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1 Introduction

The theory of hybrid systems studies the combination of continuous and discrete
behaviour. When discrete software 18 combined with mechanical and electrical
components, or is interacting with, for example, chemical processes, an embed-
ded systom arises in which the interaction between the continuous behaviour
of the components and processes and the diserete behaviour of the sofiware
is important. Although there are good methods for describing, modeling and
analysing continuous hehaviour (control science [/ system theory) as well as for
analysing discrete hehaviour {computer science / automata and process theory),
the interaction hetween those two fields is largely wmexplored. but received a lot
of interest recently [vdSS00h, BM94, vBGRIT, vdBI8, BBMIS]. There are only
a fow models that can handle (some) interaction and often these models are
still dominated by one of the two original fields. Take as an example the timed
process algebras (see [BMO1, RGvdZvW02]) wsed in computer science or sys-
tem theoretic methods like complementarity systems and switched systems {see
[#dSS500h]). Two broader and more expressive formalisms that are in use al-
ready are hybrid awsomata [LSV99, LSVO1] and rich time hehaviour [vdSS00h].
Those are discussed in more detail furtheron in this report.

In practice, often the discrete part of a hybrid system is described and analysed
using methods from computer science, while the continuous part is handied by
control science. Because the analysis of the interaction between the discrete
arxl continuous part is extremely difficult, the design of the complete system is
usually such that this interaction is suppressed £o a minimum. This is the main
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reason for the development of o theory on hybrid systems. ¥ we can obtain more
insight in the interaction hotween discrote and continous behaviour, we can get
rid of the current restrictions on the design of a hybrid system. In the remainder
of this report, system theory, automata theory and process theory. arve referred
10 as classical theories, as opposed to combinations of those in fiybrid theories.

Our ultimate goal is a syntactical algebraic structure that can serve as a model-
ing framework for hybrid systems and in which we can do symbolic analysis. As
will hecome clear in the next section, such an algobra should have an undorly-
ing mathematical structure that reflects the meaning of the algebraic operators.
This underlying structure must be intuitive from both a control science and a
computer science point of view.

In: this report, we infroduce hybrid transition systems as a new candidate strue-
ture to serve this goal. This model is less expressive than some of the existing
hybrid formalisms, but we argue that it is more suitable as a model because,
in our opinion, it gives rise to more elegant definitions of the theoretical prop-
erties that play a role in hybrid systems theory, Especially, the fact that only
one mathematical structure is needed to describe diserete as well as continu-
ous hehaviour, is important when comparing hybrid transition systems to for
example hybrid automata. With respect to the expressivity, we indicate which
information is not modelled in the hybrid transition systems that is modelled
in other formalisms. This is to ensure that no crueial information is lost due to
the fact that hybrid transition systems are not as expressive.

We start with an explanation of our view on mathematical modeling and then
give an overview of models (classical and hybrid) in the liferature from both
fields. We discuss some of their strengths and weaknesses and, after this, we
come o the model of hyhrid transition systems, and point out how it relates to
the classical models. In order to strengthen intuition, we discuss in an informal
way how several notions from the difforont classical theories (like bsimulution,
time-invariance, stabidity and controllability) can be incorporated into the new
context,

At some points in this report we rely on a basic knowledge of the ficld of topology.
For an imfroduction into this field of mathematics, see for example [Dugbt,
Eis74]. A reminder of some of the basic definitions is given in the appendix, as
well as an explanation of most of the notation used in this report.

2 Mathematical Modeling

Inn this section, we explain our view on the concept of mathematical modeling,
An informal explanation is given of what a mathematical model consists of, and
why. One part of mathematical modeling, the semantics, is extensively studied
in this report for frameworks from computer science and system theory, as well



as for hybrid frameworks.

A mathematical formalism provides us with a structure in which we can deseribe
systermns, and in which we can analyse them. Mathematical modeling often makes
use of two of such formalisms called syntax and semantics (see figore 13,

Syntactical Formalism

Syntactical Calculation
Description Rules
F
solution axiomatization

Semantical Theoretical

Deseription Notions

Semantical Formalism

Figure 1 Mathematical Modelling

The semantical formalism (in short: semantics) is intended to support the mod-
eling of a system on a low level of abstraction. The semantical description of a
system uses a relatively simple mathomatical structure. Motion, on a semantical
level, could for example be modeled using functions of time to space. A com-
puter program could be modeled using a graph-like structure called a transition
systermn. The semantical formalism contributes 1o the analysis of systems by the
mtuitive definitions it provides of the theoretical notions wo want 1o analyse.
Because of its simplicity as a mathematical strueture, the semantical formalism
allows us to give a precise, and intuitive, definition of several notions like equiv-
alence, stability, ahsence of deadlock, controllability, and observability {which
terms are explained roughly throughout the text and considered in more detail
in the last sections of this report).

The syntactical formelism (in short: syntax) is intended to facilitate a less
cumbersome description of a system. In contrast to the mathematically sim-
ple deseription method that the semantical formalism provides, the synfactical



description s focussed on the ease of notation. Writing down, on paper, the
complex ways in which planets move using funetions of time. would be impos-
sihle because there are simply too many {infinitely many) possible evolutions,
especially when no initial condition is given. Describing them using, for exam-
ple, differential equations, provides us with a finite representation of the same
set of functions. The high-level Pascal or C++ code of a computer program, is
far more easy to write down than a transition system with the same function-
ality. Syntax provides a concise, finite way of handling semantical, and often
infinite, mathematical objects.

This suggests that the syntactical and semantical formalism are coupled, which
indeed they are. A difforential equation has solutions in terms of functions of
time. A piece of C-++ code, although not formally (to which we return later),
represents a transition systom.

The contribution of syntax to the analysis of systems is through axioms and
theorems that we refor to in the figure as colewlation rules. Because syntax
and semantics are coupled. the notions that are defined in the semantics, have
a meaning in the syntax. The caleulation rules on the syntax, should reflect
these notions. Axioms (for example) wually represent notions of equivalence
on the semantics, while the theorems about the stability of systems eorrespond
to the definition of stability in semantical terms. For the analysis of systoms
it is tportant that the coupling between syniax and semantics s formal, this
is one of the reasons why CH+ programs are almost impossible to analyse
completely. This i also one of the reasons for the development of a formal
semantics for languages like UML [DMY02, GPP98, EBF7 98], and y [BKO2,
Are96, vBROO] that were originally intended for other purposes, like simulation,
Typical syntactical languagoes that were developed with the intention of analysis
from the beginning, are process algebras like ACP (Algebra of Communicating
Processes) [BW90, Fok98], pCRL {micro Common Representation Language)
[GRO1. RGvdZvW02] and CCS {Calculus of Communicating Systems) [Mil8(].

In figure 2, a graphical representation is given of the general aim of our efforts,
The figure shows that wo want 10 combine the syntax wsed by system theorists
and the syntax used by process theorists into a new hybrid syntax. A similar
integration is aimed at for the semantics of both fields. It s important for the
user of the hybrid theory that a classical syntactical statement has the same
meaning in the hybrid semantics as it did in the classical semantics (after the
necessary translations of course). In more technical terms, the figure must be
commuting.

In this report, we concentrate on the semantical part of the theory. A good se-
mantics helps in finding a good syntax and makes the formalisation of mtuitions
possible. In sections 3 and 4, wo take a better look at classical semantics. What
moclels are used and what notions are of interest on those models? After that
we study possible combinations of models in three different hybrid semantics in
section 5. Two of those semantics are taken from literature, one is newly infro-
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Figure 2: Developing Hybrid Theory

duced. We compare the three different hybrid models and discuss our reasons
10 choose hyhrid transition systems. The fact that we do not plan to consider
a particular hybrid synfax vet. causes the problem that we cannot close the
commuting diagram complefely. Nevertheless, if we can show that models in
the classical semantics can he expressed in terms of the new hybrid semantics
without loss of erucial mmformation, we know that the new semantics is at least
strong enough 0 contain the classical formalisms. In section 6, wo provide the
necessary proofs to show that the chosen semantics is indeed expressive enough
for our needs. Finally, we spend three sections, 7. 8 and 9, on an overview of
freguently used notions from clagsical theory in terms of hybrid transition sys-
tems. Furthermore, we give an assessment of the specific hybrid problems that
arise when defining those notions.

3 A General Model of Systems

In this seetion, we introduce a general form for defining semantical models
for systems. Furthermore, we study the semantical formalisms of the classical
theories, system theory and process theory, in this form. In later sections,



the general form makes it easy to combine the classical semantical models into
hyhrid semantical models.

The semantics of classical theories all give their view of the world through the
definition of a certain kind of system. Transition systems are a semantical
formalism that has been adopted by most computer scientists {amongst many
others see: [GROL, BW90. Fok98, BK02]). Behavioural systems [PWO8] and
Songag machines [Son98, Phi0l] are two semantical formalisms in wse in control
seience. Behavioural system semantics is focussed on giving definitions without
referring to input/output considerations as much as possible, while Sontag ma-
chines fake a more operational view in modeling systems, that is close to the
transition system formalism. We have agtempted $0 give a unified view on sys-
tems that is more or less in Hne with the literature available on all the different
classical semantics we study in this report.

A gystem 18 a phenomenon of memory, interaction and time,

This leads to the following partial definition, in which only the concept of math-
ematical structure is still open. Specific instantiations of this mathematical
structure are be used fo complete the definition for the different semantical
models introduced lateron.

Definition 1 (System) A system is a tuple { X, T.T. &), tn which X denotes
the state or memory’ of the system, T denotes the interaction space {also called
signal spuce, control space, or aphabet), and T denotes the time avis. The type
af the system is determined by the structure ¢, o mathematical structure on the
state and interaction spaces and the time azis of the system.

The above definition states that a system consists of the spaces X.Z and T, and
a structure ¢ on those spaces. As we mentioned hofore, the types of systoms
that are most important for our goal can be found in the litorature on classical
theories, although in many books on control science in particular, the semantical
formalism is not formally defined. We heliove the following systems form good
representatives of the semantics used throughout literature.

For all systems, we assume there is a total ordering on the time axis T, One of
the reasons for this is the common use of intervals on 7', which are only defined if
T is totally ordered (see appendix A). Another, more important reason, is that
a total ordering supports notions like “past” and “future” of a system evolution.
This is discussed further on in this section.

s Timed Labeled Transition Systems, mwhich ¢ C (X v Ty x Z » (X = T)
is a relation that models how a state 2 € X at sime ¢ € T can evolve into

The words “state” and “memory” are more or less synonymous, and used as such through-
out this report.



another state o' € X at time ' € T due to an interaction o € . Usually,
(x.t, 0.2, t'") € ¢ is denoted {x.t) = {a'.#'). Timed labeled transition
systems, in this particular or a similar form, are a common way of modeling
systems in computer science [BMO2, BM01, ADM, GP95, BK02]. An

impression of a timed labeled fransition system s given in figure 3.

Figure 3: Example of a Timed Labelled Transition System, a fransition rela-
tion hetween states x1.20, 2. 24,25 € X, af times 1,2,3,4 € T, labelled with
mieractions @, b€ 5

s Bchavioural Systems, in which ¢ €T - (X % I) s a set of functions mod-
eling the possible evolutions of state and interaction of a system through
time, Behavioural systems form a particulazly intuitive semantics to spec-
ify the solutions of, for example. differential cquations, and are used in
control science mainly by those who seek for a meta-theoretic approach
to control [PWO8, Weidl]. Although the structure allows for arbitrary
partial fanctions p € ¢, usually the domain of p is assumed to be an
mterval. Usually, the (mathematically dubious) notation {x.o) is used
instead of p, in which 2 € T+ X and ¢ € T = ¥ denote functions
representing the state and signal trajectories, such that for all ¢ € Dom(p)
we have p() = (x(f). ¢(8)) and Dom(a) = Domi{s) = Dom{p). A drawn
impression of a behavioural system is given in figure 4.

Figure 4: Example of a Behavioural Syvstem, a system consisting of a set of
funetions from fime to interactions and states



s Sontag Machines, in which ¢ € (X » (T v )} v+ X is a ditferent kind of
{fumctional) transition relation with a labeling consisting of partial fune-
tions of time to interaction. The relation reflects in an operational way
how certain partial signal trajectories let the system evolve from one state
to another. A drawback of Sontag machines is that they do not support
non-determinism. The transition relation is functional, and hence every
pair of state & € X and interaction function 0 € T + T evolves into at
most one subsequent state &' = @(x. ¢ ). Due to this, Sontag machines can
only he used as solutions of differential equations with wnigue solutions
for a given mferaction signal and inisial state [Son98]. The labels of the
transitions in Sontag machines are partial functions that have an ngterval
domain, More specifically, in Sontag machines we have for all interaction
functions ¢ that Dom{s) = [t..t") for some £.#' € T. The domains are
so called left-closed right-open dnfervals. This is done to make sure thag
subsequoent transitions do not overlap each other. Hence. the total signal
trajectory as used in the behavicural context can be recovered from con-
catenation of the transitions. There are some more constraings on Sontag
machines that, for example, guarantee that also the state trajectory ean
be recovered. One of them 1s that from each state o there is at least one
outgoing transition; i.e. there exists a ¢ and 2’ such that 2’ = ¢{a. 7).
In computerscience terms this is called absence of deadlock. Because the
other constraints are not important for the definitions in this report, we
d not go into detail about them here. A drawn impression of a Sontag
magchine is given in figure 5.

=\ ,\I'\,
P ()
&

Figure 5: Example of a Sontag Machine, o functional transition relation on states
&, @y, 1y, 24 € X, labelled with partial functions from time to interactions space

S0 far, we only addressed the semantics of classical theories, and also in the
remainder of this report we rostrict cursclves 1o semantical issues. However, in
order to fill in figure 1 for the classical theories, we have to at least mention
an example of syntax here. For computer sclence, we use as an example the
process algebraic description method, while control science is assoeiated with
descriptions using differential equations. Furthermore, as an example of calew-
lation rules, consider the process algebra axioms with respect to bisimulation



equivalence [GRO1, Fok98, BW90], and realise that Lyapunov developed useful
calculation rules to establish the stability of systems {see for example [TSHO1]).
Inn figure 6, we have depicted these examples once more. Note that we only
depicted the behavicural systems case of conirol science. The case for Sontag
machines is, except of course for the semantics, exacily the same.

Differential Lyapunov Process Axioms on
Equations Theorems Terms Bisimulation

Transition Bisimuiation
Systems Equivalence

Behavicural
Systems

Figure 6: Examples in the Mathematical Modelling Scheme of Classical Thoeories
g i g

In the previous seetion, we mentioned that the commuting figure 2, cannot be
closed completely hecause we do not have a hybrid syntax yet. Furtheron, we
make some assumptions on the kind of syntax that is invelved when we show
that hyhrid transition systems are expressive enough for our needs. Before we
gof into this, let us concentrate on the theoretical notions that play a role in
classical theory.

4 Theoretical Notions on Systems

From the description of the different systems in the previous section, one may
already have guessed that an ever important notion on systems is that of evo-
Iution. Transition systems and Sontag machines describe the evolution of one
state of the system into another, while behavioural systems describe the com-
plete evolstion of a system over time. We do not attompt here to give a gonoral
formalisation of evolution, because this would lead us away too much from our
main goal: a formalism for hybrid systems. The notion of evolution, however, s
important because it allows us to specify certain intuitions we have about time
and state,

s Given the state of a system at a certain fime, the future evolution of a
system is independent of the past.

s During an evolution time may not run backwards.



I this section, we investigate the intuition behind the notion of evolution and
other notions that are important in general for the theory of any kind of system.

The intuition that evolutions of a system are independent of the past, given a
cortain state and time, can be easily illustrated using behavioural systems. In
behavioural systems, the evolutions aze simply the elements of ¢. To support
the intuition, behavioural systems are required £0 have the property of state.
This property was mtroduced in [PW98], and deseribes how the concatenation
of evolutions, at a certain state and time, forms new evolutions.

Definition 2 (Property of State) A4 bchavioural system { X.5.7.¢} has the
property of state if for all evolutions (. 0). (2. 0') € ¢ and times t € T we find

a(ty=2'(8) = (aoia.00:0) €0,
in which

) 7<t

(foeg)r) = g(ry T>t

In [PWOR], i is shown that the behavioural systems that arise as solations of
differential eqguations and other system theoretic descriptions indeed have the
property of state.

The other intuition we have on evolutions, namely that time does not zun back-
warels, 18 hest illustrated using the evolutions from computer science, called
ns,

Definition 3 (Run) A run of ¢ #imed lebeled transition system (X . 2. T. ¢},
s a pair (x,7.0) of a state trajectory x € Ny X, @ time trajectory 7 € Ny T,
and an interaction trajectory o € N e X such that

Dom{x), Domi{r), und Dom(c) are intervals in IN;

Dom(r) = Domix), and 0 € Dom{a);

Dom(e) € Dom(z) A Yaepome) n € Domic) = n+1€ Dom(x);

Vr@ﬁ]}{)?!i(d} ("I‘.(”)?T{HJ ) GH; {g‘.{” = 1)* T(” e E) ),"

We define the length of @ run to be the cardinality of Dom{a).

The intuition that time does not run backwards is modeled by an extra con-
straint: ¥,e pomgs) 7(0) < 7(n+ 1) (note that multiple actions may take place
after each other at the same time). From now on, we only consider the class of

10



timed fransition systems that satisfy this constraini, 1.e. those timed transition
systems such that {z,¢) = (2. #) (withz,2' € X, a € T and ¢, € T) implies
# < #. For runs, the first intuition that future evolutions are independent of the
past, given a state and a time, is automatic.

Other properties that are based on the evolution of systems are notions from
control science like
s observability: one can know the state of the system by only observing the
evolution of the inferaction walues;

s controllability: one can steer the evolution of a system by foreing certain
interaction values;

s stability: the evolutions of a system are all bounded;
and notions from computer science like

s deadlock: the system can evolve info a state from which there are no
future evolutions;

s bisimulation equivalence: two systems cannot be distinguished from ob-
serving and manipulating the evolution of inferaction values only,

Usually, part of the analysis of systems is focussed on assessing whether these
properties hold or not. In section 9, we argue that these notions automaticaliy
obtain meaning in the hybrid somantics as soon as we have a proper notion
of evolution for that somantics. In the next section, we combine the classical
semantics we studied so far, into several examples of hybrid semantics,

5 Hybrid Systems

Recall that we have three clagsical semantical formalisms that we would like to
incorporate into one hybrid formalism in such a way that at least the syntactical
formalisms associated with them are supported. In the case of computer science
we would like to support a process algebra kind of syntax, in the case of control
science we would like to support differential cquations. Loosely speaking, the
three semantical formalisms are the following:

s Timed Laheled Transition Systems: ¢ C(X x Ty = U x (X = T
¢ Behavioural Systems: ¢ €7 =+ (X = I);

s Sontag Machines: ¢ € (X = (T = X)) X.

11



Actually, Sontag machines are in itself not even suflicient to support differential
equations, because differential equations with multiple solutions for the same
initial condition cannot be modeled. Nevertheless, enhancing these machines
slightly to incorporate non-determinism might solve this problem. By mixing the
definition of (non-deterministic) Sontag machines with timed fransition systems
we obtain the following definition. Note, that we divide the signal space into a
continuous and discrete part for clarity of the definition only. It has no formal
consequences since the two parts need not be disjunct, but it clearly shows
which part of the definition originates from computer science, and which part
originates from system theory. Furthermore, we use closed intevals for labelling
mstead of left-closed right-open intervals as was the case with Sontag machines.
This proves usefull lateron, in the proofs of expressivity of hybrid transition
systems. Although we suspect that these proofs can still be given when lefi-
closed right-open intervals are used, it would unnecessarily complicate them.

Definition 4 (Hybrid Transition System)} A hybrid transition system is @
tuple { X, 5, T, ¢} with T totally ordered by < and o signal spuee L = o UZp
divided in a comtinuous and discrete port. Furthermore, it has ¢ hybrid tronsition
relation

GEX =Ty (T Te)UuZp) = {X =T).

We use (@, 1) 2 {z',t') to denote (z.t.0.2". 1) € &, and we demand that the
labels only carry information ebout the duration of o transition, not about the
precise timing. This means we restrict ourselves to partiel functions 0 € T+
T that have a closed interval domain of the form Dom{s) = 0.4 ~ ).

Note that it 13 possible o write down this definition a little more concise, since
the signals from Ty can also be regarded as continuous signals on a one element
domain, the interval [0..0]. As with timed transition systems, we usually assume
that every transition (2,4} 5 {2',#') is time increasing such that ¢+ < #. A
graphical impression of a hybrid transition system is depicted in figure 7.

Figure 7: Example of a Hybrid Transition System

12



From literature, we have two other possible semantics for hybrid systems that
merge labeled transition systoms with behavioural systems. The fivst one, hy-
hrid automata {as defined in [LSV99, LSVO1]), takes the wmion of the complete
structures. Usually there are a few constraints (like the property of state) on
the behavicural part of &, but we do not elaborate on those technicalities here.

Definition 5 (Hybrid Automaton) A hyhrid automaton consists of a fuple
(X, 2. 7,¢) with T totally ordered by <, a signal space T = T U D p divided
in @ continuous and discrete part, and o structure

$C (X %xT)xSpx (X x THU(T = (X % B¢))

in which the particl functions (2. 7) € ¢ are again assumed to have an {arbitrory)
interval domain,

A graphical impression of this is difficult because two different mathematical
structures are used in ¢.

The second alternative for hybrid transition systems is hybrid behaviours. They
are behavioural systems that extend the time axis to be able to support multiple
fransitions at a single fime instance, as is the case with the runs defined in
section 3. In [vdSS00h, vdSS00a], the notion of time enrichment was introduced
to this extend. Here we use a slightly different definition that has the same
power as the time enrichment, hased on a Cartesian producst of $ime and ordinal
mumbers (see for example [Kun88]). We denote the collection of ordinal numbers
as Q.

Definition 6 (Hybrid Behavioural System) A4 hybrid behavioural system
consists of a tuple { X, 5. T, &% with T totally ordered® by <, the signal space
Y o= Yo U Xp divided into a continuous and o discrete part, end having the
extended behoviowral structure

GT(T =y (X % (B UZp)) .
The set (T % Q) is totally ordered by the relation < such that
{ty=2({tn) & <ty v =t Ansn)
As before, the behaviowral structure s assumed to have the property of state.
According to JodSSO0B], the domain of (x.0) € ¢ is speciel. I is an intervel

with respect to T, and locally with respect to Q, but it is not an interval with
respect o .

ZThe natural ordering on the ordinal numbers 2 s also dencted by <, bul since the 1ype
will alwayvs be clear from the context, no confusion should arige.



s abstract interval:
YeupeeTnprga t <8 <A (Gn), (", 0'") € Dom(x) = Fpea (t'.n) €
Dom{xy;

s [ocal closed interval:
Von nrcoVer n < n' < na" A (n) {&.n") € Dom(z) = (Ln') €
Dom{x).

The most important difference between this definition and the definition of
{normal} hehavioural systems is that the time-elements have a sucecessor. The
successor of (f.n) simply i {t.n + 1). This means that one can speak of a
sequence of multiple actions that oceur at the same time £ € T. The special
domain restrictions then indicate that the domain of the evolutions is an interval
with respect o T, but that those sequences of actions do not have o be of
length Q. A graphical representation of a hybrid behavioural system is depicted
in figure 8. In this picture, the arrows depict discrete signals, while the ares
depict continuous signal evolutions.

Figure 8 Example of a Hybrid Behavioural System

Note that actions in this model are all instantaneous. The actions {z,£) 5
{a'.t') from a timed transition system in which £ # ' are interpreted as an
nstantaneous action at time ¢ followed by a delay until time #. This is a
common viewpoint in hyhrid systems theory.

Since these three definitions of different hybrid semantical models are all ox-
prossive enough for our needs (which we establish formally in the next section
for the one we choose), choosing one cannot be done on the basis of technical
mathematical arguments. It merely becomes a master of taste. To our feeling,
in hybrid automata the different classical theories are still too much sepazated.
We feel that the union of two rather different structures gives a new structure
that iz not only slightly counterintuitive, but also mathematically awkward. As
we mentioned in section 2, a semantical formalism should have o simple math-
ematical structure. To a certain extend, hybrid fransition systems possess this
same awkward union in the labeling of transitions. However, the model seems
1o evolve naturally from both the timed transition system point of view and the

14



Sontag machine point of view. The operational view supported by hybrid fran-
sition systoms provides us with a strong intaition about the model that complies
with the infuitions on both classical theories. Furthermore, in computer science
there is already some experience with transition systems with two types of la-
hels in the context of timing {for example [BMO2, BB91, Hen%6, BK02, BMOL]).
The third model, hybrid behavioural systems, is oriented on the complete evo-
lutions of a system. This view leads 1o a focus on trace equivalence, rather than
on hisimulation equivalence®. Since our focus is on the latter, stronger notion,
we decided that the hybrid transition system model forms the most suitable
semantics for the development of a hybrid syntactical algebraic framework. I
has a clear oporational and stato-oriented view, and in our opinion is a moroe
elegant structure than hybrid automata. Computer science notions like bisimu-
fation equivalence on states can be defined in a natural way and will help us to
abstract away from the procise contents of the states. The topological influence
from control science will provide us with a notion of continuity and aid us to
some extend in handiing the deviations in the precise value of the state that
oceur in physical systoms. However, we realise that also the view on complete
evolutions is valuable, especially when considering for example notions like sta-
bility, where the boundedness of the evolution cannot be simply reduced to the
houndedness of single transitions. It will always be possible, of course, to define
such a notion of evolution on hybrid transition systems.

6 Translations

From section 2, we know that, in order fo be sure that a proposed hybrid
semartics is indeed a suitable semantics for describing hybrid systems, we have
to transiate the elassical semantics into the hybrid one. In this section, we do
that for the chosen semantics of hybrid transition systems.

The case of timed labeled transition systems is frivial. A timed labeled fransi-
tion system s a hybrid transition system.

In the case of Sontag machines the translation is a little more difficult due o
differences in the handeling of the domain of the signals 0. The first difference
is, that Sontag machines are labelled with functions on a lefi-closed right-open
domain, while hybrid transition systems have labels with completely closed in-
tervals as domain. The transiation from Sontag machines to hybrid transition
systems is possible if we can find a “last point™ to ¢elose the domain of the Son-
tag transition. Suppose we have a transition from (. ¢} into (z', ') using some
label o defined on a domain [¢..#"). The property of Sontag machines that there
is absence of deadlock {(see also [Son98] and varicus lemmas on the exastence of

“Note that the evpressivity argument hroplies that defining bisinmulation on behavieural
gystems must be possible. However, these definitions become cumbersome due to the evelution
ariented structure,



solutions of differential and other behavicural equations), gives us the opportu-
nity to create a non-empty set of “first points® of transitions starting in (2, #).
Any of those points will do to define a(¢).

The second difference between Sontag machines and hybrid fransition systems
is, that there is information on the fiming in the labelling of Sontag machines,
In our opinion, this is not a good choice because, as we see furtheron, the
fabeling information shows what s visible to an external ohserver. Our intuition
{which is perhaps a little philosophical in nature) is that duration is visible to
an ohserver, but the exact time of a system is not. Duration is the only quantity
regarding time that can actually be measured. Therefore, every o label on a
domain [f..#') is translated into a label on the domain [0, —t]. Apart from this
differenice, every Sontag machine s a hybrid transition system.

The ease of hehavioural systems deserves more agtention. because without fur-
ther restriction, behavioural systems cannot be translated into hybrid transition
systems without loss of information! Nevertheless, we are able to give necessary
and sufficient conditions for the translatability, from which it becomes more
clear which information exactly is lost. Furthermore, we argue that this in-
formation is not considered to be of importance thus far in system theory or
computer seience, nor in the field of hybrid systems research. Therefore, ag
least for the time being, hybrid transition systoms are exprossive enough for our
needs.

The franslation we use to turn a behaviour into a hybrid transition system is
the following:

if{z.o) € ¢and £, ' € Dom{x) and t <t/

then {z{t). 1} {Ggﬁlf;ﬁi {z(t).t ).

In which we use 7] p to denote the restriction of the function ¢ to the subdomain
D C Dom{e} and o' to denote the shifted function ¢ such that o' (' +¢) = o(t')
for all t' € Dom{r) and undefined elsewhere.

I order to prove that no information is lost, we use the translation back that
states:

if 2 continuous, and for all t.t' € Dom(a) such that t < ¢

{Oi[i..i!'g)_i

we find{x(t}, ) B {@{t'), t' ), then (x,0) € ¢

In the remainder of this section, we focus on proving that ¢ = ¢ for a certain
class of behaviours ¢, meaning that behavioural systems that fit in this class
cant be successfully franslated. However, let uws first look af an example of a
behaviour that cannot be translated in this way.
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Figure 9: Example of a behavicural system that cannot be translated

Consider the behaviour depicted in figure 9. The only relovant behaviour of
this system is the state hehaviour, which consists of many “instable” evolutions,
that “start” in minus infinity and “end” in plus infinity. Stated this way, the
O-funetion is clearly not part of this behaviour.

Now, if we translate this bhehaviour into a hybrid transition system, by con-
structing fransitions between two states-time pairs i they are connected by a
partial evolution, this information about the O-funetion is lost. Obviously, the
states (0.4) and {0.1') are connected by some evolution for all £ < ¢/, Therefore,
there s no way to decide from the fransitions only, that the O-function s not in
the behaviour of the system.

Next, we show that if the hehaviour has the property that it is fwo-point refutable
in its evolutions, meaning that every function that is not an evolution of the
system, can be recognized on the basis of two points in time, then it can he
translated without loss of information.

Definition 7 (Two-point refutability) A behavioural system (X, 2. T. ¢} is
two-point refutable, #f for any {(x,0) € T v (X % I) such that (x.0) & ¢ there
exist two points t.¥ € Dom{a) with t <t such that for every (2'.0') € ¢ either
a(t) # &'(8), x(t') # 2'(t) or ol # i)

Theorem 1 A behavioural systemn { X2, T. ¢} can be translated into o hybrid
transition system without loss of iformation, if it ts two-point refutable i the
stute evolutions.

Proof Using the translation and roverse translation above, it is trivial to
see that ¢ € ¢', therefore we focus on the other case, to prove that ¢' € ¢ and
assume: {1.0) € ¢'.

Using the fact that there is only one rule in the reverse translation, we conclude:

P tolan) ™! i
V{,-{:’ED{)M(;{) (J(t)t> =3 {J{t 3t ) :
arl using the translation from behaviours to hybrid transition systems wo got:
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wll) =a' () A
v{,f’é{l)am{x)a{x-’,a’}EE(;B ;{:{t!} = J:!(t!} A
Uf[z:v.z’j = U;E['fz..i:’j
Using DeMorgan, we obtain:
z{t) # 2'(H) v
“3!,{:’6])g-)'m(x’)v{w’,a’)ﬁgo 3:(t;) i a'(t v
UE[(..(’} # U’[[z..z’j
And using modus tollens on the property of two point refutability we find:
(z.0) € ¢,
which concludes the proof. =

[

Morcover, for the translations given above, two-point refutability of the state is
even a necessary condition to avoid informagion loss.

Thearem 2 A behaviowral system (X, Z,T,¢} can only be translated into o
hybrid transition system without loss of information wsing the translations above,
of it 45 two-powmnt refutable in the state coolutions.

Praof We proof this fact, hy observing that the set ¢ has the properiy of
two-point refutability of the state evolutions. This follows immediately out of
its construction from an arbitrary hybrid transition system. If a certain funciion
{z.o) is not in &', then there are ot least two points .t € Dom{x) such thas

— @l an { % e . ’ —
the transition {x(t) ="' {x(t')} is not in the hybrid transition system. The

ahsence of that transition implies that none of the functions in &' are equal o
the one under study at these two points. Therefore ¢ is two-point refitable. In
conleusion, since the result of the reverse translation is a two-point refusable sys-
temn, the original system must have this property too in order to obtain ¢ = ¢,

7

Now, given the property of state on a behavicur, we can loosen the consiraint
of two-point refutability a bit. We can show that finite sef refutability then is
sufficient {and hy definition necessary) to imply two-point refutability.

Definition 8 (Finite set refutability) 4 behavioural system {X.Z.T. ¢} is
two-point refutable, #f for any {(x.0) € T v (X % I) such that (x.0) & & there
extsts a finite set D C [t.4'] € Domiz) such that for ceery (a'.¢') € ¢ either
z|p #£a'lp or UE[M’] # Ui[[z‘.f’j-

Note that, as was the case with two-point refutability, the signals ¢ and ¢’ in the
definition are still compared over the whole interval because they are completely
visible on the fransitions. Hence it s not necessary 1o restrict the comparison
10 o finite set of points.
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Thearem 3 A behavioural system { X, Z,T, ¢} that has property of state and
is findte set refutable, is also two-point refutable in its state evolutions.

Proof The proof of this is by induction on the size of D, We derive a
contradiction out of the statement that I with |D| > 2 has no strict subset on
the basis of which it is still refutable.

Suppose, for some (z,0) ¢ ¢ that
.’I.'[;) ok :{:’E;) v

DE LI Do) |PI=NT (2 0y €0 { Tle.a] # O 2]

and furthermore

zlp =a'|p A

Fle-4t = O"Jf[z"z’j

with |D| > 2. From this last assumption we conclude that for every two points
a. b € [, forming a strict subset of 12, there is a trajectory that connects the
two.

\Vej)!(:{');é(x.ﬂ,a:}g@

z{a) = z'(a) A
Yo beD3er o) c0 alb) = 'l A

Tle.] = U’[[z..zf}
We order the clements in 2 using an order preserving map 7 € N — [ and
conclude . N

alrin)) = o' {rin)) A
Vn<s\’3(r’,a’)8$ a(rn+ D} =z(rn+ 1)) A

Fle] = U;E[-f:v.zfj ;
By applving this twice, we get

x(rin)) = a'{r(n}) A
Vo 3 {rin 4+ 1=z (rln+ 1)) =2 (rin+23) A
RN =12l o) (e o Vg F(rln+2)) = 2" (r(n +2)) A

e 7
Gle ] =0 E[f..!’] -
And then, by property of stafe, we may concatenate {x',0') and (2", 0") 10
conchide

x(rin}) = a'(r(n)) A
Vo o3 z{irin+ 1)) =a'(rin+ 1) =2"(r(n+2)) A
AN -1 o' e .’L‘J(T{’!l +2)) e ;I:“{’;’"{?l + 2)) #

Tl = UIE[{..#]
With induction we then may conclude
x{rin)) = a'{(rln)) A

3 el gt \?‘ < AN {

{rfeiEa¥n (T[("‘H] - U;E[f..(’]
From which we derive
z(d) = x'(d) A
{T[.{:"!!j o (T;E[.{:".{:!E
And using different notation
= T { o ='lp A

[l k] Oleg] = U!E[f..!’j .
Which is in contradiction with the fact that (x, 0) s refutable on the basis of
D. Hence, if a behavioural system is finite set refutable and has property of
state, then it is two-point refutable, which coneludes the proof. &

FeroticoTdeD
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Intuitively, finite set refutability means that if a certain function can be in-
tersected arbitrarily offen by plecewise concatenations of evolutions, then this
funetion is an evolution in itself. Note that this does not necessarily mean that
the Bmetion can be approximated by concatenation of evolutions. Since there s
no notion of measure defined on evolutions here, approximation is not an issue.
An example of a behaviour that is not finite set zefutable, is the one depicted in
figure 10. The set of all possible sine waves, when closed under propoerty of state,
still does not contain the O-function, although it can he intersected arbitrarily
often, by concatenation of sine waves that cross the axis.

Figure 10: Impression of a non finite-set refutable set of evolutions

Looking at it from a different perspective, we see that every crossing of evolu-
tions can be regarded as a hranching of the transition system. This means that
if we translate a behavioural svstem withous finite ses refutability into a hybrid
fransition system, then we loose information about the continuous branching
options of that system. We cannot conclude the difference between a system
that has a certain branching at arbitrarily small finite times apart, and a system
that branches continuously.

This all, makes clear that hybrid transition systoms are in a sonse loss expressive
than behaviouzal systems, Whether this loss in expressivity leads to problems
is an ontirely difforent matter. There are two reasons for assuming that it does
not.

The first reason, is that the hybrid transition systems are infended as an undez-
lying model for a syntactical formalism, and the systems that are described
currently in the separate worlds of computer science and system theory do
not consider continmous branching. More importantly, the topic of continu-
ous branching has not (as far as we are aware) played a role in hybrid systems
research vet. Therefore, we expect that the different system compositions that
we are going to study in our model for hybrid systems, do not make use of
the difference botween contingous branching and arbitrarily short finite-time
branching. Thus, the difference hetween finite set refutable hehaviours and he-
haviours that do not have this property will not be visible through any of those
COTPOSIEIOnNS.

The second reason, is that the theory will usnally define behaviours through
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the use of algebraic differential equations, and we conjecture that the sets of
evolutions that can be construeted in this way are all finite sef refutable. For
algebraic equations, and for differential equations with unigue solutions (Lips-
chitz equations, [HS74]), this is trivial. For differential equations in general, we
only conjecture that finite set refutability holds on the basis of some topological
closure and compactness properties that the solution sets of those cquations
have [Fil88],

However, we must be carefull in accepting these arguments, since they hoth
make assumptions on the syntax. They might not hold anymore, if certain
extensions of the syntax are introduced. Tor the moment, however, hybrid
fransition systems seem expressive enough for our needs, and seem to be the
most suitable model from other poings of view that were already mentioned. We
expect that it will be possible, should the need 0 change semantics cver arise,
to change the semantical model of a theory without disturbing the axioms and
calculation rules on the synfax. Therefore, hybrid transition systems are the
best model for the time being.

7 Hybrid Evolutions

Recall from section 3, that the notion of evolution is basic to theory on systems in
general and in particular to both control and computer science. In that section,
we have scon two ways in which cvolutions are defined. Runs for transition
systerns, and functions of time for behaviouzal systems. Since a hybrid transition
system is a fransition system, the notion of run is most natural.

Definition 9 (Hybrid Run) Given a hybrid transition system (X, 5. T.¢),
a hybrid run of this system ds « triple {a.7.0) of sequences 2 € N = X,
TeENm T, and o € Ny (T + T ) UEp) such that

Dom{x), Domi{r), und Dom(c) are intervals in IN;

Dom(r) = Dom{x) and 0 € Dom{z);

Dom(e) € Dom(z) A Yoepome) ® € Dom{c) = n+1¢€ Dom(x);

Vreé{l)om{a} (;L'(u)__' T{"!’é) } 0"(\3} {@(n + B, T{n + 1) 3

Notice that this definition hus not fundementolly changed from the normal def-
inttion of run.

The notion of run as evolution of a system has one important drawback that
manifests itself when runs become infinite in length. If there is a notion of
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topology on the time axis and the state space of a system {think of T as R
and of X as an arbitrary vector space), the intuition on what evolutions of
the system are may change. In such a setting, there can exist runs for which
the time-series does not pass a certain point £ € 7. In such a case. wsing the
definitions we have so laz, the evolution of the system simply stops at, or before,
that time. This is rather strange, since it will never happen in a physical system
that time simply stops.

Usually, this phenomenon is cansed by some abstraction macde by the modeler.
This doos not mean that the model is wrong, or that the modoler has made a
mistake! Abstraction i3 a tool that is crucial to the understanding of systems.
In this particular case one may argue whether or not the modeler should be
forced to avoid this kind of unwanted hehaviour by specifying models that do
not display the phenomenon, or one may decide that the modeling formalism
should take care of i, We choose the latter because we are convineced that for
example the assumption that cortain actions do not take any time to exccute is
a natural abstraction. This assumption leads to the deseribed phenomenon and
therefore we should support this phenomenon in our modeling formalism.

A typical occurrence of the accumulation of a time-series is usually referred to as
Zeno-hehaviour after the Eleatic philosopher (488 BC) who first described such
phenomena in his famous example of Achilles and the Tartle®. In philosophy the
accumulation of events in general is also referred to as supertask [Zal01, Nor99,
Sal70]. The state trajectory in such a case i crucial to the mterpretation of
the evolution of our system. Several attempts to deal with Zeno-behaviour
m a hybrid systems context can be found m [JELS99, BP0O. CREOL, CRO2].
Usually it 15 assumed that the evolution of the system can continue from the
accumulation point of states onward, forcing time to continme. This gives vise
1o transfinite sequences of states and o the notion of transfinite run.

A transfinite run is a run over ordinal numbers [Dug6b, Eis74, Kun88] rather
than natural numbers. The idea is that for limit ordinals the state-value of
the run is one of the accumulation points of the preceding part of the rin (i
a sequonce ¢ € Q — X acoumulates in y € X we denote this by 22 —o 3,
see Definition 20 in appendix A). Alsc the timing should continue from the
accumulation point of the previous timings.

Definition 10 (Transfinite Hybrid Run) Let Q denote the ordina numbers
and let { X, 5,7, ¢} be a hybrid transttion system with topologics on X and T,
then o puir {a.7.0) of transfinite sequences 2 € Q - X, 7 € Q@ = T and
a7 € Qe (TU(T + B)) is a transfinite hybrid run if

4lr 4 running contest between Achilles the halt-god and a turtle, the turtle gets a little
head start. Zeno reasoned that every time Achilles comes at a point where the turtle wag, the
turtie has walked just a little further. Hence, Achilles cannot take over, and the turtle wins
the race.
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Dom(x), Domir), and Dom(e) are intervals in §2;

Dom{r) = Dom{x) and 0 € Dom{z);

Dom(c) € Dom(z} A Yuepomen n € Dom{c} = n+ 1€ Dom(x);

« ¢ 3 i ¢
Yncomie) (200, 7)) "5 (o + D +1));

» Vraé{l)om{x),n Lnnit ovdinal J"[[G.Vﬂ) —o m(n) A T[[G..?’L) —o 7(n).

Again, the length of @ run is the cardinality of Dom{a).

Most results that have been obtained for hybrid systems in Hterature assume
non-Zeno evolutions. This means that only normal runs are considered in the
proofs. The problem of supertasks s considered a modeling mistake and hence
left for the modeler to solve. In the remainder of this renort, we explicitly make
a distinetion between results for normal hybrid runs and transfinite hybrid runs
for this reason.

8 Equivalence

In sections 2 and § already the notion of equivalence was mentioned. Although
not formally defined, the notion of hisimulation equivalence was given as an
example.

Figure 11: Trace Equivalent but not Bisimilar States

On a semantical level, the notion of equivalence on a system reflects which things
an external observer can sece during the evolution of a system. The fivst intuition
we have about this equivalence, for systoms in generad, is that only thoe intorac-
tion space is observable. This intuition is firm, and all notions of equivalonce
from literature agree on it. The second intuition is motivated by the nfrodue-
tion of non-determinism in a system. If a systom displays non-determinism, then
sometimes a choice between different evolutions is made without visible interac-
tion. See for example figure 11. There, the ohservor cannot conclude from the
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set of rums of the system that the two states marked & are different. Both sys-
tems contain the interaction runs a followed by & and o followed by ¢. However,
an observer can conclude difference from the fact that, after o has occurred,
in one system there is still a choice between & and ¢, while in the other sys-
tem this choice has vanished. This difference between observing complete runs
and observing choices as well is only of interest for non-deterministic systems
and therefore i is not surprising that the equivalence notions concerned with it
stem from computer science rathor than from control. If the ousside ohserver
canmot see which choices a system makes, we study so-called frace eguivelence
between systems. H the outside observer can observe the fact that a choice has
been made, we study bsimulation equivalence. Equivalence, furthermore, is a
notion on the states of systems and, in timed systems, this notion may be time
dependent. Therefore, the equivalence notions we handle here compare pairs of
state and time.

On a syntactical level, the chosen notion of equivalence influences greatly which
calculation rules can be applied. Some axioms hold for one notion of equiva-
lence, while they do not hold for a different notion. For example, with respect
0 trace equivalence we have that alternative composition (+) distributes over
sequential composition (), leading to the axiom a - b+ ¢} = {a-8) + {a - c),
for those who are familiar with the process algebraic syntax. This is not true
with respect 1o bisimulation equivalence! The choice of equivalence influences
the analytical power of the theory greatly, because a notion of equivalence like
bisimulation, that allows less axioms, has a greater distinetive power betwoeen
systems. Therefore, one can pose more fine-grained questions about systems in
the theory (for example about the choices that have been made). However, the
fact that there are less axioms also means that answering questions by means
of axiomatic reasoning becomes more difficait. So the questions that can be
easily posed and answered for a less fine-grained equivalence, may turn out o
he harder to answer for the fine-grained equivalence. This is why the choice of
a proper notion of equivalence is of importance o the analyst,

Definition 11 (Trace Equivalence) Given the hybrid fransition systems M
={X .5, T1,¢1 ) and N = {X,.,50,T5, ¢ ), ustng the same interaction space
3, = By, the state-time puirs {zo,te) € X1 211 and {4y, 39) € Xo % T are trace
equivalent denoted (2o, to) = (Yo, so), if for every hybrid run (2.t o) on M with
z(0) = xy and HO) = by, there exists a hybrid run (y.s.0) on N with y(0) = g
and s(0) = sy and wvice versa.

The notion of hisimulation equivalence does not compare complete runs, but
compares the states aftor every transition again in order to he able to dif-
ferentiate between the choices between fransitions. It relies on the notion of
bisimulation relation.
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Definition 12 (Bisimulation Equivalence) Given hybrid transition systems
M= {X;.51.T1.¢1) and N = (Xo, 5. 1o, ¢} with 5y = By, A relation
R C(X; xTy) % (Xy x T) 45 a bisimulation relation #ff

s for every transition {x.t) 5 (&' U') of M and every state y € Xy and
time s € Ty such that (z,4) R (u.5) there exists a transition {y,s) 5
{g'. ") of N such that (z'.£)V R {g'.5');

o and for cvery transition {1.3) = {y'.s') of N and every state 2 € X,
and timet € Ty such that {x.t) R (y. s) there ezists a transttion { 1,1} <
{a'.t'y of M such that (2'.t") R {y'. ).

Two state-time pairs (z.1) € Xy x Ty and (y. s) € Xy Ty are bistmzlar, denoted
(z.1) & (y, 5, iff there cuists a bisiraulation relation R such that (z.) R (y,5).
{Two systems are bisimilar if every state i one system has o bisimilar state in
the other system.)

It is a known result from computer science [BPS01] that bisimulation on states
is a stronger equivalence than trace equivalence on states.

Lemma 1 & C o,

Proof See e.g. [vGOL]. &

Clearly, with topologies on the state spaces, extending the notion of trace equiv-
alence is straightforward. Transfinite trace equivalence is concerned with trans-
fintte runs instead of normal runs. I is dencted by .. The bisimulation
case, however, is not that simple. The notion of hisimulation focusses on single
fransitions and is therefore not able to “see” beyond a countable number of tran-
sizions. In [CRO2Z], a notion of topological hisimulation was defined to include
the accumulation points of runs. The following definition is a reformulation of
this definition.

Definition 13 (Topological Bisimulation) Let M = {X;.%,.T7.¢1 ) and
N ={X0, 50,1y, ¢} be two hybrid transition systems sueh that Ty = Dy and
such that M and N have topologies on the state spaces X1 and Xy and on the
time aves Ty and Ty, the relation R C (X » T1) » (Xy » T} is a topological
hisimulation relation ¢f # & ¢ {normel) bisimulation relation thet dlso relutes
accurnulation potnts of transfinite hybrid runs, fe.:

L. for every transfinite hybrid run (0. 7. o) in M and state yo € X2 such that
(x(C), ()Y Riya. T(0)), there is a transfinite hybrid run (y. 7. 0) m N with
wo = g0} and (zin), T(n)YR{y,. 7(n)) for every n € Dom(z).



2. for cvery transfinite hybrid run (y.7.0) in N and state 2y € X such that
(o, TONR{p(0). 7(0)), there is a transfinite hybrid run (2.1, 0) in M with
o = a{0) and (x{n). r(n))R{ys. 7(n)) for every n € Dom(y).

A state-time puir (0. t) € Xy =Ty is topologically bisimilar to o state {y. s} € Xox
T, denoted (1. 1) B (. 5), if and ondy if there exists a topological bisimulation
relation R C(Xy % Ty) % (X2 x Ty} such that (z.t) R (g, s).

As with normal bisimudation and trace equivalence, topological bisimulation is
stronger than transfinite trace equivalence.

Lemma 2 & T~ .,

Proof The proof of this is trivial, since the cquivalence notion, for cvery
transtinite hybrid run in the one system, guarantees the existence of a similarly
labelled fransfinite hybrid un in the other. &

Now we have covered evolution and equality, the most important notions on
gystems from a semantical point of view. In the next section, we look af control
theory, and sketch the way in which standard control notions can be defined on
hybrid transition systems.

9 Control Notions

The notion of evolution is the most important notion in order to support a
general intuition on any fype of system. Equivalence notions are invaluable if we
want to consider hybrid transition systems as an algebraie structure. Howovor,
other notions are important from a practical point of view, In this section, we
sketch the definitions of a fow notions from control theory as an example of how
this theory can he incorporated into the hybrid structure. Tt is not our intention
vuf t0 prove properties about those notions. This is left as future research.

Most of the theoretical notions we are interested in depend in one way or another
on the notions of evolution and equivalence. For example. the notion of time-
invariance states thaf, given a certain notion of equivalence, the equivalence of
two states is independent of time. In the remainder of this report, we write = t0
denote an arbitrary notion of equivalence that has been chosen hy the modeler.
In place of = one may read any of the equivalences =, o2, oo, &, or 2, a8
desired,
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Definition 14 (=-Time-invariance) We define that a hybrid transition sys-
tem { X, X, T. ¢ ) 45 time-invariant with respect to o certain notion of equivalence

= Wi
YeexYeper{z.t) = (2.8).

Nuote that equivalence of states is here considered between the states of one single
system (M and N are the same). For z and y states from hybrid transition
systems M and N, we write & =y if (0.8} = (y. s} for all £ and 5.

The assumption of time-invariance usually makes modeling and analysis of sys-
toms easier. Also, many definitions from congrol theory assume a time-invariant
systermn. We therefore use this notion extensively in this section, In classical the-
ories, time-invariance is usually guaranteed if one only uses syntactical terms
that do not refer to time immediately. Of course, in future investigations, we
strive for a similar result for hybrid syntactical terms.

Arguably, two of the most important notions from control theory are observ-
ability and controllability of the state of a system. Ohservability roughly moeans
that one can know in which state the system s from observing the interactions
that have faken place. Controllability means that it is possible to steer the
system from any state into any other state, by applying the right interactions.

Definition 15 (=-Observability) Let {X,X,7. ¢} be a hybrid transition sys-
tem that is Hime-invariant with respect to equivelence =, then the state y € X s
observable from the interaction sequence 0 € ey ((T v Ted U D p) of length
n ¢f for every run (x,7.0) we find x(n) = g.

This definition simply says that if we observe that the interaction o has occurred
it is safe to conclude that the state after this observation is equivalent to y.
Please notice again that this notion depends on the chosen notion of equivalence.
It maybe so that with respect to a weaker notion of equivalence a system i
ohservable while it is not with respect 0 a stronger notion. This happoens
because the states that can be reached by the observed interaction are equal
with respect to the weaker notion while they were not equal with respect to the
stronger notion. In standard control theory this distinetion is not made because
tho detorminism assumed there makes that bisimulation and trace equivalonce
coincide, but from a computer science point of view, where non-determinism
does play a role, it is important. Also important, is the so called congruence
property of a notion with respect to a chosen equivalence. For example, suppose
we have two equivalent systems M = N, thon we expect if a certain state 2 s
observable from ¢ in M that there is an equivalent state y = z ohservable
from ¢ in N. It is a subject of future investigation whether ohservability is a
congruence for the notions of equivalence that have been given in the previous
sections.
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Conirollability is a notion that expresses i a system can be steered from one
state into another.

Definition 16 (=-Ceontrollability) Let { X, 5. T, ¢} be a hylrid transition
system that s time invariant with respect to =, then the state y € X can be
controlled into state y' € X by the interaction o € Q> (T Do) Udp) with
respect to the equivalence =, if there exists a (transfinite) hybrid run (x. 7. 0)
such that 2(0) =y and z(n) = ¢ for some n.

For control scientists who usually work with deterministic systems, this notion
works perfectly. When non-determinism comes into play, however, it may seem
rather naive. The fact that there is a run from g to ¢’ using a certain interaction
is no guarantee that this particular path of states is indeed chosen when the
particular inferaction is apphied. However, demanding a guarantee that afer
the inferaction we indeed end up in ¥ is similar to demanding a degree of
determinism. On the other hand, it may be reasonable £0 assume that after a
failed attempt the controller will be able to try again. The assumption that ¢/
is eventually reached if there is always a run leading to it, is called foirness in
computer science.

It is clear that this notion of controllability is suitable for control theory, but
does not cover the intuition anymore when applied $o hybrid systems. Future
research will have to come up with new definitions of controllability that fit the
non-deterministic framework.

Also for controllability, the aforementioned congruence property is important.
I particular, we do not have the desired congruence if we consider for example
the combination of fransfinite hybrid runs and normal hisimulation. Trivially,
the (normal bisimulation) equivalence of systems 3 and N does not guarantee
that if, for example, every state in M 1s (transfinitely) controliable into every
other, that also every state in NV is controllable into every othor.

The last control notion that we want to address here is called stability of a
system. Stahility is a notion concerned with the desire to guarantee that the
behaviour of a system remains within reasonable bounds. In literature, many
different notions of stability have been given. One example from this large pool
of possibilities is the notion of a bounded state evelution. A system is stable i
all the state evolutions stay within a certain bound. To be able to define this,
the topology on the state space and signal space is assumed to be induced by a
metric (see definition 21 in appendix A). In literature, many other notions of
stability have been given, most of them have the same topological nature.

Definition 17 (Stability) A hybrid transition system with a metric on the
state spuce X and signol space X is stable if for every run (z. 7, 0) in which o
s bounded, we find that z is bounded (see definition 22 in appendiz A).
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10 Concluding Remarks and Future Research

We have provided a semantics for studying hybrid systems by introducing the
modeling framework of hybrid transition systems as a mix of Sontag machines
and fimed labeled fransition systems. This framework was compared with the
original frameworks from control [Son98, PWO8, TSHOI] and computer science
[BMO1]. as well as with hybrid astomata [LSV99, LSVO1] and the notion of
rich time in a behavicural setting [vdSS00b]. We have shown how the notions
from computer science and control science can be mecorporated into the new
Framework by giving a few examples of definitions of such notions in terms of
hybrid transition systems. Furthermore, we discussed the influence of topology
on compater science notions and in particular the extension of classical notions
of equivalence to overcome Zeno-behaviour, a typical hybrid problem induced
by topology.

Our arguments for choosing hyhrid transition systems above hyhrid automata
or behavioural systems are based on our feeling that hybrid automata have
a mathematically awkward strueture while hybrid behavioural systems are to
much focussed on the complete evolutions of systems. We prefer an opera-
tional, state-based, view on systems because the possibility of non-determinism
{in particular in computer science models) urges us to look heyond the evolution
based language equivalence of systems. The fact has been recognized, that hy-
brid transition systems are not expressive encugh, compared with behavioural
systems, fo distinguish hetween continuous moments of choice and moments of
choice that are at arbitrarily small times apars. This lack in expressivity has
been rejected as a potential cause of trouble hecause the information that is lost,
is not used in any of the compositions that we have in mind on hybrid systems.
Furthermore, most behavioural systems that are currently of interest, for exam-
ple those defined by algebraic and differential equations, have the property of
finite set refutability, which ensures that there is no problem in the translation
1o hybrid transition systems,

Our hopes are that the proposed semanties will provide a sufficient basis for
the development of an algebra, suitable for the analysis of hybrid systems, with
respoct to the notions mentioned in this report. The challenge will be to find
axioms and theorems on the notions we know so well from ¢lassical theory,
in a hybrid context. The future development of theory should, apart from
syntax, include theorems about the control notions that were mentioned. In
particular, the congruence of those notions with respect to the different kinds of
equivalence is important. From a semantical viewpoint, it would be nice if those
control notions could be derived from the fransition systems itself, rather than
having definitions via the runs. This would add to the algebraic simplicity of
the notions, and, through that, probably also to stronger syntactical theorems.
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A Topological Notions and Notations

In this section we give a very brief explanagion of some of the topological notions
and notations used in this report. For a more thorough explanation we refer o

[Dugb6, EisT4].

We start out with the notion of total ordering, and the derived notion of interval,

which turn out

to be useful notions on the time axis T of a system.
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Definition 18 (Total ordering, Interval) Let T be ¢ set and <C T % T «
{(binary) velation on T. This relation is called o total ovdering, and T is called
totally ordered o we have for el a.be € T:

reflevivity: o < a;

s anfisymmetry: o < b A <o = a=1§

transitivity: o <& A B<e = o<

totality: o <b vV b< a;
A subset I CT of a totally ordered set is called an interval of for all 2.y, 2 € T
s jnterval: ,2€ 1 A s <y<z = g&l.

A different kind of structuring on sets is through a topology. Roughly, atopology
defines which points in a set are close to each other. A set equipped with a
topology is ealled a (topological} space.

Definition 19 (Topology) Let X be a set, then T € P{X) is a topology on
X if

sfdeT and X €T;

s oll unions of elements of T are itself elements of T

s oll finite intersections of T are itself elements of T

The elements 0 € T are colled open sets. For o point z € X, an open set
containing x 1s called a neighbourhood of a.

A trajectory through a topological space is said to accumulate at o if every
neighbouwrhood of 2 is visited over and over again. Le. the trajoctory gets
arbitrarily close to z, but may get away from z from time to time as well.
Formally we dofine this as follows.

Definition 20 (Accumulation) Let A be a set totally ordered® by < and X
be a set with topology T, then o function f € A = X 45 accumulating et & € X,
denoted [ —o 1, of

V(!ET,xﬁcivaﬁl.)om{f}Eb&ii?om{f},éaa f{b} €o.

5n the actual topological definitions, < is onlyv requirted to be a directed pre-order, not
necessarily a total order. However going into details about this difference is not necessary for
the understanding of this report.
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Accumulation gives us an intuition about the limit points of sequences. A set
in which every limit point is also a part of the set, is called topologically closed.

A special way to induce a tonology is through a metric. A metric iz a function
that defines the distance between two points. Naturally distance is one way of
defining how close points are to each other.

Definition 21 (Metric) Let X be a set, then o metric on that set is ¢ function
I...]| € (X % X} = R that is

positive: Yo yexlle.yl] = 0;
o distinctive: ¥y ye x|yl =0 & x=y;

s symmetric: ¥, e x|yl = |y ®l|:

triangular: Yoy cex|le 2|l < |layl] + |ly. 2]
Fuery metric induces o topology T C P(X) such that for allz € X and d € R:
{o' | Jo.a'|| <dL e T.

Metries also induce a notion of boundedness, reflecting that a certain distance
is never exceeded.

Definition 22 (Bounded function) Let X be a sef with a metric or it. A
function [ € N+ X is bounded if

Edﬁi‘?’.vﬂ,mﬁﬂ “f(”)f{’”}H < d.
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