

Tuning for yield : towards predictable deep-submicron
manufacturing
Citation for published version (APA):
Naidu, S. R. (2004). Tuning for yield : towards predictable deep-submicron manufacturing. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR577528

DOI:
10.6100/IR577528

Document status and date:
Published: 01/01/2004

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR577528
https://doi.org/10.6100/IR577528
https://research.tue.nl/en/publications/12bbeb3f-5eb9-47f7-a50e-3cd07d48a91f

Tuning for Yield
Towards predictable deep-submicron manufacturing

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische Universiteit
Eindhoven, op gezag van de Rector Magnificus, prof.dr. R.A. van Santen,
voor een commissie aangewezen door het College voor Promoties in het

openbaar te verdedigen op dinsdag 13 juli 2004 om 16.00 uur

door

Srinath Robin Naidu

geboren te Bangalore, India

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr.ir. R.H.J.M. Otten
en
prof.Dr.-Ing. J.A.G. Jess

Copyright 2004 S.R. Naidu

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocoyping, recording, or otherwise, without the prior written
permission of the copyright owner.

Druk: Universiteitsdrukkerij Technische Universiteit Eindhoven

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Naidu, Srinath R.

Tuning for yield : towards predictable deep-submicron manufacturing / by
Srinath Robin Naidu. - Eindhoven : Technische Universiteit Eindhoven,
2004.
Proefschrift. - ISBN 90-386-1603-1
NUR 959
Trefw.: grote geintegreerde schakelingen ; CAD / digital systemen ; CAD /
stochastische analyse / Monte-Carlo-methoden / convex programmeren.
Subject headings: integrated circuit yield / design for manufacture / delay
estimation / Monte Carlo methods / convex programming.

Summary of Thesis

Process variations in modern semiconductor fabs are beginning to impact
the performance of manufactured chips. The impact is at two levels - the
process variations either cause functional faults in the chip, or they cause
a parametric fault in the manufactured chip wherein the chip in question
does not meet performance specifications regarding clock frequency or power
consumption. Functional faults in the chip prevent the chip from being sold
at all, but parametric faults are milder in that the faulty chips can still
be sold, albeit at a lower price. Considerable attention has been paid to the
functional fault problem thus far, but relatively little attention has been paid
to the second problem.

In the presence of process variations, a natural question that can be asked
is the percentage of chips meeting a given performance specification. For
example, one could ask what percentage of manufactured chips have a clock
frequency greater than 1GHz. In fact one might desire to calculate the entire
probability distribution curve for all relevant performances. The availabil-
ity of such a probability distribution curve would enable the semiconductor
manufacturer to devise an accurate pricing strategy for manufactured chips
before actually manufacturing them. The problem of generating this curve
for a given chip, given a model of process variations, is called the yield esti-
mation problem. A natural corollary to this problem is the yield optimisation
problem where the object is to change circuit parameters so that yield may
be increased.

This thesis attempts to address both the yield estimation as well as the
yield optimisation problem. The first step towards the solution of both of
these problems is to accurately model the impact of process variations on
the performance of circuit elements. Semiconductor companies are still in
the process of modeling the impact of process variations on the behaviour of

i

ii

circuit elements, so one must take recourse to assuming a realistic process
variation model. Two models are considered in this thesis. The first assumes
that the delays of the circuit elements are independent of each other. The
yield estimation problem is then shown to be a variant of the probabilistic
PERT problem that has been the subject of study in the operations research
area. The problem is theoretically hard in a deep computational sense. We
provide upper and lower bounds on the true probability distribution curve of
circuit delay using a novel method of discretisation of the probability density
functions of the individual gate delays.

We then turn our attention to a different model of process variations - one
that fully takes into account correlations due to path sharing as well as cor-
relations due to gate delays depending on the same set of global parameters
such as the length of the transistor gate, thickness of oxide and so on.In this
framework the yield estimation problem is transformed into one of integrat-
ing a joint probability density function over a polytope (convex region in an
appropriate space bounded by hyperplanes). This problem, like the proba-
bilistic PERT problem discussed in the previous paragraph, is also of high
complexity and there exists no constant-factor approximation algorithm that
estimates yield. We introduce the novel concept of approximating the volume
of the polytope by the maximum volume ellipsoid that fits in it. Instead of
integrating over the whole polytope, we consider the simpler problem of in-
tegrating over the ellipsoid, to obtain a lower bound on the true yield. When
the number of dimensions (or global parameters) gets large, the ellipsoid be-
comes a poor approximation of the polytope, and there is a substantial yield
loss due to the omission of the polytope corners. Therefore we change tack,
and propose a novel Monte-Carlo algorithm to estimate yield. The Monte-
Carlo algorithm uses the maximum volume ellipsoid to determine a sampling
probability density function that reduces the variance of the yield estimate.

Finally we conclude by demonstrating the true power of the ellipsoid approx-
imation of the polytope feasible region, namely the ability of the ellipsoid to
represent the shape of the feasible region. In particular the smallest axis of
the ellipsoid represents the direction in which to expand the polytope so as
to increase the yield by the largest amount. The increase in the volume of
the polytope is achieved by adjusting the nominal delays of the hyperplanes,
or in circuit terms, adjusting the nominal delays of paths in the circuit repre-
sented by those hyperplanes. The nominal delays of the paths in turn depend
on the nominal delays of the gates in the path. We provide a simple method-

iii

ology for tuning the delays of the gates to achieve the required change in the
nominal delays of the selected paths.

iv

Samenvatting

Procesvariaties in moderne halfgeleiderfabrieken beginnen prestaties van de
gefabriceerde halfgeleiders schakelingen (chips) te benvloeden. De gevolgen
zijn merkbaar op twee niveaus: oftewel de procesvariaties veroorzaken func-
tionele fouten in de chip, of ze veroorzaken parametrische fouten waarbij de
gefabriceerde chip de specificaties wat betreft de klokfrequentie of vermo-
gensdissipatie niet haalt. Bij functionele fouten is de chip onverkoopbaar.
Parametrische fouten zijn minder desastreus, omdat de defecte chips nog
steeds verkoopbaar zijn, zij het tegen een lagere prijs. Tot dusver is veel
aandacht besteed aan functionele fouten, terwijl relatief weinig aandacht is
besteed aan het tweede probleem.

Een voor de hand liggende vraag die gesteld kan worden bij procesvariaties is
het percentage van de chips die aan een gegeven specificatie voor de prestaties
voldoen. Zo zou men zich bijvoorbeeld kunnen afvragen welk percentage van
de gefabriceerde chips een klokfrequentie haalt van meer dan 1GHz. Eigenlijk
zou men de kansdichtheidsverdeling voor alle relevante opbrengstvariabelen
willen berekenen. De beschikbaarheid van zo’n kansdichtheidsverdeling stelt
de fabrikant in staat een accurate prijsstelling voor de gefabrieerde chips te
maken, nog voor deze chips daadwerkelijk gefabriceerd zijn. Het probleem
van het genereren van zo’n verdeling voor een chip, gegeven een model van
de procesvariaties, heet het opbrengstafschattingsprobleem. Een natuurlijke
uitbreiding op dit probleem is het probleem van opbrengstoptimalisatie; hi-
erbij is het doel de parameters van de schakeling zodanig te veranderen dat
de opbrengst toeneemt.

Dit proefschrift beschouwt zowel opbrengstafschatting als opbrengstoptimal-
isatie. De eerste stap in de richting van een oplossing voor deze problemen
is een nauwkeurige modellering van de invloed van procesvariaties op de el-
ementen in de schakeling. De halfgeleiderindustrie bevindt zich vooralsnog

v

vi

in het stadium waarin de invloed van procesvariaties op elementen van de
schakeling nog niet volledig gemodelleerd is, dus men moet zijn toevlucht
nemen tot de aanname van een realistisch model voor procesvariaties. Twee
modellen woren beschouwd in dit proefschrift. Het eerste neemt aan dat de
vertragingen van elementen van de schakeling onafhankelijk zijn van elkaar.
In dit geval zal worden aangetoond dat het opbrengstafschattingsprobleem
een variant is van het probabilistisch PERT probleem, hetgeen reeds onderw-
erp van onderzoek is in de operations research. Dit probleem is fundamenteel
moeilijk in de zin van de theorie van berekenbaarheid. We berekenen boven-
en ondergrenzen voor de daadwerkelijke kansverdeling van de vertraging van
de schakeling. We maken hierbij gebruik van een nieuwe methode, waarbij we
de kansdichtheidsfunctie van de individuele vertragingen van de elementen
van de schakeling discretiseren.

Vervolgens richten we onze aandacht op een ander model van procesvariaties
- n die correlaties door het delen van paden door de schakeling en correlaties
in de vertraging van elementen van de schakeling door dezelfde verzameling
globale paremeters in beschouwing neemt. Voorbeelden van zulke globale
parameters zijn onder andere lengte van de transistor en dikte van het oxide.
In deze context wordt het opbrengstafschattingsprobleem getransformeerd
naar het probleem van het integreren van een gezamenlijke kansdichtheids-
functie over een polytoop (een convexe regio in een ruimte begrensd door
hypervlakken). Dit probleem is, net zoals het probabilistisch PERT problem
van de vorige alinea, van hoge complexiteit en er bestaat geen algoritme dat
de opbrengst afschat met een constante factor. We introduceren een nieuw
concept waarbij we het volume van de polytoop benaderen door de ellip-
sode met een maximaal volume die hierin past. In plaats van het integreren
over de hele polytoop, beschouwen we het integreren over de ellipsode. Dit
levert een ondergrens op voor de werkelijke opbrengst. Als het aantal di-
mensies (globale parameters) groot wordt, wordt de ellipsode een slechtere
benadering van de polytoop, en is er een substantiel verlies in opbrengst door
het weglaten van hoeken van de polytoop. Om dit te ondervangen schake-
len we over op een Monte-Carlo algoritme om de opbrengst te bepalen. De
Monte-Carlo algoritme gebruikt de ellipsode met het maximale volume om
een bemonstering van de kansdichtheidfunctie te bepalen die de variatie van
de opbrengst reduceert.

Tenslotte eindigen we met het demonstereren van de werkelijke kracht van
de benadering door een ellipsode van de polytope toegestane regio, namelijk

vii

de mogelijkheid van de ellipsode om de vorm van de toegestane regio te be-
naderen. Met name de kleinste as van de ellipsode representeert de richting in
welke de polytoop moet worden uitgebreid om de opbrengst zo veel mogelijk
te verhogen. De toename in het volume van de polytoop wordt behaald door
het aanpassen van de nominale vertragingen van de hypervlakken. In termen
van de schakeling betekent dit het aanpassen van de nominale vertraging van
de paden door de schakeling gerepresenteerd door de hypervlakken. De nom-
inale vertraging van de paden hangt op zijn beurt weer af van de nominale
vertraging van de vertraging van de elementen van de schakeling op het pad.
We presenteren een simpele methode om de vertraging van de elementen van
de schakeling te veranderen teneinde de gewenste verandering in de nominale
vertraging van de geselecteerde paden te bewerkstelligen.

viii

Acknowledgements

When I began my Ph.D contract in September 1999, I had no idea that the
next four years would be as exciting as they have turned out to be. First
I must thank Prof Jochen Jess who provided me with the opportunity of
working in the the ES group at the Eindhoven University of Technology,
even though he knew that my previous work was unrelated to the subject
in which I was to carry out research. I have had the pleasure of conducting
many useful conversations with him.

I thank Professor Ralph Otten for assuming the responsibility of guiding my
thesis, and providing me with some penetrative insights from time to time.
I have benefited greatly from his insights into how a thesis should be organ-
ised. The summer of 2002 was a particularly fruitful time for me in terms
of research, and a large portion of the credit for this goes to the incredible
energy, talent and organisation skills of Dr Chandu Visweswariah of IBM T.J
Watson Research Center. It was his observation that the delays of gates are
much closer to being perfectly correlated rather than being completely inde-
pendent that led to the results of the latter half of this thesis. He also helped
me create a basic software framework to test my ideas, and was available for
consultations even after the end of his sabbatical period at the university.

The last four years in which I have been in the ES group have been tumul-
tuous. This period witnessed a sea-change in the composition of the group,
and a redefining of its research focus. This period would have been even
more unsettling if I did not have the pleasure of getting to knowing a num-
ber of people, and having many interesting conversations with them during
the coffee breaks. I must especially mention Etienne Jacobs, Jeroen Rutten
and Marc Geilen for informing me about various aspects of Dutch culture;
Calin Ciordas, Aleksandr Beric, Qin Zhao and Carlos Alba Pinto for a lot
of interesting information relating to their own countries. I thank them for

ix

x

ensuring that coffee breaks were never dull.

By its very nature, research is a roller-coaster affair with long periods of
comparative inactivity followed by short bursts of inspiration. It is crucial to
avoid being completely disheartened during the barren period. I am thankful
to my parents whose love and encouragement could always be counted upon,
and my brother Srikanth, whose interest in my work and advice helped me
keep things in perspective, especially during bad times. Let me conclude by
especially acknowledging the contribution of my father whose own research
career first inspired me to pursue a career in research.

Contents

Summary of Thesis i

Samenvatting v

Acknowledgements ix

1 Introduction 1

1.1 Variability . 1

1.2 Worst-case circuit modelling 5

1.3 Statistical circuit modelling 6

1.4 Modelling process variations 8

1.5 Building statistical models . 9

1.6 Modelling circuit responses to process variations 10

1.7 Outline of this thesis . 13

2 The PERT problem 15

2.1 Introduction . 15

2.2 Timing graph . 16

2.3 The PERT problem . 17

2.4 The PERT problem and Combinational logic networks 18

2.5 Solving the PERT problem . 19

2.6 Theoretical complexity of the PERT Problem 23

xi

xii CONTENTS

2.7 Previous research in statistical timing analysis 23

2.8 Quality of statistical timing methods 28

3 A simple timing model 31

3.1 The distribution used . 32

3.2 Computing delay random variables 33

3.3 Computational complexity . 34

3.4 Reconvergent fanout . 36

3.5 More complex supergates . 39

3.6 Upper and lower bounds on the delay distribution 40

3.7 Discussion . 41

4 A more refined timing model 47

4.1 Timing edge correlation models 47

4.2 Linear model and yield formulation 48

4.3 A simple lower bound on timing yield 52

4.4 Estimating the integral . 55

4.5 The general case . 57

4.6 Path filtering . 57

4.7 The joint probability density function of global parameters . . 66

4.8 Performance space formulation 67

5 Integration over a polytope 69

5.1 Cohen and Hickey method . 69

5.2 Computing the entire yield curve by a Monte-Carlo method . 74

5.3 Monte-Carlo integration . 75

5.4 Evaluating a simple Monte-Carlo integral: role of the bound-
ing box . 76

5.5 Finding a small bounding box 79

5.6 Numerical integration . 82

5.7 Experimental set-up . 84

CONTENTS xiii

6 Ellipsoidal approximation of the feasible region 87

6.1 Introduction . 87

6.2 Ellipsoidal approximation . 88

6.3 MAXDET problem . 89

6.4 Zhang’s approach . 92

6.5 Path filtering and the maximum volume ellipsoid 94

6.6 Numerical integration over the ellipsoid 97

6.7 Numerical integration- Stroud’s formulae 98

6.8 Covering the feasible region by multiple ellipsoids 101

6.9 Revisiting performance-at-a-time Monte-Carlo 107

6.10 Non-uniform sampling of the space of parameters 115

6.11 Variance reduction for non-uniform importance sampling . . . 117

6.12 Discussion . 121

7 Randomised quadrature 123

7.1 Introduction . 123

7.2 Reformulation of yield integral 123

7.3 Computing the spherical surface integral 125

7.4 Randomising quadrature rules 127

7.5 Generating random orthogonal matrices 128

7.6 Results . 129

8 Yield optimisation 133

8.1 Introduction . 133

8.2 Background . 134

8.3 Our approach . 136

8.4 Acceptability region modification 137

8.5 Minimax method . 138

8.6 Ellipsoidal method for yield optimisation 142

xiv CONTENTS

9 Conclusions and future work 151

9.1 Improving model sophistication 152

9.2 Relaxing the linearity assumption 153

9.3 Tackling high yield situations 155

Appendix 157

Bibliography 165

Biography 181

Chapter 1

Introduction

1.1 Variability

Variation of process parameters in modern semiconductor fabs has now as-
sumed such significance that it must be taken into account to ensure that
the fab returns a profit. The topic of variability in the manufacture of digital
integrated circuits has just started to receive a lot of attention [9] ,[69], [70],
[71], [72], [56]. It is recognized that variability must be handled all across
the design process and not merely at the manufacturing stage. Variability
causes “yield” loss where yield of a semiconductor process can be defined as
follows:

Y =
Number of Working Circuits

Total Number of Manufactured Circuits
. (1.1)

We need to define what we mean by a “working” circuit, as the variation
of manufacturing parameters usually affects chips in one of two ways: (a)
the variability causes “catastrophic” yield loss, i.e., manufactured chips may
be functionally incorrect and hence cannot be sold or (b) the variability
causes “parametric” yield loss, i.e., the manufactured chips may not be as
fast as they were designed to be, or may consume more power than they were
designed to consume, but the chips can still be sold albeit at a lower price.

It is easy to see why the first kind of yield loss is the one that has received the
most attention to-date. Functional faults in chips are caused by deposition
of excess metal to link wires that were not supposed to be linked (bridging
faults), or the non-deposition of metal leading to opens. A standard method

1

2 Chapter 1. Introduction

of analysing how susceptible a given layout is to “catastrophic” yield loss is to
study its critical area. This is an examination of the geometry of the layout
to see where a blob of extra metal is likely to cause a bridging fault, or where
the absence of metal is likely to break a connection. Further, dust particles
could land at arbitrary locations and cause shorts and opens depending on
the conductivity and size of the particles. Techniques to handle catastrophic
yield loss include critical area minimisation, redundant via-insertion and wire
bending/spacing.

The parametric yield loss problem has begun to assume importance, espe-
cially in the competitive microprocessors market where there is significant
market advantage to be had in designing fast chips or limiting power con-
sumption. Parametric yield loss has for long been in the domain of analog
synthesis and so the methods to handle it are also drawn from that domain.
These include design centring and design for manufacturability. Figure 1.1
shows in a nutshell variability, and its impact on circuit behaviour.

The quality of a semiconductor processing line and its profitability are de-
termined by the number of manufactured chips that meet the manufacturing
specifications. The manufacturing specifications include such basic ones as
requiring the circuit to operate correctly according to its functional specifi-
cations. Other specifications include a limit on power consumption and the
operating clock frequency of the chip. The clock frequency of a manufactured
chip is determined in part by the maximum propagation delay of logic blocks
contained within the chip. Determining the propagation delay of a circuit
is the traditional timing analysis problem. At this point, it is important to
state that timing violations in a chip do not always lead to a parametric
fault; sometimes they can lead to functional faults as well. There are two
types of timing violations in a chip: set-up violations and hold violations.
Set-up violations occur when the propagation delay of a logic block between
a set of latches exceeds the clock period, preventing the correct signal value
from being latched at the next clock pulse. In this case, slowing down the
clock will increase the clock period and enable the right signal value to be
latched. Hold violations, on the other hand occur when logical changes ini-
tiated by the current clock pulse at a particular set of latches race through
the combinational logic and become available at the inputs of the subsequent
set of latches in time to be clocked by the current clock pulse. This is wrong
because the intention is for the next clock pulse to latch the signals initiated
by the current clock pulse. Hold violations cannot be taken care of by slow-

1.1. Variability 3

ing the clock down. Instead wither additional stages of combinational logic
must be introduced between sets of latches, or clock skew must be reduced
so that it does not compare with the propagation delay of the logic block.
Thus only set-up timing violations lead to parametric faults.

Catastrophic yield loss

Stuck-at Faults

Bridging faults

Parametric yield loss

Delay faults
Power budget exceeded

Chip Behaviour in the face of environmental and
 manufacturing variations

Techniques to correct for
 parametric yield loss

Critical area minimisation

Redundant via insertion

 Wire bending/spacing

Statistical Timing
Yield prediction

Design for manufacturability
Design Centering

Techniques to correct for
catastrophic yield loss

Figure 1.1: Variability and its impact on manufacturing.

The problem of determining the timing of a chip in the face of uncertainty has
traditionally been solved by worst-case timing analysis, a linear time proce-
dure that would determine the timing performance of a chip by letting com-
ponents assume their worst case delays. The underpinning of this technique
was that if the circuit worked correctly under the most pessimistic conditions,
then it would work well under normal conditions. Therefore designing for ex-
treme conditions would automatically take care of the nominal case as well.
A combination of factors in recent times has led to a resurgence in research

4 Chapter 1. Introduction

interest in the field statistical modelling and design of integrated circuits.
The first factor has been the shrinking feature sizes which have increased the
importance of manufacturing variations. At the same time, there has also
been a decrease in the amount of tolerance of integrated circuits to manufac-
turing variations. The more stringent performance requirements mean that
the designer has less room to manoeuvre and the lower tolerance of circuit
delay to manufacturing variations means that there is considerable difference
between the worst-case solution and the average-case solution. The design
solution suggested by worst-case analysis may violate the high performance
requirements while the one suggested by accurate statistical techniques might
still be able to meet these requirements. The need to accurately characterise
manufacturing variations and their impact on design therefore becomes more
acute. It is inevitable that statistical methods will need to be employed to
bolster the design process in the face of manufacturing variations.

It must be noted that statistical design and analysis in the context of semi-
conductor manufacturing has been going on for many years. There has been
significant research effort but very little in terms of industrial implementa-
tion. The main reasons for this according to [27] are the complexity of most
statistical design techniques, the orthogonality of statistical design techniques
to the worst-case methods used in industry making their adoption in an in-
dustrial environment very hard, the difficulty of constructing accurate process
variation models, and until recently the perceived poor cost-benefit ratio of
such techniques. Building statistical circuit models is an expensive process,
since we need to have an elaborate understanding of semiconductor process
conditions, and their interaction. This data is typically very hard to collect.
Even when the data is collected, it remains to analyse the data and build
statistical models. The complexity of modern semiconductor manufacturing
processes means that one is quickly overwhelmed by the sheer amount of
data in the system. The main shortcoming of statistical methods has been
noted by [27] to be their sheer complexity. They also conflict with the worst-
case techniques currently used in the industry. Coupled with the cost of
implementation, this means that statistical methods have up until now been
regarded as being unviable.

In the next few sections we will describe current worst-case (static) timing
analysis methods and their shortcomings in greater detail. Then we shall
describe statistical circuit modelling and describe very briefly the sources of
process variation.

1.2. Worst-case circuit modelling 5

1.2 Worst-case circuit modelling

A worst case circuit modelling approach assumes that the worst process and
operating conditions exist simultaneously and determines the delay of each
circuit element under these conditions. Then we perform a static timing
analysis to determine the output delay. Static timing analysis is a linear
time procedure where the circuit is traversed in a breadth-first fashion to
determine the output delay.

The basis of this technique is that if a circuit functions according to design
specifications under extreme operating conditions, then it will operate under
normal conditions as well. This intuitive technique is currently very popular
in industry because of the ease with which it can be implemented but it
suffers from some drawbacks. The first of these drawbacks, already alluded
to in the previous section, is the pessimism it induces in design. This is
typically due to the fact that it is highly unlikely that all process parameters
will assume their worst-case values at the same time; in other words, the
assumed worst-case process corner may not fall in the feasible region. The
other drawback is that worst-case methods cannot provide information to the
designer about the sensitivity of the design to various process parameters,
which can potentially be very useful in guiding the designer to a more robust
design.

Although worst-case analysis might seem easier than computing the entire
probability distribution curve, [9] argues that in fact the effort required is
more than what is needed to compute the yield. This is because the methods
that compute worst-case process parameters need the complete statistics of
the circuit performance of interest. The saving grace of worst-case methods
is that structurally similar circuits tend to have the same worst-case process
parameters, so that the cost of finding the worst-case parameters can be
amortized across several circuits.

Worst-case approaches may be found in the works of [1], [20]. The work of
[68] examines the impact of worst-case circuit modelling on predicting circuit
performance.

6 Chapter 1. Introduction

1.3 Statistical circuit modelling

Statistical Circuit models do not make any assumptions about the combi-
nation of process conditions which causes the worst performance. Instead
these models attempt to characterise each process parameter statistically,
and then use circuit simulators to propagate the process statistics to the
circuit responses. The first step in constructing statistical models is to char-
acterise the underlying process variations.

Process Disturbances:
A process disturbance is defined by [27] as any random phenomenon which
causes a change in the physical characteristics of the manufactured product.
In the context of semiconductor manufacturing processes, two different types
of process disturbances have been considered by researchers: (1) Defects: De-
fects are isolated events in the manufacturing process which usually lead to
catastrophic yield loss i.e., chips that do not work at all. Common defects are
spot defects such as spots of metal causing a short between a pair of wires,
which could lead to bridging faults and opens which could lead to stuck-at
faults. Researchers have come up with critical area models that determine
the sensitivity of a layout to spot defects [61]. All in all, this is a relatively
well-studied problem.
(2) Parametric variations: These are random variations in operating con-
ditions such as temperature and supply voltage, or in material properties
such as channel length of individual transistors, thickness of gate oxide, or
in optical properties of semiconductor manufacturing equipment. Typically
parametric variations do not cause chips to fail completely; rather they cause
chips to have have higher power dissipation or greater clock frequency than
the intended target. There are several types of parametric variations. They
can broadly be characterised as

(a) Between-die variations: These parameters are constant across a sin-
gle die but vary from die-to-die assuming different values for dies at different
locations on the wafer. They are also known as inter-die variations. In [9],
inter-die variations are broken up mathematically as follows:

Pinterdie = Pfab−to−fab + Plot−to−lot + Pwafer−to−wafer + Pdie−to−die (1.2)

In the above equation Pinterdie refers to the total variation in some parame-
ter P between two nominally identical die that could have been drawn from
the same wafer, or from two different wafers from the same lot, or from two

1.3. Statistical circuit modelling 7

different lots or even from two different fabs. Each contributing term in the
above equation can be thought to arise from different physical sources.

(b) Intra-die variations: These variations cause a loss of matched be-
haviour between devices on the same chip. The intra-die variations may be
further classified into two-types:

(i)feature scale variations: These are random variations from one lo-
cation to another within the same die. An example of this type of variation
is the number of dopant atoms at any location in the die.

(ii)die scale variations: These are variations that are deterministic
within a die. An example of this type of variation is the variation in printed
line widths caused by aberrations in the stepper lens.

(iii) Operating Variations: These are variations in the operating con-
ditions of a chip. They are typically temperature variations, power supply
variations, temperature gradients and signal noise.

Some variations may have components at both the die level as well as the
wafer level. An example is the ILD thickness that shows a smooth variation
across a wafer and a more random variation within a die. Given the com-
plexity of the manufacturing variations, the challenge in statistical circuit
modelling is to come up with a statistical model that can model all the vari-
ations and yet efficiently propagate the statistics to the level of the circuit
responses.

The variation in a certain parameter pi for a circuit element i can be written
as follows [27]:

pi = pinterdie(di) + pdie(xi, yi, di) + pfeature(di) (1.3)

Here (xi, yi) describe the location of circuit element i. The vector di is a
vector of design parameters such as the lengths of transistors. The compo-
nent pinterdie represents the between die variations in the parameter and is
a function of the design vector di while pdie represents within-die variations
and pfeature represents feature-scale variations within a die. Inter-die and
intra-die variations are shown in Figure 1.2.

Process variations take place not only at the level of devices in modern inte-
grated circuits but also at the level of the interconnect. Indeed, the serious-
ness of interconnect variations on the clock skew of modern microprocessors
can be gleaned from [56], [45].

8 Chapter 1. Introduction

x

y

wafer

die

pinterdie variation

pintradie variation

Figure 1.2: Conceptual illustration of inter and intradie variations.

1.4 Modelling process variations

Process variations can be modeled in a vector space using one of the following
sets of parameters [27]:
(a) Process parameters such as diffusion times and oven temperatures.
(b) Physical parameters such as the widths of metal lines and the channel
doping of transistors.
(c) Model parameters such as the parameters of the BSIM3 transistor model.
(d) Electrical parameters such as the resistance of metal lines and the satu-
ration current of transistors.

1.5. Building statistical models 9

The model parameters can be easily derived from the electrical parameters.
Electrical parameters can also be easily obtained from mature manufactur-
ing processes. However, the electrical parameters bear a complex relation-
ship with each other which complicates the task of constructing an accurate
model of them. The relationship between process parameters, on the other
hand, is relatively simple. In fact diffusion times and oven temperatures are
statistically independent which is an advantage. However, there are many
process parameters and they are typically difficult to measure. Accurate and
complete process and device models are needed to construct circuit delay
models. In order to model process variations there is a need to make many
measurements that capture all the important sources of variation. However,
the manufacturing process is a continuously evolving process and the re-
quired process data are difficult to obtain. This makes modelling in process
parameter space an unattractive proposition.

Process variations are generally modeled in physical or model parameter
space. The relationships between physical parameters are much simpler than
the relationships between electrical parameters. Many parameters of the
BSIM3 model are very closely related to physical or model parameters making
the mapping task very easy. For example, channel doping concentration and
oxide thickness are more simply related than electrical parameters such as
saturation current and threshold voltage. It is easy to characterise model
parameters from the BSIM3 model from measured electrical data.

1.5 Building statistical models

Simulation or direct measurement can be used to obtain data to build statis-
tical models of model parameters. It must however be kept in mind that data
collection cannot proceed in the ideally desired manner of measuring data
on mature processes that are later used to manufacture circuits. Rather pro-
cesses are continuously developed and measurements on production wafers
must proceed in parallel with manufacturing chips. It is here that simulation
and so-called short-loop experiments come into play.

Direct parameter extraction is described in [79]. Statistical models are de-
rived from process specifications in [83]. In this work, principal component
analysis is used to reduce the complexity of statistical models. The basic

10 Chapter 1. Introduction

idea of principal component analysis is to describe the statistical informa-
tion contained in n parameters using m independent parameters, where m is
much smaller than n. This reduces the dimensionality of the space. In [62],
an approach is described to extract process parameters from electrical test
data.

The literature lists several attempts to derive statistical models of CMOS
circuits. In [2], the objective is to relate individual transistor delays to geo-
metrical and noise parameters. The approach of [99] attempts to statistically
characterise digital IP libraries.

The work of [74] takes a different approach and eschews the use of principal
component analysis citing the reason that the statistical data is too hetero-
geneous to permit the use of principal component analysis. Therefore they
propose a “direct sampling” methodology, wherein they avoid the use of er-
roneous statistical inferencing and rely as far as possible on the data itself.
They characterise a statistically significant number of data sites and build
a device parameter set for each site. For each physically distinct site, they
transform the collected data to a SPICE [46] set. Then they conduct SPICE
simulations on a few illustrative sample circuits (such as an inverter) with
the collected SPICE data sets.

There are several ways to model the joint probability density function of
process parameters. The most obvious way is to model the distribution as a
multi-variate normal distribution, but other possibilities including a nested
distribution are possible [34] in order to better handle correlations between
these parameters, such as the well-known dependence between threshold volt-
age and gate-oxide thickness.

1.6 Modelling circuit responses to process vari-

ations

The output delay of a circuit can be seen to be a function of the design
parameters, and the process and environmental parameters. If we denote
delay of the circuit by z then we can express z as

z = F (d, p), (1.4)

1.6. Modelling circuit responses to process variations 11

where d is the vector of design parameters (the lengths and widths of indi-
vidual transistors), and p is the set of process parameters. The function F is
conceptual and can be thought of as a simulator or a response surface model
constructed from measured data.

The traditional means of calculating circuit responses to process variations
has been the tool, SPICE [46]. SPICE is a circuit simulator and would ap-
pear to be the ideal candidate to propagate process variations to the output
of circuits. An approach is presented in [90] that incorporates statistical
information into SPICE models. The simulator solves differential equations
representing the relationships between circuit parameters and is very expen-
sive computationally. However, it is used as a gold standard in the industry.
The high computational requirements of SPICE have led to the development
of less accurate simulators which save computation time. These simulators
use response-surface models which are polynomial approximations to circuit
data, as a replacement to the complex equations used in SPICE. For example
a response surface model suggested in [27] uses a quadratic approximation to
model design parameters and a linear approximation to model process and
operating parameters:

r = α + βT d +
1

2
dT τd + ξT p + ε(d, p). (1.5)

In the above equation d stands for the design parameters and p stands for
the process variations. The use of linear response surface models to perform
statistical design analysis of large logic circuits is illustrated in [59] which also
studies the impact of process variation on circuit performance. The construc-
tion of response-surface models has been the subject of much study. Latin
Hypercube sampling [28] attempts to place points throughout the parame-
ter space and thus construct more accurate models. Response-surface model
construction can also be time-intensive. Let us present a concrete example
of obtaining a linear model of gate delay variation with respect to Leff .

An elaborate derivation is given in [76] to model the dependence of gate delay
on the length of the gate. We shall recount the salient details of the analysis
of [76]. According to the compact gate delay model, we can write the delay
of an individual CMOS gate as follows:

d =
CLVdd

n
(I−1

dn + I−1
dp). (1.6)

12 Chapter 1. Introduction

In the above equation, Idn and Idp are drain currents of NMOS and PMOS
transistors, Vdd is the supply voltage, n = 3.7 and CL is the load capacitance.
The saturation current is expressed as follows:

Idsat ≈ L−0.5
eff T−0.8

ox (Vdd − Vt). (1.7)

Assuming that Leff ≈ Lgate = L we can write CL ≈ L.W.Cox. Finally we
arrive at

d = kL1.5. (1.8)

If we imagine a gate to be driving another gate as in a path of gates, then
we must interpret equation (1.6) in terms of CL being the load capacitance,
and Idn and Idp being the drain currents of the driving gate. In light of this
(1.8) must be interpreted as follows:

d = kL0.5
driverLload. (1.9)

The path delay is simply the sum of the delays of the gates in the path and
can be written as follows:

d = k.

i=n
∑

i=1

L0.5
i Li+1. (1.10)

We can now write the first-order expansion of the delay of a gate around its
nominal point as follows:

di = d0 +
∂d

∂Li
∆Li +

∂d

∂Li+1
∆Li+1. (1.11)

Differentiating (1.9) we obtain

di = d0 +
0.5d0

L0
∆Li +

d0

L0
∆Li+1, (1.12)

where d0 and L0 are nominal values of the delay and length of the gate
respectively.

The above derivation can be performed with regard to the other global
sources of variation to obtain a linear model for gate delay variation. We
shall revisit this model in Chapter 4.

1.7. Outline of this thesis 13

1.7 Outline of this thesis

This thesis deals with the problem of determining the probability distribu-
tion of circuit delay for a combinational circuit given certain assumptions on
the nature of the random phenomena affecting the delay of individual cir-
cuit components. As described previously, there are many different kinds of
manufacturing variations and considerable research effort has been devoted
to quantifying them. However, the most complicated statistical model that
one can come up with that covers the entire gamut of manufacturing varia-
tions does not lend itself to efficient implementation at the level of statistical
timing analysis. In practice therefore we must make trade-offs between the
accuracy of the statistical model and the efficiency of its implementation in
a circuit consisting of thousands of circuit elements. This thesis is an effort
in this direction.

In chapter 2, we review existing literature on the statistical modelling of
delay in a combinational circuit. We introduce the concept of a timing graph.
Then we relate the timing analysis problem for combinational circuits to the
PERT (Performance Evaluation and Review Technique) problem. This latter
problem is well-studied in the operations research literature. We study how
the results of this body of work impinge on our own research.

In chapter 3, we consider a relatively simple model that assumes that paths
in the circuit are correlated only due to path sharing(i.e., the delays of gate
elements are independent random variables). We come up with a statistical
timing method to determine the circuit delay distribution curve. The model
is shown to be very time-consuming for real circuits, but has some redeeming
features such as being able to handle any sort of distribution for the gates.
We also show how to come up with upper and lower bound curves on the
real probability distribution of circuit delay.

In chapter 4, we consider a more refined delay model. This is the model
that we employ for the remainder of the thesis. We show how this model
captures two different types of correlation - that induced by path sharing and
that induced by spatial correlation of component delays. The implications
of this model are considered and its weaknesses discussed. We show how
the problem of calculating the circuit delay distribution can be reduced to
computing the weighted volume of a polytope in an appropriately defined
parameter space.

14 Chapter 1. Introduction

In Chapter 5, we begin by exploring an elegant algorithm to solve the yield
estimation problem defined in Chapter 4. The problem involves integrating
a function over a polyhedral domain and is known to be computationally
difficult. Hence any algorithm that computes the result to within a bounded
error will have to be of exponential complexity. We discuss the exponential,
but elegant, algorithm of Cohen and Hickey. We also discuss the use of
numerical integration algorithms.

Chapter 6 marks the heart of the thesis. We start by discussing algorithms
to find the maximum volume ellipsoid that can be inscribed within the yield
polyhedron. The ellipsoid is then used as a surrogate for the yield polyhedron
in both direct and indirect ways. As a direct surrogate, the ellipsoid is taken
to be the yield body itself, and integration is performed over it. While
integration over an irregular polyhedron is a complex task, there are good
algorithms for integrating over an ellipsoid. However, the yield value returned
by integrating over an ellipsoid is only a lower bound on the true yield.
Therefore we change tack, and investigate how to use the ellipsoid in an
indirect way to enhance Monte-Carlo methods. Two novel ways of using the
ellipsoid to construct Monte-Carlo methods of low variance are described.
The second of these methods is intended for use especially at low yields (and
very fast circuits).

In Chapter 7, we return to the theme of integrating over the ellipsoid. We try
to address the main problems of numerical integration techniques discussed
in Chapter 6 - namely the rapid increase in the number of points needed for
integration as the number of dimensions in the integral increases. Specifically,
we discuss the low variance Monte-Carlo spherical integration method of Alan
Genz [31],[32]. The method’s various redeeming features are discussed. We
show that it is polynomial in the number of dimensions, a highly desirable
property considering that we may have to deal with a lot of dimensions to
fully characterise random phenomena on the chip.

In Chapter 8, we show how to use the eigenvectors and eigenvalues of the
maximum volume ellipsoid that fits in the feasible region, to tune the circuit
so that its yield improves. The eigenvector corresponding to the smallest
eigenvalue is shown to be the most promising direction of yield improvement
under certain conditions while the eigenvector corresponding to the largest
eigenvalue is the least promising direction for yield improvement.

Chapter 2

The PERT problem

2.1 Introduction

The complexity of modern manufacturing processes and the amount of sta-
tistical information that characterise them means that there could be many
different statistical timing models that we could use to characterise the delay
of each circuit element. The choice of statistical model directly impacts the
complexity of the statistical timing procedure. In this chapter, we shall lay
the groundwork for the remaining chapters. We shall introduce the concept
of a timing graph for static timing analysis [39] and show how it is closely
related to the project completion diagram of the PERT problem. The PERT
problem is a longstanding area of research in the field of operations research
and we review the literature from operations research to see how it might
impact our own problem.

A brief history of research into the PERT problem is presented followed by
a theoretical result that has negative implications for the problem we intend
to solve. We end the chapter by reviewing the different techniques used in
statistical timing analysis, and consider the pros and cons associated with
these techniques.

15

16 Chapter 2. The PERT problem

a

b

c

d

e

f

g

AND

AND

OR

Figure 2.1: A simple combinational circuit.

2.2 Timing graph

Consider the logic network shown in Figure 2.1. For every gate in the network
there exists a signal propagation delay from every input of the gate to the
output of that gate. This signal propagation delay is usually different for
different input-output combinations, and also depends on whether the signal
itself is on a rising or falling transition. Further signal propagation delay
depends upon the slew of the input signal, or in other words the slope of the
rising or falling transition. The timing analysis problem is to determine
a lower and upper bound on the delay of the entire circuit given the input-
output delays for every gate.

Given the dependence of gate delay on the logical values of the inputs and
the nature of the input transitions, it might seem that timing analysis should
be performed for all possible logic inputs. However, this is computationally
prohibitive as there are 2n different input combinations possible where n is the
number of inputs. Therefore both static timing analysis and statistical static
timing analysis ignore the effects of logic on gate delay. This simplification
makes the static timing analysis problem tractable but as we will see later,
the statistical timing problem remains non-trivial.

We can represent the timing information contained in a logic network in the
form of a timing graph shown in Figure 2.2. For real circuits, timing edges
are also introduced for each wire delay but this is not shown in Figure 2.2.
The timing graph can be defined as follows:

2.3. The PERT problem 17

a

b

c

d

e

f

g

1

2

1

3

2

1

Figure 2.2: Timing graph corresponding to the circuit in Figure 2.1.

Definition 2.1: A timing graph G corresponding to a logic network C con-
sists of a set V of nodes and a set E of edges such that every signal line in C
is represented as a node in V and every input-output pair of every gate in C
is represented as an edge in G. The signal propagation delay associated with
an input-output pair is represented as a weight on the corresponding edge in
G.

Figure 2.2 represents a timing graph corresponding to the logic network of
Figure 2.1. With a slight modification, it could just as easily be a project
diagram in the context of the well-known operations research concept called
PERT (Performance Evaluation and Review Technique). PERT diagrams
have “tasks” and “task durations” and precedence relations between different
tasks. The problem in PERT is to determine the project completion time.
There would thus seem to be an analogy between PERT and our own problem
of determining the output delay of a given logic network. We shall explore
PERT in more detail, and study long-standing techniques used to solve this
problem and see how they might be relevant to our situation.

2.3 The PERT problem

A variety of approaches have been proposed in the literature to tackle the
problem of statistical timing analysis. There has been a research effort in the

18 Chapter 2. The PERT problem

S EA2

A3

A4

A5

A1

1

2

2

3

2

2

d(w)d(v)

d(u)

Figure 2.3: A PERT task graph.

domain of operations research (PERT) to characterise the project completion
time probability distribution. The domain of this research is very close to the
problem considered in this thesis; however, the assumptions do not always
carry through from one domain to another.

Let us begin by defining the PERT problem more accurately. PERT refers
to the Performance Evaluation Review Technique and was developed by op-
erations researchers to deal with the growing complexity of project manage-
ment. A graph is defined where the edges represent project tasks and the
nodes points at which some tasks end and others begin. A task duration is
associated with each task. The problem for the operations researcher is then
to determine if the project network so defined has an acceptable completion
time. A task graph relevant to PERT is shown in Figure 2.3. [6] is a recent
survey on the techniques used to solve the PERT problem.

2.4 The PERT problem and Combinational

logic networks

As has already been mentioned in the introduction to this chapter, there is
a strong similarity between PERT networks and (combinational) logic net-
works. This similarity becomes stronger when one ignores the logic of the
gates in a logic network. This simplification, without which even static tim-
ing analysis would be a computationally prohibitive task, is widely assumed
in the literature dealing with statistical timing analysis of digital circuits.

2.5. Solving the PERT problem 19

There are some notational differences between PERT networks and logic net-
works but most of them are superficial. Most PERT networks have a source
node and a sink node, whereas logic networks have many primary inputs
and usually more than one output. One could transform a logic network
into a PERT network by creating a fictitious source node and joining it to
all the primary inputs of the circuit. Similarly one can create a fictitious
sink node and join all outputs to it. Thus there is a clear correspondence
between requiring that all signals arrive at their outputs in the logic network
by a certain time, and requiring that the PERT project completion time
not exceed a given time. The PERT literature has two ways of specifying
a PERT diagram: either the nodes represent tasks and the edges represent
the precedence relations between tasks, or the edges represent tasks and the
nodes determine the point when some tasks end and new ones begin. The
latter model corresponds very closely (except for source and sink nodes) to
our notion of a timing graph but this correspondence is not crucial to estab-
lish the equivalence between PERT and the timing analysis problem in logic
network. This is because [6] has shown that PERT networks with delays on
their nodes can be transformed into networks with delays on their arcs and
vice-versa.

The PERT problem has been studied in a wide variety of contexts. Re-
searchers have studied the distribution of project completion time assuming
project delay distributions to be Gaussian, beta, exponential or gamma dis-
tributions. Discrete distributions have also been the subject of study [58].

2.5 Solving the PERT problem

Solving the PERT problem in the deterministic case is easy - indeed, one can
adopt the same approach as used in static timing analysis. First one levelizes
the network. Starting at the lowest level (closest to the source node), one
determines the earliest start time of a task as the maximum of the completion
time of the tasks preceding the given task. Then one repeats this process for
nodes at successive levels, and thus one can arrive at the sink node. Figure
2.3 shows a node A4 in a PERT network with weighted edges leading into it
from nodes A1 and A2. Let us denote the tasks on these edges as u and v.
There exists a task w leading from node A4 to node E. The earliest time at
which a task leading out of A4 can start is given by:

20 Chapter 2. The PERT problem

TA4 = max(TA1 + d(u), TA2 + d(v)). (2.1)

Here d(u) and d(v) represent the durations of the tasks u and v respectively.
The above equation denotes a recurrence where the start time at a given
node is established in terms of the start times at its predecessor nodes.

The probabilistic case of the above equation is considerably more involved
because the basic variables become random variables instead of simple de-
terministic variables. The operations of addition and maximisation, trivial
in the deterministic case, become more involved in the probabilistic case as
we are concerned with the addition of random variables and maximisation
of several random variables. The output project completion time becomes
a projection completion time distribution. But if the addition and maximi-
sation operations on random variables were the only complication, proba-
bilistic PERT would still remain a tractable problem. The real killer is the
appearance for the first time of correlation between random variables. It is
correlation which makes the probabilistic PERT problem truly hard, as the
discussion in the next section will further dwell upon. In this thesis, we shall
be concerned with solving the probabilistic PERT problem in the context of
statistical timing analysis problem for digital integrated circuits.

Given the complexity of the PERT problem even in the case of simple discrete
distributions (which we shall postpone to the next section), many researchers
[65], [26], [52], [49], [82] have turned their attention to providing good upper
and lower bounds for the distribution of the project completion time. We
shall describe the salient aspects of the work of these researchers. First we
shall need some definitions:

Definition 2.2 [87]: (Stochastic ordering) A random variable X is said to be
stochastically smaller than another random variable Y in the strong sense,
if FX ≥ FY , where FX is the cumulative distribution function of X, i.e.,
FX(z) = P (X ≤ z) and FY is the cumulative distribution function of Y . X
would be stochastically larger than Y if FX ≤ FY . The concept of stochastic
ordering is illustrated in Figure 2.4.

An alternate definition of stochastic ordering in the strong sense is the fol-
lowing:

Definition 2.3 [87]: X is said to be stochastically smaller than Y in the
strong sense if the expectation E(g(X)) ≤ E(g(Y)) for all increasing func-

2.5. Solving the PERT problem 21

tions g such that both expectations exist. A weaker form of stochastic or-
dering is the following:

Definition 2.4 [87]: X is said to be stochastically smaller than Y in the
increasing and convex sense if the expectation E(g(X)) ≤ E(g(Y)) for all
increasing and convex functions g such that both expectations exist.

An early attempt at statistical timing analysis for digital circuits was made
by [65]. This work recognises the complexity of the problem and makes clear
that even if one were to assume relatively simple distributions for the delays
of the tasks, one still has no guarantee of obtaining a closed form solution to
the problem of determining the output delay distribution curve (here project
completion time and output delay should be taken to mean the same thing).
The paper makes very general assumptions about the correlation between
task completion times - no correlation structure is assumed. With these
assumptions, [65] derives an upper bound on the expected tardiness of the
project completion time as a function of time t, E(max(0, Cmax(p)−t)) where
Cmax is the project completion time.

1.0

Y

Probability

Delay

X

Figure 2.4: Stochastic Ordering. In the figure the cumulative distribution curve
marked X is stochastically smaller than the curve marked Y because P (X ≤ t) >
P (Y ≤ t) ∀t.

While the bounds of Nadas [65] are weak because they are based on convex
stochastic ordering, the bounds of Kleindorfer [52] are based on stronger
stochastic ordering. Given random variables X and Y , Kleindorfer’s method
makes use of the following set of inequalities:

22 Chapter 2. The PERT problem

FX .FY ≤ Fmax(X,Y) ≤ min(FX , FY). (2.2)

The method first topologically sorts the nodes of the PERT network. For
i, 1 ≤ i ≤ n let i denote an activity which starts at node ui and ends at node
v. Then given upper bound distributions for the start times of the activities
i, Kleindorfer’s method constructs an upper bound

FV =
i=n
∏

i=1

[FUi
∗ Fi]. (2.3)

In order to understand the above equation let us look at what happens at the
level of random variables representing completion times of all activities at a
node. Let Ui represent the start time of activity i. This is also the completion
time of all activities leading upto the node Ui. Then the completion time of
all activities leading upto V , or the start time of any activity beginning at
V is given by

V = max(Ui + d(i)), 1 ≤ i ≤ n, (2.4)

where d(i) denotes the duration of the task i. The convolution operation
of distribution functions represents the addition of the corresponding ran-
dom variables. For random variables Ui and d(i), the distribution function
corresponding to Ui + d(i) is given by FUi+d(i) = FUi

∗ Fd(i) where the ∗ op-
erator denotes convolution. It is here that the crux of Kleindorfer’s method
may be found: the max operation over several random variables is replaced
by the product operation over the corresponding distribution functions in
accordance with the basic bounds described above. The operation we have
described for a single node is carried out in topological order for the en-
tire network, giving us a stochastic upper bound for the project completion
time distribution. For the stochastic lower-bound, the product operator is
replaced by the point-wise minimum operator.

Dodin [26] considers reducing the given PERT network to a series-parallel
network to which the basic bounds of equation (2.2) are applied.

2.6. Theoretical complexity of the PERT Problem 23

2.6 Theoretical complexity of the PERT Prob-

lem

It is useful to study the complexity of the PERT problem in a deep com-
putational sense because it gives us a direct insight into our own problem.
Hagstrom [36] has shown that the problem of determining even a single point
on the completion-time distribution of a PERT network, in general, is #P-
complete even if we assume that each task has a two-point distribution (i.e.,
a discrete distribution with two points in the sample-space). The complexity
may be reduced in case the project tasks have more complicated distribu-
tions since the encoding of more complicated distributions takes more space
than for simpler distributions. However, there is compelling evidence that
the PERT problem remains hard even then, since there is an exponential
number of equally critical paths in the network. Further even if project tasks
have independent distributions (a hugely simplifying assumption in the case
of PERT and digital circuits), the paths will still be correlated on account
of path sharing. This will complicate the task of finding the output delay
distribution.

2.7 Previous research in statistical timing anal-

ysis

Most methods in statistical timing analysis in the context of digital circuits
can be divided into two broad categories: path-based approaches and block-
based approaches. Path-based approaches follow in the tradition of research
into PERT networks - critical paths starting from primary inputs to outputs
are identified according to well-known algorithms and then statistical timing
analysis is performed on these paths. The conceptual framework of path-
based approaches is shown in Figure 2.5. Note that the path collection
process is separated from the actual statistical-timing process. This clear
division of labour permits us to use sophisticated path-collection algorithms
in conjunction with sophisticated statistical timing algorithms. Path-based
methods are also well-adapted to handling correlations between gate delays
and path sharing. The downside of using path-based methods is the sheer
number of paths that the designer must contend with for even a moderate-

24 Chapter 2. The PERT problem

sized circuit.

Nadas [65] was among the first to propose a path-based approach to solve
the statistical timing analysis problem in all its generality. His work assumes
that the correlation dependence between gate delays is unknown and also
takes into account correlations due to path sharing. Unfortunately, with
these general assumptions, only very weak bounds can be derived for the
probability distribution of output delay. The work of [39], [40] must also be
included in the list of path-based statistical timing approaches. The efficient
generation of the top K critical paths in a circuit is central to path-based
approaches; this topic is covered by [97],[98]. Two flavours of the critical
path generation problem are presented: the first collects all paths with delays
greater than a given threshold and the second collects the top K paths in
decreasing order of path delay.

Path Collection Engine

Statistical Timing Analyzer

Figure 2.5: Conceptual illustration of path-based approaches.

Block-based methods, on the other hand do not generate paths in the circuit
but work through a process similar to depth-first search to calculate the final
probability distribution. Delay equations are established for individual gates

2.7. Previous research in statistical timing analysis 25

and the final output-delay distribution is calculated by a tree-walk. The main
advantage here is undoubtedly the fact that millions of critical paths are not
generated, but the significant downside is the inability to handle correlations
in a computationally efficient manner. As will be shown subsequently, these
methods are exponential even if we were to restrict ourselves to correlations
due to path-sharing. The basic idea behind block-based methods is illustrated
in Figure 2.6. [18] represents an approach to block-based statistical timing.
[47], [48], represent block-based approaches to statistical timing analysis that
can additionally focus on false-path removal which is not covered in this
thesis.

The papers [47], [48] use the “delay lumped at a gate paradigm,” which is
however not a serious restriction in their analysis. However, they do make
the strong assumption that gate delays are bounded random variables. Their
method of statistical timing analysis essentially consists of a symbolic sim-
ulation of the circuit with delays sampled from the respective distributions,
together with a pruning technique. More recent block-based approaches in-
clude the bounds approach of [3] which tries to construct an upper and lower
bound on the circuit delay distribution. Novel block-based approaches based
on discrete computations are described in [55], [66], [67]. The papers [55] and
[67] take into account reconvergent path correlations but not correlations due
to delay dependencies.

There has been a fair amount of research dealing with the problem of re-
moving false paths from the analysis. False paths are those which are never
sensitized by the logic of the circuit, and can affect the delay distribution if
they are critical. [47], [48], [91], [54] have all looked at the false-path problem
and come up with methods to remove them from consideration.

It has been the focus of many researchers to accurately model correlations
in the circuit, see for example [92], [55], [66], [67], [53]. Most researchers
in PERT assume that the activity durations are independent. On the other
hand, this assumption is not so common among researchers in statistical
static timing analysis. This means that researchers in statistical static tim-
ing analysis try to contend with correlations between paths due to path shar-
ing as well as correlations between paths due to correlations between gate
propagation delays. The complexity of this problem has made Monte-Carlo
analysis a popular choice with some researchers.

Monte-Carlo analysis is well known to handle any kind of statistical prob-

26 Chapter 2. The PERT problem

X

Y

Block1

Block2

random variables representing
delay distributions

Z = max(X,Y) + d(G)
G

Figure 2.6: Conceptual illustration of block-based approaches.

lem - it is a brute force method that never fails, and in some cases may be
the only recourse available. The method consists of several trials, each of
which is a full-scale circuit simulation. In each circuit simulation, each signal
propagation delay is sampled from its distribution, and then a static timing
analysis is performed to get the output delay. For example [10], [15] follow
this approach. The procedure is repeated over thousands of trials, and the
output delay distribution is deduced from the collection of output delays.
The main advantage of Monte-Carlo analysis is that it is linear time, and
can handle any sort of problem. The main disadvantage is that one cannot
ascertain (without a knowledge of the result!) the number of trials needed
to bound a probabilistic error. Note that we cannot do better than a prob-
abilistic error, because of the #P-complexity. Let us describe Monte-Carlo
analysis for a circuit.

Suppose we define a delay requirement for the output of a circuit. We intend
to determine the percentage of manufactured circuits that are likely to pass
this delay requirement. Let the pass percentage be p. In order to determine
p, we conduct n simulations of the circuit. In each simulation we sample the
delays of every arc in the timing graph (let us assume that the arc delays are
independent random variables) and perform a static timing analysis with the
sampled delay values. Let us define random variable Zi for the trial i, and

2.7. Previous research in statistical timing analysis 27

set it to 1 if the output delay in this trial passes the delay requirement, and
set it to 0 otherwise. Next let us define the random variable Z as follows:

Z =
Z1 + Z2 + . . . + Zn

n
. (2.5)

We can show that Z obeys a binomial distribution with mean µ = p and
variance, σ2 = p(1−p)

n
. We can now use Chebyshev’s inequality to determine

a lower bound on the number of trials n needed to ascertain p with a specified
error and at a specified confidence:

Pr(|Z − p| ≥ εp) ≤ (σ)2

(εp)2
. (2.6)

The left-hand side of the above equation represents the probability of error of
the estimate Z where error is measured as the absolute value of the deviation
of Z from the true value p. Chebyshev’s inequality provides an upper bound
on the probability of the error. In order to ensure that we have a confidence
of 100c percent in the estimate Z with an accuracy of 100ε percent we must
ensure that the worst-case probability of error does not exceed (1 − c). In
other words, the right-hand side of the above equation must be less than
or equal to (1 − c). Substituting for σ2 in the right-hand side of the above
equation, we have

(1− p)

np(ε)2
≤ (1− c). (2.7)

Setting c = 0.99 and ε = 0.01 this translates to

n ≥ 1− p

p
× 106. (2.8)

Thus the number of trials needed for a certain accuracy and confidence in the
distribution is dependent on the yield which is the quantity that is sought to
be estimated. If we take the yield p ≈ 0.9 then we will need about 100,000
trials. The interesting thing about this result is that the number of trials
for a certain confidence and accuracy needed does not depend on the size of
the circuit directly, but instead depends on the yield itself. This represents
the main shortcoming of Monte-Carlo analysis - if the quantity sought is
a very small probability then one will need a large number of simulations

28 Chapter 2. The PERT problem

to approximate its value with low relative error and high confidence. The
reader may be tempted to look at the form of equation 2.8 and conclude
that for very low yields p, it might be advisable to redefine the Monte-Carlo
experiment and try to estimate the probability of failure q = (1− p). Then
1−p

p
in 2.8 becomes 1−q

q
which is a much smaller quantity. Thus it appears

that a mere redefinition of the Monte-Carlo experiment could reduce the
number of trials needed. However, this is not the case. The key here is
to note the role of ε, the relative error. If the probability of success is 1
percent, and ε = 0.01, then the absolute error made in the estimate of p is
required to be no larger than εp = 10−4. To achieve this same error in the
probability of failure experiment, ε cannot be 1 percent, as this would make
the absolute error ≈ 10−2. Therefore in the probability of failure experiment,
a new relative error of magnitude equal to one-hundredth the relative error
in the probability of success experiment must be considered. This smaller
relative error cancels the gain obtained by working with the probability of
failure rather than that of success.

The above analysis shows that essentially the variance σ of the binomial
random variable Z controls the error characteristics of the simulation. It is
instructive to note that the error of the simulation scales as n−1/2 where n is
the number of trials. In other words, if were to simulate the circuit for 100n
trials, then the simulation error would decrease to a tenth of its value at n
trials. This is independent of the dimension of the problem (i.e., number
of gates in the circuit) and illustrates a fundamental property of Monte-
Carlo simulation - the error rate scales as n−1/2 independent of dimension
[38]. In contrast numerical integration methods based on constructing a
uniform grid for sampling suffer from a n−1/d error-scaling rate, which is
clearly unsatisfactory at higher dimensions.

2.8 Quality of statistical timing methods

Statistical timing methods differ from each other in terms of the modelling
assumptions they make, the quality of the results they generate and ability
to produce information useful for synthesis. In this section we shall describe
these aspects in greater detail, and for the rest of the thesis we shall judge the
algorithms we develop in terms of the quality criteria outlined in this section.

2.8. Quality of statistical timing methods 29

Model Sophistication: It is not easy to construct a statistical model for
the interaction between process variations and the delays of gates on a chip.
There are many timing models in existence in literature, and they vary from
assuming gate delays to be independent random variables to those that as-
sume correlations between gate delays based on an underlying dependence on
the same process parameters. Some models assume that gate delays vary lin-
early with process variations, which is reasonable if the process variations are
small. Other methods try to model the non-linear effects of process variation
on circuit behaviour, with increased complexity.

Computational Complexity: Depending on the models they employ sta-
tistical timing methods could be linear in the size of the circuit, or they could
be exponential. The latter class of methods usually correspond to more real-
istic timing methods, and capture structural correlations between delays of
the gates. The statistical timing problem considering correlations is a hard
problem in a deep computational sense.

Error theory: It is reasonable to expect that the output delay distribution
produced by the statistical timing method may differ from the true distribu-
tion. It is crucial to know the nature of the error. Most analytical methods
of computing the distribution tend to not have a very good error theory.
Usually these methods perform recursive calculations, and errors are made
at every stage of the recursion. It is usually hard to assess how these errors
propagate through the circuit. The final output delay distribution curve may
look similar to one generated by exhaustive Monte-Carlo simulation, but the
confidence in the accuracy of the curve generated by analytical techniques is
not very great. Monte-Carlo based methods have a good error theory - no
matter what the current estimate of yield is, it can always be improved by
increasing the number of simulations.

Tuning information: The real benefit of statistical timing tools can justifi-
ably be measured in terms of their ability to provide information for tuning a
circuit to improve yield. Some statistical timing methods are better equipped
to handle this problem than others as information relevant to tuning is com-
puted during statistical timing analysis. Block-based timing methods typ-
ically are unable to compute the statistical timing cumulative distribution
curve accurately. However, they possess the nice property of being amenable
to incremental timing analysis - if a small change is introduced into the circuit
by changing the delay of a certain gate, then only the portion of the circuit
impacted by the gate in question needs to be recomputed. This means that

30 Chapter 2. The PERT problem

existing information can be re-used to perform optimisation. The inaccuracy
of block-based statistical timing might make some optimisation moves unpro-
ductive, and others more productive. Path-based statistical timing methods,
in contrast, can perform more accurate statistical timing but they are not
amenable to incremental statistical timing. If the distribution of a certain
gate delay is changed, then new paths will have to listed and statistical tim-
ing performed on the whole set of paths again in order to determine the new
statistical timing curve. However, since path-based statistical timing is more
accurate, the yield improvement directions are likely to be much more reli-
able which means that relatively few optimisation moves will be needed to
achieve good results.

Chapter 3

A simple timing model

In this chapter we work with a simple timing model and derive some useful
results. The timing model we use is one where the delays of the gates are
independent random variables - this means that the correlation between path
delays is due only to path sharing. This model is identical to the one taken
in PERT research, and it has been shown by Hagstrom [36] that determining
the cumulative distribution function of the output delay distribution is a
#P-complete problem.

Let us represent the delay of an edge in the timing graph by a triangular
distribution. A triangular distribution is chosen because it is “Gaussian-
like” in the sense that it possesses a peak, but we are also interested in the
fact that the distribution has a finite domain. Figure 3.1 displays a triangular
distribution. We seek to answer the following question: Given that the delay
of each edge in a timing graph is a random variable obeying a triangular
distribution, determine the cumulative distribution function of the output
delay of the timing graph.

It is instructive to note that if we take each gate delay distribution to be
a triangular distribution, then we can in theory compute the maximum of
two random variables in closed form. However, the distribution of the max-
imum quickly becomes more and more cumbersome as we traverse deeper
and deeper into the circuit. Therefore we shall not take this route. A more
appealing route suggests itself when we take into account that the domain of
the distribution is finite - we can discretise the distribution. After discreti-
sation the maximum and addition operations become much simpler as they

31

32 Chapter 3. A simple timing model

will need to be performed over discrete random variables.

In Section 3.1, we describe the basic technique as applied to fanout-free
circuits, namely circuits where the output of each gate feeds only to at most
one other gate. We will also introduce certain operations designed to improve
the efficiency of the procedure. In the next section, we show how to extend
the technique to circuits that are not fanout-free. The infeasibility of the
technique will become clear for circuits that have a large amount of path
sharing. In the final section, we borrow on the notion of stochastic ordering
introduced in Chapter 2, and show how to develop upper and lower bounds
on the delay distribution curve at the output.

3.1 The distribution used

The arrival time of a signal at the output of gate i (with two-inputs) can be
modelled as

Zi = max(Xi, Yi) + G. (3.1)

In the above equation we ignore the fact that there could be different delays
from inputs to outputs. A more realistic formulation is the one given below:

Zi = max(Xi + d(Xi → Zi), Yi + d(Yi → Zi)), (3.2)

where Xi and Yi are the latest arrival times of signals at the inputs of the
gate, d(Xi → Zi) is the propagation delay from input Xi to Zi and likewise
for d(Yi → Zi). Zi is the latest arrival time at the output of the gate.
This formulation of arrival time of the output essentially means that we
assume that any transition on either of the inputs gets transferred to the
output and we are calculating the latest time beyond which there are no
further transitions at the output (i.e., the time at which the output becomes
stable). Since the operations involved in (3.2) and (3.1) are maximisation
and convolution, we stick with the simpler (3.1) in the following.

We model the delay of a gate as a random variable obeying a triangular
distribution centered around a mean in the interval (mean - a, mean + a)
as in Figure 3.1. Our choice of a triangular distribution is motivated by the
fact that the delay of a gate cannot range from -∞ to +∞ but instead must

3.2. Computing delay random variables 33

2010 30

0.1

11 13 15 17 19 21 23 25 27 29

0.06

0.10

0.18

 0.14

0.02

Figure 3.1: A triangular distribution and its discretised form.

have finite minimum and maximum values, and that the delay distribution
must have a single peak. We would like to emphasize that the techniques in
this paper can be extended to any finite-domain distribution. Consider the
distribution shown in the figure below in the range (10ps,30ps) centered at
20ps.

In order to discretise the distribution we divide the interval (10,30) into 10
equal parts (10,12),(12,14)...(28,30). We concentrate the probability of the
random variable lying in any one of these intervals in an impulse lying at
the center of that interval. The height of an impulse is the area of the
probability distribution curve over the corresponding interval range. For
example the impulse corresponding to the range (10,12) is of height 0.02
which is the probability that the delay lies in the interval (10,12). The idea
here is that if one were to divide the interval into a sufficiently large number
of sub-intervals, then the discretised distribution will represent in a fairly
accurate manner the continuous distribution. Since we calculate a train of
impulses to represent the probability distribution of the delay at each gate
of the circuit, we call this the “impulse-train” approach.

3.2 Computing delay random variables

In order to compute the delay using the formula of (3.1) we need to compute
a maximisation followed by a convolution. Let X and Y be discrete random
variables with sample spaces S(X) and S(Y) of sizes m and n respectively.
Let S(X) = {pi, 1 ≤ i ≤ m} and S(Y) = {qi, 1 ≤ i ≤ n}.
Then Z = max(X,Y) is a random variable represented by at most m+n
impulses, and we can compute the probability that Z = k, Pr(Z = k) as

34 Chapter 3. A simple timing model

follows:

Pr(Z = k) = Pr(X < k)Pr(Y = k)

+Pr(X = k)(Pr(Y < k) + Pr(Y = k)). (3.3)

Here
Pr(X < k) =

∑

pi<k

Pr(X = pi). (3.4)

The distribution for the random variable Z = X + Y can be computed by
performing a discrete convolution as follows:

Pr(Z = k) =
∑

pi∈S(X)

Pr(X = pi)Pr(Y = k − pi). (3.5)

Note that Pr(Z = k) is non-zero only for those values of k that are given by
the sum of some pair of values in the sample spaces of X and Y.

It must be noted that the equations for the maximisation and convolution
operations are merely the discrete versions of their continuous counterparts.
The discretisation of the distributions enables us to carry out the maximi-
sation and convolution operations efficiently for any type of distribution as
opposed to an analytical approach that attempts to compute closed-form
expressions for the delay. In [8], an analytical approach is proposed assum-
ing that the gate delays are Gaussian and noting that the maximum of two
Gaussian random variables is approximately Gaussian. However, this ap-
proximation is only valid for certain situations and it is not clear how the
distortions will propagate through the circuit.

3.3 Computational complexity

Let X and Y be two discrete random variables with sample space sizes
S(X) = m and S(Y) = n. Then the maximisation operation takes O(mn)
time and the the random variable Z = max(X, Y) has a sample space of size
O(m+n). Thus the maximisation operation does not cause a blow-up in the
sample-space size. However, if Z = X + Y , then Z has a sample space size
of O(mn) and it takes O(mn) time to compute it. Thus in case of repeated
convolution, there is a potential for a blow-up in the number of impulses.

3.3. Computational complexity 35

In practice, the blow-up does not materialise because the number of distinct
values in the sample space of Z is fewer than the theoretical number, mn.
In fact, if we were to perform uniform discrete convolution where both se-
quences to be convolved have the same period, then the number of distinct
values in the sample space of Z would actually be of O(m+n). However in a
practical setting we are not always able to perform uniform discrete convo-
lution. For instance, if the gate distributions were asymmetric then it might
become necessary to position each impulse at the centroid of the correspond-
ing strip and not at its midpoint in order to ensure that the mean of the
discretised distribution is the same as the mean of the original continuous
distribution. This would make the sequence non-uniform. For signal lines
deep inside the circuit, the delay distribution becomes asymmetric even if we
started with symmetric distributions. Generally these delay distributions rise
sharply and fall off slowly due to repeated maximisation of random variables.
This is all the more reason to sometimes use non-uniform discretisation at
least for blocks deep inside the circuit. One way to get around the problem
of a blow-up in the number of impulses is to ensure that the impulses are
positioned at the integer value closest to the centroid of the strip. Then the
convolution operation would result in output impulses positioned at integer
values and the number of impulses would only grow according as the spread
of the output distribution defined as the difference between the maximum
value of the output random variable and the minimum value of the output
random variable. Thus the number of impulses at the output would again
be of O(m+n).

Even if we could ensure that the number of impulses at the output of each
gate in the circuit is of the order of the sum of the numbers of impulses at the
inputs of the gate, we could end up with nodes with a fairly large number
of impulses (such as nodes close to the primary output in a circuit with
large depth). To reduce the number of impulses for such nodes, we propose
two techniques, with contrasting properties, to combine impulses such that
the mean of the distribution is preserved and the variance is only slightly
changed. In the first technique, we combine the two impulses of height m
and n into a single impulse of height m + n located at d = mx+ny

m+n
, which

is merely the “center of mass” of the two impulses. While this operation
preserves the mean it does change the variance of the distribution. The
change in variance can be computed as follows:

36 Chapter 3. A simple timing model

δv =
(mx + ny

m + n

)2

(m + n)− (mx2 + ny2). (3.6)

After some manipulation, we have δv = −(mn
m+n

)(y − x)2. If we assume that
m > n, then δv is bounded by δv > −(n(y − x)2). Thus in a practical
scenario, we can combine impulses until the penalty in terms of variance is
no greater than a small percentage of the original variance. This technique
causes a decrease in the variance of the resulting distribution. We propose
a second technique that increases the variance of the resulting distribution
while reducing the number of impulses. In this technique, the impulse situ-
ated at y of magnitude q is combined into the impulses located at x and z
such that the mean of the distribution is preserved. To do this, the impulse
at x of magnitude p is increased to p+ q(z−y)

(z−x)
while the impulse at z of height

r is increased to r + q(y−x)
(z−x)

. The change in variance is computed as follows:

δv = q(z − y)(y − x). (3.7)

Experimental evidence indicates that the combination of these two strategies
does result in a reduction in the number of impulses without affecting the final
delay distribution too much. However one cannot indiscriminately combine
impulses using the above two techniques. An effort should be made to make
sure that the resulting impulses are located at convenient values (such as
integral values) for efficient further computation.

3.4 Reconvergent fanout

Circuits with reconvergent fanout cause the above analysis to become com-
plicated. This is because we lose an important characteristic of fanout-free
circuits, namely that the inputs to any given gate are logically independent.
A number of techniques have been proposed in the literature to deal with
logical correlations. One such technique is the supergate technique first pro-
posed by [81]. The technique consists of first decomposing the original circuit
into sub-circuits such that the inputs to each sub-circuit are logically inde-
pendent. The specific circuit decomposition scheme we use is drawn from
[14]. As in [14] we define the supergate of a node in the circuit to be the

3.4. Reconvergent fanout 37

minimal sub-circuit in the transitive fanin of the node such that the sub-
circuit’s fanins are logically independent. This technique consists of building
a lc-graph corresponding to the given circuit. The vertices of the lc-graph
are all the signals of the circuit, and an edge is inserted between two ver-
tices if and only if either the signal lines corresponding to the two vertices
are both inputs to some gate or one of them is an input to some gate while
the other is the output of the same gate. This procedure has the effect of
creating a local clique corresponding to each gate of the circuit. Theorem
1 of [14] establishes that the bi-connected components of the lc-graph are
maximal supergates (i.e., supergates that are not properly contained in a
larger supergate). Figure 3.4 shows how a simple circuit is partitioned into
supergates.

B2

B1

c

d

e

f

g

h

i

a

b

G1
G2

G3

G4

G5

Figure 3.2: A simple circuit with reconvergent fanout and supergate blocks B1
and B2.

The associated lc-graph of the circuit is shown in Figure 3.3. Note that
the node c is an articulation point in this graph (i.e., vertex whose removal
disconnects the graph). Below we present the basic algorithm used to com-
pute the output distribution for a supergate S given in the form of a set of
SuperGate expressions.

SuperGateCompute(S, BayesFactor){

Q = RepeatSet(S);

if(Q == NULL){

S’ = Evaluate(S, Q = NULL);

Scale(SuperGateLocalDist, BayesFactor);

38 Chapter 3. A simple timing model

a

c

b

d

f

e

g

h

i

Figure 3.3: lc-graph for circuit of Figure 3.4.

Combine(SuperGateGlobalDist, SuperGateLocalDist);

return;

}

if(Q != NULL){

T = NewTuple(Q);

BayesFactor = BayesFactor * P(Q = T);

S’ = Evaluate(S, Q = T);

SuperGateCompute(S’, BayesFactor);

return;

}

}

We describe how the above algorithm works in the case of our example. We
start with the set of supergate expressions S representing all the gates of
the supergate. In our example, for the supergate B2, S is given by {f =
max(c, d)+G2, g = max(e, f)+G3, h = max(f, d)+G4, i = max(g, h)+G5}
where G2 . . . G5 are the gate delay distributions of the respective gates.
Given a set of Supergate expressions S, the base set of variables is the
set of variables that do not occur on the left hand side of any equation
in S. RepeatSet(S) returns a set of variables which occur more than once
in the set S but never on the left hand side of any equation in S. For
our example set S,the base set is {c, d, e} and RepeatSet(S) returns the
set {d}. NewTuple(Q) returns a previously unused tuple from the set of
tuples associated with the distributions of the random variables in Q. The
set S ′ = Evaluate(S, Q = T)) is got by substituting each variable of Q
by the corresponding constant value from T, and then evaluating the set of

3.5. More complex supergates 39

supergate expressions where possible. This means that if we find the su-
pergate expression of the form Z = max(X, Y) + Gi where X and Y are
either base set variables or constants, we can evaluate the expression, and
remove it from the list. In our example S ′ = Evaluate(S, d = k) results
in the set {g = max(e, f) + G3, h = max(f, k) + G4, i = max(g, h) + G5}
as we could remove the supergate expression f = max(c, k) + G2. We per-
form the above steps in each recursive call until we reach a point where
RepeatSet(S) is the empty set. Thereafter, RepeatSet(S) = NULL in suc-
cessive invocations of SuperGateCompute and we arrive at a point where
there is only one expression left S. At this point we can actually evaluate
the supergate output. Having done so, we scale the impulse-train corre-
sponding to the supergate output by the computed BayesFactor using the
function Scale(SuperGateLocalDist, BayesFactor). We then combine the
locally computed distribution with a global distribution maintained at the
output. Note that the functions Scale and Combine only perform their tasks
when SuperGateLocalDist is available.

The recursion tree for our example is of depth 3. Let us evaluate BayesFac-
tor for one path in this recursion tree. In the first call of SuperGateCom-
pute(S, 1), Q turns out to be the set {d}. The second call to SuperGate-
Compute sets Q to be {f}. In the third call Q turns out to be NULL. At
this point there is only one expression left in S, i.e., i = max(g, h) + G5.
The BayesFactor used to scale SuperGateLocalDist for the supergate out-
put i is given by BayesFactor = P (f = T2/d = T1) ∗ P (d = T1). The
probability magnitude at each sample space point in the impulse-train of
i prior to scaling corresponds to the probability P (i/f = T2, d = T1).
Scaling each impulse in the train by the BayesFactor computed gives us
the joint probability P (i, f = T2, d = T1) according to Bayes product rule
P (i, f = T2, d = T1) = P (i/(f = T2, d = T1))∗P (f = T2/d = T1)∗P (d = T1).
Clearly when we are finished with all paths in the recursion tree, we will have
computed in the resulting impulse train for the supergate output i, the dis-
tribution for i without any dependencies.

3.5 More complex supergates

For supergates with many stems, the impulse-train approach becomes very
impractical and begins to become much more expensive than Monte Carlo

40 Chapter 3. A simple timing model

simulation. Fortunately we can combine Monte Carlo simulation with the
impulse-train approach. The idea here is that we sample the discrete distri-
butions at the inputs of the supergate and perform a Monte-Carlo simulation
by sampling the distributions at the gates of the circuit, and collecting the
samples at the output. The work of [55] alludes to a hybrid approach but
does not discuss how to construct a distribution out of the samples collected
at the output. We divide the spread of the distribution into several fre-
quency bins and determine the number of samples that fall into each bin.
The probability magnitude for each bin is set to the ratio of the number of
samples belonging to that bin to the total number of samples. We locate the
probability at the centroid of each bin.

3.6 Upper and lower bounds on the delay dis-

tribution

We have not so far provided any indication of the error incurred in the
discretisation process and how this error propagates through the circuit. In-
tuitively it seems as if the smaller the unit of discretisation, the lower the
error as the continuous distribution is represented far more accurately. It
turns out that we can use a result of Stoyan [87] to obtain exact upper and
lower bounds on the distribution of the output delay.

We state below the theorem of Stoyan [87] that will be of use in developing
the bounds of this section:

Theorem 3.1 Let G1 and G2 be two timing graphs with exactly the same
topology but with corresponding edges in the timing graphs labelled by dif-
ferent random variables. Let the ith timing edge in G1 be labelled by Xi

and the the same edge in G2 be labelled by Yi. Then if Xi is stochastically
smaller than Yi, for every edge i then TG1 , the random variable representing
the output delay distribution of G1 is stochastically smaller than TG2 .

In other words, if FG1 is the cumulative distribution function of G1 and FG2

is the cumulative distribution function of G2, then FG1(t) > FG2(t). This
result is intuitive because it just tells us that if all the the random delays of
all the edges of a timing graph were replaced by “faster” random variables
then the circuit would become “faster”.

3.7. Discussion 41

It remains to show that we can use the above result to develop lower and
upper bounds. Note that we are calculating an upper and lower bound
on the so-called “late-mode” arrival time at the primary output. We can
calculate similar curves for “early-mode” arrival time at the primary output.
Essentially given a random variable X having a continuous density function,
we must create a random variable Y such that Y is stochastically smaller than
X. Since we are in the discrete domain, we would like Y to have a discrete
density function. For the upper bound, Y must be stochastically larger than
X. Fortunately there is a novel way of ensuring these conditions by choosing
the points at which to discretise the distribution. In Figure 3.4, three types of
discretisations of the gate delay distribution are studied. In Figure 3.4b, each
impulse is centred at the midpoint of its interval. A distribution stochastically
smaller than the original triangular distribution results when the impulses
are centred at the left endpoint of each interval as shown in Figure 3.4c. In
other words the staircase function representing the cumulative distribution
function for the discrete density shown in Figure 3.4c is an upper bound
on the cumulative distribution function for the triangular density function
shown in Figure 3.4a. Figure 3.4d shows a discrete density function that
results in a distribution stochastically larger than the original cumulative
distribution function.

The algorithm to produce a lower bound and upper bound delay distribution
curve consists of replacing the delay random variable of each timing edge by
its corresponding discretised lower (upper) bound delay and then running
the algorithm described previously in this chapter to determine the output
delay distribution. We show computational results on an example circuit in
the set of figures below. In Figure 3.5, the upper and lower bounds are pretty
loose owing to the use of a large discretisation interval. The discretisation
interval is reduced to generate Figure 3.6, and the upper and lower bounds
become much tighter.

Note that the upper and lower staircase functions are not just shifted versions
of each other. In the general case, they could be substantially different.

3.7 Discussion

It is instructive to explore the complexity of the impulse-train (or discretisa-
tion) approach to the timing analysis problem. The problem is linear time

42 Chapter 3. A simple timing model

10 11 12 13 14 15 16

(d) concentrating impulses at right end of
each interval(c) concentrating impulses at left end

of each interval

10 11 12 13 14 15 16

10 11 12 13 14 16 15 10 11 12 13 14 15 16

10 11 12 13 14 15 16

(e) staircase functions representing upper and lower bounds
on the true cumulative distribution function

(a) original triangular distribution (b) normal discretisation

Figure 3.4: Graphical illustration of derivation of upper and lower bounds.

3.7. Discussion 43

0

0.2

0.4

0.6

0.8

1

40 60 80 100 120 140 160 180 200

Pr
ob

ab
ili

ty

Delay

UPPER AND LOWER BOUNDS

Upper Bound
Monte-Carlo

Lower Bound

Figure 3.5: Upper and lower bounds on an actual circuit. Number of impulses
used to discretise the domain of the distribution is 4.

0

0.2

0.4

0.6

0.8

1

40 60 80 100 120 140 160 180 200

Pr
ob

ab
ili

ty

Delay

UPPER AND LOWER BOUNDS

Upper Bound
Monte-Carlo

Lower Bound

Figure 3.6: Upper and lower bounds on an actual circuit. Number of impulses
used to discretise the domain of the distribution is 10.

44 Chapter 3. A simple timing model

only for tree-circuits. Let us assume that we use uniform discretisation of
the same step size to discretise the gate delay distributions. For two delay
random variables X and Y with densities represented by m and n impulses
respectively, X + Y can be computed in O(mn) time, and is represented by
O(m + n) samples. Similarly max(X, Y) can be computed in O(mn) time
and can be represented by O(m+n) samples. Therefore the entire procedure
can be completed in linear time. This pretty picture is disturbed by the use
of non-uniform discretisation in which case the number of impulses needed
to represent the result of an addition operation becomes O(mn), so there is
a possibility of a blow-up in space requirements.

The situation becomes much more complicated for circuits with reconvergent
fanout. The key to complexity here is the Bayes product rule computation.
From the description of the algorithm, the depth of the recursion tree is
controlled by the number of fanout points in a supergate and the number
of leaves in the recursion tree is exponential in the number of levels of the
recursion tree. Thus the algorithm becomes exponential in the number of
fanout points in a supergate. This ultimately is the undoing of this algorithm
- it is impractical for circuits having even a moderate amount of reconvergent
fanout.

Let us situate the statistical timing method described in this chapter in terms
of the quality criteria outlined in the last section of Chapter 2. The criteria
mentioned were model sophistication, computational complexity, error theory
and tuning information. The statistical model we employ is a simple one - it
assumes that the gate delays are independent. However, correlations due to
path sharing are taken into account. The computational complexity of the
impulse-train method is high; in case there is a lot of reconvergent fanout,
the method is exponential in the number of fanout points in the circuit.
The basic method of situating impulses at the centre of each delay interval
does not lend itself to the development of a suitable error theory because it
is unclear how the discretisation error propagates itself through the circuit.
It seems intuitive that using a lot of impulses to represent the probability
density of each gate should lead to a low-error estimate of the final output
probability distribution. We can develop an error theory of sorts by resorting
to the upper and lower bounds computation of Section 3.6. The staircase
functions of Figure 3.4 are exact upper and lower bounds on the true output
delay distribution curve, and the staircase functions approach each other
as the number of impulses used to represent each gate delay distribution

3.7. Discussion 45

increases. Finally as regards the last criterion of tuning information, it is
difficult to extract tuning information as a byproduct of running the impulse-
train method.

46 Chapter 3. A simple timing model

Chapter 4

A more refined timing model

In the last chapter, we looked at a simple timing model and showed how
to derive lower and upper bounds on the delay distribution of the output
delay. The main problem with this timing model is that it is not realistic
in that it ignores the correlation between delays of the edges in the timing
graph, although it does take into account the correlation between paths due
to path sharing. It turns out that most approaches in the literature do not
provide a unified framework to handle both types of correlation and have
perhaps for this reason not so far been widely used in industry. The impulse-
train approach of [66], [67], [55], the method of bounds [3] can all be seen
as approaches that can handle path sharing alone, while that of [30] can be
seen as one that handles correlation between gates alone.

This chapter focuses attention on a timing model that was first suggested
many years ago [96] and then abandoned because it appeared to be in-
tractable. We reexamine the model in this thesis and propose some new
solution techniques to deal with the intractability. The rest of this thesis
consists of analysing this model, presenting experimental results, and then
devising a technique for synthesis based on it.

4.1 Timing edge correlation models

It has long been known that the delays of timing edges in a timing graph are
not independent but are closely tracked. In other words, if one of the gates

47

48 Chapter 4. A more refined timing model

shows a particular kind of behaviour (fast or slow), then surrounding gates
show a similar kind of behaviour. The precise nature of this tracking has been
established for MOS circuits, but the studies of [9], [69], [70] which detail
systematic variations in parameters, corroborate this situation for CMOS
circuits.

Even if we were to allow the possibility of correlation between delays of edges
in the timing graph, we are still faced with the question of characterising this
correlation. Some authors, for example, [53] take a “gates talking to each
other” approach. They let each timing edge (note that here we assume each
gate has a single timing edge, but that does not really matter) take on a
Gaussian delay distribution and then define a correlation matrix where the
(i, j)th entry gives the correlation coefficient between the delays of gates i and
j. The choice of the Gaussian distribution is not only a matter of convenience
- it is actually crucial in the sense that specifying correlation with any other
distribution would be more complex than providing just a correlation matrix.

The main problem with the above approach is that the size of the correlation
matrix is quadratic in the number of edges in the timing graph. It is likely to
be pretty difficult to populate the correlation matrix, as we need to be able
to ascertain the timing behaviour of every edge with respect to every other
edge.

The “gates talking to each other” approach is costly, so we need another al-
ternative. This is the “global phenomena talking to gates” alternative. The
concept is represented in Figure 4.1. The underpinning of this approach is
that there are really only a few global parameters which cause the delays of
all gates to vary from their nominal values. The delays of gates are correlated
because the same global phenomena affect the gates across the chip. The true
worth of the model occurs when the number of global parameters is in the or-
der of 10-20, and we believe that this is the case with modern manufacturing
processes. There are few main process parameters Tox, Leff , ILDthickness
which affect all gates. We shall show later that location dependence can be
taken care of by using more auxiliary parameters.

4.2 Linear model and yield formulation

Once we accept the idea that there are only a few global parameters that
cause the delays of the gates to vary from their nominal values, it remains to

4.2. Linear model and yield formulation 49

GLOBAL PHENOMENA

P1, P2 . . . Pn

Figure 4.1: Global phenomena impacting all gates.

actually characterise the effect of the variation of the global parameters on
the delays of the gates. For reasons of tractability, we shall assume a linear
model i.e., the delay of a gate varies linearly with each global parameter. As
we shall see even this “first-order” model is not easy to solve, and calls for
special techniques. Below we shall present mathematical formalism that will
serve us for the remainder of this chapter and subsequent chapters.

Since the edge delays in the timing graph are linear in the variations of the
global parameters, we can write the following equation:

dedge = µedge + Q∆z. (4.1)

The above equation is written in matrix form. The (i, j)th entry of the
matrix Q represents the sensitivity of the delay of the edge i to the jth global
parameter. The vector ∆z represents the variations in the global parameters,
µedge is a vector of nominal edge delays, and dedge represents the vector of
all edge delays. If there are n global parameters and m timing edges in the
timing graph, the vectors dedge, µedge are both m× 1 column vectors, Q is a
m× n matrix, and ∆z is a n× 1 column vector.

50 Chapter 4. A more refined timing model

Now that we have a means of expressing delays of the edges in terms of their
nominal delays and variations in the global parameters, we can express the
delays of the paths. To do this, we introduce the notion of a topological path
matrix C. The (i, j)th entry in this matrix is 1 if path i contains edge j, and
0 otherwise. If there are P paths, and m timing edges in the timing graph,
C is a P ×m matrix. We can write the path delay vector dpath as follows:

dpath = Cdedge = Cµedge + CQ∆Z. (4.2)

Let Cµedge + CQ∆z = γ + R∆z. Then for the circuit to have a performance
no greater than η, we require

γ + R∆z ≤ [η η · · · η]T (4.3)

where the right-hand side is a vector with η in all positions. In z-space, the
space of global parameters, we can express the above as follows:

Rz ≤ [t1 t2 · · · tP]T (4.4)

The above defines a linear system of inequalities in parameter space as shown
in Figure 4.2. Each inequality is a hyperplane and all the inequalities together
define a convex feasible region. To obtain the actual yield, we must merely
integrate the joint probability density function of all the global parameters
over the feasible region. This can be expressed as

∫ ∫ ∫

R

f(z1, z2 . . . zn)dzndzn−1 . . . dz1, (4.5)

where R is the feasible region and f(z1, z2, . . . zn) is the joint probability
density function of the global parameter random variables, which we assume
is available.

We repeat this procedure over the entire range of performances to construct
the cumulative distribution function of the output delay distribution. In-
tegration of a joint probability density function over a feasible region has
been considered in [85], [96]. The work of [75] uses a linear model for the
parameter variations, but computes bounds on the probability distribution
of output delay using the theory of stochastic processes. This work assumes
that the joint probability distribution of global parameters is Gaussian.

4.2. Linear model and yield formulation 51

z1

z2

RT
i z ≤ ti

centre of JPDF

Figure 4.2: Feasible region defined by hyperplanes.

The reader may be tempted to think that it is possible to generate a convex
feasible region as outlined in equation (4.3) that identifies the circuits which
have a delay no less than η. It might appear that we can write

γ + R∆z ≥ [η η · · · η]T , (4.6)

where the right-hand side is a vector with η in all positions to generate the
required convex feasible region. However, closer examination reveals that
the above system of inequalities is too restrictive to determine the number of
circuits that will have a delay no less than η. Indeed it is not necessary for
all paths in the circuit to have a delay greater than η for the whole circuit
to have a delay greater than η; it is sufficient for one path to have a delay
greater than η to make the whole circuit have a delay greater than η. In other
words, a single path may act as a bottleneck. Another way of looking at this
is to see that the complement of a convex feasible region is not necessarily a
convex region.

52 Chapter 4. A more refined timing model

4.3 A simple lower bound on timing yield

We shall derive a simple lower bound on timing yield in this section by
approximating the feasible region from below. In (4.2) the matrix CQ has
entries which are unit dependent since the various global parameters zi have
different units. We shall redefine the ith path delay equation as follows:

dpath = γi + pi1
δz1

znom
1

+ pi2
δz2

znom
2

+ . . . + pin
δzn

znom
n

. (4.7)

Substituting for δzi = zi − znom
i , and defining ui = zi

znom
i

we can rewrite the

path delay as follows:

dpath = ci + pi1u1 + pi2u2 + . . . + pinuin. (4.8)

with ci = γi −
∑j=n

j=1 pij as the constant contribution. Note that each ui

is positive as each global parameter is a positive physical quantity (such as
temperature, length etc). Unlike the entries of the original R matrix, the pij

formed in the above process have the same units (of time).

Since there are many paths in a circuit, with each of them contributing
a hyperplane, the feasible region is formed by the intersection of a large
number of hyperplanes. One can consider a simpler region described only
by n + 1 hyperplanes where n is the number of global parameters, such that
integrating the joint density function over this simpler region yields a lower
bound on the timing yield. Let the set S+ denote the set of rows of P which
have positive largest values in them. Similarly let S− denote the set of rows
of P which have negative largest values in them (i.e., all values in such a
row are negative, so the largest value is also negative). We can compare the
elements in a row of P because they are all of the same units. Let us define
the matrix M as follows:

M =

v1 v1 . . . v1

v2 v2 . . . v2

v3 v3 . . . v3
...

...
...

...
vN vN vN vN

Since all the random variables ui are positive, we can easily see that

4.3. A simple lower bound on timing yield 53

(0, 0) (a, 0) (c, 0)

(0, b)

(0, d)

(0, a)
u1 + u2 ≤ a

au2 + bu1 ≤ ab

cu2 + du1 ≤ cd

u1

u2

Figure 4.3: Simplex approximation to feasible region.

c + Pu ≤ c + Mu. (4.9)

.

Thus requiring that c + Mu ≤ η will automatically ensure that all paths in
the circuit will have a delay no greater than η. Expanding each equation
in c + Mu ≤ η, we get the following inequalities for those rows which have
positive largest values:

(u1 + u2 + . . . + un) ≤ ((η − ci)/vi) (4.10)

∀vi ∈ S+.

We get inequalities of the following kind for all those rows which have negative
elements:

(u1 + u2 + . . . + un) ≥ ((η − cj)/vj) (4.11)

54 Chapter 4. A more refined timing model

∀vj ∈ S−.

The set of inequalities in (4.10) can be rewritten as follows:

(u1 + u2 + . . . + un) ≤ minj(η − cj/vj), vj ∈ S+. (4.12)

The set of inequalities in (4.11) can be written as follows:

(u1 + u2 + ...un) ≥ maxj(η − cj/vj), vj ∈ S−. (4.13)

Note that any vector u that satisfies the above inequalities also satisfies the
inequality c + Pu ≤ t and is thus in the feasible region of circuit operation,
but not vice-versa. Thus integrating the joint density function over the ap-
proximation to the feasible region specified by the conjunction of (4.12) and
(4.13) gives us a lower bound on the timing yield. The simplex approxi-
mation to a two-dimensional feasible region (assuming that the maximum
value in each row is positive) is shown in Figure 4.3. If D is the random
variable describing the latest arrival time at the primary output, we have the
following:

P (D ≤ η) ≥ I1 − I2, (4.14)

where

I1 =

∫ K1

0

∫ K1−u1

0

. . .

∫ K1−
Pj≤n−1

j=1 uj

0

f(u1, u2, · · · , un)dundun−1...du1,

(4.15)

and K1 = minj
η−cj

vj
, vj ∈ S+. Further

I2 =

∫ K2

0

∫ K2−u1

0

. . .

∫ K2−
Pj≤n−1

j=1 uj

0

f(u1, u2, · · · , un)dundun−1...du1

(4.16)

where K2 = maxj
η−cj

vj
, vj ∈ S−. Note that I1 and I2 are integrals over sim-

plices which are nice geometrical structures for which a variety of numerical
integration algorithms are available. We expect that the bound given by
(4.14) will be somewhat loose in practice because the difference between the
minimum and maximum relative sensitivity in each row of the matrix P may
be relatively large.

4.4. Estimating the integral 55

4.4 Estimating the integral

For the moment let us remain in the space of normalised global parameters
where each ui = zi

znom
i

. We shall now examine the problem of integrating the

joint probability density function over a convex polyhedron formed by the
path delay inequalities.

u1

u2

Ai Bi

pi1u1 + pi2u2 ≤ η − ci

Figure 4.4: The active region for the hyperplane marked pi1u1 + pi2u2 ≤ η − ci is
the region on the u1 axis between the points A1 and B1.

The method of hyperplanes essentially reduces the problem of estimating
yield to the calculation of n-dimensional multiple integrals. The region of
integration is a convex polyhedron in n-space. If the polyhedron is in 2-
space (with two global parameters u1 and u2), then we can easily perform
the integration. Essentially we consider the hyperplanes one by one and
for a given hyperplane, determine the region of the x-axis over which that
hyperplane is active. This means that for the ith hyperplane, we solve the

56 Chapter 4. A more refined timing model

following linear programme to get the lower bound on the active region:

min u1 such that

c1 + p11u1 + p12u2 ≤ t

c2 + p21u1 + p22u2 ≤ t

.

.

ci + pi1u1 + pi2u2 = t

.

.

cN + pN1u1 + pN2u2 ≤ t

u1 ≥ 0

u2 ≥ 0. (4.17)

To find the upper bound for the active region for the ith hyperplane we
simply change the objective function in the above linear programme to max
u1. Let Ai denote the lower bound on the variable u1 for the active region
corresponding to the ith hyperplane and Bi denote the upper bound on the
variable u1 corresponding to the active region for the ith hyperplane. The
active region for the ith hyperplane is shown in Figure 4.4. Then we can
write

P (D ≤ t) =

N
∑

i=1

(−1)ti

∫ Bi

Ai

∫ (t−ci−pi1u1)/pi2

0

f(u1, u2)du2du1. (4.18)

In the above equation the ti = 1 if the active interval (Ai, Bi) on the u1

axis for the ith hyperplane lies on the infeasible side of that hyperplane, and
ti = 2 if the active interval (Ai, Bi) is on the feasible side of the hyperplane.
For example in Figure 4.4, the active intervals for all the three hyperplanes
shown lie on the feasible side of the hyperplanes. Therefore ti = 2 for all the
hyperplanes. Note that since each ui is positive, the entire feasible region
lies strictly in the first quadrant.

4.5. The general case 57

4.5 The general case

It is almost certain that the number of global parameters to consider is
greater than two. Therefore we must use techniques for multi-dimensional
integration. In general there are no easy ways to perform multi-dimensional
integration; closed-form formulae are usually not available. Numerical inte-
gration !numerical is a standard method for integrating functions in one or
two variables. The problem with numerical integration is that the formu-
lae are meant for specific domains such as an n-dimensional cube, sphere,
tetrahedron etc. If a given feasible region can be recast into one of these spe-
cial regions, and the number of dimensions is not too large, then numerical
integration is the method of choice.

It might be expected that the dimensionality of the model is crucial to an
efficient solution. Throughout this thesis we shall treat the number of di-
mensions of the parameter space to be a variable. This is because current
literature does not throw adequate light on how many significant process
parameters exist in a modern manufacturing line. Since the model described
in this chapter is path-based, there is also the question of coming up with a
set of relevant paths that bound the feasible region. The number of critical
paths in even a moderate-sized circuit is very large, and it will be helpful to
prune the list of critical paths so as to identify the significant paths. In the
next section we shall examine a method to prune the set of critical paths in
a circuit.

4.6 Path filtering

We must address the path explosion problem that will doubtless occur in
large circuits. There are many millions of paths leading from primary inputs
to outputs in even moderately-sized circuits, and even if we were to look
at only “critical” paths - or those with a delay large enough to impact the
delay of the whole circuit - we may arrive at several thousand paths. The
statistical timing procedures we shall outline in subsequent chapters are not
linear in the number of paths; some of them are cubic in the number of paths.
Therefore we benefit by reducing the number of paths as much as possible.

For real circuits, there are a large number of paths that have very similar
characteristics owing to a large amount of path sharing. The scenario we

58 Chapter 4. A more refined timing model

construct divides the chip area into sub-regions and associate a unique set of
parameters to each sub-region. The set of parameters associated with each
sub-region characterise gate delay behaviour for that sub-region. This ar-
rangement is a half-way measure between assuming complete independence
of gate delays from each other on the one hand, to perfect tracking on the
other. Neither of the extreme options is realistic for modern chip manufac-
turing processes. The sub-regions are illustrated in Figure 4.5.

A

B

Output

γi + RT
i ∆z ≤ η

γj + RT
j ∆z ≤ η

RT
i

Rj

‖Ri‖‖Rj‖
≈ 1

Subregion impacted by
unique set of global
parameters

Input1

Input2

Figure 4.5: Chip area divided into sub-regions. Paths A and B with path vectors
Ri and Rj share almost all their gates. Therefore the angle between them is almost
zero.

Paths marked A and B in Figure 4.5 depend on the same set of parameters
since they pass through the same sub-regions, and must also have nearly the
same coefficients since they share so many gates. This suggests that we can
club these two paths together, and thus reduce the number of paths. Thus we
can augment the path selection process so that paths are selected not only
according to high nominal delay. The other measures we suggest include
checking to see if the normal to the path vector is oriented at an angle not
represented by any other paths already in the list. The idea behind both of
these measures is to select paths that, in some extreme circumstances become
limiting to circuit performance. Some paths can exhibit markedly different
behaviour to some global parameters, than paths already in the list. This
will be brought out by the angle criterion whereby we include the candidate
path in the list of all paths if the minimum value of its angle to any path in

4.6. Path filtering 59

the current set of selected paths is greater than some threshold value. The
cosine of the angle that a path with path vector Ri makes with a path Rj

can be expressed as:

cos γ =
RT

i Rj

‖Ri‖‖Rj‖
. (4.19)

Let us express the preceding ideas in terms of an algorithm which can be
viewed as a preprocessing step that takes a large number of paths and pro-
duces a smaller number of “representative” paths. The basic algorithm can
be expressed as follows:

SelectRepresentativeDirections-I{

DirectionSet[0] = SensitivityMatrix[0];

SizeOfDirectionSet = 1;

while(SizeOfDirectionSet < numPaths){

GlobalMinimumCosine = 1.0;

for(i=0; i < TotalNumberOfPathsInList; i++){

CurrentMaximumCosine = -1.0;

for(j=0; j < SizeOfDirectionSet; j++){

CurrentCosine = CosineValue(DirectionSet[j], SensitivityMatrix[i]);

if(CurrentCosine > CurrentMaximumCosine){

CurrentMaximumCosine = CurrentCosine;

}

}

if(CurrentMaximumCosine <= GlobalMinimumCosine){

GlobalMinimumCosine = CurrentMaximumCosine;

PathIndex = i;

}

}

SizeOfDirectionSet++;

DirectionSet[SizeOfDirectionSet] = SensitivityMatrix[PathIndex];

}

}

The idea encapsulated in the above pseudo-code is simple: at each step, we
simply pick a path that makes the largest angle with respect to all the paths
selected upto that point. The innermost for loop finds the smallest angle
that a candidate path makes to all the directions in DirectionSet. The vari-
able GlobalMinimumCosine is updated if the smallest angle that the current
candidate path makes with respect to all the paths in DirectionSet is larger
than the smallest angle that any other candidate path upto that point makes
with the selected paths. The value of CurrentMaximumCosine at the end of

60 Chapter 4. A more refined timing model

the inner for loop measures the “degree of agreement” that the given candi-
date path has with all the paths selected so far. If this value is 1.0, it means
that the direction represented by the candidate path is already represented
in the set of paths selected so far. When the outer for loop is completed,
GlobalMinimumCosine records the maximum “degree of disagreement” that
any candidate path has with the set of paths in DirectionSet, and PathIndex
records the identity of the candidate path that has this “degree of disagree-
ment.” As such it is natural that this path be included in the set of paths
selected so far. If C is the number of paths required to be selected and m
is the total number of paths in the system, then the procedure above can be
seen to take O(mC2n) time. A closer look at the basic algorithm outlined
above shows that it is possible to improve it significantly: in the innermost
for loop the cosines of the angles made by a candidate path with all the
paths in the selected set are calculated repeatedly, when they need to be cal-
culated just once. This means that having calculated a relevant cosine value
once, we must save it in memory for later use. To do this, we create an array
CurrentMaxCosineArray with TotalNumberOfPathsInList elements. The ith
element in this array is intended to carry the maximum cosine value that the
ith path in the total set of paths makes with all the directions in Direction-
Set. Each element in this array is initialised to -1.0. With this modification,
the above pseudo-code can be rewritten as follows:

SelectRepresentativeDirections-II{

for(i=0; i < TotalNumberOfPathsInList; i++){

CurrentMaximumCosineArray[i] = -1.0;

}

DirectionSet[0] = SensitivityMatrix[0];

j=0;

while(j < numPaths){

GlobalMinimumCosine = 1.0;

for(i=0; i < TotalNumberOfPathsInList; i++){

CurrentCosine = CosineValue(SensitivityMatrix[i], DirectionSet[j]);

if(CurrentCosine > CurrentMaximumCosineArray[i]){

CurrentMaximumCosineArray[i] = CurrentCosine;

}

if(CurrentMaximumCosineArray[i] <= GlobalMinimumCosine){

GlobalMinimumCosine = CurrentMaximumCosineArray[i];

PathIndex = i;

}

}

j++;

4.6. Path filtering 61

DirectionSet[j] = SensitivityMatrix[PathIndex];

}

}

The pseudo-code of SelectRepresentativeDirections-II can be seen to run in
O(mCn) time. When the last direction is selected in the pseudo-code above,
the direction makes an angle of atleast cos−1(GlobalMinimumCosine) with
all the other selected directions. Further none of the paths outside the se-
lected set makes an angle greater than cos−1(GlobalMinimumCosine) with
the paths in the selected set. Therefore any given path outside the selected
set lies within a “cone” of cos−1(GlobalMinimumCosine) of some selected
path. It remains to define the feasible region boundary in each cone, i.e.,
select the path among all those lying in the cone that actually forms the
boundary. This can be done by computing the distances of the paths from
the origin. When the origin is on the feasible side of a hyperplane, the dis-
tance is positive, and when it is on the infeasible side of a hyperplane, the
distance is negative. Let us consider two paths with normal vectors ai and
aj such that

RT
i ∆z ≤ bi

RT
j ∆z ≤ bj (4.20)

are the hyperplane equations corresponding to the two paths. Let the two
normal vectors Ri and Rj point in the same direction. Let the origin be
on the feasible side of both these hyperplanes, meaning that bi and bj are
both positive. The path that is closest to the origin in terms of the absolute
value distance will form the feasible region boundary. If bi

‖Ri‖ <
bj

‖Rj‖ then

the distance from the origin to path i is less than the distance to path j.
Therefore path i forms the feasible region boundary. If the origin lies on
the infeasible side of both hyperplanes, then bi and bj will both be negative,
and the path which is furthest away in absolute distance from the origin will
form the feasible region boundary. In this case the feasible region boundary
is once again decided by min(bi

‖Ri‖ ,
bj

‖Rj‖). Minimising the signed distance to

each hyperplane will ensure the selection of the right path for the feasible
region boundary. The algorithm below performs the task of picking paths
according to the distance criterion:

FindFeasibleRegionBoundary{

62 Chapter 4. A more refined timing model

Eta = RequiredPerformance;

for(i=0; i < SizeOfDirectionSet; i++){

MinimumDistanceSoFar = Infinity;

for(j=0; j < TotalNumberOfPathsInList; j++){

Direction = CosineValue(DirectionSet[i], SensitivityMatrix[j]);

if((Direction >= GlobalMinimumCosine)){

Distance = (Eta - NominalDelay[j])/Length(SensitivityMatrix[j]);

if(Distance <= MinimumDistanceSoFar){

MinimumDistanceSoFar = Distance;

CurrentMinIndex = j;

}

}

}

FinalPathFilteredSet[CurrentMinIndex] = 1;

}

}

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200

Pr
ob

ab
ili

ty

Delay

CUMULATIVE DISTRIBUTION CURVES

angle-ON-paths-100
angle-OFF-paths-100

angle-OFF-paths-4096

Figure 4.6: Cumulative Distribution curves obtained by considering the top 100
critical paths, 100 critical paths obtained by using the angle criterion and consid-
ering all critical paths. There is good agreement between the curve obtained by
considering 100 paths selected using the angle criterion and the curve obtained by
considering all paths.

The above discussion is intended for the case of computing yield for a single
performance. As the performance values change, the angles between the
hyperplanes do not change since the hyperplanes continue to have the same
normal vectors. However, the distances of the hyperplanes from the origin

4.6. Path filtering 63

will change, and in any given cone, a different hyperplane may form the
boundary of the feasible region as the required performance value changes.
Therefore it is necessary to run FindFeasibleRegionBoundary once for each
performance, but it is sufficient to run SelectRepresentativeDirections only
once.

The results of applying the angle criterion to filter paths are shown in Fig-
ure 4.6. Three curves are shown in this figure. The cumulative distribution
curve assuming the polyhedron is approximated by the first 100 paths in
order of decreasing nominal delay is shown as “angle-OFF-paths-100”. The
cumulative distribution curve obtained by selecting 100 paths according to
the angle criterion outlined above is shown as “angle-ON-paths-100”. This
curve corresponds fairly closely to the real cumulative distribution curve ob-
tained by taking all 4096 paths in the system.

The path filtering algorithm outlined above has one weakness in that it is
performance dependent. Since we are typically interested in the whole per-
formance curve, it is useful to investigate whether we can modify the algo-
rithm above so that path filtering is done such that it remains accurate for
all performances. The reason the path filtering algorithm outlined above is
performance-dependent is that in a given selected direction, different paths
may become critical for different performances. This phenomenon occurs
especially when the lengths of sensitivity vectors that point in the same di-
rection are different, as shown in Figure 4.7 shows. This figure shows two
paths A and B which are represented as x + y ≤ −1 and 2x + 2y ≤ −1
respectively. When the origin lies on the infeasible side of both hyperplanes,
path A is the critical path. However, when the origin gets on the feasible
side of both hyperplanes, path B becomes critical. If path filtering had
been done keeping the first situation in mind, then the result would be
inaccurate for performances representing the second situation (when path
B becomes critical). A straightforward way to tackle this problem is to
divide the performance range of interest into several smaller subregions,
and picking paths that are critical in each subregion. The pseudo-code
SelectPathsInEachRepresentativeDirection below does precisely this. It
should be seen as a replacement for FindFeasibleRegionBoundary. Note
that we must run SelectRepresentativeDirections once just for the basic
performance-dependent path filtering algorithm to get the set of representa-
tive directions.

64 Chapter 4. A more refined timing model

SelectPathsInEachRepresentativeDirection(){

BinSize = (RightPerformance - LeftPerformance)/(NumberOfBins);

for(i=0; i < SizeOfSelectedDirectionSet; i++){

for(p=0; p < NumberOfBins; p++){

Eta = LeftPerformance + p*BinSize;

MinimumDistanceSoFar = Infinity;

for(j=0; j < TotalNumberOfPathsInList; j++){

Direction = CosineValue(DirectionSet[i], SensitivityMatrix[j]);

if((Direction >= GlobalMinimumCosine)){

Distance = (Eta - NominalDelay[j])/Length(SensitivityMatrix[j]);

if(Distance <= MinimumDistanceSoFar){

MinimumDistanceSoFar = Distance;

CurrentMinIndex = j;

}

}

}

FinalPathFilteredSet[CurrentMinIndex] = 1;

}

}

}

A novel method for “all-performances-at-once” path filtering has been re-
cently proposed in a private communication by Lou Scheffer [80]. The method
uses a Monte-Carlo method of selecting a subset of paths that represent the
feasible region. The selection process involves a set of trials, in each one of
which the JPDF of process parameters is first sampled to obtain a point in
process space. Then the path with the largest delay for the selected process
parameter vector is selected. When this procedure is run for N trials, it will
result in the selection of N paths. The logic behind the selection process is
established as follows: if a path is critical a fraction c of the time, then it has
a probability c of being selected in an arbitrary trial, and a probability 1− c
of not being selected in a trial. The probability of not selecting this path in
N trials is (1 − c)N . When c is small relative to 1, the probability of non-
selection can be written as e−Nc. For c = 0.1, the probability of non-selection
in a 100 trials is roughly e−10, a very small quantity indeed.

The problem with the above Monte-Carlo method of selecting paths is that
it is not particularly good at picking paths that occur a very small fraction of
the time. Let us imagine that there exists a path which forms a boundary of
the feasible region only when the performance requirement is less than n (i.e.,
for very fast circuits). In order to increase the volume of the feasible region

4.6. Path filtering 65

for this performance requirement, any optimisation procedure would need to
identify the path in question since it bounds the feasible region. However,
the path filtering scheme of Scheffer would identify this path with low proba-
bility, thus making it unviable for use as a method for optimisation. In fact,
any “all-performances-at-once” path filtering technique would suffer from a
similar drawback. In order to optimise yield for a stringent performance
requirement, one must seek recourse to the “performance-at-a-time” path
filtering procedure outlined in this section. Since this kind of path filtering
takes into account the boundary of the feasible region at the performance
of interest, n, it will identify the path in question as a bottleneck, and the
tuning procedure can shift this path to increase yield. The shifting of the
path can be accomplished by adjusting the nominal delay of the path. We
shall address this topic in Chapter 8.

0.5 1.0-0.5-1.0

A

B

B

A

∆z1 + ∆z2 ≤ 2

2∆z1 + 2∆z2 ≤ −1

∆z1 + ∆z2 ≤ −1 (critical)

∆z1

∆z2

2∆z1 + 2∆z2 ≤ 2(critical)

Figure 4.7: Different situations in which different paths are critical. When the
origin is infeasible for paths A and B, path A is critical. When the origin is
feasible for both paths, path B becomes critical.

66 Chapter 4. A more refined timing model

4.7 The joint probability density function of

global parameters

It is customary to take the joint probability density function of global pa-
rameters to be a multi-variate normal of the following form:

f(∆z) = e−
1
2
(∆z)T A(∆z) (4.21)

where A is the correlation matrix. Note that since we are dealing with the
changes in global parameters, the mean of the distribution is the zero-vector.
Let us recall the feasible region given by (4.3):

γ + R∆z ≤ [η η · · · η]T . (4.22)

The yield integral for any given performance is given by

Y =

∫ ∫

. . .

∫

R

e−
1
2
(∆z)T A(∆z)dz. (4.23)

We can re-express this integral so that the integrand represents a multi-
variate normal whose components are independent. The advantage of the
new formulation is that it is much easier to sample from a multivariate nor-
mal density whose components are independent as opposed to one whose
components are not independent. To achieve the reformulation, we must
observe that the correlation matrix A can be diagonalised as follows:

A = PΛP−1, (4.24)

where P is the eigenmatrix (P T = P−1) and Λ is the diagonal matrix of
eigenvalues.

Let us transform the variables of integration as follows:

∆z = B∆v. (4.25)

Then the joint probability density function can be rewritten as

f(∆z) = e−
1
2
(∆v)T BT AB(∆v). (4.26)

4.8. Performance space formulation 67

For the JPDF to become multivariate normal with independent components,
BT AB must become the identity matrix. From (4.24) we can see that this
is achieved when

B = PΛ− 1
2 . (4.27)

The region of integration R gets transformed to R∗. R is an arbitrary poly-
hedron in space and R∗ is another arbitrary polyhedron. Thus the angle
criterion of the previous section, which can be used to filter hyperplanes in
R can also be used in R∗.

4.8 Performance space formulation

The approach we have outlined in this chapter until now can be regarded
as a parameter space approach because the feasible region was expressed in
process parameter space. The feasible region was an irregular polyhedron in
parameter space. In contrast, and especially with the transformation of the
previous section, the joint probability density function of global parameters
could be expressed as a multi-variate normal density with independent com-
ponents. In this section, we shall demonstrate a complementary approach
which results in a complex joint probability density function which must be
integrated over a nice feasible region.

In this approach a random variable is created for each path P and the feasible
region formed by the following set of inequalities:

0 ≤ P1 ≤ η

0 ≤ P2 ≤ η
...

0 ≤ PN ≤ η. (4.28)

In other words we require each path to have a delay greater than zero and
less than η for the whole circuit to have a delay no greater than η. The
feasible region is shown in Figure 4.8.

The JPDF of path delays f(P1, P2 . . . PN) is however much more complicated.
Even for tree-circuits (no re-convergent fanout) where the gate delays are
independent, the path delays are not independent owing to the large amount

68 Chapter 4. A more refined timing model

0

η

η

η

P1

P2

P3

Figure 4.8: Feasible region for performance space integration.

of path sharing. If the path delays are taken to be normal random variables,
then the joint probability density function becomes a multivariate normal
with a non-diagonal correlation matrix of size N ×N where N is the number
of paths in the system.

Chapter 5

Integration over a polytope

In this chapter we present methods to calculate the integral that gives us the
yield for a particular performance. We examine first a “brute-force” method
proposed by Cohen and Hickey [16] of complexity exponential in the number
of dimensions but linear in the number of paths of the system. This method
is therefore applicable when we can reduce the number of dimensions to a
small number. The error bounds produced by the method are valuable in
that they are not probabilistic. There exist a surfeit of numerical integration
routines to calculate integrals in special multi-dimensional regions such as a
sphere, cube etc, but there are no known routines for general polytopes. We
shall review a few numerical integration routines for certain special regions
and make greater use of them in succeeding chapters.

We shall also look more carefully at Monte-Carlo methods. Two variants
will be examined. One kind of Monte-Carlo is the “all-performances-at-
once” Monte Carlo whose main advantage is the small amount of computa-
tion time needed. We explore the weaknesses of this method and propose
a “performance-at-a-time” Monte-Carlo method that, at the cost of greater
computation time, addresses some of these weaknesses.

5.1 Cohen and Hickey method

The basic Cohen and Hickey algorithm is intended to calculate the volume of
a given polytope. Our interest is in the weighted volume of a polytope, rather

69

70 Chapter 5. Integration over a polytope

than the volume itself. We begin with a discussion of the algorithm to com-
pute volume. This is a “brute force” algorithm that divides up the polytope
of interest into small parallelepipeds and counts the number of parallelepipeds
falling within the polytope as an estimate of the volume of the polytope. It
relies crucially on the following fact: if all vertices of a n-parallelepiped lie
inside a polyhedron, then all points within the n-parallelepiped lie within the
polytope. Therefore checking feasibility of the corners of a n-parallelepiped
will allow us to determine whether the parallelepiped lies entirely within the
polytope. The algorithm proceeds recursively and starts with a large paral-
lelepiped that clearly contains the feasible region (in our context, this could
be the 4-sigma box which almost surely contains the feasible region for any
performance value). Then it divides the given parallelepiped into 2n smaller
parallelepipeds, each of side equal to half the side of the original box. Then
it proceeds to establish if each of these smaller parallelepipeds is contained
within the polytope. For every parallelepiped completely contained within
the polytope, it adds the volume of the parallelepiped (trivially calculated)
to the running volume counter, and does not further subdivide the paral-
lelepiped. For parallelepipeds that are partially contained within the poly-
tope, it first checks to see whether the size of the parallelepiped is already the
smallest user-defined size. If not, the parallelepiped is further sub-divided
and the procedure repeated. On the other hand, if the parallelepiped is of
the user-defined smallest size, then the volume of the intersection of the par-
allelepiped with the polytope is determined in one of two ways: (a) in the
first method, for each of the 2n vertices of the parallelepiped, the algorithm
checks whether the vertex belongs in the feasible region or not. Finally the
contribution of the box to the total volume is taken to be k/2n where k is the
number of vertices found to belong in the feasible region. (b) in the second
method, a Monte-Carlo analysis is performed within a box to establish the
fraction of the volume of the parallelepiped that falls within the polytope.

The procedure is illustrated for an arbitrary polytope in Figure 5.1. We shall
now give the pseudo-code of Cohen and Hickey’s method from [16] and follow
it up by an analysis of its complexity. First we shall need some notation:

x: an n-dimensional vector representing the bottom left corner of a box
∆l: integer chosen by the user to represent the grid size in the lth direction.
maxd: maximum depth of recursion
d: the depth of recursion
Xd: points of the form v1, v2, ..., vn where vi = li + k (ui−li)

∆d
i

5.1. Cohen and Hickey method 71

Cd
x: the parallelepiped whose bottom left corner is the point x and whose ith

side is of length (ui − li)/∆d
i

∥

∥Cd
∥

∥: the volume of Cd
x for any x. The volume is simply the product of all

the sides of the cubes i.e.,
∏i=n

i=1
(ui−li)

∆d
i

.

Procedure Vol(d, x)
begin

if d ¡ maxd then

for all xj such that Cd+1
xj

subset of Cd
x do

begin
if Cd+1

xj
⊂ P then

V ← V + Volume(Cd+1
xj

)
else

Vol(d+1, xj)
end

end

end of Vol

To set the computation off, we call Vol(0, (l1, l2, ..., ln).

In the worst case, the algorithm explores O((
∏i=n

i=1 ∆i)
maxd) nodes. This is

because when we divide a parallelepiped at a certain level of recursion, we
create

∏i=n
i=1 ∆i nodes. If each ∆i = 2, then this means we create 2n smaller

parallelepipeds when we divide a given parallelepiped. In this case, check-
ing if all the vertices of a given parallelepiped belong in a feasible region
requires 2nmn multiplications as an n-dimensional parallelepiped has 2n ver-
tices, there are m inequalities defining the polytope, and for any inequality
we have to perform O(n) multiplication operations to determine if a given
vertex satisfies it. More generally when each ∆i may be different from 2, this
leads to an overall complexity of O(mn(

∏i=n
i=1 ∆i)

maxd), or when all the ∆is
are equal to 2, an overall complexity of O(2n(maxd)mn).

Let us now investigate what is the minimum number of smallest paral-
lelepipeds that intersect the surface of the given polytope, as this number
will provide some understanding of the difference in the volume estimates
provided by the upper and lower bounds of the Cohen and Hickey algorithm.
The example we consider is that of a regular polygon of n sides with a very
large n, so that we might essentially consider the polygon to be a sphere in
n dimensions of radius, say r (this simplifies the analysis). Let us restrict

72 Chapter 5. Integration over a polytope

F F

FF

P P

P

P

P P

PP
NN

N

N

N N N

N N

N

N

N N

N

P

P

P

PF

P

N

PP

P

P

Figure 5.1: Cohen and Hickey method in action. Squares marked F fall entirely
within the polytope and are fully counted; squares marked P fall partly within the
polytope and are partially counted; squares marked N fall entirely outside.

our analysis to two dimensions. Figure 5.2 shows how we go about our task.
We first construct a square of side l = 2r that contains the circle, and then
proceed to recursively carve up the area of the circle. Let k be the number of
levels of recursion, and each ∆i of the algorithm above be equal to 2. Then
the smallest parallelepiped has a side of length l/2k. We note that a lower
bound on the volume of any polytope can be computed from the sum of the
volumes of all parallelepipeds that are fully contained within it. Also the sum
of all the full parallelepipeds and all the smallest parallelepipeds that inter-
sect the boundary of the circle will give us an upper bound on the area of the
circle. A lower bound on the minimum number of smallest parallelepipeds
intersecting the surface , say p can be seen to be

p >
2πr
l

2k ∗ 4
.

This is because the parallelepipeds cover the surface and the maximum cir-
cumference of intersection is no greater than the perimeter of the smallest

5.1. Cohen and Hickey method 73

Figure 5.2: Computing the volume of a sphere; the shaded cubes are partial cubes
whose volume is approximated.

parallelepiped. Substituting r = l/2, we obtain

p ≥ π2k

4
.

The total area of all the parallelepipeds of the smallest size that intersect the
boundary of the circle is π2k

4
l2

22k = πl2

2(k+2) . If V represents the area obtained
by summing up the area of the circle (V = πr2), then the area contained in
the parallelepipeds intersecting the boundary can be seen to be V

2k . Thus the
difference in the area estimates of the lower and upper bounds of the Cohen
and Hickey algorithm in two dimensions can be seen to be V

2k , in typical cases
where we can assume that each parallelepiped that intersects the surface has
a non-zero portion of its volume inside the polytope.

The above equation confirms the intuition that an increase in the number of
recursion levels will give us better estimates of the the volume of the polytope.
For d dimensions, one can show that the error becomes V (d−1)

2k , showing that
for the same number of recursion levels, Cohen and Hickey’s algorithm will
perform poorer at higher dimensions. The algorithm of Cohen and Hickey
can be adapted to calculating the weighted volume of an arbitrary polytope.

74 Chapter 5. Integration over a polytope

This application is discussed at length in [44]. It must be remarked here that
the basic algorithm of Cohen and Hickey can be speeded-up considerably
through the adoption of a few tricks. For example, if a particular path
turns out to be infeasible at all vertices, then the recursion can be stopped
immediately, as further sub-division of the parallelepiped in question will
not yield any smaller boxes that are feasible for the given path. Secondly,
if a particular path is feasible for all vertices of given parallelepiped, then
in further recursion for that parallelepiped, the particular path’s feasibility
for a vertex need not be checked, as any such vertex is bound to be feasible
for the path. For a more detailed discussion of these tricks, the reader may
consult the original paper of [16], as also [44].

5.2 Computing the entire yield curve by a

Monte-Carlo method

The brute-force algorithm of Cohen and Hickey is impressive for low dimen-
sions, as the computational results at the end of this chapter show. The
exponential complexity of Cohen and Hickey’s approach is not surprising
- we know from [19] that estimating the volume of an arbitrary polytope
(closed bounded polyhedron) is a #P-complete problem. Cohen and Hickey’s
approach provides us a lower bound of the true volume to within a con-
stant factor and therefore cannot take polynomial-time. The complexity of
the problem ensures that for an efficient solution, we must take recourse to
Monte-Carlo methods.

We can use Monte-Carlo in two ways to calculate the entire yield curve:
(a) We divide the entire range of performances at which we wish to com-
pute yield into bins B1, B2, ..., Bn. Then we generate a very large number
of samples in the 3σ box around the mean of the joint probability density
function of the process parameters and then for each of the sampled points,
calculate circuit delay and augment the bin-count for the bin in which the
calculated circuit delay belongs. When we are finished with all the samples,
we divide each bin-count by the total number of samples and thus obtain
the probability of circuit delay belonging to each bin. Let us call this the
“binning-Monte-Carlo procedure.”
(b) A more costly alternative is to define for each performance a feasible
region bounded by path hyperplanes as in the beginning of this chapter, and

5.3. Monte-Carlo integration 75

then perform Monte-Carlo integration for each yield integral.

The advantage of this formulation (“performance-at-a-time-Monte-Carlo”)
is that it enables us to use specialized Monte-Carlo sampling procedures
for each separate yield integral and thus possibly obtain lower-variance esti-
mates, especially for fast performances, which are arguably the most inter-
esting portion of the yield curve. For low yields, most of the points generated
in the 3σ box fall outside the feasible region, making the variance of the es-
timate huge. Therefore, for low yields at least, we must consider alternative
(b). The following section concretises the idea behind the “performance-at-
a-time” Monte-Carlo procedure.

5.3 Monte-Carlo integration

The basic idea of Monte-Carlo integration is simple. Suppose that we wish
to estimate the area of the region within the polytope in Figure 5.3. To do
so, we construct a box large enough to contain the polytope. Then we throw
darts at random in the box, and count the number of darts that fall within
the polytope. The ratio of darts that fall within the polytope to the total
number of darts thrown gives us an estimate of the area of the polytope.
This basic scheme works in any number of dimensions. The simplicity of this
scheme is not its only advantage - Monte Carlo methods are the only ones
known whose accuracy is independent of dimension.

The previous paragraph dealt with estimating the volume of arbitrarily shaped
objects. We are however interested in integrating a probability density func-
tion over an arbitrary polyhedron in parameter space. In other words we are
interested in calculating the following integral:

∫ ∫ ∫

R

f(z1, z2 . . . zn)dzndzn−1 . . . dz1. (5.1)

The Monte-Carlo integration routine for this integral is inspired by the dis-
cussion for volume estimation. Here we simply enclose the region R by a
bounding box C and generate points from a uniform distribution within C.
If we generate n points Z1, Z2, ..., Zn in the region C, we calculate the integral
as follows:

76 Chapter 5. Integration over a polytope

Bounding

Dart

Polytope
 Box

Figure 5.3: Basic idea of Monte-Carlo integration.

I = ((

n
∑

i=1

f(Zi)K(Zi))/n) ∗ V olume(C). (5.2)

where K(Zi) = 1 for Zi ∈ R, 0 otherwise, is an indicator function. In the
next section we shall investigate the integration of a simple function f(Z) = 1
over an arbitrary region R of n-dimensional space. The conclusions of the
next section will be found to carry over to the case of integrating an arbitrary
function over a complicated region in n-dimensional space.

5.4 Evaluating a simple Monte-Carlo integral:

role of the bounding box

We are interested in computing the following integral by a Monte-Carlo
method:

I =

∫ ∫ ∫

R

dzndzn−1 . . . dz1. (5.3)

Let X be a random variable that estimates the integral we are interested in.
In other words, let

5.4. Evaluating a simple Monte-Carlo integral: role of the bounding box 77

E(X) = µ = I. (5.4)

The accuracy of the Monte-Carlo procedure used to calculate X can be
gauged from its variance, where variance is defined as:

σ2 = E(X2)− (E(X))2. (5.5)

Then we can use Chebyshev’s inequality to establish our confidence in the
estimate of the integral as follows:

Pr(
∣

∣X − µ
∣

∣ ≥ ε) ≤ σ2

ε2
. (5.6)

It is time to establish the role played by the bounding box in determining the
accuracy of the Monte-Carlo procedure. In Figure 5.4, we wish to estimate
the area of the shaded region via a Monte-Carlo procedure.

Large Bounding
Box

Small Bounding
Box

1

1

Area to be estimated

Figure 5.4: Size of bounding box matters ...

We know from inspection that this area is one, so we can accurately gauge
the performance of a Monte-Carlo procedure to estimate the area. Let us
sample n points uniformly from within the bounding box of side L. Let Y
be the random variable denoting the number of points that fall within the
shaded region of interest. It is easy to see that

78 Chapter 5. Integration over a polytope

Pr(Y = k) =

(

n

k

)

pk(1− p)n−k, (5.7)

where p = 1
L2 . In other words Y obeys a binomial distribution. Thus we

know that

E(Y) = np =
n

L2
(5.8)

and

σ2(Y) = E(Y 2)− (E(Y))2

= np(1− p)

=
n

L2
(1− 1

L2
). (5.9)

We are however interested in a random variable Z such that

Z =
(L2)Y

n
. (5.10)

It is Z that provides us with the quantity we seek, namely the area of the

shaded region of Figure 5.4. It is easily seen that E(Z) = (L2)E(Y)
n

= (L2) 1
L2 =

1. Thus Z is an estimator of the area of the shaded region. We are interested
in the quality of the estimate provided by Z. To this end, we see that the
variance of Z is given by

σ2(Z) = E(Z2)− (E(Z))2

=
L4

n2
E(Y 2)− L4

n2
(E(Y))2

=
L4

n2
(E(Y 2)− (E(Y))2

=
L4

n2
(

n

L2
(1− 1

L2
))

=
(L2 − 1)

n
. (5.11)

5.5. Finding a small bounding box 79

In d dimensions σ2(Z) would be Ld−1
n

. The above equation establishes that
the variance of Z is directly related to the volume of the bounding box - the
larger the bounding box, the greater the variance and the poorer the quality
of the estimate Z. This observation appears to contradict the oft-repeated
assertion about Monte-Carlo integration, namely, that it is independent of
the dimension of the problem. The reason for this is that the basic probability
that a sampled point belongs to the feasible region is the ratio of the size of
the feasible region to the bounding box that contains it, and this probability
can be made arbitrarily small by increasing the size of the bounding box.
This has deleterious consequences for the variance of the procedure. Thus
any “bounding-box” based Monte-Carlo method will necessarily suffer from
dimensionality problems and to get around this, we must approximate the
region of interest by a close-fitting bounding box. Given that our region of
interest is an arbitrary polytope in parameter-space, this is not easy to do.
In the next section we shall explore a fairly basic scheme to find a small
bounding box. In the next chapter we shall show how the ellipsoidal method
can provide a natural tight-fitting bounding box.

5.5 Finding a small bounding box

Consider the feasible region of Figure 5.5. A first-cut approach to finding
a tight bounding box for this region is the smallest axis-parallel box drawn
around the feasible region in this figure. Sampling within this smaller bound-
ing box will result in a Monte-Carlo estimate that is orders of magnitude
more accurate than one obtained by sampling in the larger 3σ bounding box.
The only question that remains is how does one go about finding this new
bounding box.

Suppose we are trying to find the boundary of the bounding box in the
positive ∆z1 axis direction. For each point t on the Deltaz1-axis, we can
imagine constructing a hyperplane given by ∆z1 = t, and then checking
to see if this hyperplane intersects the feasible region. If the hyperplane
does intersect the feasible region, then we know that t does not define the
rightmost bound on the feasible region in the direction of the positive ∆z1

axis. This procedure suggests the use of a linear programming technique to

80 Chapter 5. Integration over a polytope

4σ bounding

bounding box

polytope feasible
region

box

∆z1

∆z2

smallest axis-parallel

Figure 5.5: A polytope feasible region contained in an axis-parallel bounding box.
The much larger 3σ bounding box is also shown.

determine the rightmost boundary in the +ve ∆z-axis:

max ∆z1 subject to

R∆z ≤ b, (5.12)

where the feasible region, together with the 4σ constraints is represented by
R∆z ≤ b. The argument above extends in the other axial directions as well,
and thus we can determine the sides of the bounding box by solving 4 linear
programmes. This basic approach extends to n dimensions, but we will need
to solve 2n linear programmes in n-dimensional space.

The effectiveness of the approach in practice depends on the constraint set.
In particular the approach fails to yield a good bounding box if the feasi-
ble region contains “extreme points” of the form (4σ, t1, t2 . . . tn−1). In other
words, if it is possible for each global parameter to take on its extreme value
and still have a feasible point, then the linear programmes of the type given
in (5.12) will give poor results. Let us examine two different types of con-
straint sets as shown in Figure 5.6. Let us consider the constraint set shown
in Figure 5.6a. Each column of the constraint matrix is monotone, i.e., all

5.5. Finding a small bounding box 81

+

+

+

+

− +

+

−

−

+

+

−

−

−

+

+

−

−

−

+

+

+

−

−

−

(a) (b)

+
+

+

+

+
+

+

−
−
−
−
−

−
− +

+
+

+
+

+
+

−
−
−
−
−
−
−

+
+
+
+
+
+
+

+ − +

+ − + −
−
+

−

Figure 5.6: Different types of constraint sets.

elements are either positive or negative. Let us focus on generating extreme
points for the first coordinate, i.e., points of the form(4σ, t1, t2 . . . tn−1) and
(−4σ, t1, t2 . . . tn−1). Since the coefficients of the first column are all positive,
it is easy to see that negative extreme points for the first coordinate can be
constructed. The case for positive extreme points is a bit more complicated.
Setting ∆z1 = 4σ causes the left hand sides of each constraint to increase.
The increase can be balanced by the other variables taking suitable values.
If the signs in a particular column are all negative, then the variable corre-
sponding to that column should be given the value 4σ. Otherwise it should
be given the value −4σ. This has the effect of trying to drive the left hand
side back into feasibility. Thus we may be able to construct positive extreme
points as well. Note that the argument depends on the specific values of the
coefficients in addition to the signs but the monotonicity of the coefficients in
each column means that the assignments to the variables do not contradict
the requirements of each constraint.

On the other hand, if we have a set of constraints (for each axial direction)
as depicted in Figure 5.6b, then we can ensure that extreme points will
not occur. Once again let us focus on generating extreme points for the
first coordinate direction. Note that there are two constraints which, for all
directions other than z1, have coefficients of opposite sign (the first and the
third constraint in Figure 5.6b). Now let us suppose that z1 takes its extreme

82 Chapter 5. Integration over a polytope

value, and that

d1 + p1∆z1 > t

d2 + q1∆z1 > t.

In order for the point to remain in the feasible region, the other terms in
the respective hyperplane equations must compensate for the excess delay
caused by ∆z1 taking its extreme value. If there was a coordinate (other
than ∆z1) for which the coefficients in the two constraints were of the same
sign then that coordinate could be made to assume an appropriate value in
order to drive both constraints back into feasibility. However, since there is
no such coordinate, the other coordinates cannot play the compensatory role
in both constraints. For example, if ∆zi has a positive coefficient in the first
constraint (and therefore a negative coefficient in the second constraint),
it must take a negative value in the first constraint to be of any use in a
compensatory role in the first constraint. But this will simultaneously drive
the second constraint further into infeasibility. Thus the opposite signs limit
the ability of the other coordinates to balance out the extreme behaviour of
any one coordinate. This makes it unlikely that any point with one of its
coordinates assuming an extreme value lies in the feasible region.

5.6 Numerical integration

We shall now investigate a deterministic method of integrating over a poly-
tope. The one-dimensional Gaussian formulae are well known and frequently
used but multi-dimensional integration via numerical methods is a tricky
proposition. The straightforward extension of one-dimensional integration
methods leads to the so-called product rule, wherein one applies a one-
dimensional integration rule in each dimension. The downside of product
rules is that they are exponential in the number of dimensions. Let us for-
malise the argument.

A one-dimensional integration rule has the following form:

∫ b

a

f(x)dx =

i=N
∑

i=1

wif(xi), (5.13)

5.6. Numerical integration 83

where the wis represent the weights and the xi represent the points at which
the function is sampled. The weights and points are calculated so that every
function of degree no greater than m is integrated exactly by the formula.
If one uses the well-known Gaussian quadrature than the number of points
needed to integrate exactly a function of degree no greater than m is 2m −
1. Suppose that we wish to integrate a function in two-dimensions. The
integration rule in two-dimensions will have the following form:

∫ x1

x0

∫ y1

y0

f(x, y)dydx

≈
i=N
∑

i=1

wi

∫ x1

x0

f(x, yi)dx

≈
i=N
∑

i=1

j=M
∑

j=1

wiwjf(xi, yj). (5.14)

Thus the number of points needed is the product of the number of points
in each dimension, and this is what leads to the exponential complexity. It
has to be remarked that there is no general product formula for integrating
over an arbitrary polytope. The literature deals with integration over special
regions such as a simplex, a sphere, a cube, an octahedron and so on. For
reasons that will become clear in the next chapter, we shall be especially
interested in integration formulae over a sphere.

Let us examine how to construct an integration formula for a polynomial on
the unit sphere in 3 dimensions. An integration formula of degree m in 3
dimensions should integrate exactly a polynomial of degree no greater than
m. In other words, the integral we are targeting for exact integration is of
the form:

I =

∫ 1

−1

∫

√
1−x2

1

−
√

1−x2
1

∫

√
1−x2

1−x2
2

−
√

1−x2
1−x2

2

xα
1 xβ

2xγ
3dx3dx2dx1. (5.15)

Note that the limits on the integrals are not independent of each other,
and this makes the straightforward application of the product-rule concept
impossible. The key step is to introduce spherical coordinates.

84 Chapter 5. Integration over a polytope

x1 = r cos θ cos ω

x2 = r sin θ cos ω

x3 = r sin ω. (5.16)

Substituting for x1, x2, and x3 in the integral above we obtain

I =

∫ 1

−1

∫ π/2

−π/2

∫ π/2

−π/2

rα+β+γ cosα θ sinβ θ cosα+β ω sinγ ωJdωdθdr

where J = r2cosω. (5.17)

In the above equation J is the Jacobian factor. The crucial advantage of
using polar coordinates is that the integrals all have independent limits, and
we can then use a product-rule.

5.7 Experimental set-up

The sensitivities of the delays of the gates to the process parameters are dif-
ficult to obtain in practice. The partitioning of the die-area into sub-regions
which are affected by unique process parameters as shown in Figure 4.5 ap-
pears reasonable, but once again we cannot be absolutely sure because of the
unavailability of real industrial data. The discussion in a previous section on
finding a small bounding box highlighted the role played by the constraints
in determining a small bounding box. In particular, it was pointed out that
mixed-coefficient (+ve and -ve coefficients in an arbitrary column) path sen-
sitivity matrices enable us to find a bounding box for the feasible region much
smaller than the obvious 3σ box inspired by the JPDF of process parame-
ters. However, in reality we believe mixed coefficient constraint matrices are
unlikely to occur because a particular process parameter is likely to affect
each gate in the design in the same way, i.e., a positive change in the process
parameter in question is likely to speed-up or slow-down all gates in the chip
(albeit by different amounts), because the underlying physics that links each
gate to the process parameter in question must be the same. In other words
the sensitivities of the gates to a particular process parameter are likely to be

5.7. Experimental set-up 85

of the same sign. An interesting point to note here is that mixed-coefficient
constraint matrices mean that it is highly unlikely that circuits will be man-
ufactured that are faster than their nominal delay (delay they would have in
the absence of any process variations). This is because there is likely to be
no single process variation direction that speeds up all paths. In fact if the
path vector directions are distributed uniformly over the unit sphere, any
process variation direction will slow down some one or the other path thus
impacting chip delay.

In light of the discussion above, we have assumed that the sensitivities of
all the gates to a particular process parameter are of the same sign. This
assumption leads to the interesting property that some manufactured chips
will be faster than the nominal chip. The impact of this property is explored
further in Chapter 6. To model locational dependence we ascribe to each gate
of a particular type a sensitivity profile that is a function of the gate’s position
on the chip. Thus we believe that our experimental set-up corresponds to
reality, although we have no means of conclusively establishing this to be the
case.

86 Chapter 5. Integration over a polytope

Chapter 6

Ellipsoidal approximation of

the feasible region

6.1 Introduction

It has already been established in the previous chapter that the original poly-
tope representing the feasible space is a troublesome region for integration.
The non-standard shape of the polytope precludes the use of effective nu-
merical integration techniques since such techniques are only available for
special geometric regions such as a sphere, a cube, a simplex and so on. This
suggests that in order to use numerical integration techniques, we must ap-
proximate an arbitrary polytope by a nice geometric region. In this chapter,
we propose the use of an ellipsoid to approximate the polytope.

We first describe mathematical programming techniques to compute the max-
imum volume ellipsoid that can be inscribed in the feasible region. Having
computed the ellipsoid, we use it as a surrogate for the feasible region, and
compute the yield integral assuming the ellipsoid is the feasible region. Some
standard numerical integration routines are used for this purpose, and we can
calculate the lower bound to the true curve (assuming that we can in fact
integrate exactly over the ellipsoid). A section is devoted to improving this
lower bound by trying to cover the feasible region with two ellipsoids instead
of one. In the latter part of the chapter, we show how to use the ellipsoid
to devise Monte-Carlo methods for yield integration of very low variance,
especially for the faster performances. The Monte-Carlo methods target two

87

88 Chapter 6. Ellipsoidal approximation of the feasible region

situations: one in which the integrand is not a standard joint probability
density function, and is therefore difficult to sample from, and the other in
which the integrand is a Gaussian joint probability density function and is
very easy to sample from.

6.2 Ellipsoidal approximation

Consider the polytope in Figure 6.1. We approximate this polytope by the
maximum volume ellipsoid that can be inscribed in it. It can be seen that
the ellipsoid appears to represent the shape of the polytope reasonably well.
The reader may note that this happens in more general situations as well. El-
lipsoids have geometric properties that are very desirable. For example [100]
states that one can find the global minimum of any quadratic over an ellipsoid
in polynomial time, while the general problem of finding a global minimum
of a quadratic over a polytope is NP-complete. Ellipsoidal approximations of
a polytope have been used in Khachiyan’s famous polynomial-time algorithm
for linear programming [50]. Recent approaches to estimating the volume of
convex bodies in high dimensions use an ellipsoid to approximate the volume
of the convex body. Crucially for us, there are efficient ways of computing
the maximum volume ellipsoid inscribed in a polytope. This fact makes an
ellipsoidal approximation of the feasible region a particularly desirable one.

A number of interior-point algorithms have been proposed in the literature
for finding the maximum volume ellipsoid that can be inscribed in a polytope.
Nesterov and Nemirovskii [73] constructed a three-stage barrier method for
finding an ε-optimal ellipsoid Esuch that V ol(E) ≥ V ol(E∗)e−ε where E∗

is the maximum volume ellipsoid contained within the polytope P and ε ∈
(0, 1). However, the algorithm requires the knowledge of the ratio of two
concentric balls, one containing P and the other contained within P . With
this information, it has a complexity estimate of O(m2.5(n2 + m) ln mR

ε
),

where m is the number of constraints and n is the number of dimensions.
The term n2 comes from having to solve linear systems containing an n ×
n linear system. The algorithm of Khachiyan and Todd [51] runs in time
O(m3.5 ln(mR

ε
) ln(n lnR

ε
)). It uses the same barrier method as the method of

Nesterov and Nemirovskii but avoids using an n× n matrix variable. After
further improvements, Anstreicher [4] obtained an O(m3.5 ln(mR

ε
)) algorithm

for the problem.

6.3. MAXDET problem 89

Polytope

Maximum Volume
 Ellipsoid

z2

z1

Figure 6.1: Maximum volume ellipsoid approximation to feasible polytope.

We shall review two approaches to the maximum volume ellipsoid problem.
The first of these formulates the maximum volume ellipsoid problem as a
MAXDET problem with linear matrix inequalities and solves it using an in-
terior point algorithm. The second approach due to Zhang [100] is a more
efficient approach and is the one we use in this thesis. However all algo-
rithms for finding the maximum volume ellipsoid given a set of m linear
constraints in n variables suffer from the fact that they are non-linear in
m. This makes the ellipsoid approach impractical for situations where we
have a huge number of constraints, and cannot prune them. A remarkable
and highly desirable feature of using ellipsoid approaches, however, is the
relatively mild dependence on the dimensionality of the problem.

6.3 MAXDET problem

Below we present a mathematical programming technique modelled on the
method of [93] to compute the maximum volume ellipsoid that fits in the

90 Chapter 6. Ellipsoidal approximation of the feasible region

polytope representing the feasible space.

The feasible space can be represented as a set of linear inequalities. Recalling
(4.4), we can write:

F = {z | RT
i z ≤ ti, i = 1, 2, . . . , P}. (6.1)

In the above equation the matrix Rij is the sensitivity of the ith path to the
jth global parameter, z represents the vector of global parameters, and P is
the number of paths. An arbitrary ellipsoid can be expressed as a collection
of points z satisfying the equation

E = {z ∈ Rn : (z − d)T (BBT)−1(z − d) ≤ 1}. (6.2)

The above can be recast as

E = {z ∈ Rn : z = By + d | ‖y‖ ≤ 1}, (6.3)

where B is a symmetric, positive-definite matrix that linearly transforms all
points in the unit sphere, and d is the centre of the ellipsoid. Note that the
shape of the ellipsoid is uniquely determined by the matrix (BBT)−1. How-
ever this does not impose a restriction on B since any orthogonal transforma-
tion of B will do as well as the following shows: (BQ)(QT BT)−1 = (BBT)−1

for any orthogonal matrix Q. Our interest is in the maximum volume ellip-
soid that fits in the feasible region. To find such an ellipsoid, it is sufficient
to maximise the determinant of the transformation matrix B since the vol-
ume of the ellipsoid is proportional to the determinant of the transformation
matrix. The requirement that E ⊂ F means that

RT
i (By + d) ≤ ti ‖y‖ ≤ 1, i = 1, 2, . . . , P. (6.4)

This in turn means that

sup‖y‖≤1(R
T
i By + RT

i d) ≤ ti, i = 1, 2, . . . , P (6.5)

or
‖BRi‖+ RT

i d ≤ ti, i = 1, 2, . . . , P. (6.6)

Now that we have established the set of constraints, we turn our attention to
the objective function. The function log detB can be shown to be a convex

6.3. MAXDET problem 91

function. Thus we establish the following convex optimisation problem to
determine the maximum volume ellipsoid that fits in the feasible region:

maximise log detB

subject to B = BT > 0

subject to ‖BRi‖+ RT
i d ≤ ti, i = 1, 2, ..., P. (6.7)

The above formulation can be recast as a MAXDET formulation and has
been the subject of intensive study in the literature [93] and [100]. We will
give a brief background of this problem, since it plays a central role in this
thesis. For the mathematical details, we refer the reader to the papers of [93]
and [100]. The standard MAXDET formulation can be written as

minimise cT z + log det(G(z))−1

subject to G(z) � 0, F (z) � 0 (6.8)

where

G(z) = G0 + z1G1 + . . . + znGn

F (z) = F0 + z1F1 + . . . + znFn. (6.9)

Here G and F are affine functions with G : Rn → Rl×l, F : Rn → Rm×m,
Gi = GT

i and Fi = F T
i . The � sign in the formulation stands for matrix

inequalities: G(z) � 0 ⇒ uTG(z)u > 0 ∀nonzero u while � means the
following: F (z) � 0 ⇒ uTF (z)u ≥ 0 ∀u. The maximum volume ellipsoid
problem can be cast in the MAXDET form when we note that the P convex
constraints in B and d are equivalent to the P LMIs:

[

(ti − RT
i d)I BRi

RT
i B (ti − RT

i d)

]

≥ 0, i = 1, 2, ...P. (6.10)

In the above matrix inequality I is the identity matrix, B = BT ∈ Rn×n

and d ∈ Rn. The approach of [93] solves the MAXDET problem via an
interior-point algorithm. The feature of the interior point algorithm is that
it solves the problem iteratively and converges to a solution that is within

92 Chapter 6. Ellipsoidal approximation of the feasible region

a user-specified tolerance of the optimal solution. In practice, however, we
found the algorithm to be impractical for problems of high dimensionality.
Although the number of iterations needed for convergence shows only a mod-
est increase with dimensionality, the amount of time required per iteration
increases dramatically and this renders the algorithm impractical. There-
fore, in the next section, we turn our attention to a novel approach of [100]
that substantially reduces the running time because it does not work with
matrix-valued variables.

6.4 Zhang’s approach

The basic convex constraints used in Zhang’s approach are the same as those
of [93]. The convex constraints are

‖BRi‖+ RT
i d ≤ ti, i = 1, 2, ..., P. (6.11)

We introduce the notation

h(B) = (‖BR1‖, ‖BR2‖, ..., ‖BRP‖)T , (6.12)

where h(B) is an m-dimensional vector. Requiring that all the convex con-
straints be satisfied is the same as asking that

t− Rz − h(B) ≥ 0. (6.13)

The volume of an ellipsoid is proportional to the determinant of the trans-
formation matrix. Thus the solution of the following optimisation problem
gives us the maximum volume ellipsoid contained in the given polytope P :

min − log det B subject to

t− Rz − h(B) ≥ 0. (6.14)

where B is symmetric and positive definite. The above is a convex pro-
gramming formulation for which the Karush-Kuhn-Tucker conditions which
determine an optimal solution can be derived as below. First we construct
the Lagrangian of the convex formulation

L(z, B, u) = − log det B − uT (t−Rz − h(B)). (6.15)

6.4. Zhang’s approach 93

The vector u is a vector of Lagrange multipliers. The Karush-Kuhn-Tucker
(KKT) conditions require that

∇zL = 0, (6.16)

∇BL = 0. (6.17)

We know that

∇[log det B] = B−1 (6.18)

∇[hi(B)] =
BRiR

T
i + RiR

T
i B

2hi(B)
. (6.19)

Thus we arrive at the following KKT conditions:

RT u = 0, (6.20)

B−1 − [B(RT Y R + (RT Y R)B]/2 = 0, (6.21)

v − (t−Rz − h(B)) = 0, (6.22)

Uv = 0, (6.23)

u, v ≥ 0. (6.24)

In the above set of equations U = Diag(u) and Y = Y (B, u) = Diag(h(B))−1U ,
B is symmetric and positive definite and v is a slack variable. The crucial
feature of Zhang’s approach that is the source of its efficiency is that it does
not carry the matrix variable B. One approach to eliminate it is to observe
that

B(y) = (RT Y R)−1/2. (6.25)

Zhang shows that this solution is unique in S++
n . After further manipulations,

he obtains the following formulation:

F (x, y, u, v) = 0, y, u, v ≥ 0 (6.26)

F (x, y, u, v) =

RT u
Rz + h(B(y)) + v − t

u− Y h(B(y))
Uv

. (6.27)

Zhang solves equations such as the above using a primal-dual algorithmic
framework. We shall not go into the details of the algorithm, and instead
refer the reader to the relevant paper.

94 Chapter 6. Ellipsoidal approximation of the feasible region

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200

V
ol

um
e

Delay

ELLIPSOID VOLUME ERROR

angle-ON
angle-OFF

Figure 6.2: We measure the volumes of the maximum volume ellipsoid computed
for the subset of C constraints resulting from path filtering (“angle-ON”) and the
maximum volume ellipsoid computed for C paths according to decreasing order of
criticality (“angle-OFF”).

6.5 Path filtering and the maximum volume

ellipsoid

In Chapter 4, we remarked that there are many millions of critical paths
in a moderately large circuit. The maximum volume ellipsoid algorithms
described in the previous sections have at least a cubic dependence on the
number of constraints in the problem. They are clearly not practical for the
millions of critical paths in an average circuit. It is here that the path filtering
procedure of Chapter 4 is truly invaluable; instead of finding the maximum
volume ellipsoid inscribed in a polytope formed by all the m original hyper-
planes (paths), we find the maximum volume ellipsoid for a carefully chosen
subset C of the original set of paths. In Figure 6.2, we show how the max-
imum volume ellipsoid inscribed in a polytope defined by a carefully chosen
subset of C constraints is closer to optimal than the maximum volume ellip-
soid inscribed in a polytope defined by the top C paths in order of nominal
criticality. Together with Figure 4.6, this establishes that the path filtering
criterion of Chapter 4 is a useful means of reducing the number of paths in
the circuit that need to be considered.

The maximum volume ellipsoid inscribed in a polytope formed by a subset

6.5. Path filtering and the maximum volume ellipsoid 95

0

2

4

6

8

10

12

14

60 80 100 120 140

Er
ro

r %

Delay

ELLIPSOID CONSTRAINT ERROR

angle-ON
angle-OFF

Figure 6.3: Ellipsoid error induced by path filtering. We measure the maximum
fractional delay violation of any constraint in the set of paths using (a) the maxi-
mum volume ellipsoid computed by the subset of C constraints returned by path
filtering (“angle-ON”) and (b) the maximum volume ellipsoid computed by the
top C paths according to nominal criticality (“angle-OFF”).

of the original constraints is no smaller than the maximum volume ellipsoid
inscribed in the polytope formed by all the constraints. This naturally leads
to the question of how sub-optimal is the maximum volume ellipsoid inscribed
in a polytope defined by only a subset of the constraints.

In order to measure the deviation of the approximate maximum ellipsoid
from the true maximum ellipsoid, we need only to determine the number
of constraints in the whole system that are violated and the extent of the
violation. The rationale for this is simple: if the “approximately” maximum
volume ellipsoid is feasible for all constraints (i.e., does not violate any con-
straint), then the “approximately” maximum volume ellipsoid is actually the
maximum volume ellipsoid. If it violates a few constraints, then the extent of
the violations determines how close the “approximately” maximum volume
ellipsoid is to the true maximum. A violation of a constraint means that the
ellipsoid intersects the constraint in more than one point (in two dimensions,
the intersection will be in two points, but in higher dimensions the intersec-
tion will be a curve) and is therefore infeasible for the constraint. The extent
of the violation can be measured by the amount that the hyperplane must

96 Chapter 6. Ellipsoidal approximation of the feasible region

be moved so that it becomes a tangent to the ellipsoid again (and is then
just feasible). This means that the paths representing violated hyperplanes
must be speeded up by a small amount, so as to become feasible for the
“approximate” maximum volume ellipsoid. If γi is the delay of the ith path,
and δγi is the amount by which it is speeded up, then the fraction δγi

γi
is a

useful measure of the violation of the hyperplane.

For a given required performance, we can define the ellipsoid error as follows:

Error = max
δγi

γi

; 1 ≤ i ≤ P (6.28)

It remains to calculate δγi for each hyperplane i. Let the hyperplane equation
be given by RT

i ∆z ≤ η − γi where η is the required performance and γi is
the nominal delay of the ith hyperplane, and Ri is the ith row of the matrix
R of equation (4.4). In z-space, the space of global process parameters, this
equation can be rewritten as RT

i z ≤ ti. We know that z = By + d where
‖y‖ = 1. Thus the ith hyperplane in the space of global parameters can be
transformed in unit sphere space as follows:

RT
i By ≤ ti − RT

i d. (6.29)

If the distance of this hyperplane to the origin is less than one, then it means
that this hyperplane in unit sphere space intersects the unit sphere in more
than one point. Therefore it also intersects the ellipsoid in more than one
point. In order to make the hyperplane a tangent to the hyperplane its
nominal delay γi must be changed by an amount δγi such that

δγi + (ti −RT
i d)

‖RT
i B‖ = 1. (6.30)

Thus we can write

δγi = ‖RT
i B‖

(

1− (ti −RT
i d)

‖RT
i B‖

)

= ‖RT
i B‖(1− q), (6.31)

where q is the distance of the hyperplane from the origin in unit sphere space.

6.6. Numerical integration over the ellipsoid 97

Note that this is a more useful measure of optimality than merely measuring
the number of constraint violations. An ellipsoid that violates just one con-
straint by a huge margin is less preferable to one that only slightly violates
a large number of constraints. We show experimental results of the ellipsoid
error calculated for the same circuit that serves as a running example in
this chapter and the next. Of the 5112 constraints in this circuit (assuming
that there are 8 global sources of variation), 100 constraints were extracted
according to the path filtering criterion of Chapter 4. The ellipsoid error
obtained at each performance is plotted in Figure 6.3.

6.6 Numerical integration over the ellipsoid

Having computed the maximum volume ellipsoid that can be inscribed in the
feasible region, we shall treat the ellipsoid as a surrogate for the feasible re-
gion. Integrating the joint probability density function over a given arbitrary
polytope is a hard problem, but efficient numerical integration techniques
can be brought to bear upon the problem of integrating the joint probability
density function over an ellipsoid. First we shall transform the integral over
an ellipsoid to one over the unit sphere, to make the numerical integration
algorithms directly applicable. This transformation is particularly easy to
do, and we can make use of the ellipsoid transformation matrix computed
by the maximum volume ellipsoid (MVE) algorithm. The transformation is
illustrated in Figure 6.4.

Any point z in the ellipsoid can be expressed as follows:

z = By + d, ‖y‖ = 1. (6.32)

The yield integral can be written as

Y =

∫ ∫

. . .

∫

R∗

f(z1, z2 . . . zn)dzn . . . dz1 (6.33)

=

∫ ∫

. . .

∫

R

f(BT
1 y + d1, B

T
2 y + d2, . . . B

T
n y + dn)(det B)dyn . . . dy1

where f(z) is the joint probability density function of the global parameters,
R∗ is the ellipsoid computed by the MVE algorithm, and R is the unit sphere.
Now the yield integral is of the form directly suitable for numerical integra-
tion. In the next section we explore some standard numerical integration
routines to perform integration over the unit sphere.

98 Chapter 6. Ellipsoidal approximation of the feasible region

y1

y2z2

z1

z = By + d
‖y‖ ≤ 1

(d1, d2) (0,0)

Figure 6.4: Ellipsoid is a linear transformation of the unit sphere.

6.7 Numerical integration- Stroud’s formulae

Given a function f(y1, y2 . . . yn) over the unit sphere, Stroud’s formulae to
integrate the function over the unit sphere have the following form:

∫ ∫

. . .

∫

f(y1, y2, . . . yn)dyn . . . y1 =

i=N
∑

i=1

wif(vi1, vi2, . . . vin). (6.34)

Recall from Chapter 5 that the points v are independent of the function f .
There exist formulae where some of the points v lie outside the unit sphere.
In some formulae the weights of the formulae are negative. We prefer, for
reasons of numerical stability to have all the points of the formulae belong
to the unit sphere, and for all coefficients to be positive as far as possible.
The essence of Stroud’s formulae is that the weights and points are chosen
such that the formulae give us the correct result when the integrand is a
polynomial of degree no greater than a specified integer. For example, a
degree-3 Stroud formula correctly integrates all polynomials of degree no
greater than 3.

6.7. Numerical integration- Stroud’s formulae 99

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300

Pr
ob

ab
ili

ty

Delay

CUMULATIVE DISTRIBUTION CURVES

degree7-formula
monte-carlo

degree7-shell
Gauss

Figure 6.5: Use of a degree-7 integration formula, as well as a degree-7 shell
integration formula. The curve representing the ordinary degree-7 integration
formula for the whole sphere begins to fall off for the slower performances, while
that for the degree-7-shell formula keeps up with the real curve for the ellipsoid
integral marked “monte-carlo” over the entire range of performances. The Monte-
Carlo curve (marked “Gauss”) represents the integral over the entire feasible region
defined by the yield polyhedron.

The following is a degree-3 Stroud formula to perform integration:

Y =
i=n
∑

i=1

V

2n
(f(ei) + f(−ei)). (6.35)

where e1 = (1, 0 . . . , 0)T and V is the volume of the unit sphere in n-
dimensions. We have found that degree-3 or even degree-5 formulas cannot
be used for integration because they are too inaccurate. A degree-7 formula
appears to be more promising. The degree-7 formula we use for integrating
over the entire unit sphere is drawn from [88] and is a derivative of a degree-7
rule used for integrating over the surface of a unit sphere. The degree-7 rule
to integrate over the surface of the unit sphere makes use of the following
points:
(a) all points of the form (±1, 0, . . . , 0), namely all on the positive and neg-
ative coordinate axes.
(b) all points of the form (± 1√

n
,± 1√

n
. . .± 1√

n
), namely all 2n points obtained

100 Chapter 6. Ellipsoidal approximation of the feasible region

by taking all possible sign combinations of (1√
n
, 1√

n
. . . 1√

n
)

(c) all points of the form (± 1√
2
,± 1√

2
, 0, 0 . . . 0), namely all 4 ∗

(

n
2

)

points ob-
tained by choosing non-zero values in exactly two coordinate positions, and
zeroes elsewhere, and then considering all possible sign combinations of such
points.

There are 2n + 2n2 points in the degree-7 rule for integrating a function over
the surface of a unit sphere. The transformation of this rule to integrate over
the entire unit sphere uses 2n+1 + 4n2 points.

In Figure 6.5 we use the degree-7 formula above to calculate yield integrals
for a whole range of performances and compare the cumulative distribution
curve obtained with one obtained by Monte-Carlo simulation. We also show
the curve resulting from straightforward uniform sampling over the ellipsoid.
The two curves match closely for the faster performances. At higher delays,
the curve corresponding to the degree-7 formula begins to fall off. We suspect
that the reason for this behaviour is the sheer amount of variation in the
Gaussian integrand over ellipsoids for the slower performances. A degree-
7 formula proves incapable of modelling the entire variation for the slower
performances. This suggests that we must try to break the feasible region
into sub-regions such that we are assured that in each sub-region there is
much less variation than over the entire region. Since the integrands we will
be interested in have a radial symmetry (more or less Gaussian), it is natural
to break the unit sphere into a series of concentric shells, apply a degree-7
formula in each concentric shell, and add up all the results to get the total
yield integral. The curve resulting from this approach is marked “degree-7-
shell” in Figure 6.5. This curve closely matches the Monte-Carlo curve for
all performances.

Although we could successfully use a numerical integration formula to inte-
grate a Gaussian integrand over an ellipsoid, the approach would not work
at moderate to high dimensions owing to the sheer number of points needed.
The number of points needed grows exponentially with the number of dimen-
sions. Further there is no error theory as there is for Monte-Carlo integration.
Nevertheless we study an approach in Chapter 7 that combines numerical in-
tegration formulae together with Monte-Carlo concepts to exploit the best
features of both methods.

In Figure 6.5, we note that there is a significant gap between the Monte-Carlo

6.8. Covering the feasible region by multiple ellipsoids 101

curve representing the integral over the ellipsoid, and the Monte-Carlo curve
representing the entire polyhedron, marked “Gauss” in the figure. This is not
surprising since the ellipsoid covers only a small part of the feasible region
defined by the yield polytope. In the next section, we explore a technique to
reduce this gap by trying to cover the feasible region with two ellipsoids.

6.8 Covering the feasible region by multiple

ellipsoids

The ellipsoidal approximation to the interior of the polytope fails to account
for the corners of the polytope. If the corners are all far away from the centre
of the joint probability density function of the global parameters then we can
safely assume that the probability mass contribution of the corners to the
yield is not significant. In such a situation, the ellipsoidal approximation
captures the bulk of the probability mass and works well. But as we move
from very low yields (with the feasible region far away from the centre of
the JPDF) to moderate yields (say about 0.5), the centre of the JPDF could
fall just outside the feasible region, in one of the corners not covered by the
ellipsoid. This situation is illustrated in Figure 6.6. In this situation, the
corner concerned contributes a substantial amount to the yield, and must
be covered. We shall develop a means to handle the situation described
in Figure 6.6. This figure shows the centre of the JPDF to be within the
feasible region, but outside the ellipsoid. The analysis given below strictly
corresponds to the case when the centre of the JPDF lies outside the ellipsoid.
We do not pursue the case when the centre of the JPDF enters the ellipsoid,
although the analysis given below can be extended to this case as well.

Our strategy to handle this situation involves the use of two ellipsoids instead
of a single ellipsoid to cover the polytope. The second ellipsoid is designed
to account for the corner of Figure 6.6. In order to find this second ellipsoid,
we first calculate the first ellipsoid. Then we find the point on the surface of
the first ellipsoid that is closest to the centre (or mean) of the JPDF. Having
found the point we draw a tangent at the point. This tangent divides the
yield polyhedron into two regions - the volume of the yield polytope inside
the original yield polytope but below the tangent (this polytope is already
accounted for by the first ellipsoid) and the volume of the polytope above the
tangent. Let the equation of the tangent be given by aT ∆z + b = c. Then

102 Chapter 6. Ellipsoidal approximation of the feasible region

Polytope feasible
 region

Maximum volume
 ellipsoid

centre of JPDF lies
 outside the ellipsoid

z2

z1

Figure 6.6: Nominal point lies in a corner of the feasible region and is not accounted
for by the maximum volume inscribed ellipsoid leading to significant loss of yield.

the second region can be seen to be the solution of the following system of
equations:

Rz ≤ [t1 t2 · · · tP]T ,

aT z + b ≥ c. (6.36)

We shall now develop a technique to find the tangent in question. It turns
out to be easier to find a tangent to an axis-parallel ellipsoid than to a
general ellipsoid. Therefore we transform the first ellipsoid into an axis-
parallel ellipsoid. Let B be the ellipsoid transformation matrix of the first
ellipsoid, so that any point on it can be expressed as follows:

z = By + d; ‖y‖ = 1. (6.37)

6.8. Covering the feasible region by multiple ellipsoids 103

The ellipsoid matrix, as we have noted before is given by (BBT)−1. An
ellipsoid of fixed orientation in space has a fixed (BBT)−1, but possibly many
different matrices B that can serve as the ellipsoid transformation matrix.
Let the matrix S be the eigenvector matrix of (BBT)−1, and Λ be the diagonal
eigenvalue matrix such that

(B−1)T (B−1) = SΛS−1. (6.38)

Second ellipsoid covers
the centre of the feasible region

Tangent

Feasible Region
z1

z2

Figure 6.7: Two ellipsoids cover the feasible region.

In order to rotate the coordinate system so that the ellipsoid becomes axis-
parallel, we need to perform the following transformation:

z = Sw + d. (6.39)

Then from (6.37), we see that

STz = ST By + ST d,

w = ST By. (6.40)

If ST B is the ellipsoid transformation matrix, then ((STB)−1)T (STB)−1 =
S−1(B−1)T B−1S is the ellipsoid matrix. Using (6.38) we can see that the

104 Chapter 6. Ellipsoidal approximation of the feasible region

ellipsoid matrix is equal to Λ. Thus the ellipsoid matrix becomes diagonal,
and this corresponds to an axis-parallel ellipsoid in w-space centred at the
origin.

In order to derive the tangent equation, we shall work in two-dimensions.
The extension to higher dimensions shall follow from the argument given
below. The equation of the axis-parallel ellipsoid in two dimensions can be
written in analytic form as

(

w1

a

)2

+

(

w2

b

)2

= 1. (6.41)

Here w1 and w2 are the two variable coordinates. The tangent at a point
(u1, u2) can be expressed analytically as follows:

2(u1)

a2
(w1 − u1) +

2(u2)

b2
(w2 − u2) = 0. (6.42)

The point (u1, u2) on the surface of the ellipsoid must be such that it is
closest of all points on the ellipsoid to the point in the transformed space
corresponding to the centre of the JPDF, which we shall refer to as (p1, p2).
The centre of the JPDF is outside the ellipsoid in the original space, and
it is outside the axis-parallel ellipsoid in the transformed space. Clearly for
the point on the ellipsoid closest to (p1, p2), the gradient at the point (or the
normal at the point) must contain the point (p1, p2). This is the criterion
we shall use to identify the point in question. The gradient at (u1, u2) can

be expressed vectorially as [2(u1)
a2

2(u2)
b2

]T . Thus we can set up the following
system of equations:

u1 + t
[u1

a2

]

= p1,

u2 + t
[u2

b2

]

= p2,
(

u1

a

)2

+

(

u2

b

)2

= 1. (6.43)

The first two equations in the above system express the condition that the
centre of the JPDF must lie on the gradient at (u1, u2). The last equation
simply expresses the fact that (u1, u2) must lie on the surface of the ellipsoid.

6.8. Covering the feasible region by multiple ellipsoids 105

The above are 3 equations in 3 variables and hence can be solved. To solve
the equations we express both u1 and u2 in terms of t and then use the third
equation to get a single equation in the variable t. After some algebraic
manipulation we can show:

u1 =
a2p1

a2 + t
,

u2 =
b2p2

b2 + t
. (6.44)

Substituting for u1 and u2 in the last equation of (6.43) we have

a2(p1)
2(b2 + t)2 + b2(p2)

2(a2 + t)2 − (a2 + t)2(b2 + t)2 = 0. (6.45)

The above equation represents a polynomial of degree 4 in t which we must
solve in order to find the point (u1, u2) on the ellipsoid which is the closest
point to the centre of the JPDF. The polynomial above can have only one
positive root. The easiest way to see this is to recast it in the following way:

a2p2
1

(a2 + t)2
+

b2p2
2

(b2 + t)2
= 1. (6.46)

Let t0 be the smallest positive value that solves the above equation. The left-
hand side of the above equation monotonically decreases with increasing t,
when t is positive. Thus for all t > t0 the left hand side of the above equation
is less than 1, making t0 the only positive root of the above equation. A simple
geometric argument establishes that it is this positive root that determines
the point on the ellipsoid closest to the centre of the JPDF. Consider a point
on the ellipsoid corresponding to a negative root. Geometrically this means
that starting from this point on the ellipsoid, one must move in a direction
negative to that of the gradient to reach the centre of the JPDF (point A).
But this means that the line joining the point on the ellipsoid with A passes
through the ellipsoid, and there is another point in the ellipsoid that is closer
to A than the point on the surface of the ellipsoid. Thus the point on the
ellipsoid closest to the given point cannot correspond to a negative root of
the polynomial above.

To find the roots of the polynomial, we resort to Newton’s root finding pro-
cedure:

tn+1 = tn −
f(tn)

f ′(tn)
. (6.47)

106 Chapter 6. Ellipsoidal approximation of the feasible region

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300

Pr
ob

ab
ili

ty

Delay

CUMULATIVE DISTRIBUTION CURVES

one ellipsoid
two ellipsoids

Gauss

Figure 6.8: Two ellipsoids covering the feasible region. The curves have been
computed for 3 global parameters. The joint probability density function was so
chosen as to maximise the yield in a certain corner of the polyhedron. It is this
corner that is captured by the second ellipsoid.

The starting value of t can be selected keeping in mind that it must be greater
than the positive root value. Considering (6.46 we see that

a2p2
1

t2
+

b2p2
2

t2
> 1, (6.48)

leading to

t <
√

a2p2
1 + b2p2

2,

t < max(a, b) ∗
√

p2
1 + p2

2. (6.49)

The form of (6.45) suggests that in n-dimensions, we shall need to solve a
degree-2n polynomial. Thus the problem clearly gets more complicated in
higher dimensions. Also the premise behind finding the tangent - namely,
that there is a particular corner not covered by the first ellipsoid where the
probability mass is high - becomes weaker in higher dimensions. This is be-
cause there is a profusion of corners in higher dimensions. As the centre of
the JPDF approaches the yield body, there are bound to be several corners
where the yield contribution is high. An ellipsoid will be needed to cover

6.9. Revisiting performance-at-a-time Monte-Carlo 107

each of these corners which is clearly impractical. The tangent finding pro-
cedure, however, will be shown in a subsequent section to have a significant
application.

Figure 6.7 shows how two ellipsoids can be used to account for the poor
approximation of a single ellipsoid. In Figure 6.8, the yield distribution
curve is shown for the case of two ellipsoids. Note that for the new curve,
the greatest improvement over the old curve occurs in a region of medium
probability.

6.9 Revisiting performance-at-a-time Monte-

Carlo

In Chapter 3, we made a remark that for a Monte-Carlo method to calculate
a yield integral accurately we must find a bounding box for the feasible region
that fits the region as closely as possible. It was also remarked that since
for an arbitrary performance, the location of the feasible region in process
parameter space is unknown, it is hard for us to construct the close-fitting
bounding box needed for accurate sampling.

Fortunately there is a way out of our predicament. The ellipsoid provides us
with a means to access the interior of the feasible region. The ellipsoid also
closely resembles the shape of the polytope. All of this suggests that we can
employ the ellipsoid to construct a bounding box around the feasible region
that is better for low yields than the 4σ bounding box. In this section we
formalise the arguments.

Let R be the region of integration in n-dimensional space. The integral we
are interested in calculating is of the form

I =

∫ ∫

. . .

∫

R

f(z1, z2, . . . zn)dz1dz2 . . . dzn. (6.50)

To evaluate the integral we first enclose the region R by a box Ω. Then we
sample N points uniformly and randomly within the box Ω and compute the
expression

Y =

∑i=N
i=1 f(Zi)

N
∗ V ol(Ω). (6.51)

108 Chapter 6. Ellipsoidal approximation of the feasible region

The Zis are independent identical random variables, sampled uniformly from
the box Ω with probability p(Zi) = 1/V ol(Ω). The Expectation of the ran-
dom variable Y , E(Y) provides us with an estimate of the integral since

E(Y) =
V ol(Ω)

N
(NE(f(Z1)))

= V ol(Ω)

∫ ∫

. . .

∫

R

f(z1, z2, . . . zn)p(z1, z2, . . . zn)dz1dz2 . . . dzn

= V ol(Ω)
1

V ol(Ω)

∫ ∫

. . .

∫

R

f(z1, z2, . . . zn)dz1dz2 . . . dzn

=

∫ ∫

. . .

∫

R

f(z1, z2, . . . zn)dz1dz2 . . . dzn. (6.52)

The accuracy of the estimate can be gauged from the variance of the random
variable Y . The variance can be calculated as follows:

V ar(Y) =

(

(V ol(Ω))2

N

)

∗ V ar(f(Z1)). (6.53)

But V ar(Z1) can be written as follows:

V ar(f(Z1)) = E(f 2(Z1))− (E(f(Z1)))
2. (6.54)

Noting that z is a vector and dz = dz1dz2 . . . dzn, we have

E(f 2(Z1)) =

(

1

V ol(Ω)

)
∫ ∫

. . .

∫

R

f 2(z)dz (6.55)

and

E2(f(Z1)) =

(

1

V ol(Ω)

)2 (
∫ ∫

. . .

∫

R

f(z)dz

)2

. (6.56)

Putting (6.56) and (6.55) in (6.54) and using (6.53), we finally obtain

V ar(Y) =
V ol(Ω)

N

∫ ∫

. . .

∫

R

f 2(z)dz −
(

1

N

)(
∫ ∫

. . .

∫

R

f(z)dz

)2

.

(6.57)

The interesting thing about (6.57) is that the variance of our estimator de-
pends upon V ol(Ω). Thus a tight bounding box is needed to reduce the
variance.

6.9. Revisiting performance-at-a-time Monte-Carlo 109

The bounding box we construct is suggested by the maximum volume ellip-
soid that can be inscribed into the feasible region. Let s1, s2 . . . sn denote
the eigenvectors of the ellipsoid transformation matrix. They also denote
the axes of the ellipsoid. The half-lengths of the axes of the ellipsoid are
given by the eigenvalues of the ellipsoid transformation matrix: λ1, λ2, . . . λn.
Assuming that the maximum volume ellipsoid approximates the shape of the
polytope quite well, it seems natural to construct a bounding box for the
polytope such that its sides are parallel to the ellipsoid axes. In each ellip-
soid axis, we need to determine how to obtain the supporting hyperplane for
the polytope in the direction of the ellipsoid axis. This can be easily done
via linear programming. Let us formulate the problem

max: sT
i z such that

Rz ≤ [t1 t2 · · · tP]T

(6.58)

Note that the 4σ constraints are included in the above system. If d denotes
the centre of the ellipsoid and zopt denotes the optimal value of z produced
by the linear programme then sT

i (zopt − d) denotes how far one must go in
the direction of si in order to bound the polytope.

This bounding box is shown in Figure 6.9. In practice, though we find that
the gain to be had in ensuring that the ellipsoid bounding box covers the
whole feasible region is minimal; in fact it could even be counterproductive
for the reasons dealt with in Chapter 5 in the context of the construction of
an axis-parallel bounding box. Therefore we construct an ellipsoid bounding
box whose sides are parallel to the ellipsoid axes and with the same lengths as
the ellipsoid axes. We lose the property that the constructed box contains the
entire feasible region but we usually obtain a significant reduction in volume
as compared to the 4σ-bounding box. This saves us the cost of solving 2 ∗ n
linear programmes to determine the actual boundaries.

Figure 6.10 shows two curves, one resulting from using the ellipsoid bounding
box for sampling, and the other resulting from using the 4σ bounding box.
The ellipsoid curve lies beneath the polyhedral curve, which is not surprising
considering that the ellipsoid bounding box is not really a bounding box at
all, and the value it computes is in the best case (zero-variance), a lower
bound on the true yield. The real advantage of using the ellipsoid bounding

110 Chapter 6. Ellipsoidal approximation of the feasible region

Ellipsoid-inspired
Bounding Box

Ellipsoid

feasible region
Polytope

4σ

z2

z1

bounding box

Figure 6.9: Smaller bounding box obtained from the ellipsoid.

box is brought out in Figure 6.11, which is a plot of the variance of the two
methods as a function of delay.

The curves of Figure 6.11 were obtained by running each method 200 times
per performance point. 10,000 samples were generated each time to obtain
a yield estimate. The 200 estimates of yield at each performance point were
then used to calculate the mean value of the yield predicted by each method
and to calculate the sample variance at each performance point (note that
(6.57) suggests that to compute real variance, we must know the result!).
The mean values for each yield are plotted in Figure 6.10 which explains
the relative smoothness of these curves, and the sample variance values for
each method are plotted in Figure 6.11. The ratio of the variances of the
two methods is an interesting measure for it gives us an idea of the relative
confidence that we can have in the results produced by the two methods.
If the ratio of the variances is say 10, then we will need to run the higher

6.9. Revisiting performance-at-a-time Monte-Carlo 111

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

60 80 100 120 140 160 180

Pr
ob

ab
ili

ty

Delay

CUMULATIVE DISTRIBUTION CURVES

poly
ellipsoidBounding

Figure 6.10: Cumulative distribution curves, one obtained by sampling over the 4σ
box and the other by sampling over a smaller ellipsoid bounding box. The number
of global parameters assumed was 8 and the number of hyperplanes in the feasible
polyhedron was 46.

0

0.02

0.04

0.06

0.08

0.1

60 70 80 90 100 110 120 130 140

St
d.

D
ev

Delay

STANDARD DEVIATION

poly-std.dev
ellipsoidBounding-std.dev

Figure 6.11: The standard deviation (sigma) plots of the two Monte-Carlo esti-
mation methods of the previous figure. Sampling over the ellipsoid bounding box
results in orders of magnitude less standard deviation for faster performances than
sampling over the 4σ box.

112 Chapter 6. Ellipsoidal approximation of the feasible region

variance method for 10 times the number of trials used for the lower-variance
method in order to have the same confidence in the result. It can be seen
from Figure 6.11 that the ratio of variances is great at very high performances
(very fast circuits), and falls for less demanding circuit performances. This
is not surprising since the use of a small bounding box is likely to bear
the highest dividends at fast performances, when the yield feasible region is
relatively small relative to the 4σ box (as depicted in Figure 6.9). As the
yield feasible region gets larger and larger, the ellipsoid bounding box begins
to approach the size of the original 4σ box, and the gain obtained by using
this special bounding box is likely to get smaller. For the specific example
circuit we used, and whose results are shown in Figure 6.11, we observed that
the variance ratios declined from 100 down to 1.

0

1

2

3

4

5

6

7

8

60 70 80 90 100 110 120 130

Ef
fic

ie
nc

y

Delay

EFFICIENCY

ellipsoidBounding-efficiency

Figure 6.12: This figure shows the efficiency of using an ellipsoid-bounding box to
perform sampling.The y-axis is a ratio of efficiencies.

Analysis of equation (6.57) can provide us with a clue as to what to expect
from a smaller bounding box. Let us denote the actual yield by the integral
I(f) and the volume of the 4σ bounding box as V . Then we can rewrite
(6.57) as follows:

V ar(Y poly box) =
1

N
(V I(f 2)− (I(f))2). (6.59)

Let the ellipsoid bounding box be a factor k smaller than the 4σ bounding
box. The integral it computes is I∗(f), which is a lower bound on the true

6.9. Revisiting performance-at-a-time Monte-Carlo 113

integral (note that if we were to actually use linear programming to compute
the ellipsoid-box boundaries, the yield integral computed would be I(f)).
We can write

V ar(Y ellipsoid box) =
1

N
(
V

k
I∗(f 2)− (I∗(f))2). (6.60)

Then the ratio of the variances can be written as

V ar(Y poly box)

V ar(Y ellipsoid box)
=

1
N

(V I(f 2)− (I(f))2)
1
N

(V
k
I∗(f 2)− (I∗(f))2)

=
V − (I(f))2

I(f2)

V
k
− (I∗(f))2

I∗(f2)

∗ I(f 2)

I∗(f 2)

> k. (6.61)

The second step in the above system of equations is made possible if we can
assume that I(f) > 0 and I∗(f) > 0. SinceI(f 2) > I∗(f 2),the third step is
possible if we can assume that

(I(f))2

I(f 2)
≈ (I∗(f))2

I∗(f 2)
. (6.62)

Both of these assumptions turn out to be rather mild in practice, so that as
a benchmark we can assume that the gain in variance is at least a factor of
k if the ellipsoid bounding box is k times smaller than the 4σ bounding box.
Experimental results show that this factor k is a rather loose lower bound -
the gain in variance is larger than k.

At this point, it is pertinent to situate this method of variance reduction in
the context of other schemes proposed in the literature [42]. [42] discusses
importance sampling, the method of control variates and stratified sampling
as possible means to reduce variance. The general observation made in this
paper is that in order to obtain variance reduction one has to have a good
approximation of the acceptability region. In our case, this is achieved by
focusing on the ellipsoid and using the fact that the ellipsoid constructed
within the feasible region provides a good approximation of the feasible re-
gion. We perform a kind of importance sampling by drawing our samples

114 Chapter 6. Ellipsoidal approximation of the feasible region

mostly from within the feasible region. In general importance sampling, sam-
pling is performed using a distribution that peaks in the feasible region. In
our case this is done by choosing the distribution

p(z1, z2, . . . , zn) =
1

V ol(Ω)
for z ∈ Ω, 0 otherwise. (6.63)

where Ω is the ellipsoid-inspired bounding box, and R is the feasible region.
Importance sampling is regarded by [42] to be superior to stratified sampling
where we choose to divide the parameter space into non-overlapping regions,
compute the yield integral components for each of these regions separately
and take a weighted sum of all yield contributions according to the probability
mass contained in each stratum. This conclusion is backed up by intuition as
well: stratified sampling does not use information provided by the location
of the feasible region unlike importance sampling; it is a general technique
to reduce variance that is independent of the location, size and shape of the
feasible region. Our method of importance sampling makes use of the size,
shape and location of the feasible region.

Following [42], [38] let us define the efficiency

ε =
σ2

1τ1

σ2
2τ2

. (6.64)

Here τ1 and τ2 represent the computation times for N trials of uniform sam-
pling over the whole 4σ box and uniform sampling over the smaller ellipsoid
bounding box, σ1 and σ2 represent the variances of these two sampling pro-
cedures respectively. The logic behind the above equation is simple: if a
low variance procedure has a high average time per trial value, then it may
become equivalent to a high variance procedure having a low average time
per trial. In other words, one can afford to run a variance procedure for the
extra trials needed to make up for the gap in accuracy without incurring
any increase in computation time because of the low time per trial value.
The efficiency of sampling over the ellipsoid bounding box is shown in Fig-
ure 6.12. The efficiency of uniformly sampling over the ellipsoid bounding
box, as compared to uniformly sampling over the whole 4σ box is largest at
low values of yield, when the ellipsoid bounding box is much smaller than
the whole 4σ box.

6.10. Non-uniform sampling of the space of parameters 115

6.10 Non-uniform sampling of the space of

parameters

We would now like to investigate a non-uniform sampling based Monte-Carlo
integration method. Let us assume that the joint probability density function
(JPDF) of global parameters is a multivariate normal density function with
no correlation among its parameters. Our interest is, as before in evaluating
the following yield integral:

I(f) =

∫ ∫

. . .

∫

R

f(z1, z2, . . . zn)dz1dz2 . . . dzn. (6.65)

Instead of constructing a bounding box around the feasible region and sam-
pling uniformly within it, we choose instead to sample the 4σ bounding box
according to the probability density function p(z1, z2, . . . zn). We can rewrite
the above equation as follows:

I(f) =

∫ ∫

. . .

∫

R

f(z1, z2 . . . zn)

p(z1, z2 . . . zn)
p(z1, z2 . . . zn)dz1dz2 . . . dzn. (6.66)

Then we can easily see that the above integral can be easily estimated by
sampling the probability density function p(z1, z2 . . . zn) and constructing the
following estimate

I∗(f) =

i=N
∑

i=1

f(Zi)

p(Zi)
, (6.67)

where each Zi is sampled from p(z1, z2, . . . zn). The variance of the random

variable f(Z)
p(Z)

can be easily seen to be

V ar(I∗(f)) =
1

N

(

E
(f 2(Z)

p2(Z)

)

− E2
(f(Z)

p(Z)

))

. (6.68)

As in the previous section, we note that z is a vector and let dz = dz1dz2 . . . dzn,
to obtain

V ar(I∗(f)) =
1

N

(

∫ ∫

. . .

∫

R

f 2(z)

p(z)
dz

− (

∫ ∫

. . .

∫

R

f(z)dz)2
)

. (6.69)

116 Chapter 6. Ellipsoidal approximation of the feasible region

If the distribution used for importance sampling p(z) is the same as f(z),
namely we can sample from the given joint probability density function of
the parameters of variation, then the above equation reduces to

V ar(I∗(f)) =
1

N

(

∫ ∫

. . .

∫

R

f(z)dz − (

∫ ∫

. . .

∫

R

f(z)dz)2
)

=
u− u2

N

=
u(1− u)

N
(6.70)

where u = I(f). This is the same as the original Monte-Carlo variance esti-
mator that we derived in Chapter 2. Comparison with the variance estimator
for uniform sampling shows that the difference in variance between the two
estimates can be expressed as

D =

∫ ∫

. . .

∫

R

f 2(z)
1
V

dz −
∫ ∫

. . .

∫

R

f 2(z)

f(z)
dz. (6.71)

The uniform sampling method over the ellipsoid bounding box has lower
variance than the method of sampling from the JPDF if in the whole feasible
region, the following holds true:

1

V
> maxR(f(z)). (6.72)

In general this inequality holds only in feasible regions far away from the cen-
tre of the JPDF. Our experimental results show that if we assume a truncated
multivariate normal distribution for the JPDF of the global parameters, and
sample from it, then we will outperform any uniform sampling method sig-
nificantly for all but the smallest yields. The underlying message is that if we
can sample from the JPDF, then we must perform Monte-Carlo integration
by sampling from the JPDF, instead of sampling uniformly within a bound-
ing box surrounding the feasible region (no matter how tight this bounding
box might be). Uniform sampling must be restricted to situations where it
is difficult or impossible to sample from the JPDF of global parameters. In
the next section, we shall describe an importance sampling based technique
that can reduce variance in case of non-uniform sampling.

6.11. Variance reduction for non-uniform importance sampling 117

6.11 Variance reduction for non-uniform im-

portance sampling

As in the previous section, let us assume that the probability density func-
tion is a multi-variate normal density, and that the sampling technique is to
sample from the JPDF and count the number of times the sample falls in the
feasible region. We shall show that it is possible to decrease the variance by
constructing an importance sampling density that makes use of the geometry
of the feasible region. Let us recall the variance expression for importance
sampling, equation (6.69):

V ar(I∗(f)) =
1

N

(

∫ ∫

. . .

∫

R

f 2(z)

p(z)
dz

− (

∫ ∫

. . .

∫

R

f(z)dz)2
)

. (6.73)

The aim in importance sampling is to construct a sampling density p(z) that
mimics as closely as possible the behaviour of f(z) in the sampling region
R. The choice of p(z) = f(z) proved to be a good one, as was shown in the
last section. However we can do better by choosing p(z) to be a multivariate
normal density of the same form as f(z), but centring it at a point close to
the feasible region. We must choose this point such that p(z) > f(z), z ∈ P
since this is one way of making the first term in equation (6.69) be less than
the yield value p. The technique we use is based on the idea displayed in
Figure 6.13(a). Here we consider the distances of two points A and B from
all points in a polytope P shown in the figure. A separating hyperplane h
separates the point A from the polyhedron P , and B is obtained by dropping
a perpendicular from A onto h, and taking the point of intersection as B. It
can easily be seen that for any point x ∈ P , the distance dA from point A to
the point x is larger than the distance dB from the point B to x:

d2
A = d2

B + r2 − 2 ∗ dB ∗ r ∗ cos θ

≥ d2
B, since

π

2
≤ θ ≤ π. (6.74)

If we assume that A represents the centre point of the original JPDF, then we
can use B to locate the importance sampler density p(X). This will ensure
that every point in the polyhedron is closer to the centre of the importance

118 Chapter 6. Ellipsoidal approximation of the feasible region

sampler, which means that p(z) > f(z), z ∈ P . The only catch is that it
is non-trivial to find the separating hyperplane h. Therefore we turn to a
heuristic. The heuristic is to find the point on the maximum volume ellipsoid
⊂ P that is closest to the point A which is the centre of the JPDF. We take
B to be this point. The rationale behind this heuristic is supplied by the
observation in the previous paragraph: B will be closer than A to all points
within the ellipsoid as well as all points within the polyhedron P , which lie
below the tangent drawn at B. This situation is shown in Figure 6.13(b).

(centre of JPDF)

dB

dA

A

BX

h

P

(a) (b)

A

tangent

X
centre of importanceB

π/2

rθ

sampler

Figure 6.13: Illustration of the procedure to find the centre of an importance
sampler.

The above procedure is only relevant when the nominal point of the design lies
outside the feasible region. Note that both the tangent importance sampler
and the JPDF sampler are estimators of the same integral, unlike in the case
of the ellipsoid bounding box obtained without linear programming. When
the nominal point enters the feasible region, it is no longer advantageous to
place the centre of the importance sampling Gaussian density away from the
nominal point.

Therefore for delay values greater than or equal to the nominal delay value,
we revert to sampling from the given JPDF of global parameters. Thus
in Figure 6.15 we see that a gain in variance is visible using the tangent
importance sampler for all delay values less than the nominal delay; for delay

6.11. Variance reduction for non-uniform importance sampling 119

values greater than the nominal delays there is no gain since the two types of
sampling become identical. Figure 6.15 suggests that there is a fair amount of
gain to be had by using the tangent based importance sampler, at low values
of delay. In fact, for the very low performances, we see that the ratios of
variances σ2

σ1
is of the order of 10. This means that for these performances N

trials of the tangent importance sampler would give us the same accuracy as
100N trials of the naive Gaussian sampling procedure. However, these gains
are tempered somewhat by the fact that it takes longer to run a single trial of
the tangent importance sampler procedure, since it involves computing the
maximum volume ellipsoid contained in the feasible region, and thereafter
finding a tangent to it to obtain the centre of the new importance sampler.
As in the previous section, let us define the efficiency

ε =
σ2

1τ1

σ2
2τ2

. (6.75)

In this case τ1 and τ2 represent the computation times for N trials of the
naive Gaussian sampling procedure and the tangent importance sampler pro-
cedure, σ1 and σ2 represent the variances of these two sampling procedures
respectively.

Let us further analyse the times τ1 and τ2. τ2 can be expressed as follows:

τ2 = τellipsoid + N ∗ τ trial
2 . (6.76)

τellipsoid is the fixed overhead of finding the maximum volume ellipsoid and
calculating the importance sampling centre and is incurred before starting
the sampling process. τ trial

2 is the average time/trial required for generating
sample points from the importance sampler density function and checking to
see if the points fall inside the feasible region. τ trial

1 is the average time/trial
needed for generating sample points from a normal distribution and checking
to see if the sample points fall within the feasible region or not. We can
express τ1 as simply

τ1 = N ∗ τ trial
1 (6.77)

since all we need to do in this case is generate points from the JPDF of global
parameters and check to see if the generated points fall within the feasible
region. It might seem that τ trial

1 = τ trial
2 but this is not true, especially at

low yields. At low yields, τ trial
1 > τ trial

2 because far more points fall within
the feasible region when the points are sampled according to the importance

120 Chapter 6. Ellipsoidal approximation of the feasible region

sampling density. Determining if a point falls within the feasible region
requires checking if the point satisfies all the path constraints. On the other
hand, when a point falls outside the feasible region relatively few constraints
will need to be checked before a violation occurs. This makes the time per
trial of the importance sampler greater than the time per trial of the original
JPDF sampler. At higher yields though, the numbers of feasible points in
the two types of sampling procedures begin to become comparable, and the
gap between the times per trial also falls. To test out the efficiency of the
importance sampling procedure, we performed an experiment on a circuit
with 5112 paths for 8 global parameters. 100 paths were extracted from the
5002 paths according to the angle-based path selection criterion of Chapter
4.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

60 70 80 90 100 110 120 130 140

Pr
ob

ab
ili

ty

Delay

CUMULATIVE DISTRIBUTION CURVES

gauss_poly
ellipsoid_gauss

Figure 6.14: Cumulative Distribution Curves for two types of Gaussian sampling
procedures. The two curves coincide for almost all values of delay. The number of
trials was 10000 and the number of global parameters assumed in the system was
8.

The maximum volume ellipsoid was then inscribed in the feasible region, and
the importance sampling density function determined. The cumulative distri-
bution curves, variance curves and the efficiency of the importance sampling
method are shown in Figures 6.14, 6.15 and 6.16 respectively. It is interesting
to note that for very low yields (≤ 0.01) an efficiency gain of the order of 10
can be obtained. In other words, if a time t is allocated to the importance
sampling procedure as well as the JPDF sampling procedure, then the im-
portance sampling procedure can produce a yield estimate that is 10 times

6.12. Discussion 121

as accurate as the one produced by the JPDF sampling procedure. The effi-
ciency figure however falls rapidly as yield increases and tapers towards 1.0
as the yield values increase until the centre of the JPDF enters the feasible
region. The cumulative distribution curves obtained by the tangent impor-
tance sampling method as well as ordinary Gaussian sampling methods are
shown in Figure 6.14. Not surprisingly the two curves are nearly identical.
The variances of the two methods are shown in Figure 6.15. The thing to
note here is that the variances of both methods are significantly lower than
for uniform sampling discussed previously.

0

0.001

0.002

0.003

0.004

0.005

0.006

60 80 100 120 140 160

St
d.

D
ev

Delay

STANDARD DEVIATION

gauss_poly-std.dev
ellipsoidGauss-std.dev

Figure 6.15: A plot of standard deviation vs delay for two Gaussian sampling
methods: The “gauss poly.std.dev” curve is obtained by sampling from the orig-
inal JPDF, whereas the “ellipsoidGauss.std.dev” curve is obtained by sampling
from a Gaussian density centred on the ellipsoid at a point closest to the mean of
the original JPDF, as discussed in this section.

6.12 Discussion

At the end of Chapter 5, we provided details of the experimental set-up used
to obtain the results of this chapter. It is pertinent to point out here that
one of the methods described in this chapter depends crucially on a require-
ment identified at the end of Chapter 5, namely that there is a non-zero
probability of manufactured circuits having a delay smaller than the nomi-
nal delay of the circuit. The method in question is the tangent importance

122 Chapter 6. Ellipsoidal approximation of the feasible region

0

50

100

150

200

250

300

350

65 70 75 80 85

Ef
fic

ie
nc

y

Delay

EFFICIENCY

ellipsoidGauss-efficiency

Figure 6.16: Efficiency ratio of the tangent importance sampler as a function
of delay. For very small values of delay, an efficiency factor of close to 20 is
obtainable i.e., the tangent importance sampler is 20 times more efficient than the
naive Gaussian sampling procedure.

sampler method, which is applicable whenever the centre of the JPDF falls
outside the feasible region of circuit performance. This happens if and only
if the desired circuit performance (delay) is smaller than the nominal delay.
When the centre of the JPDF belongs to the feasible region, it means that
the required circuit performance is at least equal to the nominal delay of the
circuit. The requirement that there be at least some manufactured chips that
are faster than the nominal chip is not a serious limitation; indeed, even if
a constraint matrix is of the mixed-coefficient kind identified in Chapter 5,
it will most likely be the case that some manufactured circuits will be faster
than the nominal delay.

On the other hand, the ellipsoid-box based Monte-Carlo sampling method
actually benefits from having a mixed-coefficient path sensitivity matrix. A
mixed-coefficient path sensitivity matrix prevents the existence of “extreme
points” discussed in Chapter 5, which in turn enables the construction of
tighter bounding boxes and thus reduces variance of the uniform sampling
Monte-Carlo estimator.

Chapter 7

Randomised quadrature

7.1 Introduction

In the last chapter we saw that numerical quadrature is an unsatisfactory
solution to computing the yield integral because of the exponential depen-
dence on the dimensionality of the problem. Therefore we are forced to
explore other alternatives. Monte-Carlo integration is the obvious recourse
since Monte-Carlo methods do not depend on dimensionality and have a fairly
simple error theory behind them. However Monte-Carlo methods may need
a large sample size to provide real results. Researchers have proposed ways
of combining the accuracy of numerical methods with the dimensionality-
independence of Monte-Carlo methods. In this chapter we explore some of
such techniques known as randomised quadrature.

7.2 Reformulation of yield integral

Let us reconsider the yield integral of interest to us - namely, the integral
over the volume of the largest ellipsoid that fits in the feasible region.

Y =

∫ ∫

. . .

∫

R∗

f(z1, z2 . . . zn)dzn . . . dz1 (7.1)

=

∫ ∫

. . .

∫

R

f(BT
1 y + d1, B

T
2 y + d2, . . . B

T
n y + dn)(det B)dyn . . . dy1.

123

124 Chapter 7. Randomised quadrature

Here R∗ is the ellipsoid in the space of global parameters z and R is the
unit sphere in y-space, such that z = By + d. One of the problems with
applying a numerical integration procedure to the above integral is that at
higher yields corresponding to a large feasible region the integrand shows a
lot of variation. A standard low order degree integration formula is unable
to capture all of the variation. We showed in the last chapter that breaking
the unit sphere into a series of concentric shells and applying integration
formulae to each shell helps because there is much less variation in a shell
as compared to the whole unit sphere. We can take this idea further and
formulate the yield integral as a spherical-radial integral. In other words
we can express the yield integral as the product of a one-dimensional radial
integral and a n − 1 dimensional integral on the surface of the unit sphere.
This should perform even better than the concentric shells method because
the surface of the unit sphere must have even less variation than a concentric
shell of arbitrarily small thickness. Below we present the transformation of
the yield integral above to a spherical radial integral. The arguments follow
the book of A. H. Stroud [88].

Let Rn be the n-dimensional unit sphere, and let Yn denote its surface. Let
us assume that we have an integration formula for an integral over the surface
of the unit sphere:

∫ ∫

. . .

∫

Yn

f(y1, y2 . . . yn)dσ =

j=N
∑

j=1

Bjf(vj,1, vj,2 . . . vj,n). (7.2)

Note that in the above equation dσ is a differential element on the surface of
the unit sphere. We would like the points of this formula to lie on the surface
Yn. For a real number r > 0 let

rYn = {rν : ν ∈ Yn}. (7.3)

Let us consider the integration of a monomial term over the surface of a
sphere of radius r:

∫ ∫

. . .

∫

rYn

yα1
1 yα2

2 . . . yαn
n dσ

=

∫ ∫

. . .

∫

Yn

rn−1(ry1)
α1(ry2)

α2 . . . (ryn)
αndσ

= rn−1+α

∫ ∫

. . .

∫

Yn

yα1
1 yα2

2 . . . yαn
n dσ. (7.4)

7.3. Computing the spherical surface integral 125

The integral of a monomial over the entire unit sphere can then be written
as

∫ ∫

. . .

∫

Rn

yα1
1 yα2

2 . . . yαn
n dy1dy2 . . . dyn

=

∫ 1

0

(

∫ ∫

. . .

∫

rYn

yα1
1 yα2

2 . . . yαn
n dσ

)

dr

=

∫ 1

0

rn−1+αdr

∫ ∫

. . .

∫

Yn

yα1
1 yα2

2 . . . yαn
n dσ (7.5)

where α = α1 + α2 + . . . αn.

Suppose we have the following one-dimensional integration formula of degree
d for the radial integral:

∫ 1

0

rn−1f(r)dr ≈ ΣM
i=1Aif(ri). (7.6)

Then the points riνj and the coefficients AiBj, i = 1, 2 . . .M, j = 1, 2 . . .N
are an integration formula of degree d for Rn. The Ai are coefficients of the
radial integration formula, while the Bj are the coefficients of the spherical
integration formula. The ri and νj are the points of the respective formulae.

7.3 Computing the spherical surface integral

The reformulation of the yield integral in the last section requires us to
calculate a spherical integral over the surface of the unit sphere (in n − 1
dimensions) and a radial integral in one dimension. We investigate techniques
to calculate the spherical surface integral in this section. Let us denote the
spherical surface integral by I(f). A degree-3 formula to compute the surface
integral is the following [32]:

I(f) ≈
(

V

2n

) i=n
∑

i=1

(

f(ei) + f(−ei

))

(7.7)

where ei is the unit vector along the ith coordinate direction and V is the
surface area of the unit sphere in n dimensions. Another degree-3 formula

126 Chapter 7. Randomised quadrature

that is slightly more expensive than the previous one is the following [63],
[64]:

I(f) ≈
(V

2(n + 1)

)

i=n+1
∑

i=1

(

f(ui) + f(−ui)
)

. (7.8)

The n + 1 points ui are the vertices of a regular n-simplex with the vertices
located on the surface of the unit sphere. This rule can be extended to a
degree-5 rule in a natural way:

I(f) ≈ V

(

(7− n)n

2(n + 1)2(n + 2)

i=n+1
∑

i=1

(

f(ui) + f(−ui)
)

+

(2(n− 1)2

n(n + 1)2(n + 2)

)

n(n+1)/2
∑

i=1

(

f(vi) + f(−vi)
)

)

. (7.9)

The ui are as in the degree-3 formula while the vi are obtained by taking
the midpoint of the line segment joining every pair of the vertices ui and
projecting the midpoint onto the unit sphere. The total number of points in
the formula is (n + 1)(n + 2).

If we rotate the points of a given integration formula, we obtain points for
another integration formula that is valid for the function f . To see this let
h(y) = f(Qy) where Q is a rotation matrix. Consider the spherical integral
over the unit sphere R

I(h) =

∫

R

h(y)dy. (7.10)

This integral can be transformed as follows:

I(h) =

∫

R

h(y)dy

=

∫

R

f(Qy)dy

=

∫

R

f(u) det(Q−1)du

=

∫

R

f(u)du

= I(f). (7.11)

7.4. Randomising quadrature rules 127

In the above set of equations we have made use of the transformation u = Qy.
Now applying the integration formula to h(y) we see that

h(y) =

i=N
∑

i=1

wjh(yj)

=
i=N
∑

i=1

wjf(Qyj). (7.12)

Therefore, if the points of the original integration formula are rotated (or-
thogonal transformation), then the new points constitute another integration
formula of the same degree.

7.4 Randomising quadrature rules

The last section showed us how to obtain another integration formula of a
given degree given the points of one integration formula. Each integration
formula provides us with an estimate of the integral in question. This sug-
gests that if we were to choose “random” orthogonal transformations, and
apply the transformation to the points of a given integration formula, then
we have a basis for randomising the original integration formula. The ques-
tion of course is how to select the random orthogonal transformation Q. Let
S(Q, f) be an integration rule of degree 2n + 1 such that:

S(Q, f) =

i=N
∑

i=1

wif(yi). (7.13)

Before we present the algorithm for generating a random orthogonal matrix,
we must discuss the notion of a QR factorisation. Every matrix X can be
expressed as a product of an orthogonal matrix Q and an upper triangular
matrix R.

We state the following theorem along the lines of Theorem 1 in [32].

Theorem 6.1: Let S be an integration rule of degree 2n+1 and Q be an n×n
random orthogonal matrix of the Haar distribution (generated by performing

128 Chapter 7. Randomised quadrature

a QR factorisation of a matrix X whose entries are samples of independent
zero mean, unit variance random variables). Then

S(Q, f) =

∫ ∫

. . .

∫

Yn

f(u)du (7.14)

is exact for all functions f of degree less than equal to 2n + 1. Further

E(S(Q, f)) =

∫ ∫

. . .

∫

Yn

f(u)du (7.15)

for any integrable f of any degree. The Expectation in 7.15 is over the space
of all random matrices Q.

Proof: This theorem is stated without proof in the work of [32]. We provide
an informal proof for the interested reader in the Appendix.

7.5 Generating random orthogonal matrices

Most of the methods for generating a random orthogonal matrix of the Haar
distribution that is needed for the theorem above use Heiberger’s method [86].
The method consists of first generating an n×n matrix X with independent
entries xij = Normal(0, 1). Then a QR factorisation of X is computed,
X = QR. This provides a random matrix Q of the required distribution (the
reader may read an informal proof of Theorem 1 in Appendix A to see why
this is the case). The basic method of QR factorisation has been refined in
the work of [86].

The basic Stewart algorithm is to construct Q as a product of reflectors:

Q = (I − βx1x
T
1)(I − βx2x

T
2) . . . (I − βxn−1x

T
n−1). (7.16)

In the above equation xk is of the form xk = [0 . . . 0, ∗, . . . ∗]. We use a vari-
ation in Stewart’s algorithm which combines the generation of the matrix Q
with the transformation of the points of the integration formula. Below we
present the pseudo-code for the algorithm taken from [33]:

7.6. Results 129

Input n

x = 0

Initialise matrix V with the vertices of the n-simplex.

for k = n-1 to 1 do{ \\

for i = k, i <= n; i++){

generate random x_{i} = Normal(0,1);

}

s = ||x||;

x[k] = x[k] - s;

beta = 1/(x[k]s);

V = V + (beta)x*(Transpose(x)*V);

}

7.6 Results

We shall now present results obtained for the same circuit used to generate
the curves of Chapter 6. As for the 4σ and ellipsoid-bounding box methods,
we show both the cumulative distribution function curves and the variance
curves. The cumulative distribution curve was generated using 10,000 points.
As can be seen, the yield value returned by integration on the sphere is a
lower bound on the true yield. The ellipsoid is a tighter lower bound for 6
dimensions than it is for 8 dimensions, since there are more uncovered corners
in higher dimensions. In Figures 7.2 and 7.5, the variance of a Monte-Carlo
procedure that uniformly samples over the ellipsoid is shown. The curve
clearly shows that uniform sampling is much worse than either Gaussian
sampling over the whole polytope, or randomised quadrature. The real value
of randomised quadrature is brought out in Figure 7.3 and 7.6. At low yields,
the efficiency is in the order of 1000s. Further, the ellipsoid is a tighter bound
at low yields (fast performances) than it is at high yields. Thus randomised
quadrature is an invaluable technique for quickly calculating low yields.

130 Chapter 7. Randomised quadrature

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

60 70 80 90 100 110 120 130 140 150

Pr
ob

ab
ili

ty

Delay

CUMULATIVE DISTRIBUTION CURVES

ranQuad
uniformEllipsoid

gaussPoly

Figure 7.1: This figure shows the cumulative distribution curve obtained by per-
forming spherical-radial integration (denoted by “ranQuad”) for 6 global param-
eters. The spherical-integration method provides a lower bound to the true yield
represented by the “gaussPoly” curve.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

60 70 80 90 100 110 120 130 140

St
d.

D
ev

Delay

STANDARD DEVIATION

ranQuad-std.dev
uniformEllipsoid-std.dev

gaussPoly-std.dev

Figure 7.2: This curve represents the standard deviation obtained with the ran-
domised quadrature procedure. 100 random matrices were used for spherical in-
tegration and 5 shells were employed for radial integration. The variance of the
spherical-radial integration method (“ranQuad”) is lower than either sampling uni-
formly over the ellipsoid (“uniformEllipsoid”) or using Gaussian samplingover the
yield polytope (“gaussPoly”).

7.6. Results 131

0

10000

20000

30000

40000

50000

60000

65 70 75 80 85

Ef
fic

ie
nc

y

Delay

EFFICIENCY

ranQuad-efficiency

Figure 7.3: This curve represents the efficiency of the randomised quadrature
procedure relative to Gaussian sampling. For very fast circuits, the efficiency is in
the tens of thousands.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

60 70 80 90 100 110 120 130 140 150

Pr
ob

ab
ili

ty

Delay

CUMULATIVE DISTRIBUTION CURVES

ranQuad
uniformEllipsoid

gaussPoly

Figure 7.4: Cumulative distribution curves for 8 global parameters. The ran-
domised quadrature lower bound is weaker than for 6 dimensions, because there
are more uncovered corners in higher dimensions.

132 Chapter 7. Randomised quadrature

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

60 70 80 90 100 110 120 130 140

St
d.

D
ev

Delay

STANDARD DEVIATION

ranQuad-std.dev
uniformEllipsoid-std.dev

gaussPoly-std.dev

Figure 7.5: Standard Deviation σ Vs Delay for the randomised quadrature method
at 8 dimensions. The standard deviation of the randomised quadrature procedure
is much lower than that of Gaussian sampling. Both randomised quadrature and
Gaussian sampling are much superior to sampling uniformly over the ellipsoid.

0

10000

20000

30000

40000

50000

60000

70000

65 70 75 80 85

Ef
fic

ie
nc

y

Delay

EFFICIENCY

ranQuad-efficiency

Figure 7.6: Efficiency Vs Delay for the randomised quadrature method at 8 dimen-
sions. The efficiency of the randomised quadrature method is orders of magnitude
greater than the efficiency of the tangent importance sampler of Chapter 6, es-
pecially for very fast circuits, but it only computes a lower bound on the true
yield.

Chapter 8

Yield optimisation

8.1 Introduction

Once we are able to accurately describe the feasible region for circuit per-
formance, and characterise the probability distribution of the process pa-
rameters we can try to determine how to increase yield subject to certain
constraints. The constraint could be requiring that the probability distribu-
tion function must remain fixed, in which case we must move the boundaries
of the feasible region. Conversely, we may require that the feasible region
remain fixed in space and modify the probability distribution function to
increase yield. In this chapter we focus on the former approach i.e., mov-
ing the feasible region boundaries while holding the probability distribution
fixed. The movement of the feasible region boundaries is achieved tuning the
circuit transistor sizes or sensitivities to process parameters. This chapter is
organised as follows: first we will describe previous work in yield optimisa-
tion including the method of yield gradients and geometric methods such as
the minimax method. Then we will show how our ellipsoid framework can
be harnessed to give us yield improvement directions. In the last section we
will show how to tune the circuit to increase the yield.

133

134 Chapter 8. Yield optimisation

8.2 Background

Yield optimisation is a natural extension of the yield estimation exercise.
Consequently it has been the subject of intensive research over several decades
especially in the context of analog circuits. A compact tutorial of research
and methods in this area may be found in [22]. There are many different
flavours of yield optimisation. In [22] it is noted that the performance of
VLSI circuits is affected by electrical device parameters such as threshold
voltage and sheet resistance, and layout geometry parameters such as device
sizes. The JPDF that models all these parameters is likely to be complicated.
It is far more tractable to model the JPDF in process parameter space. Pro-
cess parameters include variations of temperatures, or impurity diffusivities,
and it is thought that these parameters are at least to first-order indepen-
dent. Thus the JPDF of process disturbances is likely to be much easier to
model than the JPDF of circuit parameters. In yield process optimisation,
attempts are made to influence the JPDF of process parameters and move
the JPDF closer to the feasible region of circuit operation. However at the
circuit level we assume that the JPDF of process parameters is fixed and we
modify the feasible region boundaries in order to increase yield.

A taxonomy of yield optimisation methods is provided in [22]. A yield max-
imisation method that explicitly makes use of knowledge of the JPDF to
evaluate the multi-dimensional yield integral and employs the yield integral
itself as an optimisation objective is called a direct optimisation method. If
the yield optimisation procedure makes use of an explicit approximation to
the feasible region, it is called an explicit method; otherwise it is known as
an implicit method. Direct methods can be seen intuitively to give the best
possible results since they handle the yield integral itself as their objective.
However evaluating the yield integral is a computationally expensive process
if quadrature methods are used as these methods explode in time complex-
ity with increasing dimensionality. On the other hand, Monte-Carlo methods
can be used to approximate yield but they require a lot of simulations at very
low yields which is relevant for high performance circuits. Yield optimisation
would require, in addition to the computation of yield, the computation of
yield gradients as well if mathematical programming techniques are applied.
Direct methods require a thorough knowledge of the JPDF when in reality,
very little is known of the JPDF except perhaps that it is unimodal. An
example of a direct approach to yield optimisation is the boundary integral

8.2. Background 135

formulation of [28], [29]. Here the yield integral is formulated as a surface
integral using Stoke’s theorem and expressions are derived for the yield gra-
dients which are then used in optimisation.

The computational and modelling requirements of direct methods have led
researchers to consider indirect methods where yield itself is not an optimisa-
tion objective. Design centring is the most well-known indirect approach as
it seeks to place the nominal design vector of the given design at the “centre”
of the feasible region of design parameters, as this will implicitly increase the
manufacturability of the circuit, and thus yield. [24] shows that if the fea-
sible region can be assumed to be convex, and the JPDF is unimodal, then
design centring is equivalent to inscribing the largest JPDF-norm body into
the feasible region. In contrast, in [41], the acceptability region boundaries
are moved away as far as possible from the design centre in order to increase
yield. Design centring based approaches have been described in the works
of [5], [35], [12] and [95]. In fact the ellipsoidal method of design centring
presented by [95] bears some similarity with our own approach.

Implicit methods of yield optimisation do not attempt to construct an ap-
proximation of the feasible region. For example in [84], parametric sampling
is used as the basis for design centring. The feasible region is usually known
as the solution of a set of analytical equations, and implicit methods are con-
tent with merely being able to sample the solution space and thus determine
if the performance is acceptable. On the other hand, explicit methods use an
explicit approximation of the feasible region. One well-known approach to
approximating the feasible region is the simplicial approximation proposed
by [24]. As an aside, [25] describes how to calculate yield using a simplicial
approximation of the feasible region.

Some yield optimisation methods work in the so-called input space [27]. The
input space includes design parameters (such as the nominal delays of the
gates) and operating conditions. Output spaces, on the other hand, include
such parameters of circuit performance such as propagation delay and power
consumption. For the purpose of yield estimation, input space corresponds
to parameter space approaches considered in this thesis, while output space
corresponds to performance space methods that were briefly described in
Chapter 4.

Deterministic approaches using geometrical arguments have been proposed
by several researchers, among whom are [7], [11], [60], [35] and have been

136 Chapter 8. Yield optimisation

noted to be computationally expensive as the number of parameters (dimen-
sions) increases. On the other hand, statistical techniques for yield optimi-
sation have also been considered. These techniques are not afflicted by the
curse of dimensionality and use sampling techniques. Examples of statistical
methods for yield optimisation are the papers of [17], [23], [77], [57]. A good
place to find a summary of statistical techniques for yield optimisation is
[21]. Gate-sizing using statistical models must also be considered within the
domain of yield optimisation. An approach of this kind is described in [43].
[13] considers false-path analysis in conjunction with gate-sizing.

An interesting approach of [89] considers the impact of design uncertainty
on IC design. This is distinct from the statistical variations in manufactur-
ing parameters, and arises due to the parallel development of designs and
processes.

8.3 Our approach

In the context of previous research we will propose an approach that does not
make use of the JPDF information (and is therefore indirect) but makes use
of an approximation of the feasible region (explicit). The central feature of
our approach is to approximate the feasible region by the maximum volume
ellipsoid contained in it. It is pertinent to mention that the problem we
handle is easier than some of the previously considered problems in that the
feasible region is taken to be both convex and specifiable as the solution
space of a set of linear inequalities. The constructed ellipsoid is taken to be
the approximation of the feasible region, and the axes of the ellipsoid provide
the directions in which to nudge the acceptability region boundaries. Let us
begin by describing the yield optimisation problem mathematically so as to
frame it in a formal setting.

The circuit performance is expressed as a function of designable parameters
and process parameters which are not under the control of the designer. The
designable parameters include the lengths and widths of individual transis-
tors whereas the process parameters include the thickness of gate oxide. To
provide a mathematical formulation of the yield optimisation problem we
shall use the terminology of [22]. Let the vector p represent the designable
parameters and let ξ represent the random vector that characterises process
deviations. Let the circuit performance of interest (in our case) delay be

8.4. Acceptability region modification 137

represented by φ. Then we have

φ = φ(p, ξ). (8.1)

Let us denote the feasible region in process disturbance space for a given
nominal vector p = p0 by Fξ(p0). Mathematically this feasible region can be
expressed as

Fξ(p0) = {ξ|φL ≤ φ(p0, ξ) ≤ φU}. (8.2)

The feasible region simply represents the region in process disturbance space
such that if the process disturbance vector ξ were to belong to this region,
then for the given nominal parameters p0 the circuit will still have an accept-
able performance. It is crucial to note that the shape of the feasible region,
and its location in process disturbance space depends on the (designable)
nominal parameter vector p0. Manipulating the nominal parameter vector
will cause the boundaries of the feasible region to move and is thus our means
of optimising yield. The parametric yield can be expressed as

Y = Prob(ξ ∈ Fξ(p
0)) =

∫

Fξ(p0)

fξ(ξ)dξ. (8.3)

The optimisation problem is therefore

maxp0

[

Y = Prob(ξ ∈ Fξ(p0)) =

∫

Fξ(p0)

fξ(ξ)dξ
]

. (8.4)

In the above two equations fξ(ξ) is the joint probability density function
of the process disturbances. In the next section we shall delve into the
mechanics of modifying the acceptability region boundaries so as to increase
the yield.

8.4 Acceptability region modification

Yield optimisation is much more tractable when the acceptability region
boundaries are given by hyperplanes and not curved boundaries. Curved
boundaries require us to compute yield gradients as in the approach of [28],
which is a time-consuming process. The closest relative to the method we
propose is the so-called “minimax method” [41]. Let us describe this method
first.

138 Chapter 8. Yield optimisation

8.5 Minimax method

This technique was pioneered by Texas instruments researchers and a de-
scription of it can be found in [41]. The basis of the technique is to move
the hyperplanes in order to increase yield. The movement of hyperplanes to
increase yield means that the nominal delays of gates in the circuit will need
to be changed. Therefore the procedure can be seen as a “tuning” procedure
to improve yield. Let the designable parameters of the circuit be represented
in the vector p as in the previous section. The designable parameters can be
taken to be the lengths of individual transistors in the circuit.

origin to the hyperplanes all
Perpendicular distances from

Feasible
 Region

 positive

perpendicular
distance

positive

 Negative
perpendicular
distance

Feasible
 Region

Figure 8.1: Positive and negative distances from the origin to the feasible region
hyperplanes in the minimax method.

The basic idea of the minimax method of yield optimisation is to maximise
the minimum distance from the mean point of the joint probability density
function of global parameters to the acceptability region boundaries (in our
case hyperplanes). The rationale behind this is that the boundaries will move

8.5. Minimax method 139

so that the new feasible region will include regions of greater probability mass
thus increasing the yield. The minimax method uses an iterative approach to
solve the problem wherein in a given iteration, the distance functions to the
feasible region boundaries are linearized, and a linear programming problem
formulated to maximise the minimum distance. Let us reconsider equation
(4.3):

γ + R∆z ≤ [η η · · · η]T . (8.5)

The vector γ is the vector of nominal path delays. There are P rows in
the above matrix system where the ith row represents the constraint that
the nominal delay of path i plus the perturbation of the delay due to the
variations of the global parameters be less than η. The mean point of the
JPDF corresponds to the origin in the hyperplane system defining (8.5) and
the distance from the origin to the jth hyperplane is given by

mj =
η − γj

‖Rj‖
(8.6)

where RT
j ∆z + γj ≤ η is the equation of the jth hyperplane. If the origin

falls within the feasible region then all the distances to the hyperplanes will
be positive. If the origin lies outside the feasible region, then at least one
distance to some hyperplane is negative. Figure 8.1 demonstrates the situa-
tion when the origin is inside the feasible region, as well as when the origin
is outside the feasible region. We are now ready to formulate the linear pro-
gramming problem. Instead of working with distances mj we prefer to work
with their negatives νj = −mj. Then instead of maximising the minimum
mj we minimise the maximum νj. We must now develop constraints for the
problem. Note that the nominal delay of each path as well as the hyperplane
coefficients depend on the vector of designable parameters p. To create linear
constraints we must linearise the distance functions. If the distance between
the origin and hyperplane j is νj then the change in the distance caused by
a small change in the design parameter vector ∆p is given by ∇pνj∆p. This
allows us to pose the following linear programme assuming that we allow
only small changes in the design parameter vector [41]:

min∆pkrk

subject to
νk

j +∇pν
k
j .∆pk ≤ rk, j = 1 . . . P

−λk ≤ ∆pk ≤ λk

140 Chapter 8. Yield optimisation

Bl ≤ pk + ∆pk ≤ Bu.

The first P equations above state that the negative distances of all the hy-
perplanes from the origin after they are moved due to a change in the design
parameter vector of magnitude ∆pk, are no greater than rk. Note that k
denotes the iteration number as we solve the above linear programme re-
peatedly until we are satisfied with the answer. Thus the above is a minimax
problem. The magnitude of the change in the design parameter vector is
bounded by the next set of equations (this bound is what allows the lin-
earisation of constraints) while the last set of equations make sure that the
design parameter vector lies between user-specified upper and lower bounds.
In order to make the above LP functional we must specify the gradient of
the distance function with respect to the vector of designable parameters:

∇pνj =
∇pγj

‖Rj‖
+

η − γj

‖Rj‖3
RT

j

∂RT
j

∂p
. (8.7)

Let us now turn to the actual iteration control algorithm to solve the LPs.
First we fix λ and then decide whether to accept or reject the new iterate
∆wk. The decision to accept or reject is based on checking if the actual
increase in the minimum distance compares favourably with the predicted
increase in the minimum distance. The two distances can be defined as
follows:

∆ra = maxj{νk
j } −maxj{νk+1

j },
∆rp = maxj{νk

j } − rk. (8.8)

For a given choice ∆wk, we can solve the linear programme to determine
the actual improvement in the minimum distance ∆ra. This improvement
can be compared to the predicted (or desired) change ∆rp in order to accept
or reject the choice ∆pk. If the choice is accepted (when ∆ra

∆rp
> 10−3) then

pk+1 = pk + ∆pk. Otherwise pk+1 = pk. The step-length bound for the next
iteration, λk+1 is then adjusted to be equal to ∆ra

∆rp
‖∆pk‖∞. The iterations

are continued until the user is satisfied with the solution.

The main drawback of the minimax solution is that increasing the minimum
distance from the mean point of the JPDF to the hyperplanes may not in-
crease the yield always. This is because distances greater than the minimum

8.5. Minimax method 141

B

C

D

A

D’

A’

B’
C’

Figure 8.2: minimax method in action; hyperplanes A,B,C,D move to A’,B’,C’,D’.
The minimum distance from the origin to the hyperplanes constituting the original
feasible region, given by the hyperplane boundaries A,B,C and D, is the distance
to the hyperplane D. After optimisation D moves to D’ such that the minimum
distance to D’ is greater than the distance to D but the distances to the other
hyperplanes reduce in such a way as to reduce the size of the feasible region.

distance may be brought down by the optimisation procedure as shown in
Figure 8.2. Further in the design vector, every transistor length may have to
be included which will make the design vector huge for a circuit block consist-
ing of thousands of transistors. In the next section we develop a method that
does not depend on the dimensionality of the vector of designable parameters,
but instead depends on the dimensionality of the process parameters.

142 Chapter 8. Yield optimisation

8.6 Ellipsoidal method for yield optimisation

In this section we will develop an approach that is complementary to the
minimax approach of the previous section, although the basic methodology
for yield optimisation remains the same; that is, we seek to increase yield
by moving the hyperplane boundaries. However, we will avoid the use of
gradients and design vectors. Instead we shall first determine how much
to move individual hyperplanes in order to increase the yield by a specified
amount, and then tune the driving capacitances of circuit gates in order to
enforce the changes in the hyperplane positions.

Our starting point is to recall that the ellipsoid transformation matrix B can
be expressed as

B = SΛS−1. (8.9)

In the above equation S is an n × n matrix whose columns represent the
eigenvectors of the matrix B. Λ is a diagonal matrix whose entries are the
eigenvalues of the matrix B. Next we note that

det B = det(SΛS−1)

= (det S)(detΛ)(det S−1)

= det Λ

=

i=n
∏

i=1

λi. (8.10)

Thus we note that the determinant of B can be expressed as the product of
its eigenvalues. We would like to determine the change in det B if we were
to change an eigenvalue (say λi by an amount ∆λi). Clearly

∆ det B =
∂ det B

∂λi
∆λi

=

j=n
∏

j=1,j 6=i

λj∆λi. (8.11)

The form of (8.11) shows that the largest increase in the volume of the
determinant of B and hence the volume of the ellipsoid occurs when the

8.6. Ellipsoidal method for yield optimisation 143

smallest eigenvalue is changed. Therefore our strategy for yield improvement
is to increase the smallest eigenvalue. This will cause the length of the
smallest axis of the ellipsoid to increase, and would require the readjustment
of some hyperplanes. We illustrate this in Figure 8.3.

Ellipsoid E

Smallest axis

Ellipsoid E’

A’

A

B B’
C

C’

DD’

(d1, d2)

∆z1

∆z2

Figure 8.3: Strategy for yield optimisation. The ellipsoid E is expanded in the
direction of its minor axis to get the ellipsoid E’. The hyperplanes are moved to
accommodate the expanded ellipsoid.

Note that the above statement has a caveat - namely, that we have disre-
garded the presence of the JPDF. It is conceivable that the ellipsoid could
be so oriented with regard to the JPDF that there is greater real yield in-
crease in a direction other than the eigenvector corresponding to the smallest
eigenvalue. In such cases, we might resort to picking the ellipsoid axis whose
axial endpoint is closest to the point on the ellipsoid that is closest to the
centre of the JPDF. The point on the ellipsoid closest to the centre of the
JPDF can be computed via the tangent computation method of Chapter 6.

We shall now discuss how to accommodate the expanded ellipsoid by moving

144 Chapter 8. Yield optimisation

some hyperplanes. First we must transform the hyperplane and ellipsoid
system to the unit sphere space. Following (4.3) let the ith hyperplane be
represented by

γi + RT
i ∆z ≤ η. (8.12)

Noting that ∆z = By + d for y in the unit sphere, this equation gets trans-
formed to

γi + RT
i (By + d) ≤ η,

RT
i By + (γi + RT

i d) ≤ η. (8.13)

Due to an expansion of the ellipsoid, this hyperplane might have to be moved.
We make the assumption that for small changes in the eigenvalue, the hy-
perplane coefficients will remain unchanged. We shall later remove this as-
sumption. Therefore the hyperplane will move parallel to itself(if it has to
move at all). We must determine conditions under which a hyperplane must
move and the amount of the movement. To do this we must first quantify
the change in the ellipsoid transformation matrix due to a slight change in
an eigenvalue of the ellipsoid transformation matrix. Let us assume without
loss of generality that the first eigenvalue in Λ is the smallest eigenvalue (the
first column of S is the eigenvector corresponding to the smallest eigenvalue).
Then the new ellipsoid transformation matrix becomes B + δB where

B + δB = S(Λ + δΛ)S−1

= SΛS−1 + SδΛS−1

= B + SδΛS−1, (8.14)

and

δΛ =

δλ1 0 . . .
0 0 . . .
...

...
. . .

.

Further we can easily see that

δB = δλ1s1s
T
1 (8.15)

so that
B + δB = B + δλ1s1s

T
1 . (8.16)

8.6. Ellipsoidal method for yield optimisation 145

In unit sphere space, every ellipsoid is transformed to the unit sphere. The
fact that expansion of the ellipsoid requires some hyperplanes to move is
manifested in the unit sphere space in terms of those hyperplanes intersecting
the unit sphere in more than one point. In other words, the distance from
the origin to the hyperplanes in question becomes less than one. Therefore
the condition for testing if a hyperplane in unit sphere space intersects the
unit sphere in more than one point is to check if its distance from the origin
is less than one:

η − (γi + RT
i d)

‖RT
i (B + δB)‖ ≤ 1. (8.17)

In case the above inequality is satisfied by the ith hyperplane then the amount

‖RT
i (B + δB)‖(1 − η−(γi+RT

i d)

‖RT
i (B+δB)‖) needs to be added to the right-hand side of

the hyperplane equation so that it becomes a tangent to the unit sphere. The
new hyperplane equation becomes:

RT
i (B + δB)y ≤ ‖RT

i (B + δB)‖. (8.18)

In original (ellipsoid) space, where ∆z = (B + δB)y + d this new equation
becomes:

RT
i z − RT

i d ≤ ‖RT
i (B + δB)‖. (8.19)

In ellipsoid space, it turns out that the new hyperplane equation (8.19) is ob-

tained from the old equation by adding a term ‖RT
i (B+δB)‖(1− η−(γi+RT

i d)

‖RT
i (B+δB)‖)

to the right-hand side of the old hyperplane equation. Of course, the shifting
of the hyperplane is only necessary provided the following condition holds
true:

η − (γi + RT
i d)

‖RT
i (B + δλ1s1s1

T)‖) ≤ 1. (8.20)

The entire process of calculating hyperplane movements is shown in Fig-
ure 8.4.

We can determine if any hyperplane has to be moved by checking if the con-
dition in (8.20) is satisfied for that hyperplane. Moving a given hyperplane
means decreasing the nominal delay of the path corresponding to the hyper-
plane. For each path we are therefore able to determine if the path should
be tuned or left alone. In order to complete the tuning we must devise a

146 Chapter 8. Yield optimisation

(a)

A’

B’D’

A

B

D

RT
i ∆z + γi ≤ η

RT
i ∆z + γi − δγ ≤ η

(b)

B

C

D B’

C’

D’

y1

A

A’

y2

RT
i ((B + δB)y + c) ≤ u2

RT
i ((B + δB)y + c) ≤ u2

∆z1

∆z2

CC’

(d1, d2)

Figure 8.4: The tuning process is illustrated in the figure above. The hyperplanes
A,B,C and D enclose the feasible region before yield optimisation. After optimi-
sation, in which the smallest ellipsoid axis’s length is increased, the hyperplanes
move to A’, B’, C’ and D’ respectively. The amount of movement is calculated in
unit sphere space.

strategy to actually change nominal gate delays and enforce the required
change in the nominal delay of a path. It is pertinent at this stage to point
out the differences between the minimax method and our own method, since
both are geometric methods. The minimax method works explicitly with
the design vector (whose size is the number of gates in the logic block being
optimised), whereas in our case the design vector is implicit. The minimax
method needs derivatives of the nominal delay of a path with respect to the
relevant design variables in order to compute gradients. A solution to the
minimax problem will automatically provide a means to actually enforce the
solution since we explicitly compute the new design vector. In our case, we
determine first how much to change the nominal delay of a path and then
proceed to tweak individual gate elements to achieve the change. The min-
imax formulation is more general in that it can handle a situation where
the sensitivity coefficients of a path to the global parameters is a function

8.6. Ellipsoidal method for yield optimisation 147

of the design variables. We assume that the sensitivity coefficients do not
depend on the design variables if the changes in the eigenvalue (and therefore
nominal delays) is not too large. Our method explicitly increases the yield
volume in that all the points of the old polytope belong to the new poly-
tope (one obtained by moving some hyperplanes). This is in contrast with
the minimax technique where maximising the minimum distance will cause
the minimum distance to the hyperplanes to increase but could also reduce
distances greater than the minimum.

A

B

u

v

w

x
y

Figure 8.5: A path in a circuit to be optimised, marked as u− v −w − x− y.

Consider a path of the kind in Figure 8.5. The outputs of some of the gates
have a fanout greater than one; we do not show the off-path gates. Let
us focus on the gates marked (A) and (B) in the figure and assume that
one of the gates (say A) is faster than the other gate, say (B). Let CA

in and
CA

out represent the input and output capacitances of gate A. Let CB
in and

CB
out be the input and output capacitances of gate B. The delay of gate A is

proportional to the ratio of its output capacitance to its input capacitance:

dA = k
CA

out

CA
in

(8.21)

and

dB = k
CB

out

CB
in

. (8.22)

This follows the logical effort modelling of gate delay if we ignore the parasitic
component of delay. Next we shall see that if we were to make the faster gate
(A) slightly slower, and the slower gate (B) slightly faster we shall accomplish
a net reduction in delay, thus speeding up the path. First we observe that

148 Chapter 8. Yield optimisation

since gate (A) feeds only gate (B), CB
in = CA

out. Let the output capacitance
of A be changed by a small amount δC. Then we have

δdA =
δC

CA
in

. (8.23)

Further

δdB =
CB

out

CA
out + δC

− CB
out

CA
out

=
CB

out

CA
out

(1 +
δC

CA
out

)−1 − CB
out

CA
out

=
CB

out

CA
out

(1− δC

CA
out

)− CB
out

CA
out

=
−δCCB

out

(CA
out)

2
. (8.24)

We have made use of the approximation (1 + x)−1 ≈ (1 − x) in the above
simplification. In order to ensure that the path is speeded up we have to
make sure that

δdA + δdB < 0. (8.25)

This means
δC

CA
in

− δCCB
out

(CA
out)

2
< 0. (8.26)

Thus if
CA

out

CA
in

<
CB

out

CA
out

(8.27)

we must change the output capacitance of gate A by a positive amount
δC > 0 in order to reduce the nominal delay of the path. Thus if gate A is
faster than gate B, we must increase the delay of gate A and correspondingly
reduce the delay of gate B in order to make sure that the net delay of the
path is reduced. On the other hand, if

CA
out

CA
in

>
CB

out

CA
out

(8.28)

8.6. Ellipsoidal method for yield optimisation 149

then δC < 0 in order to reduce the nominal delay of the path. The upshot of
this derivation is that if there is a delay differential between gates A and B,
we can speed up the path by reducing the delay differential between the two
gates. The exact amount δC can be directly calculated from the change in
the constant term of the hyperplane corresponding to the path in question.

Finally, let us end this section by trying to relax the constraint that the
hyperplanes corresponding to paths can only be moved by changing their
nominal delays. Recalling (8.20) we see that one way to increase the dis-
tance of a hyperplane from the origin and thereby make it a tangent to the
expanded ellipsoid is to decrease the value of the denominator ‖RT

i (B+δB)‖.
This can be accomplished by changing Ri.

It must be remarked that changing nominal delays to increase yield at a given
performance without tinkering with the sensitivity coefficients of the paths,
will also increase yield at any other performance. If a hyperplane γi +RT

i ∆z
is tuned to γ

′

i + RT
i ∆z with γ

′

i < γi, then the latter path will always be
faster than the pre-tuning path. The performance value η does not enter
the equation here. On the other hand, if we were to also allow changes in
the sensitivity signature of a path so that Ri becomes R

′

i, then we can no
longer guarantee that tuning performed for a given performance to increase
yield will also increase yield at any other performance. This is because there
are some performances for which the pre-tuning path is less critical than
the post-tuning path, and can therefore be less yield-limiting than the post-
tuning path. Let us now consider changing the sensitivity vector P for an
arbitrary cell, and evaluate its effect in pushing the hyperplane boundaries
outwards. Every path in the circuit that passes through this particular cell
will be affected. There may potentially be thousands of paths passing through
this cell. We can use the path filtering technique of Chapter 4 to obtain a
small set M of critical paths that represent the entire angular spectrum of the
paths that pass through the cell in question. Let us now evaluate the effect
of the change in the cell sensitivity vector on each of the paths Ri ∈M .

Let us first rewrite B +δB as SΩS−1 where S is the same eigenvector matrix
as for B, and the diagonal matrix Ω = Λ+∆Λ. Further, let the vector S−1Ri

be represented by the vector Qi. Since S−1 is a rotation matrix the norm
of Qi will be the same as Ri. Let Qi = (qi

1, q
i
2, . . . q

i
n)T . Let the sensitivity

vector change of the cell in question be written as ∆P = (∆p1, ∆p2, . . .∆pn)T .
Let S−1∆P = ∆V = (∆v1, ∆v2, . . . , ∆vn). Then the denominator of (8.20)

150 Chapter 8. Yield optimisation

becomes:

‖(Ri + ∆P)T (B + δB)‖ =
n

∑

j=1

(qi
j + ∆vj)

2ω2
j . (8.29)

The ∆vjs must be so chosen as to reduce the sum on the right as this will
reduce the norm and the denominator of (8.20). One way to do this is
to let −2qi

j ≤ ∆vj ≤ 0 for each ∆vj if qi
j > 0 and 0 ≤ ∆vj ≤ −2qi

j if
qi
j < 0. Such constraints can be written for all the other paths in M as well.

Taken together, these constraints may yield only the zero-vector for ∆V and
therefore ∆P = S∆V , especially if there is a lot of angular variability in the
paths passing through the cell in question. In case the constraints turn out
to yield the zero-vector for ∆P , we must seek recourse to other means of
reducing the norm. In case of tuning the nominal delays, special care has to
be taken in the choice of the cell so as to ensure that all paths passing through
that cell are not slowed down. If we choose to not change the nominal delay
of the selected cell, and only tune the sensitivity coefficients, then there is
considerably more leeway in the choice of a cell than in the case of nominal
delay tuning to increase yield.

Although the choice of the cell in the above derivation was described as ar-
bitrary, this need not be the case. Some cells are obviously more important
than other cells, since a large number of yield-critical paths may pass through
them. The following procedure on identifying promising cells suggests itself.
For each path whose sensitivity vector is along the most promising ellipsoid
axis of improvement, identify the list of cells that lie along this path. Aug-
ment the weight of each cell along the given path by the amount that the
path must be speeded up in order to become a tangent to the expanded ellip-
soid. When this exercise is performed for all the yield-critical paths, the cells
with the larger weights will be more important from a yield-enhancement
point of view, than those with smaller weights. The methods outlined in this
chapter can be used to tune for yield given the list of yield-critical cells, or
an existing tuner can make use of the cell weights as it tunes for some other
objective, such as low power.

Chapter 9

Conclusions and future work

In this thesis we examine different aspects of the statistical timing problem
for combinational circuits. The need for statistical timing analysis is easily
established given the growing prominence of process variations in modern
semiconductor processes. Once the need for statistical timing is accepted,
there remains the question of establishing how the process variations impact
the delays of the individual gate elements. As may be imagined the com-
plexity of process variations has meant that there are no standard statistical
models that can be used for statistical timing.

Two different models are examined: in the first, the delays of the gate ele-
ments are assumed to be completely independent of each other. This model
is shown to be similar to computational model of the statistical PERT prob-
lem, which falls within the domain of operations research. Although the gate
delays in this model are independent, path sharing introduces correlations
between paths. The super gate approach of [14] is used to take care of the
correlation introduced by path sharing. Although deterministic lower and
upper bounds are constructed for the cumulative distribution curve of cir-
cuit delay, the problem is computationally very hard for all but the simplest
circuits with a modest amount of reconvergent fanout.

It is reasonable to expect that process variations affect different gates on a die
in similar ways. One may imagine that there are a set of global parameters
such as Leff , Tox that can be assumed to be random variables. Different gate
delays may then be assumed to have different sensitivities to these global
parameters. Thus a first order model can be constructed where individual

151

152 Chapter 9. Conclusions and future work

gate delays vary linearly with small changes in the values of the “global”
process parameters. Requiring that the circuit operates at a delay no greater
than η then means that the “global” process parameters must take their
values in a “feasible region” defined by hyperplanes that represent paths
in the circuit. Thus the yield computation problem is reduced to one of
computing the volume of a polytope in n-dimensions where n is the number
of global parameters in the circuit. Two avenues of future work readily
suggest themselves. They will be described in the next two sections.

9.1 Improving model sophistication

Assuming that the delays of the gates are not independent, but depend on
the same set of global parameters, is more realistic than assuming complete
independence. However, even this model may not be realistic. A recent pa-
per, [94] reflects on the possibility that the gate delays may depend on a
common set of global parameters as is assumed in this thesis, but each gate
delay may also have a small independent component. This model cannot
easily be adapted to the methods proposed in this thesis. A straightforward
extension of the linear delay model assumed in this thesis would introduce a
random variable for each gate delay to represent the independent component
of the delay, in addition to random variables representing global parameters.
The problem with this approach is the explosion in the dimensionality of the
model - the success of the methods we examine in this thesis is contingent
upon the number of parameters (dimensionality) not exceeding a few tens. If
each gate delay is modeled by a separate random variable, then the dimen-
sionality would shoot up into the thousands which would make our methods
unviable. In such a huge space, it may well be that Monte-Carlo methods
for yield estimation are the only viable ones. As shown in Chapter 6, the
choice of sampling function is crucial to the variance of the Monte-Carlo
yield estimate. We believe that the tangent importance sampler of Chapter
6 can be adapted to the situation where the gate delays have an independent
component in addition to the global process parameters.

9.2. Relaxing the linearity assumption 153

Table 9.1: Summary of methods considered in this thesis.
Method Model Computational Error theory Tuning

Sophistication Complexity information
Discretisation Crude-gate exponential reasonable; Not available
of gate delay delays in number increasing
distributions independent of supergate number of

fanout points impulses
reduces error

uniform gate delays linear in high variance; Not available
sampling over correlated; number of gets worse for
polytope path sharing paths and slow performances

taken into dimensions and high dimensions
account

uniform gate delays linear in high variance; Available;
sampling over correlated; number of better than uniform axes of
ellipsoid path sharing paths and sampling over ellipsoid
bounding taken into dimensions polytope; gets determine yield
box account worse for slow improvement

performances and direction
high dimensions

Gaussian gate delays linear in low variance; Not available
sampling from correlated; number of better than
JPDF mean path sharing paths and uniform sampling;

taken into dimensions standard deviation
account curve is bell-shaped;

dimension independent
Gaussian gate delays non-linear in very low variance; Available;
sampling from correlated; number of better than Gaussian axes of
tangent point path sharing paths and sampling for very fast ellipsoid

taken into dimensions performances; gets worse determine yield
account at slower performances. improvement

Otherwise, Gaussian-like direction
randomised gate delays non-linear in lowest variance of all Available;
quadrature correlated; number of methods for very fast axes of

path sharing paths; quadratic performances; gets worse ellipsoid
taken into in number of at slower performances. determine yield
account dimensions Computes lower bound improvement

on true yield. direction

9.2 Relaxing the linearity assumption

The gate delays in this thesis are assumed to vary linearly with respect to the
changes in the global parameters. This assumption becomes less true when
the changes in these global parameters are not small. In such situations
one must assume a non-linear model of gate delay dependence. As a direct
consequence, the yield body will no longer be a feasible region bounded by
hyperplanes, but a more complicated region possibly bounded by curved
surfaces, as shown in the figure below. Depending on the non-linear model,
it is possible that the feasible region may not even be convex. The maximum

154 Chapter 9. Conclusions and future work

volume ellipsoid method can only handle convex regions specifiable by linear
matrix inequalities. For the more complicated regions, one may have to
resort to a linear feasible region approximation. The feasible region may be
thought to be the intersection of a number of half-spaces, just like in the
model proposed in this thesis. However the half-spaces will not represent
“paths” in the circuit as in the present model. Instead they will merely be
the tangent planes at designated points on the surface of the feasible region
as shown in Figure 9.1. This technique is a form of simplicial approximation
that has been explored in the context of design centring by [24]. One way
to arrive at a linear approximation of the feasible region containing only a
few half-spaces is to first choose a a lot of points at random on the surface
of the feasible region, and find the tangent planes at each of these points.
One may then apply the path filtering criterion of Chapter 4, to obtain a
feasible region described by only a subset of the original constraints. Then
the methods outlined in this thesis become applicable.

arbitrary convex
feasible region

tangent to
feasible region

y

x

Figure 9.1: Linearisation of a an arbitrary convex feasible region.

9.3. Tackling high yield situations 155

9.3 Tackling high yield situations

A glance at the Table 9.1 shows that while we have good methods for eval-
uating very low yields (corresponding to fast performances), we do not have
a good method for evaluating high yield situations (corresponding to slow
performances). We shall briefly explore how to achieve variance reduction
for high yield situations.

(a)

I II III

Partitioning
hyperplanes

feasible
region

centre of
JPDF

(b)

I II III

A B

Sampling points
for regions I and
III respectively

Figure 9.2: Evaluating the yield integral for a situation where the nominal point
of the JPDF is deep inside the feasible region.

It was noted in Chapter 6 that the low-variance method of sampling from the
point on the ellipsoid that is closest to the joint probability density function
of global parameters would not work for situations where the nominal point of
the JPDF is located deep inside the feasible region. In this section, we outline
a possible line of attack to handle high yield situations. The proposed scheme
involves partitioning the feasible region at slow performances into several
regions. We then calculate the yield as the sum of the contributions of each
individual region. The partitioning hyperplanes can be found by first finding
the maximum volume ellipsoid that can be inscribed in the feasible region,
and then picking the partitioning hyperplanes so as to (a) be perpendicular
to the major axis of the ellipsoid, and (b) cut the positive and negative major
axes in half, as shown in Figure 9.2a. The nominal point of the JPDF will fall
in the “central” region. For this “central” region, the JPDF itself should be

156 Chapter 9. Conclusions and future work

used for sampling. The nominal point of the JPDF lies outside each extreme
region. Therefore this situation is similar to the low-yield feasible region
explored in Chapter 6, and as in Chapter 6, we can find a maximum volume
ellipsoid that can be inscribed in each extreme region and for each region,
sample from the point on the ellipsoid that is closest to the nominal point of
the JPDF.

157

APPENDIX

We provide an informal proof of the theorem that is the basis for chapter 7.
The theorem is restated here for convenience:

Theorem 6.1: Let S be an integration rule of degree 2n+1 and Q be an n×n
random orthogonal matrix (generated by performing a QR factorisation of a
matrix X whose entries are samples of independent zero mean, unit variance
random variables). Then

S(Q, f) =

∫ ∫

. . .

∫

Yn

f(u)du (A-1)

is exact for all functions f of degree less than equal to 2n + 1. Further

E(S(Q, f)) =

∫ ∫

. . .

∫

Yn

f(u)du (A-2)

for any integrable f . The Expectation is over the space of all random matrices
Q. Yn is the surface of the unit sphere.

Proof: We shall establish the theorem for the two dimensional case. Then
we shall consider 3 and higher dimensions:

(a)2-dimensions:

Let us consider the process of QR factorization given by the equation

X = QR (A-3)

where X is an n×n matrix of independent, zero mean, unit variance normal
random variables, Q is an n × n orthogonal matrix, and R is an upper
triangular matrix. We shall show that the columns of Q are identically
distributed and that the distribution is a uniform distribution over the 2-
dimensional unit sphere - in other words, each column of Q is a random
vector with equal probability of pointing in any direction. Given this fact,
we can then easily establish that the expectation is equal to the surface
integral as desired by the statement of the theorem.

Let us consider the two columns of the 2× 2 orthogonal matrix Q. They can
be written as follows:

Q1 =

[

cos θ
sin θ

]

Q2 =

[

cos φ
sin φ

]

. (A-4)

158

The fact that the columns of Q are random variables means that the angles
θ and φ are also random variables. We will show that these angles are
identically but not independently distributed. In order to demonstrate this,
let us look at the process of QR factorisation:

X = QR
[

x11 x12

x21 x22

]

=
[

Q1 Q2

]

[

r11 r12

0 r22

]

. (A-5)

From the above equation, we can write:

Q1 =

[

cos θ
sin θ

]

=

[x11

r11
x21

r11

]

. (A-6)

The above equation in turn leads to the following:

tan θ =
x21

x11

(A-7)

Note that x11 and x21 are independent zero mean, unit variance random
variables. It can be shown (see [78]) that the random variable representing
the arc-tangent of the ratio of two independent zero-mean, same variance
random variables has a uniform distribution over the range

[

−π
2
, π

2

]

. Thus ,
θ is a uniform random variable where

p(θ) =
1

π
, θ ∈ [0, π] . (A-8)

We have therefore established that the first column of Q points in a uniformly
random direction. Since the second column is orthogonal to the first we have
the following equation:

(Q1)
T Q2 = 0

cos θ cos φ + sin θ sin φ = 0

cot θ = − tanφ. (A-9)

Now recalling that tan θ is simply a ratio of two independent N(0, 1) random
variables, we observe from the above equation that tanφ is also a ratio of

159

two independent N(0, 1) random variables, and thus, using arguments as in
the case of θ, we have:

p(φ) =
1

π
, φ ∈ [0, π] . (A-10)

Note that the orthogonality restriction imposes the constraint that θ and φ
are not independent of each other. With the probability distribution of θ and
φ established we can now establish the fact that randomising the integration
rule gives us the integral we are trying to calculate. The expectation over all
random matrices can be written as follows:

=
i=4
∑

i=1

wiE(f(Qzi))

= w1E(f(Q1)) + w2E(f(−Q1)) + w1E(f(Q2)) + w2E(f(−Q2))

=
π

2
(E(f(Q1)) + E(f(−Q1)) + E(f(Q2)) + E(f(−Q2)))

= π((E(f(Q1)) + E(f(−Q1))). (A-11)

In the above sequence of equations we have made use of the fact that all
the coefficients of the basic simplex rule (with each zi being a unit vector in
a coordinate direction) we are using are equal (= Surface Area

2n
= 2π

4
), and the

fact that the expectation over the second column of the matrix Q is the same
as the expectation over the first column, so that it suffices to consider just
the first column and double the result.

Expanding the last line of (A-11) we have

Exp = π((E(f(Q1)) + E(f(−Q1)))

= π
(

∫ π

0

f(cos θ, sin θ)p(θ)dθ +

∫ π

0

f(− cos θ,− sin θ)p(θ)dθ
)

=

∫ π

0

f(cos θ, sin θ)dθ +

∫ π

0

f(− cos θ,− sin θ)dθ. (A-12)

In (A-12), we have substituted for p(θ) from (A-8). Making a change of
variables in the last line of (A-12) (i.e., substituting α = θ + π in the second
integral), we have

Exp =

∫ π

0

f(cos θ, sinθ)dα +

∫ 2π

π

f(cos α, sin α)dα. (A-13)

160

The surface integral can be written as

S =

∫ 2π

0

f(u)dσ

=

∫ 2π

0

f(cos α, sin α)dα. (A-14)

In (A-14), we have made the substitution u1 = cos α, u2 = sin α with dσ =
dα. Comparing (A-13) with (A-14), we see that they are the same.

(b): n-dimensions, n ≥ 3: As might be expected, the n-dimensional (for
n ≥ 3) case is much more complicated. We shall show that the first column of
Q in 3-dimensions is uniformly distributed over the surface of the unit sphere
in 3-dimensions. A similar argument will establish that the first column of Q
in n-dimensions is uniformly distributed over the surface of the unit n-sphere.
Then we shall show the other columns of Q are distributed according as the
first column of Q. Thus, to calculate the expectation, it will suffice to consider
the first column of Q and multiply the result by n.

Let us write the first column of Q in 3-dimensions as follows:

Q1 =

sin θ3

sin θ2 cos θ3

cos θ2 cos θ3

=

x11

r11
x21

r11
x31

r11

 . (A-15)

The above equation leads us to form the following two equations:

tan θ2 =
x21

x31

,

tan θ3 =
x11

√

x2
21 + x2

31

. (A-16)

For reasons that will be clear shortly, let us define an auxiliary variable
θ1 = x11. The joint probability density function of θ1, θ2, θ3 can be computed
as follows:

p(θ1, θ2, θ3) =
f(x11, x21, x31)

J
(

θ1,θ2,θ3

x11,x21,x31

) . (A-17)

161

The auxiliary variable θ1 was defined so that we could define the Jacobian of
the transformation from the space of x11, x21, x31 to the space θ1, θ2, θ3. We
can write the Jacobian as follows:

J

(

θ1, θ2, θ3

x11, x21, x31

)

=

∣

∣

∣

∣

∣

∂θ1

∂x11

∂θ1

∂x21

∂θ1

∂x31
∂θ2

∂x11

∂θ2

∂x21

∂θ2

∂x31
∂θ3

∂x11

∂θ3

∂x21

∂θ3

∂x31

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1 0 0
∗ x31

x2
21+x2

31
− x21

x2
21+x2

31

∗ − x11x21√
(x2

21+x2
31)(x2

11+x2
21+x2

31)
− x11x31√

(x2
21+x2

31)(x
2
11+x2

21+x2
31)

∣

∣

∣

∣

∣

=
sin3 θ3

θ2
1 cos θ3

. (A-18)

Substituting for the Jacobian in (A-17) the probability density function
p(θ1, θ2, θ3) can be written as follows:

p(θ1, θ2, θ3) = f

(

θ1,
θ1 sin θ2

tan θ3
,
θ1 cos θ2

tan θ3

)

θ2
1 cos θ3

sin3θ3
. (A-19)

Now x11, x21, x31 are independent zero-mean, unit variance random variables.
Therefore their joint density function can be expressed as

fx11,x21,x31(x11, x21, x31) =
1

(2π)3/2
e

−(x2
11+x2

21+x2
31)

2 . (A-20)

Therefore we have

p(θ1, θ2, θ3) = f(θ1,
θ1 sin θ2

tan θ3
,
θ1 cos θ2

tan θ3
)
θ2
1 cos θ3

sin3θ3

=
1

(2π)3/2

θ2
1 cos θ3

sin3θ3

e
− θ2

1 sec2 θ3
2 tan2 θ3

.
(A-21)

In order to determine the density p(θ2, θ3) which is the density we are inter-
ested in, we must integrate out the auxiliary random variable, θ1. Doing so

162

gives us

p(θ2, θ3) =

∫ ∞

−∞
p(θ1, θ2, θ3)dθ1

=

∫ ∞

−∞

1

(2π)3/2

θ2
1 cos θ3

sin3θ3
e
− θ2

1 sec2 θ3
2 tan2 θ3 dθ1. (A-22)

The above integral is of the form
∫ ∞
−∞ pθ2e−qθ2

dθ where p = 1
(2π)3/2

cos θ3

sin3 θ3
and

q = sec2 θ3

tan2 θ3
. We know that

∫ ∞

−∞
e

−θ2

2 dθ =
√

2π. (A-23)

Thus we can show that (A-22) amounts to

p(θ2, θ3) =
p

q3/2

√
2π

=
1

2π
cos θ3. (A-24)

Thus the first column is distributed according to the distribution given by the
above equation. Note that “uniform distribution” as defined above is slightly
counter-intuitive in that there is a dependence on θ3. This is because as θ3

increases from 0 to π/2, the strips of the surface of the sphere corresponding
to θ3 keep shrinking in area, requiring the offset of cos θ3 in the probability
density function.

The first and second columns of Q are orthogonal, and that the second col-
umn Q2 can be obtained as follows:

Q2 =
1

r
(X2 −

XT
1 X2

XT
1 X1

X1), (A-25)

where r in the above equation is the length of the vectorX2 − XT
1 X2

XT
1 X1

X1. In

other words, the second column of the orthogonal matrix is obtained by
subtracting from the first column of X, the projection of the first column of X
on the second column of X, and normalising it to 1.. The third column of Q is
obtained by subtracting from X3 its projection onto the plane containing X1

163

and X2. The distributions of the second and third column can be computed
using the same principles as for the first column, namely by defining auxiliary
variables and computing the relevant Jacobians, and finally integrating out
the auxiliary variables to get the required joint probability density function
of the angles of the column vector in question.

However, the fact that the matrix Q arising out of the QR factorisation of
a matrix X whose entries are N(0,1) random variables, is a uniform random
orthogonal matrix, is a result of the theory of compact topological groups.
The argument below is adapted from [86] and is included here only for com-
pleteness. The group of random orthogonal matrices can be shown to be
a compact topological group [86]. Every compact topological group has a
unique normalised left-invariant measure µ [37] such that

µ(G) = 1,

µ(HG) = µ(G), (A-26)

where G denotes the group of all orthogonal matrices of order n. The measure
µ is a group-theoretic analogue of the uniform probability density function
over real numbers. Given that X = QR, pre-multiplying both sides of the
equation by the orthogonal matrix H gives HX = HQR. Since X is a matrix
of N(0,1) random variables, HX is also N(0,1). This can be seen as follows
(for n=2):

Y = HX,
[y1

y2

]

=

∣

∣

∣

∣

∣

h11 h12

h21 h22

∣

∣

∣

∣

∣

[

x1

x2

]

,

fY (y1, y2) =
fX(x1, x2)

J
(

y1,y2

x1,x2

) ,

fY (y1, y2) =
fX(h22y1 − h12y2,−h21y1 + h11y2)

det(H)
,

fY (y1, y2 =
1

2π
e

−1
2

((h22y1−h12y2)2+(−h21y1+h11y2)2),

fY (y1, y2) =
1

2π
e

−1
2

(h2
22y2

1+h2
12y2

2+h2
21y2

1+h2
11y2),

fY (y1, y2) = fy1(y1)fy2(y2). (A-27)

164

In the above sequence of equations the probability density of the variables
y1 and y2 is first expressed in terms of the probability density function of
the variables x1 and x2 via a Jacobian transformation. The joint probability
density function of the variables y1 and y2 can expressed in separable form
in the last equation, since the rows of H are independent causing the cross-
terms to disappear. Finally each yi = Σi=2

i=1hijxj is a N(0,1) variable since the
norm of each row of H is equal to 1.

HQ is an orthogonal matrix just like Q, and is obtained by a QR factori-
sation of a N(0,1) matrix HX. Therefore HQ is distributed according to
the same distribution as Q. Thus the distribution of Q is invariant under
left translations, and hence Q must be distributed according to the unique
left-invariant measure µ called the Haar measure. The unique normalised
left-invariant measure of (A-26) can also be shown to be right-invariant [37]
[86]. In particular, this means that QP has the same distribution as Q where
P is a permutation matrix (which is orthogonal) that interchanges columns
1 and 2 of Q. Thus the first column of QP is uniformly distributed over
the surface of the unit sphere, since the first column of Q is uniformly dis-
tributed. But the first column of QP is the second column of Q. Thus the
first and second columns of Q are identically distributed. Since P can be any
permutation matrix, all columns of Q are identically distributed.

We will now show that the expectation over the random matrices is equal
to the surface integral as required by the statement of the theorem. The
uniform density of the column vectors in cartesian coordinates translates to

p(x, y, z) =
1

4π
. (A-28)

The expectation over all random matrices can be written as follows:

Exp =
i=6
∑

i=1

wiE(f(Qzi))

= w1E(f(Q1)) + w2E(f(−Q1)) + w3E(f(Q2)) +

w4E(f(−Q2)) + w5E(f(−Q3)) + w6E(f(−Q3))

=
π

2
(E(f(Q1)) + E(f(−Q1)) + E(f(Q2))

+ E(f(−Q2)) + E(f(Q3)) + E(f(−Q3)))

= 3
(4π

6

)

((E(f(Q1)) + E(f(−Q1))). (A-29)

165

In the above sequence of equations we have made use of the fact that all the
coefficients of the basic simplex rule we are using are equal (= Surface Area

2n
=

4π
6

), and the fact that the expectation over the second and third columns of
the matrix Q is the same as the expectation over the first column, so that it
suffices to consider just the first column and triple the result.

Finally we have

E(f(Q1)) =

∫ ∫ ∫

R

f(x, y, z)p(x, y, z)dxdydz

=
1

4π

∫ ∫ ∫

R

f(x, y, z)dxdydz,

E(f(−Q1)) =

∫ ∫ ∫

R

f(−x,−y,−z)p(x, y, z)dxdydz

=
1

4π

∫ ∫ ∫

R

f(u, v, w)dudvdw. (A-30)

From (A-29) and (A-30) we can see that the expectation over all random
matrices is equal to the surface integral.

166

Bibliography

[1] E. Acar, S. Nassif, Y. Liu, L.T. Pileggi, Assessment of true worst case
circuit performance under interconnect parameter variations, IEEE In-
ternational Symposium of Quality Electronic Design, pages 431-436,
March 2001.

[2] S.A. Aftab, M.A. Styblinski, A new efficient approach to statistical
delay modeling of CMOS digital combinational circuits, IEEE/ACM
International Conference on Computer-Aided Design, pages 200-203,
November 1994.

[3] A. Agarwal, D. Blaauw, V. Zolotov, S. Vrudhula, Statistical timing
analysis using bounds, Design Automation and Test in Europe Confer-
ence and Exhibition, pages 62-67, March 2003.

[4] K. Anstreicher, Improved complexity for maximum volume inscribed
ellipsoids, manuscript 2001.

[5] K.J. Antreich and R.K. Koblitz, Design centering by yield prediction,
IEEE Transactions on Circuits and Systems, Volume CAS-29, No. 2,
pages 88-95,February 1982.

[6] F. Baccelli, A.J-Marie, Z. Liu, A survey on solution methods for task
graph models, Second QMIPS Workshop, Go”tz Herzog, Rettelbach
(Re’d), Arbeitsberichte der IMMD, 26, 14, Erlangen, March 1993.

[7] J.W. Bandler and H.L. Abdel-Malek Optimal centering, tolerancing
and yield determination via updated approximations and cuts, IEEE
Transactions on Circuits and Systems, Volume CAS-25, No. 10, pages
853-871 , October 1978.

167

168

[8] M. Berkelaar, Statistical timing analysis, a linear time method,
ACM/IEEE International Workshop on Timing Issues in the Speci-
fication and Synthesis of Digital Systems, pages 15-24, December 1997.

[9] D.S. Boning and S.R. Nassif, Models of process variations in device
and interconnect, Design of High Performance Microprocessor Circuits,
Eds: A. Chandrakasan, W. Bowhill and F. Fox, pages 98-115, 2000,
IEEE Press.

[10] R.B. Brashear, N. Menezes, C. Oh, L.T. Pillage, M.R. Mercer, Predict-
ing circuit performance using circuit-level statistical timing analysis,
Design Automation and Test in Europe, pages 332-337, February 1994.

[11] R.K. Brayton, S.W. Director and G.D. Hachtel, Yield maximization
and worst-case design with arbitrary statistical distributions, IEEE
Transactions on Circuits and Systems, Vol. CAS-27, No. 9, pages 756-
764, September 1980.

[12] R. K. Brayton, G.D. Hachtel and A.L. Sangiovanni-Vincentelli, A sur-
vey of optimization techniques for integrated-circuit design, Proceedings
of the IEEE, Volume 69, pages 1334-1362, 1981.

[13] G. Chen, H. Onodera, and K. Tamaru, Timing and power optimization
by gate sizing considering false path, 6th Great Lakes Symposium on
VLSI, pages 154-159, March 1996.

[14] D.I. Cheng, M.M. Sadowska, K.T. Cheng, Speeding up power estima-
tion by topological analysis, IEEE Custom Integrated Circuits Confer-
ence, pages 623-626, 1995.

[15] B. Choi and D.M.H. Walker, Timing analysis of combinational cir-
cuits including capacitive coupling and statistical process variation,
18th IEEE VLSI Test Symposium, pages 49-54, April 2000.

[16] J. Cohen and T. Hickey, Two algorithms for determining volumes of
convex polyhedra, Journal of the ACM, vol. 26, pages 401-414, July
1979.

[17] P.Cox, P. Yang, S.S. Mahant-Shetti, and P. Chatterjee, Statistical mod-
eling for efficient parametric yield estimation of MOS VLSI circuits,

169

IEEE Transactions on Electron Devices, Vol ED-32, pages 471-478,
February 1985.

[18] S. Devadas, Statistical timing analysis of combinational circuits, IEEE
International Conference on Computer Design: VLSI in Computers
and Processors, pages 38-43, October 1992.

[19] M.E. Dyer and A.M. Frieze, On the complexity of computing the vol-
ume of a polyhedron, SIAM Journal on Computing, Vol. 17, No. 5,
pages 967-974, 1988.

[20] A. Dharchoudhury and S.M. Kang, Worst-case analysis and optimiza-
tion of VLSI circuit performances, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Vol. 14, No. 4, pages
481-492, April 1995.

[21] S.W. Director and W. Maly, eds, Statistical approach to VLSI, vol. 8
of Advances in CAD for VLSI, North-Holland 1994.

[22] S.W. Director, P. Feldmann, and K. Krishna, Optimization of para-
metric yield: a tutorial, Custom and Integrated Circuits Conference,
pages 3.1.1-3.1.8, May 1992.

[23] S.W. Director, P. Feldmann, and K. Krishna, Statistical Integrated
Circuit Design, IEEE Journal on Solid-State Circuits, Vol. 28, No. 3,
pages 193-202, March 1993.

[24] S.W. Director and G.D. Hachtel, The simplicial approach to design
centering, IEEE Transactions on Circuits and Systems, CAS-24, pages
363-372, July 1977.

[25] S.W. Director, G.D. Hachtel and L.M. Vidigal, Computationally effi-
cient yield estimation procedures based on simplicial approximation,
IEEE Transactions on Circuits and Systems, Vol. CAS-25, pages 121-
130, March 1978.

[26] B. Dodin, Bounding the project completion time distribution in PERT
networks, Operations Research, 33(4), pages 862-881, 1985.

[27] S.G. Duvall, Statistical circuit modeling and optimization, 5th Inter-
national Workshop on Statistical Metrology, pages 56-63, June 2000.

170

[28] P. Feldmann and S.W. Director, Accurate and efficient evaluation
of circuit yield and yield gradients, International Conference on
Computer-Aided Design, pages 120-123, November 1990.

[29] P. Feldmann and S.W. Director, Integrated circuit quality optimization
using surface integrals, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, Vol. 12, No. 12, pages 1868-1879,
December 1993.

[30] A. Gattiker, S. Nassif, R. Dinakar, and C. Long, Timing yield estima-
tion from static timing analysis, International Symposium on Quality
Electronic Design, pages 437-442, March 2001 IEEE.

[31] A. Genz, Fully symmetric interpolatory rules for multiple integrals over
hyper-spherical surfaces, Journal of Computers and Applied Mathemat-
ics, Vol. 157, pages 187-195, 2003.

[32] A. Genz and J. Monahan, Stochastic Integration Rules for Infinite Re-
gions, SIAM Journal on Scientific Computing, Vol. 19, pages 426-439,
1998.

[33] A. Genz and J. Monahan, A stochastic algorithm for high dimensional
integrals over unbounded regions with Gaussian weight, Journal of
Computers and Applied Mathematics, Vol. 112, pages 71-81, 1999.

[34] D.S. Gibson, R. Poddar, G.S. May, Statistically based parametric yield
prediction for integrated circuits, IEEE Transactions on Semiconductor
Manufacturing, Vol. 10, No. 4, pages 445-458, November 1999.

[35] H.E. Graeb, C.U. Wiser, and K.J. Antreich, Circuit analysis and
optimization driven by worst case distances, IEEE Transactions on
Computer-Aided Design of Circuits and Systems, Vol. 13, No. 1, pages
57-71, January 1994.

[36] J.N. Hagstrom, Computational complexity of PERT problems, Net-
works, Vol. 18, pages 139-147, 1988.

[37] P.R. Halmos, Measure Theory, Van Nostrand, 1976.

[38] J.M. Hammersley and D.C. Handscomb, Monte-Carlo Methods,
Metheun and Co. limited, London, 1964.

171

[39] R.B. Hitchcock, Sr., Timing verification and the timing analysis pro-
gram, 19th Design Automation Conference, pages 594-604, 1982.

[40] R.B. Hitchcock, G.L.Smith and D.D. Cheng, Timing analysis of com-
puter hardware, IBM Journal of Research and Development, pages 100-
105, January 1982.

[41] D.E. Hocevar, P.F. Cox and P. Yang, Parametric yield optimization for
MOS circuit blocks, IEEE Transactions on Computer-Aided Design,
Vol. 7, No. 6, pages 645-658, June 1988.

[42] D.E. Hocevar, M.R. Lightner and T.N. Trick, A study of variance re-
duction techniques for estimating circuit yields, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. CAD-
2, No.3, pages 180-191, July 1983.

[43] E.T.A.F. Jacobs, and M.R.C.M. Berkelaar, Gate sizing using a sta-
tistical delay model, Design Automation And Test in Europe, pages
283-291, March 2000.

[44] J.A.G. Jess, K. Kalafala, S.R. Naidu. R.H.J.M. Otten and C.
Visweswariah, Statistical timing for parametric yield prediction of dig-
ital integrated circuits, Design Automation Conference, pages 932-937,
June 2003.

[45] X. Jiang and S. Horiguchi, Statistical skew modeling for general clock
distribution networks in presence of process variations, IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, Vol. 9, No. 5,
pages 704-717, October 2001.

[46] B. Johnson, T. Quarles, A.R. Newton. D.O.Pederson, and
A.Sangiovanni-Vincentelli, SPICE3 Version 3f User’s Manual, Univer-
sity of California, Berkeley, 1992.

[47] H.F. Jyu, S. Malik, S. Devadas and K.Keutzer, Statistical timing anal-
ysis of combinational logic circuits, IEEE Transactions on Very Large
Scale Integration, Vol. 1, No. 2, pages 126-137, June 1993.

[48] H.F. Jyu and S. Malik, Statistical timing optimization of combina-
tional logic circuits, IEEE International Conference on Computer De-
sign: VLSI in Computers and Processors, pages 77-80, October 1993.

172

[49] J. Kamburowski, Bounding the distribution of project duration in
PERT networks, Operations Research Letters, 12(1):pages 17-22, 1992.

[50] L. Khachiyan, A polynomial algorithm in linear programming, Doklady
Akademi Nauk SSSR, 211:pages 1093-1096, 1979.

[51] L. Khachiyan and M. Todd, On the complexity of approximating the
maximal inscribed ellipsoid for a polytope, Mathematical Programming,
61:pages 137-159, 1993.

[52] G.B. Kleindorfer, Bounding distributions for stochastic acyclic net-
works, Operations Research, 19:pages 1586-1601, 1971.

[53] R.B.Lin and M.C Wu, A new statistical approach to timing analysis
of VLSI circuits, 11th International Conference on VLSI Design, pages
507-513, January 1998.

[54] J. -J. Liou, A. Krstic L.-C Wang, K.-T. Cheng, False-path-aware sta-
tistical timing analysis and efficient path selection for delay testing and
timing validation, Proceedings of the Design Automation Conference,
pages 566-569, June 2002.

[55] J.-J. Liou, K.-T. Cheng, S. Kundu, A. Krstic, Fast statistical timing
analysis by probabilistic event propagation, Design Automation Con-
ference, pages 661-666, June 2001.

[56] Y. Liu, S.R. Nassif, L.T. Pileggi, A.J. Strojwas, Impact of intercon-
nect variations on the clock skew of a gigahertz microprocessor, Design
Automation Conference, pages 168-171, June 2000.

[57] P.C.K. Liu and K.C. Li, A circuit design methodology based on statis-
tical tolerance optimization, International Conference on Circuits and
Systems, pages 753-756, June 1991.

[58] A. Ludwig, R.H. Mohring, and F. Stork, A computational study on
bounding the makespan distribution in stochastic project networks,
Technical Report No. 609/1998, Department of Mathematics, Technical
University of Berlin.

[59] E. Malavasi, S. Zanella, J. Uschersohn, M. Misheloff, C. Guardiani, Im-
pact analysis of process variability on digital circuits with performance

173

limited yield, IEEE International Workshop on Statistical Methodology,
pages 60-63, Kyoto ,Japan, June 2001.

[60] H.A.-Malek, and J.W. Bandler, Yield optimization for arbitrary sta-
tistical distributions, part 1- theory part 2 - implementation, IEEE
Transactions on Circuits and Systems, Vol. CAS-27, No. 4, pages 245-
262, April 1980.

[61] W. Maly, A.J. Strojwas and S.W. Director, VLSI yield prediction and
estimation: a unified framework, IEEE Transactions on Computer-
Aided Design, Vol. CAD-5, No. 1, pages 114-130, January 1986.

[62] M. Miyama, S. Kamohara, K. Okuyama, Y. Oji, Parametric yield en-
hancement system via circuit level device optimization using statistical
circuit simulation, Symposium on VLSI Circuits, pages 163-166, June
2001.

[63] I.P. Mysovskikh, The approximation of multiple integrals by using in-
terpolatory cubature formulae, in Qualitative Approximation (R.A. De-
Vore, and K.Scherer, eds.) (New York) pp 217-243, Academic Press,
1980.

[64] I.P. Mysovskikh, Interpolatory Cubature Formulas, Moscow-Leningrad,
Izd ’Nauka’, 1981(Russian text).

[65] A. Nadas, Probabilistic PERT, IBM Journal of Research and Develop-
ment, Vol. 23, No. 3, pages 339-347, May 1979.

[66] S.R. Naidu, An impulse-train approach to statistical timing analysis,
Workshop Notes of the International Workshop on Logic Synthesis,
June 12-15, 2001, Granlibakken, CA.

[67] S.R. Naidu, Timing yield calculation using an impulse-train approach,
Proceedings of the Asia-South Pacific Design Automation Confer-
ence/International Conference on VLSI Design, pages 219-224, Jan-
uary 2002.

[68] A. Nardi, A. Neviani, E. Zanoni, M. Quarantelli, and C. Guardiani,
Impact of unrealistic worst-case modelling on the performance of VLSI
circuits in deep submicron CMOS technologies, IEEE Transactions on

174

Semiconductor Manufacturing, Vol. 12, No. 4, pages 396-402, Novem-
ber 1999.

[69] S. R. Nassif, Within-chip variability analysis, Proceedings of IEDM,
pages 283-286, December 1998.

[70] S.R. Nassif, Modeling and forecasting of manufacturing variations, Asia
South-Pacific Design Automation Conference, pages 145-149, January
2001.

[71] S.R. Nassif, Design for variability in DSM technologies, International
Symposium on Quality Electronic Design, pages 451-454, March 2000.

[72] S.R. Nassif, A. Strojwas, and S. Director, FABRICS-II: A statisti-
cally based IC fabrication process simulator, IEEE Transactions on
Computer-Aided Design, Vol. CAD-3, No. 1, pages 40-46, January 1984.

[73] Y.E. Nesterov and A.S. Nemirovskii, Interior Point Methods in Convex
Programming - Theory and Applications, The Society for Industrial and
Applied Mathematics, Philadelphia 1991.

[74] M. Orshansky, J.C. Chen, and C. Hu, Direct sampling methodology
for statistical analysis of scaled CMOS technologies, IEEE Transac-
tions on Semiconductor Manufacturing, Vol. 12, No. 4, pages 403-408,
November 1999.

[75] M. Orshansky, K. Keutzer, A general probabilistic framework for worst-
case timing analysis, Design Automation Conference, pages 556-561,
June 2002.

[76] M. Orshansky, L. Milor, P.Chen , K.Keutzer and C.Hu, Impact of
spatial intra-chip gate length variability on the performance of high-
Speed digital circuits, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, Vol. 21, No. 5, pages 544-553, May
2002.

[77] S.W. Pan, and Y.H. Hu, PYFS - a statistical optimization method
for integrated circuit yield enhancement, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Volume
2, Issue 2, pages 296-309, February 1993.

175

[78] A. Papoulis, Probability and Statistics, Prentice-Hall International, En-
glewood Cliffs, 1990.

[79] J.A. Power, B. Donnellan, A. Mathewson, and W.A. Lane, Relating
statistical MOSFET model parameter variabilities to IC manufacturing
process fluctuations enabling realistic worst case design, IEEE Trans-
actions on Semiconductor Manufacturing, Vol. 7, No. 3, pages 306-318,
August 1994.

[80] L. Scheffer, Cadence Design Systems, San Jose, California, private com-
munication, March 2004.

[81] S.C. Seth, L. Pan, V.D. Agrawal, PREDICT: probabilistic estimation
of digital circuit testability, Proceedings of the International Symposium
on Fault Tolerant Computing, pages 220-225, June 1985.

[82] A.W. Shogan, Bounding distributions for a stochastic PERT network,
Networks, 7:pages 359-381, 1977.

[83] K. Singhal and V. Visvanathan, Statistical device models from worst
case files and electrical test data, IEEE Transactions on Semiconductor
Manufacturing, Vol. 12, No. 4, pages 470-484, November 1999.

[84] K. Singhal and J.F. Pinel, Statistical design centering and tolerance us-
ing parametric sampling, IEEE Transactions on Circuits and Systems,
vol. CAS-28, No.7 , pages 692-701, August 1985.

[85] M. Sivaraman and A.J. Strojwas, Delay fault coverage: A realistic
metric and an estimation technique for distributed path delay faults,
International Conference on Computer-Aided Design, pages 494-501,
1996.

[86] G. Stewart, The efficient generation of random orthogonal matrices
with an application to condition estimators, SIAM Journal on Numer-
ical Analysis, 17(3):pages 403-409, 1980.

[87] D. Stoyan, Comparison Methods for Queues and other Stochastic Mod-
els, Wiley, New York, 1984.

[88] A.H. Stroud, Approximate Calculation of Multiple Integrals, Prentice-
Hall Inc, Englewood Cliffs, NJ, 1971.

176

[89] M.A. Styblinski, P. Gager and J. Lei, A symbolic fuzzy number ap-
proach to the propagation of uncertain statistical information in IC
Design, International Symposium on Circuits and Systems, Volume 3,
pages 1664-1667, June 1997.

[90] N. Telang, and J.M. Higman, Statistical modeling techniques: FPV
vs BPV, IEEE 2001 International Conference on Microelectronic Test
Structures, Vol 14, pages 71-75, March 2001.

[91] S. Tsukiyama, M. Tanaka, and M. Fukui, Techniques to remove false
paths in statistical static timing analysis, 4th International Conference
on ASIC, pages 39-44, October 2001.

[92] S. Tsukiyama, M. Tanaka, M. Fukui, A statistical static timing analysis
considering correlations between delays, Proceedings of the Asia South
Pacific Design Automation Conference, pages 353-358, January 2001.

[93] L. Vandenberghe, S. Boyd and S.P. Wu, Determinant maximization
with linear inequality constraints, SIAM Journal on Matrix Analysis
and Applications, 19(2):pages 499-533, 1998.

[94] C. Visweswariah, IBM T.J. Watson Research Center, Yorktown
Heights, New York, private communication, March 2004.

[95] J.M. Wojciechowski and J. Vlach, Ellipsoidal method for Design Cen-
tering and Yield Estimation, IEEE Transactions on Computer-Aided
Design of ICs and Systems, Vol. 12, No. 10, pages 1570-1579, 1993.

[96] P. Yang, D.E. Hocevar, P.F. Cox, C. Machala, and P.K. Chatterjee,
An integrated and efficient approach to MOS VLSI statistical circuit
design, IEEE Transactions on Computer-Aided Design of ICs and Sys-
tems, Vol. CAD-5, pages 5-14, January 1986.

[97] H.C. Yen, S. Ghanta and H.C.Du, A path selection algorithm for timing
analysis, 25th ACM/IEEE Design Automation Conference, pages 720-
723, June 1988.

[98] S.H.C. Yen, D.C. Du, and S. Ghanta, Efficient Algorithms for extract-
ing the K most critical paths in timing analysis, 26th ACM/IEEE De-
sign Automation Conference, pages 649-654, June 1989.

177

[99] S. Zanella, A. Neviani, B. Franzimi, C. Guardiani, Statistical timing
models of digital IP libraries, 5th International Workshop on Statistical
Metrology, pages 76-79, June 2000.

[100] Y. Zhang, On numerical solution of the maximum volume ellipsoid
problem, CAAM Technical Report TR01-15, Department of Computa-
tional and Applied Mechanics, Rice University, August 2001.

Index

approximation
ellipsoidal, 88
linear, 11
polynomial, 11
simplex, 54

arrival time, 32

Bayes product rule, 44
behaviour, 2
bi-connected components, 37
bounding box, 79

ellipsoid, 109
bounds

lower, 32
upper, 32

capacitance
input, 147
output, 147

Chebyshev’s inequality, 77
concentric shells, 124
constraint violations, 97
convex feasible region, 50
convolution, 33
correlation, 20
correlations

logical, 36
critical paths, 57

delay, 2
delay differential, 149

design centering, 135
design vectors, 142
determinant, 90
distribution

binomial, 78
Gaussian, 34
probability, 5
triangular, 31

efficiency, 119
eigenmatrix, 66
eigenvalues, 66
error

discretisation, 44
probabilistic, 26

error-scaling rate, 28

gradients, 142

Haar distribution, 127
hyperplane, 50

separating, 117

impulse, 33
integration

Monte-Carlo, 75
multi-dimensional, 57

integration rule, 82
interior-point algorithm, 91

joint probability density, 50
JPDF, 67

178

179

KKT conditions, 93

lc-graph, 37
linear programme, 56

matrix
correlation, 48

MAXDET formulation, 91
minimax method, 139
models, 4
Monte-Carlo simulation, 40
multi-variate normal, 66

Newton’s root finding, 105

parallelepiped, 73
parameters, 1

auxiliary, 48
geometrical, 10
global, 48
noise, 10

path sharing, 47
performance, 3
polytope, 70
positive-definite matrix, 90
primal-dual, 93
probability mass, 101
process disturbance space, 137
product-rule, 83
propagation, 2

QR factorisation, 128
quadrature

Gaussian, 83
numerical, 123
randomised, 123

reconvergent fanout, 36
response-surface, 11

sampling, 11
density, 117
importance, 113
stratified, 113

sensitivity, 54
simulator, 11
slew, 16
spherical surface integral, 125
spherical-radial integral, 124
statistical, 4
stochastically

larger, 41
Stroud formula, 98
supergate, 36

tangent, 104
tasks, 19
timing, 4

static, 16
statistical, 18

topological path matrix, 50
transformation

matrix, 90
orthogonal, 90

transition
falling, 16
rising, 16

uncertainty, 3
uniform grid, 28

variable
deterministic, 20
random, 20

variance, 28

worst-case, 4

yield, 1

180

Biography

Srinath R. Naidu was born on 2nd June 1974, in Bangalore, India.

He completed his schooling in Bangalore, India in 1992 before starting his
undergraduate education in Computer Engineering at the Banaras Hindu
University, Varanasi. After receiving his undergraduate degree with honours
in 1996, he proceeded to the Indian Institute of Science, Bangalore to pursue
a master’s degree in Computer Science. He graduated in 1998, with a dis-
sertation entitled “Polynomial-time testable Combinational Circuits”. Then
he worked briefly for Synopsys(India).

From September 28, 1999 to January 24, 2004, Srinath was employed as an
AiO at the Department of Electrical Eindhoven University of Technology.
Upon finishing his AiO contract, Srinath has started working for Magma
Design Automation, Netherlands. He hopes to be able to defend his thesis
on July 13, 2004.

181

	Summary of Thesis
	Samenvatting
	Acknowledgements
	Contents
	1 Introduction
	2 The PERT problem
	3 A simple timing model
	4 A more refined timing model
	5 Integration over a polytope
	6 Ellipsoidal approximation of the feasible region
	7 Randomised quadrature
	8 Yield optimisation
	9 Conclusions and future work
	Bibliography
	Index
	Biography

