ is
an abbreviation for ξ′ � dom(σ). The domain of the extended valuation ξ′ is given
by dom(σ) ∪ Ċ ∪ L, and the domain of ξ′ � dom(σ) is dom(ξ′) ∩ dom(σ). Since

dom(σ′) = dom(ξ′σ), it is not hard to see that dom(σ) = dom(σ′). For ξ = σ ∪ ξĊL,
we obtain ξσ = σ. We also have σ′ = ξ′σ′ , because dom(σ) = dom(σ′).

• Rules 5 and 6 are similar to the previous case.

• Rule 10. Then, p = [q] for some q and 〈q, σ,E〉 ξ,a,ξ′−−−→ 〈 , σ′, E〉. By induction we then
have dom(σ) = dom(σ′) ∧ ξσ = σ ∧ ξ′σ′ = σ′.

• Rule 13. Then p ≡ uy q for some u and q, 〈q, σ, E〉 ξ,a,ξ′−−−→ 〈 , σ′, E〉 and ξ |= u. By
induction we then have dom(σ) = dom(σ′) ∧ ξσ = σ ∧ ξ′σ′ = σ′.

• Rule 16. Then p≡ q1 ; q2 for some q1 and q2, 〈q1,σ,E〉
ξ,a,ξ′−−−→〈 ,σ′,E〉 and 〈q2,σ

′,E〉 ξ
′

 .
By induction we then have dom(σ) = dom(σ′) ∧ ξσ = σ ∧ ξ′σ′ = σ′.

• Rule 17. Then p ≡ q1 ; q2 for some q1 and q2, and 〈q1, σ, E〉
ξ,a,ξ′−−−→ 〈 , σ′, E〉. By

induction we then have dom(σ) = dom(σ′) ∧ ξσ = σ ∧ ξ′σ′ = σ′.
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• Rule 20. Then p ≡ b → q for some b and q, 〈q, σ, E〉 ξ,a,ξ′−−−→ 〈 , σ′, E〉 and ξ |= b. By
induction we then have dom(σ) = dom(σ′) ∧ ξσ = σ ∧ ξ′σ′ = σ′.

• Rule 25. Then p ≡ q1 [] q2 for some q1 and q2, and 〈q1, σ, E〉
ξ,a,ξ′−−−→ 〈 , σ′, E〉 and

〈q2, σ, E〉
ξ
 . By induction we then have dom(σ) = dom(σ′) ∧ ξσ = σ ∧ ξ′σ′ = σ′.

• Rule 28. Then p ≡ q1 ‖ q2 for some q1 and q2, and 〈q1, σ, Ea〉
ξ,a,ξ′−−−→ 〈 , σ′, Ea〉 and

〈q2,σ,Eb〉
ξ,b,ξ′−−−→〈 ,σ′,Eb〉 for some (unimportant) actions a and b, and some (unimpor-

tant) environments Ea and Eb. By induction we then have dom(σ) = dom(σ′)∧ ξσ =
σ ∧ ξ′σ′ = σ′.

• Rule 29. Then p≡ q1 ‖ q2 for some q1 and q2, and 〈q1,σ,E〉
ξ
 , 〈q1,σ,E〉

ξ,a,ξ′−−−→〈 ,σ′,E〉
and 〈q2, σ

′, E〉 ξ′

 . By induction we then have dom(σ) = dom(σ′) ∧ ξσ = σ ∧ ξ′σ′ = σ′.

• Rule 32. Then p ≡ ∂A(q) for some A and q, 〈q, σ, E〉 ξ,a,ξ′−−−→ 〈 , σ′, E〉, and a 6∈ A. By
induction we then have dom(σ) = dom(σ′) ∧ ξσ = σ ∧ ξ′σ′ = σ′.

• Rule 35. Then p≡ υH (q) for someH and q, and 〈q,σ,E〉 ξ,a,ξ
′

−−−→ 〈 , σ′,E〉. By induction
we then have dom(σ) = dom(σ′) ∧ ξσ = σ ∧ ξ′σ′ = σ′.

• Rule 38. Then p≡X for some X, E = (C,J,L,H,R) and 〈R(X), σ,E〉 ξ,a,ξ
′

−−−→ 〈 , σ′,E〉.
By induction, we have dom(σ) = dom(σ′) ∧ ξσ = σ ∧ ξ′σ′ = σ′.

• Rule 41. Then E = (C, J, L, H, R) and p ≡ ιJ+(q) for some J + and q, and (C, J ∪
J +, L,H,R)  〈q, σ〉 ξ,a,ξ′−−−→ 〈 , σ′,E〉. By induction we then have dom(σ) = dom(σ′)∧
ξσ = σ ∧ ξ′σ′ = σ′.

• Rule 44. We assume 〈p, σ, E〉 ξx,a,ξy−−−−→ 〈 , σ′, E〉 for some ξx and ξy. Then, we have
E = (C,J,L,H,R), p≡ |[V σdx⊥ ,{x}, {g} | q ]| for some q, σdx⊥ , x, g, (C ∪{x′},J,L∪
{g′},H,R)  〈q[d′,x′,g′/d,x,g], σ ∪ σd′x′〉

ξ,a,ξ′−−−→ 〈 , σ′′〉 for some d,d′,x′,g′, σd′x′ , σ
′′,

σ′ = σ′′σ; ξ, ξ′such that ξx = ξ � (dom(σ) ∪ Ċ ∪ L) and ξy = ξ′ � (dom(σ) ∪ Ċ ∪ L).
Note that the syntactical equality of p′ is not given, because it is irrelevant for this
proof.

– Firstly, we have to show that dom(σ) = dom(σ′′σ). By induction, we know that
dom(σ∪σd′x′) = dom(σ)∪dom(σd′x′) = dom(σ′′). On the other hand, dom(σ′′σ) =
dom(σ′′) ∩ dom(σ) = (dom(σ) ∪ dom(σd′x′)) ∩ dom(σ) = dom(σ), i.e. dom(σ) =
dom(σ′′σ).

– Secondly, we have to show that ξx � dom(σ) = σ. By induction, we know that
ξ � dom(σ∪σd′x′) = σ∪σd′x′ , then ξ � dom(σ) = σ and ξ � dom(σd′x′) = σd′x′ . On
the other hand, ξx � dom(σ) = (ξ � (dom(σ)∪ Ċ ∪L)) � dom(σ) = ξ � dom(σ) = σ,
i.e. ξx � dom(σ) = σ.
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– Thirdly, we have to show that ξy � dom(σ′′σ) = σ′′σ. By induction, we know that
ξ � dom(σ′′) = σ′′. On the other hand, ξy � dom(σ′′σ) = (ξ′ � (dom(σ)∪ Ċ ∪L)) �
dom(σ′′σ) = (ξ′ � (dom(σ) ∪ Ċ ∪ L)) � (dom(σ′′) ∩ dom(σ)) = ξ′ � (dom(σ′′) ∩
dom(σ)). From σ′′ = ξ � dom(σ′′), we obtain σ′′σ = σ′′ � dom(σ) = (ξ � dom(σ′′)) �
dom(σ). It is not hard to see that ξ′ � (dom(σ′′) ∩ dom(σ)) = (ξ � dom(σ′′)) �
dom(σ), which also means ξy � dom(σ′′σ) = σ′′σ.

• Rules 47, 48 and 51. The proofs are similar. We only give the proof for Rule 47.
Then p ≡ |[H {h} | q ]| for some h, q, E = (C, J, L, H, R), (C, J, L, H ∪ {h′}, R) 

〈q[h′/h], σ〉 ξ,b,ξ′−−−→ 〈 , σ′, E〉 for some unimportant action b for this proof, h′ and h ∈
{h′} for some h. By induction we then have dom(σ) = dom(σ′) ∧ ξσ = σ ∧ ξ′σ′ = σ′.

The rules that have not been considered could not have been applied last since they have
as conclusion a time transition or a consistency predicate.

Secondly, we give the proofs for 〈p, σ, E〉 t,ρ7−→ 〈p′, σ′, E〉 ⇒ dom(ρ) = [0, t] ∧ ρσ(0) =
σ ∧ ρσ′(t) = σ′. We do not explicitly separate the base cases and the inductive steps.

The rule applied last is

• Rule 3. Then, p ≡ u ≡ p′ for some u, E = (C, J, L,H,R), ρ ∈ ΩFG(σ,C, L, u, t), and
σ′ = ρσ(t). Then, by the definition of ΩFG , dom(ρ) = [0, t], and ρ(0) � dom(σ) =
ρσ(0) = σ necessarily. From σ′ = ρσ(t), we know that dom(σ) = dom(σ′). Therefore,
we also have σ′ = ρσ′(t).

• Rule 11. Then p≡ [q]≡ p′ for some q, ρ∈ΩσEt and σ′ = ρσ(t). Then, by the definition
of ΩFG , dom(ρ) = [0, t], and ρ(0) � dom(σ) = ρσ(0) = σ necessarily. From σ′ = ρσ(t),
we know that dom(σ) = dom(σ′). Therefore, we have also σ′ = ρσ′(t).

• Rule 14. Then p ≡ uy q for some u and q, 〈q, σ,E〉 t,ρ7−→ 〈p′, σ′, E〉 and ρ(0) |= u. By
induction we then have dom(ρ) = [0, t] ∧ ρσ(0) = σ ∧ ρσ′(t) = σ′.

• Rule 18. Then p ≡ q1 ; q2 for some q1 and q2, 〈q1, σ,E〉
t,ρ7−→ 〈q′1, σ′, E〉 for some q′1 and

p′ ≡ q′1 ; q2. By induction we then have dom(ρ) = [0, t] ∧ ρσ(0) = σ ∧ ρσ′(t) = σ′.

• Rule 21. Then p≡ b→ q for some b and q, 〈q,σ,E〉 t,ρ7−→ 〈q′, σ′,E〉 for some q′ such that
p′ ≡ b→ q′, and ∀s∈[0,t] ρ(s) |= b. By induction we then have dom(ρ) = [0, t]∧ ρσ(0) =
σ ∧ ρσ′(t) = σ′.

• Rule 22. Then p ≡ b → q ≡ p′ for some b and q, ρ ∈ ΩσEt and σ′ = ρσ(t) (some
irrelevant information for the proof is omitted). By the definition of ΩFG , dom(ρ) =
[0, t], and ρ(0) � dom(σ) = ρσ(0) = σ necessarily. From σ′ = ρσ(t), we know that
dom(σ) = dom(σ′). Therefore, we have also σ′ = ρσ′(t).

• Rule 26. Then p≡ q1 [] q2 for some q1 and q2, 〈q1,σ,E〉
t,ρ7−→ 〈q′1,σ′,E〉 and 〈q2,σ,E〉

t,ρ7−→
〈q′2, σ′, E〉 for some q′1 and q′2, and p′ ≡ q′1 [] q′2. By induction we then have dom(ρ) =
[0, t] ∧ ρσ(0) = σ ∧ ρσ′(t) = σ′.
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• Rule 30. Then p≡ q1 ‖ q2 for some q1 and q2, 〈q1,σ,E〉
t,ρ7−→ 〈q′1,σ′,E〉 and 〈q2,σ,E〉

t,ρ7−→
〈q′2, σ′, E〉, for some q′1 and q′2, and p′ ≡ q′1 ‖ q′2. By induction we then have dom(ρ) =
[0, t] ∧ ρσ(0) = σ ∧ ρσ′(t) = σ′.

• Rule 33. Then p ≡ ∂A(q) for some A and q, 〈q, σ, E〉 t,ρ7−→ 〈q′, σ, E〉 for some q′, and
p′ ≡ ∂A(q′). By induction we then have dom(ρ) = [0, t] ∧ ρσ(0) = σ ∧ ρσ′(t) = σ′.

• Rule 37. Then p ≡ υH (q) for some H and q, and 〈q, σ, E〉 t,ρ7−→ 〈q′, σ, E〉 for some q′,
and p′ ≡ υH (q′) (some irrelevant information for this proof is omitted). By induction
we then have dom(ρ) = [0, t] ∧ ρσ(0) = σ ∧ ρσ′(t) = σ′.

• Rule 39. Then p≡X for some X, E = (C,J,L,H,R) and 〈R(X), σ,E〉 t,ρ7−→ 〈p′, σ′,E〉.
By induction we then have dom(ρ) = [0, t] ∧ ρσ(0) = σ ∧ ρσ′(t) = σ′.

• Rule 42. Then p≡ ιJ+(q) for some q and set J +, E= (C,J,L,H,R), (C, J ∪ J +, L,H,R)

〈q, σ〉 t,ρ7−→ 〈q′, σ′〉 for some q′, and p′ ≡ ιJ+(q′). By induction we then have dom(ρ) =
[0, t] ∧ ρσ(0) = σ ∧ ρσ′(t) = σ′.

• Rule 45. We assume 〈p, σ,E〉 t,ρ′7−→ 〈p′, σ′,E〉 for some ρ′. Then E = C,J ∪ J +,L,H,R,
p ≡ |[V σdx⊥ , {x}, {g} | q ]| for some q, σdx⊥ ,x,g, (C ∪ {x′},J, L ∪ {g′},H, R) `
〈q[d′,x′, g′/d,x, g], σ ∪ σd′x′〉

t,ρ7−→ 〈q′, σ′′〉 for some q′, d, d′, x′, g′, σd′x′ , σ
′′, σ′ = σ′′σ,

and ρ′ = ρσĊL = ρ ↓ (dom(σ)∪ Ċ ∪L). Note that the syntactical equality of p′ is not
given, because it is irrelevant for this proof.

– Firstly, we have to show that dom(ρ ↓ (dom(σ) ∪ Ċ ∪ L)) = [0, t]. By induction
we know that dom(ρ) = [0, t]. On the other hand, we have dom(ρ ↓ (dom(σ) ∪
Ċ ∪ L)) = dom(ρ) = [0, t].

– Secondly, we have to show that ρ′ ↓ dom(σ)(0) = (ρ ↓ (dom(σ) ∪ Ċ ∪ L)) ↓
dom(σ)(0) = σ. By induction we know that ρ ↓ (dom(σ ∪ σd′x′))(0) = σ ∪ σd′x′ .
Then, we have also ρ ↓ dom(σ)(0) = σ and ρ ↓ dom(σd′x′)(0) = σd′x′ . On the other
hand, ρ′ ↓ dom(σ)(0) = (ρ ↓ (dom(σ)∪ Ċ ∪L)) ↓ dom(σ)(0) = ρ ↓ dom(σ)(0) = σ.

– Thirdly, we have to show that ρ′ ↓ dom(σ′′σ)(t) = (ρ ↓ (dom(σ) ∪ Ċ ∪ L)) ↓
dom(σ′′σ)(t) = σ′′σ. By induction we know that ρ ↓ dom(σ′′)(t) = σ′′. Then,
we have (ρ ↓ dom(σ′′)) ↓ dom(σ)(t) = σ′′ ↓ dom(σ) = σ′′σ. On the other hand,
ρ′ ↓ dom(σ′′σ)(t) = ((ρ ↓ (dom(σ) ∪ Ċ ∪ L)) ↓ dom(σ′′σ)(t) = ((ρ ↓ (dom(σ) ∪ Ċ ∪
L)) ↓ (dom(σ′′) ∩ dom(σ)))(t) = ρ ↓ (dom(σ′′) ∩ dom(σ))(t) = (ρ ↓ dom(σ′′)) ↓
dom(σ)(t) = σ′′σ.

• Rules 49 and 52. The proofs are similar. We only give the proof for Rule 49.
Then p ≡ |[H {h} | q ]| for some h, q, E = (C, J, L, H, R), (C, J, L, H ∪ {h′}, R) 

〈q[h′/h], σ〉 t,ρ7−→ 〈q′, σ′〉 for some q′. Note that the syntactical equality of p′ is not
given, because it is irrelevant for this proof. By induction we then have dom(ρ) =
[0, t] ∧ ρσ(0) = σ ∧ ρσ′(t) = σ′.
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The rules that have not been considered could not have been applied last since they con-
clude an action transition or a consistency predicate.

The proof for 〈p, σ, E〉 ξ
 ⇒ ξσ = σ is trivial. According to all χ deduction rules for

consistency predicates, ξ = σ ∪ ξĊL for some ξĊL ∈ (Ċ ∪L) 7→ Λ necessarily. Then we have
ξσ = σ.

A.2 Proof of Lemma 3.5.2

Let p and p′ be closed process terms, σ and σ′ be valuations, E and E ′ be environments, ξ
and ξ′ be extended valuations and a be an action. Then

〈p, σ, E〉 ξ,a,ξ′−−−→ =⇒ 〈p, σ, E〉 ξ
 ,

where 〈p, σ,E〉 ξ,a,ξ′−−−→ is an abbreviation for 〈p, σ,E〉 ξ,a,ξ′−−−→ 〈X
p′
, σ′, E ′〉 for some p′, σ′, and

E ′.

PROOF. We prove this lemma by induction on the depth of the proof of 〈p, σ, E〉 ξ,a,ξ′−−−→
using case distinction based on the deduction rule applied last. We do not explicitly
separate the base cases and the inductive steps.

The rule applied last is

• Rule 1. Then p≡W : r� la for someW , r, la, ξ= σ∪ξĊL for some ξĊL ∈ (Ċ∪L) 7→Λ,

and a = la. Therefore, by Rule 2, we have 〈W : r � la, σ, E〉
ξ
 .

• Rule 5. Then p ≡ h !! en for some h and en, ξ = σ ∪ ξĊL for some ξĊL ∈ (Ċ ∪L) 7→ Λ,

and a = isa(h, [ξ(en)]). Therefore, by Rule 7, we have 〈h !! en, σ, E〉
ξ
 .

• Rule 6. Then p≡ h??xn for some h and xn, ξ = σ∪ ξĊL for some ξĊL ∈ (Ċ ∪L) 7→ Λ,

and a = ira(h, [cn], {xn}) for some cn. Then, by Rule 8, we have 〈h ?? xn, σ, E〉
ξ
 .

• Rule 10. Then, p = [q] for some q, E = (C, J, L, H, R) and 〈q, σ, E〉 ξ,a,ξ′−−−→ . By

induction we then have 〈q, σ, E〉 ξ
 . Then, by Rule 12, we have 〈[q], σ, E〉 ξ

 , and

ξ = σ ∪ ξĊL for some ξĊL ∈ (Ċ ∪ L) 7→ Λ.

• Rule 13. Then p ≡ uy q for some u and q, 〈q, σ,E〉 ξ,a,ξ′−−−→ and ξ |= u. By induction

〈q, σ, E〉 ξ
 . Then, by Rule 15, we have 〈uy q, σ, E〉 ξ

 .

• Rule 16. Then p≡ q1 ; q2 for some q1 and q2, 〈q1,σ,E〉
ξ,a,ξ′−−−→〈X,σ′,E ′〉 and 〈q2,σ

′,E〉 ξ
′

 .

By induction 〈q1, σ, E〉
ξ
 . Then, by Rule 19, we have 〈q1 ; q2, σ, E〉

ξ
 .
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• Rule 17. Then p ≡ q1 ; q2 for some q1 and q2, and 〈q1, σ,E〉
ξ,a,ξ′−−−→ 〈q′1, σ′, E ′〉 for some

q′1. By induction 〈q1, σ, E〉
ξ
 . Then, by Rule 19, we have 〈q1 ; q2, σ, E〉

ξ
 .

• Rule 20. Then p ≡ b→ q for some b and q, 〈q, σ, E〉 ξ,a,ξ′−−−→ and ξ |= b. By induction

〈q, σ, E〉 ξ
 . Then, by Rule 23, we have 〈b→ q, σ, E〉 ξ

 .

• Rule 25. Then p ≡ q1 [] q2 for some q1 and q2, and 〈q1, σ, E〉
ξ,a,ξ′−−−→ and 〈q2, σ, E〉

ξ
 .

By induction 〈q1, σ, E〉
ξ
 . Then, by Rule 27, we have 〈q1 [] q2, σ, E〉

ξ
 .

• Rule 28. Then p≡ q1 ‖ q2 for some q1 and q2, and 〈q1,σ,Ea〉
ξ,a,ξ′−−−→ and 〈q2,σ,Eb〉

ξ,b,ξ′−−−→
for some (unimportant) actions a and b, and some (unimportant) environments Ea

and Eb. By induction 〈q1, σ, Ea〉
ξ
 and 〈q2, σ, Eb〉

ξ
 . Then, by Rule 31 and by

Lemma 3.5.6, we have 〈q1 ‖ q2, σ, Ea〉
ξ
 .

• Rule 29. Then p ≡ q1 ‖ q2 for some q1 and q2, and 〈q1, σ, E〉
ξ,a,ξ′−−−→ and 〈q2, σ, E〉

ξ
 .

By induction 〈q1, σ, E〉
ξ
 . Then, by Rule 31, we have 〈q1 [] q2, σ, E〉

ξ
 .

• Rule 32. Then p ≡ ∂A(q) for some A and q, 〈q, σ,E〉 ξ,a,ξ′−−−→ , and a 6∈ A. By induction

we then have 〈q, σ, E〉 ξ
 . Using Rule 34, we obtain 〈∂A(q), σ, E〉 ξ

 .

• Rule 35. Then p ≡ υH (q) for some H and q, and 〈q, σ, E〉 ξ,a,ξ′−−−→ . By induction we

then have 〈q, σ, E〉 ξ
 . Using Rule 36, we obtain 〈υH (q), σ, E〉 ξ

 .

• Rule 38. Then p ≡ X for some X and E = (C, J, L,H,R) and 〈R(X),σ,E 〉 ξ,a,ξ′−−−→ .

By induction, we have 〈R(X), σ, E〉 ξ
 . Then, by Rule 40, 〈X, σ,E〉 ξ

 .

• Rule 41. Then E = (C, J, L, H, R) and p ≡ ιJ+(q) for some J + and q, and (C, J ∪
J +, L, H, R)  〈q, σ〉 ξ,a,ξ′−−−→ . By induction we have (C, J ∪ J +, L, H, R)  〈q, σ〉 ξ

 .

By Rule 43, we have 〈ιJ+(q), σ, E〉 ξ
 .

• Rule 44. We assume 〈p, σ, E〉 ξx,a,ξy−−−−→ for some ξx, and ξy. Then, we have
that E = (C, J, L, H, R), p ≡ |[V σdx⊥ , {x}, {g} | q ]| for some q, σdx⊥ , x, g, and

(C ∪ {x′}, J, L ∪ {g′}, H,R)  〈q[d′,x′,g′/d,x,g], σ ∪ σd′x′〉
ξ,a,ξ′−−−→ for some d, d′, x′,

g′, σd′x′ , ξ, ξ
′ such that ξx = ξ � (dom(σ) ∪ Ċ ∪ L) and ξy = ξ′ � (dom(σ) ∪ Ċ ∪ L).

By induction we have (C ∪ {x′}, J, L ∪ {g′}, H,R)  〈q[d′,x′,g′/d,x,g], σ∪σd′x′〉
ξ
 .

Using Rule 46, we obtain (C, J, L,H,R)  〈|[V σdx⊥ , {x}, {g} | p ]|, σ〉 ξ�(dom(σ)∪Ċ∪L)
 .

• Rules 47, 48 and 51. The proofs are similar. We only give the proof for Rule 47.
Then p ≡ |[H {h} | q ]| for some h, q, E = (C, J, L, H, R), 〈q[h′/h], σ, (C,J,L,H ∪
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{h′},R)〉 ξ,b,ξ′−−−→ for some unimportant action b for this proof, h′ and h ∈ {h′} for

some h. By induction we then 〈q[h′/h], σ,(C,J,L,H ∪ {h′},R)〉 ξ
 . Using Rule 50, we

obtain (C, J, L,H,R)  〈|[H {h} | q ]|, σ〉 ξ
 .

The rules that have not been considered could not have been applied last since they have
as conclusion a time transition or a consistency predicate.

A.3 Proof of Lemma 3.5.3

Let p and p′ be closed process terms, σ and σ′ be valuations, E and E ′ be environments,
t ∈ T , and ρ be a trajectory. Then,

〈p, σ, E〉 t,ρ7−→ 〈p′, σ′, E ′〉 ⇒ 〈p, σ, E〉 ρ(0)
 .

PROOF. We prove this lemma by induction on the depth of the proof of 〈p, σ, E〉 t,ρ7−→
〈p′, σ′, E ′〉 using case distinction based on the deduction rule applied last. We do not
explicitly separate the base cases and the inductive steps.

The rule applied last is

• Rule 3. Then, p ≡ u ≡ p′ for some u, E = (C, J, L, H, R), ρ ∈ ΩFG(σ, C, L, u, t).

Then, by definition, ρ(0) |= u and ρ(0) � dom(σ) = σ. Thus ρ(0) = σ ∪ ξĊL for some

ξĊL ∈ (Ċ ∪ L) 7→ Λ. Therefore, by Rule 4, we have 〈u, σ, E〉 ρ(0)
 .

• Rule 11. Then p ≡ [q] for some q and ρ(0) ∈ ΩσEt. Then, by definition, ρ(0) �
dom(σ) = σ. Thus ρ(0) = σ ∪ ξĊL for some ξĊL ∈ (Ċ ∪ L) 7→ Λ. Therefore, by Rule

12, 〈[q], σ, E〉 ρ(0)
 .

• Rule 14. Then p ≡ u y q for some u and p, 〈q, σ, E〉 t,ρ7−→ 〈p′, σ′, E ′〉 and ρ(0) |= u.

Therefore, by induction, 〈q, σ, E〉 ρ(0)
 . Then, by Rule 15, 〈uy q, σ, E〉 ρ(0)

 .

• Rule 18. Then p ≡ q1 ; q2 for some q1 and q2, 〈q1, σ, E〉
t,ρ7−→ 〈q′1, σ′, E ′〉 for some q′1,

and p′ ≡ q′1 ; q2. By induction we have 〈q1, σ, E〉
ρ(0)
 , and thus by application of Rule

19 we have 〈q1 ; q2, σ, E〉
ρ(0)
 .

• Rule 21. Then p ≡ b→ q for some b and q, 〈q, σ, E〉 t,ρ7−→ 〈q′, σ′, E ′〉 for some q′ such

that p′ ≡ b→ q′, and ∀s∈[0,t] ρ(s) |= b. By induction we have 〈q, σ, E〉 ρ(0)
 . Since we

also have ρ(0) |= b, we have, by Rule 23, 〈b→ q, σ, E〉 ρ(0)
 .
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• Rule 22. Then p ≡ b→ q for some b and q, ρ ∈ ΩσEt, ∃s∈[0,t] ρ(s) |= ¬b, ρ(0) |= b =⇒
〈q, σ, E〉 0,ρ�{0}7−→ 〈q′, σ′′, E ′′〉 for some q′, σ′′ and E ′′. In case ρ(0) |= ¬b, we also have

σ ∪ ξĊL |= ¬b for some ξĊL ∈ (Ċ ∪ L) 7→ Λ. Then, by Rule 24, 〈b → q, σ, E〉 ρ(0)
 .

In case ρ(0) |= b, we have 〈q, σ, E〉 0,ρ�{0}7−→ 〈q′, σ′′, E ′′〉. By induction we then have

〈q, σ,E〉 ρ�{0}(0)
 , which gives 〈q, σ,E〉 ρ(0)

 . By Rule 23 we then have 〈b→ q, σ,E〉 ρ(0)
 .

• Rule 26. Then p ≡ q1 [] q2 for some q1 and q2, 〈q1, σ, E〉
t,ρ7−→ 〈q′1, σ′, E ′〉 for some

q′1, 〈q2, σ, E〉
t,ρ7−→ 〈q′2, σ′, E ′〉 for some q′2, and p′ ≡ q′1 [] q′2. By induction we have

〈q1, σ, E〉
ρ(0)
 and 〈q2, σ, E〉

ρ(0)
 , and thus by application of Rule 27 we have 〈q1 []

q2, σ, E〉
ρ(0)
 .

• Rule 30. Then p ≡ q1 ‖ q2 for some q1 and q2, 〈q1, σ, E〉
t,ρ7−→ 〈q′1, σ′, E ′〉 for some

q′1, 〈q2, σ, E〉
t,ρ7−→ 〈q′2, σ′, E ′〉 for some q′2, and p′ ≡ q′1 ‖ q′2. By induction we have

〈q1, σ, E〉
ρ(0)
 and 〈q2, σ, E〉

ρ(0)
 , and thus by application of Rule 31 we have 〈q1 ‖

q2, σ, E〉
ρ(0)
 .

• Rule 33. Then p ≡ ∂A(q) for some A and q, 〈q, σ, E〉 t,ρ7−→ 〈q′, σ, E〉 for some q′,

and p′ ≡ ∂A(q′). By induction we then have 〈q, σ, E〉 ρ(0)
 . By Rule 34, we obtain

〈∂A(q), σ〉 ρ(0)
 .

• Rule 37. Then p ≡ υH (q) for some H and q, and 〈q, σ, E〉 t,ρ7−→ 〈q′, σ, E〉 for some q′,
and p′ ≡ υH (q′) (some irrelevant information for the proof is omitted). By induction

we then have 〈q, σ, E〉 ρ(0)
 . By Rule 36, we obtain 〈υH (q), σ〉 ρ(0)

 .

• Rule 39. Then p≡X for some X, E = (C,J,L,H,R) and 〈R(X), σ,E〉 t,ρ7−→ 〈p′, σ′,E ′〉.
As the proof for 〈R(X), σ,E〉 t,ρ7−→ 〈p′, σ′,E ′〉 has smaller depth, by induction we have

〈R(X), σ, E〉 ρ(0)
 . Then, by Rule 40, we have 〈X, σ,E〉 ρ(0)

 as well.

• Rule 42. Then p≡ ιJ+(q) for some term q and set J +, E = (C,J,L,H,R), (C,J ∪J +,L

,H,R)  〈q, σ, 〉 t,ρ7−→ 〈q′, σ′〉 for some q′, and p′ ≡ ιJ+(q′). By induction we then have

(C, J ∪ J +, L,H,R)  〈q, σ〉 ρ(0)
 . From Rule 43, we deduce 〈ιJ+(q), σ, E〉 ρ(0)

 .

• Rule 45. Then p ≡ |[V σdx⊥ , {x}, {g} | q ]| for some q, E = (C,J,L,H,R), σdx⊥ , x, g,

(C ∪ {x′}, J, L ∪ {g′}, H,R)  〈q[d′,x′, g′/d,x, g], σ ∪ σd′x′〉
t,ρ7−→ 〈q′, σ′′〉 for some ρ,

q′, d, d′, x′, g′, σd′x′ , σ
′′, σ′ = σ′′σ, and ρ′ = ρσĊL = ρ ↓ (dom(σ) ∪ Ċ ∪ L). Note that

the syntactical equality of p′ is not given, because it is irrelevant for this proof. By in-

duction we then have (C ∪ {x′}, J, L ∪ {g′}, H,R) 〈q[d′,x′,g′/d,x,g], σ∪σd′x′〉
ρ(0)
 .

By Rule 46, we obtain (C, J, L,H,R)  〈|[V σdx⊥ , {x}, {g} | q ]|, σ〉 ρ↓(dom(σ)∪Ċ∪L)(0)
 .
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• Rules 49 and 52. The proofs are similar. We only give the proof for Rule 49.
Then p ≡ |[H {h} | q ]| for some h, q, E = (C, J, L, H, R), (C, J, L, H ∪ {h′}, R) 

〈q[h′/h], σ〉 t,ρ7−→ 〈q′, σ′〉 for some q′. Note that the syntactical equality of p′ is not
given, because it is irrelevant for this proof. By induction we then have 〈q[h′/h],σ, (C,

J, L,H ∪ {h′}, R) 〉 ρ(0)
 . By Rule 50, we obtain (C, J, L,H,R)  〈|[H {h} | q ]|, σ〉 ρ(0)

 .

The rules that have not been considered could not have been applied last since they have
as conclusion an action transition or a consistency predicate.

A.4 Proof of Lemma 3.5.4

Let p and p′ be closed process terms, σ and σ′ be valuations, E and E ′ be environments, ξ
and ξ′ be extended valuations and a be an action. Then

〈p, σ, E〉 ξ,a,ξ′−−−→ 〈p′, σ′, E ′〉 =⇒ 〈p′, σ′, E ′〉 ξ′

 .

PROOF. We prove this lemma by induction on the depth of the proof of 〈p, σ, E〉 ξ,a,ξ′−−−→
〈p′, σ′, E ′〉 using case distinction based on the deduction rule applied last. We do not
explicitly separate the base cases and the inductive steps. We know that E = E ′ (see
Lemma 3.5.1), in the proofs, we may write E ′ as E.

The rule applied last is

• Rule 10.2. Then, p = [q] for some q such that p′ ≡ q′, and 〈q, σ, E〉 ξ,a,ξ′−−−→ 〈q′, σ′, E ′〉
for some q′. By induction we then have 〈q′, σ′, E ′〉 ξ′

 , i.e. 〈p′, σ′, E ′〉 ξ′

 .

• Rule 13.2. Then p ≡ u y q for some u and q, 〈q, σ, E〉 ξ,a,ξ′−−−→ 〈q′, σ′, E ′〉 for some q′

such thatp′ ≡ q′ and ξ |= u. By induction 〈q′, σ′, E ′〉 ξ′

 , i.e. 〈p′, σ′, E ′〉 ξ′

 .

• Rule 16. Then p≡ q1 ; q2 for some q1 and q2, 〈q1,σ,E〉
ξ,a,ξ′−−−→〈X,σ′,E ′〉 and 〈q2,σ

′,E ′〉 ξ
′

 .
Observe that p′ ≡ q2.

• Rule 17. Then p ≡ q1 ; q2 for some q1 and q2, and 〈q1, σ,E〉
ξ,a,ξ′−−−→ 〈q′1, σ′, E ′〉 for some

q′1 such that p′ ≡ q′1 ; q2. By induction 〈q′1, σ′, E ′〉
ξ′

 . Then, by Rule 19, we have

〈q′1 ; q2, σ
′, E ′〉 ξ′

 , i.e. 〈p′, σ′, E ′〉 ξ′

 .

• Rule 20.2. Then p ≡ b → q for some b and q, 〈q, σ, E〉 ξ,a,ξ′−−−→ 〈q′, σ′, E ′〉 for some q′

such that p′ ≡ q′ and ξ |= b. By induction 〈q′, σ′, E ′〉 ξ′

 , i.e. 〈p′, σ′, E ′〉 ξ′

 .

• Rule 25.2.l. Then p ≡ q1 [] q2 for some q1, q2, and 〈q1, σ,E〉
ξ,a,ξ′−−−→ 〈q′1, σ′, E ′〉 for some

q′1 such that p′ ≡ q′1 and 〈q2, σ, E〉
ξ
 . By induction 〈q′1, σ′, E ′〉

ξ′

 , i.e. 〈p′, σ′, E ′〉 ξ′

 .
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• Rule 25.2.r. The proof is similar to the case that Rule 25.2.l has been applied.

• Rule 28 and its sub-deduction rules. Rules 28.1.l and 28.1.r cannot be applied,
because Rules 28.1.l and 28.1.r are defined for termination transitions. Since the
proofs for the cases that other rules have been applied are similar, we only give the
proofs for a (general) case that p ≡ q1 ‖ q2 for some q1 and q2, and we get (from the

hypothesis) 〈q1, σ,Ea〉
ξ,a,ξ′−−−→ 〈q′1, σ′, E ′a〉 and 〈q2, σ,Eb〉

ξ,b,ξ′−−−→ 〈q′2, σ′, E ′b〉 for some q′1, q
′
2

such that p′ ≡ q′1 ‖ q′2, some (unimportant) actions a= ira(h,cs ,W ) and b= isa(h,cs),
and some (unimportant) environments Ea = (C,J,L,H,R), Eb = (C,J ∪W,L,H,R),

E ′a and E ′b. By induction 〈q′1, σ′, E ′a〉
ξ′

 and 〈q′2, σ′, E ′b〉
ξ′

 . Then, by Rule 31 and by

Lemma 3.5.6, we have 〈q′1 ‖ q′2, σ′, E ′a〉
ξ′

 , i.e. 〈p′, σ′, E ′〉 ξ′

 .

• Rule 29.1.l. Then p ≡ q1 ‖ q2 for some q1,q2, 〈q2, σ, E〉
ξ
 , 〈q1, σ, E〉

ξ,a,ξ′−−−→ 〈X, σ′, E ′〉,
and 〈q2, σ

′, E ′〉 ξ′

 . Observe that p′ ≡ q2, i.e. 〈p′, σ′, E ′〉 ξ′

 .

• Rule 29.1.r. The proofs are similar to the case that Rule 29.1.l has been applied.

• Rule 29.2.l. Then p ≡ q1 ‖ q2 for some q1,q2, 〈q2, σ, E〉
ξ
 , 〈q1, σ, E〉

ξ,a,ξ′−−−→ 〈q′1, σ′, E ′〉
for some q′1 such that p′ ≡ q′1 ‖ q2, and 〈q2, σ

′, E ′〉 ξ′

 . By induction 〈q′1, σ′, E ′〉
ξ′

 .

Then, by Rule 31, we have 〈q′1 ‖ q2, σ
′, E ′〉 ξ′

 , i.e. 〈p′, σ′, E ′〉 ξ′

 .

• Rule 29.2.r. The proof is similar to the case that Rule 29.2.l has been applied.

• Rule 32.2. Then p ≡ ∂A(q) for some A and q, 〈q, σ, E〉 ξ,a,ξ′−−−→ 〈q′, σ′, E ′〉 for some q′

such that p′ ≡ ∂A(q′), and a 6∈ A. By induction we then have 〈q′, σ′, E ′〉 ξ′

 . Using

Rule 34, we obtain 〈∂A(q′), σ′, E ′〉 ξ′

 , i.e. 〈p′, σ′, E ′〉 ξ′

 .

• Rule 35.2. Then p ≡ υH (q) for some H and q, and 〈q, σ,E〉 ξ,a,ξ′−−−→ 〈q′, σ′, E ′〉 for some

q′ such that p′ ≡ υH (q′). By induction we then have 〈q′, σ′, E ′〉 ξ′

 . Using Rule 36,

we obtain 〈υH (q′), σ′, E ′〉 ξ′

 , i.e. 〈p′, σ′, E ′〉 ξ′

 .

• Rule 38.2. Then p ≡ X for some X and E = (C, J, L,H,R) and 〈R(X), σ, E〉 ξ,a,ξ′−−−→
〈p′, σ′, E ′〉 for some q′ such that p′ ≡ q′. By induction, we have 〈q′, σ′, E ′〉 ξ

 , i.e.

〈p′, σ′, E ′〉 ξ′

 .

• Rule 41.2. Then E = (C, J, L,H,R) and p ≡ ιJ+(q) for some J + and q, and (C, J ∪
J +, L,H,R)  〈q, σ〉 ξ,a,ξ′−−−→ 〈q′, σ′〉 for some q′ such that p′ ≡ ιJ+(q′). By induction we

have (C, J ∪ J +, L, H, R)  〈q′, σ′〉 ξ′

 . By Rule 43, we have 〈ιJ+(q′), σ′, E ′〉 ξ′

 , i.e.

〈p′, σ′, E ′〉 ξ′

 .
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• Rule 44.2. We assume 〈p, σ, E〉 ξx,a,ξy−−−−→ 〈p′, σ′, E ′〉 for some ξx, and ξy. Then, we
have that E = (C, J, L,H,R), p ≡ |[V σdx⊥ , {x}, {g} | q ]| for some q, σdx⊥ , x, g, and

(C ∪ {x′}, J, L ∪ {g′}, H,R)  〈q[d′, x′, g′/d, x, g], σ ∪ σd′x′〉
ξ,a,ξ′−−−→ 〈q′, σ′′〉 for some

q′,σ′′ such that p′ ≡ |[V (σ′ � {d′,x′}) [d,x/d′,x′], {x}, {g} | q′[d,x,g/d′,x′,g′] ]| and
σ′ = σ′′ � dom(σ), d, d′, x′, g′, σd′x′ , ξ, ξ

′ such that ξx = ξ � (dom(σ) ∪ Ċ ∪ L) and
ξy = ξ′ � (dom(σ) ∪ Ċ ∪ L). By induction we have (C ∪ {x′}, J, L ∪ {g′}, H,R) 

〈q′, σ′′〉 ξ′

 . We can also have (C ∪ {x′}, J, L ∪ {g′}, H,R)  〈q′[d′,x′,g′/d,x,g], σ′ ∪
σd′x′〉

ξ′

 (because variables d′,x′,g′ are fresh and σ′′ = σ′ ∪ σd′x′ . Using Rule 46, we

obtain (C, J, L,H,R)  〈|[V σdx⊥ , {x}, {g} | q′ ]|, σ′〉 ξ
′�(dom(σ)∪Ċ∪L)

 . We can further
get (C, J, L,H,R)  〈|[V (σ′ � {d′, x′})[d, x/d′, x′], {x}, {g} | q′[d, x, g/d′, x′, g′] ]|
, σ′〉 ξ

′�(dom(σ)∪Ċ∪L)
 , i.e. 〈p′, σ′, E ′〉 ξ′

 .

• Rules 47.2, 48.2 and 51.2. The proofs are similar. We only give the proof for Rule
47.2. Then p≡ |[H {h} | q ]| for some h, q, E = (C,J,L,H,R), 〈q[h′/h], σ, (C,J,L,H ∪
{h′},R)〉 ξ,b,ξ′−−−→ 〈q′, σ′〉 for some q′ such that p′ ≡ |[H {h} | q′[h′/h] ]|, unimportant
action b for this proof, h′ and h ∈ {h′} for some h. By induction we then have

〈q′, σ′,(C,J,L,H ∪ {h′},R)〉 ξ′

 . We can also have 〈q′[h′/h], σ′,(C,J,L,H ∪ {h′},R)〉 ξ′

 
(because channels h′ are fresh). Using Rule 50, we obtain (C, J, L,H,R)  〈|[H {h} |
q′ ]|, σ′〉 ξ′

 . It is not hard to see that we can have (C, J, L,H,R)  〈|[H {h} | q′[h′/h] ]|
, σ′〉 ξ′

 , i.e. 〈p′, σ′, E ′〉 ξ′

 .

The rules that have not been considered could not have been applied last since they con-
clude a termination transition, a time transition or a consistency predicate.

A.5 Proof of Lemma 3.5.5

Let p and p′ be closed process terms, σ and σ′ be valuations, E and E ′ be environments,
t ∈ T , and ρ be a trajectory. Then,

〈p, σ, E〉 t,ρ7−→ 〈p′, σ′, E ′〉 ⇒ 〈p′, σ′, E ′〉 ρ(t)
 .

PROOF. We prove this lemma by induction on the depth of the proof of 〈p, σ, E〉 t,ρ7−→
〈p′, σ′, E ′〉 using case distinction based on the deduction rule applied last. We do not
explicitly separate the base cases and the inductive steps. We know that E = E ′ (see
Lemma 3.5.1), in the proofs, we may write E ′ as E.

The rule applied last is

• Rule 3. Then, p≡ u≡ p′ for some u, E = (C,J,L,H,R), ρ ∈ ΩFG(σ,C,L,u, t). Then,
by definition, ρ(t) |= u and ρ(t) � dom(σ′) = σ′ (see also Lemma 3.5.1). Thus ρ(t) =
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A.5. Proof of Lemma 3.5.5

σ′ ∪ ξĊL for some ξĊL ∈ (Ċ ∪ L) 7→ Λ. Therefore, by Rule 4, we have 〈u, σ′, E ′〉 ρ(t)
 ,

i.e. 〈p′, σ′, E ′〉 ρ(t)
 .

• Rule 11. Then p ≡ [q] ≡ p′ for some q and ρ(t) ∈ ΩσEt. Then, by definition, ρ(t) �
dom(σ′) = σ′ (see also Lemma 3.5.1). Thus ρ(t) = σ′ ∪ ξĊL for some ξĊL ∈ (Ċ ∪L) 7→
Λ. Therefore, by Rule 12, 〈[q], σ′, E ′〉 ρ(t)

 , i.e. 〈p′, σ′, E ′〉 ρ(t)
 .

• Rule 14. Then p ≡ uy q for some u and q, 〈q, σ,E〉 t,ρ7−→ 〈q′, σ′, E ′〉 for some q′ such

that p′ ≡ q′, and ρ(0) |= u. By induction, 〈q′, σ′, E ′〉 ρ(t)
 , i.e. 〈p′, σ′, E ′〉 ρ(t)

 .

• Rule 18. Then p ≡ q1 ; q2 for some q1 and q2, 〈q1, σ, E〉
t,ρ7−→ 〈q′1, σ′, E ′〉 for some q′1,

and p′ ≡ q′1 ; q2. By induction we have 〈q′1, σ′,E ′〉
ρ(t)
 , and thus by application of Rule

19 we have 〈q′1 ; q2, σ
′, E ′〉 ρ(t)

 , i.e. 〈p′, σ′, E ′〉 ρ(t)
 .

• Rule 21. Then p ≡ b→ q for some b and q, 〈q, σ, E〉 t,ρ7−→ 〈q′, σ′, E ′〉 for some q′ such

that p′ ≡ b→ q′, and ∀s∈[0,t]ρ(s) |= b. By induction we have 〈q′, σ′, E ′〉 ρ(t)
 . Since we

also have ρ(t) |= b, we have, by Rule 23, 〈b→ q′, σ′, E ′〉 ρ(t)
 , i.e. 〈p′, σ′, E ′〉 ρ(t)

 .

• Rule 22. Then p ≡ b → q for some b and q, ρ ∈ ΩσEt, ∃s∈[0,t] ρ(s) |= ¬b, ρ(t) |=
b ⇒ 〈q, ρσ(t)〉 ρ(t)

 . In case ρ(t) |= ¬b, we also have σ′ ∪ ξĊL |= ¬b for some ξĊL ∈
(Ċ ∪ L) 7→ Λ. Note that σ′ = ρσ(t). Then, by Rule 24, 〈b → q, σ′, E ′〉 ρ(t)

 . In case

ρ(t) |= b, we have 〈q, ρσ(t)〉 ρ(t)
 . By Rule 23 we then have 〈b→ q, σ′, E ′〉 ρ(t)

 . Observe

that p′ ≡ b→ q, i.e. 〈p′, σ′, E ′〉 ρ(t)
 .

• Rule 26. Then p ≡ q1 [] q2 for some q1 and q2, 〈q1, σ, E〉
t,ρ7−→ 〈q′1, σ′, E ′〉 for some

q′1, 〈q2, σ, E〉
t,ρ7−→ 〈q′2, σ′, E ′〉 for some q′2 such that p′ ≡ q′1 [] q′2. By induction we

have 〈q′1, σ′, E ′〉
ρ(t)
 and 〈q′2, σ′, E ′〉

ρ(t)
 , and thus by application of Rule 27 we have

〈q′1 [] q′2, σ
′, E ′〉 ρ(t)

 , i.e. 〈p′, σ′, E ′〉 ρ(t)
 .

• Rule 30. Then p ≡ q1 ‖ q2 for some q1 and q2, 〈q1, σ, E〉
t,ρ7−→ 〈q′1, σ′, E ′〉 for some

q′1, 〈q2, σ, E〉
t,ρ7−→ 〈q′2, σ′, E ′〉 for some q′2 such that p′ ≡ q′1 ‖ q′2. By induction we

have 〈q′1, σ′, E ′〉
ρ(t)
 and 〈q′2, σ′, E ′〉

ρ(t)
 , and thus by application of Rule 31 we have

〈q′1 ‖ q′2, σ′, E ′〉
ρ(t)
 , i.e. 〈p′, σ′, E ′〉 ρ(t)

 .

• Rule 33. Then p ≡ ∂A(q) for some A and q, 〈q, σ, E〉 t,ρ7−→ 〈q′, σ′, E ′〉 for some q′,

and p′ ≡ ∂A(q′). By induction we then have 〈q′, σ′, E ′〉 ρ(t)
 . By Rule 34, we obtain

〈∂A(q′), σ′, E〉 ρ(t)
 .
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• Rule 37. Then p ≡ υH (q) for some H and q, and 〈q, σ, E〉 t,ρ7−→ 〈q′, σ′, E ′〉 for some
q′ such that p′ ≡ υH (q′) (some irrelevant information for the proof is omitted). By

induction we then have 〈q′, σ′, E ′〉 ρ(t)
 . By Rule 36, we obtain 〈υH (q), σ′, E ′〉 ρ(t)

 , i.e.

〈p′, σ′, E ′〉 ρ(t)
 .

• Rule 39. Then p≡X for some X, E = (C,J,L,H,R) and 〈R(X), σ,E〉 t,ρ7−→ 〈q′, σ′,E ′〉
for some q′ such that p′ ≡ q′. As the proof for 〈R(X), σ,E〉 t,ρ7−→ 〈q′, σ′,E ′〉 has smaller

depth, by induction we have 〈p′, σ′, E ′〉 ρ(t)
 , i.e. 〈p′, σ′, E ′〉 ρ(t)

 .

• Rule 42. Then p≡ ιJ+(q) for some term q and set J +, (C, J ∪ J +, L,H,R) 〈q,σ〉 t,ρ7−→
〈q′, σ′〉 for some q′ such that p′ ≡ ιJ+(q′), E = (C, J, L,H,R). By induction we then

have (C, J ∪ J +, L,H,R)  〈q′, σ′〉 ρ(t)
 . From Rule 43, we deduce 〈ιJ+(q), σ′, E ′〉 ρ(t)

 ,

i.e. 〈p′, σ′, E ′〉 ρ(t)
 .

• Rule 45. We assume 〈p,σ,E〉 t,ρ′7−→ 〈p′, σ′,E ′〉 for some ρ′. Then p≡ |[V σdx⊥ ,{x},{g} |
q ]| for some q, E = (C,J, L, H, R), σdx⊥ , x, g, (C ∪ {x′}, J, L ∪ {g′}, H,R) 

〈q[d′,x′,g′/d,x,g], σ∪σd′x′〉
t,ρ7−→ 〈q′, σ′′〉 for some ρ, q′ such that p′ ≡ |[V (σ′ � {d′,x′})

[d,x/d′,x′], {x}, {g} | q′[d,x,g/d′,x′,g′] ]| , d, d′, x′, g′, σd′x′ , σ
′′, σ′ = σ′′σ, and ρ′ =

ρσĊL = ρ ↓ (dom(σ)∪ Ċ∪L). By induction we then have (C ∪ {x′}, J, L ∪ {g′}, H,R)

〈q′, σ′′〉 ρ(t)
 . We can also have (C ∪ {x′}, J, L ∪ {g′}, H,R)  〈q′[d′,x′,g′/d,x,g], σ′ ∪

σd′x′〉
ξ′

 (because variables d′, x′, g′ are fresh and σ′′ = σ′ ∪ σd′x′ . Using Rule 46,

we obtain (C, J, L,H,R)  〈|[V σdx⊥ , {x}, {g} | q′ ]|, σ′〉 ρ(t)�(dom(σ)∪Ċ∪L)
 . We can fur-

ther get (C, J, L,H,R)  〈|[V (σ′ � {d′,x′})[d,x/d′,x′],{x},{g} | q′[d,x,g/d′,x′,g′] ]|
, σ′〉 ρ(t)�(dom(σ)∪Ċ∪L)

 , i.e. 〈p′, σ′, E ′〉 ρ
′(t)
 .

• Rules 49. and 52. The proofs are similar. We only give the proof for Rule 49.
Then p ≡ |[H {h} | q ]| for some h, q, E = (C, J, L, H, R), (C, J, L, H ∪ {h′}, R) 

〈q[h′/h], σ〉 t,ρ7−→ 〈q′, σ′〉 for some h′, q′ such that p′ ≡ |[H {h} | q′[h′/h] ]|. By induc-

tion we then have 〈q′, σ′, (C, J, L, H ∪ {h′}, R) 〉 ρ(t)
 . We also have 〈q′[h′/h], σ′,

(C, J, L, H ∪ {h′}, R) 〉 ρ(t)
 (because channels h′ are fresh). By Rule 50, we ob-

tain (C, J, L,H,R)  〈|[H {h} | q′ ]|, σ′〉 ρ(t)
 . It is not hard to see that we also have

(C, J, L,H,R)  〈|[H {h} | q′[h′/h] ]|, σ′〉 ρ(t)
 , i.e. 〈p′, σ′, E ′〉 ρ(t)

 .

The rules that have not been considered could not have been applied last since they con-
clude a termination transition, an action transition or a consistency predicate.

A.6 Proof of Lemma 3.5.6
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A.7. Proof of Theorem 3.5.1

Let p be a closed process term, σ be a valuation, C, J , W , L be sets of various classes of χ
variables such that J and W ⊆ dom(σ) \ {time}, H be a set of channels, R be a recursion
definition, and ξ be an extended valuation. Then

〈p, σ, (C, J, L,H,R)〉 ξ
 ⇔ 〈p, σ, (C, J ∪W,L,H,R)〉 ξ

 .

PROOF. The proof is trivial. The domain of the extended valuation ξ is given by
dom(σ) ∪ Ċ ∪ L for all χ consistency predicate rules. Hence, any variation in the set
of jumping variables in the environment of a consistent χ process is irrelevant for the
consistency predicate.

A.7 Proof of Theorem 3.5.1

Stateless bisimilarity is a congruence with respect to all χ operators.

PROOF. Besides Rules 22 and 37, it is easy to see that all deduction rules of the χ
formalism satisfy the process-tyft format containing predicates and negative premises for
stratifiable transition system specifications [MRG05] (which we call process-panth format
for simplicity). It is worth mentioning that the process-panth format extends the process-
tyft format with predicates and negative premises for stratifiable transition system speci-
fications.

Actually, Rule 22 is an abbreviation of the following deduction rules:

C→ , ρ(s) |= ¬b, ρ(0) |= b, 〈p, σ〉 0,ρ�{0}7−→ 〈p′, σ′〉, ρ(t) |= b, 〈p, ρσ(t)〉 ρ(t)
 

〈b→ p, σ〉 t,ρ7−→ 〈b→ p, ρσ(t)〉
(22.A)

C→ , ρ(0) |= ¬b, ρ(t) |= b, 〈p, ρσ(t)〉 ρ(t)
 

〈b→ p, σ〉 t,ρ7−→ 〈b→ p, ρσ(t)〉
(22.B)

C→ , ρ(0) |= b, 〈p, σ〉 0,ρ�{0}7−→ 〈p′, σ′〉, ρ(t) |= ¬b
〈b→ p, σ〉 t,ρ7−→ 〈b→ p, ρσ(t)〉

(22.C)

C→ , ρ(0) |= ¬b, ρ(t) |= ¬b
〈b→ p, σ〉 t,ρ7−→ 〈b→ p, ρσ(t)〉

(22.D)

Here, C→ denotes the following hypothesis: ρ∈ΩσEt,∀s∈(0,t) ρ(s) |=¬b,∃s∈[0,t] ρ(s) |=¬b.
By inspection of each rule from Rule 22.A to 22.D, we know all these rules satisfy the
process-panth format. Therefore, except Rule 37, all deduction rules of the χ formalism,
satisfy the process-panth format, and thus stateless bisimilarity is a congruence for all χ
operators except for the urgent communication operator (which is defined by Rule 37).

Rule 37 does not satisfy the process-panth format, so we need to give manual proof to
show that stateless bisimilarity is a congruence for the urgent communication operator. To
show this, we also need the following lemma.
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Lemma A.7.1 For arbitrary closed process terms p and q such that p ↔ q, valuation σ,
action label a and environment E, we have

〈p, σ, E〉 a
9 ⇔ 〈q, σ, E〉 a

9,

where 〈p,σ,E〉 a
9 denotes (@ξ,ξ′,p′,σ′,E′ 〈p,σ,E〉

ξ,a,ξ′−−−→〈p′,σ′,E ′〉) ∧ (@ξ,ξ′,σ′,E′ 〈p,σ,E〉
ξ,a,ξ′−−−→

〈X, σ′, E ′〉).

PROOF. The proof is straightforward. This can be done by proof by contradiction.

Next, we prove that stateless bisimilarity is a congruence for the urgent communication
operator.

For arbitrary closed process terms p and q such that p ↔ q and set of channels H , we
have υH (p) ↔ υH (q).

PROOF. Since p ↔ q, there exists a stateless bisimulation relation Rpq such that (p, q) ∈
Rpq. We now define R = {(υH (p), υH (q)) | (p, q) ∈ Rpq} ∪Rpq ∪ {(id, id) | id ∈ P}, and show
that all pairs of closed process terms (p, q) ∈ R satisfy the six conditions of Definition 3.5.1
(i.e. R is a stateless bisimulation relation). This relation contains pairs of closed process
terms (p, q) ∈ Rpq and pairs of the form (id, id). Since the proofs are trivial for such pairs
these are omitted. Furthermore, the proofs of the left implication of conditions 1 and 6 are
similar to the proofs of the right implication of conditions 1 and 6. The proofs of conditions
3 and 5 are similar to the proofs of conditions 2 and 4.

Condition 1 : First, we assume E  〈υH (p), σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉 for some E,σ, ξ, a, ξ′, σ′, which

means Rule 35.1 has been applied necessarily. Then, E  〈p, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉. Since p ↔ q,

we have E  〈q, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉. Using Rule 35.1, we obtain E  〈υH (q), σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉.
Condition 2 : We assume E  〈υH (p), σ〉 ξ,a,ξ′−−−→ 〈k1, σ

′〉 for some E, σ, ξ, a, ξ′, k1, σ′, which

means Rule 35.2 has been applied necessarily. Then, E  〈p, σ〉 ξ,a,ξ′−−−→ 〈k′1, σ′〉 for some k′1

such that k1 ≡ υH (k′1). Since p ↔ q, we have E  〈q, σ〉 ξ,a,ξ′−−−→ 〈k′2, σ′〉 for some k′2 such that

(k′1, k
′
2) ∈ R. Using Rule 35.2, we obtain E  〈υH (q), σ〉 ξ,a,ξ′−−−→ 〈υH (k′2), σ′〉 and k2 ≡ υH (k′2).

Observe that (k1, k2) ∈ R.

Condition 4 : We assume E  〈υH (p), σ〉 t,ρ7−→ 〈k1, σ
′〉 for some E, σ, t, ρ, k1, σ′, which

means Rule 37 has been applied necessarily. Then, we have 〈p, σ〉 t,ρ7−→ 〈p′, σ′〉 for some p′

such that k1 ≡ υH (p′), 〈p, σ〉 ca(h,∗)
9 for some h, ∀s∈[0,t) (〈p, σ〉 s,ρ�[0,s]7−→ 〈ps, σs〉, 〈ps, σs〉

t−s,ρ−s7−→
〈p′, σ′〉, ∀h∈H 〈ps, σs, E〉

ca(h,∗)
9 ) for some ps, σs. Since p ↔ q, we have ∀s∈[0,t) (〈q, σ〉 s,ρ�[0,s]7−→

〈qs, σs〉, 〈qs, σs〉
t−s,ρ−s7−→ 〈q′, σ′〉) such that (p′, q′) ∈ R and (ps, qs) ∈ R. From Lemma A.7.1

and p ↔ q, we obtain 〈q, σ〉 ca(h,∗)
9 and ∀s∈[0,t)(∀h∈H 〈qs, σs,E〉

ca(h,∗)
9 ). Using Rule 37, we get

E  〈υH (q), σ〉 t,ρ7−→ 〈υH (q′), σ′〉. Take k2 ≡ υH (q′) and observe that (k1, k2) ∈ R.
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Condition 6 : First, we assume E  〈υH (p), σ〉 ξ
 for some E, σ, ξ, which means Rule 36

has been applied necessarily. Then, E  〈p, σ〉 ξ
 . Since p ↔ q, we have E  〈q, σ〉 ξ

 .

Using Rule 36, we obtain E  〈υH (q), σ〉 ξ
 .

Finally, we conclude that stateless bisimilarity is a congruence with respect to all χ
operators.
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APPENDIX

B

Proofs of properties of the Chi operators

In this appendix, the outline of the proofs for the properties in Section 3.5.4 is given. For
all of these properties, the proofs follow the same lines. A relation R is defined containing
at least all closed instantiations of the property to be proved. Then, it must be shown
that this relation is a stateless bisimulation. For this, for each pair of closed process terms
(p, q) ∈ R, it has to be shown that it satisfies the six conditions of Definition 3.5.1. Often,
the relation R contains pairs of the form (id, id). Since the proofs are trivial for such pairs
these are omitted. As the deduction rules of χ are such that the environment does not
change in a transition, we only consider those cases in the proofs. As a consequence we
use the notation E  as much as possible.

B.1 Properties of any delay operator

The following lemmas prove the properties of Proposition 3.5.1.

Lemma B.1.1 For arbitrary closed process term p we have

[p] ↔ [[p]].

PROOF. Let R= {([p], [[p]]) | p ∈ P}∪{(id, id) | id ∈ P}. The proof of the left implication
of condition 1 is similarly straightforward to the proof of the right implication. The proof
of condition 3 is similarly straightforward to the proof of condition 2. The proofs of condi-
tions 4 – 6 are trivial, because process terms [p] and [[p]] allow arbitrary time transitions,
and thereby do not change. Process terms [p] and [[p]] are consistent with any extended
valuation with respect to σ in any environment.

Condition 1 : First, we assume E  〈[p], σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉 for some E, σ, ξ, a, ξ′, σ′. Using

Rule 10.1, we have E  〈[[p]], σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉.
Condition 2 : We assume E  〈[p], σ〉 ξ,a,ξ′−−−→ 〈k1, σ

′〉 for some E, σ, ξ, a, ξ′, k1 σ
′. Using

Rule 10.2, we have E  〈[[p]], σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉. Take k2 ≡ k1 and observe that (k1, k2) ∈ R.

Lemma B.1.2 For arbitrary predicate u we have

[u] ↔ true.
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PROOF. Let R = {([u], true) | predicate u}. Since there are no termination and action
transition rules defined for u and true predicate, the conditions 1 – 3 hold trivially. The
proofs of conditions 4 – 6 are trivial, because process term [u] and predicate true allow
arbitrary time transitions, and thereby do not change. Process term [u] and true predicate
are consistent with any extended valuation with respect to σ in any environment.

B.2 Properties of signal emission operator

The following lemmas prove the properties of Proposition 3.5.2.

Lemma B.2.1 For arbitrary closed process term p we have

true y p ↔ p.

PROOF. Let R = {(true y p, p) | p ∈ P} ∪ {(id, id) | id ∈ P}. The proofs of conditions
1 – 3 are similar to the proofs of conditions 1 – 3 of Lemma B.4.1 (except the premise
ξ |= b is replaced by ξ |= u). The proofs of conditions 4 and 5 are similar to the proofs of
conditions 2 and 3 (notice that the premise ξ |= u is replaced by ρ(0) |= u in the proofs).
The proofs of condition 6 are similar to the proofs of condition 6 of Lemma B.4.1 (except
Rule 24 has not been applied, and the premise ξ |= b is replaced by ξ |= u in the proofs).

Lemma B.2.2 For arbitrary closed process term p we have

false y p ↔ ⊥.

PROOF. The fact that there are no action transition rules, time transition rules and con-
sistency predicate rules defined for y in which the initialization predicate is not satisfied,
also indicates that false y p cannot perform any transition. Therefore, the conditions 1 –
6 hold trivially.

Lemma B.2.3 For arbitrary predicate u we have

uy u ↔ u.

PROOF. Let R = {(uy u, u) | predicate u} ∪ {(id, id) | id ∈ P}. The fact that there are
no action transition rules defined for u, also indicates that uy u has no action transitions.
Therefore, the conditions 1 – 3 hold trivially.

Condition 4 : We assume E  〈uy u,σ〉 t,ρ7−→ 〈k1, σ
′〉 for some E, σ, t, ρ, k1, σ′, which means

that Rule 14 has been applied necessarily. Then, E  〈u, σ〉 t,ρ7−→ 〈k1, σ
′〉 and ρ(0) |= u.

Observe that (k1, k1) ∈ R.

Condition 5 : We assume (C, J, L,H,R) 〈u,σ〉 t,ρ7−→ 〈k1, σ
′〉 for some C, J , L, H, R, σ, t, ρ,

k1, σ′, which means that Rule 3 has been applied necessarily. Then, ρ ∈ ΩFG(σ,C,L, u, t),
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σ′ = ρσ(t) and k1 ≡ u. We know that ∀s∈[0,t] ρ(s) |= u (from the definition of the function
ΩFG). Hence, we also have ρ(0) |= u. Using Rule 14, we obtain (C, J, L,H,R)  〈u y
u, σ〉 t,ρ7−→ 〈u, ρσ(t)〉 and observe that (u, u) ∈ R.

Condition 6 : First, we assume E  〈u y u, σ〉 ξ
 for some E, σ, ξ, which means that

Rule 15 has been applied necessarily. Then, E  〈u, σ〉 ξ
 and ξ |= u. Second, we assume

(C, J, L,H,R)  〈u, σ〉 ξ
 for some C, J , L, H, R, σ, ξ, which means Rule 4 has been

applied necessarily. Then, ξ = σ ∪ ξĊL for some ξĊL and σ ∪ ξĊL |= u. According to

Rule 15, we get (C, J, L,H,R)  〈uy u, σ〉 σ∪ξ
ĊL

 .

Lemma B.2.4 For arbitrary closed process term p and arbitrary predicates u, u′ we have

uy (u′ y p) ↔ (u ∧ u′) y p.

PROOF. Let R= {(uy (u′y p), (u∧u′)y p) | p∈ P,predicates u,u′}∪{(id, id) | id ∈ P}.
Condition 1 : First, we assume E  〈uy (u′y p),σ〉 ξ,a,ξ

′
−−−→〈X,σ′〉 for some E, σ, ξ, a, ξ′, σ′,

which means Rule 13.1 has been applied necessarily. Then, E  〈u′y p,σ〉 ξ,a,ξ
′

−−−→〈X,σ′〉 and

ξ |= u. Again, Rule 13.1 has been applied necessarily. Therefore, we have E  〈p, σ〉 ξ,a,ξ′−−−→
〈X, σ′〉 and ξ |= u′. From ξ |= u and ξ |= u′ we get ξ |= u ∧ u′. Using Rule 13.1, we obtain

E  〈(u ∧ u′)y p, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉. Second, we assume E  〈(u ∧ u′)y p, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉
for some E, σ, ξ, a, ξ′, σ′, which means Rule 13.1 has been applied necessarily. Thus,

E  〈p, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉 and ξ |= u ∧ u′. From ξ |= u ∧ u′ we obtain ξ |= u and ξ |= u′.

Using Rule 13.1, we obtain E  〈u′y p, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉. Again using Rule 13.1, we obtain

E  〈uy (u′ y p), σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉.
Condition 2 : We assume E  〈u y (u′ y p), σ〉 ξ,a,ξ′−−−→ 〈k1, σ

′〉 for some E, σ, ξ, a, ξ′,

k1, σ′, which means Rule 13.2 has been applied necessarily. Thus, E  〈u′ y p, σ〉 ξ,a,ξ′−−−→
〈k1, σ

′〉 and ξ |= u. Again, Rule 13.2 has been applied necessarily. Therefore, we have

E  〈p, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 and ξ |= u′. From ξ |= u and ξ |= u′, we obtain ξ |= u ∧ u′. Using

Rule 13.2, we get E  〈(u ∧ u′) y p, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 and observe that (k1, k1) ∈ R.

Condition 3 : We assume E  〈(u∧ u′)y p, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 for some E, σ, ξ, a, ξ′, k1, σ′,

which means Rule 13.2 has been applied necessarily. Therefore, E  〈p, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉

and ξ |= u ∧ u′. From ξ |= u ∧ u′, we also have ξ |= u and ξ |= u′. Using Rule 13.2 we

obtain E  〈u′ y p, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉. Again using Rule 13.2 we obtain E  〈u y (u′ y

p), σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 and observe that (k1, k1) ∈ R.

Condition 4 : We assume E  〈u y (u′ y p), σ〉 t,ρ7−→ 〈k1, σ
′〉 for some E, σ, t, ρ, k1, σ′,

which means that Rule 14 has been applied necessarily. Then, E  〈u′y p, σ〉 t,ρ7−→ 〈k1, σ
′〉

and ρ(0) |= u. For E  〈u′ y p, σ〉 t,ρ7−→ 〈k1, σ
′〉, Rule 14 has been applied necessarily.
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Then, E  〈p, σ〉 t,ρ7−→ 〈k1, σ
′〉 and ρ(0) |= u′. From ρ(0) |= u and ρ(0) |= u′, we obtain

ρ(0) |= u ∧ u′. Using Rule 14, we get E  〈(u ∧ u′) y p, σ〉 t,ρ7−→ 〈(u ∧ u′) y k1, σ
′〉 and

observe that (k1, k1) ∈ R.

Condition 5 : We assume E  〈(u ∧ u′) y p, σ〉 t,ρ7−→ 〈k1, σ
′〉 for some E, σ, t, ρ, k1, σ′,

which means that Rule 14 has been applied necessarily. Then, E  〈p, σ〉 t,ρ7−→ 〈k1, σ
′〉 and

ρ(0) |= u∧ u′. From ρ(0) |= u∧ u′, we can also have ρ(0) |= u and ρ(0) |= u′. Using Rule 14,

we obtain E  〈u′ y p, σ〉 t,ρ7−→ 〈k1, σ
′〉. Again, using Rule 14 we get E  〈u y (u′ y

p), σ〉 t,ρ7−→ 〈k1, σ
′〉 and observe that (k1, k1) ∈ R.

Condition 6 : First, we assume E  〈uy (u′y p), σ〉 ξ
 for some E, σ, ξ, which means that

Rule 15 has been applied necessarily. Then, E  〈u′ y p, σ〉 ξ
 and ξ |= u. For E  〈u′ y

p, σ〉 ξ
 , Rule 15 has been applied necessarily. Then E  〈p, σ〉 ξ

 and ξ |= u′. From ξ |= u

and ξ |= u′, we can have ξ |= u ∧ u′. Using Rule 15, we obtain E  〈(u ∧ u′) y p, σ〉 ξ
 .

Second, we assume E  〈(u ∧ u′) y p, σ〉 ξ
 for some E, σ, ξ, which means Rule 15 has

been applied necessarily. Then, E  〈p, σ〉 ξ
 and ξ |= u ∧ u′. From ξ |= u ∧ u′, we get

ξ |= u and ξ |= u′. According to Rule 15, we obtain E  〈u′ y p, σ〉 ξ
 . Using Rule 15, we

get E  〈uy (u′ y p), σ〉 ξ
 .

B.3 Properties of alternative composition

The following lemmas prove the properties of Proposition 3.5.3.

Lemma B.3.1 For closed term p we have

p [] true ↔ p.

PROOF. Let R = {(p [] true, p) | p ∈ P} ∪ {(id, id) | id ∈ P}. The proof of the left
implication of condition 1 is similarly straightforward to the proof of the right implication
of condition 1. The proofs of conditions 3 and 5 are similarly straightforward to the proofs
of conditions 2 and 4.

Condition 1 : First, we assume E  〈p [] true, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉 for some E, σ, ξ, a, ξ′, σ′,
which means that Rule 25.1.l has been applied necessarily. Note that Rule 25.1.r cannot
be applied, because true predicate cannot perform any termination transition. Then we

get E  〈p, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉.
Condition 2 : We assume E  〈p [] true, σ〉 ξ,a,ξ′−−−→ 〈k1, σ

′〉 for some E, σ, ξ, a, ξ′, k1,
σ′, which means that Rule 25.2.l has been applied necessarily. Note that Rule 25.2.r
cannot be applied, because true predicate cannot perform any action transition. Then,

E  〈p, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 and observe that (k1, k1) ∈ R.

Condition 4 : We assume E  〈p [] true, σ〉 t,ρ7−→ 〈k1, σ
′〉 for some E, σ, t, ρ, k1, σ′, which

means Rule 26 has been applied necessarily. Then, we get E  〈p, σ〉 t,ρ7−→ 〈kp, σ′〉 for some
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kp such that k1 ≡ kp [] true and E  〈true, σ〉 t,ρ7−→ 〈true, σ′〉. Take k2 ≡ kp and observe that
(k1, k2) ∈ R.

Condition 6 : First, we assume E  〈p [] true, σ〉 ξ
 for some E, σ, ξ, which means Rule 27

has been applied necessarily. Then, we get E  〈p, σ〉 ξ
 . Second, we assume E  〈p, σ〉 ξ

 
for some E, σ, ξ. We also know that true predicate is always consistent. Using Rule 27,

we obtain E  〈p [] true, σ〉 ξ
 .

Lemma B.3.2 (Idempotency of alternative composition) For closed term p we have

p [] p ↔ p.

PROOF. Let R = {(p [] p, p) | p ∈ P} ∪ {(id, id) | id ∈ P}.
Condition 1 : First, we assume E  〈p [] p, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉 for some E, σ, ξ, a, ξ′, σ′,
which means that Rule 25.1.l or Rule 25.1.r has been applied necessarily. Since the left
and right argument of the [] are the same, we only give the proofs in which Rule 25.1.l has

been applied. Then, E  〈p, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉. Second, we assume E  〈p, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉
for some E, σ, ξ, a, ξ′, σ′. We know that E  〈p, σ〉 ξ

 (see also Lemma 3.5.2). Using

Rule 25.1.l, we obtain E  〈p [] p, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉.
Condition 2 : We assume E  〈p [] p, σ〉 ξ,a,ξ′−−−→ 〈k1, σ

′〉 for some E, σ, ξ, a, ξ′, k1, σ′, which
means that Rule 25.2.l or Rule 25.2.r has been applied necessarily. Since the left and right
argument of the [] are the same, we only the proofs in which Rule 25.1.l has been applied.

Then, E  〈p, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 and observe that (k1, k1) ∈ R.

Condition 3 : We assume E  〈p, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 for some E, σ, ξ, a, ξ′, k1, σ′. We also

know that E  〈p, σ〉 ξ
 (see also Lemma 3.5.2). Using Rule 25.2.l, we obtain E  〈p []

p, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 and observe that (k1, k1) ∈ R.

Condition 4 : We assume E  〈p [] p, σ〉 t,ρ7−→ 〈k1, σ
′〉 for some E, σ, t, ρ, k1, σ′, which means

Rule 26 has been applied necessarily. Then, we get E  〈p, σ〉 t,ρ7−→ 〈kp, σ′〉 for some kp such
that k1 ≡ kp [] kp. Take k2 ≡ kp and observe that (k1, k2) ∈ R.

Condition 5 : We assume E  〈p, σ〉 t,ρ7−→ 〈k1, σ
′〉 for some E, σ, t, ρ, k1, σ′. Using Rule 26,

we obtain E  〈p [] p, σ〉 t,ρ7−→ 〈k1 [] k1, σ
′〉. Take k2 ≡ k1 [] k1 and observe that (k2, k1) ∈ R.

Condition 6 : First, we assume E  〈p [] p, σ〉 ξ
 for some E, σ, ξ, which means Rule 27

has been applied necessarily. Then, we get E  〈p, σ〉 ξ
 . Second, we assume E  〈p, σ〉 ξ

 

for some E, σ, ξ. Using Rule 27, we obtain E  〈p [] true, σ〉 ξ
 .

Lemma B.3.3 (Commutativity of alternative composition) For arbitrary closed pro-
cess terms p and q we have

p [] q ↔ q [] p.
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PROOF. Let R = {(p [] q, q [] p) | p, q ∈ P} ∪ {(id, id) | id ∈ P}. Since the deduction rules
for [] are symmetrical w.r.t. the left and right argument, obviously all conditions are met.

Lemma B.3.4 (Associativity of alternative composition) For closed process terms
p, q and r we have

(p [] q) [] r ↔ p [] (q [] r).

PROOF. Let R = {((p [] q) [] r, p [] (q [] r)) | p, q, r ∈ P} ∪ {(id, id) | id ∈ P}. The proof
of the left implication of condition 1 is similar to the proof of the right implication. The
proofs of conditions 3 and 5 are similar to the proofs of conditions 2 and 4. The proof of
the left implication of condition 6 is similar to the proof of the right implication.

Condition 1 : We assume E  〈(p [] q) [] r, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉 for some E, σ, ξ, a, ξ′, σ′, which
means that Rule 25.1.l or Rule 25.1.r has been applied necessarily. Hence, we distinguish
two cases:

1. Rule 25.1.l has been applied. Then, E  〈p [] q,σ〉 ξ,a,ξ
′

−−−→ 〈X, σ′〉 and E  〈r,σ〉 ξ
 . For

E  〈p [] q, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉, this means that again either Rule 25.1.l or Rule 25.1.r
has been applied necessarily. Hence, we can further distinguish two cases:

(a) Rule 25.1.l has been applied. Then, E  〈p, σ〉 ξ,a,ξ
′

 〈X, σ′〉 and E  〈q, σ〉 ξ
 .

Using Rule 27, we obtain E  〈q [] r, σ〉 ξ
 . We further get E  〈p [] (q []

r), σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉 using Rule 25.1.l.

(b) Rule 25.1.r has been applied. Then, E  〈q, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉 and E  〈p, σ〉 ξ
 .

Using Rule 25.1.l, we obtain E  〈q [] r, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉. Applying Rule 25.1.r,

we obtain E  〈p [] (q [] r), σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉.

2. Rule 25.1.r has been applied. The proof is similar to the previous case.

Condition 2 : We assume E  〈(p [] q) [] r, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 for some E, σ, ξ, a, ξ′, k1, σ′,

which means that either Rule 25.2.l or Rule 25.2.r has been applied necessarily. Hence, we
distinguish two cases:

1. Rule 25.2.l has been applied. Then E  〈p [] q, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 and E  〈r, σ〉 ξ

 . For

E  〈p [] q, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉, this means that again either Rule 25.2.l or Rule 25.2.r

has been applied necessarily. Hence, we again distinguish two cases:

(a) Rule 25.2.l has been applied. Then, E  〈p, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 and E  〈q, σ〉 ξ

 .

Using Rule 27, we obtain E  〈q [] r, σ〉 ξ
 . We further get E  〈p [] (q []

r), σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 using Rule 25.2.l and observe that (k1, k1) ∈ R.
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(b) Rule 25.2.r has been applied. Then E  〈q, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 and E  〈p, σ〉 ξ

 .

We get E  〈q [] r, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 using Rule 25.2.l. Applying Rule 25.2.r, we

obtain E  〈p [] (q [] r), σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 and observe that (k1, k1) ∈ R.

2. Rule 25.2.r has been applied. The proof is similar to the previous case.

Condition 4 : We assume E  〈(p [] q) [] r, σ〉 t,ρ7−→ 〈k1, σ
′〉 for some E, σ, t, ρ, k1, σ′,

which means Rule 26 has been applied necessarily. Then E  〈p [] q, σ〉 t,ρ7−→ 〈kpq , σ
′〉 and

E  〈r, σ〉 t,ρ7−→ 〈kr, σ′〉 for some kpq and kr such that k1 ≡ kpq [] kr. For E  〈p [] q, σ〉 t,ρ7−→
〈kpq , σ

′〉, we obtain E  〈p, σ〉 t,ρ7−→ 〈kp, σ′〉 and E  〈q, σ〉 t,ρ7−→ 〈kq, σ′〉 for some kp, kq such

that kpq ≡ kp [] kq (using Rule 26). Applying Rule 26, we get E  〈q [] r, σ〉 t,ρ7−→ 〈kq [] kr, σ
′〉.

Again, due to Rule 26, we can have E  〈p [] (q [] r), σ〉 t,ρ7−→ 〈kp [] (kq [] kr), σ
′〉. Note that

k1 ≡ (kp [] kq) [] kr. Take k2 ≡ kp [] (kq [] kr) and observe that (k1, k2) ∈ R.

Condition 6 : We assume E  〈(p [] q) [] r, σ〉 ξ
 , which means Rule 27 has been applied

necessarily. Then E  〈p [] q, σ〉 ξ
 and E  〈r, σ〉 ξ

 . For E  〈p [] q, σ〉 ξ
 , we obtain

E  〈p,σ〉 ξ
 and E  〈q,σ〉 ξ

 (see also Rule 27). Applying Rule 27, we get E  〈q [] r,σ〉 ξ
 .

Again, due to Rule 27, we can have E  〈p [] (q [] r), σ〉 ξ
 .

Lemma B.3.5 For arbitrary closed process terms p, q we have

[p [] q] ↔ [p] [] [q].

PROOF. Let R = {([p [] q], [p] [] [q]) | p, q ∈ P} ∪ {(id, id) | id ∈ P}. The proof of the left
implication of condition 1 is similarly straightforward to the proof of the right implication
of condition 1. The proofs of conditions 4 – 6 are trivial, because process terms [p [] q],
[p] and [q] (also [p] [] [q], see Rule 26) allow arbitrary time transitions, and process terms
[p [] q], [p] and [q] (also [p] [] [q]) are consistent with any extended valuation with respect
to σ in any environment.

Condition 1 : First, we assume E  〈[p [] q], σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉 for some E, σ, ξ, a, ξ′, σ′,

which means Rule 10.1 has been applied necessarily. Then, E  〈p [] q, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉.
For E  〈p [] q, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉, we further distinguish two cases:

• Rule 25.1.l has been applied. Then, we get E  〈p,σ〉 ξ,a,ξ
′

−−−→ 〈X, σ′〉, and E  〈q,σ〉 ξ
 .

Applying Rule 10.1, we can have E  〈[p], σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉. We know that E 

〈[q], σ〉 ξ
 (see also Rule 12). According to Rule 25.1.l, we have E  〈[p] [] [q], σ〉 ξ,a,ξ

′
−−−→

〈X, σ′〉.

• Rule 25.1.r has been applied. The proof is similar to the previous case.
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Condition 2 : We assume E  〈[p [] q], σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 for some E, σ, ξ, a, ξ′, k1, σ

′, which

means Rule 10.2 has been applied necessarily. Then, E  〈p [] q, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉. For

E  〈p [] q, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉, we further distinguish two cases:

• Rule 25.2.l has been applied. Then, we get E  〈p,σ〉 ξ,a,ξ
′

−−−→ 〈k1, σ
′〉, and E  〈q,σ〉 ξ

 .

Applying Rule 10.2, we can have E  〈[p], σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉. We know that E 

〈[q], σ〉 ξ
 (see also Rule 12). According to Rule 25.2.l, we have E  〈[p] [] [q], σ〉 ξ,a,ξ

′
−−−→

〈k1, σ
′〉. Take k2 ≡ k1, and observe that (k1, k2) ∈ R.

• Rule 25.2.r has been applied. The proof is similar to the previous case.

B.4 Properties of guard operator

The following lemmas prove the properties of Proposition 3.5.4.

Lemma B.4.1 For arbitrary closed process term p we have

true→ p ↔ p.

PROOF. Let R = {(true→ p, p) | p ∈ P} ∪ {(id, id) | id ∈ P}.
Condition 1 : First, we assume E  〈true → p, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉 for some E, σ, ξ, a, ξ′, σ′,

which means that Rule 20.1 has been applied necessarily. Then, E  〈p, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉.
Second, we assume E  〈p, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉 for some E, σ, ξ, a, ξ′, σ′. We also know that

ξ |= true, and obtain E  〈true→ p, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉 using Rule 20.1.

Condition 2 : We assume E  〈true → p, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 for some E, σ, ξ, a, ξ′, k1, σ′,

which means that Rule 20.2 has been applied necessarily. Then, E  〈p, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉

and observe that (k1, k1) ∈ R.

Condition 3 : We assume E  〈p, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 for some E, σ, ξ, a, ξ′, k1, σ′. We also

know that ξ |= true. We obtain E  〈true→ p,σ〉 ξ,a,ξ
′

−−−→ 〈k1, σ
′〉 using Rule 20.2 and observe

that (k1, k1) ∈ R.

Condition 4 : We assume E  〈true→ p, σ〉 t,ρ7−→ 〈k1, σ
′〉 for some E, σ, t, ρ, k1, σ′, which

means Rule 21 has been applied necessarily. Notice that Rule Rule 22 cannot be applied,

because the premise ∃s∈[0,t] ρ(s) |= ¬true does not hold. Then E  〈p, σ〉 t,ρ7−→ 〈kp, σ′〉 for
some kp such that k1 ≡ true→ kp and ∀s∈[0,t] ρ(s) |= true. Take k2 ≡ kp and observe that
(k1, k2) ∈ R.

Condition 5 : We assume E  〈p, σ〉 t,ρ7−→ 〈k1, σ
′〉 for some E, σ, t, ρ, k1, σ′. We also know

that ∀s∈[0,t] ρ(s) |= true. We obtain E  〈true → p, σ〉 t,ρ7−→ 〈true → k1, σ
′〉 using Rule 21.

Take k2 ≡ true→ k1 and observe that (k2, k1) ∈ R.
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Condition 6 : First, we assume E  〈true→ p, σ〉 ξ
 for some E, σ, ξ, which means Rule 23

has been applied necessarily. Notice that Rule 24 cannot have been applied, because

the premise σ ∪ ξĊL |= ¬true does not hold. Then E  〈p, σ〉 ξ
 . Second, we assume

E  〈p, σ〉 ξ
 for some E, σ, ξ. We also know ξ |= true. We obtain E  〈true→ p, σ〉 ξ

 
using Rule 23.

Lemma B.4.2 For arbitrary closed process term p we have

false→ p ↔ true.

PROOF. Let R = {(false→ p, true) | p ∈ P}∪ {(id, id) | id ∈ P}. Since there no are action
transition rules defined for a guard that evaluates to false in the extended valuation (i.e.
ξ |= false), and for the process term true also no action transition rules are defined, the
conditions 1 – 3 hold trivially.

Condition 4 : We assume (C, J, L,H,R)  〈false → p, σ〉 t,ρ7−→ 〈k1, σ
′〉 for some C, J , L,

H, R, σ, t, ρ, k1, σ′ which means Rule 22 has been applied necessarily. Notice that
Rule 21 cannot be applied, because the premise ∀s∈[0,t] ρ(s) |= false does not hold. Then
k1 ≡ false→ p, σ′ = ρσ(t), ρ ∈ ΩσEt and ∀s∈(0,t) ρ(s) |= ¬false. For ρ ∈ ΩσEt, we can have

(C, J, L,H,R)  〈true, σ〉 t,ρ7−→ 〈true, ρσ(t)〉 (see also Rule 3). Take k2 ≡ true and observe
that (k1, k2) ∈ R.

Condition 5 : We assume (C, J, L,H,R) 〈true, σ〉 t,ρ7−→ 〈k1, σ
′〉 for some C, J , L, H, R, σ, t,

ρ, k1, σ′, which means Rule 3 has been applied necessarily. Then k1 ≡ true, σ′ = ρσ(t), and
ρ∈ΩFG(σ,C,L, true, t). We know that ∀s∈(0,t) ρ(s) |=¬false, ρ(0) |= false⇒ (C, J, L,H,R)

〈p, σ〉 0,ρ�{0}7−→ 〈p′, σ′′〉 for some p′, σ′′, and ρ(t) |= false⇒ (C, J, L,H,R)  〈p, ρσ(t)〉 ρ(t)
 (since

the left-hand sides of the implications are false, these two implications hold trivially). Using

Rule 22, we obtain (C, J, L,H,R)  〈false→ p, σ〉 t,ρ7−→ 〈false→ p, σ′〉. Take k2 ≡ false→ p
and observe that (k2, k1) ∈ R.

Condition 6 : First, we assume (C, J, L,H,R)  〈false→ p, σ〉 ξ
 for some C, J , L, H, R,

σ, ξ, which means Rule 24 has been applied necessarily. Notice that Rule 23 cannot have
been applied, because ξ |= false does not hold. Then, ξ = σ ∪ ξĊL for some ξĊL. We know

that σ ∪ ξĊL |= true. Using Rule 4, we obtain (C, J, L,H,R)  〈true, σ〉 σ∪ξ
ĊL

 . Second, we

assume (C, J, L,H,R)  〈true, σ〉 ξ
 for some C, J , L, H, R, σ, ξ, which means Rule 4 has

been applied necessarily. Then, ξ = σ ∪ ξĊL for some ξĊL and σ ∪ ξĊL |= true. We also

know that σ ∪ ξĊL |= ¬false. Using Rule 24 we get (C, J, L,H,R)  〈false→ p, σ〉 σ∪ξ
ĊL

 .

Lemma B.4.3 For arbitrary guard b we have

b→ ⊥ ↔ ¬b.

PROOF. Let R = {(b→ ⊥,¬b) | guard b}.
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Since there are no action transition rules defined for ⊥, also b → ⊥ has no action
transition rules defined, and there are no action transition rules defined for delay predicates,
the conditions 1 – 3 hold trivially.

Condition 4 : We assume (C, J, L,H,R)  〈b→⊥, σ〉 t,ρ7−→ 〈k1, σ
′〉 for some C, J , L, H, R,

σ, t, ρ, k1, σ′, which means that either Rule 21 or Rule 22 has been applied necessarily.
Then we can distinguish two cases:

1. Rule 21 has been applied. Then, (C, J, L,H,R)  〈⊥, σ〉 t,ρ7−→ 〈kp, σ′〉 for some kp.
This leads to a contradiction, because ⊥ cannot perform any time transitions. Thus,
Rule 21 cannot have been applied.

2. Rule 22 has been applied. Then, k1 ≡ b → ⊥ and σ′ = ρσ(t), ρ ∈ ΩσEt, ∀s∈(0,t)

ρ(s) |= ¬b, ρ(0) |= b⇒ (C, J, L,H,R)  〈⊥, σ〉 0,ρ�{0}7−→ 〈z, σ′′〉 for some z, σ′′ and ρ(t) |=
b ⇒ (C, J, L,H,R)  〈⊥, ρσ(t)〉 ρ(t)

 . From the facts ρ(0) |= b ⇒ (C, J, L,H,R) 

〈⊥, σ〉 0,ρ�{0}7−→ 〈z, σ′′〉 and ρ(t) |= b ⇒ (C, J, L,H,R)  〈⊥, ρσ(t)〉 ρ(t)
 , we get ρ(0) |= ¬b

and ρ(t) |= ¬b, since the right-hand side of these implications are false (since ⊥
cannot perform any transition). Thus, we have ∀s∈[0,t] ρ(s) |= ¬b. From ρ ∈ ΩσEt and
∀s∈[0,t] ρ(s) |= ¬b. It is not hard to see that ρ ∈ ΩFG(σ, C, L,¬b, t). Then, we can

also obtain the following transition (C, J, L,H,R)  〈¬b, σ〉 t,ρ7−→ 〈¬b, ρσ(t)〉 (see also
Rule 3). Take k2 ≡ ¬b and observe that (k1, k2) ∈ R.

Condition 5 : We assume (C, J, L,H,R)  〈¬b, σ〉 t,ρ7−→ 〈k1, σ
′〉 for some C, J , L, H, R, σ,

t, ρ, k1, σ′, which means that Rule 3 has been applied necessarily. Then, k1 ≡ ¬b, ρ ∈
ΩFG(σ,C,L,¬b, t) and σ′ = ρσ(t). From ρ ∈ ΩFG(σ,C,L,¬b, t), we know that ∀s∈[0,t] ρ(s) |=
¬b and ⊥ also cannot perform any transition. Then we also have the following premises

∃s∈[0,t] ρ(s) |=¬b, ρ(0) |= b⇒ (C, J, L,H,R) 〈⊥, σ〉 0,ρ�{0}7−→ 〈z,σ′′〉 for some z, σ′′, and ρ(t) |=
b⇒ (C, J, L,H,R)  〈⊥, ρσ(t)〉 ρ(t)

 hold (because the left-hand side of the implications are

false). Using Rule 22, we obtain (C, J, L,H,R)  〈b → ⊥, σ〉 t,ρ7−→ 〈b → ⊥, ρσ(t)〉. Take
k2 ≡ b→ ⊥ and observe that (k2, k1) ∈ R.

Condition 6 : First, we assume (C, J, L,H,R)  〈b→ ⊥, σ〉 ξ
 for some C, J , L, H, R, σ,

ξ, which means that Rule 24 has been applied necessarily. Notice that Rule 23 cannot be

applied, because the premise (C, J, L,H,R)  〈⊥, σ〉 ξ
 does not hold. Then ξ = σ ∪ ξĊL

for some ξĊL and σ ∪ ξĊL |= ¬b. Applying Rule 4, we get (C, J, L,H,R)  〈¬b, σ〉 σ∪ξ
ĊL

 .

Second, we assume (C, J, L,H,R)  〈¬b, σ〉 ξ
 for some C, J , L, H, R, σ, ξ, which means

Rule 4 has been applied necessarily. Then ξ = σ ∪ ξĊL for some ξĊL and σ ∪ ξĊL |= ¬b.

Using Rule 24, we obtain (C, J, L,H,R)  〈b→ ⊥, σ〉 σ∪ξ
ĊL

 .

Lemma B.4.4 (Distributivity of guard over alternative composition) For arbitrary
closed process terms p and q and arbitrary guard b we have

b→ (p [] q) ↔ b→ p [] b→ q.
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PROOF. Let R = {(b→ (p [] q), b→ p [] b→ q) | p, q ∈ P, guard b} ∪ {(id, id) | id ∈ P}.
Condition 1 : First, we assume E  〈b→ (p [] q), σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉 for some E, σ, ξ, a, ξ′, σ′,

which means that Rule 20.1 has been applied necessarily. Then, E  〈p [] q, σ〉 ξ,a,ξ
′

−−−→ 〈X, σ′〉
and ξ |= b. For E  〈p [] q, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉, we distinguish two cases:

1. Rule 25.1.l has been applied. Then E  〈p, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉 and E  〈q, σ〉 ξ
 . Using

Rule 20.1, we have E  〈b→ p, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉. We also obtain E  〈b→ q, σ〉 ξ
 

using Rule 23. Applying Rule 25.1.l, we get E  〈b→ p [] b→ q, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉.

2. Rule 25.1.r has been applied. The proof is similar to the proof of the previous case.

Second, we assume (C, J, L,H,R)  〈b→ p [] b→ q, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉 for some C, J , L, H,
R, σ, ξ, a, ξ′, σ′, which means that Rule 25.1.l or Rule 25.1.r has been applied necessarily.
We distinguish two cases:

1. Rule 25.1.l has been applied. Then (C, J, L,H,R)  〈b → p, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉 and

(C, J, L,H,R) 〈b→ q,σ〉 ξ
 . According to Rule 20.1, we must have (C, J, L,H,R)

〈p, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉 and ξ |= b. For (C, J, L,H,R)  〈b→ q, σ〉 ξ
 , which means that

either Rule 23 or Rule 24 has been applied necessarily. We distinguish two cases:

(a) Rule 23 has been applied. Then (C, J, L,H,R) 〈q,σ〉 ξ
 . Applying Rule 25.1.l,

we can have (C, J, L,H,R) 〈p [] q,σ〉 ξ,a,ξ
′

−−−→ 〈X, σ′〉. Due to Rule 20.1, we finally

get (C, J, L,H,R)  〈b→ (p [] q), σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉.
(b) Rule 24 has been applied. Then ξ = σ ∪ ξĊL for some ξĊL and σ ∪ ξĊL |= ¬b.

This leads to a contradiction. Therefore this case cannot occur.

2. Rule 25.1.r has been applied. The proof is similar to the proof of the previous case.

Condition 2 : We assume E  〈b→ (p [] q), σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 for some E, σ, ξ, a, ξ′, k1, σ′,

which means that Rule 20.2 has been applied necessarily. Then, E  〈p [] q,σ〉 ξ,a,ξ
′

−−−→ 〈k1, σ
′〉

and ξ |= b. For E  〈p [] q, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉, we distinguish two cases:

1. Rule 25.2.l has been applied. Then E  〈p, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 and E  〈q, σ〉 ξ

 . Using

Rule 20.1, we have E  〈b→ p, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉. We also obtain E  〈b→ q, σ〉 ξ

 

using Rule 23. Applying Rule 25.2.l, we get E  〈b→ p [] b→ q, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 and

observe that (k1, k1) ∈ R.

2. Rule 25.1.r has been applied. The proof is similar to the proof of the previous case.

Condition 3 : We assume (C, J, L,H,R)  〈b→ p [] b→ q, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 for some E, σ,

ξ, a, ξ′, k1, σ′, which means that Rule 25.1.l or Rule 25.1.r has been applied necessarily.
We distinguish two cases:
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1. Rule 25.2.l has been applied. Then (C, J, L,H,R)  〈b → p, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 and

(C, J, L,H,R) 〈b→ q,σ〉 ξ
 . According to Rule 20.2, we must have (C, J, L,H,R)

〈p, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 and ξ |= b. For (C, J, L, H,R)  〈b→ q, σ〉 ξ

 , which means that
either Rule 23 or Rule 24 has been applied necessarily. We distinguish two cases:

(a) Rule 23 has been applied. We have (C, J, L,H,R)  〈q, σ〉 ξ
 . Applying

Rule 25.2.l, we have (C, J, L,H,R)  〈p [] q, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉. Due to Rule 20.2,

we finally get (C, J, L,H,R)  〈b → (p [] q), σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 and observe that

(k1, k1) ∈ R.

(b) Rule 24 has been applied. Then ξ = σ ∪ ξĊL for some ξĊL and σ ∪ ξĊL |= ¬b.
This leads to a contradiction. Therefore this case cannot occur.

2. Rule 25.1.r has been applied. The proof is similar to the proof of the previous case.

Condition 4 : We assume E  〈b→ (p [] q), σ〉 t,ρ7−→ 〈k1, σ
′〉 for some E, σ, t, ρ, k1, σ

′, which
means that either Rule 21 or Rule 22 has been applied necessarily. Then we can distinguish
two cases:

1. Rule 21 has been applied. Then, E  〈p [] q, σ〉 t,ρ7−→ 〈kpq, σ′〉 for some kpq such

that k1 ≡ b → kpq and ∀s∈[0,t] ρ(s) |= b. For E  〈p [] q, σ〉 t,ρ7−→ 〈kpq, σ′〉, we get

E  〈p,σ〉 t,ρ7−→ 〈kp, σ′〉 and E  〈q,σ〉 t,ρ7−→ 〈kq, σ′〉 for some kp, kq such that kpq ≡ kp [] kq

(using Rule 26). Applying Rule 21, we obtain E  〈b→ p,σ〉 t,ρ7−→ 〈b→ kp, σ
′〉 and E 

〈b→ q, σ〉 t,ρ7−→ 〈b→ kq, σ
′〉. According to Rule 26, we have E  〈b→ p [] b→ q, σ〉 t,ρ7−→

〈b→ kp [] b→ kq, σ
′〉. Note that k1 ≡ b→ (kp [] kq). Take k2 ≡ b→ kp [] b→ kq and

observe that (k1, k2) ∈ R.

2. Rule 22 has been applied. Then, k1≡ b→ (p [] q) and σ′= ρσ(t), ρ∈ΩσEt,∃s∈[0,t] ρ(s) |=
¬b, ∀s∈(0,t) ρ(s) |= ¬b, ρ(0) |= b ⇒ E  〈p [] q, σ〉 0,ρ�{0}7−→ 〈z, σ′′〉 for some z, σ′′ and

ρ(t) |= b ⇒ E  〈p [] q, ρσ(t)〉 ρ(t)
 . From ρ(0) |= b ⇒ E  〈p [] q, σ〉 0,ρ�{0}7−→ 〈z, σ′′〉,

we can also have ρ(0) |= b⇒ E  〈p, σ〉 0,ρ�{0}7−→ 〈pz, σ′′〉 for some pz, and ρ(0) |= b⇒
E  〈q, σ〉 0,ρ�{0}7−→ 〈qz, σ′′〉 for some qz (see also Rule 26). From ρ(t) |= b ⇒ E  〈p []

q, ρσ(t)〉 ρ(t)
 , we also get ρ(t) |= b⇒E  〈p, ρσ(t)〉 ρ(t)

 and ρ(t) |= b⇒E  〈q, ρσ(t)〉 ρ(t)
 

(see also Rule 27). Using Rule 22, we obtain E  〈b→ p, σ〉 t,ρ7−→ 〈b→ p, ρσ(t)〉 and

E  〈b → q, σ〉 t,ρ7−→ 〈b → q, ρσ(t)〉. According to Rule 26, we obtain E  〈b → p []

b → q, σ〉 t,ρ7−→ 〈b → p [] b → q, ρσ(t)〉. Take k2 ≡ b → p [] b → q and observe that
(k1, k2) ∈ R.

Condition 5 : We assume E  〈b → p [] b → q, σ〉 t,ρ7−→ 〈k1, σ
′〉 for some E, σ, t, ρ, k1, σ′,

which means that Rule 26 has been applied necessarily. Then E  〈b→ p, σ〉 t,ρ7−→ 〈kp, σ′〉,
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and E  〈b→ q,σ〉 t,ρ7−→ 〈kq, σ′〉 for some kp, kq such that k1 ≡ kp [] kq. For E  〈b→ p,σ〉 t,ρ7−→
〈kp, σ′〉, and E  〈b→ q, σ〉 t,ρ7−→ 〈kq, σ′〉, four cases can be distinguished:

1. Rule 21 has been applied for both. Then, E  〈p, σ〉 t,ρ7−→ 〈k′p, σ′〉, E  〈q, σ〉
t,ρ7−→

〈k′q, σ′〉 for some k′p, k
′
q such that kp ≡ b → k′p, kq ≡ b → k′q, and ∀s∈[0,t] ρ(s) |= b.

Using Rule 26, we obtain E  〈p [] q, σ〉 t,ρ7−→ 〈k′p [] k′q, σ
′〉. Applying Rule 21, we get

E  〈b → (p [] q), σ〉 t,ρ7−→ 〈b → (k′p [] k′q), σ
′〉. Note that k1 ≡ b → k′p [] b → k′q. Take

k2 ≡ b→ (k′p [] k′q) and observe that (k2, k1) ∈ R.

2. Rule 22 has been applied for both. Then, kp ≡ b→ p, kq ≡ b→ q and σ′ = ρσ(t), ρ ∈
ΩσEt , ∀s∈(0,t) ρ(s) |= ¬b,∃s∈[0,t] ρ(s) |= ¬b, ρ(0) |= b⇒ E  〈p, σ〉 0,ρ�{0}7−→ 〈pz, σ′′〉, ρ(0) |=
b ⇒ E  〈q, σ〉 0,ρ�{0}7−→ 〈qz, σ′′′〉, for some pz, qz, σ

′′, σ′′′, ρ(t) |= b ⇒ E  〈p, ρσ(t)〉 ρ(t)
 

and ρ(t) |= b ⇒ E  〈q, ρσ(t)〉 ρ(t)
 . From ρ(0) |= b ⇒ E  〈p, σ〉 0,ρ�{0}7−→ 〈pz, σ′′〉, and

ρ(0) |= b⇒ E  〈q, σ〉 0,ρ�{0}7−→ 〈qz, σ′′′〉, by Lemma 3.5.1 we know that σ′′ = σ′′′ = ρσ(0),

we get ρ(0) |= b⇒ E  〈p [] q, σ〉 0,ρ�{0}7−→ 〈z′, σ′′〉 for some z′ (see also Rule 26). From

ρ(t) |= b ⇒ E  〈p, ρσ(t)〉 ρ(t)
 and ρ(t) |= b ⇒ E  〈q, ρσ(t)〉 ρ(t)

 , we get ρ(t) |= b ⇒
E  〈p [] q, ρσ(t)〉 ρ(t)

 (see also Rule 27). Using Rule 22, we obtain E  〈b → (p []

q), σ〉 t,ρ7−→ 〈b→ (p [] q), ρσ(t)〉. Notice that k1 ≡ b→ p [] b→ q. Take k2 ≡ b→ (p [] q)
and observe that (k2, k1) ∈ R.

3. Rule 21 has been applied for E  〈b→ p,σ〉 t,ρ7−→ 〈kp, σ′〉, and Rule 22 has been applied

for E  〈b→ q, σ〉 t,ρ7−→ 〈kq, σ′〉. Then, E  〈p, σ〉 t,ρ7−→ 〈k′p, σ′〉 for some k′p such that
kp ≡ b → k′p, σ

′ = ρσ(t), ∀s∈[0,t] ρ(s) |= b, ρ ∈ ΩσEt , ∀s∈(0,t) ρ(s) |= ¬b, ∃s∈[0,t] ρ(s) |=

¬b, ρ(0) |= b⇒ E  〈q, σ〉 0,ρ�{0}7−→ 〈qz, σ′′〉, for some qz, σ
′′, ρ(t) |= b⇒ E  〈q, ρσ(t)〉 ρ(t)

 ,
kq ≡ b→ q, and k1 ≡ b→ k′p [] b→ q. From ∀s∈[0,t] ρ(s) |= b, and ∀s∈(0,t) ρ(s) |= ¬b, this
leads to a contradiction, unless t= 0. Hence, t= 0. Then we consider only the case in

which t= 0. From E  〈p,σ〉 0,ρ�{0}7−→ 〈k′p, σ′〉, ρ(0) |= b, and ρ(0) |= b⇒ E  〈q, σ〉 0,ρ�{0}7−→
〈qz, σ′′〉, it is not hard to see that we get ρ(0) |= b⇒ E  〈p [] q, σ〉 0,ρ�{0}7−→ 〈kz, σ′′′〉 for
some kz, σ

′′′. We know that σ′ = σ′′ = σ′′′ = ρσ(0) (see also Rule 26 and Lemma 3.5.1).

Since ρ ∈ ΩσEt, we have σ = ρσ(0). Also, from E  〈p, ρσ(0)〉 0,ρ7−→ 〈k′p, σ′〉, we have

E  〈p, ρσ(0)〉 ρ(0)
 (by Lemma 3.5.3). Using Rule 26, we have ρ(0) |= b ⇒ E  〈p []

q,ρσ(0)〉 ρ(0)
 . Applying Rule 22, we obtain E  〈b→ (p [] q), σ〉 0,ρ7−→ 〈b→ (p [] q), ρσ(0)〉.

Take k2 ≡ b→ (p [] q) and observe that (k2, k1) ∈ R.

4. Rule 21 has been applied for E  〈b→ q,σ〉 t,ρ7−→ 〈kq, σ′〉, and Rule 22 has been applied

for E  〈b→ p, σ〉 t,ρ7−→ 〈kp, σ′〉. The proof is similar to the previous case.
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Condition 6 : First, we assume (C, J, L,H,R)  〈b → (p [] q), σ〉 ξ
 for some C, J , L, H,

R, σ, ξ, which means that Rule 23 or Rule 24 has been applied necessarily. Then, we
distinguish two cases:

1. Rule 23 has been applied. Then (C, J, L,H,R)  〈p [] q, σ〉 ξ
 and ξ |= b. Using

Rule 27, we have (C, J, L,H,R)  〈p, σ〉 ξ
 and (C, J, L,H,R)  〈q, σ〉 ξ

 . According

to Rule 23, we obtain (C, J, L,H,R) 〈b→ p,σ〉 ξ
 and (C, J, L,H,R) 〈b→ q,σ〉 ξ

 .

Applying Rule 27, we get (C, J, L, H,R)  〈b→ p [] b→ q, σ〉 ξ
 .

2. Rule 24 has been applied. Then ξ = σ ∪ ξĊL for some ξĊL and σ ∪ ξĊL |= ¬b.

Using Rule 24, we can have (C, J, L,H,R)  〈b → p, σ〉 σ∪ξ
ĊL

 and (C, J, L,H,R) 

〈b→ q, σ〉 σ∪ξ
ĊL

 . Applying Rule 27, we get that (C, J, L, H,R)  〈b→ p [] b→ q, σ〉
σ∪ξĊL
 .

Second, we assume (C, J, L,H,R) 〈b→ p [] b→ q,σ〉 ξ
 for some C, J , L, H, R, σ, ξ, which

means that Rule 27 has been applied necessarily. Then, (C, J, L,H,R)  〈b→ p, σ〉 ξ
 and

(C, J, L,H,R)  〈b → q, σ〉 ξ
 . For (C, J, L,H,R)  〈b → p, σ〉 ξ

 and (C, J, L,H,R) 

〈b→ q, σ〉 ξ
 , four cases can be distinguished:

1. Rule 23 has been applied for both. Then, we have (C, J, L,H,R)  〈p, σ〉 ξ
 ,

(C, J, L,H,R) 〈q,σ〉 ξ
 and ξ |= b. According to Rule 27, we obtain (C, J, L,H,R)

〈p [] q, σ〉 ξ
 . Using Rule 23, we get (C, J, L,H,R)  〈b→ (p [] q), σ〉 ξ

 .

2. Rule 24 has been applied for both. Then ξ ≡ σ ∪ ξĊL for some ξĊL and σ ∪ ξĊL |= ¬b.

According to Rule 24, we can have (C, J, L,H,R)  〈b→ (p [] q), σ〉 σ∪ξ
ĊL

 .

3. Rule 23 has been applied for (C, J, L,H,R)  〈b → p, σ〉 ξ
 and Rule 24 has been

applied for (C, J, L,H,R)  〈b → q, σ〉 ξ
 . Then, (C, J, L,H,R)  〈p, σ〉 ξ

 , ξ |= b,

and ξ = σ∪ ξĊL, and σ∪ ξĊL |= ¬b. This leads to a contradiction. Therefore, Rule 23

cannot have been applied for (C, J, L,H,R)  〈b→ p, σ〉 ξ
 or Rule 24 cannot have

been applied for (C, J, L,H,R)  〈b→ q, σ〉 ξ
 .

4. Rule 23 has been applied for (C, J, L,H,R)  〈b → q, σ〉 ξ
 and Rule 24 has been

applied for (C, J, L,H,R)  〈b→ p, σ〉 ξ
 . The proof is similar to the previous case.

B.5 Properties of sequential composition

The following lemmas prove the properties of Proposition 3.5.5.
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Lemma B.5.1 (Left-zero element for sequential composition) For every closed pro-
cess term p we have

δ ; p ↔ δ.

PROOF. Let R = {(δ ; p, δ) | p ∈ P}. Since there are no action transition rules and time
transition rules defined for δ, and therefore also not for δ ; p, the conditions 1 – 5 hold
trivially.

Condition 6 : First, we assume (C, J, L,H,R)  〈δ ; p, σ〉 ξ
 for some C, J , L, H, R, σ, ξ,

which means that Rule 19 has been applied necessarily. Then, (C, J, L,H,R)  〈δ, σ〉 ξ
 .

Second, we assume (C, J, L,H,R)  〈δ, σ〉 ξ
 . Using Rule 19, we obtain (C, J, L,H,R) 

〈δ ; p, σ〉 ξ
 .

Lemma B.5.2 (Associativity of sequential composition) For all closed process terms
p, q and r we have

(p; q); r ↔ p; (q ; r).

PROOF. Let R = {((p; q); r, p; (q ; r)) | p, q, r ∈ P} ∪ {(id, id) | id ∈ P}. The proofs of
conditions 4 and 5 are similar to the proofs of conditions 2 and 3 (except Rule 16 has not
been applied, because no χ process can transform to a terminated process by means of
time transitions) since the deduction rules for non-terminating action transitions and time
transitions of ; are similar.
Condition 1 : Since there are no termination transitions defined for the transitions 〈(p ;
q); r, σ〉 and 〈p; (q ; r), σ〉, condition 1 holds trivially.

Condition 2 : We assume E  〈(p; q); r,σ〉 ξ,a,ξ
′

−−−→ 〈k1,σ
′〉 for some E, σ, ξ, a, ξ′, k1, σ′, which

means that either Rule 16 or Rule 17 has been applied necessarily. Hence, we distinguish
two cases:

1. Rule 16 has been applied. Then E  〈p; q, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉. This leads to a contra-
diction as there is no deduction rule that allows a sequential composition to perform
a termination transition. Hence, this case cannot occur.

2. Rule 17 has been applied. Then, E  〈p; q, σ〉 ξ,a,ξ′−−−→ 〈k′1, σ′〉 for some k′1 such that

k1 ≡ k′1 ; r. We distinguish two cases for E  〈p; q, σ〉 ξ,a,ξ′−−−→ 〈k′1, σ′〉:

(a) Rule 16 has been applied. Then, E  〈p, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉, E  〈q, σ′〉 ξ′

 and

k′1 ≡ q. According to Rule 19, we have E  〈q ; r, σ′〉 ξ′

 . Using Rule 16, we

have E  〈p; (q ; r), σ〉 ξ,a,ξ′−−−→ 〈q ; r, σ′〉. Note that k1 ≡ q ; r. Take k2 ≡ q ; r and
observe that (k1, k2) ∈ R.

(b) Rule 17 has been applied. Then, E  〈p, σ〉 ξ,a,ξ′−−−→ 〈kp, σ′〉 for some kp such that

k′1 ≡ kp ; q. Using Rule 17 we obtain E  〈p; (q ; r), σ〉 ξ,a,ξ′−−−→ 〈kp ; (q ; r), σ′〉.
Note that k1 ≡ (kp ; q); r. Take k2 ≡ kp ; (q ; r) and observe that (k1, k2) ∈ R.
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Condition 3 : We assume E  〈p; (q ; r),σ〉 ξ,a,ξ
′

−−−→〈k1,σ
′〉 for some E, σ, ξ, a, ξ′, k1, σ′, which

means that either Rule 16 or Rule 17 has been applied necessarily. Hence, we distinguish
two cases:

1. Rule 16 has been applied. Then, E  〈p, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉, E  〈q ; r, σ′〉 ξ′

 and

k1 ≡ q ; r. According to Rule 19, we have E  〈q, σ′〉 ξ′

 . Using Rule 16, we obtain

E  〈p; q, σ〉 ξ,a,ξ′−−−→ 〈q, σ′〉. Using Rule 17, we obtain E  〈(p; q); r, σ〉 ξ,a,ξ′−−−→ 〈q ; r, σ′〉
and observe that (k1, k1) ∈ R.

2. Rule 17 has been applied. Then, E  〈p, σ〉 ξ,a,ξ′−−−→ 〈kp, σ′〉 for some kp such that

k1 ≡ kp ; (q ; r). Using Rule 17, we obtain E  〈p; q, σ〉 ξ,a,ξ′−−−→ 〈kp ; q, σ′〉. Again, using

Rule 17, we obtain E  〈(p; q); r, σ〉 ξ,a,ξ′−−−→ 〈(kp ; q); r, σ′〉. Take k2 ≡ (kp ; q); r and
observe that (k2, k1) ∈ R.

Condition 6 : First, we assume E  〈(p; q); r, σ〉 ξ
 for some E, σ, ξ, which means that

Rule 19 has applied necessarily. Then E  〈p; q, σ〉 ξ
 . Again, due to Rule 19, we

get E  〈p, σ〉 ξ
 . Using Rule 19, we obtain E  〈p; (q ; r), σ〉 ξ

 . Second, we assume

E  〈p; (q ; r), σ〉 ξ
 for some E, σ, ξ, which means that Rule 19 has applied necessarily.

Then E  〈p, σ〉 ξ
 . Again, due to Rule 19, we get E  〈p; q, σ〉 ξ

 . Using Rule 19, we

obtain E  〈(p; q); r, σ〉 ξ
 .

Lemma B.5.3 (Distribution of sequential over alternative composition) For p, q
and r arbitrary closed process terms we have

(p [] q); r ↔ p; r [] q ; r.

PROOF. Let R = {((p [] q); r, p; r [] q ; r) | p, q, r ∈ P} ∪ {(id, id) | id ∈ P}.
Condition 1 : Since there no action transition rules defined for any closed process term k1

and k2 such that E  〈k1 ; k2, σ〉
ξ,a,ξ′−−−→ 〈X, σ′〉, condition 1 holds trivially.

Condition 2 : We assume E  〈(p [] q); r, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 for some E, σ, ξ, a, ξ′, k1, σ′;

which means that either Rule 16 or Rule 17 has been applied necessarily. Hence, we can
distinguish two cases:

1. Rule 16 has been applied. Then, E  〈p [] q, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉, and E  〈r, σ′〉 ξ′

 . For

E  〈p [] q, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉 we again distinguish two cases:

(a) Rule 25.1.l has been applied. Then, k1 ≡ r, E  〈p, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉 and E 

〈q, σ〉 ξ
 . Using Rule 16, we get E  〈p; r, σ〉 ξ,a,ξ′−−−→ 〈r, σ′〉. Due to Rule 19, we

have E  〈q ; r,σ〉 ξ
 . According to Rule 25.2.l, we have E  〈p; r [] q ; r,σ〉 ξ,a,ξ

′
−−−→

〈r, σ′〉 and observe that (r, r) ∈ R.
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(b) Rule 25.1.r has been applied. The proof is similar to the proof of the previous
case.

2. Rule 17 has been applied. Then, E  〈p [] q, σ〉 ξ,a,ξ′−−−→ 〈k′1, σ′〉 for some k′1 such that

k1 ≡ k′1 ; r. For E  〈p [] q, σ〉 ξ,a,ξ′−−−→ 〈k′1, σ′〉 we can further distinguish two cases:

(a) Rule 25.2.l has been applied. Then, E  〈p, σ〉 ξ,a,ξ′−−−→ 〈k′1, σ′〉 and E  〈q, σ〉 ξ
 .

Using Rule 17, we get E  〈p; r, σ〉 ξ,a,ξ′−−−→ 〈k′1 ; r, σ′〉. Using Rule 19, we get

〈q ; r,σ〉 ξ
 . According to Rule 25.2.l, we have E  〈p; r [] q ; r,σ〉 ξ,a,ξ

′
−−−→〈k′1 ; r,σ′〉.

Take k2 ≡ k′1 ; r and observe that (k1, k2) ∈ R.

(b) Rule 25.2.r has been applied. The proof is similar to the proof of the previous
case.

Condition 3 : We assume E  〈p; r [] q ; r, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 for some E, σ, ξ, a, ξ′, k1, σ′;

which means that either Rule 25.2.l or Rule 25.2.r has been applied necessarily. Hence, we
can distinguish two cases:

1. Rule 25.2.l has been applied. Then, E  〈p; r, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 and E  〈q ; r, σ〉 ξ

 .

For E  〈q ; r,σ〉 ξ
 , we must have E  〈q,σ〉 ξ

 due to Rule 19. For E  〈p; r,σ〉 ξ,a,ξ
′

−−−→
〈k1, σ

′〉 we again distinguish two cases:

(a) Rule 16 has been applied. Then, k1 ≡ r, E  〈p, σ〉
ξ,a,ξ′−−−→ 〈X, σ′〉, and 〈r, σ′〉 ξ′

 .

Applying Rule 25.1.l, we get E  〈p [] q, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉. According to Rule 16,

we have E  〈(p [] q); r, σ〉 ξ,a,ξ′−−−→ 〈r, σ′〉 and observe that (r, r) ∈ R.

(b) Rule 17 has been applied. Then, E  〈p, σ〉 ξ,a,ξ′−−−→ 〈kp, σ′〉 for some kp such that

k1 ≡ kp ; r. Using Rule 25.2.l, we get E  〈p [] q, σ〉 ξ,a,ξ′−−−→ 〈kp, σ′〉. According to

Rule 17, we have E  〈(p [] q); r,σ〉 ξ,a,ξ
′

−−−→ 〈kp ; r,σ′〉 and observe that (k1, k1)∈R.

2. Rule 25.2.r has been applied. The proof is similar to the proof of the previous case.

Condition 4 : We assume E  〈(p [] q); r, σ〉 t,ρ7−→ 〈k1, σ
′〉 for some E, σ, t, ρ, k1, σ′; which

means Rule 18 has been applied necessarily. Then, E  〈p [] q, σ〉 t,ρ7−→ 〈kpq , σ
′〉 for some kpq

such that k1 ≡ kpq ; r. For E  〈p [] q, σ〉 t,ρ7−→ 〈kpq , σ
′〉, Rule 26 has been applied necessarily.

Then, E  〈p,σ〉 t,ρ7−→ 〈kp,σ′〉 and E  〈q,σ〉 t,ρ7−→ 〈kq,σ′〉 for some kp, kq such that kpq ≡ kp [] kq.

Using Rule 18, we obtain E  〈p; r, σ〉 t,ρ7−→ 〈kp ; r, σ′〉 and E  〈q ; r, σ〉 t,ρ7−→ 〈kq ; r, σ′〉.
According to Rule 26 we obtain E  〈p; r [] q ; r, σ〉 t,ρ7−→ 〈kp ; r [] kq ; r, σ

′〉. Note that
k1 ≡ (kp [] kq); r. Take k2 ≡ kp ; r [] kq ; r and observe that (k1, k2) ∈ R.

Condition 5 : We assume E  〈p; r [] q ; r, σ〉 t,ρ7−→ 〈k1, σ
′〉 for some E, σ, t, ρ, k1, σ′; which

means Rule 26 has been applied necessarily. Then, E  〈p; r, σ〉 t,ρ7−→ 〈kpr , σ
′〉 and E 
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〈q ; r,σ〉 t,ρ7−→ 〈kqr , σ
′〉 for some kpr , kqr such that k1 ≡ kpr [] kqr . For E  〈p; r,σ〉 t,ρ7−→ 〈kpr , σ

′〉
and E  〈q ; r, σ〉 t,ρ7−→ 〈kqr , σ

′〉, Rule 18 has been applied to both. Then, E  〈p, σ〉 t,ρ7−→
〈kp, σ′〉 and E  〈q, σ〉 t,ρ7−→ 〈kq, σ′〉 for some kp, kq such that kpr ≡ kp ; r and kqr ≡ kq ; r.

Using Rule 26 we then obtain E  〈p [] q, σ〉 t,ρ7−→ 〈kp [] kq, σ
′〉. Applying Rule 19, we get

E  〈(p [] q); r, σ〉 t,ρ7−→ 〈(kp [] kq); r, σ′〉. Note that k1 ≡ kp ; r [] kq ; r. Take k2 ≡ (kp [] kq); r
and observe that (k2, k1) ∈ R.

Condition 6 : First, we assume E  〈(p [] q); r, σ〉 ξ
 for some E, σ, ξ; which means Rule 19

has been applied necessarily. Then, E  〈p [] q, σ〉 ξ
 . Using Rule 27, we have E  〈p, σ〉 ξ

 

and E  〈q,σ〉 ξ
 . Applying Rule 19, we get E  〈p; r,σ〉 ξ

 and E  〈q ; r,σ〉 ξ
 . According

to Rule 27, we get E  〈p; r [] q ; r, σ〉 ξ
 . Second, we assume E  〈p; r [] q ; r, σ〉 ξ

 for

some E, σ, ξ; which means Rule 27 has been applied necessarily. Then, E  〈p; r, σ〉 ξ
 

and E  〈q ; r,σ〉 ξ
 . By Rule 19, we obtain E  〈p,σ〉 ξ

 and E  〈q,σ〉 ξ
 . Using Rule 27,

we get E  〈p [] q, σ〉 ξ
 . Applying Rule 19, we have E  〈(p [] q); r, σ〉 ξ

 .

Lemma B.5.4 For arbitrary closed process terms p and q and arbitrary guard b we have

b→ (p; q) ↔ b→ p; q.

PROOF. Let R = {(b→ (p; q), b→ p; q) | p, q ∈ P, guard b} ∪ {(id, id) | id ∈ P}.
Condition 1 : We assume E  〈b→ (p; q), σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉 for some E, σ, ξ, a, ξ′, σ′, which

means that Rule 20.1 has been applied necessarily. Then, E  〈p; q, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉 and
ξ |= b. This leads to a contradiction as there is no deduction rule that allows a sequential

composition to perform a termination transition. Second, we assume E  〈b→ p; q,σ〉 ξ,a,ξ
′

−−−→
〈X, σ′〉 for some E, σ, ξ, a, ξ′, σ′. This also leads to a contradiction as there is no
deduction rule that allows a sequential composition to perform a termination transition.
Thus, condition 1 holds trivially.

Condition 2 : We assume E  〈b→ (p; q), σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 for some E, σ, ξ, a, ξ′, k1, σ′,

which means that Rule 20.2 has been applied necessarily. Then, we have E  〈p; q,σ〉 ξ,a,ξ
′

−−−→
〈k1, σ

′〉, and ξ |= b. For E  〈p; q, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉, two cases can be distinguished:

1. Rule 16 has been applied. Then, k1 ≡ q, E  〈p, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉 and E  〈q, σ′〉 ξ′

 .

Using Rule 20.1 we have E  〈b → p, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉. Applying Rule 16 we have

E  〈b→ p; q, σ〉 ξ,a,ξ′−−−→ 〈q, σ′〉 and observe that (q, q) ∈ R.

2. Rule 17 has been applied. Then, E  〈p, σ〉 ξ,a,ξ′−−−→ 〈kp, σ′〉 for some kq such that

k1 ≡ kp ; q. Using Rule 20.2 we have E  〈b→ p, σ〉 ξ,a,ξ′−−−→ 〈kp, σ′〉, and using Rule 17

we have E  〈b→ p; q, σ〉 ξ,a,ξ′−−−→ 〈kp ; q, σ′〉 and observe that (k1, k1) ∈ R.
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Condition 3 : We assume E  〈b → p; q, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 for some E, σ, ξ, a, ξ′, k1, σ′,

which means that Rule 16 or Rule 17 has been applied necessarily. Then, we distinguish
two cases:

1. Rule 16 has been applied. Then, k1≡ q, E  〈b→ p,σ〉 ξ,a,ξ
′

−−−→〈X,σ′〉 and E  〈q,σ′〉 ξ
′

 .

According to Rule 20.1 we have E  〈p, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉 and ξ |= b. Applying Rule 16

we have E  〈p; q, σ〉 ξ,a,ξ′−−−→ 〈q, σ′〉. Using Rule 20.2 we get E  〈b→ (p; q), σ〉 ξ,a,ξ′−−−→
〈q, σ′〉 and observe that (q, q) ∈ R.

2. Rule 17 has been applied. Then E  〈b → p, σ〉 ξ,a,ξ′−−−→ 〈kp, σ′〉 for some kp such

that k1 ≡ kp ; q. Using Rule 20.2, we obtain E  〈p, σ〉 ξ,a,ξ′−−−→ 〈kp, σ′〉 and ξ |= b.

Using Rule 17, we get E  〈p; q, σ〉 ξ,a,ξ′−−−→ 〈kp ; q, σ′〉. Applying Rule 20.2, we have

E  〈b→ (p; q), σ〉 ξ,a,ξ′−−−→ 〈kp ; q, σ′〉 and observe that (k1, k1) ∈ R.

Condition 4 : We assume E  〈b → (p; q), σ〉 t,ρ7−→ 〈k1, σ
′〉 for some E, σ, t, ρ, k1, σ

′, which
means that either Rule 21 or Rule 22 has been applied necessarily. Then we can distinguish
two cases:

1. Rule 21 has been applied. Then, E  〈p; q,σ〉 t,ρ7−→ 〈k′1,σ′〉 and ∀s∈[0,t] ρ(t) |= b such that

k1 ≡ b→ k′1. For E  〈p; q,σ〉 t,ρ7−→ 〈k′1, σ′〉, we further get E  〈p,σ〉 t,ρ7−→ 〈kp, σ′〉 using

Rule 18 for some kp such that k′1 ≡ kp ; q. Applying Rule 21, we get E  〈b→ p,σ〉 t,ρ7−→
〈b→ kp, σ

′〉. According to Rule 18, we obtain E  〈b→ p; q, σ〉 t,ρ7−→ 〈b→ kp ; q, σ
′〉.

Note that k1 ≡ b→ (kp ; q). Take k2 ≡ b→ kp ; q and observe that (k1, k2) ∈ R.

2. Rule 22 has been applied. Then, k1 ≡ b → (p; q), σ′ = ρσ(t), ρ ∈ ΩσEt , ∀s∈(0,t)

ρ(s) |= ¬b, ∃s∈[0,t] ρ(s) |= ¬b, ρ(0) |= b ⇒ E  〈p; q, σ〉 0,ρ�{0}7−→ 〈p′, σ′′〉, for some p′,

σ′′, ρ(t) |= b ⇒ E  〈p; q, ρσ(t)〉 ρ(t)
 . From ρ(0) |= b ⇒ E  〈p; q, σ〉 0,ρ�{0}7−→ 〈p′, σ′′〉,

we get ρ(0) |= b ⇒ E  〈p, σ〉 0,ρ�{0}7−→ 〈k′p, σ′′〉, for some k′p (see also Rule 18). For

ρ(t) |= b ⇒ E  〈p; q, ρσ(t)〉 ρ(t)
 , we get ρ(t) |= b ⇒ E  〈p, ρσ(t)〉 ρ(t)

 (see also

Rule 19). Using Rule 22, we obtain E  〈b→ p, σ〉 t,ρ7−→ 〈b→ p, ρσ(t)〉. Using Rule 18,

we obtain E  〈b→ p; q, σ〉 t,ρ7−→ 〈b→ p; q, ρσ(t)〉. Take k2 ≡ b→ p; q and observe
that (k1, k2) ∈ R.

Condition 5 : We assume E  〈b → p; q, σ〉 t,ρ7−→ 〈k1, σ
′〉 for some E, σ, t, ρ, k1, σ

′, which

means that Rule 18 has been applied necessarily. Then E  〈b→ p,σ〉 t,ρ7−→ 〈k′1, σ′〉 for some

k′1 such that k1 ≡ k′1 ; q. For E  〈b→ p, σ〉 t,ρ7−→ 〈k′1, σ′〉, two cases can be distinguished:

1. Rule 21 has been applied. Then, E  〈p, σ〉 t,ρ7−→ 〈kp, σ′〉 and ∀s∈[0,t] ρ(t) |= b for

some kp such that k′1 ≡ b→ kp. Using Rule 18, we get E  〈p; q, σ〉 t,ρ7−→ 〈kp ; q, σ′〉.
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According to Rule 21, we have E  〈b→ (p; q), σ〉 t,ρ7−→ 〈b→ (kp ; q), σ
′〉. Note that

k1 ≡ b→ kp ; q. Take k2 ≡ b→ (kp ; q) and observe that (k2, k1) ∈ R.

2. Rule 22 has been applied. Then, k′1 ≡ b → p, σ′ = ρσ(t), ρ ∈ ΩσEt , ∀s∈(0,t) ρ(s) |=
¬b, ∃s∈[0,t] ρ(s) |= ¬b, ρ(0) |= b ⇒ E  〈p, σ〉 0,ρ�{0}7−→ 〈p′, σ′′〉, for some p′, σ′′, and

ρ(t) |= b ⇒ E  〈p, ρσ(t)〉 ρ(t)
 . From ρ(0) |= b ⇒ E  〈p, σ〉 0,ρ�{0}7−→ 〈p′, σ′′〉, we get

ρ(0) |= b⇒ E  〈p; q, σ〉 0,ρ�{0}7−→ 〈k′p, σ′′〉 using Rule 18 for some k′p. From ρ(t) |= b⇒

E  〈p, ρσ(t)〉 ρ(t)
 , we get ρ(t) |= b ⇒ E  〈p; q, ρσ(t)〉 ρ(t)

 using Rule 19. Applying

Rule 22, we obtain E  〈b→ (p; q),σ〉 t,ρ7−→ 〈b→ (p; q), ρσ(t)〉. Note that k1≡ b→ p; q.
Take k2 ≡ b→ (p; q) and observe that (k2, k1) ∈ R.

Condition 6 : First, we assume (C, J, L,H,R)  〈b→ (p; q), σ〉 ξ
 for some C, J , L, H, R,

σ, ξ, which means that either Rule 23 or Rule 24 has been applied necessarily. Then we
can distinguish two cases:

1. Rule 23 has been applied. Then, (C, J, L,H,R)  〈p; q, σ〉 ξ
 and ξ |= b. From

Rule 19, we obtain (C, J, L,H,R) 〈p,σ〉 ξ
 . Applying Rule 23, we get (C, J, L,H,R)

〈b→ p, σ〉 ξ
 . Again, due to Rule 19, we obtain (C, J, L,H,R)  〈b→ p; q, σ〉 ξ

 .

2. Rule 24 has been applied. Then, ξ = σ ∪ ξĊL for some ξĊL and σ ∪ ξĊL |= ¬b.

Using Rule 24 we get (C, J, L,H,R)  〈b→ p, σ〉 σ∪ξ
ĊL

 . Applying Rule 19, we obtain

(C, J, L,H,R)  〈b→ p; q, σ〉 σ∪ξ
ĊL

 .

Second, we assume (C, J, L,H,R) 〈b→ p; q,σ〉 ξ
 for some C, J , L, H, R, σ, ξ, which

means that Rule 19 has been applied necessarily. Then (C, J, L,H,R)  〈b→ p, σ〉 ξ
 . For

this, we can distinguish two cases:

1. Rule 23 has been applied. Then, (C, J, L,H,R)  〈p, σ〉 ξ
 and ξ |= b. Using Rule 19,

we obtain (C, J, L,H,R)  〈p; q, σ〉 ξ
 . Applying Rule 23, we get (C, J, L,H,R) 

〈b→ (p; q), σ〉 ξ
 .

2. Rule 24 has been applied. Then, ξ = σ ∪ ξĊL for some ξĊL and σ ∪ ξĊL |= ¬b. Using

Rule 24 we get (C, J, L,H,R)  〈b→ (p; q), σ〉 σ∪ξ
ĊL

 .

Lemma B.5.5 For arbitrary closed process term p and arbitrary predicate u we have

u; p ↔ u.

PROOF. Let R = {u; p, u) | p ∈ P, predicate u}. Since there are no termination and
action transition rules defined for u, this means that u; p has no termination and action
transitions. So, the conditions 1 – 3 hold trivially.
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Condition 4 : We assume E  〈u; p, σ〉 t,ρ7−→ 〈k1, σ
′〉 for some E, σ, t, ρ, k1, σ

′, which means

that Rule 18 has been applied necessarily. Then, E  〈u, σ〉 t,ρ7−→ 〈k′1, σ′〉 for some k′1 such
that k1 ≡ k′1 ; p. Observe that (k1, k

′
1) ∈ R.

Condition 5 : We assume E  〈u, σ〉 t,ρ7−→ 〈k1, σ
′〉 for some E, σ, t, ρ, k1, σ

′. According to
Rule 3, we obtain k1 ≡ u, ρ ∈ ΩFG(σ,C,L, u, t) and σ′ = ρσ(t). Using Rule 18, we can have

E  〈u; p, σ〉 t,ρ7−→ 〈k2, σ
′〉 for some k2 such that k2 ≡ u; p. Observe that (k2, k1) ∈ R.

Condition 6 : First, we assume (C, J, L,H,R)  〈u; p, σ〉 ξ
 for some C, J , L, H, R, σ, ξ,

which means that Rule 19 has been applied necessarily. Then, (C, J, L,H,R)  〈u, σ〉 ξ
 .

Second, we assume (C, J, L,H,R)  〈u, σ〉 ξ
 for some C, J , L, H, R, σ, ξ, which means

Rule 4 has been applied necessarily. Then, ξ = σ∪ ξĊL for some ξĊL. According to Rule 19,

we get (C, J, L,H,R)  〈u; p, σ〉 σ∪ξ
ĊL

 .

Lemma B.5.6 For arbitrary closed process terms p and q we have

[p]; q ↔ [p; q].

PROOF. Let R = {([p]; q, [p; q]) | p, q ∈ P} ∪ {(id, id) | id ∈ P}. The proofs of conditions
3 and 5 are similar to the proofs of conditions 2 and 4. The proof of condition 6 is trivial,
because process term [p] (also [p]; q, see Rule 19) and [p; q] are consistent with respect to
σ in any environment.
Condition 1 : Since there are no termination transition rules defined for 〈[p]; q, σ〉 and
〈[p; q], σ〉, condition 1 holds trivially.

Condition 2 : We assume E  〈[p]; q, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 for some E, σ, ξ, a, ξ′, k1, σ

′, which
means that either Rule 16 or Rule 17 has been applied necessarily. Hence, we distinguish
two cases:

1. Rule 16 has been applied. Then E  〈[p], σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉, E  〈q, σ′〉 ξ′

 and k1 ≡ q.
According to Rule 10.1, we obtain E  〈p, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉. Using Rule 16, we can

have E  〈p; q,σ〉 ξ,a,ξ
′

−−−→ 〈q,σ′〉. Applying Rule 10.2, we get E  〈[p; q],σ〉 ξ,a,ξ
′

−−−→ 〈q,σ′〉.
Take k2 ≡ q and observe that (k1, k2) ∈ R.

2. Rule 17 has been applied. Then E  〈[p], σ〉 ξ,a,ξ′−−−→ 〈k′1, σ′〉 for some k′1 such that

k1 ≡ k′1 ; q. According to Rule 10.2, we obtain E  〈p, σ〉 ξ,a,ξ′−−−→ 〈k′1, σ′〉. Using

Rule 17, we can have E  〈p; q, σ〉 ξ,a,ξ′−−−→ 〈k′1 ; q, σ′〉. Applying Rule 10.2, we get

E  〈[p; q], σ〉 ξ,a,ξ′−−−→ 〈k′1 ; q, σ′〉. Take k2 ≡ k′1 ; q and observe that (k1, k2) ∈ R.

Condition 4 : We assume E  〈[p]; q, σ〉 t,ρ7−→ 〈k1, σ
′〉 for some E, σ, t, ρ, k1, σ

′; which means

Rule 18 has been applied necessarily. Then, E  〈[p], σ〉 t,ρ7−→ 〈kp, σ′〉 for some kp such that
k1 ≡ kp ; q. According to Rule 11, we obtain kp ≡ [p], ρ ∈ ΩσEt, and σ′ = ρσ(t). Using
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Rule 11, we obtain E  〈[p; q], σ〉 t,ρ7−→ 〈[p; q], σ′〉. Take k2 ≡ [p; q] and observe that
(k1, k2) ∈ R.

B.6 Properties of parallel composition

The following lemmas prove the properties of Proposition 3.5.6.

Lemma B.6.1 (Commutativity of parallel composition) For arbitrary closed process
terms p and q we have

p ‖ q ↔ q ‖ p.

PROOF. Let R = {(p ‖ q, q ‖ p) | p, q ∈ P} ∪ {(id, id) | id ∈ P}. Since the deduction rules
for ‖ are symmetrical w.r.t. the left and right argument, obviously all conditions are met.

Lemma B.6.2 (Associativity of parallel composition) For arbitrary closed process
terms p, q and r we have

(p ‖ q) ‖ r ↔ p ‖ (q ‖ r).

PROOF. Let R= {((p ‖ q) ‖ r,p ‖ (q ‖ r)) | p, q, r ∈ P}∪{(id, id) | id ∈ P}. The proof of the
left implication of condition 1 is similar to the proof of the right implication of condition
1. The proof of condition 3 is similar to the proof of condition 2. The proofs of conditions
4 – 6 are the same as the proofs of conditions 4 – 6 of Lemma B.3.4 (apart from the
operator that has been used), because the deduction rules defined for the time transitions
and the consistency predicates for [] and ‖ are the same. To increase the readability of

this proof, we often apply Lemma 3.5.6 to obtain (C, J ∪W,L,H,R)  〈p, σ〉 ξ
 from

(C, J, L,H,R)  〈p, σ〉 ξ
 or the other way around without mentioning explicitly the use

of Lemma 3.5.6.

Condition 1 : We assume (C, J, L,H,R)  〈(p ‖ q) ‖ r, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉 for some C, J , L,
H, R, σ, ξ, a, ξ′, σ′, which means that either Rule 28.1.l or Rule 28.1.r has been applied
necessarily. Hence, we distinguish two cases:

1. Rule 28.1.l has been applied. Then, we have (C,J ∪W, L, H, R)  〈p ‖ q,σ〉 ξ,isa(h,cs),ξ′−−−−−−−→
〈X, σ〉, (C, J, L,H,R)  〈r, σ〉 ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈X, σ′〉 for some W , h ,cs and a =

ca(h, cs). Since we do not have a rule for (C, J ∪W,L,H,R)  〈p ‖ q, σ〉 ξ,isa(h,cs),ξ′−−−−−−−→
〈X, σ′〉, we obtain a contradiction and the right implication of condition 1 holds
trivially.

2. Rule 28.1.r has been applied. Then, (C, J ∪W,L,H,R)  〈r, σ〉 ξ,isa(h,cs),ξ′−−−−−−−→ 〈X, σ′〉,
(C, J, L,H,R)  〈p ‖ q, σ〉 ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈X, σ′〉 for some W , h, cs , and a = ca(h, cs).

Since we do not have a rule for (C, J, L,H,R)  〈p ‖ q, σ〉 ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈X, σ′〉, we
obtain a contradiction and the right implication of condition 1 holds trivially.
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Condition 2 : We assume (C, J, L,H,R)  〈(p ‖ q) ‖ r, σ〉 ξ,a,ξ
′

−−−→ 〈k1, σ
′〉 for some C, J , L, H,

R, σ, ξ, a, ξ′, k1, σ′. Based on the deduction rule that has been applied we can distinguish
ten cases:

1. Rule 28.2.l has been applied. Then, we have (C,J ∪W,L,H,R) 〈p ‖ q,σ〉 ξ,isa(h,cs),ξ′−−−−−−−→
〈k1, σ

′〉 and (C, J, L,H,R)  〈r, σ〉 ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈X, σ′〉 for some W , h, cs , and a =

ca(h, cs). For (C, J ∪W,L,H,R)  〈p ‖ q, σ〉 ξ,isa(h,cs),ξ′−−−−−−−→ 〈k1, σ
′〉 we can distinguish

four more cases:

(a) Rule 29.1.l has been applied. Then, (C, J ∪W, L, H, R)  〈q, σ〉 ξ
 , (C, J ∪

W,L,H,R) 〈p,σ〉 ξ,isa(h,cs),ξ′−−−−−−−→ 〈X,σ〉, (C,J ∪W,L,H,R) 〈q,σ′〉 ξ
′

 , and k1≡ q.
Using Rule 29.1.r we obtain (C, J, L,H,R)  〈q ‖ r, σ〉 ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈q, σ′〉.
Using Rule 28.3.l we obtain (C, J, L, H,R)  〈p ‖ (q ‖ r), σ〉 ξ,ca(h,cs),ξ′−−−−−−−→ 〈q, σ′〉,
and observe that (q, q) ∈ R.

(b) Rule 29.1.r has been applied. Then, (C, J ∪W,L,H,R)  〈p, σ〉 ξ
 , (C, J ∪

W, L, H, R)  〈q, σ〉 ξ,isa(h,cs),ξ′−−−−−−−→ 〈X, σ′〉, (C, J ∪W,L,H,R)  〈p, σ′〉 ξ′

 , and

k1≡ p. Using Rule 28.1.l we obtain (C, J, L,H,R) 〈q ‖ r,σ〉 ξ,ca(h,cs),ξ′−−−−−−−→ 〈X,σ′〉.
Using Rule 29.1.r we obtain (C, J, L, H,R)  〈p ‖ (q ‖ r), σ〉 ξ,ca(h,cs),ξ′−−−−−−−→ 〈p, σ′〉
and observe that (p, p) ∈ R.

(c) Rule 29.2.l has been applied. Then, (C, J ∪W,L,H,R)  〈q, σ〉 ξ
 , (C, J ∪

W,L,H, R)  〈p, σ〉 ξ,isa(h,cs),ξ′−−−−−−−→ 〈kp, σ′〉 for some kp such that k1 ≡ kp ‖ q, and

(C, J ∪W,L,H,R)  〈q, σ′〉 ξ′

 . Using Rule 29.1.r we obtain (C, J, L,H,R) 

〈q ‖ r, σ〉 ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈q, σ′〉. Using Rule 28.4.l we obtain (C, J, L,H,R)  〈p ‖
(q ‖ r), σ〉 ξ,ca(h,cs),ξ′−−−−−−−→ 〈kp ‖ q, σ′〉. Take k2 ≡ kp ‖ q and observe that (k1, k2) ∈ R.

(d) Rule 29.2.r has been applied. Then, (C, J ∪W,L,H,R)  〈p, σ〉 ξ
 , (C, J ∪

W,L,H, R)  〈q, σ〉 ξ,isa(h,cs),ξ′−−−−−−−→ 〈kq, σ′〉 for some kq such that k1 ≡ p ‖ kq, and

(C, J ∪W,L,H,R)  〈p, σ′〉 ξ′

 . Using Rule 28.2.l we obtain (C, J, L,H,R) 

〈q ‖ r, σ〉 ξ,ca(h,cs),ξ′−−−−−−−→ 〈kq, σ′〉. Using Rule 29.2.r we obtain (C, J, L,H,R)  〈p ‖
(q ‖ r), σ〉 ξ,ca(h,cs),ξ′−−−−−−−→ 〈p ‖ kq, σ′〉. Take k2 ≡ p ‖ kq and observe that (k1, k2) ∈ R.

2. Rule 28.2.r has been applied. Then, (C, J, L,H,R)  〈p ‖ q, σ〉 ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈X, σ′〉
and (C, J ∪W,L,H,R)  〈r, σ〉 ξ,isa(h,cs),ξ′−−−−−−−→ 〈k1, σ

′〉 for some W , h, cs , and a =
ca(h, cs). This case cannot occur since the conclusion (C, J, L,H,R)  〈p ‖ q, σ〉
ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈X, σ′〉 cannot be obtained from the deduction rules.
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3. Rule 28.3.l has been applied. Then, we have (C, J ∪W,L,H,R) 〈p ‖ q,σ〉 ξ,isa(h,cs),ξ′−−−−−−−→
〈X, σ′〉 and (C, J, L,H,R)  〈r, σ〉 ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈k1, σ

′〉 for some W , h, cs , and

a = ca(h, cs). The conclusion (C, J ∪W,L,H,R)  〈p ‖ q, σ〉 ξ,isa(h,cs),ξ′−−−−−−−→ 〈X, σ′〉 can-
not be obtained from the deduction rules. Hence, this case cannot occur.

4. Rule 28.3.r has been applied. Then, we have (C, J, L,H,R)  〈p ‖ q, σ〉 ξ,ira(h,cs,W ),ξ′−−−−−−−−−→
〈k1, σ

′〉 and (C, J ∪W,L,H,R)  〈r, σ〉 ξ,isa(h,cs),ξ′−−−−−−−→ 〈X, σ′〉 for some W , h, cs , and

a = ca(h, cs). For (C, J, L,H,R)  〈p ‖ q, σ〉 ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈k1, σ
′〉 we can distinguish

four more cases:

(a) Rule 29.1.l has been applied. Then, we have (C, J, L,H,R)  〈q, σ 〉 ξ
 ,

(C, J, L,H,R)  〈p, σ〉 ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈X, σ′〉, (C, J, L,H,R)  〈q, σ′〉 ξ′

 and

k1 ≡ q. Using Rule 29.1.r we obtain (C, J, L, H,R)  〈q ‖ r,σ〉 ξ,isa(h,cs),ξ′−−−−−−−→ 〈q,σ′〉.
Using Rule 28.2.r we obtain (C, J, L, H,R)  〈p ‖ (q ‖ r), σ〉 ξ,ca(h,cs),ξ′−−−−−−−→ 〈q, σ′〉
and observe that (q, q) ∈ R.

(b) Rule 29.1.r has been applied. Then, we have (C, J, L,H,R)  〈p, σ〉 ξ
 ,

(C, J, L,H,R)  〈q, σ〉 ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈X, σ′〉, (C, J, L,H,R)  〈p, σ′〉 ξ′

 , and

k1 ≡ p. Using Rule 28.1.r we obtain (C, J, L,H,R) 〈q ‖ r,σ〉 ξ,ca(h,cs),ξ′−−−−−−−→ 〈X, σ′〉.
Using Rule 29.1.r we obtain (C, J, L, H,R)  〈p ‖ (q ‖ r), σ〉 ξ,ca(h,cs),ξ′−−−−−−−→ 〈p, σ′〉
and observe that (p, p) ∈ R.

(c) Rule 29.2.l has been applied. Then, we have (C, J, L,H,R)  〈q, σ 〉 ξ
 ,

(C, J, L,H,R)  〈p, σ〉 ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈kp, σ′〉 for some kp such that k1 ≡ kp ‖ q,
and (C, J, L,H,R) 〈q,σ′〉 ξ

′

 . Using Rule 29.1.r we obtain (C, J ∪W,L,H,R)

〈q ‖ r, σ〉 ξ,isa(h,cs),ξ′−−−−−−−→ 〈q, σ′〉. Using Rule 28.4.r we obtain (C, J, L,H,R)  〈p ‖
(q ‖ r), σ〉 ξ,ca(h,cs),ξ′−−−−−−−→ 〈kp ‖ q, σ′〉. Take k2 ≡ kp ‖ q and observe that (k1, k2) ∈ R.

(d) Rule 29.2.r has been applied. Then, we have (C, J, L,H,R)  〈p, σ〉 ξ
 ,

(C, J, L,H,R)  〈q, σ〉 ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈kq, σ′〉 for some kq such that k1 ≡ p ‖ kq,
and (C, J, L,H,R)  〈p, σ′〉 ξ′

 . Using Rule 28.3.r we obtain (C, J, L,H,R) 

〈q ‖ r, σ〉 ξ,ca(h,cs),ξ′−−−−−−−→ 〈kq, σ′〉. Using Rule 29.2.r we obtain (C, J, L,H,R)  〈p ‖
(q ‖ r), σ〉 ξ,ca(h,cs),ξ′−−−−−−−→ 〈p ‖ kq, σ′〉. Take k2 ≡ p ‖ kq and observe that (k1, k2) ∈ R.

5. Rule 28.4.l has been applied. Then, we have (C, J ∪W,L,H,R) 〈p ‖ q,σ〉 ξ,isa(h,cs),ξ′−−−−−−−→
〈kpq , σ

′〉, (C, J, L,H,R)  〈r, σ〉 ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈kr, σ′〉 for some W , h, cs , kpq , kr such

that k1 ≡ kpq ‖ kr, and a = ca(h, cs). For (C, J ∪W,L,H,R)  〈p ‖ q, σ〉 ξ,isa(h,cs),ξ′−−−−−−−→
〈kpq , σ

′〉 four cases can be distinguished:
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(a) Rule 29.1.l has been applied. Then, (C, J ∪W,L,H,R)  〈q, σ〉 ξ
 , (C, J ∪W,

L,H,R) 〈p,σ〉 ξ,isa(h,cs),ξ′−−−−−−−→ 〈X,σ′〉, (C, J ∪W,L,H,R) 〈q,σ′〉 ξ′

 , and kpq ≡ q.
Using Rule 29.2.r we obtain (C, J, L,H,R)  〈q ‖ r, σ〉 ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈q ‖ kr, σ′〉.
Using Rule 28.3.l, we obtain (C, J, L,H,R) 〈p ‖ (q ‖ r),σ〉 ξ,ca(h,cs),ξ′−−−−−−−→〈q ‖ kr,σ′〉.
Notice that k1 ≡ q ‖ kr. Take k2 ≡ q ‖ kr and observe that (k1, k2) ∈ R.

(b) Rule 29.1.r has been applied. Then, (C, J ∪W,L,H,R)  〈p, σ〉 ξ
 , (C,J ∪

W, L,H, R)  〈q, σ〉 ξ,isa(h,cs),ξ′−−−−−−−→ 〈X, σ′〉, (C, J ∪W, L, H, R)  〈p, σ′〉 ξ′

 , and

kpq ≡ p. Using Rule 28.3.l we obtain (C, J, L,H,R)  〈q ‖ r, σ〉 ξ,ca(h,cs),ξ′−−−−−−−→
〈kr, σ′〉. Using Rule 29.2.r we obtain (C, J, L, H,R)  〈p ‖ (q ‖ r), σ〉 ξ,ca(h,cs),ξ′−−−−−−−→
〈p ‖ kr,σ′〉. Notice that k1≡ p ‖ kr. Take k2≡ p ‖ kr and observe that (k1,k2)∈R.

(c) Rule 29.2.l has been applied. Then, (C, J ∪W,L,H,R)  〈q, σ〉 ξ
 , (C, J ∪

W,L, H, R)  〈p, σ〉 ξ,isa(h,cs),ξ′−−−−−−−→ 〈kp, σ′〉 for some kp such that kpq ≡ kp ‖ q,
(C, J ∪W,L,H,R)  〈q, σ′〉 ξ′

 . Using Rule 29.2.r we obtain (C, J, L,H,R) 

〈q ‖ r, σ〉 ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈q ‖ kr, σ′〉. Using Rule 28.4.l we obtain (C, J, L,H,R) 

〈p ‖ (q ‖ r), σ〉 ξ,ca(h,cs),ξ′−−−−−−−→ 〈kp ‖ (q ‖ kr), σ′〉. Notice that k1 ≡ (kp ‖ q) ‖ kr. Take
k2 ≡ kp ‖ (q ‖ kr) and observe that (k1, k2) ∈ R.

(d) Rule 29.2.r has been applied. Then, (C, J ∪W,L,H,R)  〈p, σ〉 ξ
 , (C, J ∪

W,L,H,R)  〈q, σ〉 ξ,isa(h,cs),ξ′−−−−−−−→ 〈kq, σ′〉 for some kq such that kpq ≡ p ‖ kq, and

(C, J ∪W,L,H,R)  〈p, σ′〉 ξ′

 . Using Rule 28.4.l we obtain (C, J, L,H,R) 

〈q ‖ r, σ〉 ξ,ca(h,cs),ξ′−−−−−−−→ 〈kq ‖ kr, σ′〉. Using Rule 29.2.r we obtain (C, J, L,H,R) 

〈p ‖ (q ‖ r), σ〉 ξ,ca(h,cs),ξ′−−−−−−−→ 〈p ‖ (kq ‖ kr), σ′〉. Notice that k1 ≡ (p ‖ kq) ‖ kr. Take
k2 ≡ p ‖ (kq ‖ kr) and observe that (k1, k2) ∈ R.

6. Rule 28.4.r has been applied. Then, (C, J, L,H,R) 〈p ‖ q,σ〉 ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈kpq , σ
′〉,

(C, J ∪W,L,H,R)  〈r, σ〉 ξ,isa(h,cs),ξ′−−−−−−−→ 〈kr, σ′〉 for some W , h, cs , kpq , kr such that

k1 ≡ kpq ‖ kr, and a = ca(h, cs). For (C, J, L,H,R)  〈p ‖ q, σ〉 ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈kpq , σ
′〉

we can distinguish four more cases:

(a) Rule 29.1.l has been applied. Then, we have (C, J, L,H,R)  〈q, σ〉 ξ
 ,

(C, J, L,H,R) 〈p,σ〉 ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈X,σ′〉, (C, J, L,H,R) 〈q,σ′〉 ξ
′

 and kpq ≡
q. Using Rule 29.2.r we obtain (C, J ∪W, L, H,R)  〈q ‖ r, σ〉 ξ,isa(h,cs),ξ′−−−−−−−→ 〈q ‖
kr, σ

′〉. Using Rule 28.2.r we obtain (C, J, L, H,R)  〈p ‖ (q ‖ r), σ〉 ξ,ca(h,cs),ξ′−−−−−−−→
〈q ‖ kr,σ′〉. Notice that k1≡ q ‖ kr. Take k2≡ q ‖ kr and observe that (k1,k2)∈R.

(b) Rule 29.1.r has been applied. Then, we have (C, J, L,H,R)  〈p, σ〉 ξ
 ,
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(C, J, L,H,R)  〈q, σ〉 ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈X, σ′〉, (C, J, L,H,R)  〈p, σ′〉 ξ′

 and

kpq ≡ p. Using Rule 28.2.r we obtain (C, J, L,H,R) 〈q ‖ r,σ〉 ξ,ca(h,cs),ξ′−−−−−−−→〈kr,σ′〉.
Using Rule 29.2.r we obtain (C, J, L, H, R)  〈b → q, σ〉 ξ

 〈p ‖ (q ‖ r), σ〉
ξ,ca(h,cs),ξ′−−−−−−−→ 〈p ‖ kr, σ′〉. Notice that k1 ≡ p ‖ kr. Take k2 ≡ p ‖ kr and observe
that (k1, k2) ∈ R.

(c) Rule 29.2.l has been applied. Then, we have (C, J, L,H,R)  〈q, σ〉 ξ
 ,

(C, J, L,H,R)  〈p, σ〉 ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈kp, σ′〉 for some kp such that kpq ≡ kp ‖ q,
and (C, J, L,H,R) 〈q,σ′〉 ξ

′

 . Using Rule 29.2.r we obtain (C, J ∪W,L,H,R)

〈q ‖ r, σ〉 ξ,isa(h,cs),ξ′−−−−−−−→ 〈q ‖ kr, σ′〉. Using Rule 28.4.r we obtain (C, J, L,H,R) 

〈p ‖ (q ‖ r), σ〉 ξ,ca(h,cs),ξ′−−−−−−−→ 〈kp ‖ (q ‖ kr), σ′〉. Notice that k1 ≡ (kp ‖ q) ‖ kr. Take
k2 ≡ kp ‖ (q ‖ kr) and observe that (k1, k2) ∈ R.

(d) Rule 29.2.r has been applied. Then, we have (C, J, L,H,R)  〈p, σ〉 ξ
 ,

(C, J, L,H,R)  〈q, σ〉 ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈kq, σ′〉 for some kq such that kpq ≡ p ‖ kq,
and (C, J, L,H,R)  〈p, σ′〉 ξ′

 . Using Rule 28.4.r we obtain (C,J,L, H, R) 

〈q ‖ r, σ〉 ξ,ca(h,cs),ξ′−−−−−−−→ 〈kq ‖ kr, σ′〉. Using Rule 29.2.r we obtain (C, J, L,H,R) 

〈p ‖ (q ‖ r), σ〉 ξ,ca(h,cs),ξ′−−−−−−−→ 〈p ‖ (kq ‖ kr), σ′〉. Notice that k1 ≡ (p ‖ kq) ‖ kr. Take
k2 ≡ p ‖ (kq ‖ kr) and observe that (k1, k2) ∈ R.

7. Rule 29.1.l has been applied. Then, (C, J, L,H,R)  〈r, σ〉 ξ
 , (C, J, L, H, R) 

〈p ‖ q, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉, k1 ≡ r, and (C, J, L,H,R)  〈r, σ′〉 ξ′

 . Then two cases can
be considered:

(a) Rule 28.1.l has been applied. Then, we have (C, J ∪ W, L, H, R)  〈p, σ〉
ξ,isa(h,cs),ξ′−−−−−−−→ 〈X, σ′〉, (C, J, L,H,R)  〈q, σ〉 ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈X, σ′〉 for some W ,
h, cs and a = ca(h, cs). Using Rule 29.1.l we obtain (C, J, L,H,R)  〈q ‖
r, σ〉 ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈r, σ′〉. Using Rule 28.3.l we obtain (C, J, L,H,R)  〈p ‖ (q ‖
r), σ〉 ξ,ca(h,cs),ξ′−−−−−−−→ 〈r, σ′〉, and observe that (r, r) ∈ R.

(b) Rule 28.1.r has been applied. Then, we have (C, J ∪W,L,H,R) 〈q,σ〉 ξ,isa(h,cs),ξ′−−−−−−−→
〈X, σ′〉, (C, J, L,H,R)  〈p, σ〉 ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈X, σ′〉 for some W , h, cs , and
a = ca(h, cs). Then, using Rule 29.1.l we obtain (C, J ∪W, L, H,R) 〈q ‖ r, σ〉
ξ,isa(h,cs),ξ′−−−−−−−→ 〈r, σ′〉. Using Rule 28.3.r we obtain (C, J, L,H,R)  〈p ‖ (q ‖
r), σ〉 ξ,ca(h,cs),ξ′−−−−−−−→ 〈r, σ′〉, and observe that (r, r) ∈ R.

8. Rule 29.1.r has been applied. Then, we have (C, J, L,H,R)  〈p ‖ q, σ〉 ξ
 ,

(C, J, L,H,R)  〈r, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉, (C, J, L,H,R)  〈p ‖ q, σ′〉 ξ′

 , and k1 ≡ p ‖ q.
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According to Rule 31, we have (C, J, L,H,R)  〈p, σ〉 ξ
 , (C, J, L,H,R)  〈q, σ〉 ξ

 ,

(C, J, L,H,R)  〈p, σ′〉 ξ′

 , and (C, J, L,H,R)  〈q, σ′〉 ξ′

 . Using Rule 29.1.r, we

obtain (C, J, L,H,R)  〈q ‖ r, σ〉 ξ,a,ξ′−−−→ 〈q, σ′〉. Then, using Rule 29.2.r, we obtain

(C, J, L,H,R)  〈p ‖ (q ‖ r), σ〉 ξ,a,ξ′−−−→ 〈p ‖ q, σ′〉. Take k2 ≡ p ‖ q and observe that
(k1, k2) ∈ R.

9. Rule 29.2.l has been applied. Then, (C, J, L, H, R)  〈r, σ〉 ξ
 , (C, J, L, H, R) 

〈p ‖ q, σ〉 ξ,a,ξ′−−−→ 〈kpq , σ
′〉 for some term kpq such that k1 ≡ kpq ‖ r and (C, J, L,H,R) 

〈r,σ′〉 ξ
′

 . For (C, J, L,H,R) 〈p ‖ q,σ〉 ξ,a,ξ
′

−−−→ 〈kpq ,σ
′〉, ten cases can be distinguished.

(a) Rule 28.2.l has been applied. Then, we have (C, J, L,H,R)  〈r, σ〉 ξ
 ,

(C, J ∪W,L,H,R)  〈p, σ〉 ξ,isa(h,cs),ξ′−−−−−−−→ 〈kpq , σ
′〉 and (C, J, L,H,R)  〈q, σ〉

ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈X, σ′〉 for some W , h, cs , and a = ca(h, cs). Then applying

Rule 29.1.l followed by Rule 28.4.l gives (C, J, L,H,R) 〈p ‖ (q ‖ r),σ〉 ξ,ca(h,cs),ξ′−−−−−−−→
〈kpq ‖ r, σ′〉. Take k2 ≡ kpq ‖ r and observe that (k1, k2) ∈ R.

(b) Rule 28.2.r has been applied. Then, we have (C, J ∪W,L,H,R) 〈q,σ〉 ξ,isa(h,cs),ξ′−−−−−−−→
〈X, σ′〉 and (C, J, L, H,R)  〈p, σ〉 ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈kpq , σ

′〉 for some W , h, cs ,
and a = ca(h,cs). Then Rule 29.1.l followed by Rule 28.4.r gives (C, J, L, H,R)

 〈p ‖ (q ‖ r), σ〉 ξ,ca(h,cs),ξ′−−−−−−−→ 〈kpq ‖ r, σ′〉. Take k2 ≡ kpq ‖ r and observe that
(k1, k2) ∈ R.

(c) Rule 28.3.l has been applied. Then, we have (C, J ∪W,L,H,R) 〈p,σ〉 ξ,isa(h,cs),ξ′−−−−−−−→
〈X, σ′〉 and (C, J, L,H,R) 〈q,σ〉 ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈kpq , σ

′〉 for some W , h, cs , and
a= ca(h,cs). Then Rule 29.2.l followed by Rule 28.3.l gives (C, J, L,H,R) 〈p ‖
(q ‖ r), σ〉 ξ,ca(h,cs),ξ′−−−−−−−→ 〈kpq ‖ r,σ′〉. Take k2 ≡ kpq ‖ r and observe that (k1, k2) ∈R.

(d) Rule 28.3.r has been applied. Then, we have (C, J ∪W,L,H,R) 〈q,σ〉 ξ,isa(h,cs),ξ′−−−−−−−→
〈kpq , σ

′〉 and (C, J, L,H,R)  〈p, σ〉 ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈X, σ′〉 for some W , h, cs , a =
ca(h,cs). Then applying Rule 29.1.l followed by Rule 28.4.r gives (C, J, L,H,R)

〈p ‖ (q ‖ r), σ〉 ξ,ca(h,cs),ξ′−−−−−−−→ 〈kpq ‖ r, σ′〉. Take k2 ≡ kpq ‖ r and observe that
(k1, k2) ∈ R.

(e) Rule 28.4.l has been applied. Then, we have (C, J ∪W,L,H,R) 〈p,σ〉 ξ,isa(h,cs),ξ′−−−−−−−→
〈kp, σ′〉, (C, J, L,H,R)  〈q, σ〉 ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈kq, σ′〉 for some W , h, cs , kp, kq

such that kpq ≡ kp ‖ kq, and a = ca(h, cs). Then applying Rule 29.2.l followed

by Rule 28.4.l gives (C, J, L, H,R)  〈p ‖ (q ‖ r), σ〉 ξ,ca(h,cs),ξ′−−−−−−−→ 〈kp ‖ (kq ‖ r), σ′〉.
Notice that k1≡ (kp ‖ kq) ‖ r. Take k2≡ kp ‖ (kq ‖ r) and observe that (k1,k2)∈R.
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(f) Rule 28.4.r has been applied. Then, we have (C, J ∪W,L,H,R)  〈q, σ〉
ξ,isa(h,cs),ξ′−−−−−−−→ 〈kq, σ′〉 and (C, J, L,H,R)  〈p, σ〉 ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈kp, σ′〉 for some W ,
h, cs , kp, kq such that kpq ≡ kp ‖ kq, and a= ca(h, cs). Then applying Rule 29.2.l

followed by Rule 28.4.r gives (C, J, L,H,R)  〈p ‖ (q ‖ r), σ〉 ξ,a,ξ′−−−→ 〈kp ‖ (kq ‖
r), σ′〉. Notice that k1 ≡ (kp ‖ kq) ‖ r. Take k2 ≡ kp ‖ (kq ‖ r) and observe that
(k1, k2) ∈ R.

(g) Rule 29.1.l has been applied. Then, we have (C, J, L,H,R)  〈q, σ〉 ξ
 ,

(C, J, L,H,R)  〈p,σ〉 ξ,a,ξ
′

−−−→ 〈X, σ′〉, (C, J, L,H,R)  〈q,σ′〉 ξ
′

 , and kpq ≡ q. We

have (C,J, L,H,R)  〈p ‖ q,σ〉 ξ
 and (C, J, L,H,R) 〈p ‖ q,σ′〉 ξ

′

 (see Rule 31).

Applying Rule 29.1.l gives (C, J, L,H,R) 〈p ‖ (q ‖ r),σ〉 ξ,a,ξ
′

−−−→〈q ‖ r,σ′〉. Notice
that k1 ≡ q ‖ r. Take k2 ≡ q ‖ r and observe that (k1, k2) ∈ R.

(h) Rule 29.1.r has been applied. Then, we have (C, J, L,H,R)  〈p, σ〉 ξ
 ,

(C, J, L,H,R)  〈q, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉, (C, J, L,H,R)  〈p, σ′〉 ξ′

 and kpq ≡ p.
Applying Rule 29.1.l and then Rule 29.2.r gives (C, J, L, H, R)  〈p ‖ (q ‖
r), σ〉 ξ,a,ξ′−−−→ 〈p ‖ r, σ′〉. Notice that k1 ≡ q ‖ r. Take k2 ≡ p ‖ r and observe that
(k1, k2) ∈ R.

(i) Rule 29.2.l has been applied. Then, we have (C, J, L,H,R)  〈q, σ〉 ξ
 , (C,

J , L, H, R)  〈p, σ〉 ξ,a,ξ′−−−→ 〈kp, σ′〉 for some kp such that kpq ≡ kp ‖ q, and

(C, J, L,H,R)  〈q, σ′〉 ξ′

 . We have (C, J, L,H,R)  〈p ‖ q, σ〉 ξ
 and (C, J , L,

H, R)  〈p ‖ q, σ′〉 ξ′

 (see Rule 31). Applying Rule 29.2.l gives (C, J, L,H,R) 

〈p ‖ (q ‖ r), σ〉 ξ,a,ξ′−−−→ 〈kp ‖ (q ‖ r), σ′〉. Take k2 ≡ kp ‖ (q ‖ r) and observe that
(k1, k2) ∈ R.

(j) Rule 29.2.r has been applied. Then, we have (C, J, L,H,R)  〈p, σ〉 ξ
 ,

(C, J, L,H,R)  〈q, σ〉 ξ,a,ξ′−−−→ 〈kq, σ′〉 for some kq such that kpq ≡ p ‖ kq, and

(C, J, L,H,R)  〈p, σ′〉 ξ′

 . Applying Rule 29.2.l and then Rule 29.2.r gives (C,

J, L, H,R) 〈p ‖ (q ‖ r), σ〉 ξ,a,ξ′−−−→ 〈p ‖ (kq ‖ r), σ′〉. Notice k1 ≡ (p ‖ kq) ‖ r. Take
k2 ≡ p ‖ (kq ‖ r) and observe that (k1, k2) ∈ R.

10. Rule 29.2.r has been applied. Then, we have (C, J, L,H,R)  〈p ‖ q, σ〉 ξ
 ,

(C, J, L,H,R)  〈r, σ〉 ξ,a,ξ′−−−→ 〈kr, σ′〉 for some kr such that k1 ≡ (p ‖ q) ‖ kr, and

(C, J, L,H,R)  〈p ‖ q, σ′〉 ξ′

 . According to Rule 31, we have (C, J, L,H,R) 

〈p, σ〉 ξ
 , (C, J, L,H,R)  〈q, σ〉 ξ

 , (C, J, L,H,R)  〈p, σ′〉 ξ′

 and (C, J, L,H,R) 

〈q, σ′〉 ξ′

 . Using Rule 29.2.r, we obtain (C, J, L,H,R)  〈q ‖ r, σ〉 ξ,a,ξ′−−−→ 〈q ‖ kr, σ′〉.
Using Rule 29.2.r, we obtain (C, J, L,H,R)  〈p ‖ (q ‖ r), σ〉 ξ,a,ξ′−−−→ 〈p ‖ (q ‖ kr), σ′〉.
Take k2 ≡ p ‖ (q ‖ kr) and observe that (k1, k2) ∈ R.
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Lemma B.6.3 For arbitrary predicates u, u′ we have

u ‖ u′ ↔ u ∧ u′.

PROOF. Let R = {(u ‖ u′, u ∧ u′) | predicates u, u′}. The fact that there are no action
transition rules defined for u, u′, also indicates that u ‖ u′ and u ∧ u′ have no action
transitions. Therefore, the conditions 1 – 3 hold trivially.

Condition 4 : We assume (C, J, L,H,R) 〈u ‖ u′, σ〉 t,ρ7−→ 〈k1, σ
′〉 for some C, J , L, H, R, σ,

t, ρ, k1, σ′, which means that Rule 30 has been applied necessarily. Then, (C, J, L,H,R) 

〈u, σ〉 t,ρ7−→ 〈ku, σ′〉 and (C, J, L,H,R)  〈u′, σ〉 t,ρ7−→ 〈k′u, σ′〉 for some ku, k
′
u such that k1 ≡

ku ‖ k′u. For (C, J, L,H,R)  〈u, σ〉 t,ρ7−→ 〈ku, σ′〉 and (C, J, L,H,R)  〈u′, σ〉 t,ρ7−→ 〈k′u, σ′〉,
Rule 3 has been applied necessarily. Then, ρ ∈ ΩFG(σ, C, L, u, t), σ′ = ρσ(t), ku ≡ u,
and ρ ∈ ΩFG(σ, C, L, u′, t), σ′ = ρσ(t) and k′u ≡ u′. From the definition of the function
ΩFG , we know that ∀s ∈ [0, t] : ρ(s) |= u and ∀s ∈ [0, t] : ρ(s) |= u′. We can further get
∀s ∈ [0, t] : ρ(s) |= u ∧ u′. Hence, it is not hard to see that ρ ∈ ΩFG(σ, C, L, u ∧ u′, t).
Using Rule 3, we obtain (C, J, L,H,R)  〈u ∧ u′, σ〉 t,ρ7−→ 〈u ∧ u′, ρσ(t)〉, and observe that
(u ‖ u′, u ∧ u′) ∈ R.

Condition 5 : We assume (C, J, L,H,R)  〈u ∧ u′, σ〉 t,ρ7−→ 〈k1, σ
′〉 for some C, J , L, H,

R, σ, t, ρ, k1, σ′, which means that Rule 3 has been applied necessarily. Then, ρ ∈
ΩFG(σ, C, L, u ∧ u′, t), σ′ = ρσ(t) and k1 ≡ u ∧ u′. From the definition of the function
ΩFG , we know that ∀s ∈ [0, t] : ρ(s) |= u ∧ u′. We can further get ∀s ∈ [0, t] : ρ(s) |= u
and ∀s ∈ [0, t] : ρ(s) |= u′. Hence, it is not hard to see that ρ ∈ ΩFG(σ, C, L, u, t) and

ρ ∈ ΩFG(σ, C, L, u′, t). Using Rule 3, we obtain (C, J, L,H,R)  〈u, σ〉 t,ρ7−→ 〈u, ρσ(t)〉 and

(C, J, L,H,R)  〈u′, σ〉 t,ρ7−→ 〈u′, ρσ(t)〉. Applying Rule 30, we obtain (C, J, L,H,R)  〈u ‖
u′, σ〉 t,ρ7−→ 〈u ‖ u′, ρσ(t)〉, and observe that (u ∧ u′, u ‖ u′) ∈ R.

Condition 6 : First, we assume (C, J, L,H,R)  〈u ‖ u′, σ〉 ξ
 for some C, J , L, H, R, σ, ξ,

which means that Rule 31 has been applied necessarily. Then, (C, J, L,H,R) 〈u,σ〉 ξ
 and

(C, J, L,H,R)  〈u′, σ〉 ξ
 . For (C, J, L,H,R)  〈u, σ〉 ξ

 and (C, J, L,H,R)  〈u′, σ〉 ξ
 ,

Rule 4 has been applied necessarily. Then, ξ = σ ∪ ξĊL for some ξĊL, σ ∪ ξĊL |= u, and

σ ∪ ξĊL |= u′. We can further obtain σ ∪ ξĊL |= u ∧ u′. Using Rule 4, we can have

(C, J, L,H,R)  〈u ∧ u′, σ〉 ξ
 . Second, we assume (C, J, L,H,R)  〈u ∧ u′, σ〉 ξ

 for some

C, J , L, H, R, σ, ξ, which means Rule 4 has been applied necessarily. Then, ξ = σ ∪ ξĊL
for some ξĊL and σ ∪ ξĊL |= u ∧ u′. We can further get σ ∪ ξĊL |= u and σ ∪ ξĊL |= u′.

Using Rule 4, we can have (C, J, L,H,R)  〈u, σ〉 σ∪ξ
ĊL

 and (C, J, L,H,R)  〈u′, σ〉 σ∪ξ
ĊL

 .

According to Rule 31, we get (C, J, L,H,R)  〈u ‖ u′, σ〉 σ∪ξ
ĊL

 .

B.7 Properties of action encapsulation operator

The following lemmas prove the properties of Proposition 3.5.7.
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Lemma B.7.1 For arbitrary set of actions A we have

∂A(δ) ↔ δ.

PROOF. Let R = {(∂A(δ), δ)}. Process term δ cannot perform any transitions. However,
it is consistent for arbitrary extended valuations. Also, action encapsulation has no effect
on consistency. Hence, conditions 1–6 hold trivially.

Lemma B.7.2 For arbitrary closed process term p we have

∂∅(p) ↔ p.

PROOF. Let R = {(∂∅(p), p) | p ∈ P}.
Condition 1 : First, we assume E  〈∂∅(p), σ〉

ξ,a,ξ′−−−→ 〈X, σ′〉 for some E, σ, ξ, a, ξ′, σ′, which

means Rule 32.1 has been applied necessarily. Then, E  〈p, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉. Second, we

assume E  〈p, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉 for some E, σ, ξ, a, ξ′, σ′. We know that a 6∈ ∅. Using

Rule 32.1, we obtain E  〈∂∅(p), σ〉
ξ,a,ξ′−−−→ 〈X, σ′〉.

Condition 2 : We assume E  〈∂∅(p), σ〉
ξ,a,ξ′−−−→ 〈k1, σ

′〉 for some E, σ, ξ, a, ξ′, k1, σ
′, which

means Rule 32.2 has been applied necessarily. Then, E  〈p, σ〉 ξ,a,ξ′−−−→ 〈kp, σ′〉 for some kp
such that k1 ≡ ∂∅(kp). Take k2 ≡ kp and observe that (k1, k2) ∈ R.

Condition 3 : We assume E  〈p, σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 for some E, σ, ξ, a, ξ′, k1, σ

′. We know

that a 6∈ ∅. Using Rule 32.2, we obtain E  〈∂∅(p), σ〉
ξ,a,ξ′−−−→ 〈∂∅(k1), σ′〉. Take k2 ≡ ∂∅(k1)

and observe that (k2, k1) ∈ R.

Condition 4 : We assume E  〈∂∅(p), σ〉
t,ρ7−→ 〈k1, σ

′〉 for some E, σ, t, ρ, k1, σ
′, which means

Rule 33 has been applied necessarily. Then, E  〈p, σ〉 t,ρ7−→ 〈kp, σ′〉 for some kp such that
k1 ≡ ∂∅(kp). Take k2 ≡ kp and observe that (k1, k2) ∈ R.

Condition 5 : We assume E  〈p, σ〉 t,ρ7−→ 〈k1, σ
′〉 for some E, σ, t, ρ, k1, σ

′. Using Rule 33,

we obtain E  〈∂∅(p), σ〉
t,ρ7−→ 〈∂∅(k1), σ′〉. Take k2 ≡ ∂∅(k1) and observe that (k2, k1) ∈ R.

Condition 6 : First, we assume E  〈∂∅(p), σ〉
ξ
 for some E,σ, ξ, which means Rule 34 has

been applied necessarily. Then, E  〈p, σ〉 ξ
 . Second, we assume E  〈p, σ〉 ξ

 for some

E, σ, ξ. Using Rule 34, we obtain E  〈∂∅(p), σ〉
ξ
 .

Lemma B.7.3 For arbitrary closed process term p and sets of actions A and A′ we have

∂A(∂A′(p)) ↔ ∂A∪A′(p).

PROOF. Let R = {(∂A(∂A′(p)), ∂A∪A′(p)) | p ∈ P, sets of actions A,A′}.
Condition 1 : First, we assume E  〈∂A(∂A′(p)), σ〉

ξ,a,ξ′−−−→ 〈X, σ′〉 for some E, σ, ξ, a, ξ′, σ′,

which means Rule 32.1 has been applied necessarily. Then, E  〈∂A′(p),σ〉
ξ,a,ξ′−−−→〈X,σ′〉 and
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a 6∈A. Again, due to Rule 32.1, we have E  〈p,σ〉 ξ,a,ξ
′

−−−→〈X,σ′〉 and a 6∈A′. From a 6∈A and

a 6∈A′, we know that a 6∈A∪A′. Using Rule 32.1, we obtain E  〈∂A∪A′(p),σ〉
ξ,a,ξ′−−−→ 〈X,σ′〉.

Second, we assume E  〈∂A∪A′(p), σ〉
ξ,a,ξ′−−−→ 〈X, σ′〉 for some E, σ, ξ, a, ξ′, σ′, which means

Rule 32.1 has been applied necessarily. Then, E  〈p,σ〉 ξ,a,ξ
′

−−−→ 〈X, σ′〉 and a 6∈A∪A′. From

a 6∈ A∪A′, we know that a 6∈ A and a 6∈ A′. Using Rule 32.1, we get E  〈∂A′(p), σ〉
ξ,a,ξ′−−−→

〈X, σ′〉. Again, using Rule 32.1, we obtain E  〈∂A(∂A′(p)), σ〉
ξ,a,ξ′−−−→ 〈X, σ′〉.

Condition 2 : We assume E  〈∂A(∂A′(p)), σ〉
ξ,a,ξ′−−−→ 〈k1, σ

′〉 for some E, σ, ξ, a, ξ′, k1, σ′,

which means Rule 32.2 has been applied necessarily. Then, E  〈∂A′(p), σ〉
ξ,a,ξ′−−−→ 〈kp, σ′〉 for

some kp such that k1 ≡ ∂A(kp) and a 6∈ A. Using Rule 32.2, we get E  〈p, σ〉 ξ,a,ξ′−−−→ 〈k′p, σ′〉
for some k′p such that kp ≡ ∂A′(k

′
p) and a 6∈ A′. From a 6∈ A and a 6∈ A′, we know that

a 6∈ A ∪ A′. Using Rule 32.2, we get E  〈∂A∪A′(p), σ〉
ξ,a,ξ′−−−→ 〈∂A∪A′(k

′
p), σ

′〉. Note that
k1 ≡ ∂A(∂A′(k

′
p)). Take k2 ≡ ∂A∪A′(k

′
p) and observe that (k1, k2) ∈ R.

Condition 3 : We assume E  〈∂A∪A′(p), σ〉
ξ,a,ξ′−−−→ 〈k1, σ

′〉 for some E, σ, ξ, a, ξ′, k1, σ′,

which means Rule 32.2 has been applied necessarily. Then, E  〈p, σ〉 ξ,a,ξ′−−−→ 〈kp, σ′〉 for
some kp such that k1 ≡ ∂A∪A′(kp) and a 6∈ A ∪ A′. From a 6∈ A ∪ A′, we know that a 6∈ A

and a 6∈ A′. Using Rule 32.2, we get E  〈∂A′(p), σ〉
ξ,a,ξ′−−−→ 〈∂A′(kp), σ

′〉. Again, due to

Rule 32.2, we have E  〈∂A(∂A′(p)), σ〉
ξ,a,ξ′−−−→ 〈∂A(∂A′(kp)), σ

′〉. Take k2 ≡ ∂A(∂A′(kp)) and
observe that (k2, k1) ∈ R.

Condition 4 : We assume E  〈∂A(∂A′(p)), σ〉
t,ρ7−→ 〈k1, σ

′〉 for some E, σ, t, ρ, k1, σ′, which

means Rule 33 has been applied necessarily. Then, E  〈∂A′(p), σ〉
t,ρ7−→ 〈kp, σ′〉 for some

kp such that k1 ≡ ∂A(kp). Again, due to Rule 33, we get E  〈p, σ〉 t,ρ7−→ 〈k′p, σ′〉 for some

k′p such that kp ≡ ∂A′(k
′
p). Using Rule 33, we obtain E  〈∂A∪A′(p), σ〉

t,ρ7−→ 〈∂A∪A′(k
′
p), σ

′〉.
Note that k1 ≡ ∂A(∂A′(k

′
p)). Take k2 ≡ ∂A∪A′(k

′
p) and observe that (k1, k2) ∈ R.

Condition 5 : We assume E  〈∂A∪A′(p), σ〉
t,ρ7−→ 〈k1, σ

′〉 for some E, σ, t, ρ, k1, σ
′, which

means Rule 33 has been applied necessarily. Then, E  〈p, σ〉 t,ρ7−→ 〈kp, σ′〉 for some kp

such that k1 ≡ ∂A∪A′(kp). Using Rule 33, we get E  〈∂A′(p), σ〉
t,ρ7−→ 〈∂A′(kp), σ

′〉. Due to

Rule 33, we obtain E  〈∂A(∂A′(p)), σ〉
t,ρ7−→ 〈∂A(∂A′(kp)), σ

′〉. Take k2 ≡ ∂A(∂A′(kp)) and
observe that (k2, k1) ∈ R.

Condition 6 : First, we assume E  〈∂A(∂A′(p)), σ〉
ξ
 for some E,σ, ξ, which means Rule 34

has been applied necessarily. Then, E  〈∂A′(p), σ〉
ξ
 . Again, due to Rule 34, we have

E  〈p, σ〉 ξ
 . Then using Rule 34, we obtain E  〈∂A∪A′(p), σ〉

ξ
 . Second, we assume

E  〈∂A∪A′(p), σ〉
ξ
 for some E, σ, ξ, which means Rule 34 has been applied necessarily.

Then, E  〈p, σ〉 ξ
 . Using Rule 34, we obtain 〈E  ∂A′(p), σ〉

ξ
 . Using Rule 34 again,

we obtain E  〈∂A(∂A′(p)), σ〉
ξ
 .
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Lemma B.7.4 For arbitrary closed process terms p, q and set of actions A we have

∂A(p [] q) ↔ ∂A(p) [] ∂A(q).

PROOF. Let R = {(∂A(p [] q), ∂A(p) [] ∂A(q)) | p, q ∈ P} ∪ {(id, id) | id ∈ P}. The proofs of
the left implication of conditions 1 and 6 are similar to the proofs of the right implication of
conditions 1 and 6. The proofs of conditions 3 and 5 are similar to the proofs of conditions
2 and 4.

Condition 1 : First, we assume E  〈∂A(p [] q), σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉 for some E, σ, ξ, a, ξ′, σ′,

which means Rule 32.1 has been applied necessarily. Then, E  〈p [] q, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉,
and we know that a 6∈ A. For E  〈p [] q, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉, we further distinguish two cases:

• Rule 25.1.l has been applied. Then, we get E  〈p,σ〉 ξ,a,ξ
′

−−−→ 〈X, σ′〉, and E  〈q,σ〉 ξ
 .

Applying Rule 32.1, we can have E  〈∂A(p), σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉. Also, we obtain

E  〈∂A(q), σ〉 ξ
 using Rule 34. According to Rule 25.1.l, we have E  〈∂A(p) []

∂A(q), σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉.

• Rule 25.1.r has been applied. The proof is similar to the previous case.

Condition 2 : We assume E  〈∂A(p [] q), σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 for some E,σ, ξ,a, ξ′, k1, σ

′, which

means Rule 32.2 has been applied necessarily. Then, E  〈p [] q, σ〉 ξ,a,ξ′−−−→ 〈kp, σ′〉 for some

kp such that k1 ≡ ∂A(kp), and a 6∈A. For E  〈p [] q,σ〉 ξ,a,ξ
′

−−−→ 〈kp, σ′〉, we further distinguish
two cases:

• Rule 25.2.l has been applied. Then, we get E  〈p,σ〉 ξ,a,ξ
′

−−−→ 〈kp, σ′〉, and E  〈q,σ〉 ξ
 .

Applying Rule 32.2, we can have E  〈∂A(p), σ〉 ξ,a,ξ′−−−→ 〈∂A(kp), σ
′〉. Also, we obtain

E  〈∂A(q), σ〉 ξ
 using Rule 34. According to Rule 25.2.l, we have E  〈∂A(p) []

∂A(q), σ〉 ξ,a,ξ′−−−→ 〈∂A(kp), σ
′〉. Take k2 ≡ ∂A(kp), and observe that (∂A(kp), ∂A(kp)) ∈ R.

• Rule 25.2.r has been applied. The proof is similar to the previous case.

Condition 4 : We assume E  〈∂A(p [] q), σ〉 t,ρ7−→ 〈k1, σ
′〉 for some E, σ, t, ρ, k1, σ

′, which

means Rule 33 has been applied necessarily. Then, E  〈p [] q, σ〉 t,ρ7−→ 〈kpq, σ′〉 for some kpq

such that k1 ≡ ∂A(kpq). For E  〈p [] q, σ〉 t,ρ7−→ 〈kpq, σ′〉, we further obtain (see also Rule 26)

E  〈p, σ〉 t,ρ7−→ 〈kp, σ′〉, and E  〈q, σ〉 t,ρ7−→ 〈kq, σ′〉 for some kp, kq such that kpq ≡ kp [] kq.

Using Rule 33, we have E  〈∂A(p), σ〉 t,ρ7−→ 〈∂A(kp), σ
′〉, and E  〈∂A(q), σ〉 t,ρ7−→ 〈∂A(kq), σ

′〉.
Applying Rule 26, we get E  〈∂A(p) [] ∂A(q), σ〉 t,ρ7−→ 〈∂A(kp) [] ∂A(kq), σ

′〉. Note that
k1 ≡ ∂A(kp [] kq), take k2 ≡ ∂A(kp) [] ∂A(kq), and observe that (k1, k2) ∈ R.

Condition 6 : First, we assume E  〈∂A(p [] q), σ〉 ξ
 for some E,σ, ξ, which means Rule 34

has been applied necessarily. Then, E  〈p [] q, σ〉 ξ
 . According to Rule 27, we obtain E 
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〈p,σ〉 ξ
 , and E  〈q,σ〉 ξ

 . Using Rule 34, we get E  〈∂A(p), σ〉 ξ
 , and E  〈∂A(q), σ〉 ξ

 .

Applying Rule 27, we obtain E  〈∂A(p) [] ∂A(q), σ〉 ξ
 .

Lemma B.7.5 For arbitrary closed process terms p, q, set of action A, we have

∂A(p; q) ↔ ∂A(p); ∂A(q).

PROOF. Let R = {(∂A(p; q), ∂A(p); ∂A(q)) | p, q ∈ P} ∪ {(id, id) | id ∈ P}. The proofs of
the left implication of conditions 1 and 6 are similar to the proofs of the right implication of
conditions 1 and 6. The proofs of conditions 3 and 5 are similar to the proofs of conditions
2 and 4.

Condition 1 : First, we assume E  〈∂A(p; q), σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉 for some E, σ, ξ, a, ξ′, σ′,

which means Rule 32.1 has been applied necessarily. Then, E  〈p; q, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉, and

we know that a 6∈ A. However, the termination transition E  〈p; q, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉 is not
possible in our semantics. Hence, the left implication of condition 1 holds trivially.

Condition 2 : We assume E  〈∂A(p; q), σ〉 ξ,a,ξ′−−−→ 〈k1, σ
′〉 for some E,σ, ξ,a, ξ′, k1, σ

′, which

means Rule 32.2 has been applied necessarily. Then, E  〈p; q,σ〉 ξ,a,ξ
′

−−−→ 〈kpq, σ′〉 for some kp

such that k1 ≡ ∂A(kpq), and a 6∈ A. For E  〈p; q, σ〉 ξ,a,ξ′−−−→ 〈kpq, σ′〉, we further distinguish
two cases:

• Rule 16 has been applied. Then, we get E  〈p, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉, and E  〈q, σ′〉 ξ′

 ,

and kpq ≡ q. Applying Rule 32.1, we can have E  〈∂A(p), σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉. Also,

we obtain E  〈∂A(q), σ′〉 ξ′

 using Rule 34. According to Rule 16, we have E 

〈∂A(p); ∂A(q), σ〉 ξ,a,ξ′−−−→ 〈∂A(q), σ′〉. Note that k1 ≡ ∂A(q), and take k2 ≡ ∂A(q), and
observe that (k1, k2) ∈ R.

• Rule 17 has been applied. Then, we get E  〈p,σ〉 ξ,a,ξ
′

−−−→ 〈k′,σ′〉, and E  〈q,σ′〉 ξ
′

 , for

some k′ such that kpq ≡ k′ ; q. Applying Rule 32.2, we can have E  〈∂A(p), σ〉 ξ,a,ξ′−−−→
〈∂A(k′), σ′〉. According to Rule 17, we have E  〈∂A(p); ∂A(q), σ〉 ξ,a,ξ′−−−→ 〈 ∂A(k′) ;
∂A(q),σ′ 〉. Note that k1≡ ∂A(k′ ; q), k2≡ ∂A(k′); ∂A(q), and observe that (k1, k2)∈R.

Condition 4 : The proof of this condition is similar to the proof of condition 2 in which
Rule 17 has been applied in the case distinction.

Condition 6 : First, we assume E  〈∂A(p; q), σ〉 ξ
 for some E,σ, ξ, which means Rule 34

has been applied necessarily. Then, E  〈p; q, σ〉 ξ
 . According to Rule 19, we obtain

E  〈p, σ〉 ξ
 . Using Rule 34, we get E  〈∂A(p), σ〉 ξ

 . Applying Rule 19, we obtain

E  〈∂A(p); ∂A(q), σ〉 ξ
 .

Lemma B.7.6 For arbitrary predicate u and set of actions A, we have

∂A(u) ↔ u.
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PROOF. Let R = {(∂A(u), u) | predicate u}. Since there are no termination and action
transition rules defined for u, also indicates there are no termination and action transition
rules defined for ∂A(u), the conditions 1 – 3 hold trivially. Moreover, action encapsulation
has no effect in time transitions and consistency. Hence, the conditions 4 – 6 also hold
trivially.

Lemma B.7.7 For arbitrary closed process term p, set of actions A we have

∂A([p]) ↔ [∂A(p)].

PROOF. Let R = {(∂A([p]), [∂A(p)]) | p ∈ P} ∪ {(id, id) | id ∈ P}. The proof of the left
implication of condition 1 is similar to the proof of the right implication of condition 1.
The proof of condition 3 is similar to the proof of condition 2. We know that action
encapsulation has no effect in time transitions and consistency. So, ∂A([p]) also allows
arbitrary time transitions and thereby do not change (because [p] allows arbitrary time
transitions, see Rule 12). [p] (also ∂A([p]), see Rule 34) and [∂A(p)] are consistent with any
extended valuation with respect to σ in any environment. It is not hard to see that the
conditions 4 – 6 hold trivially

Condition 1 : First, we assume E  〈∂A([p]), σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉 for some E, σ, ξ, a, ξ′, σ′,

which means Rule 32.1 has been applied necessarily. Then, E  〈[p], σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉,
and we know that a 6∈ A. Followed by Rule 10.1, we get E  〈p, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉. Using

Rule 32.1, we can obtain E  〈∂A(p), σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉. According to Rule 10.1, we get

E  〈[∂A(p)], σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉.
Condition 2 : We assume E  〈∂A([p]), σ〉 ξ,a,ξ′−−−→ 〈k1, σ

′〉 for some E, σ, ξ, a, ξ′, k1, σ
′, which

means Rule 32.2 has been applied necessarily. Then, E  〈[p], σ〉 ξ,a,ξ′−−−→ 〈kp, σ′〉 for some kp

such that k1 ≡ ∂A(kp), and a 6∈ A. Followed by Rule 10.2, we get E  〈p, σ〉 ξ,a,ξ′−−−→ 〈kp, σ′〉.
Using Rule 32.2, we can obtain E  〈∂A(p), σ〉 ξ,a,ξ′−−−→ 〈∂A(kp), σ

′〉. According to Rule 10.2,

we get E  〈[∂A(p)], σ〉 ξ,a,ξ′−−−→ 〈∂A(kp), σ
′〉. Take k2 ≡ ∂A(kp), and observe that (k1, k2) ∈ R.

Lemma B.7.8 For arbitrary closed process term p, guard b, and set of actions A we have

∂A(b→ p) ↔ b→ ∂A(p).

PROOF. Let R = {(∂A(b → p), b → ∂A(p)) | p ∈ P}. The proofs of the left implication
of conditions 1 and 6 are similarly straightforward to the proofs of the right implication of
conditions 1 and 6. The proofs of conditions 3 and 5 are similarly straightforward to the
proofs of conditions 2 and 4.

Condition 1 : First, we assume E  〈∂A(b→ p), σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉 for some E, σ, ξ, a, ξ′,σ′,

which means Rule 32.1 has been applied necessarily. Then, we have E  〈b→ p, σ〉 ξ,a,ξ′−−−→
〈X, σ′〉 and a 6∈ A. By Rule 20.1, we get E  〈p, σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉 and ξ |= b. Using
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Rule 32.1, we obtain E  〈∂A(p), σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉. Followed by Rule 20.1, we have E 

〈b→ ∂A(p), σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉.
Condition 2 : We assume E  〈∂A(b→ p), σ〉 ξ,a,ξ′−−−→ 〈k1, σ

′〉 for some E, σ, ξ, a, ξ′, σ′, k1,

which means Rule 32.2 has been applied necessarily. Then, we have E  〈b→ p, σ〉 ξ,a,ξ′−−−→
〈k′1, σ′〉 such that k1 ≡ ∂A(k′1) and a 6∈ A. Using Rule 32, we obtain E  〈∂A(p), σ〉 ξ,a,ξ′−−−→
〈∂A(k′1), σ′〉. Followed by Rule 20.2, we have E  〈b → ∂A(p), σ〉 ξ,a,ξ′−−−→ 〈∂A(k′1), σ′〉. Take
k2 ≡ ∂A(k′1) and observe that (k1, k2) ∈ R.

Condition 4 : We assume E  〈∂A(b → p), σ〉 t,ρ7−→ 〈k1, σ
′〉 for some E, σ, t, ρ, k1, σ

′, which

means Rule 33 has been applied necessarily. Then, E  〈b→ p, σ〉 t,ρ7−→ 〈k′1, σ′〉 for some k′1
such that k1 ≡ ∂A(k′1). For E  〈b→ p, σ〉 t,ρ7−→ 〈k′1, σ′〉, we can distinguish two cases:

• Rule 21 has been applied. Then 〈p, σ〉 t,ρ7−→ 〈k′′1 , σ′〉 such that k′1 ≡ b → k′′1 , and

∀s∈[0,t] ρ(s) |= b. Using Rule 33, we have E  〈∂A(p), σ〉 t,ρ7−→ 〈∂A(k′′1), σ′〉. Followed by

Rule 21, we get E  〈b→ ∂A(p), σ〉 t,ρ7−→ 〈b→ ∂A(k′′1), σ′〉. Take k2 ≡ b→ ∂A(k′′1) and
observe that (k1, k2) ∈ R.

• Rule 22 has been applied. Then ρ ∈ ΩσEt , ∀s∈(0,t) ρ(s) |= ¬b, ∃s∈[0,t] ρ(s) |= ¬b ρ(0) |=
b⇒ 〈p, σ〉 0,ρ�{0}7−→ 〈p′, σ′〉 for some p′, ρ(t) |= b⇒ 〈p, ρσ(t)〉 ρ(t)

 , k′1 ≡ b→ p, and σ′ =

ρσ(t). It is not hard to see that we have ρ(0) |= b ⇒ 〈∂A(p), σ〉 0,ρ�{0}7−→ 〈∂A(p′), σ′〉
and ρ(t) |= b ⇒ 〈∂A(p), ρσ(t)〉 ρ(t)

 using Rules 33 and 34. Applying Rule 22, we get

E  〈b → ∂A(p), σ〉 t,ρ7−→ 〈b → ∂A(p), σ′〉. Take k2 ≡ b → ∂A(p) and observe that
(k1, k2) ∈ R.

Condition 6 : First, we assume E  〈∂A(b→ p), σ〉 ξ
 for some E, σ, ξ, which means Rule

23 has been applied necessarily. Then, E  〈b→ p, σ〉 ξ
 . For E  〈b→ p, σ〉 ξ

 , we can
distinguish two cases:

• Rule 23 has been applied. Then, we get ξ |= b and E  〈p,σ〉 ξ
 . Applying Rule 34, we

get E  〈∂A(p), σ〉 ξ
 . Followed by Rule 23, we conclude that E  〈b→ ∂A(p), σ〉 ξ

 .

• Rule 24 has been applied. Then, we get σ ∪ ξĊL |= ¬b for some ξĊL. Using Rule 24,

we obtain E  〈b→ ∂A(p), σ〉 σ∪ξ
ĊL

 .

B.8 Inconsistent process

The following lemmas prove the properties of Proposition 3.5.8.

Lemma B.8.1 For arbitrary predicate u we have,

uy ⊥ ↔ ⊥.
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PROOF. Using the previous properties we have uy⊥ ↔ uy (falsey p) ↔ (u∧ false)y
p ↔ false y p ↔ ⊥.

Lemma B.8.2 For arbitrary closed term p we have

p [] ⊥ ↔ ⊥.

PROOF. Since there are no transition rules defined for ⊥, also note that p [] ⊥ has no
transitions, the conditions 1 – 6 hold trivially.

Lemma B.8.3 For arbitrary closed process term p we have

p ‖ ⊥ ↔ ⊥.

PROOF. Since there are no transition rules defined for ⊥, also note that p ‖ ⊥ has no
transitions, the conditions 1 – 6 hold trivially.

Lemma B.8.4 For arbitrary set of actions A we have

∂A(⊥) ↔ ⊥.

PROOF. Since there are no transition rules defined for ⊥, also note that ∂A(⊥) has no
transitions, the conditions 1 – 6 hold trivially.

Lemma B.8.5 For arbitrary closed process term p we have

⊥; p ↔ ⊥.

PROOF. Since there are no transition rules defined for ⊥, also note that ⊥; p has no
transitions, the conditions 1 – 6 hold trivially.

Lemma B.8.6 We have
skip; ⊥ ↔ δ.

PROOF. We know that skip ≡ ∅ : true� τ . Let R = {(∅ : true� τ ; ⊥, δ)}. Since there
are no action transitions and time transitions defined for δ and ⊥, also ∅ : true � τ ; ⊥
cannot perform any action transitions (because ⊥ is not consistent) and time transitions
(because no time transitions are defined for ∅ : true� τ), the conditions 1 – 5 hold trivially.

Condition 6 : First, we assume (C, J, L,H,R)  〈∅ : true � τ ; ⊥, σ〉 ξ
 for some C,J, L,

H,R, σ, ξ, which means that Rule 19 has been applied necessarily. Then, (C, J, L,H,R) 

〈∅ : true � τ, σ〉 ξ
 such that ξ = σ ∪ ξĊL for some ξĊL (see also Rule 2). Then, we get

(C, J, L,H,R)  〈δ, σ〉 σ∪ξ
ĊL

 using Rule 9. Second, we assume (C, J, L,H,R)  〈δ, σ〉 ξ
 ,

which means that Rule 9 has been applied necessarily. Then ξ = σ ∪ ξĊL for some ξĊL.
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Using Rule 2, we get (C, J, L,H,R)  〈∅ : true � τ, σ〉 σ∪ξ
ĊL

 . According to Rule 19, we

obtain (C, J, L,H,R)  〈∅ : true� τ ; ⊥, σ〉 σ∪ξ
ĊL

 .

Lemma B.8.7 We have,
⊥ ↔ false.

PROOF. Using the previous properties we have ⊥ ↔ false y false ↔ false.
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APPENDIX

C

Proofs of the translation from Chi to Hybrid
Automata

C.1 The semantics of the repetition operator

In Section 2.5.2, the semantics of repetition is given as an expression of the repetition
operator in terms of other language elements. For the proofs in this thesis, this is rather
inconvenient as several language constructs are used in this expression that play no role
in this thesis. Therefore, in this appendix, we provide deduction rules for the repetition
operator in the restricted setting of this thesis. It can be shown that these coincide with
the formal semantics, though we omit the proof here.

〈p, σ, E〉 ξ,a,ξ′−−−→ 〈X
p′
, σ′, E〉

〈∗p, σ, E〉 ξ,a,ξ′−−−→ 〈 ∗p
p′ ; ∗p , σ

′, E〉
(A)

〈p, σ, E〉 t,ρ7−→ 〈p′, σ′, E〉
〈∗p, σ, E〉 t,ρ7−→ 〈p′ ; ∗p, σ′, E〉

(B)

〈p, σ, E〉 ξ
 

〈∗p, σ, E〉 ξ
 

(C)

C.2 Proof of Theorem 5.3.1

Let p be a closed process term, v0 be the initial location of TJ(p), α and σ be valuations
such that σ = α � dom(σ), ξ be an extended valuation such that σ = ξ � dom(σ) and
E = (C, J, ∅, H, ∅) be an environment. Then

(v0, α) is an admissible state of |[HA(〈p, σ, E〉) ]| ⇔ 〈p, σ, E〉 ξ
 .

PROOF. We prove this theorem by induction on the structure of p. Firstly, we give the

proof for (v0, α) is an admissible state of |[HA(〈p, σ, E〉) ]| ⇒ 〈p, σ, E〉 ξ
 .
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• Guarded action predicate p ≡ b → W : r � la for some b,W, r, la. We assume that
(v0, α) is an admissible state of |[HA(〈b→W : r � la, σ, E〉) ]|. According to trans-
lation defined for the guarded action predicate, TJ(b→ W : r � la) has 2 locations
source v0 and target v′0. They are connected by an urgent edge e, which is guarded by
b with label la and jump condition (W ∪J ∪Xaux, ζW∪J(r)). Then, we can distinguish
two cases:

– source(e) = v0, target(e) = v′0, event(e) = la, α |= b, (α, α′) |= jump(e) for some
α′. According to the semantics of a hybrid automaton, we know that there

exists (v0, α)
la−→ (v′0, α

′). By Theorem 5.3.5, Lemma 3.5.2, σ = α � dom(σ) and

σ = ξ � dom(σ), it is not hard to see that 〈W : r � la, σ〉
ξ
 and ξ |= b. Using

Rule 23, we have 〈b→ W : r � la, σ〉
ξ
 .

– α |= ¬b. From σ = α � dom(σ) and σ = ξ � dom(σ), it is not hard to see that

we have σ ∪ ξĊL |= ¬b for some ξĊL. Using Rule 24, we get (C, J, L,H,R) 

〈b→ W : r � la, σ〉
σ∪ξĊL
 .

• Guarded send p ≡ b → h !! en for some b, h, en. The proof is similar to the proof of
the case that p ≡ b→ W : r � la.

• Guarded receive p ≡ b→ h ?? xn for some b, h,xn. The proof is similar to the proof
of the case that p ≡ b→ W : r � la.

• Delay predicate p ≡ u for some u. We assume that (v0, α) is an admissible state of
|[HA(〈u,σ,E〉) ]|. According to the translation defined for the delay predicate and the
semantics of a hybrid automaton, we know that α |= inv(v0) and inv(v0) = u[DC/Ċ].

Since σ = α � dom(σ) and DC = {dc | c ∈ C}, it is not hard to see that σ ∪ ξĊL |= u

for some ξĊL. Using Rule 4, we get (C, J, ∅, H, ∅)  〈u, σ〉 σ∪ξ
ĊL

 .

• Any delay operator p ≡ [q] for some q. The proof is trivial, because process term [q]
(for any q ∈ P ) is consistent with any extended valuation with respect to σ in any
environment.

• Sequential composition operator p ≡ q1 ; q2 for some q1 and q2. We have (v0, α) is
an admissible state of HA(〈q1; q2, σ,E〉). According to translation defined for the se-
quential composition operator, (v0,α) is also an admissible state of |[HA(〈q1, σ,E〉) ]|.
By induction, we then have 〈q1, σ, E〉

ξ
 . Using Rule 19, we obtain 〈q1 ; q2, σ, E〉

ξ
 .

• Alternative composition operator p≡ q1 [] q2 for some q1 and q2. We assume (v0, α) is
an admissible state of |[HA(〈q1 [] q2, σ,E〉) ]|. According to translation defined for the
alternative composition operator and the semantics of a hybrid automaton, we know
that α |= inv(v0), v0 = (vq1 , vq2) and inv(v0) = inv(q1) ∧ inv(q2), where vq1 and vq2
are the initial locations of TJ(q1) and TJ(q2), respectively. It is not hard to see that
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we also obtain α |= inv(q1) and α |= inv(q2). So, (vq1 , α) and (vq2 , α) are admissible

states of TJ(q1) and TJ(q2), respectively. By induction, we then have 〈q1, σ, E〉
ξ
 

and 〈q2, σ, E〉
ξ
 . Using Rule 27, we obtain 〈q1 ; q2, σ, E〉

ξ
 .

• Parallel composition operator p ≡ q1 ‖ q2 for some q1 and q2. The proof is similar to
the proof of the case that p ≡ q1 [] q2.

• Repetition operator p ≡ ∗q for some q. We assume that (v0, α) is an admissible state
of |[HA(〈∗q,σ,E〉) ]|. According to translation defined for the alternative composition
operator, we know that v0 is also the initial location of TJ(q). Since α |= inv(v0),

(vq,α) is an admissible states of TJ(q). By induction, we then have 〈q,σ,E〉 ξ
 . Using

Rule C for the repetition operator, we get 〈∗q, σ, E〉 ξ
 .

• Jump enabling operator p ≡ ιJ+(q) for some q and J+. The proof is trivial, becuase
TJ(ιJ+(q)) = TJ∪J+(q).

• Action encapsulation operator p ≡ ∂A(q) for some A and q. The proof is similar to
the proof of the case that p ≡ ∗q.

• Urgent communication operator p ≡ υH (q) for some H ⊆ H and q. The proof is
similar to the proof of the case that p ≡ ∗q.

Secondly, we give the proof for 〈p, σ, E〉 ξ
 ⇒ (v0, α) is an admissible state of |[ HA(〈

p, σ, E〉) ]|.

• Guarded action predicate p≡ b→W : r� la for some b,W,r, la. We assume 〈b→W :

r� la, σ,E〉
ξ
 . According to the translation defined for the guarded action predicate,

TJ(b → W : r � la) has the initial location v0 with invariant true. Since α |= true,
according to the semantics of a hybrid automaton, (v0, α) is an admissible state of
|[HA(〈b→ W : r � la, σ, E〉) ]|.

• Guarded send p ≡ b → h !! en for some b, h, en. The proof is similar to the proof of
the case that p ≡ b→ W : r � la.

• Guarded receive p ≡ b→ h ?? xn for some b, h,xn. The proof is similar to the proof
of the case that p ≡ b→ W : r � la.

• Delay predicate p ≡ u for some u. We assume (C, J, ∅, H, ∅)  〈u, σ〉 σ∪ξ
ĊL

 for some

ξĊL. By Rule 4, we get σ ∪ ξĊL |= u. According to the translation defined for
the delay predicate, the invariant of the initial location v0 of TJ(u) has invariant
u[DC/Ċ]. Since σ = α � dom(σ) and DC = {dc | c ∈ C}, it is not hard to see that
α |= u[DC/Ċ]. So, (v0, α) is an admissible state of |[HA(〈u, σ, E〉) ]|.
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• Any delay operator p ≡ [q] for some q. We assume 〈[q], σ, E〉 ξ
 . According to the

translation defined for the any delay operator, the initial location v0 of TJ([q]) has
invariant true. We also know that α |= true. According to the semantics of a hybrid
automaton, (v0, α) is an admissible state of |[HA(〈[q], σ, E〉) ]|.

• Sequential composition operator p ≡ q1 ; q2 for some q1 and q2. We assume that

〈q1 ; q2, σ, E〉
ξ
 . From Rule 19, we know that 〈q1, σ, E〉

ξ
 . By induction, we then

have that (v0, α) is an admissible state of |[HA(〈q1, σ, E〉) ]| for some v0, where v0 is
the initial location of TJ(q1). From the semantics of a hybrid automaton, we know
α |= inv(v0). According to the translation defined for the sequential composition
operator, we know that v0 is also the initial location of TJ(q1 ; q2). So, (v0, α) is also
an admissible state of |[HA(〈q1 ; q2, σ, E〉) ]|

• Alternative composition operator p ≡ q1 [] q2 for some q1 and q2. We assume that

〈q1 [] q2, σ, E〉
ξ
 . By Rule 27, we further obtain 〈q1, σ, E〉

ξ
 and 〈q2, σ, E〉

ξ
 .

By induction, we then have that (vq1 , α) is an admissible state of |[HA(〈q1, σ, E〉) ]|
and (vq2 , α) is an admissible state of |[HA(〈q2, σ, E〉) ]| for some vq1 and vq2 , where
vq1 and vq2 are the initial locations of TJ(q1) and TJ(q2), respectively. From the
semantics of a hybrid automaton, we have α |= inv(vq1) and α |= inv(vq2). According
to the translation defined for the alternative composition operator, we know that
inv(v0) = inv(vq1)∧ inv(vq2), where v0 is the initial location of TJ(q1 [] q2). It is not hard
to see that α |= inv(v0). So, (vq0 , α) is an admissible state of |[HA(〈q1 [] q2, σ, E〉) ]|.

• Parallel composition operator p ≡ q1 ‖ q2 for some q1 and q2. The proof is similar to
the proof of the case that p ≡ q1 [] q2.

• Repetition operator p ≡ ∗q for some q. We assume that 〈∗q, σ, E〉 ξ
 . By Rule C of

the repetition operator, we obtain 〈q,σ,E〉 ξ
 . By induction, we then have that (v0,α)

is an admissible state of |[HA(〈q, σ,E〉) ]| for some v0, where v0 is the initial location
of TJ(q). From the semantics of a hybrid automaton, we know that α |= inv(v0).
According to the translation defined for the repetition operator, v0 is also the initial
location of TJ(∗q). So, (v0, α) is an admissible state of |[HA(〈∗q, σ, E〉) ]|.

• Jump enabling operator p ≡ ιJ+(q) for some q and J+. The proof is trivial, becuase
TJ(ιJ+(q)) = TJ∪J+(q).

• Action encapsulation operator p ≡ ∂A(q) for some A and q. The proof is similar to
the proof of the case that p ≡ ∗q.

• Urgent communication operator p ≡ υH (q) for some H ⊆ H and q. The proof is
similar to the proof of the case that p ≡ ∗q.
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C.3 Proof of Theorem 5.3.4

C.3.1 Theorem 5.3.4.1 – part 1

The proof is by induction on the structure of closed process term p. Since there are no
termination transition rules (with a as specified) defined for delay predicates, consistent
deadlock δ, guarded inconsistent process term b → ⊥, sequential composition, parallel
composition and the repetition operator, the theorem holds trivially for these cases.

For the guarded send and receive process terms there cannot be a termination transition
not involving a ‘communication’ label, therefore, the theorem holds trivially for these cases.

• Guarded action predicate p ≡ b→W : r� la for some b,W, r, la. We have 〈b→W :

r� la, σ,E〉
ξ , a , ξ′−−−−→ 〈X, σ′, E〉, which means Rule 20.1 has been applied necessarily.

Then, 〈W : r� la, σ,E〉
ξ,a,ξ′−−−→ 〈X, σ′, E〉 and ξ |= b. In turn, Rule 1 has been applied

necessarily, so a= la, ξ′σ = σ′, ξ = σ ∪ ξĊL such that ξĊL ∈ Ċ→ Λ, ξ′ ∈ {ξ | dom(ξ) =
dom(σ)∪ Ċ , ∀x∈dom(σ)\J ξ(x) = σ(x)}, and ξ− ∪ ξ′ |= r. According to the translation
defined for the guarded action predicate, TJ(b→W : r� la) has the initial location
v0 and the terminating location v′0, both with invariant true, that are connected by an
urgent edge e, guarded by predicate b, with jump condition (W ∪ J ∪Xaux, ζW∪J(r))
and labelled with event la. Since ξ |= b and ξ � dom(σ) = σ and the variables outside
dom(σ) are not allowed to occur in b, we also have α |= guard(e). From ξ− ∪ ξ′ |= r,
we have (α, α′) |= jump(e) for arbitrary α and α′ such that α � dom(σ) = σ and
α′ � dom(σ′) = σ′ since the variables from dom(α) \ dom(σ) do not occur in predicate
jump(e). Therefore, (v0,α)

a−→ (v′0,α
′) is in |[HA(〈b→W : r� la, σ,E〉) ]| for arbitrary

α and α′ such that α′ � dom(σ′) = σ′. Note that the states (v0, α) and (v′0, α
′) are

admissible since the locations v0 and v′0 have invariant true.

• Any delay operator p ≡ [q] for some q. We have 〈[q], σ, E〉 ξ , a , ξ′−−−−→ 〈X, σ′, E〉, which

means Rule 10.1 has been applied necessarily. We have 〈q, σ, E〉 ξ , a , ξ′−−−−→ 〈X, σ′, E〉.
By induction we then have |[HA(〈q, σ, E〉) ]||= (vq, α)

a−→ (v′q, α
′) for some vq and v′q

such that σ = α � dom(σ) and σ′ = α′ � dom(σ′), where vq and v′q denote the initial
location and a terminating location of TJ(q). According to the translation defined for
the any delay operator, vq and v′q are a location and a terminating location of TJ([q])
respectively. Moreover, all possible termination transitions in |[HA(〈q, σ, E〉) ]| are
preserved in |[HA(〈[q], σ,E〉) ]|, because all edges in TJ(q) are still present in TJ([q]).
Furthermore, an additional initial location (v′′q ) of TJ([q]) is introduced into TJ(q) to
obtain TJ([q]). The invariant and flow condition of v′′q are true. Also, all outgoing
edges of the initial location of TJ(q) are copied to the initial location of TJ([q]) (i.e.
v′′q ) with original targets. Obviously, the action transition (vq, α)

a−→ (v′q, α
′) is in

|[HA(〈[q], σ, E〉) ]|.

• Alternative composition operator p≡ q1 [] q2 for some q1 and q2. We have 〈q1 [] q2,σ,E〉
ξ,a,ξ′−−−→ 〈X, σ′,E〉, which means Rule 25.1.l or 25.1.r has been applied necessarily. Since
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the proofs for both cases are similar, we only give the proofs for the case that Rule

25.1.l has been applied. Then, we get 〈q1,σ,E〉
ξ,a,ξ′−−−→ 〈X,σ′,E〉. By induction we then

have |[HA(〈q1, σ, E〉) ]||= (vq1 , α)
a−→ (v′q1 , α

′) for some vq1 and v′q1 such that σ′ = α′ �
dom(σ′), where vq1 and v′q1 denote the initial location and a terminating location of
TJ(q1). According to the translation defined for the alternative composition operator,
all outgoing edges for vq1 of TJ(q1) are copied to new initial location v0 = (vq1 , vq2) of
TJ(q1 [] q2) with the original targets, where vq2 denotes the initial location of TJ(q2).

Hence, (v0, α)
a−→ (v′q1 , α

′) is in |[HA(〈q1 [] q2, σ, E〉) ]|. Observe that v′q1 is also a
terminating location in TJ(q1 [] q2).

• Jump enabling operator p ≡ ιJ+(q) for some q and J+. We have 〈ιJ+(q), σ,

(C, J, ∅, H, ∅)〉 ξ,a,ξ′−−−→ 〈X, σ′, (C, J, ∅, H, ∅)〉, which means Rule 41.1 has been applied

necessarily. Then, we get 〈q, σ, (C, J ∪ J+, ∅,H, ∅)〉 ξ,a,ξ′−−−→ 〈X, σ′, (C, J ∪ J+, ∅,H, ∅)〉.
By induction, we then have |[HA(〈q, σ, (C, J ∪ J+, ∅,H, ∅)〉) ]||= (vq, α)

a−→ (v′q, α
′) for

some vq, v
′
q such that σ′ = α′ � dom(σ′), where vq and v′q denote the initial location

and a terminating location of TJ∪J+(q). According to the translation defined for the
jump enabling operator, TJ(ιJ+(q)) = TJ∪J+(q), (vq, α)

a−→ (v′q, α
′) is in |[HA(〈ιJ+(q),

σ, (C,J,∅,H,∅)〉) ]|, and vq and v′q are the initial and a terminating location of TJ∪J+(q)
respectively.

• Action encapsulation operator p ≡ ∂A(q) for some A and q. We have 〈∂A(q), σ,E〉
ξ,a,ξ′−−−→ 〈X, σ′, E〉, which means Rule 32.1 has been applied necessarily. Then, 〈q, σ,E〉
ξ,a,ξ′−−−→ 〈X, σ′, E〉 and a 6∈ A. By induction, we then have |[HA(〈q, σ, E〉) ]| |= (vq, α)
a−→ (v′q, α

′) for some vq and v′q such that σ′ = α′ � dom(σ′), where vq and v′q denote
the initial location and a terminating location of TJ(q). According to the translation
defined for action encapsulation operator, vq and v′q are also the initial location and
a terminating location of TJ(∂A(q)). We obtain TJ(∂A(q)) by replacing the jump
conditions of edges labelled with events from A of TJ(q) with predicates false with
an empty set of variables that are allowed to change. Since a 6∈ A, (vq, α)

a−→ (v′q, α
′)

is in |[HA(〈∂A(q), σ, E〉) ]|.

• Urgent communication operator p ≡ υH (q) for some H ⊆ H and q. We have 〈υH (q),

σ, E〉 ξ,a,ξ′−−−→ 〈X, σ′, E〉, which means Rule 35.1 has been applied necessarily. Then,

〈q, σ, E〉 ξ,a,ξ′−−−→ 〈X, σ′, E〉. By induction we then have |[HA(〈q, σ, E〉) ]| |= (vq, α)
a−→ (v′q, α

′) for some vq, v
′
q such that σ′ = α′ � dom(σ′), where vq and v′q denote

the initial location and a terminating location of TJ(q). According to the translation
defined for urgent communication operator, vq is also the initial location of TJ(υH (q)).
Moreover, all possible termination transitions in |[HA(〈q, σ, E〉) ]| are preserved in
|[HA(〈υH (q), σ, E〉) ]|, because TJ(q) and TJ(υH (q)) have the same edges. The fact
that some of these edges have become urgent ones, only has effect on the possibility
of time transitions. Hence, (vq, α)

a−→ (v′q, α
′) is obviously in |[HA(〈υH (q), σ, E〉) ]|.
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C.3.2 Theorem 5.3.4.1 – part 2

The proof is by induction on the structure of closed process term p. Since there are no
action transition rules (with a as specified) defined for guarded action predicates, delay
predicates, consistent deadlock δ, inconsistent process term b→ ⊥, guarded send process
terms and guarded receive process terms, the theorem holds trivially for these cases.

• Any delay operator p ≡ [q] for some q. We have 〈[q], σ, E〉 ξ, a , ξ′−−−−→ 〈p′, σ′, E〉, which

means Rule 10.2 has been applied necessarily. We have 〈q, σ, E〉 ξ , a , ξ′−−−−→ 〈p′, σ′, E〉.
By induction we then have |[HA(〈q, σ, E〉) ]||= (vq, α)

a−→ (v′q, α
′) for some vq and v′q

such that σ′ = α′ � dom(σ′), where vq and v′q denote the initial locations of TJ(q)
and TJ(p′). According to the translation defined for the any delay operator, all edges
in TJ(q) are still present in TJ([q]). Moreover, an additional initial location (v′′q ) of
TJ([q]) is introduced into TJ(q) to obtain TJ([q]). The invariant and flow condition of
v′′q are true. Also, all outgoing edges of the initial location of TJ(q) are copied to the
initial location of TJ([q]) (i.e. v′′q ) with original targets. Therefore, all possible action
transitions in |[HA(〈q, σ, E〉) ]| are preserved in |[HA(〈[q], σ, E〉) ]|. Obviously, the
action transition (vq, α)

a−→ (v′q, α
′) is in |[HA(〈[q], σ, E〉) ]|.

• Sequential composition operator p ≡ q1 ; q2 for some q1 and q2. We have 〈q1 ; q2, σ,E〉
ξ , a , ξ′−−−−→ 〈p′, σ′, E〉, which means Rule 16 or Rule 17 has been applied necessarily.

– Rule 16 has been applied. Then 〈q1, σ, E〉
ξ, a , ξ′−−−−→ 〈X, σ′, E〉 and p′ ≡ q2. By

Theorem 5.3.4.1 we then have |[HA(〈q1, σ, E〉) ]||= (vq1 , σ)
a−→ (v′q1 , σ

′) for some
vq1 , v

′
q1

such that σ′ = α′ � dom(σ′), where vq1 and v′q1 denote the initial location
and a terminating location of TJ(q1). The edge that causes this transition is still
also present in TJ(q1 ; q2), but now ends in the initial node of TJ(q2). Therefore,
|[HA(〈q1 ; q2, σ, E〉) ]||= (vq1 , σ)

a−→ (vq2 , σ
′) for some vq1 , vq2 such that σ′ = α′ �

dom(σ′), where vq1 and vq2 denote the initial locations of TJ(q1) and TJ(q2)
respectively.

– Rule 17 has been applied. Then 〈q1, σ, E〉
ξ , a , ξ′−−−−→ 〈q′1, σ′, E〉 and p′ ≡ q′1 ; q2.

By induction, we then have |[HA(〈q1, σ, E〉) ]||= (vq1 , σ)
a−→ (v′q1 , σ

′) for some
vq1 , v

′
q1

such that σ′ = α′ � dom(σ′), where vq1 and v′q1 denote the initial location
of TJ(q1) and TJ(q′1). Since v′q1 is not a terminating location, referring to the
translation defined for the sequential composition operator, we have that the
edge between vq1 and v′q1 is still present in HA(〈q1 ; q2, σ,E〉). Hence, the action

transition (vq1 , α)
a−→ (v′q1 , α

′) is preserved in |[HA(〈q1; q2, σ, E〉) ]|. Also vq1 is
the initial location of TJ(q1 ; q2) and v′q1 is the initial location of TJ(q′1 ; q2).

• Alternative composition operator p≡ q1 [] q2 for some q1 and q2. We have 〈q1 [] q2,σ,E〉
ξ,a,ξ′−−−→ 〈p′, σ′,E〉, which means Rule 25.2.l or 25.2.r has been applied necessarily. Since
the proofs for both cases are similar, we only give the proofs for the case that Rule
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25.2.l has been applied. Then, we get 〈q1,σ,E〉
ξ,a,ξ′−−−→〈q′1,σ′,E〉 for some q′1 and p′≡ q′1.

By induction we then have |[HA(〈q1, σ,E〉) ]||= (vq1 ,α)
a−→ (v′q1 ,α

′) for some vq1 and v′q1
such that σ′ = α′ � dom(σ′), where vq1 and v′q1 denote the initial location of TJ(q1) and
TJ(q′1). According to the translation defined for the alternative composition operator,
all outgoing edges for vq1 of TJ(q1) are copied to new initial location v0 = (vq1 , vq2) of
TJ(q1 [] q2) with the original targets, where vq2 denotes the initial location of TJ(q2).

Hence, (v0, α)
a−→ (v′q1 , α

′) is in |[HA(〈q1 [] q2, σ, E〉) ]|.

• Parallel composition operator p ≡ q1 ‖ q2 for some q1 and q2. We have 〈q1 ‖ q2, σ, E〉
ξ,a,ξ′−−−→ 〈p′, σ′, E〉, which means Rule 29.1.l, Rule 29.1.r, Rule 29.2.l or Rule 29.2.r has
been applied necessarily. Since the proofs for the first and second case and the proofs
for the third and fourth case are similar, we only give the proofs for the first and
third case.

– Rule 29.1.l has been applied. Then, we have 〈q1, σ, E〉
ξ,a,ξ′−−−→ 〈X, σ′, E〉,

〈q2, σ, E〉
ξ
 , and 〈q2, σ

′, E〉 ξ′

 and p′ ≡ q2. By part 1 of Theorem 5.3.4.1,
we have |[HA(〈q1, σ, E〉) ]| |= (vq1 , α)

a−→ (v′q1 , α
′) for some vq1 and v′q1 such that

σ′ = α′ � dom(σ′), where vq1 and v′q1 denote the initial location and a termi-
nating location of TJ(q1) respectively. This means that there exists an edge,
say eq1 with source location vq1 , target location v′q1 , event a, and a guard and
a jump condition that hold for α and α′. From the translation, it then follows
that (vq1 , vq2), where vq2 is the initial location of TJ(q2), is the initial location of
TJ(q1 ‖ q2). Also, there is an edge (eq1 , vq2) in TJ(q1 ‖ q2), with source location
(vq1 , vq2), target location vq2 , and the same event, guard and jump condition as

edge eq1 in TJ(q1). Therefore, |[HA(〈q1 ‖ q2, σ,E〉) ]| |= ((vq1 , vq2), α)
a−→ (vq2 , α

′)
with vq2 the initial location of TJ(q2), hence of TJ(p′).

– Rule 29.2.l has been applied. Then, we have 〈q1, σ,E〉
ξ,a,ξ′−−−→ 〈q′1, σ′, E〉 for some

q′1, and p′ = q′1 ‖ q2. By induction we then have |[HA(〈q1, σ, E〉) ]||= (vq1 , α)
a−→

(v′q1 ,α
′) for some vq1 and v′q1 such that σ′=α′ � dom(σ′), where vq1 and v′q1 denote

the initial locations of TJ(q1) and TJ(q′1), respectively. We also know that there
exists an edge, say eq1 in HA(〈q1, σ,E〉) with source location vq1 , target location
v′q1 , and event a. Since location v′q1 is a non-terminating location, according to
the translation defined for the parallel composition operator, there is an edge
(eq1 , vq2) in TJ(q1 ‖ q2), with vq2 the initial location of TJ(q2), with source location
(vq1 , vq2), target location (v′q1 , vq2), event a, the guard and jump conditions as
edge eq1 in TJ(q1) and with the same urgency status as edge eq1 in TJ(q1). Hence,

((vq1 , vq2), α)
a−→ ((v′q1 , vq2), α′) is in |[HA(〈q1 ‖ q2, σ,E〉) ]|. Note that (v′q1 , vq2) is

the initial location of TJ(p′ ‖ q2).

• Repetition operator p ≡ ∗q for some q. We have 〈∗q, σ, E〉 ξ, a , ξ′−−−−→ 〈p′, σ′, E〉, which
means Rule A.1 or A.2 from Appendix C.1 has been applied necessarily.
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– Rule A.1 has been applied. Then, we have 〈q, σ, E〉 ξ, a , ξ′−−−−→ 〈X, σ′, E〉 and
p′ ≡ ∗q. By part 1 of Theorem 5.3.4.1, we then have |[HA(〈q,σ,E〉) ]||= (vq,α)

a−→
(v′q, α

′) for some vq, v
′
q such that σ′ = α′ � dom(σ′), where vq and v′q denote the

initial location and a terminating location of TJ(q), respectively. We also know
that there exists an edge e with source location vq, target location v′q, event a,
and a guard and a jump condition that hold for α and α′. According to the
translation defined for the repetition operator, vq is also the initial location of
TJ(∗q). Since v′q is a terminating location, the target location of e is relocated to
vq. Neverthelese, the edge e from TJ(q) is still in TJ(∗q), so the action transition

(vq, α)
a−→ (vq, α

′) is in |[HA(〈∗q, σ, E〉) ]|.

– Rule A.2 has been applied. Then, we have 〈q,σ,E〉 ξ , a , ξ′−−−−→ 〈q′, σ′,E〉 for some q′,
and p′ ≡ q′ ; ∗q. By induction we then have |[HA(〈q, σ,E〉) ]||= (vq, α)

a−→ (v′q, α
′)

for some vq, v
′
q such that σ′ = α′ � dom(σ′), where vq and v′q denote the initial

location of TJ(q) and TJ(q′). We also know that there exists an edge e with
source location vq, target location v′q, event a, and a guard and a jump condition
that hold for α and α′. According to the translation defined for the repetition
operator, vq and v′q are also the initial location and a location of TJ(∗q). Since
v′q is not a terminating location and the edge e from TJ(q) is also in TJ(∗q), the

action transition (vq, α)
a−→ (v′q, α

′) is obviously in |[HA(〈∗q, σ, E〉) ]|.

• Jump enabling operator p ≡ ιJ+(q) for some q and J+. We have 〈ιJ+(q), σ, (C, J, ∅,
H,∅)〉 ξ,a,ξ′−−−→〈p′,σ′, (C,J,∅,H,∅)〉, which means Rule 41.2 has been applied necessarily.

Then, we get 〈q, σ, (C, J ∪J+, ∅, H, ∅)〉 ξ,a,ξ′−−−→ 〈q′, σ′, (C, J ∪ J+, ∅, H, ∅)〉 for some
q′ and p′ ≡ ιJ+(q′). By induction we then have |[ HA( 〈 q, σ, (C, J ∪ J+, ∅, H,
∅)〉) ]||= (vq, α)

a−→ (v′q, α
′) for some vq, v

′
q such that σ′ = α′ � dom(σ′), where vq and v′q

denote the initial location of TJ∪J+(q) and TJ∪J+(q′). According to the translation
defined for the jump enabling operator, we have TJ(ιJ+(q)) = TJ∪J+(q), vq and v′q are

also the initial locations of TJ(ιJ+(q)) and TJ(ιJ+(q′)). Obviously, (vq, α)
a−→ (v′q, α

′)
is in |[HA(〈ιJ+(q), σ, (C, J, ∅, H, ∅)〉) ]|.

• Action encapsulation operator p ≡ ∂A(q) for some A and q. We have 〈∂A(q), σ, E〉
ξ,a,ξ′−−−→ 〈p′, σ′, E〉, which means Rule 32.2 has been applied necessarily. Then, 〈q, σ,E〉
ξ,a,ξ′−−−→ 〈q′, σ′, E〉 for some q′ such that p′ ≡ ∂A(q′), and a 6∈ A. By induction, we
then have |[HA(〈q, σ,E〉) ]||= (vq, α)

a−→ (v′q, α
′) for some vq and v′q such that σ′ = α′ �

dom(σ′), where vq and v′q denote the initial locations of TJ(q) and TJ(q′), respectively.
According to the translation defined for action encapsulation operator, vq and v′q are
also the initial locations of TJ(∂A(q)) and TJ(∂A(q′)). We obtain TJ(∂A(q)) from
TJ(q) by replacing the jump conditions of edges labelled with events from A of TJ(q)
with predicates false with an empty set of variables that are allowed to change. Since
a 6∈ A, (vq, α)

a−→ (v′q, α
′) is in |[HA(〈∂A(q), σ, E〉) ]|.
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• Urgent communication operator p ≡ υH (q) for some H ⊆ H and q. We have

〈υH (q),σ, E〉 ξ,a,ξ′−−−→ 〈p′, σ′, E〉, which means Rule 35.2 has been applied necessarily.

Then, 〈q,σ,E〉 ξ,a,ξ′−−−→〈q′,σ′,E〉 for some q′ such that p′≡ ∂A(q′). By induction we then
have |[HA(〈q, σ,E〉) ]||= (vq, α)

a−→ (v′q, α
′) for some vq, v

′
q such that σ′ = α′ � dom(σ′),

where vq and v′q denote the initial locations of TJ(q) and TJ(q′), respectively. Accord-
ing to the translation defined for urgent communication operator, vq and v′q are also
the initial locations of TJ(υH (q)) and TJ(υH (q′)), respectively. Moreover, all possible
action transitions in |[HA(〈q, σ,E〉) ]| are preserved in |[HA(〈υH (q), σ,E〉) ]|, because
TJ(q) and TJ(υH (q)) have the same edges. The fact that some of these edges have
become urgent ones, only has effect on the possibility of time transitions. Hence,
(vq, α)

a−→ (v′q, α
′) is obviously in |[HA(〈υH (q), σ, E〉) ]|.

C.3.3 Theorem 5.3.4.2 – part 1

The proof is by induction on the structure of closed process term p. Since there are no ter-
mination transition rules (with isa(h, cs) as a label) defined for delay predicate, consistent
deadlock δ, inconsistent process term b → ⊥, guarded action predicate, guarded receive
process term, sequential composition, parallel composition and the repetition operator, the
theorem holds trivially for these cases.

The proofs for the any delay operator, the alternative composition operator, the jump
enabling operator, the action encapsulation operator, and the urgent communication op-
erator are similar to the proofs for these operators in the proof of the first part of Theo-
rem 5.3.4.1 in Appendix C.3.1 since these operators treat send actions similarly as normal
actions.

• Guarded send p≡ b→ h !!en for some b,h,en. We have 〈b→ h !!en,σ,E〉
ξ , isa(h,cs), ξ′−−−−−−−−→

〈X, σ′, E〉 for some cs = [ξ(en)], which means Rule 20.1 has been applied necessarily.

Then, 〈h !! en, σ, E〉
ξ , isa(h,cs), ξ′−−−−−−−−→ 〈X, σ′, E〉, and ξ |= b. In turn, Rule 5 has been

applied necessarily, which means that ξ′σ = σ′, ξ = σ∪ ξĊL such that ξĊL ∈ Ċ→Λ, ξ′ ∈
{ξ | dom(ξ) = dom(σ) ∪ Ċ , ∀x∈dom(σ)\J ξ(x) = σ(x)}. According to the translation
defined for the guarded send process term, TJ(b→ h !! en) has the initial location v0

and one terminating location v′0 that are connected by an urgent edge e, guarded

by predicate b, with jump condition (Xaux ∪ J,
n∧
i=1

ei = h′i) and labelled with isa(h).

Since ξ |= b and ξ � dom(σ) = σ and the variables outside dom(σ) are not allowed

to occur in b, we also have α |= guard(e). From ξĊL ∈ Ċ → Λ, ξ′ ∈ {ξ | dom(ξ) =
dom(σ) ∪ Ċ , ∀x∈dom(σ)\J ξ(x) = σ(x)}, we know that (α, α′) |= jump(e). Therefore,

(v0, α)
isa(h)−−−→ (v′0, α

′) is in |[HA(〈b→ h !! en, σ, E〉) ]|. Due to Lemma 3.5.1, we have
ξ′σ′ = σ′, and dom(σ) = dom(σ′). It is not hard to see that σ′ = α′ � dom(σ′) and
α′(h1) = cs1 ∧ · · · ∧ α′(hn) = csn.
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C.3.4 Theorem 5.3.4.2 – part 2

The proof is by induction on the structure of closed process term p. Since there are no
action transition rules (with isa(h, cs) as a label) defined for delay predicate, consistent
deadlock δ, guarded inconsistent process term b → ⊥, guarded action predicate, guarded
send process term and guarded receive process term, the theorem holds trivially for these
cases.

The proofs for the any delay operator, the sequential composition operator, the alterna-
tive composition operator, the parallel composition operator, the repetition operator, the
jump enabling operator, the action encapsulation operator, and the urgent communication
operator are similar to the proofs for these operators in the second part of Theorem 5.3.4.1
in Appendix C.3.1 since these operators treat send actions similarly as normal actions.

C.3.5 Theorem 5.3.4.3 – part 1

The proof is by induction on the structure of closed process term p. Since there are
no termination transition rules (with ira(h, cs , Y ) as a label) defined for delay predicate,
consistent deadlock δ, guarded inconsistent process term b→⊥, guarded action predicate,
guarded send process term, sequential composition, parallel composition and the repetition
operator, the theorem holds trivially for these cases.

The proofs for the any delay operator, the alternative composition operator, the jump
enabling operator, the action encapsulation operator, and the urgent communication op-
erator are similar to the proofs for these operators in the first part of Theorem 5.3.4.1 in
Appendix C.3.1 since these operators treat receive actions similarly as normal actions.

• Guarded receive p ≡ b → h ?? xn for some b, h, xn. We have 〈b → h ?? xn, σ, E〉
ξ , ira(h,cs,Y ), ξ′−−−−−−−−−−→ 〈X,σ′,E〉 for some Y = {xn}, which means Rule 20.1 has been applied

necessarily. Then, 〈h??xn, σ,E〉
ξ, ira(h,cs,Y ), ξ′−−−−−−−−−−→ 〈X, σ′,E〉, and ξ |= b. In turn, Rule 6

has been applied necessarily. Then ξ′σ = σ′ and ξ= σ∪ξĊL such that ξĊL ∈ Ċ→Λ, ξ′ ∈
{ξ | dom(ξ) = dom(σ)∪ Ċ , ∀y∈dom(σ)\(J∪{xn}) ξ(y) = σ(y)}, and ξ′(xn) = cs . According
to the translation defined for the guarded receive process term, TJ(b→ h ?? xn) has
the initial location v0 and the terminating location v′0 that are connected by an urgent

edge e, guarded by predicate b, with jump condition ({xn}∪J ∪Xaux,
n∧
i=1

h′i = x′i) and

labelled with ira(h, {xn}). Since ξ |= b and ξ � dom(σ) = σ and the variables outside
dom(σ) are not allowed to occur in b, we also have α |= guard(e). From ξ′ ∈ {ξ |
dom(ξ) = dom(σ)∪ Ċ , ∀y∈dom(σ)\(J∪{xn}) ξ(y) = σ(y)}, and ξ′(xn) = cs , we know that

(α, α′) |= jump(e). Therefore, (v0, α)
ira(h)−−−→ (v′0, α

′) is in |[HA(〈b→ h ?? xn, σ, E〉) ]|.

C.3.6 Theorem 5.3.4.3 – part 2

The proof is by induction on the structure of closed process term p. Since there are no
action transition rules (with ira(h, cs , Y ) as a label) defined for delay predicate, consistent
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deadlock δ, guarded inconsistent process term b → ⊥, guarded action predicate, guarded
send process term and guarded receive process term, the theorem holds trivially for these
cases.

The proofs for the any delay operator, the sequential composition operator, the alterna-
tive composition operator, the parallel composition operator, the repetition operator, the
jump enabling operator, the action encapsulation operator, and the urgent communication
operator are similar to the proofs for these operators in second part of Theorem 5.3.4.2 in
Appendix C.3.1 since these operators treat receive actions similarly as normal actions.

C.3.7 Theorem 5.3.4.4 – part 1

The proof is by induction on the structure of closed process term p. Since there are
no termination transition rules (with ca(h, cs) as specified) defined for delay predicate,
consistent deadlock δ, guarded inconsistent process term b→⊥, guarded action predicate,
guarded send process term, guarded receive process term, sequential composition and the
repetition operator, the theorem holds trivially for these cases.

The proofs for the any delay operator, the alternative composition operator, the jump
enabling operator, the action encapsulation operator, and the urgent communication op-
erator are similar to the proofs for these operators in the first part of Theorem 5.3.4.1
in Appendix C.3.1 since these operators treat communication actions similarly as normal
actions.

• Parallel composition operator p≡ q1 ‖ q2 for some q1 and q2. We have 〈q1 ‖ q2, σ, (C,J,

∅,H,∅)〉 ξ,ca(h,cs),ξ′−−−−−−−→ 〈X, σ′, (C, J, ∅,H, ∅)〉, which means Rule 28.1.l or 28.1.r has been
applied necessarily. Since the proofs for both cases are similar, we only give the
proofs for the case that Rule 28.1.l has been applied. Then, 〈q1, σ, (C,J ∪W,∅,H,∅)〉
ξ,isa(h,cs),ξ′−−−−−−−→〈X,σ′,(C,J ∪W,∅,H,∅)〉 for someW , and 〈q2,σ,(C,J,∅,H,∅)〉

ξ,ira(h,cs,W ),ξ′−−−−−−−−−→
〈X, σ′, (C,J,∅,H,∅)〉. By part 1 of Theorem 5.3.4.2 we then have |[HA(〈q1, σ, (C,J ∪
W,∅,H,∅)〉) ]||= (vq1 , α)

isa(h)−−−→ (v′q1 , α
′) for some vq1 , v

′
q1

such that σ = α � dom(σ) and
σ′ = α′ � dom(σ′) and α′(h1) = cs1 ∧ · · · ∧ α′(hn) = csn, where vq1 and v′q1 denote
the initial location and a terminating location of TJ(q1), respectively. We also know
that there is an edge, say eq1 in TJ(q1) with source location vq1 , target location v′q1 ,
event isa(h), and a guard and a jump condition that hold for α and α′. Also, by part

1 of Theorem 5.3.4.3, we have |[HA(〈q2, σ, E〉) ]||= (vq2 , α)
ira(h,W )−−−−−→ (v′q2 , α

′) for some
vq2 , v

′
q2

such that σ = α � dom(σ) and σ′ = α′ � dom(σ′), where vq2 and v′q2 denote
the initial location and a terminating location of TJ(q2). Therefore, we also know
that there exists an edge, say eq2 , with source location vq2 , target location v′q2 , event
ira(h,W ), and a guard and a jump condition that hold for α and α′. According to the
translation defined for the parallel composition operator, there is an edge (eq1 , eq2) in
TJ(q1 ‖ q2) with source location (vq1 , vq2), target location vdone, event ca(h), a guard
and a jump condition that are the logical and of the guard and jump conditions of
eq1 and eq2 and, therefore hold for α and α′, and an urgency status that is the logical

210



C.3. Proof of Theorem 5.3.4

or of the urgency status of edges eq1 and eq2 . Hence, ((vq1 , vq2), α)
ca(h)−−−→ (vdone, α

′) is
in |[HA(〈q1 ‖ q2, σ, E〉) ]|. Note that (vq1 , vq2) and vdone are the initial location and a
terminating location of TJ(q1 ‖ q2).

C.3.8 Theorem 5.3.4.4 – part 2

The proof is by induction on the structure of closed process term p. Since there are no
action transition rules (with ca(h, cs) as specified) defined for delay predicate, consistent
deadlock δ, guarded inconsistent process term b → ⊥, guarded action predicate, guarded
send process term and guarded receive process term, the theorem holds trivially for these
cases.

The proofs for the any delay operator, the sequential composition operator, the alterna-
tive composition operator, the repetition operator, the jump enabling operator, the action
encapsulation operator, and the urgent communication operator are similar to the proofs
for these operators in the second part of Theorem 5.3.4.2 in Appendix C.3.4 since these
operators treat communication actions similarly as normal actions.

• Parallel composition operator p ≡ q1 ‖ q2 for some q1 and q2. We have 〈q1 ‖
q2,σ, (C, J,∅, H,∅)〉

ξ,ca(h,cs),ξ′−−−−−−−→ 〈p′, σ′, (C, J, ∅, H, ∅)〉, which means Rule 28.2.l, 28.2.r,
28.3.l, 28.3.r, 28.4.l or 28.4.r has been applied necessarily. Since the proofs for most
cases are similar, we only give the proofs for the cases that Rules 28.2.l and 28.4.l
have been applied.

– Rule 28.2.l has been applied. Then, 〈q1, σ, (C, J ∪ W, ∅, H, ∅)〉
ξ,isa(h,cs),ξ′−−−−−−−→

〈p′, σ′, (C, J ∪ W, ∅, H, ∅)〉 and 〈q2, σ, (C,J, ∅,H, ∅)〉
ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈X, σ′, (C,

J, ∅, H,∅)〉 for some W . By part 2 of Theorem 5.3.4.2 we then have |[HA(〈q1,

σ, (C, J ∪W, ∅, H, ∅)〉) ]| |= (vq1 , α)
isa(h)−−−→ (v′q1 , α

′) for some vq1 , v
′
q1

such that
σ′ = α′ � dom(σ′) and α′(h1) = cs1 ∧ · · · ∧α′(hn) = csn, where vq1 and v′q1 denote
the initial location of TJ(q1) and TJ(p′). We also know that there exists an edge,
say eq1 , with source location vq1 , target location v′q1 , event isa(h) and a guard
and jump condition that hold for α and α′. By part 1 of Theorem 5.3.4.3 we

have |[HA(〈q2, σ, (C, J, ∅, H, ∅)〉) ]||= (vq2 , α)
ira(h,{xn})−−−−−−→ (v′q2 , α

′) for some vq2 , v
′
q2

such that σ = α � dom(σ) and σ′ = α′ � dom(σ′), where vq2 and v′q2 denote the
initial location and a terminating location of TJ(q2), respectively. We also know
that there is an edge, say eq2 , in TJ(q2) with source location vq2 , target location
v′q2 , event ira(h,W ), and a guard and a jump condition that hold for α and
α′. According to the translation defined for the parallel composition operator,
(eq1 , eq2) is an edge in TJ(q1 ‖ q2) with source location such that (vq1 , vq2), target
location v′q1 , event ca(h), an urgency status that is the logical or of the urgency
status of eq1 and eq2 , and a guard and a jump condition that are the logical
and of the guard and the jump conditions of eq1 and eq2 . Note that this guard

211



Appendix C. Proofs of the translation from Chi to Hybrid Automata

and this jump condition therefore hold for α and α′. Hence, ((vq1 , vq2), α)
ca(h)−−−→

(v′q1 , α
′) is in |[HA(〈q1 ‖ q2, σ,E〉) ]|. Note that (vq1 , vq2) is the initial location of

TJ(q1 ‖ q2).

– Rule 28.4.l has been applied. Then, 〈q1, σ, (C,J ∪W,∅,H,∅)〉
ξ,isa(h,cs),ξ′−−−−−−−→ 〈q′1, σ′,

(C, J ∪W, ∅, H,∅)〉 and 〈q2, σ, (C,J,∅,H,∅)〉
ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈q′2, σ′, (C,J,∅,H,∅)〉

for some q′1, q′2 and W such that p′ ≡ q′1 ‖ q′2. By part 2 of Theorem 5.3.4.2

we then have |[HA(〈q1, σ, (C, J ∪W, ∅, H, ∅)〉) ]| |= (vq1 , α)
isa(h)−−−→ (v′q1 , α

′) for
some vq1 , v

′
q1

such that σ = α � dom(σ) and σ′ = α′ � dom(σ′) and α′(h1) =
cs1 ∧ · · · ∧ α′(hn) = csn, where vq1 and v′q1 denote the initial locations of TJ(q1)
and TJ(q′1), respectively. We also know that there exists an edge, say eq1 in
TJ(q1) with source location vq1 , target location v′q1 , event isa(h), and a guard
and a jump condition that hold for α and α′. By part 2 of Theorem 5.3.4.3 we

have |[HA(〈q2, σ, (C, J, ∅, H, ∅)〉) ]| |= (vq2 , α)
ira(h,W )−−−−−→ (v′q2 , α

′) for some vq2 , v
′
q2

such that σ = α � dom(σ) and σ′ = α′ � dom(σ′), where vq2 and v′q2 denote the
initial location of TJ(q2) and TJ(q′2). We also know that there exists an edge, say
eq2 , with source location vq2 , target location v′q2 , event ira(h,W ), and a guard
and a jump condition that hold for α and α′. According to the translation
defined for the parallel composition operator there exists an edge (eq1 , eq2) in
TJ(q1 ‖ q2) with source location (vq1 , vq2), target location (v′q1 , v

′
q2

), event ca(h), a
guard and a jump condition that hold for α and α′, and an urgency status that
is the logical or of the urgency status of edges eq1 and eq2 . Hence, ((vq1 , vq2), α)
ca(h)−−−→ ((v′q1 , v

′
q2

), α′) is in |[HA(〈q1 ‖ q2, σ, 〉) ]|. Note that (vq1 , vq2) and (v′q1 , v
′
q2

)
are the initial locations of TJ(q1 ‖ q2) and TJ(q′1 ‖ q′2) respectively.

C.3.9 Theorem 5.3.4.5

The proof is by induction on the structure of closed process term p. Since there are no
time transition rules defined for consistent deadlock δ, the theorem holds trivially for this
case.

• Delay predicate p ≡ u for some u. We have 〈u, σ, E〉 t,ρ7−→ 〈p′, σ′, E〉 and σ′ = ρσ(t),
which means Rule 3 has been applied necessarily. Then p′ ≡ u, ρ ∈ ΩFG(σ,C, ∅, u, t).
According to the translation defined for the delay predicate, TJ(u) has only one
location v0 (it is also the initial location) with flow predicate u and invariant u[DC/Ċ]
and has no outgoing edges. So, let ρ′ be the trajectory such that ρ= ρ′ ↓ (dom(σ)∪ Ċ)
and ρ′(r)(ċ) = ρ′(r)(dc) for r ∈ [0, t] and c ∈ C. By Theorem 5.3.3, ρ′ is a solution for
the flow predicate u. From the fact that ρ′ is a solution for u and ρ′(r)(ċ) = ρ′(r)(dc)
for r ∈ [0, t] and c ∈ C it follows that ρ′ is a solution for the invariant u[DC/Ċ]. Since

there are no outgoing edges for location v0, we can conclude that (v0, α)
t7−→ (v0, α

′)
is in |[HA(〈u, σ, E〉) ]|.
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• Guarded inconsistent process term b → ⊥ for some b. We know that the guarded
inconsistent process term b→ ⊥ is equivalent to ¬b (see also Proposition 3.5.4). It
is not hard to see that the proof for this case is similar to the proof for the case of
the delay predicate.

• Guarded action predicate p ≡ b→W : r� la for some b,W, r, la. We have 〈b→W :

r� la, σ,E〉
t,ρ7−→ 〈p′, σ′, E〉, which means Rule 22 has been applied necessarily (Rule

21 cannot be applied, because no time transitions defined for action predicate). Then,
we have ρ ∈ ΩσEt, ∀s∈(0,t) ρ(s) |= ¬b, ∃s∈[0,t] ρ(s) |= ¬b and p′ ≡ b→ W : r � la. Let

ρ′ be the trajectory such that ρ = ρ′ ↓ (dom(σ) ∪ Ċ). According to the translation
defined for the guarded action predicate, the initial location v0 of TJ(b → W : r �
la) has both invariant and flow condition true with only one urgent outgoing edge,
which is guarded by b. It is allowed to perform an arbitrary time transition in the

location v0 as long as the guard b is false (for ρ′). Hence, (v0, α)
t7−→ (v0, α

′) is in
|[HA(〈b→ W : r � la, σ, E〉) ]|.

• Guarded send. The proof for guarded send is similar to the proof for guarded action
predicate.

• Guarded receive. The proof for guarded receive is similar to the proof for guarded
action predicate.

• Any delay operator p≡ [q] for some q. We have 〈[q], σ,E〉 t,ρ7−→ 〈p′, σ′,E〉, which means
Rule 11 has been applied necessarily. Then, we have ρ ∈ ΩσEt (i.e., an arbitrary
trajectory), p′ ≡ [q] and σ′ = ρσ(t). Let ρ′ be the trajectory such that ρ = ρ′ ↓
(dom(σ) ∪ Ċ). From the function ΩFG and Lemma 3.5.1, it is not hard to see that
ρ′(0) = α and ρ′(r) = α′. According to the translation defined for the any delay
operator, an additional initial location v is introduced into TJ(q) to obtain TJ([q]).
The invariant and flow condition of v are true. Also, all outgoing edges of the initial
location of TJ(q) are copied to the initial location v of TJ([q]) with original targets,
but the urgency status of those edges is set to false (i.e. non-urgent). Obviously, the

time transition (v, α)
t7−→ (v, α′) is in |[HA(〈[q], σ, E〉) ]|.

• Sequential composition operator p ≡ q1 ; q2 for some q1 and q2. We have 〈q1 ; q2, σ,E〉
t,ρ7−→ 〈p′, σ′, E〉, which means Rule 18 has been applied necessarily. Then we get

〈q1, σ, E〉
t,ρ7−→ 〈q′1, σ′, E〉 for some q′1 and p′ ≡ q′1 ; q2. By induction we then have

|[HA(〈q1, σ,E〉) ]||= ρ′ : (vq1 , α)
t7−→ (vq1 , α

′) for some vq1 such that σ′ = α′ � dom(σ′),
where vq1 denotes the initial location of TJ(q1). We also know that there exists ρ′ such
that ρ′(0) = α, ρ′(t) = α′ and ∀r∈[0,t] ρ

′(r) |= inv(vq1) ∧ flow(vq1). Also, in TJ(q1), the
guard of any urgent edge with source location vq1 does not hold for [0, t). According
to the translation defined for the sequential composition operator, vq1 is also the
initial location of TJ(q1 ; q2) and no new edges from vq1 are added into TJ(q1 ; q2).

Therefore, also (vq1 , α)
t7−→ (vq1 , α

′) is in |[HA(〈q1 ; q2, σ, E〉) ]|.
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• Alternative composition operator p≡ q1 [] q2 for some q1 and q2. We have 〈q1 [] q2,σ,E〉
t,ρ7−→ 〈p′, σ′, E〉, which means Rule 26 has been applied necessarily. Then we get

〈q1,σ,E〉
t,ρ7−→ 〈q′1,σ′,E〉 and 〈q2,σ,E〉

t,ρ7−→ 〈q′2,σ′,E〉 for some q′1 and q′2, and p′≡ q′1 [] q′2.

By induction we then have |[HA(〈q1, σ, E〉) ]||= ρ′ : (vq1 , α)
t7−→ (vq1 , α

′) for some vq1
such that σ′ = α′ � dom(σ′), and |[HA(〈q2, σ, E〉) ]||= ρ′ : (vq2 , α)

t7−→ (vq2 , α
′) for

some vq1 such that σ′ = α′ � dom(σ′), where vq1 and vq2 denote the initial locations
of TJ(q1) and TJ(q2) and ρ′ is the witness function obtained from ρ. For this witness
function we have ρ′(0) = α, ρ′(t) = α′, and ∀r∈[0,t] ρ

′(r) |= inv(vq1) ∧ flow(vq1), and
∀r∈[0,t] ρ

′(r) |= inv(vq2) ∧ flow(vq2). Furthermore, for both these locations we have
that the guard of any outgoing urgent edge does not hold in [0, t). According to the
translation defined for the alternative composition operator, the invariant and flow
condition of the initial location v0 = (vq1 , vq2) of TJ(q1 [] q2) is the conjunction of the
invariants and the flow conditions of vq1 and vq2 . These satisfy the conditions for
a time transition of duration t. Note that the outgoing edges of location (vq1 , vq2)
in TJ(q1 [] q2) are precisely (i.e., with the same events, the same guard and jump
conditions, the same urgency status) the outgoing edges of vq1 in TJ(q1) and vq2 in

TJ(q2). Therefore, also (v0, α)
t7−→ (v0, α

′) is in |[HA(〈q1 [] q2, σ, E〉) ]|.

• Parallel composition operator. The proofs are similar to the proofs of the alternative
composition operator. An important difference is that in parallel composition new
communication transitions from the initial state of the parallel composition might
occur. Note that these have an urgency status that is the disjunction of the urgency
status of the contributing send and receive transitions. Hence, since these were not
preventing the time transition, so is not the communication transition.

• Repetition operator p ≡ ∗q for some q. We have 〈∗q, σ, E〉 t,ρ7−→ 〈p′, σ′, E〉. Then,

by Rule B in Appendix C.1, 〈q, σ, E〉 t,ρ7−→ 〈q′, σ′, E〉 for some q′ and p′ ≡ q′ ; ∗q. By

induction, we then have |[HA(〈q,σ,E〉) ]||= ρ′ : (vq,α)
t7−→ (vq,α

′) for some vq such that
σ′ = α′ � dom(σ′), where vq denotes the initial location of TJ(q). We also know that
there exists a ρ′ such that ρ′(0) = α, ρ′(t) = α′, and ∀r∈[0,t] ρ

′(r) |= inv(vq) ∧ flow(vq).
According to the translation defined for the repetition operator, vq is also the initial
location of TJ(∗q), and no new outgoing edges from vq are introduced into TJ(∗q).
Hence, also (vq, α)

t7−→ (vq, α
′) is in |[HA(〈∗q, σ, E〉) ]|.

• Jump enabling operator p ≡ ιJ+(q) for some q and J+. We have 〈ιJ+(q), σ, (C,

J, ∅, H, ∅)〉 t,ρ7−→ 〈p′, σ′, (C, J, ∅, H, ∅)〉 for some q′, which means Rule 42 has been

applied necessarily. Then, we have 〈q, σ, (C, J ∪ J+, ∅, H, ∅)〉 t,ρ7−→ 〈q′, σ′, (C, J ∪
J+,∅,H,∅)〉 for some q′ and p′≡ ιJ+(q′). By induction we then have |[HA(〈q,σ,(C,J ∪
J+, ∅, H, ∅)〉) ]| |= ρ′ : (vq, α)

t7−→ (vq, α
′) for some vq such that σ′ = α′ � dom(σ′),

where vq denotes the initial location of TJ∪J+(q). We also know that there exists a
ρ′ such that ρ′(0) = α, ρ′(t) = α′, and ∀r∈[0,t] ρ

′(r) |= inv(vq) ∧ flow(vq). According
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to the translation defined for the jump enabling operator, we have TJ(ιJ+(q)) =

TJ∪J+(q), vq is also the initial location of TJ(ιJ+(q)). Obviously, (vq, α)
t7−→ (vq, α

′)
is in |[HA(〈ιJ+(q), σ, (C, J ∪ J+, ∅, H, ∅)〉) ]|.

• Action encapsulation operator p ≡ ∂A(q) for some A and q. We have 〈∂A(q), σ, E〉
t,ρ7−→ 〈p′, σ′, E〉, which means Rule 33 has been applied necessarily. Then, 〈q, σ, E〉
t,ρ7−→ 〈q′, σ′, E〉 and p′ ≡ ∂A(q′) for some q′. By induction, we have |[HA(〈q, σ, E〉) ]|
|= ρ′ : (vq,α)

t7−→ (vq,α
′) for some vq such that σ′ = α′ � dom(σ′), where vq denotes the

initial location of TJ(q). We also know that there exists ρ′ such that ρ′(0) = α, ρ′(t) =
α′, and ∀r∈[0,t] ρ

′(r) |= inv(vq) ∧ flow(vq). According to the translation defined for
action encapsulation operator, vq is also the initial location of TJ(∂A(q)), and no new

outgoing edges from vq are introduced into TJ(∂A(q)). Hence, also (vq, α)
t7−→ (vq, α

′)
is in |[HA(〈∂A(q), σ, E〉) ]|.

• Urgent communication operator p ≡ υH (q) for some H and q. We have 〈υH (q), σ,E〉
t,ρ7−→ 〈p′, σ′, E〉, which means Rule 37 has been applied necessarily. Then, 〈q, σ, E〉
t,ρ7−→ 〈q′, σ,E〉 for some q′, 〈q,σ〉 ca(h,∗)

9 and ∀s∈[0,t) (〈q,σ,E〉 s,ρ�[0,s]7−→ 〈qs, σs,E〉 , 〈qs, σs,E〉
t−s,ρ−s7−→ 〈q′, σ′, E〉 , ∀h∈H 〈qs, σs, E〉

ca(h,∗)
9 ) and p′ ≡ υH (q′). By induction we then have

|[HA(〈q, σ, E〉) ]||= ρ′ : (vq, α)
t7−→ (vq, α

′) for some vq such that σ′ = α′ � dom(σ′),
where vq denotes the initial location of TJ(q) and some ρ′ : [0, t] → (X 7→ Λ) such
that ρ′(0) = α, ρ′(t) = α′, and ∀r∈[0,t] ρ

′(r) |= inv(vq) ∧ flow(vq) and no outgoing edge
(with any label) is enabled in [0, t). According to the translation defined for urgent
communication operator, vq is also the initial location of TJ(υH (q)), no new outgoing
edges are added to vq of TJ(q) to obtain TJ(υH (q)), and the urgency status of all
edges labelled with ca(h) of TJ(υH (q)) is set to true, which means that if there is
an action transition via an outgoing edge of vq with label ca(h) is enabled, then
time transition is not allowed in vq. Hence, this (above-mentioned time transition)

(vq, α)
t7−→ (vq, α

′) is in |[HA(〈υH (q), σ, E〉) ]|.

C.4 Proof of Theorem 5.3.5

C.4.1 Theorem 5.3.5.1 - part 1

The proof is by induction on the structure of closed process term p. According to the
translations defined for delay predicate, consistent deadlock δ and guarded inconsistent
process term b → ⊥, guarded send process term and guarded receive process term these
constants cannot perform any transition (with specified label a). Hence, the theorem holds
trivially for these cases.

• Guarded action predicate p ≡ b → W : r � la for some b,W, r, la. We have |[ HA(
〈b→W : r� la, σ,E〉) ]||= (v0, α)

a−→ (v′0, α
′), which means that there exists an edge e
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in TJ(b→W : r� la) with source location v0, target location v′0, event a, and a guard
and a jump condition that hold for α and α′. According to the translation defined
for the guarded action predicate a = la, the guard is b, and the jump condition is
(W ∪ J ∪Xaux, ζW∪J(r)). From the fact that (α, α′) |= jump(e), we have ξ− ∪ ξ′ |= r

for some ξ−, ξ′, where ξ = σ ∪ ξĊL, ξĊL ∈ Ċ→ Λ and ξ′ ∈ {ξ | dom(ξ) = dom(σ)∪ Ċ,

∀x∈dom(σ)\J ξ(x) = σ(x)}. Using Rule 1, we conclude that 〈W : r� la, σ,E〉
ξ, la , ξ′−−−−−→

〈X, ξ′σ, E〉, where ξ′σ = σ′. From α |= b, we know that ξ |= b. Using Rule 20.1, we

obtain 〈b→ W : r � la, σ〉
ξ,a,ξ′−−−→ 〈X, σ′〉.

• Any delay operator p≡ [q] for some q. We have |[HA(〈[q], σ,E〉) ]||= (v0,α)
a−→ (v′0,α

′),
which means that there exists an edge e in TJ([q]) with source location v0, target
location v′0, event a, and a guard and a jump condition that hold for α and α′.
According to the translation defined for the any delay operator, the outgoing edges
of v0 are the copies (in the sense that they have the same target locations and jump
conditions) of the outgoing edges of the initial location v′′0 of TJ(q), but the outgoing
edges of v0 and v′′0 may have different urgency status. Also v′0 is also a terminating
location of TJ(q), and (v′′0 , α)

a−→ (v′0, α
′) is in |[HA(〈q, σ, E〉) ]|. By induction, we

then have 〈q, σ,E〉 ξ,a,ξ′−−−→ 〈X, σ′, E〉 for some E, ξ, ξ′, σ′ such that σ = α � dom(σ) and

σ′ = α′ � dom(σ′). Using Rule 10.1, we obtain 〈[q], σ, E〉 ξ,a,ξ′−−−→ 〈X, σ′, E〉.

• Sequential composition operator p ≡ q1 ; q2 for some q1 and q2. We have HA(〈q1; q2,
σ, E 〉) ]| |= (vq1 , α)

a−→ (v′q1 , α
′), which means v′q1 has to be a terminating location of

TJ(q1 ; q2). However, it is not possible in our translation. Hence, the theorem holds
trivially.

• Alternative composition operator p ≡ q1 [] q2 for some q1 and q2. We have |[HA(〈q1 []
q2, σ,E〉) ]||= (v0, α)

a−→ (v′0, α
′), which means that there exists an edge e in TJ(q1 [] q2)

with source location v0, target location v′0, event a, and a guard and a jump condition
that hold for α and α′. According to the translation defined for the alternative
composition operator, v0 = (vq1 , vq2) and v′0 is a terminating location of either TJ(q1)
or TJ(q2), where vq1 and vq2 are the initial locations of TJ(q1) and TJ(q2), respectively.
We distinguish two cases:

– v′0 is a terminating location of TJ(q1). Again, referring to the translation defined
for the alternative composition operator, we know that (vq1 , α)

a−→ (v′0, α
′) is in

|[HA(〈q1,σ,E〉) ]|. By induction, we then have 〈q1,σ,E〉
ξ,a,ξ′−−−→〈X,σ′,E〉 for some

ξ, ξ′, σ′ such that σ′ = α′ � dom(σ′). Using Rule 25.1.l, we obtain 〈q1 [] q2, σ, E〉
ξ,a,ξ′−−−→ 〈X, σ′, E〉.

– v′0 is a terminating location of TJ(q2). The proofs of this case are similar to the
previous case.
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• Parallel composition operator p ≡ q1 ‖ q2 for some q1 and q2. We have |[HA(〈q1 ‖
q2, σ,E〉) ]||= (v0, α)

a−→ (v′0, α
′), which means that there is an edge, say e, with source

location v0, target location v′0, event a and a guard and a jump condition that hold for
α and α′. According to the translation defined for the parallel composition operator,
a = ca(h) necessarily. This leads to a contradiction. Hence, the theorem holds
trivially.

• Repetition operator p ≡ ∗q for some q. The translation of the repetition opera-
tor always results in a hybrid automaton fragment without terminating locations.
Therefore, this case cannot occur.

• Jump enabling operator p ≡ ιJ+(q) for some q and J+. We have |[HA(〈ιJ+(q),
σ, E〉) ]| |= (v0, α)

a−→ (v′0, α
′). According to the translation defined for jump en-

abling operator, TJ(ιJ+(q)) = TJ∪J+(q). We also know that (v0, α)
a−→ (v′0, α

′) is
in |[HA(〈q, σ, (C, J ∪ J+, ∅, H, ∅)〉) ]|. By induction, we then have 〈q, σ, (C, J ∪
J+, ∅, H, ∅)〉 ξ,a,ξ′−−−→ 〈X, σ′, (C, J ∪ J+, ∅, H, ∅)〉 for some ξ, ξ′, σ′ such that σ′ = α′ �

dom(σ′). Using Rule 41.1, we obtain 〈ιJ+(q), σ, E〉 ξ,a,ξ′−−−→ 〈X, σ′, E〉.

• Action encapsulation operator p ≡ ∂A(q) for some A and q. We have |[HA(〈
∂A(q),σ, E〉) ]| |= (v0, α)

a−→ (v′0, α
′). According to the translation defined for action

encapsulation operator, we know that the jump conditions of edges labelled with
events from A are predicates false with an empty set of variables that are allowed to
change, and (v0, α)

a−→ (v′0, α
′) is also in |[HA(〈q, σ, E〉) ]|, which also implies a 6∈ A

necessarily. By induction, we then have 〈q, σ, E〉 ξ,a,ξ′−−−→ 〈X, σ′, E〉 for some ξ, ξ′, σ′

such that σ′ = α′ � dom(σ′). Using Rule 32.1, we get 〈∂A(q), σ, E〉 ξ,a,ξ′−−−→ 〈X, σ′, E〉.

• Urgent communication operator p ≡ υH (q) for some H ⊆ H and q. We have |[
HA(〈υH (q), σ, E 〉) ]| |= (v0, α)

a−→ (v′0, α
′). According to the translation defined

for urgent communication operator, (v0, α)
a−→ (v′0, α

′) is also in |[HA(〈q, σ, E〉) ]|.
By induction, we then have 〈q, σ, E〉 ξ,a,ξ′−−−→ 〈X, σ′, E〉 for some ξ, ξ′, σ′ such that

σ′ = α′ � dom(σ′). Using Rule 35.1, we get 〈υH (q), σ, E〉 ξ,a,ξ′−−−→ 〈X, σ′, E〉.

C.4.2 Theorem 5.3.5.1 - part 2

The proof is by induction on the structure of closed process term p. According to the
translations defined for delay predicate, consistent deadlock δ, guarded inconsistent process
term b → ⊥, guarded action predicate, guarded send process term and guarded receive
process term these constants cannot perform any action transition (with specified label a).
Hence, the theorem holds trivially for these cases.

• Any delay operator p ≡ [q] for some q. We have |[HA(〈[q], σ, E〉) ]||= (v0, α)
a−→

(v′′0 , α
′), which means that there exists an non-urgent edge e with source location

v0, target location v′′0 , event a and a guard and a jump condition that hold for α
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and α′. According to the translation defined for the any delay operator, the action
transition (v∗0, α)

a−→ (v′′0 , α
′) is in |[HA(〈q, σ,E〉) ]|, where v∗0 is the initial location of

TJ(q). By induction, we then have 〈q, σ, E〉 ξ,a,ξ′−−−→ 〈q′, σ′, E〉 for some q′, ξ, ξ′, σ′ such
that σ = α � dom(σ) and σ′ = α′ � dom(σ′). Using Rule 10.2, we obtain 〈[q], σ, E〉
ξ,a,ξ′−−−→ 〈q′, σ′, E〉.

• Sequential composition operator p≡ q1 ; q2 for some q1, q2. We haveHA(〈 q1;q2,σ,E〉) ]|
|= (vq1 , α)

a−→ (v′q, α
′), which means that there exists an edge e in TJ(q1 ; q2) with

source location vq1 , target location v′q, event a, and a guard and a jump condition
that hold for α and α′. We can distinguish two cases:

– v′q is the initial location of TJ(q2), which implies |[HA(〈q1, σ, E〉) ]||= (vq1 , α)
a−→

(v′q1 , α
′) for some terminating location v′q1 of TJ(q1). According to part 1 of

Theorem 5.3.5.1, we obtain 〈q1, σ,E〉
ξ,a,ξ′−−−→ 〈X, σ′,E〉 for some ξ, ξ′, σ′ such that

σ′ = α′ � dom(σ′). Using Rule 16, we obtain 〈q1 ; q2, σ, E〉
ξ,a,ξ′−−−→ 〈q2, σ

′, E〉.

– v′q is a location of TJ(q1). By induction we then have 〈q1, σ, E〉
ξ,a,ξ′−−−→ 〈q′1, σ′, E〉

for some q′1, ξ, ξ
′ such that σ′ = α′ � dom(σ′) and v′q is also the initial location of

TJ(q′1). Using Rule 17, we obtain 〈q1 ; q2, σ, E〉
ξ,a,ξ′−−−→ 〈q′1 ; q2, σ

′, E〉. Note that
v′q is the initial location of TJ(q′1 ; q2).

• Alternative composition operator p ≡ q1 [] q2 for some q1 and q2. We have |[HA(〈q1 []
q2, σ, E〉) ]||= (v0, α)

a−→ (v′′0 , α
′), which means that there exists an edge e with source

location v0, target location v′′0 , event a and a guard and a jump condition that hold
for α and α′. According to the translation defined for the alternative composition
operator, v0 = (vq1 , vq2) and v′′0 is a location of either TJ(q1) or TJ(q2), where vq1 and
vq2 are the initial locations of TJ(q1) and TJ(q2). We distinguish two cases:

– v′′0 is a location of TJ(q1). Again, referring to the translation defined for the
alternative composition operator, we know that (vq1 ,α)

a−→ (v′′0 ,α
′) is in |[HA(〈q1,

σ,E〉) ]|. By induction, we then have 〈q1, σ, E〉
ξ,a,ξ′−−−→ 〈q′1, σ′, E〉 for some ξ, ξ′, σ′

such that σ = α � dom(σ) and σ′ = α′ � dom(σ′) and v′′0 is the initial location

of TJ(q1). Using Rule 25.2.l, we obtain 〈q1 [] q2, σ, E〉
ξ,a,ξ′−−−→ 〈q′1 ; q2, σ

′, E〉. Note
that v′′0 is also the initial location of TJ(q′1 ; q2).

– v′′0 is a location of TJ(q2). The proofs of this case are similar to the previous
case.

• Parallel composition operator p ≡ q1 ‖ q2 for some q1 and q2. We have |[HA(〈q1 ‖
q2, σ, E〉) ]||= (v0, α)

a−→ (v′′0 , α
′), which means that there exists an edge e with source

location v0, target location v′′0 , event a and a guard and a jump condition that hold for
α and α′. According to the translation defined for the parallel composition operator,
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v0 = (vq1 , vq2), where and vq1 and vq2 denote the initial locations of TJ(q1) and TJ(q2).
For v′′0 we can distinguish four cases:

– v′′0 = (v′q1 , vq2) for some location v′q1 of TJ(q1). Then, (vq1 , α)
a−→ (v′q1 , α

′) is in

|[HA(〈q1,σ,E〉) ]|. By induction, we then have 〈q1,σ,E〉
ξ,a,ξ′−−−→ 〈q′,σ′,E〉 for some

q′, ξ, ξ′, σ′ such that σ = α � dom(σ) and σ′ = α′ � dom(σ′) and v′q1 is the initial

location of TJ(q′). Using Rule 29.2.l, we obtain 〈q1 ‖ q2,σ,E〉
ξ,a,ξ′−−−→〈q′ ‖ q2,σ

′,E〉.
Note that (v′q1 , vq2) is the initial location of TJ(q′ ‖ q2).

– v′′0 = (vq1 , v
′
q2

) for some location v′q2 of TJ(q2). The proofs of this case are similar
to the previous case.

– v′′0 = vq2 . Then, (vq1 ,α)
a−→ (v′q1 ,α

′) is in |[HA(〈q1,σ,E〉) ]| and v′q1 is a terminating

location of TJ(q1). By part 1 of Theorem 5.3.5.1, we then have 〈q1, σ, E〉
ξ,a,ξ′−−−→

〈X, σ′, E〉 for some ξ, ξ′, σ′ such that σ = α � dom(σ) and σ′ = α′ � dom(σ′).

Using Rule 29.2.l, we obtain 〈q1 ‖ q2, σ, E〉
ξ,a,ξ′−−−→ 〈q2, σ

′, E〉. By definition, vq2
is the initial location of TJ(q′ ‖ q2).

– v′′0 = vq1 . The proofs of this case are similar to the previous case.

• Repetition operator p≡∗q for some q. We have |[HA(〈∗q,σ,E〉) ]||= (v0,α)
a−→ (v′′0 ,α

′),
which means that there is an edge, say e, with source location v0, target location v′′0 ,
event a, and a guard and a jump condition that hold for α and α′. According to the
translation defined for the repetition operator, (v0,α)

a−→ (v′′0 ,α
′) is in |[HA(〈q,σ,E〉) ]|

(because e is also an edge in TJ(q) and v′′0 is not a terminating location). By induction,

we then have 〈q, σ, E〉 ξ,a,ξ′−−−→ 〈q′, σ′, E〉 for some q′, ξ, ξ′, σ′ such that σ = α � dom(σ)

and σ′ = α′ � dom(σ′). Then, we obtain 〈∗q, σ,E〉 ξ,a,ξ′−−−→ 〈q′ ; ∗q, σ′,E〉 using Rule A.2
from Appendix C.1.

• Jump enabling operator p≡ ιJ+(q) for some q and J+. We have |[HA(〈 ιJ+(q), σ, E〉)
]| |= (v0,α)

a−→ (v′′0 ,α
′), which means that there exists an edge e with source location v0,

target location v′′0 , event a, and a guard and a jump condition that hold for α and α′.
According to the translation defined for jump enabling operator, we have TJ(ιJ+(q))
= TJ∪J+(q), we also know that (v0,α)

a−→ (v′′0 ,α
′) is in |[HA(〈q,σ,(C,J ∪J+,∅,H,∅)〉) ]|.

Note that we then have 〈q, σ, (C,J ∪ J+,∅,H,∅)〉 ξ,a,ξ′−−−→ 〈q′, σ′, (C,J ∪ J+,∅,H,∅)〉 for
some q′, ξ, ξ′, σ′ such that σ = α � dom(σ) and σ′ = α′ � dom(σ′) and v′′0 is the initial

location of TJ(q′). Using Rule 41.2, we obtain 〈ιJ+(q), σ,E〉 ξ,a,ξ′−−−→ 〈ιJ+(q′), σ′,E〉. By
definition, v′′0 is also the initial location of TJ(ιJ+(q′)).

• Action encapsulation operator p ≡ ∂A(q) for some A and q. We have |[ HA(〈 ∂A(q),
σ, E〉) ]| |= (v0, α)

a−→ (v′′0 , α
′), which means that there exists an edge e with source

location v0, target location v′′0 , event a, and a guard and jump condition that hold for
α and α′. According to the translation defined for action encapsulation operator, we
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know that no edges labelled with events from A are enabled (which implies a 6∈ A),
and (v0, α)

a−→ (v′′0 , α
′) is also in |[HA(〈q,σ,E〉) ]|. By induction, we then have 〈q,σ,E〉

ξ,a,ξ′−−−→ 〈q′, σ′, E〉 for some q′, ξ, ξ′, σ′ such that σ = α � dom(σ) and σ′ = α′ � dom(σ′)

and v′′0 is the initial location of TJ(q′). Using Rule 32.1, we get 〈∂A(q), σ, E〉 ξ,a,ξ′−−−→
〈∂A(q′), σ′, E〉. Note that v′′0 is also the initial location of TJ(∂A(q′)).

• Urgent communication operator p ≡ υH (q) for some H ⊆ H and q. We have |[HA(〈
υH (q), σ, E〉)]| |= (v0, α)

a−→ (v′′0 , α
′), which means that there exists an edge e with

source location v0, target location v′′0 , event a, and a guard and jump condition that
hold for α and α′. According to the translation defined for urgent communication
operator, (v0, α)

a−→ (v′′0 , α
′) is also in |[HA(〈q, σ, E〉) ]|. By induction, we then have

〈q, σ, E〉 ξ,a,ξ′−−−→ 〈q′, σ′, E〉 for some q′, ξ, ξ′, σ′ such that σ = α � dom(σ) and σ′ = α′ �
dom(σ′) and v′′0 is the initial location of TJ(q′). Using Rule 35.2, we get 〈υH (q), σ,E〉
ξ,a,ξ′−−−→ 〈υH (q′), σ′, E〉. Note that v′′0 is also the initial location of TJ(υH (q′)).

C.4.3 Theorem 5.3.5.2 - part 1

The proof is by induction on the structure of closed process term p. According to the
translations defined for delay predicate, consistent deadlock δ, guarded inconsistent process
term b → ⊥, guarded action predicate and guarded receive process term these constants
cannot perform any action transition (with specified label isa(h)). Hence, the theorem
holds trivially for these cases.

For the any delay operator, sequential composition, alternative composition, parallel
composition, repetition, jump enabling, action encapsulation and urgent communication
the proofs are similar to the proofs of these cases in Appendix C.4.1.

• Guarded send p ≡ b→ h !! en for some h, en. We have |[HA(〈b→ h !! en, σ, E〉) ]||=
(v0, α)

isa(h)−−−→ (v′0, α
′), which means that there exists an edge e with source location

vq, target location v′q, event isa(h), and a guard and jump condition that hold for
α and α′. According to the translation defined for the guarded send, guard(e) = b

and jump(e) = (Xaux ∪ J,
n∧
i=1

ei = h′i). From α |= guard(e) and (α, α′) |= jump(e),

we know that there exist ξ, ξ′, σ′ such that ξ = σ ∪ ξĊL, where ξĊL ∈ Ċ → Λ, and
ξ′ ∈ {ξ | dom(ξ) = dom(σ) ∪ Ċ , ∀x∈dom(σ)\J ξ(x) = σ(x)}. Using Rule 5, we obtain

〈h !! en, σ, E〉
ξ , isa(h,[ξ(en)]), ξ′−−−−−−−−−−−→ 〈X, ξ′σ, E〉, where ξ′σ = σ′. Due to Lemma 3.5.1 and

(α, α′) |= jump(e), it is not hard to see that σ′ = α′ � dom(σ′) and (α′(h1) = ξ(e1) ∧
· · · ∧α′(hn) = ξ(en)). Using Rule 20.1, we know that ξ |= b (from α |= guard(e)), and

we obtain 〈b→ h !! en, σ, E〉
ξ, isa(h,[ξ(en)]), ξ′−−−−−−−−−−−→ 〈X, ξ′σ, E〉.
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C.4.4 Theorem 5.3.5.2 - part 2

The proof is by induction on the structure of closed process term p. According to the
translations defined for delay predicate, consistent deadlock δ, guarded inconsistent process
term b → ⊥, guarded action predicate, guarded send process term and guarded receive
process term these constants cannot perform any action transition (with specified label
isa(h)). Hence, the theorem holds trivially for these cases.

For the operators the proofs are similar to the proofs for these cases in Appendix C.4.2.
The only difference is that additionally the condition α′(h1) = cs1 ∧ · · · ∧ α′(hn) = csn has
to be proven. In all cases it follows from induction hypothesis.

C.4.5 Theorem 5.3.5.3 - part 1

The proof is by induction on the structure of closed process term p. According to the
translations defined for delay predicate, consistent deadlock δ, guarded inconsistent process
term b → ⊥, guarded action predicate and guarded send process term these constants
cannot perform any transition (with specified label ira(h, Y )). Hence, the theorem holds
trivially for these cases.

For the any delay operator, sequential composition, alternative composition, parallel
composition, repetition, jump enabling, action encapsulation and urgent communication
the proofs are similar to the proofs of these cases in Appendix C.4.1.

• Guarded receive p≡ b→ h??xn for some b,h,{xn}= Y . We have |[HA(〈 b → h??xn,

σ,E〉) ]| |= (v0,α)
ira(h,Y )−−−−→ (v′0,α

′), which means that there exists an edge e with source
location v0, target location v′0, event ira(h, Y ), and a guard and a jump condition
that hold for α and α′. According to the translation defined for the guarded receive,

guard(e) = b and jump(e) = ({xn} ∪ J ∪Xaux,
n∧
i=1

h′i = x′i). Since α |= guard(e) and

(α,α′) |= jump(e) both are true, we know that there exist ξ,ξ′,σ′ such that ξ= σ∪ξĊL,

where ξĊL ∈ Ċ → Λ, ξ′ ∈ {ξ | dom(ξ) = dom(σ)∪ Ċ , ∀y∈dom(σ)\(J∪{xn}) ξ(y) = σ(y)},
and ξ′(xn) = hn. Renaming hn as cs , {xn} as Y , and using Rule 6, we obtain

〈h ?? xn, σ, E〉
ξ, ira(h,cs,Y ), ξ′−−−−−−−−−−→ 〈X, ξ′σ, E〉, where ξ′σ′ = σ′. Using Rule 20.1, we know

that ξ |= b (from α |= guard(e)), and we obtain 〈b → h ?? xn, σ, E〉
ξ , ira(h,cs,Y ), ξ′−−−−−−−−−−→

〈X, ξ′σ, E〉.

C.4.6 Theorem 5.3.5.3 - part 2

The proof is by induction on the structure of closed process term p. According to the
translations defined for delay predicate, consistent deadlock δ, guarded inconsistent process
term b → ⊥, guarded action predicate, guarded send process term and guarded receive
process term these constants cannot perform any action transition (with specified label
ira(h, Y )). Hence, the theorem holds trivially for these cases.

For the operators the proofs are similar to the proofs for these cases in Appendix C.4.2.
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C.4.7 Theorem 5.3.5.4 - part 1

The proof is by induction on the structure of closed process term p. According to the trans-
lations defined for delay predicate, consistent deadlock δ, guarded inconsistent process term
b→ ⊥, guarded action predicate, guarded send process term and guarded receive process
term, these constants cannot perform any termination transition (with a communication
label). Hence, the theorem holds trivially for these cases.

For the any delay operator, sequential composition, alternative composition, repetition,
jump enabling, action encapsulation and urgent communication the proofs are similar to
the proofs of these cases in Appendix C.4.1.

• Parallel composition operator p ≡ q1 ‖ q2 for some q1 and q2. We have |[HA(〈q1 ‖
q2, σ,E〉) ]||= (v0,α)

ca(h)−−−→ (v′0,α
′), which means that there exists an edge e with source

location v0, target location v′0, event ca(h), and a guard and a jump condition that
hold for α and α′. According to the translation defined for the parallel composi-
tion operator, v0 = (vq1 , vq2), e = (eq1 , eq2), where vq1 , vq2 are the initial locations of
TJ(q1) and TJ(q2), eq1 ∈ Eq1 , eq2 ∈ Eq2 ; targetq1(eq1) and targetq2(eq2) are terminating
locations. Then we distinguish two cases:

– (eventq1(eq1) = isa(h))∧ (eventq2(eq2) = ira(h,Y )) such that Y = {xn}. Then, we

also know that |[HA(〈q1,σ, (C,J ∪W,∅,H,∅)〉) ]||= (vq1 ,α)
isa(h)−−−→ (v′q1 ,α

′) for some

v′q1 , W , and |[HA(〈q2, σ, E〉) ]||= (vq2 , α)
ira(h,{xn})−−−−−−→ (v′q2 , α

′) for some v′q2 , where
v′q1 and v′q2 are terminating locations. By part 1 of Theorem 5.3.5.2 we then have

〈q1, σ, (C,J ∪W,∅,H,∅)〉
ξ,isa(h,cs),ξ′−−−−−−−→ 〈X, σ′, (C,J ∪W,∅,H,∅)〉 for some ξ, ξ′, cs ,

and by part 1 of Theorem 5.3.5.3 we have 〈q2, σ, E〉
ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈X, σ′, E〉

such that σ = α � dom(σ) and σ′ = α′ � dom(σ′). Using Rule 28.1.l, we obtain

〈q1 ‖ q2, σ, E〉
ξ,ca(h,cs),ξ′−−−−−−−→ 〈X, σ′ , E〉.

– (eventq1(eq1) = ira(h, Y )) ∧ (eventq2(eq2) = isa(h)). The proofs of this case are
similar to the previous case.

C.4.8 Theorem 5.3.5.4 - part 2

The proof is by induction on the structure of closed process term p. According to the
translations defined for delay predicate, consistent deadlock δ, guarded inconsistent process
term b → ⊥, guarded action predicate, guarded send process term and guarded receive
process term these constants cannot perform any action transition (with specified label
ca(h, cs)). Hence, the theorem holds trivially for these cases.

For all operators, except for the parallel composition, the proofs are similar to the
proofs for these cases in Appendix C.4.2.

• Parallel composition operator p ≡ q1 ‖ q2 for some q1 and q2. We have |[HA(〈q1 ‖
q2, σ,E〉) ]||= (v0,α)

ca(h)−−−→ (v′′0 ,α
′) is for some v0, v

′′
0 , and v′′0 has to be a non-terminating
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location in TJ(q1 ‖ q2). According to the translation defined for the parallel composi-
tion operator, there is an edge (eq1 , eq2) in TJ(q1 ‖ q2) with source location (vq1 , vq2);
eq1 ∈ Eq1 , eq2 ∈ Eq2 , eq1 ∈ Eq1 , eq2 ∈ Eq2 ; targetq1(eq1) and targetq2(eq2) are non-
terminating locations, event ca(h), a guard and a jump condition that are the logical
and of the guard and jump conditions of eq1 and eq2 and, therefore hold for α and
α′, and an urgency status that is the logical or of the urgency status of edges eq1 and
eq2 . We distinguish four cases:

– v′′0 = (v′q1 , v
′
q2

) for some non-terminating locations v′q1 from TJ(q1) and v′q2 from
TJ(q2). Then we distinguish two cases:

∗ (eventq1(eq1) = isa(h))∧(eventq2(eq2) = ira(h,Y )) such that Y = {xn}. Then,

we also know that |[HA(〈q1, σ, (C,J ∪W,∅,H,∅)〉) ]||= (vq1 , α)
isa(h)−−−→ (v′q1 , α

′)

for some v′q1 ,W , and |[HA(〈q2, σ,E〉) ]||= (vq2 , α)
ira(h,{xn})−−−−−−→ (v′q2 , α

′) for some
v′q2 , where v′q1 and v′q2 are the initial locations of TJ(q′1) and TJ(q′2) respec-
tively. By part 2 of Theorem 5.3.5.2 we then have 〈q1, σ, (C,J ∪W,∅,H,∅)〉
ξ,isa(h,cs),ξ′−−−−−−−→ 〈q′1, σ′, (C,J ∪W,∅,H,∅)〉 for some ξ, ξ′,cs , and by part 2 of The-

orem 5.3.5.3 we have 〈q2,σ, (C,J,∅,H,∅)〉
ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈q′2,σ′, (C,J,∅,H,∅)〉

such that σ=α � dom(σ) and σ′=α′ � dom(σ′). Using Rule 28.4.l, we obtain

〈q1 ‖ q2, σ, E〉
ξ,ca(h,cs),ξ′−−−−−−−→ 〈q′1 ‖ q′2, σ′ , E〉.

∗ (eventq1(eq1) = ira(h, {xn})) ∧ (eventq2(eq2) = isa(h)). The proofs of this
case are similar to the previous case.

– v′′0 = v′q2 for some non-terminating location v′q2 from TJ(q2). Then we distinguish
two cases:

∗ (eventq1(eq1) = isa(h))∧(eventq2(eq2) = ira(h,Y )) such that Y = {xn}. Then,

we also know that |[HA(〈q1, σ, (C,J ∪W,∅,H,∅)〉) ]||= (vq1 , α)
isa(h)−−−→ (v′q1 , α

′)

for some v′q1 ,W , and |[HA(〈q2, σ,E〉) ]| |= (vq2 ,α)
ira(h,{xn})−−−−−−→ (v′q2 ,α

′) for some
v′q2 , where v′q1 is a terminating location of TJ(q1) and v′q2 is the initial location
TJ(q′2).
By part 1 of Theorem 5.3.5.2 we then have 〈q1, σ, (C, J ∪ W, ∅, H, ∅)〉
ξ,isa(h,cs),ξ′−−−−−−−→ 〈X, σ′, (C, J ∪ W, ∅, H, ∅)〉, and by part 2 of Theorem 5.3.5.3

we have 〈q2, σ, E〉
ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈q′2, σ′, E〉 such that σ = α � dom(σ) and

σ′ = α′ � dom(σ′). Using Rule 28.3.l, we obtain 〈q1 ‖ q2, σ, E〉
ξ,ca(h,cs),ξ′−−−−−−−→

〈q′2, σ′ , E〉.
∗ (eventq1(eq1) = ira(h, {xn})) ∧ (eventq2(eq2) = isa(h)) such that Y = {xn}.

The proofs of this case are similar to the previous case.

– v′′0 = v′q1 for some non-terminating location v′q1 from TJ(q1). Similar to the
previous case.
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– v′′0 = (v′q1 , v
′
q2

) for some terminating locations v′q1 from TJ(q1) and v′q2 from TJ(q2).
According to the translation defined for the parallel composition operator, this
case has to perform a termination transition labelled with ca(h), and not an
action transition labelled with ca(h). This case leads to a contradiction. Hence,
the theorem holds trivially.

C.4.9 Theorem 5.3.5.5

The proof is by induction on the structure of closed process term p. According to the
transitions defined for consistent deadlock δ, it cannot perform any time transition, hence
the theorem holds trivially.

• Delay predicate p≡ u for some u. We have |[HA(〈u,σ,E〉) ]||= ρ′ : (v0, α)
t7−→ (v0, α

′),
which means that there is a ρ′ such that ρ′α(0) = α, ρ′α(t) = α′. According to the
translation defined for the delay predicate, the flow condition for location v0 (the
only one location) is u. From Theorem 5.3.3, we have that ρ ∈ ΩFG(σ, C, ∅, u, t).
Using Rule 3, we obtain 〈u, σ, E〉 t,ρ7−→ 〈u, ρσ(t), E〉, where ρσ(t) = σ′.

• Guarded inconsistent process term b → ⊥ for some b. We know that the guarded
inconsistent process term b→ ⊥ is equivalent to ¬b (see also Proposition 3.5.4). It
is not hard to see that the proof for this case is similar to the proof for the case of
delay predicate.

• Guarded action predicate p ≡ b→ W : r � la for some b,W, r, la. We have |[HA(〈b
→ W : r� la, σ, E〉) ]||= ρ′ : (v0, α)

t7−→ (v0, α
′), which means that there is a ρ′ such

that ρ′α(0) = α,ρ′α(t) = α′, ∀r∈[0,t] ρ
′(r) |= inv(v0)∧flow(v0), ∀e∈Eb→ W :r�la

(source(e) =
v0 ∧ urgent(e)) =⇒ ∀t∈[0,r) ρ

′(t) |= ¬guard(e). According to the translation defined
for the guarded action predicate, TJ(b→W : r� la) has only one edge, let say e. We
know that flow(v0) = true, inv(v0) = true, urgent(e) = true and guard(e) = b. Note

that this time transition (v0, α)
t7−→ (v0, α

′) implies that ∀s∈[0,t) ρ
′(s) |= ¬b. Using

Rule 22, we obtain 〈b→W : r � la, σ, E〉
t,ρ7−→ 〈b→W : r � la, ρσ(t), E〉 for some ρ

such that ρ = ρ′ ↓ (dom(σ) ∪ Ċ), where ρσ(t) = σ′.

• Guarded send and guarded receive. The proofs of guarded send and guarded receive
are similar to the proofs of guarded action predicate.

• Any delay operator p ≡ [q] for some q. We have |[HA(〈[q], σ, E〉) ]||= ρ′ : (v0, α)
t7−→

(v0, α
′), which means that there is a ρ′ such that ρ′α(0) = α, ρ′α(t) = α′, ∀r∈[0,t] ρ

′(r) |=
inv(v0) ∧ flow(v0), ∀e∈E[q]

(source(e) = v0 ∧ urgent(e)) =⇒ ∀t∈[0,r) ρ
′(t) |= ¬guard(e).

According to the translation defined for the any delay operator, flow(v0) = inv(v0) =
true. So, we know that it exists a ρ ∈ΩFG(σ,C,∅, true, t) such that ρ= ρ′ ↓ (dom(σ)∪
Ċ) (see also Theorem 5.3.3). Using Rule 11, we obtain 〈[q], σ, E〉 t,ρ7−→ 〈[q], ρσ(t), E〉,
where ρσ(t) = σ′.
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• Sequential composition operator p ≡ q1 ; q2 for some q1 and q2. We have |[ HA( 〈
q1 ; q2,σ, E 〉) ]| |= ρ′ : (v0, α)

t7−→ (v0, α
′), which means that there is a ρ′ such that

ρ′α(0) = α, ρ′α(t) = α′, ∀r∈[0,t] ρ
′(r) |= inv(v0) ∧ flow(v0), ∀e∈Eq1;q2

(source(e) = v0 ∧
urgent(e)) =⇒ ∀t∈[0,r) ρ(t) |= ¬guard(e). According to the translation defined for
the sequential composition operator, v0 is also the initial location of TJ(q1) and
no new edges are added into TJ(q1 ; q2) (obtained from TJ(q1)). Therefore, also

(v0, α)
t7−→ (v0, α

′) is in |[HA(〈q1, σ, E〉) ]|. By induction we then have 〈q1, σ, E〉
t,ρ7−→ 〈q′, σ′,E〉 for some ρ, q′ . Using Rule 18, we obtain 〈q1 ; q2, σ,E〉

t,ρ7−→ 〈q′ ; q2, σ
′,E〉.

• Alternative composition operator p ≡ q1 [] q2 for some q1 and q2. We have |[HA(〈q1 []

q2, σ, E〉) ]||= ρ′ : (v0, α)
t7−→ (v0, α

′), which means that there is a ρ′ such that
ρ′α(0) = α, ρ′α(t) = α′, ∀r∈[0,t] ρ

′(r) |= inv(v0) ∧ flow(v0), ∀e∈E
q1[]q2

(source(e) = v0 ∧

urgent(e)) =⇒ ∀t∈[0,r) ρ
′(t) |=¬guard(e). According to the translation defined for the

alternative composition operator, v0 = (vq1 , vq2) for some vq1 , vq2 , where vq1 and vq2 de-

note the initial locations of TJ(q1) and TJ(q2), respectively. Also, (vq1 , α)
t7−→ (vq1 , α

′)

is in |[HA(〈q1, σ,E〉) ]| and (vq2 , α)
t7−→ (vq2 , α

′) is in |[HA(〈q2, σ,E〉) ]|. By induction

we then have 〈q1, σ,E〉
t,ρ7−→ 〈q′, σ′, E〉 and 〈q2, σ,E〉

t,ρ7−→ 〈q′′, σ′, E〉 for some ρ, q′, q′′ .

Using Rule 26, we obtain 〈q1 [] q2, σ, E〉
t,ρ7−→ 〈q′ [] q′′, σ′, E〉.

• Parallel composition operator. The proofs are similar to the proofs of the alternative
composition operator.

• Repetition operator p ≡ ∗q for some q. We have |[HA(〈∗q, σ, E〉) ]||= ρ′ : (v0, α)
t7−→

(v0, α
′), which means that there is a ρ′ such that ρ′α(0) = α, ρ′α(t) = α′, ∀r∈[0,t] ρ

′(r) |=
inv(v0) ∧ flow(v0), ∀e∈E∗q (source(e) = v0 ∧ urgent(e)) =⇒ ∀t∈[0,r) ρ

′(t) |= ¬guard(e).
According to the translation defined for the repetition operator, v0 is also the initial
location of TJ(q). Also, no new outgoing edges are added to v0 of TJ(q) to obtain

TJ(∗q). Hence, (v0, α)
t7−→ (v0, α

′) is in |[HA(〈q, σ,E〉) ]|. By induction we then have

〈q, σ,E〉 t,ρ7−→ 〈q′, σ′, E〉 for some ρ, q′, σ′ . Then, we obtain 〈q, σ,E〉 t,ρ7−→ 〈q′ ; ∗q, σ′, E〉
using Rule B in Appendix C.1.

• Jump enabling operator p ≡ ιJ+(q) for some q and J+. We have |[ HA(〈 ιJ+(q),

σ, E〉) ]| |= ρ′ (v0, α)
t7−→ (v0, α

′), which means that there is a ρ′ such that ρ′α(0) =
α, ρ′α(t) = α′, ∀r∈[0,t] ρ′(r) |= inv(v0) ∧ flow (v0), ∀e∈Eι

J+(q)
(source(e) = v0 ∧

urgent(e)) =⇒ ∀t∈[0,r) ρ
′(t) |= ¬guard(e). According to the translation defined for

the jump enabling operator, v0 is also the initial location of TJ(q). Also, TJ(ιJ+(q))

= TJ∪J+(q). Obviously, (v0, α)
t7−→ (v0, α

′) is in |[HA(〈q, σ, (C, J ∪ J+, ∅, H, ∅)〉) ]|.
By induction we then have 〈q, σ, E〉 t,ρ7−→ 〈q′, σ′, E〉 for some ρ, q′, σ′ . Using Rule 42,

we obtain 〈ιJ+(q), σ, E〉 t,ρ7−→ 〈ιJ+(q′), σ′, E〉.

• Action encapsulation operator p ≡ ∂A(q) for some A and q. We have |[ HA(〈
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∂A(q), σ, E〉) ]| |= ρ′ : (v0, α)
t7−→ (v0, α

′), which means that there is a ρ′ such
that ρ′α(0) = α, ρ′α(t) = α′, ∀r∈[0,t] ρ

′(r) |= inv(v0) ∧ flow(v0), ∀e∈E∂A(q)
(source(e) =

v0 ∧ urgent(e)) =⇒ ∀t∈[0,r) ρ
′(t) |= ¬guard(e). According to the translation de-

fined for the action encapsulation operator, (v0, α)
t7−→ (v0, α

′) is also preserved in
|[HA(〈q, σ, E〉) ]|, because TJ(∂A(q)) is obtained by replacing the jump conditions
of some edges labelled with some a ∈ A to predicates false with an empty set of
variables that are allowed to change from TJ(q) (this has effect on action transi-
tions). We know that v0 is also the initial location of TJ(q). By induction, we then

have 〈q, σ, E〉 t,ρ7−→ 〈q′, σ′, E〉 for some ρ, q′ . Using Rule 33, we obtain 〈∂A(q), σ, E〉
t,ρ7−→ 〈∂A(q′), σ′, E〉.

• Urgent communication operator p ≡ υH (q) for some H and q. We have

|[HA(〈υH (q), σ,E〉) ]| |= (v0, α)
t7−→ (v0, α

′), which means that there is a ρ′ such
that ρ′α(0) = α, ρ′α(t) = α′, ∀r∈[0,t] ρ

′(r) |= inv(v0) ∧ flow(v0), ∀e∈EυH (q)
(source(e) =

v0 ∧ urgent(e)) =⇒ ∀t∈[0,r) ρ
′(t) |= ¬guard(e). According to the translation de-

fined for the urgent communication operator, the urgency status of all edges labelled
with ca(h) of TJ(q) is set to true to obtain TJ(υH (q)). Then, this time transition

(v0, α)
t7−→ (v0, α

′) implies that there is no action transition via any outgoing edge of

v0 with label ca(h) is enabled, and (v0, α)
t7−→ (v0, α

′) is also in |[HA(〈q, σ,E〉) ]|. By

induction, we then have 〈q, σ, E〉 t,ρ7−→ 〈q′, σ′, E〉 for some ρ, q′, σ′. Using Rule 37, we

obtain 〈υH (q), σ, E〉 t,ρ7−→ 〈υH (q′), σ′, E〉.
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APPENDIX

D

Proofs of the tool support

D.1 Preliminary definition

The proofs of Theorem 6.1.1, Theorem 6.1.2 and Conjecture 6.1.1 require the notion of
norm of a closed process term. The norm of a closed process term p ∈ PT is intended to
be a measure of the complexity of p.

Definition D.1.1 (Norm) For p, q ∈ PT, lp, lq ∈ {0, 1} and rp, rq ∈ N, we define the
mapping | |∈ PT → {0, 1} × N inductively as follows:

• | p |= (0, 1) if p ∈ {W : r � la, h !! en, h !! en, u, δ},

• | [p] |=| uy p |=| b→ p |=| ∂A(p) |=| υH (p) |=| ιJ+(p) |= (lp, rp + 1) for | p |= (lp, rp),

• | p; q |= (lp, rp + rq + 1) for | p |= (lp, rp) and | q |= (lq, rq),

• | p [] q |=| p ‖ q |= (max(lp, lq), rp + rq + 1) for | p |= (lp, rp) and | q |= (lq, rq),

• | p |= (1, 0) if p = X.

We define the lexicographical ordering < as follows: (lp, rp) < (lq, rq) iff lp < lq ∨ (lp =
lq ∧ rp < rq).

Furthermore, the following conjecture is needed for the proof of Conjecture 6.1.1

Conjecture D.1.1 Let p, p′ ∈ PT, σ, σ′ be valuations, ρ be a trajectory, E be an environ-
ment and (c

[0]
p , c

(0,t)
p , c

[t]
p , c

[0,t]
p , cp, p

′) ∈ Sd(〈p, E〉). Then,

ρ(0) |= c[0]
p ⇒ 〈p, σ, E〉

0,ρ�{0}7−→ 〈p′, σ′, E〉.

D.2 Proof of Theorem 6.1.1

Let p ∈ PT, σ be a valuation, ξ be an extended valuation such that ξ � dom(σ), and E be
an environment. Then

ξ |= Cc(p, E)⇒ 〈p, σ, E〉 ξ
 .
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PROOF. We prove this theorem by induction on the norm of p. The proofs for the action
predicate, send process term, receive process term, consistent deadlock and the any delay
operator are trivial, because these atomic process terms and the any delay operator are
consistent with any extended valuation with respect to σ in any environment (see also
Rules 2, 7, 8, 9 and 12). We assume ξ |= Cc(p, E) and E = (C, J, L,H,R) for some C, J,
L, H,R. Then,

• p ≡ u for some u. According to the definition of the function Cc, we know that
Cc(u,E) = u. Since ξ = σ ∪ ξĊL for some ξĊL, using Rule 4, we get (C, J, L,H,R) 

〈u, σ〉 σ∪ξ
ĊL

 .

• p ≡ uy q for some u and q. According to the definition of the function Cc, we know
that Cc(uy q,E) = u ∧ Cc(q,E). So, ξ |= u, and ξ |= Cc(q,E), by induction, we then

have 〈q, σ, E〉 ξ
 . Using Rule 15, we have 〈uy q, σ, E〉 ξ

 .

• p ≡ q ; r for some q and r. According to the definition of the function Cc, we know

that Cc(q ; r,E) = Cc(q,E). So, ξ |= Cc(q,E), by induction, we then have 〈q, σ,E〉 ξ
 .

Using Rule 19, we have 〈q ; r, σ, E〉 ξ
 .

• p ≡ b→ q for some guard b and q. According to the definition of the function Cc, we
get Cc(b→ q, E) = (b ∧ Cc(q, E)) ∨ ¬b. Then, we distinguish two cases:

– either b ∧ Cc(q, E). So, ξ |= b and ξ |= Cc(q, E), by induction, we then have

〈q, σ, E〉 ξ
 . Using Rule 23, we have 〈b→ q, σ, E〉 ξ

 .

– or ¬b. So, ξ |= ¬b, and then also σ ∪ ξĊL |= ¬b for some ξĊL. Using Rule 24, we

obtain (C, J, L,H,R)  〈b→ q, σ〉 σ∪ξ
ĊL

 .

• p ≡ q [] r for some q and r. According to the definition of the function Cc, we know
that Cc(q [] r,E) = Cc(q,E)∧Cc(r,E). So, ξ |= Cc(q,E) and ξ |= Cc(r,E), by induction,

we then have 〈q, σ, E〉 ξ
 and 〈r, σ, E〉 ξ

 . Using Rule 27, we obtain 〈q [] r, σ, E〉 ξ
 .

• p ≡ q ‖ r. The proof is similar to the proof of the case that p ≡ q [] r.

• p≡ ∂A(q) for some A and q. The proof is similar to the proof of the case that p≡ q ; r.

• p ≡ υH (q) for some H and q. The proof is similar to the proof of the case that
p ≡ q ; r.

• p ≡ X for some X. The proof is similar to the proof of the case that p ≡ q ; r.

• p ≡ ιJ+(q) for some q and set J +. The proof is trivial and is similar to the proof of
the case that p ≡ q ; r.
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D.3 Proof of Theorem 6.1.2

Let p, p′ ∈ PT, σ, σ′ be valuations, ξ, ξ′ be extended valuations, E be an environment, and
a be an action label. Then

〈p, σ, E〉 ξ,a,ξ′−−−→ 〈X
p′
, σ′, E〉 ∈ Tra(p, σ, E)⇒ 〈p, σ, E〉 ξ,a,ξ′−−−→ 〈X

p′
, σ′, E〉.

PROOF. We prove this theorem by induction on the norm of p.

Firstly, we give the proofs for 〈p, σ,E〉 ξ,a,ξ′−−−→ 〈X, σ′, E ′〉 ∈ Tra(p, σ,E)⇒ 〈p, σ,E〉 ξ,a,ξ′−−−→
〈X, σ′, E ′〉. Since there are no termination transition rules defined for delay predicate,
consistent deadlock and sequential composition, the theorem holds trivially for these cases.
To increase the readability of the proofs, some irrelevant information for the proofs is

omitted. We assume 〈p, σ, E〉 ξ,a,ξ′−−−→ 〈X, σ′, E ′〉 ∈ Tra(p, σ, E) and E = (C, J, L, H, R) for
some C, J, L, H,R. Then,

• p ≡ W : r � la for some W, r, la and a =Mtr(ξ, la�, ξ
′) for some la�. According to

the definition of the function Tra, we know that there exist c�,W�, r�, C
b
�, C

a
�, p�

such that (c�, W�, r�, la�, C
b
�, C

a
�, p�) ∈ Sa(〈W : r � la, E〉), ξ = σ ∪ ξĊL, ξ |=

c�, ξ
′ ∈ Ξ(σ, C, J ∪ W�, L), ξ− ∪ ξ′ |= r�, ξ |= Cb

�, and ξ′ |= Ca
�. From the def-

inition of the function Sa(〈W : r � la, E〉), we know that Sa(〈W : r � la, E〉) =
{(true,W, r, la, true, true,X)} such that c� = true,W� = W, r� = r, la� = la, C

b
� =

true, Ca
� = true, and p� = X. It is not hard to see that we have ξ = σ ∪ ξĊL, ξ |=

true, ξ′ ∈ Ξ(σ,C, J ∪W,L), and ξ− ∪ ξ′ |= r. Using Rule 1, we have (C, J, L,H,R) 

〈W : r � la, σ〉
ξ, la , ξ′−−−−−→ 〈X, ξ′σ〉 and σ′ = ξ′σ.

• p ≡ h !! en for some h, en, and a = Mtr(ξ, la!!, ξ
′) for some la!!. According to the

definition of the function Tra, we know that there exist c!!, W!!, r!!, C
b
!!, C

a
!! , p!! such

that (c!!,W!!, r!!, la!!, C
b
!!, C

a
!! , p!!) ∈ Sa(〈h !! en, E〉), ξ = σ ∪ ξĊL, ξ |= c!!, ξ

′ ∈ Ξ(σ,C, J ∪
W!!, L), ξ− ∪ ξ′ |= r!!, ξ |= Cb

!!, and ξ′ |= Ca
!! . From the definition of the function

Sa(〈h !!en,E〉), we know that Sa(〈h !!en,E〉) = {(true, ∅, true, isa(h, [en]),true,true,X)}
such that c!! = true, W!! = ∅, r!! = true, la!! = isa(h, [en]), Cb

!! = true, Ca
!! = true, and

p!! =X. It is not hard to see that we have ξ = σ∪ ξĊL, ξ′ ∈ Ξ(σ,C,J,L), and ξ−∪ ξ′ |=
true. Using Rule 5, we have (C, J, L,H,R)  〈h !! en, σ〉

ξ, isa(h,[ξ(en)]), ξ′−−−−−−−−−−−→ 〈X, ξ′σ〉 and
σ′ = ξ′σ.

• p ≡ h ?? xn for some h, xn and a =Mtr(ξ, la??, ξ
′) for some la??. According to the

definition of the function Tra, we know that there exist c??, W??, r??, la??, C
b
??, C

a
??,

p?? such that (c??, W??, r??, la??, C
b
??, C

a
??, p??) ∈ Sa(〈h ?? xn, E〉), ξ = σ ∪ ξĊL, ξ |=

c??, ξ
′ ∈ Ξ(σ, C, J ∪W??, L), ξ− ∪ ξ′ |= r??, ξ |= Cb

??, and ξ′ |= Ca
??. From the defini-

tion of the function Sa(〈h ?? xn, E〉), we know that Sa(〈h ?? xn, E〉) = {(true, {xn},
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true, ira(h, {xn}), true, true,X)} such that c?? = true,W?? = {xn}, r?? = true, la?? =
ira(h, {xn}), Cb

?? = true, Ca
?? = true, and p?? = X. It is not hard to see that we have

ξ = σ ∪ ξĊL and ξ′ ∈ Ξ(σ, C, J ∪ {xn}, L). From the definition of the function Mtr

and using Rule 6, we have (C, J, L,H,R)  〈h ?? xn, σ〉
ξ, ira(h,[ξ′(xn]),{xn}), ξ′−−−−−−−−−−−−−−−→ 〈X, ξ′σ〉

and σ′ = ξ′σ.

• p ≡ [q] for some q, and a =Mtr(ξ, la[q], ξ
′) for some la[q]. According to the definition

of the function Tra, we know that there exist c[q], W[q], r[q], C
b
[q], C

a
[q], p[q] such that

(c[q], W[q], r[q], la[q], C
b
[q], C

a
[q], p[q]) ∈ Sa(〈[q], E〉), ξ = σ ∪ ξĊL, ξ |= c[q], ξ

′ ∈ Ξ(σ,C, J ∪
W[q],L), ξ− ∪ ξ′ |= r[q], ξ |= Cb

[q], ξ
′ |= Ca

[q], and p[q] =X necessarily. From the definition

of the function Sa(〈[q], E〉), we know that Sa(〈[q], E〉) = Sa(〈q, E〉). So, it is not

hard to see that 〈q, σ, E〉 ξ,a,ξ′−−−→ 〈X, σ′, E〉 ∈ Tra(q, σ, E), by induction, we then have

〈q, σ, E〉 ξ,a,ξ′−−−→ 〈X, σ′, E〉. Using Rule 10.1, we obtain 〈[q], σ, E〉 ξ,a,ξ′−−−→ 〈X, σ′, E〉.

• p ≡ u y q for some u, q and a = Mtr(ξ, lay, ξ
′) for some la[q]. According to the

definition of the function Tra, we know that there exist cy, Wy, ry, Cb
y
, Ca

y
, py

such that (cy, Wy, ry, lay, Cb
y

, Ca
y

, py) ∈ Sa(〈uy q,E〉), ξ = σ ∪ ξĊL, ξ |= cy, ξ
′ ∈

Ξ(σ,C,J ∪Wy,L), ξ−∪ ξ′ |= ry, ξ |=Cb
y

, ξ′ |=Ca
y

, and py =X necessarily. From the
definition of the function Sa(〈uy q, E〉), we know there exist cq,Wq, rq, laq, C

b
q , C

a
q ,

pq such that (cq, Wq, rq, laq, C
b
q , C

a
q , pq) ∈ Sa(〈q, E〉) with cy = u ∧ cq, Wy = Wq,

ry = rq, lay = laq, C
b
y

= Cb
q , C

a
y

= Ca
q , and py = pq. It is not hard to see that

we have ξ = σ ∪ ξĊL, ξ |= cq, ξ
′ ∈ Ξ(σ, C, J ∪Wq, L), ξ− ∪ ξ′ |= rq, ξ |= Cb

q , ξ
′ |= Ca

q ,

and ξ |= u. So, 〈q, σ, E〉 ξ,a,ξ′−−−→ 〈X, σ′, E〉 ∈ Tra(q, σ, E), by induction, we then have

〈q, σ, E〉 ξ,a,ξ′−−−→ 〈X, σ′, E〉. Using Rule 13.1 and ξ |= u, we obtain 〈uy q, σ, E〉 ξ,a,ξ′−−−→
〈X, σ′, E〉.

• p ≡ b → q for some guard b and q. The proof is similar to the proof of the case
that p ≡ uy q, because both definitions of Sa and deduction rules for termination
transition for both operators are similar.

• p ≡ q [] r for some q, r, and a = Mtr(ξ, la[], ξ
′) for some la[]. According to the

definition of the function Tra, we know that there exist c[],W[], r[], C
b

[]
, Ca

[]
, p[] such

that (c[], W[], r[], la[], C
b

[]
, Ca

[]
, p[]) ∈ Sa(〈q [] r,E〉), ξ = σ ∪ ξĊL, ξ |= c[], ξ

′ ∈ Ξ(σ,C, J ∪
W[], L), ξ− ∪ ξ′ |= r[], ξ |= Cb

[]
, ξ′ |= Ca

[]
, and p[] = X necessarily. From the definition

of the function Sa(〈q [] r, E〉), we can distinguish two cases:

– there exist cq, Wq, rq, laq, C
b
q , C

a
q , pq such that (cq, Wq, rq, laq, C

b
q , C

a
q , pq) ∈

Sa(〈q,E〉) with c[] = cq, W[] =Wq, r[] = rq, la[] = laq, C
b

[]
=Cb

q ∧Cc(r,E), Ca

[]
=Ca

q ,

and p[] = pq. It is not hard to see that we have ξ = σ∪ ξĊL, ξ |= cq, ξ
′ ∈Ξ(σ,C,J ∪
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Wq, L), ξ− ∪ ξ′ |= rq, ξ |= Cb
q , ξ

′ |= Ca
q , and ξ |= Cc(r, E). So, 〈q, σ, E〉 ξ,a,ξ′−−−→

〈X, σ′, E〉 ∈ Tra(q, σ, E), by induction, we then have 〈q, σ, E〉 ξ,a,ξ′−−−→ 〈X, σ′, E〉.
From Theorem 6.1.1 and ξ |= Cc(r,E) and ξ � dom(σ) (see also Lemma 3.5.1), we

know that 〈r, σ,E〉 ξ
 . Using Rule 25.1, we obtain 〈q [] r, σ,E〉 ξ,a,ξ′−−−→ 〈X, σ′, E〉.

– there exist cr, Wr, rr, lar, C
b
r , C

a
r , pr such that (cr, Wr, rr, lar, C

b
r , C

a
r , pr) ∈

Sa(〈r,E〉) with c[] = cr, W[] =Wr, r[] = rr, la[] = lar, C
b

[]
=Cb

r ∧Cc(q,E), Ca

[]
=Ca

r ,

and p[] = pr. The proof of this case is similar to the previous case.

• p ≡ q ‖ r for some q and r, and a = Mtr(ξ, la‖, ξ
′) for some la‖. According to

the definition of the function Tra, we know that there exist c‖, W‖, r‖, C
b
‖, C

a
‖ , p‖

such that (c‖, W‖, r‖, la‖, C
b
‖, C

a
‖ , p‖) ∈ Sa(〈q ‖ r, E〉), ξ = σ ∪ ξĊL, ξ |= c‖, ξ

′ ∈
Ξ(σ, C, J ∪W‖, L), ξ− ∪ ξ′ |= r‖, ξ |= Cb

‖,ξ
′ |= Ca

‖ , and p‖ = X necessarily. From the

definition of the function Sa(〈q ‖ r, E〉), we can distinguish more cases. Since the
proofs for all cases are similar, we only give the proof for the following case that the
left argument of the parallel composition performs a send action, right argument of
the parallel composition performs a receive action, and this leads to communication
between the left argument and right argument of the parallel composition.

– there exist cq, Wq, rq, laq, C
b
q , C

a
q , pq such that (cq, Wq, rq, laq, C

b
q , C

a
q , pq) ∈

Sa(〈q, (C, J ∪ {xn}, L, H, R)〉); and cr, Wr, rr, lar, C
b
r , C

a
r , pr such that (cr,

Wr, rr, lar, C
b
r , C

a
r , pr) ∈ Sa(〈r, E〉) with laq = isa(h, [en]), lar = ira(h, {xn}),

pq = pr = X, c‖ = cp ∧ cq, W‖ = {xn}, r‖ = rp ∧ rq ∧ xn = e−n , la‖ = ca(h, [en]),
Cb
‖ = Cb

p ∧ Cb
q , C

a
‖ = Ca

q ∧ Ca
r , p‖ = X. It is not hard to see that we have

ξ = σ ∪ ξĊL, ξ |= cq, ξ
′ ∈ Ξ(σ, C, J ∪ {xn}, L), ξ− ∪ ξ′ |= rq, ξ |= Cb

q , and ξ′ |=

Ca
q . So, 〈q, σ, (C, J ∪ {xn}, L, H, R)〉

ξ,laq ,ξ
′

−−−−→ 〈X, σ′, (C, J ∪ {xn}, L, H, R)〉 ∈
Tra(〈q,σ, (C,J ∪{xn},L,H,R)〉), by induction and the definition of the function

Mtr we then have (C, J ∪ {xn}, L,H,R)  〈q, σ〉 ξ,isa(h,[ξ(en)]),ξ′−−−−−−−−−→ 〈X, σ′〉. Also,
ξ |= cr, ξ

′ ∈ Ξ(σ, C, J ∪Wr, L) (see also Wr = {xn}), ξ− ∪ ξ′ |= rr, ξ |= Cb
r , and

ξ′ |= Ca
r . So, 〈r, σ, (C, J ∪Wr, L, H, R)〉 ξ,lar,ξ

′
−−−−→ 〈X, σ′, (C, J ∪Wr, L, H, R)〉 ∈

Tra(〈r, σ, (C, J ∪Wr, L,H,R)〉), by induction and the definition of the function

Mtr, we then have 〈r, σ, (C, J ∪Wr, L,H,R)〉 ξ,ira(h,[ξ′(xn)],{xn}),ξ′−−−−−−−−−−−−−→ 〈X, σ′, (C, J ∪
Wr, L, H, R)〉. From the definition of Mtr, we have [ξ(en)] = [ξ′(xn)]. Using

Rule 28.1.l, we obtain (C, J ∪Wr, L,H,R)  〈q ‖ r, σ〉 ξ,ca(h,[ξ(en)],ξ′−−−−−−−−−→ 〈X, σ′〉.

• p ≡ ∂A(q) for some A, q and a = Mtr(ξ, la∂, ξ
′) for some la∂. According to the

definition of the function Tra, we know that there exist c∂, W∂, r∂, la∂, C
b
∂, C

a
∂ , p∂

such that (c∂, W∂, r∂, la∂, C
b
∂, C

a
∂ , p∂) ∈ Sa(〈∂A(q), E〉), ξ = σ ∪ ξĊL, ξ |= c∂, ξ

′ ∈
Ξ(σ, C, J ∪W∂, L), ξ− ∪ ξ′ |= r∂, ξ |= Cb

∂, ξ
′ |= Ca

∂ , and p∂ = X necessarily. From the
definition of the function Sa(〈∂A(q), E〉), we know there exist cq,Wq, rq, laq, C

b
q , C

a
q ,
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pq such that (cq, Wq, rq, laq, C
b
q , C

a
q , pq) ∈ Sa(〈q, E〉), action label with laq 6∈ A with

c∂ = cq, W∂ = Wq, r∂ = rq, la∂ = laq, C
b
∂ = Cb

q , C
a
∂ = Ca

q , and p∂ = pq. It is not hard

to see that we have ξ = σ ∪ ξĊL, ξ |= cq, ξ
′ ∈ Ξ(σ,C, J ∪Wq, L), ξ− ∪ ξ′ |= rq, ξ |= Cb

q ,

and ξ′ |= Ca
q , and a 6∈ A. So, 〈q, σ,E〉 ξ,a,ξ′−−−→ 〈X, σ′,E〉 ∈ Tra(q, σ,E), by induction, we

then have 〈q, σ, E〉 ξ,a,ξ′−−−→ 〈X, σ′, E〉. Using Rule 32.1, we obtain 〈∂A(q), σ, E〉 ξ,a,ξ′−−−→
〈X, σ′, E〉.

• p≡ υH (q) for some H and q. The proof is similar to the proof of the case that p≡ [q].

• p ≡ X for some X. The proof is similar to the proof of the case that p ≡ q ; r.

• p ≡ ιJ+(q) for some q and set J +. The proof is trivial and it is similar to the proof
of the case that p ≡ q ; r.

Secondly, we give the proofs for 〈p,σ,E〉 ξ,a,ξ
′

−−−→ 〈p′, σ′,E ′〉 ∈Tra(p,σ,E)⇒ 〈p,σ,E〉 ξ,a,ξ
′

−−−→
〈p′, σ′, E ′〉. Since there are no action transition rules defined for action predicate, send
process term, receive process term, delay predicate and consistent deadlock, the theorem
holds trivially for these cases. The proofs for the any delay operator, signal emission
operator, guard operator, alternative composition operator, action encapsulation operator,
urgent communication operator and jump enabling operator are similar to the proofs of

these operators in the proof of 〈p, σ, E〉 ξ,a,ξ′−−−→ 〈X, σ′, E ′〉 ∈ Tra(p, σ, E) ⇒ 〈p, σ, E〉 ξ,a,ξ′−−−→
〈X, σ′, E ′〉. To increase the readability of the proofs, some irrelevant information for the

proofs is omitted. We assume 〈p,σ,E〉 ξ,a,ξ
′

−−−→〈p′,σ′,E ′〉 ∈Tra(p,σ,E) and E = (C,J,L,H,R)
for some C, J, L, H,R. Then,

• p≡ q ; r for some q, r and a =Mtr(ξ, la ; , ξ
′) for some la ; . According to the definition

of the function Tra, we know that there exist c; , W; , r; , and Cb
; , C

a
; such that

(c; , W; , r; , la ; , Cb
; , Ca

; , p′) ∈ Sa(〈q ; r, E〉), ξ = σ ∪ ξĊL, ξ |= c; , ξ
′ ∈ Ξ(σ, C, J ∪

W; ,L), ξ−∪ ξ′ |= r; , ξ |=Cb
; and ξ′ |=Ca

; . According to the definition of the function
Sa(〈q ; r, E〉), we can distinguish two case:

– there exist cq, Wq, rq, laq, C
b
q , C

a
q , pq such that (cq, Wq, rq, laq, C

b
q , C

a
q , pq) ∈

Sa(〈q,E〉), c; = cq, W; = Wq, r; = rq, la ; = laq, C
b
; = Cb

q , C
a
; = Ca

q ∧Cc(r,E),

pq = X and p′ = r. It is not hard to see that we have ξ = σ ∪ ξĊL, ξ |=
cq, ξ

′ ∈ Ξ(σ,C, J ∪Wq, L), ξ− ∪ ξ′ |= rq, ξ |= Cb
q , ξ

′ |= Ca
q , and ξ′ |= Cc(r, E). So,

〈q,σ,E〉 ξ,a,ξ
′

−−−→〈X,σ′,E〉 ∈Tra(q,σ,E), we then have 〈q,σ,E〉 ξ,a,ξ
′

−−−→〈X,σ′,E〉 (see
also the previous proofs of this theorem). From Theorem 6.1.1 and ξ′ |= Cc(r,E),

we know that 〈r, σ′, E〉 ξ′

 . Using Rule 16, we obtain 〈q ; r, σ,E〉 ξ,a,ξ′−−−→ 〈r, σ′, E〉.
– there exist cq, Wq, rq, laq, C

b
q , C

a
q and p′ such that (cq, Wq, rq, laq, C

b
q , C

a
q ,

pq) ∈ Sa(〈q,E〉) with c; = cq, W; = Wq, r; = rq, la ; = laq, C
b
; = Cb

q , C
a
; = Ca

q ,

pq 6= X and p′ = pq ; r. It is not hard to see that we have ξ = σ ∪ ξĊL, ξ |=
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cq, ξ
′ ∈ Ξ(σ,C, J ∪Wq, L), ξ− ∪ ξ′ |= rq, ξ |= Cb

q , and ξ′ |= Ca
q . So, 〈q, σ,E〉 ξ,a,ξ′−−−→

〈pq, σ′, E〉 ∈ Tra(q, σ, E), by induction, we then have 〈q, σ, E〉 ξ,a,ξ′−−−→ 〈pq, σ′, E〉.
Using Rule 17, we obtain 〈q ; r, σ, E〉 ξ,a,ξ′−−−→ 〈pq ; r, σ′, E〉.

• p≡ q ‖ r for some q, r, and a =Mtr(ξ, la‖, ξ
′) for some la‖. According to the definition

of the function Tra, we know that there exist c‖,W‖, r‖, C
b
‖,C

a
‖ , p

′ such that (c‖, W‖, r‖,

la‖, C
b
‖, C

a
‖ , p

′) ∈ Sa(〈q ‖ r,E〉), ξ = σ ∪ ξĊL, ξ |= c‖, ξ
′ ∈ Ξ(σ,C, J ∪W‖, L), ξ− ∪ ξ′ |=

r‖, ξ |= Cb
‖, and ξ′ |= Ca

‖ . According to the definition of the function Sa(〈q ‖ r, E〉),
we can distinguish more cases. Since the proofs for most cases are similar, we only
give the proof for the following case :

– there exist cq, Wq, rq, laq, C
b
q , C

a
q , pq such that (cq, Wq, rq, laq, C

b
q , C

a
q , pq) ∈

Sa(〈q, E〉) with c‖ = cq, W‖ = Wq, r‖ = rq, la‖ = laq, C
b
‖ = Cb

q ∧ Cc(r, E), Ca
‖ =

Ca
q ∧ Cc(r, E), pq 6= X and p′ = pq ‖ r. It is not hard to see that we have

ξ = σ ∪ ξĊL, ξ |= cq, ξ
′ ∈ Ξ(σ, C, J ∪ Wq, L), ξ− ∪ ξ′ |= rq, ξ |= Cb

q , ξ
′ |= Ca

q ,

ξ |= Cc(r, E), and ξ′ |= Cc(r, E). So, 〈q, σ, E〉 ξ,a,ξ′−−−→ 〈pq, σ′, E〉 ∈ Tra(q, σ, E),

by induction, we then have 〈q, σ, E〉 ξ,a,ξ′−−−→ 〈pq, σ′, E〉. From Theorem 6.1.1,

ξ |= Cc(r, E) and ξ′ |= Cc(r, E), we know that 〈r, σ, E〉 ξ
 , and 〈r, σ′, E〉 ξ′

 .

Using Rule 29.2.l, we obtain 〈q ‖ r, σ, E〉 ξ,a,ξ′−−−→ 〈pq ‖ r, σ′, E〉.

D.4 Proof of Conjecture 6.1.1

Let p, p′ ∈ PT, σ, σ′ be valuations, t ∈ T , ρ be a trajectory, and E be an environment. Then

〈p, σ, E〉 t,ρ7−→ 〈p′, σ′, E〉 ∈ Trd(p, σ, E)⇒ 〈p, σ, E〉 t,ρ7−→ 〈p′, σ′, E〉.

PROOF. We prove this conjecture by induction on the norm of p. Since there are no time
transition rules defined for action predicate, send process term, receive process term and
consistent deadlock, the theorem holds trivially for these cases. To increase the readability

of the proofs, some irrelevant information for the proofs is omitted. We assume 〈p,σ,E〉 t,ρ7−→
〈p′, σ′, E〉 ∈ Trd(p, σ, E) and E = (C, J, L,H,R) for some C, J, L, H,R. Then,

• p ≡ u for some u. According to the definition of the function Trd, there exist c
[0]
u ,

c
(0,t)
u ,c

[t]
u ,c

[0,t]
u , cu such that (c

[0]
u , c

(0,t)
u ,c

[t]
u ,c

[0,t]
u , cu,p

′)∈Sd(〈u,E〉), ρ∈ΩFG(σ,C,L,c
[0,t]
u , t),

ρ(0) |= c
[0]
u , ∀s∈(0,t)ρ(s) |= c

(0,t)
u , ρ(t) |= c

[t]
u , and ∃s∈[0,t]ρ(s) |= cu. We also know that

Sd(〈u, E〉) = {(u, u, u, true, u)} with c
[0]
u = u, c

(0,t)
u = u, c

[t]
u = u, c

[0,t]
u = u, cu = true

and p′ ≡ u. It is not hard to see that ρ ∈ ΩFG(σ,C, L,u, t). Using Rule 3, we get

(C, J, L,H,R)  〈u, σ〉 t,ρ7−→ 〈u, ρσ(t)〉 and σ′ = ρσ(t).
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• p ≡ [q] for some q. According to the definition of the function Trd, there ex-

ists c
[0]
[q], c

(0,t)
[q] , c

[t]
[q], c

[0,t]
[q] , c[q] such that (c

[0]
[q], c

(0,t)
[q] , c

[t]
[q], c

[0,t]
[q] , c[q], p

′) ∈ Sd([q], E), ρ ∈
ΩFG(σ,C, L, c

[0,t]
[q] , t), ρ(0) |= c

[0]
[q],∀s∈(0,t)ρ(s) |= c

(0,t)
[q] , ρ(t) |= c

[t]
[q], and ∃s∈[0,t]ρ(s) |= c[q].

We also know that Sd(〈[q], E〉) = {(true, true, true, true, true, [q])} with c
[0]
[q] = true,

c
(0,t)
[q] = true, c

[t]
[q] = true, c

[0,t]
[q] = true, c[q] = true and p′ ≡ [q]. It is not hard to see that

ρ ∈ ΩFG(σ,C,L,true, t). Using Rule 11, we get (C, J, L,H,R) 〈[q], σ〉 t,ρ7−→ 〈[q], ρσ(t)〉
and σ′ = ρσ(t).

• p ≡ u y q for some u and q. According to function Trd, we know that there exist
c

[0]
y, c

(0,t)
y , c

[t]
y, c

[0,t]
y , cy such that (c

[0]
y, c

(0,t)
y , c

[t]
uyq, c

[0,t]
y , cy, p

′) ∈ Sd(〈u y q, E〉),
ρ ∈ ΩFG(σ,C,L, c

[0,t]
uyq, t), ρ(0) |= c

[0]
y,∀s∈(0,t)ρ(s) |= c

(0,t)
y , ρ(t) |= c

[t]
y, and ∃s∈[0,t]ρ(s) |=

cy From the definition of Sd(〈u y q〉, E), we know that there exist c
[0]
q , c

(0,t)
q , c

[t]
q ,

c
[0,t]
q , cq, q

′ such that (c
[0]
q , c

(0,t)
q , c

[t]
q , c

[0,t]
q , cq, q

′) ∈ Sd(q, E), c
[0]
y = u ∧ c[0]

q , c
(0,t)
y = c

(0,t)
q ,

c
[t]
y = c

[t]
q , and c

[0,t]
y = c

[0,t]
q , cy = cq and p′ ≡ q′. It is not hard to see that we have

ρ ∈ ΩFG(σ, C, L, c
[0,t]
q , t), ρ(0) |= c

[0]
q , ρ(0) |= u, ∀s∈(0,t)ρ(s) |= c

(0,t)
q , ρ(t) |= c

[t]
q , and

∃s∈[0,t]ρ(s) |= cq . So, 〈q, σ, E〉 t,ρ7−→ 〈q′, σ′, E〉 ∈ Trd(〈q, σ, E〉), by induction, we then

have 〈q, σ, E〉 t,ρ7−→ 〈q′, σ′, E〉. Using Rule 14, we get 〈uy q, σ, E〉 t,ρ7−→ 〈q′, σ′, E〉.

• p ≡ q ; r for some q and r. According to the definition of the function Trd, we
know that there exist c

[0]
; , c

(0,t)
; , c

[t]
; , c

[0,t]
; , c; such that (c

[0]
; , c

(0,t)
; , c

[t]
; , c

[0,t]
; , c; , p

′) ∈
Sd(〈q ; r,E〉), ρ ∈ ΩFG(σ,C,L, c

[0,t]
; , t), ρ(0) |= c

[0]
; , ∀s∈(0,t)ρ(s) |= c

(0,t)
; , ρ(t) |= c

[t]
; , and

∃s∈[0,t]ρ(s) |= c; . We know that Sd(q ; r, E) = Sd(q, E) and then p′ ≡ q′ ; r for some

q′. It is not hard to see that, by induction, we have 〈q, σ, E〉 t,ρ7−→ 〈q′, σ′, E〉 for some

q′. Using Rule 18, we get 〈q ; r, σ, E〉 t,ρ7−→ 〈q′ ; r, σ′, E〉.

• p≡ b→ q for some guard b and q. According to the definition of the function Trd, there
exist c[0]

→ , c
(0,t)
→ , c[t]

→ , c
[0,t]
→ , c→ such that (c[0]

→ , c
(0,t)
→ , c[t]

→ , c
[0,t]
→ , c→ , p

′) ∈ Sd(b→ q, E),
ρ ∈ ΩFG(σ,C,L, c[0,t]

→ , t), ρ(0) |= c[0]
→ ,∀s∈(0,t)ρ(s) |= c(0,t)

→ , ρ(t) |= c[t]
→ , and ∃s∈[0,t]ρ(s) |=

c→ . From the definition of Sd(〈b→ q, E〉), we can distinguish two cases:

– there exist c
[0]
q , c

(0,t)
q , c

[t]
q , c

[0,t]
q , cq, q

′ such that (c
[0]
q , c

(0,t)
q , c

[t]
q , c

[0,t]
q , cq, q

′)∈Sd(〈q,E〉),
c[0]
→ = b ∧ c[0]

q , c(0,t)
→ = b ∧ c(0,t)

q , c[t]
→ = b ∧ c[t]

q , c[0,t]
→ = b ∧ c[0,t]

q , c→ = cq and
p′ ≡ b → q′. It is not hard to see that we have ρ ∈ ΩFG(σ, C, L, b, t), ρ ∈
ΩFG(σ,C,L, c

[0,t]
q , t), ρ(0) |= c

[0]
q ,∀s∈(0,t)ρ(s) |= c

(0,t)
q , ρ(t) |= c

[t]
q , and ∃s∈[0,t]ρ(s) |=

cq. So, 〈q, σ, E〉 t,ρ7−→ 〈q′, σ′, E〉 ∈ Trd(q, σ, E), by induction, we then have

〈q, σ〉 t,ρ7−→ 〈q′, σ′〉. From the definition of the function ρ ∈ ΩFG(σ, C, L, b, t),

we know that ∀s∈[0,t] ρ(s) |= b. Using Rule 21, we get 〈b→ q, σ〉 t,ρ7−→ 〈b→ q′, σ′〉.

– there exist c
[0]
q , c

(0,t)
q , c

[t]
q , c

[0,t]
q , cq, q

′ such that (c
[0]
q , c

(0,t)
q , c

[t]
q , c

[0,t]
q , cq, q

′)∈Sd(〈q,E〉),
c[0]
→ = b =⇒ c

[0]
q , c(0,t)

→ = ¬b, c[t]
→ = b =⇒ Cc(〈q,E〉), c[0,t]

→ = true, c→ = cq = ¬b
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and p′ ≡ b→ q. It is not hard to see that we have ρ ∈ΩFG(σ,C,L, true, t), ρ(0) |=
b =⇒ c

[0]
q , ∀s∈(0,t)ρ(s) |= ¬b, ∃s∈[0,t]ρ(s) |= ¬b and ρ(t) |= b =⇒ Cc(〈q, E〉).

From c[0]
→ = b =⇒ c

[0]
q , we get ρ(0) |= b ⇒ 〈q, σ, E〉 0,ρ�{0}7−→ 〈q′′, σ′, E〉 for some

q′′ using Conjecture D.1.1. From ρ(t) |= b =⇒ Cc(〈q, E〉), we get ρ(t) |= b ⇒
〈q,ρσ(t),E〉 ρ(t)

 by Theorem 6.1.1. Then we can apply Rule 22, we obtain 〈b→ q,

σ, E〉 t,ρ7−→ 〈b→ q, ρσ(t), E〉, and σ′ = ρσ(t).

• p ≡ q [] r for some q and r. According to the definition of the function Trd, we know

that there exist c
[0]

[]
, c

(0,t)

[]
, c

[t]

[]
, c

[0,t]

[]
, c[], p

′ such that (c
[0]

[]
, c

(0,t)

[]
, c

[t]

[]
, c

[0,t]

[]
, c[], p

′) ∈ Sd(〈q []

r, E〉), ρ ∈ ΩFG(σ, C, L, c
[0,t]

[]
, t), ρ(0) |= c

[0]

[]
, ∀s∈(0,t)ρ(s) |= c

(0,t)

[]
, ∃s∈[0,t]ρ(s) |= c[] and

ρ(t) |= c
[t]

[]
. From the definition of the function Sd(〈q [] r,E〉), we also know that there

exist c
[0]
q , c

(0,t)
q , c

[t]
q , c

[0,t]
q , cq, q

′, c
[0]
r , c

(0,t)
r , c

[t]
r , c

[0,t]
r , cr, r

′ such that (c
[0]
q , c

(0,t)
q , c

[t]
q , c

[0,t]
q , cq, q

′)∈
Sd(〈q,E〉), (c

[0]
r , c

(0,t)
r , c

[t]
r , c

[0,t]
r , cr, r

′) ∈ Sd(〈r,E〉), c[0]

q[]r
= c

[0]
q ∧ c[0]

r , c
(0,t)

q[]r
= c

(0,t)
q ∧ c(0,t)

r ,

c
[t]

q[]r
= c

[t]
q ∧ c[t]

r , c
[0,t]

[]
= c

[0,t]
q ∧ c[0,t]

r , c[] = cq ∧ cr and p′ ≡ q′ [] r′. It is not hard

to see that we can have ρ ∈ ΩFG(σ, C, L, c
[0,t]
q , t), ρ(0) |= c

[0]
q , ∀s∈(0,t)ρ(s) |= c

(0,t)
q ,

ρ(t) |= c
[t]
q , ∃s∈[0,t]ρ(s) |= cq, ρ ∈ ΩFG(σ, C, L, c

[0,t]
r , t), ρ(0) |= c

[0]
r , ∀s∈(0,t)ρ(s) |= c

(0,t)
r ,

ρ(t) |= c
[t]
r , and ∃s∈[0,t]ρ(s) |= cr. So, 〈q, σ, E〉 t,ρ7−→ 〈q′, σ′, E〉 ∈ Trd(q, σ, E) and

〈r,σ,E〉 t,ρ7−→ 〈r′,σ′,E〉 ∈Trd(r,σ,E), by induction, we then have 〈q,σ,E〉 t,ρ7−→ 〈q′,σ′,E〉
and 〈r, σ, E〉 t,ρ7−→ 〈r′, σ′, E〉. Using Rule 27, we get 〈q [] r, σ, E〉 t,ρ7−→ 〈q′ [] r′, σ′, E〉.

• p ≡ q ‖ r for some q and r. The proof is similar to the proof of the case that
p ≡ q [] r, because both definitions of Sd and deduction rules for time transition for
both operators are similar.

• p≡ ∂A(q) for some A and q. The proof is similar to the proof of the case that p≡ q ; r.

• REMOVED p ≡ υH (q) for some H and q. According to the definition of the func-

tion Trd, we know that there exist c
[0]
υH (q), c

(0,t)
υH (q), c

[t]
υH (q), c

[0,t]
υH (q), p

′ such that (c
[0]
υH (q),

c
(0,t)
υH (q), c

[t]
υH (q), c

[0,t]
υH (q), p

′) ∈ Sd(〈υH (q), E〉), ρ ∈ ΩFG(σ, C, L, c
[0,t]
υH (q), t), ρ(0) |= c

[0]
υH (q),

∀s∈(0,t)ρ(s) |= c
(0,t)
υH (q), and ρ(t) |= c

[t]
υH (q). From the definition of Sd(〈υH (q), E〉), we

know that there exist c
[0]
q , c

(0,t)
q , c

[t]
q , c

[0,t]
q , q′ such that (c

[0]
q , c

(0,t)
q , c

[t]
q , c

[0,t]
q , q′) ∈ Sd(q,E),

c
[0]
υH (q) = c

[0]
q ∧ ¬cu

q for some cu
q = ∨c:c∈{cq |(cq ,Wq ,rq ,ca(h,cs),Cbq ,C

a
q ,q
′)∈Sa(〈q,E〉),cs∈Λ∗,h∈H}c,

c
(0,t)
υH (q) = c

(0,t)
q ∧ ¬cu

q , c
[t]
υH (q) = c

[t]
q , and c

[0,t]
υH (q) = c

[0,t]
q . It is not hard to see that

ρ ∈ ΩFG(σ,C,L, c
[0,t]
q , t), ρ(0) |= c

[0]
q , ρ(0) |= ¬cu

q , ∀s∈(0,t)ρ(s) |= c
(0,t)
q , ∀s∈(0,t)ρ(s) |= ¬cu

q

and ρ(t) |= c
[t]
q . So, 〈q, σ,E〉 t,ρ7−→ 〈q′, σ′, E〉 ∈ Trd(q, σ,E), by induction, we then have

〈q, σ, E〉 t,ρ7−→ 〈q′, σ′, E〉. ρ(0) |= ¬cu
q and ∀s∈(0,t)ρ(s) |= ¬cu

q together mean that time
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transitions are allowed only if at each intermediate state while delaying no commu-
nication actions via channels from H are possible. This is equivalent to say that

∀s∈[0,t)(〈q, σ〉
s,ρ�[0,s]7−→ 〈qs, σs〉, 〈qs, σs〉

t−s,ρ−s7−→ 〈q′, σ′〉, ∀h∈H 〈qs, σs, E〉
ca(h,∗)
9 ). Using Rule

37, we get 〈υH (q), σ, E〉 t,ρ7−→ 〈υH (q′), σ′, E〉 and p′ ≡ υH (q′).

• p ≡ X for some X. The proof is similar to the proof of the case that p ≡ q ; r.

• p ≡ ιJ+(q) for some q and set J +. The proof is trivial and is similar to the proof of
the case that p ≡ q ; r.
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APPENDIX

E

Proofs of the elimination of Chi

E.1 Proof of Proposition 8.3.1

Let p ∈ N , then ∃q:q∈N [p] ↔ q.

PROOF. This proof is by induction on structure of p.

• p ≡ u. By Lemma B.1.2, we know that [u] ↔ true, which is a term in N .

• p ≡ b→ t∗, where b is a guard and t∗ ∈ Pbs. It is not hard to see that [b→ t∗] is a
term in N .

• p≡ [b→ t∗], where b is a guard and t∗ ∈ Pbs. By Lemma B.1.1, we know that [[b→ t∗]]
↔ [b→ t∗], which is a term in N .

• p ≡ b → t∗ ; t∗, where b is a guard, t∗ ∈ Pbs and t∗ ∈ N . It is not hard to see that
[b→ t∗ ; t∗] is a term in N .

• p ≡ [b→ t∗ ; t∗], where b is a guard, t∗ ∈ Pbs and t∗ ∈ N . By Lemma B.1.1, we know
that [[b → t∗ ; t∗]] ↔ [b→ t∗ ; t∗], which is a term in N .

• p ≡ t1 [] t2, where t1, t2 ∈ N . By Lemma B.3.5, we know that [t1 [] t2] ↔ [t1] [] [t2].
By induction, we know that there exist t′1, t

′
2 ∈ N : [t1] ↔ t′1 ∧ [t2] ↔ t′2. Then t′1 [] t′2

is also a term in N (because [] of two terms in N is by definition also a term in N).

E.2 Proof of Proposition 8.3.2

Let p1, p2 ∈ N , then ∃q:q∈N p1 ; p2 ↔ q.

PROOF. This proof is by induction on structure of p1.

• p1 ≡ u. By Lemma B.5.5, we know that u; p2 ↔ u, which is a term in N .

• p1 ≡ b→ t∗, where b is a guard and t∗ ∈ Pbs. It is not hard to see that b→ t∗ ; p2 is
a term in N .

237



Appendix E. Proofs of the elimination of Chi

• p1 ≡ [b → t∗], where b is a guard and t∗ ∈ Pbs. By Lemma B.5.6, we can have
[b→ t∗]; p2 ↔ [b→ t∗ ; p2]. It is not hard to see that [b→ t∗ ; p2] is a term in N .

• p1 ≡ b→ t∗ ; t∗, where b is a guard, t∗ ∈ Pbs and t∗ ∈ N . By Lemma B.5.2, we can
have (b→ t∗ ; t∗); p2 ↔ b→ t∗ ; (t∗ ; p2). By induction, there exists a r ∈N such that
t∗ ; p2 ↔ r. It is not hard to see that b→ t∗ ; r is a term in N .

• p1 ≡ [b → t∗ ; t∗], where b is a guard, t∗ ∈ Pbs and t∗ ∈ N . By Lemmas B.5.6 and
B.5.2, we can have [b→ t∗ ; t∗]; p2 ↔ [b→ t∗ ; (t∗ ; p2)]. By induction, there exists a
r ∈ N such that t∗ ; p2 ↔ r. It is not hard to see that [b→ t∗ ; r] is a term in N .

• p1 ≡ t1 [] t2, where t1, t2 ∈ N . By Lemma B.5.3, we can have (t1 [] t2); p2 ↔ t1 ; p2 []
t2 ; p2. By induction, we know that there exist t′1, t

′
2 ∈ N : t1 ; p2 ↔ t′1 ∧ t2 ; p2 ↔ t′2.

Then t′1 [] t′2 is also a term in N (because [] of two terms in N is by definition also a
term in N).

E.3 Proof of Proposition 8.3.5

Let A be a set of actions and p ∈ N , then ∃q:q∈N ∂A(p) ↔ q.

PROOF. This proof is by induction on structure of p.

• p ≡ u. By Lemma B.7.6, we know that ∂A(u) ↔ u, which is a term in N .

• p ≡ b → t∗, where b is a guard and t∗ ∈ Pbs. By Lemma B.7.8, we get ∂A(b → t∗)
↔ b→ ∂A(t∗). From Lemma 8.4.2, we know that there exists t∗ ∈ Pbs: ∂A(t∗) ↔ t∗.

Then, it is not hard to see that b→ t∗ is a term in N .

• p ≡ [b → t∗], where b is a guard and t∗ ∈ Pbs. By Lemma B.7.7, we know that
∂A([b → t∗]) ↔ [∂A(b → t∗)]. We can have [∂A(b → t∗)] ↔ [b → ∂A(t∗) ] using
Lemma B.7.8. From Lemma 8.4.2, we know that there exists t∗ ∈ Pbs: ∂A(t∗) ↔ t∗.
Then, it is not hard to see that ∂A([b→ t∗]) ↔ [b→ t∗], which is a term in N .

• p ≡ b→ t∗ ; t∗, where b is a guard, t∗ ∈ Pbs and t∗ ∈ N . By Lemma B.7.5, we know
that ∂A(b→ t∗ ; t∗) ↔ ∂A(b→ t∗); ∂A(t∗). Using Lemma B.7.8, we have ∂A(b→ t∗)
; ∂A(t∗) ↔ (b → ∂A(t∗)); ∂A(t∗). From Lemma 8.4.2, we know that there exists
t1 ∈ Pbs: ∂A(t∗) ↔ t1, and b → t1 is a term in N . By induction we know that
there exists t2 ∈ N : ∂A(t∗) ↔ t2. Putting them together, we obtain ∂A(b → t∗ ; t∗)
↔ b→ t1 ; t2, and we know that b→ t1 ; t2 is a term in N .

• p ≡ [b → t∗ ; t∗], where b is a guard, t∗ ∈ Pbs and t∗ ∈ N . By Lemma B.7.7, we
know that ∂A([b → t∗ ; t∗]) ↔ [∂A(b → t∗ ; t∗)]. From the proof of the case that
p ≡ b → t∗ ; t∗, we know that there exists a t1 ∈ N : ∂A(b → t∗ ; t∗) ↔ t1. Due to
Proposition 8.3.1, we know that there exists t′1 ∈N : [t1] ↔ t′1. Putting them together,
we can have ∂A([b→ t∗ ; t∗]) ↔ t′1, which is a term in N .
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• p ≡ t1 [] t2, where t1, t2 ∈ N . By Lemma B.7.4, we know that ∂A(t1 [] t2) ↔ ∂A(t1) []
∂A(t2). By induction, we know that there exist t′1, t

′
2 ∈N : ∂A(t1) ↔ t′1 ∧ ∂A(t2) ↔ t′2.

Observe that t′1 [] t′2 is a term in N .

E.4 Proof of Lemma 8.4.1

For arbitrary guards b1, b2, channel h, expression(s) en, variable(s) xn, and p1, p2 such
that (p1 ≡ h !! en ∧ p2 ≡ h ?? xn) ∨ (p1 ≡ h ?? xn ∧ p2 ≡ h !! en), we have

b1→ p1 ‖ b2→ p2 ↔ (b1→ p1 ; b2→ p2) [] (b2→ p2 ; b1→ p1) [] [b1 ∧ b2→ ca(h, en,xn)].

PROOF. Let R = {(b1 → p1 ‖ b2 → p2, (b1 → p1 ; b2 → p2) [] (b2 → p2 ; b1 → p1) [] [b1 ∧
b2 → ca(h, en,xn)]) | (p1 ≡ h !! en ∧ p2 ≡ h ?? xn) ∨ (p1 ≡ h ?? xn ∧p2 ≡ h !! en), guards b1,
b2, channel h, expression(s) en, variable(s) xn} ∪{(id, id) | id ∈ P}. Since the proofs for the
case that p1 ≡ h !! en ∧ p2 ≡ h ?? xn and p1 ≡ h ?? xn ∧ p2 ≡ h !! en are similar, we only give
the proofs for the case that p1 ≡ h !! en ∧ p2 ≡ h ?? xn. The proofs of the left implication
of conditions 1 and 6 are similar to the proofs of the right implication of conditions 1 and
6. The proofs of conditions 3 and 5 are similar to the proofs of conditions 2 and 4.

Condition 1 : First, we assume E  〈b1 → p1 ‖ b2 → p2, σ〉
ξ,a,ξ′−−−→ 〈X, σ′〉 for some E,

σ, ξ, a, ξ′, σ′, which means that Rule 28.1.l has been applied necessarily. Then, we

have (C, J ∪W,L,H,R)  〈b1 → p1, σ〉
ξ,isa(h,cs),ξ′−−−−−−−→ 〈 X, σ′ 〉, (C, J, L,H,R) 〈b2 → p2,σ

〉 ξ,ira(h,cs,W ),ξ′−−−−−−−−−→ 〈X, σ′〉 for some C, J,W, L, H, R, cs such that E = (C, J,W, L, H, R) and
a = ca(h, cs). From Rule 20.1 (see also Rules 5 and 6), we further obtain ξ |= b1, ξ |= b2,

(C, J, L,H,R)  〈h !! en, σ〉
ξ, isa(h,[ξ(en)]), ξ′−−−−−−−−−−−→ 〈X, ξ′σ〉 and (C, J, L,H,R)  〈 h ??xn, σ 〉

ξ,ira(h,[cn],{xn}),ξ′−−−−−−−−−−−→ 〈 X, ξ′σ〉 for some cn, cs = [ξ(en)] = [cn], W = {xn} and σ′ = ξ′σ. Due to

Rules 5 and 6, we have ξ = σ∪ ξĊL, ξ′ ∈Ξ(σ,C,J ∪{xn},L), ξ′(xn) = cn. It is not hard to see
that we have also ξ′(xn) = ξ(en). Using Rules 54 and 20.1, we obtain (C, J, L,H,R) 〈b1∧
b2→ ca(h,en,xn), σ〉 ξ,ca(h,[ξ(en)]),ξ′−−−−−−−−−→ 〈X, ξ′σ〉. According Rule 10.1, we have (C, J, L,H,R) 

〈[b1 ∧ b2 → ca(h, en,xn)], σ〉 ξ,ca(h,[ξ(en)]),ξ′−−−−−−−−−→ 〈X, ξ′σ〉. Applying Rules 7,8,19 and 23, it is not

hard to see that we have E  〈b1 → p1 ; b2→ p2, σ〉
ξ
 and E  〈b2→ p2 ; b1→ p1, σ〉

ξ
 .

Using Rule 27, we get E  〈b1 → p1 ; b2 → p2 [] b2 → p2 ; b1 → p1, σ〉
ξ
 . Then we conclude

that E  〈(b1→ p1 ; b2→ p2) [] (b2→ p2 ; b1→ p1) [] [b1 ∧ b2→ ca(h,en,xn)], σ〉 ξ,a,ξ′−−−→ 〈X, σ′〉
using Rule 25.1.r.

Condition 2 : We assume E  〈b1 → p1 ‖ b2 → p2, σ〉
ξ,a,ξ′−−−→ 〈k1, σ

′〉 for some E, σ, ξ, a,
ξ′, k1 σ

′, which means that Rule 29.1.l or Rule 29.1.r has been applied necessarily. We
distinguish two cases:

• Rule 29.1.l has been applied. Then, we have E  〈b1 → p1, σ〉
ξ,a,ξ′−−−→ 〈X, σ′〉, E 

〈b2 → p2, σ〉
ξ
 , E  〈b2 → p2, σ

′〉 ξ′

 , and k1 ≡ b2 → p2. Using Rule 16, we have

E  〈b1→ p1 ; b2→ p2, σ〉
ξ,a,ξ′−−−→ 〈b2→ p2, σ

′〉. According to Rule 19 and Lemma 3.5.6,
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we get E  〈b2 → p2 ; b1 → p1, σ〉
ξ
 . We also know that process term [p] for any

p∈ P is consistent with any extended valuation with respect to σ in any environment.

Due to Rule 27, we get E  〈(b2 → p2 ; b1 → p1) [] [b1 ∧ b2 → ca(h, en, xn)], σ〉 ξ
 .

Applying Rule 25.1.l, we E  〈(b1 → p1 ; b2 → p2) [] (b2 → p2 ; b1 → p1) [] [b1 ∧
b2 → ca(h, en, xn)], σ〉 ξ,a,ξ′−−−→ 〈b2 → p2, σ

′〉. Take k2 ≡ b2 → p2 and observe that
(k1, k2) ∈ R.

• Rule 29.1.r has been applied. The proof of this case is similar to the proof of the
previous case.

Condition 4 : We assume E  〈b1→ p1 ‖ b2→ p2, σ〉
t,ρ7−→ 〈k1, σ

′〉 for some E, σ, t, ρ, k1, σ′,

which means Rule 30 has been applied necessarily. Then we get E  〈b1→ p1,σ〉
t,ρ7−→ 〈k′1,σ′〉

and E  〈b2→ p2, σ〉
t,ρ7−→ 〈k′2,σ′〉 for some k′1, k

′
2 such that k1 ≡ k′1 ‖ k′2. Since p1, p2 are unde-

layable process terms, Rule 21 cannot have been applied. From Rule 22, we know that ρ ∈
ΩσEt,∀s∈(0,t) ρ(s) |=¬b1,∃s∈[0,t] ρ(s) |=¬b1,∀s∈(0,t)ρ(s) |=¬b2,∃s∈[0,t] ρ(s) |=¬b2, k′1 ≡ b1→ p1,
k′2 ≡ b1 → p2, σ′ = ρσ(t), and some unimportant information for this proof is omitted. We

also have E  〈[b1 ∧ b2 → ca(h, en,xn)], σ〉 t,ρ7−→ 〈[b1 ∧ b2 → ca(h, en,xn)], σ′〉 (see also Rule

11). Applying Rules 18 and 26, we get E  〈(b1→ p1 ; b2→ p2) [] (b2→ p2 ; b1→ p1), σ〉 t,ρ7−→
〈(b1 → p1 ; b2 → p2) [] (b2 → p2 ; b1 → p1), σ′〉. Again, by Rule 26, we obtain E  〈(b1 →
p1 ; b2 → p2)[](b2 → p2 ; b1 → p1)[][b1 ∧ b2 → ca(h, en, xn)], σ〉 t,ρ7−→ 〈(b1 → p1 ; b2 → p2) []
(b2 → p2 ; b1 → p1) [] [b1 ∧ b2 → ca(h, en, xn)], σ′〉. Take k2 ≡ (b1 → p1 ; b2 → p2)[](b2 →
p2 ; b1 → p1)[][b1 ∧ b2 → ca(h, en,xn)] and observe that (k1, k2) ∈ R.

Condition 6 : First, we assume E  〈b1 → p1 ‖ b2 → p2, σ〉
ξ
 for some E, σ, ξ, which

means Rule 31 has been applied necessarily. Then, we get E  〈b1 → p1, σ〉
ξ
 and

E  〈b2 → p2, σ〉
ξ
 . Using Rules 19 and 27, we have E  〈 (b1 → p1 ; b2 → p2)[]

(b2 → p2 ; b1 → p1),σ〉 ξ
 . We also know that process term [p] for any p ∈ P is consis-

tent with any extended valuation with respect to σ in any environment. We conclude

E  〈(b1 → p1 ; b2 → p2)[](b2 → p2 ; b1 → p1)[][b1 ∧ b2 → ca(h, en,xn)], σ〉 ξ
 using Rule

27.

E.5 Proof of Lemma 8.4.2

Let A be a set of actions and p∗ ∈ Pbs, then ∃q:q∈Pbs
∂A(p∗) ↔ q.

PROOF. This proof is by induction on structure of p∗.

• p∗ ≡ W : r � la. We distinguish two cases:

– if la 6∈A, then it is not hard to see that we can have ∂A(W : r� la) ↔ W : r� la
(proof is omitted for this trivial property), which is a term in Pbs.
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– if la ∈ A, then it is not hard to see that we have ∂A(W : r � la) ↔ δ (proof is
omitted for this trivial property), which is a term in Pbs.

• Since the proofs for the cases p∗ ≡ h !! en, p∗ ≡ h ?? xn and p∗ ≡ ca(h, en, xn) are
similar, we only give the proof for the case p∗ ≡ h !! en. We distinguish two cases:

– if isa(h, [ξ(en)]) 6∈A, then it is not hard to see that we can have ∂A(h !!en) ↔ h !!en
(proof is omitted for this trivial property), which is a term in Pbs.

– if isa(h, [ξ(en)]) ∈ A, then it is not hard to see that we have ∂A(h !! en) ↔ δ
(proof is omitted for this trivial property), which is a term in Pbs.

• p∗ ≡ δ. Trivial.

E.6 Proof of Lemma 8.4.3

For some finite index sets I, J, K, L, M, I∗, J∗, K∗,L∗, M∗, arbritary predicates ui, ui∗,
arbritary guards bj, bk , bl, bm, bj∗ , bk∗ , bl∗ , bm∗; pj, pk, pl, pm, pj∗ , pk∗ , pl∗ , pm∗ ∈ Pbs;nl, nl∗ ,
nm, nm∗ ∈ N , s1 ≡ ([]i∈I ui) [] ([]j∈J bj → pj) [] ([]k∈K [bk → pk]) [] ([]l∈L bl → pl ; nl) []
([]m∈M [bm → pm ; nm]), s2 ≡ ([]i∗∈I∗ ui∗) [] ([]j∗∈J∗ bj∗ → pj∗) [] ([]k∗∈K∗ [bk∗ → pk∗ ]) [] ([]l∗∈L∗
bl∗ → pl∗ ; nl∗) [] ([]m∗∈M∗ [bm∗ → pm∗ ; nm∗ ]), we have

s1 ‖ s2 ↔ s3, where
s3 ≡ ([]i∈I ui) [] ([]i∗∈I∗ ui∗)

[] ([]j∈J bj → pj ; s2)
[] ([]k∈K [bk → pk ; s2])
[] ([]l∈L bl → pl ; (nl ‖ s2))
[] ([]m∈M [bm → pm]; (nm ‖ s2))
[] ([]j∗∈J∗ bj∗ → pj∗ ; s1)
[] ([]k∗∈K∗ [bk∗ → pk∗ ; s1])
[] ([]l∗∈L∗ bl∗ → pl∗ ; (nl∗ ‖ s1))
[] ([]m∗∈M∗ [bm∗ → pm∗ ]; (nm∗ ‖ s1))
[] ([](j,j∗)∈ΓJ,J∗

[bj ∧ bj∗ → ca(hjj∗ , enjj∗ ,xnjj∗ )])

[] ([](j,k∗)∈ΓJ,K∗
[bj ∧ bk∗ → ca(hjk∗ , enjk∗ ,xnjk∗ )])

[] ([](j,l∗)∈ΓJ,L∗
[bj ∧ bl∗ → ca(hjl∗ , enjl∗ ,xnjl∗ ); nl∗ ])

[] ([](j,m∗)∈ΓJ,M∗
[bj ∧ bm∗ → ca(hjm∗ , enjm∗ ,xnjm∗ ); nm∗ ])

[] ([](k,j∗)∈ΓK,J∗
[bk∧bj∗ → ca(hkj∗ ,enkj∗ ,xnkj∗ )])

[] ([](k,k∗)∈ΓK,K∗
[bk ∧ bk∗ → ca(hkk∗ , enkk∗ ,xnkk∗ )])

[] ([](k,l∗)∈ΓK,L∗
[bk ∧ bl∗ → ca(hkl∗ , enkl∗ ,xnkl∗ ); nl∗ ])

[] ([](k,m∗)∈ΓK,M∗
[bk ∧ bm∗ → ca(hkm∗ , enkm∗ ,xnkm∗ ); nm∗ ])

[] ([](l,j∗)∈ΓL,J∗
[bl∧bj∗ → ca(hlj∗ , enlj∗ ,xnlj∗ ); nl])

[] ([](l,k∗)∈ΓL,K∗
[bl ∧ bk∗ → ca(hlk∗ , enlk∗ ,xnlk∗ ); nl])

[] ([](l,l∗)∈ΓL,L∗
[bl ∧ bl∗ → ca(hll∗ , enll∗ ,xnll∗ ); (nl ‖ nl∗)])
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[] ([](l,m∗)∈ΓL,M∗
[bl ∧ bm∗ → ca(hlm∗ , enlm∗ ,xnlm∗ ); (nl ‖ nm∗)])

[] ([](m,j∗)∈ΓM,J∗
[bm ∧ bj∗ → ca(hmj∗ , enmj∗ ,xnmj∗ ); nm])

[] ([](m,k∗)∈ΓM,K∗
[bm ∧ bk∗ → ca(hmk∗ , enmk∗ ,xnmk∗ ); nm])

[] ([](m,l∗)∈ΓM,L∗
[bm ∧ bl∗ → ca(hml∗ , enml∗ , xnml∗ ); (nm ‖ nl∗)])

[] ([](m,m∗)∈ΓM,M∗
[bm ∧ bm∗ → ca(hmm∗ , enmm∗ ,xnmm∗ ); (nm ‖ nm∗)])

[] ([](j∗,j)∈ΓJ∗,J
[bj∗ ∧ bj → ca(hj∗j, enj∗j ,xnj∗j)])

[] ([](j∗,k)ΓJ∗,K
[bj∗ ∧ bk → ca(hj∗k, enj∗k ,xnj∗k)])

[] ([](j∗,l)∈ΓJ∗,L
[bj∗ ∧ bl → ca(hj∗l, enj∗l ,xnj∗l); nl])

[] ([](j∗,m)∈ΓJ∗,M
[bj∗ ∧ bm → ca(hj∗m, enj∗m ,xnj∗m); nm])

[] ([](k∗,j)∈ΓK∗,J
[bk∗ ∧ bj → ca(hk∗j, enk∗j ,xnk∗j)])

[] ([](k∗,k)∈ΓK∗,K
[bk∗ ∧ bk → ca(hk∗k, enk∗k ,xnk∗k)])

[] ([](k∗,l)∈ΓK∗,L
[bk∗∧ bl → ca(hk∗l, enk∗l ,xnk∗l); nl])

[] ([](k∗,m)∈ΓK∗,M
[bk∗ ∧ bm → ca(hk∗m, enk∗m , xnk∗m); nm])

[] ([](l∗,j)∈ΓL∗,J
[bl∗∧bj → ca(hl∗j, enl∗j ,xnl∗j); nl∗ ])

[] ([](l∗,k)∈ΓL∗,K
[bl∗ ∧ bk → ca(hl∗k, enl∗k ,xnl∗k); nl∗ ])

[] ([](l∗,l)∈ΓL∗,L
[bl∗ ∧ bl → ca(hl∗l, enl∗l ,xnl∗l); (nl∗ ‖ nl)])

[] ([](l∗,m)∈ΓL∗,M
[bl∗ ∧ bm → ca(hl∗m, enl∗m ,xnl∗m); (nl∗ ‖ nm)])

[] ([](m∗,j)∈ΓM∗,J
[bm∗ ∧ bj → ca(hm∗j, enm∗j ,xnm∗j); nm∗ ])

[] ([](m∗,k)∈ΓM∗,K
[bm∗ ∧ bk → ca(hm∗k, enm∗k ,xnm∗k); nm∗ ])

[] ([](m∗,l)∈ΓM∗,L
[bm∗ ∧ bl → ca(hm∗l, enm∗l ,xnm∗l); (nm∗ ‖ nl)])

[] ([](m∗,m)∈ΓM∗,M
[bm∗ ∧ bm → ca(hm∗m, enm∗m ,xnm∗m); (nm∗ ‖ nm)])

PROOF. (Sketch) To increase the readability of the proof, we often apply the termination
transition rule (Rule 54) and consistency rule (Rule 55) of communication process term, and
Lemma 3.5.6 without mentioning them explicitly. Similarly, we also apply the associativity
property of the alternative composition without referring to Lemma B.3.4.

Let R= {(s1 ‖ s2, s3) | s1, s2, s3 ∈N}∪{(id, id) | id ∈N}. The proof of the left implication
of conditions 1 and 6 are similar to the proofs of the right implication of conditions 1 and
6. The proofs of conditions 3 and 5 are similar to the proofs of conditions 2 and 4.
Condition 1 : First, we assume E  〈(([]i∈I ui) [] ([]j∈J bj → pj) [] ([]k∈K [bk → pk]) []
([]l∈L bl → pl ; nl) [] ([]m∈M [bm → pm ; nm])) ‖ (([]i∗∈I∗ ui∗) [] ([]j∗∈J∗ bj∗ → pj∗) [] ([]k∗∈K∗

[bk∗ → pk∗ ]) [] ([]l∗∈L∗ bl∗ → pl∗ ; nl∗) [] ([]m∗∈M∗ [bm∗ → pm∗ ; nm∗ ])), σ〉
ξ,a,ξ′−−−→ 〈X, σ′〉 for some

E = (C, J, L, H, R), σ, ξ, a, ξ′, σ′, which means either Rule 28.1.l or Rule 28.1.r has been
applied necessarily. Based on the deduction rule that has been applied and sub-process
terms (in the alternative composition) of s1 (or s2) that perform a send action or re-
ceive action, we can distinguish more cases. Since the proofs for all cases are similar,
we only give the proof for the following case. Rule 28.1.l has been applied, then (let us

say) (C, J ∪W,L,H,R)  〈[]j∈J bj → pj, σ〉
ξ,isa(hj ,cs),ξ′−−−−−−−→ 〈X, σ′〉, (C, J, L,H,R)  〈[]j∗∈J∗

bj∗ → pj∗ , σ〉
ξ,ira(hj∗ ,cs,W ),ξ′

−−−−−−−−−−→ 〈X, σ′〉, a = ca(hjj∗ , cs), pj ≡ hj !! enj , pj∗ ≡ hj∗ ?? xnj∗ , for
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some W,hj = hj∗ , cs , enj ,xnj∗ , ξ |= bj, ξ |= bj∗ (see also Rule 20.1), E  〈([]i∈I ui) [] ([]k∈K

[bk → pk]) [] ([]l∈L bl → pl ; nl) [] ([]m∈M [bm → pm ; nm]), σ〉 ξ
 , E  〈([]i∗∈I∗ ui∗) [] ([]k∗∈K∗

[bk∗→ pk∗ ]) [] ([]l∗∈L∗ bl∗→ pl∗ ; nl∗) [] ([]m∗∈M∗ [bm∗→ pm∗ ; nm∗ ]),σ〉
ξ
 (see also Rule 25.1.l or

25.2.r, it is not relevant which rule has been applied, because the alternative composition is
associative). Also, process term [p] for any p ∈ P is consistent with any extended valuation
with respect to σ in any environment. Applying Rule 27 (many times) and from Rule 23, we

further obtain E  〈[]i∈I ui, σ〉
ξ
 , E  〈[]k∈K [bk → pk], σ〉

ξ
 , E  〈[]l∈L bl → pl ; nl, σ〉

ξ
 ,

E  〈[]m∈M [bm → pm ; nm], σ〉 ξ
 , E  〈[]i∗∈I∗ ui∗ , σ〉

ξ
 , E  〈[]k∗∈K∗ [bk∗ → pk∗ ], σ〉

ξ
 ,

E  〈[]l∗∈L∗ bl∗ → pl∗ ; nl∗ , σ〉
ξ
 , E  〈[]m∗∈M [bm∗ → pm∗ ; nm∗ ], σ〉

ξ
 and we know ξ |= bl

and ξ |= bl∗ , E  〈[]l∈L pl, σ〉
ξ
 , and E  〈[]l∗∈L pl∗ , σ〉

ξ
 (see also Rule 19) , respec-

tively. From ξ |= bj and ξ |= bj∗ , we can have ξ |= bj ∧ bj∗ . Using Rule 20.1, we obtain

(C, J, L,H,R)  〈[](j,j∗)∈ΓJ,J∗
bj ∧ bj∗ → ca(hjj∗ , enjj∗ , xnjj∗ ), σ〉

ξ,ca(hjj∗ ,cs),ξ′

−−−−−−−−→ 〈X, σ′〉, be-

cause process terms pj and pj∗ communicate and this leads to a communication process
term ca(hjj∗ , enj ,xnj∗ ) and cs = [ξ(enjj∗ )]. Due to the above-mentioned consistency predi-
cates, we can conclude that each sub-process term (let us say) s′i of s3 ≡ s′0 [] . . . [] s′i [] . . . [] s′n

is a consistency predicate for such E,σ, ξ, i.e. ∀i:[0..n] E  〈s′i, σ〉
ξ
 . Using Rule 25.l.1 many

times (or 25.1.r, it is not relevant which rule has been applied, because the alternative

composition is associative), we get E  〈s3, σ〉
ξ,ca(hjj∗ ,cs),ξ′

−−−−−−−−→ 〈X, σ′〉.
Condition 2 : We assume E  〈(([]i∈I ui) [] ([]j∈J bj→ pj) [] ([]k∈K [bk→ pk]) [] ([]l∈L bl→ pl ; nl) []
([]m∈M [bm → pm ; nm])) ‖ (([]i∗∈I∗ ui∗) [] ([]j∗∈J∗ bj∗ → pj∗) [] ([]k∗∈K∗ [bk∗ → pk∗ ]) [] ([]l∗∈L∗

bl∗ → pl∗ ; nl∗) [] ([]m∗∈M∗ [bm∗ → pm∗ ; nm∗ ])), σ〉
ξ,a,ξ′−−−→ 〈k1, σ

′〉 for some E = (C, J, L, H,
R), σ, ξ, a, ξ′,σ′, k1, which means either Rules 28.2.l, 28.2.r, 28.3.l, 28.3.r, 28.4.l, 28.4.r,
29.1.l, 29.1.r, 29.2.l, and 29.2.r. Based on the deduction rule that has been applied, we can
distinguish more cases. Since the proofs for most cases are similar, we only give the proofs
for the following cases:

• Rule 28.4.l has been applied. Then (let us say for the case that) we obtain

(C, J ∪W,L,H,R) 〈 []m∈M [bm→ pm ; nm], σ〉 ξ,isa(hm,cs),ξ′−−−−−−−−→〈nm,σ′〉, (C, J, L,H,R)

〈 []m∗∈M∗ [bm∗ → pm∗ ; nm∗ ], σ〉
ξ,ira(hm∗ ,cs,W ),ξ′−−−−−−−−−−→ 〈nm∗ , σ′〉, a = ca(hmm∗ , cs), pm ≡

hm !!enm , pm∗ ≡ hm∗ ??xnm∗ , for some W,hm = hm∗ ,cs ,enm ,xnm∗ , ξ |= bm, ξ |= bm∗ (see

also Rules 10.2, 16, 20.2), E  〈pm, σ〉
ξ
 , E  〈pm∗ , σ〉

ξ
 (see also Rules 19 and 23),

k1≡nm ‖nm∗ , E  〈([]i∈I ui) [] ([]j∈J bj→ pj) [] ([]k∈K [bk→ pk]) [] ([]l∈L bl→ pl ; nl),σ〉
ξ
 ,

E  〈([]i∗∈I∗ ui∗) [] ([]j∗∈J∗ bj∗→ pj∗) [] ([]k∗∈K∗ [bk∗→ pk∗ ]) [] ([]l∗∈L∗ bl∗→ pl∗ ; nl∗), σ〉
ξ
 

(see also Rule 25.1.l or 25.2.r, it is not relevant which rule has been applied, because
the alternative composition is associative). Also, process term [p] for any p ∈ P is
consistent with any extended valuation with respect to σ in any environment. Ap-
plying Rule 27 (many times) and from Rule 23 (also note that pj, pj∗ are undelayable

process terms), we further obtain E  〈[]i∈I ui, σ〉
ξ
 , E  〈[]j∈J bj → pj, σ〉

ξ
 , E 
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〈[]k∈K [bk → pk], σ〉
ξ
 , E  〈[]l∈L bl → pl ; nl, σ〉

ξ
 , E  〈[]i∗∈I∗ ui∗ , σ〉

ξ
 , E  〈[]j∗∈J∗

bj∗→ pj∗ , σ〉
ξ
 ,E  〈[]k∗∈K∗ [bk∗→ pk∗ ], σ〉

ξ
 ,E  〈[]l∗∈L∗ bl∗→ pl∗ ; nl∗ , σ〉

ξ
 , and we

know ξ |= bj, ξ |= bj∗ , E  〈pj, σ〉
ξ
 , E  〈pj∗ , σ〉

ξ
 (see also Rules 23 and 19), respec-

tively. From ξ |= bm and ξ |= bm∗ , we can have ξ |= bm ∧ bm∗ . Using Rule 20.2 and 16,
we obtain (C, J, L,H,R)  〈[](m,m∗)∈ΓM,M∗

bm ∧ bm∗ → ca(hmm∗ , enmm∗ ,xnmm∗ ); (nm ‖

nm∗), σ〉
ξ,ca(hmm∗ ,cs),ξ′−−−−−−−−−→ 〈nm ‖ nm∗ , σ′〉, because process terms pm and pm∗ commu-

nicate and this leads to a communication process term ca(hmm∗ , enmm∗ , xnmm∗ ) and
cs = [ξ(enmm∗ )]. Due to the above-mentioned consistency predicates, we conclude
that each sub-process term (let us say) s′i of s3 ≡ s′0 [] . . . [] s′i [] . . . [] s′n is a consistency

predicate for such E, σ, ξ, i.e. ∀i:[0..n] E  〈s′i, σ〉
ξ
 . Using Rule 25.2.l many times

(or 25.2.r, it is not relevant which rule has been applied, because the alternative

composition is associative), we get E  〈s3, σ〉
ξ,ca(hmm∗ ,cs),ξ′−−−−−−−−−→ 〈nm ‖ nm∗ , σ′〉. Take

k2 ≡ nm ‖ nm∗ , and observe that (k1, k2) ∈ R.

• Rule 29.1.l has been applied. Then (let us say for the case that) we obtain E  〈
[]j∈J bj→ pj, σ〉

ξ,a,ξ′−−−→〈X,σ′〉, ξ |= bj, E  〈 []j∈J pj, σ〉
ξ,a,ξ′−−−→〈X,σ′〉 (see also Rule 20.1),

k1≡ s2, E  〈([]i∈I ui) [] ([]k∈K [bk→ pk]) [] ([]l∈L bl→ pl ; nl) [] ([]m∈M bm→ pm ; nm),σ〉 ξ
 

(see also Rule 25.1.l or 25.2.r, it is not relevant which rule has been applied, because
the alternative composition is associative), E  〈([]i∗∈I∗ ui∗) [] ([]k∗∈K∗ [bk∗ → pk∗ ]) []

([]l∗∈L∗ bl∗ → pl∗ ; nl∗) [] ([]m∗∈M∗ [bm∗ → pm∗ ; nm∗ ], σ〉
ξ
 , and E  〈([]i∗∈I∗ ui∗) []

([]k∗∈K∗ [bk∗ → pk∗ ]) [] ([]l∗∈L∗ bl∗ → pl∗ ; nl∗) [] ([]m∗∈M∗ [bm∗ → pm∗ ; nm∗ ], σ
′〉 ξ′

 (see
also Rule 29.1.l). Again, we know that the alternative composition is associative, and
process term [p] for any p ∈ P is consistent with any extended valuation with respect
to σ in any environment. Due to the above-mentioned consistency predicates, it is
not hard to see that we can conclude that each sub-process term (let us say) s′i of
s3 ≡ s′0 [] . . . [] s′i [] . . . [] s′n is a consistency predicate for such (E, σ, ξ) and (E, σ′, ξ′),

i.e. ∀i:[0..n] E  〈s′i, σ〉
ξ
 and ∀i:[0..n] E  〈s′i, σ′〉

ξ′

 . Using Rule 20.2 and 16, we can

have E  〈[]j∈J bj → pj ; s2, σ〉
ξ,a,ξ′−−−→ 〈s2, σ

′〉. Using Rule 25.2.l many times (or 25.2.r,
it is not relevant which rule has been applied, because the alternative composition

is associate), we obtian E  〈s3, σ〉
ξ,a,ξ′−−−→ 〈s2, σ

′〉. Take k2 ≡ s2, and observe that
(s2, s2) ∈ R.

Condition 4 : We assume E  〈([]i∈I ui) [] ([]j∈J bj→ pj) [] ([]k∈K [bk→ pk]) [] ([]l∈L bl→ pl ; nl) []
([]m∈M [bm → pm ; nm])) ‖ (([]i∗∈I∗ ui∗) [] ([]j∗∈J∗ bj∗ → pj∗) [] ([]k∗∈‘K∗ [bk∗ → pk∗ ]) [] ([]l∗∈L∗

bl∗ → pl∗ ; nl∗) [] ([]m∗∈M∗ [bm∗ → pm∗ ; nm∗ ])), σ〉
t,ρ7−→ 〈k1, σ

′〉 for some E, σ, t, ρ, k1, σ
′,

which means Rule 30 has been applied necessary. Then, it is not hard to see that

we have E  〈s1, σ〉
t,ρ7−→ 〈s1, σ

′〉, E  〈s2, σ〉
t,ρ7−→ 〈s2, σ

′〉, and k1 ≡ s1 ‖ s2. We know
that the alternative composition is associative, and process term [p] for any p ∈ P al-
lows arbitrary time transitions, and thereby does not change. Followed by applying
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Rule 26 (many times), we obtian E  〈[]i∈I ui, σ〉
t,ρ7−→ 〈[]i∈I ui, σ′〉 (see also Rule 3),

E  〈[]j∈J bj → pj, σ〉
t,ρ7−→ 〈[]j∈J bj → pj, σ

′〉, ∀s∈(0,t) ρ(s) |= ¬bj, ∃s∈[0,t] ρ(s) |= ¬bj (see also
Rule 22 and note that pj is an undelayable process term, and some unimportant information

for this proof is omitted), E  〈[]k∈K [bk→ pk], σ〉
t,ρ7−→ 〈[]k∈K [bk→ pk], σ

′〉 (see Rule 11), E 

〈[]l∈L bl → pl ; nl, σ〉
t,ρ7−→ 〈[]l∈L bl → pl ; nl, σ

′〉, ∀s∈(0,t) ρ(s) |= ¬bl, ∃s∈[0,t] ρ(s) |= ¬bj (see also
Rule 22 and note that pl ; nl is an undelayable process term, and some unimportant informa-

tion for this proof is omitted), E  〈[]m∈M [bm→ pm ; nm], σ〉 t,ρ7−→ 〈[]m∈M [bm→ pm ; nm], σ′〉
(see Rule 10), E  〈[]i∗∈I∗ ui∗ , σ〉

t,ρ7−→ 〈[]i∗∈I∗ ui∗ , σ′〉, E  〈[]j∗∈J∗ bj∗ → pj∗ , σ〉
t,ρ7−→ 〈[]j∗∈J∗

bj∗ → pj∗ , σ
′〉, ∀s∈(0,t) ρ(s) |= ¬bj∗ , E  〈[]k∗∈K∗ [bk∗ → pk∗ ], σ〉

t,ρ7−→ 〈[]k∗∈K∗ [bk∗ → pk∗ ], σ
′〉,

E  〈[]l∗∈L∗ bl∗ → pl∗ ; nl∗ , σ〉
t,ρ7−→ 〈[]l∗∈L∗ bl∗ → pl∗ ; nl∗ , σ

′〉, ∀s∈(0,t) ρ(s) |= ¬bl∗ , E  〈[]m∗∈M∗
[bm∗ → pm∗ ; nm∗ ], σ〉

t,ρ7−→ 〈[]m∗∈M∗ [bm∗ → pm∗ ; nm∗ ], σ
′〉. Due to the above-mentioned time

transitions, it is not hard to see that we can conclude that each sub-process term (let
us say) s′i of s3 ≡ s′0 [] . . . [] s′i [] . . . [] s′n can perform such a time transition for t, ρ, i.e.

∀i:[0..n] E  〈s′i, σ〉
t,ρ7−→ 〈s′i, σ′〉. Applying Rule 26 (many times) to the sub-process terms of

s3, we conclude that E  〈s3, σ〉
t,ρ7−→ 〈s3, σ

′〉. Take k2 ≡ s3 and observe that (k1, k2) ∈ R.
Condition 6 : First, we assume E  〈([]i∈I ui) [] ([]j∈J bj → pj) [] ([]k∈K [bk → pk]) [] ([]l∈L
bl→ pl ; nl) [] ([]m∈M [bm→ pm ; nm])) ‖ (([]i∗∈I∗ ui∗) [] ([]j∗∈J∗ bj∗→ pj∗) [] ([]k∗∈K∗ [bk∗→ pk∗ ]) []

([]l∗∈L∗ bl∗→ pl∗ ; nl∗) [] ([]m∗∈M∗ [bm∗→ pm∗ ; nm∗ ])), σ〉
ξ
 for some E,σ, ξ, which means Rule

31 has been applied necessary. We know that the alternative composition is associative,
and process term [p] for any p ∈ P is consistent with any extended valuation with respect
to σ in any environment. Followed by applying Rule 27 (many times), we obtian E 

〈[]i∈I ui, σ〉
ξ
 , E  〈[]j∈J bj → pj, σ〉

ξ
 , ξ |= bj and E  〈[]j∈J pj, σ〉

ξ
 (see also Rule 23),

E  〈[]k∈K [bk → pk], σ〉
ξ
 (see Rule 12), E  〈[]l∈L bl → pl ; nl, σ〉

ξ
 , ξ |= bl (see also

Rule 23) and E  〈[]l∈L pl, σ〉
ξ
 (see Rules 23 and 19), E  〈[]m∈M [bm → pm ; nm], σ〉 ξ

 

(see Rule 12), E  〈[]i∗∈I∗ ui∗ , σ〉
ξ
 , E  〈[]j∗∈J∗ bj∗ → pj∗ , σ〉

ξ
 , ξ |= bj∗ and E  〈[]j∗∈J∗

pj∗ , σ〉
ξ
 , E  〈[]k∗∈K∗ [bk∗ → pk∗ ], σ〉

ξ
 , E  〈[]l∗∈L∗ bl∗ → pl∗ ; nl∗ , σ〉

ξ
 , ξ |= bl∗ and

E  〈[]l∗∈L∗ pl∗ , σ〉
ξ
 , and E  〈[]m∗∈M∗ [bm∗ → pm∗ ; nm∗ ], σ〉

ξ
 . Due to the above-

mentioned consistency predicates, it is not hard to see that we can conclude that each
sub-process term (let us say) s′i of s3 ≡ s′0 [] . . . [] s′i [] . . . [] s′n is a consistency predicate for

such E, σ, ξ, i.e. ∀i:[0..n] E  〈s′i, σ〉
ξ
 . Applying Rule 27 (many times) to the sub-process

terms of s3, we conclude that E  〈s3, σ〉
ξ
 .
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