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1 Introduction 

The theory of hybrid systems studies the combination of continuous and discrete 
behaviour. "V hell discrete software IS combined with mechanical and electrical 
components, or IS interacting with, for example, chemical processes, an embed
ded system aris(1s in which the interaction between the continuous behaviour 
of the components and processes and the discrete behaviour of the software 
is important. Although there arc good methods for describing, modeling and 
analysing continuous behaviour (control science / system theory) thS well ttS for 
analysing discrete behaviour (computer science / automata and process theory), 
the interaction between those two fields is largely une).l)lored, but received a lot 
of interest recently [vdSSOOb. BM99. vBGR97. vdB98. BBM98]. There are only 
a few models that can handle (some) interaction and often these models arc 
still dominated by one of the two original fields. Take as an example the timed 
proccss algebras (sec [BMOl. RGvdZvW02j) used in computer sciencc or sys
tem theoretic methods like complementarity systems and switched systems (sec 
[vdSSOOb]). Two broader and more expressive formalisms that arc in usc al
ready are hybrid automata [LSV99. LSVOl] and rich time behaviour [vdSSOOb]. 
Those arc discussed in more detail furtheron in this report. 

In practice, often the discrete part of a hybrid system is described and analysed 
using methods from computer science, while the continuous part is handled by 
control science. Because the analysis of the interaction between the discrete 
and continuous part is e).-trmnely difficult, the design of the complete system is 
usually such that this interaction is suppressed to a minimum. This is the main 
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n:th'Son for the development of a theory on hybrid systems. If we can obtain more 
insight in the interaction between discrete and continuous behaviour, we can get 
rid of the current restrictions on the design of a hybrid system. In the remainder 
of this report, system theory, automata theory and process theory: are referred 
to tiS classical theories, tiS opposed to combinations of those in hybrid theories. 

Our ultimate goal is a syntactical algebraic structure that can serve as a model
ing framework for hybrid systems and in which we can do symbolic analysis. As 
will become clear in the next section: such an algebra should have an underly
ing mathematical structure that reflects the meaning of the algebraic operators. 
This underlying structure nlust be intuitive from both a control science and a 
computer science point of view. 

In this report, we introduce hybrid transition systems tiS a new candidate struc
tun: to serve this goaL This model is less expressive than some of the existing 
hybrid formalisms, but we argue that it is more suitable tiS a model because, 
in our opinion, it gives rise to more elegant definitions of the theoretical prop
erties that playa role in hybrid systems theory. Especially, the fact that only 
one mathematical structure is needed to describe discrete (1S well tiS continu
ous behaviour, is important when comparing hybrid transition systems to for 
example hybrid automata. "Vith respect to the expressivity, we indicate which 
information is not modelled in the hybrid transition systems that is modelled 
in other formalisms. This is to ensure that no crucial information is lost due to 
the fact that hybrid transition systems are not tiS expressive. 

"Ve start with an explanation of our view on mathematical modeling and then 
give an overview of models (cla,ssical and hybrid) in the literature from both 
fields. "Ve discuss some of their strengths and weaknesses and, after this, we 
come to the model of hybrid transition systems, and point out how it relates to 
the cla,ssical models. In order to strengthen intuition, we discuss in an informal 
way how several notions from the different clttssical theories (like bisirrrulation, 
time-irwariance, stability and controllability) can be incorporated into the new 
contm· .. -t . 

At some points in this report we rely on a ba,sic knowledge of the field of topology. 
For an introduction into this field of mathematics, see for example [Dug66, 
Eis74]. A reminder of some of the basic definitions is given in the appendix, as 
well tiS an explanation of most of the notation used in this report. 

2 Mathematical Modeling 

In this section, we explain our view on the concept of mathematical modeling. 
An informal e}..l)lanation is given of what a mathematical model consists of, and 
why. One part of mathematical modeling, the semantics, is extensively studied 
in this report for frameworks from computer science and system theory: (1S well 

2 



th'S for hybrid frameworks. 

A mathematical formalism provides us with a structure in which we can describe 
systems, and in which we can analyse them. :0.-'Iathematical modeling often makes 
use of two of such formalisms called syntax and semantics (see figure 1). 

Syntactical Formalism 

Syntactical 
Description 

solution 

Smnantical 
Description 

Calculation 
Rules 

axiomatization 

Theoretical 
Notions 

Smnantical Formalism 

Figure 1: :0.-'Iathmnatical :0.-'Iodelling 

The semantical formalism (in short: semantics) is intended to support the mod
eling of a system on a low level of abstraction. The semantical description of a 
system uses a relatively simple mathematical structure. :0.-'Iotion, on a semantical 
level, could for example be modeled using functions of time to space. A com
puter program could be modeled using a graph-like structure called a transition 
system. The smnantical formalism contributes to the analysis of systems by the 
intuitive definitions it provides of the theoretical notions we want to analyse. 
Because of its simplicity (1S a mathematical structure, the smnantical formalism 
allows us to give a precise, and intuitive, definition of several notions like equiv
alence, stability, absence of deadlock, controllability, and observability (which 
terms are explained roughly throughout the text and considered in more detail 
in the kist sections of this report). 

The syntactical formalism (in short: syntax) is intended to facilitate a less 
cumbersome description of a system. In contrttst to the mathematically sim
ple description method that the semantical formalism provides, the syntactical 
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description is focussed on the ethSe of notation. vVriting down, on paper, the 
complex ways in which planets move using functions of time, would be impos
sible because there arc simply too many (infinitely many) possible evolutions, 
especially when no initial condition is given. Describing them using, for exam
ple, differential equations, provides us with a finite representation of the same 
set of functions. The high-level Pa,scal or C++ code of a computer program, is 
far more ettsy to write down than a transition system with the same function
ality. Syntax provides a concise, finite way of handling sCInantical, and often 
infinite, mathematical objects. 

This suggests that the s:yntact ical and sCInantical formalism arc coupled, which 
indeed they arc. A differential equation htts solutions in terms of functions of 
time. A piece of C++ code, although not formally (to which we return later), 
represents a transition system. 

The contribution of syntax to the analysis of systems is through axioms and 
theorems that we refer to in the figure ttS calc'ulation rules. Because syntax 
and semantics arc coupled, the notions that arc defined in the semantics, have 
a meaning in the syntax. The calculation rules on the syntax, should reflect 
these notions. A).ioms (for example) usually represent notions of equivalence 
on the semantics, while the theorems about the stability of systems correspond 
to the definition of stability in sCInantical terms. For the analysis of systems 
it is important that the coupling between s:yntax and semantics is formal, this 
is one of the rettsons why C++ programs arc almost impossible to analyse 
completely. This is also one of the rettsons for the development of a formal 
semantics for languages like UML [DMY02, GPP98, EBF+98], and X [BK02, 
Are96, vBROO] that were originally intended for other purposes, like simulation. 
Typical syntactical languages that were developed with the intention of analysis 
from the beginning, arc process algebrtts like ACP (Algebra of Communicating 
Processes) [BvV90, Fok981, ftCRL (micro Common Representation Language) 
[GROl, RGvdZvW02] and CCS (Calculus of Communicating Systems) [MiI80]. 

In figure 2, a graphical representation is given of the general aim of our efforts. 
The figure shows that we want to combine the S}'11tax used by system theorists 
and the S}'11tax used by process theorists into a new hybrid syntax. A similar 
integration is aimed at for the semantics of both fields. It is important for the 
user of the hybrid theory that a cla,ssical s}'11tactical statement htlS the same 
meaning in the hybrid semantics ttS it did in the cla,ssical semantics (after the 
necessary translations of course). In more technical terms, the figure IIlUSt be 
commuting. 

In this report, we concentrate on the semantical part of the theory. A good se
mantics helps in finding a good syntax and makes the formalisation of intuitions 
possible. In sections 3 and 4, we take a better look at classical semantics. vVhat 
models arc used and what notions arc of interest on those models? After that 
we study possible combinations of models in three different hybrid semantics in 
section 5. Two of those semantics arc taken from literature, one is newly intro-



System Theory 
Syntax 

Semantics 

Hybrid Theory 
Syntax 

Hybrid Theory 
SCInantics 

Figure 2: Developing Hybrid Theory 

Process Theory 
S:yntax 

Semantics 

duced. \Ve compare the three different hybrid models and discuss our rethsons 
to choose hybrid transition systems. The fact that we do not plan to consider 
a particular hybrid syntax yet, causes the problem that we cannot close the 
commuting diagram completely. Nevertheless, if we can show that models in 
the clttssical semantics can be expressed in terms of the new hybrid semantics 
without loss of crucial information, we know that the new semantics is at lettst 
strong enough to contain the clttssical formalisms. In section 6, we provide the 
necessary proofs to show that the chosen semantics is indeed expressive enough 
for our needs. Finally, we spend three sections, 7, 8 and 9, on an overview of 
frequently used notions from clttssical theory in terms of hybrid transition sys
tems. Furthermore, we give an ttssessment of the specific hybrid problems that 
arise when defining those notions. 

3 A General Model of Systems 

In this section, we introduce a general form for defining sCInantical models 
for systems. Furthermore, we study the sCInantical formalisms of the cla,ssical 
theories, system theory and process theory, in this form. In later sections, 
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the general form makes it etksy to combine the clttssical smnantical models into 
hybrid semantical models. 

The semantics of clttssical theories all give their view of the world through the 
definition of a certain kind of system. Ttansition systems arc a semantical 
formalism that htts been adopted by most computer scientists (amongst many 
others sec: [GR01, BW90, Fok98, BK02j). Behavioural systems [PW98] and 
Sontag machines [Song8, PhiOl] arc two smnantical formalisms in usc in control 
science. Behavioural system semantics is focussed on giving definitions without 
referring to input/output considerations tiS much ttS possible, while Sontag ma
chines take a more operational view in modeling systems, that is close to the 
transition system formalism. vVe have attempted to give a unified view on sys
tems that is more or less in line with the literature available on all the different 
cltlssical semantics we study in this report. 

A system is a phenomenon of memory, interaction and time. 

This leads to the following partial definition, in which only the concept of math
mnatical structure is still open. Specific instantiations of this mathematical 
structure arc be used to complete the definition for the different semantical 
models introduced lateron. 

Definition 1 (System) A system is a t'uple \ X, 2;, T, ¢ ), in which X denotes 
the state or memor,l/ of the system, ~ denotes the interaction space (also called 
signal space, control space, or alphabet), and T denotes the time a'J:is. The type 
of the system is determined by the struct'ure cp, a mathematical struct'ure on the 
state and interaction spaces and the time a'J:is of the system. 

The above definition states that a system consists of the spaces X,~ and T, and 
a structure cp on those spaces. As we mentioned before, the types of systems 
that arc most important for our goal can be found in the literature on classical 
theories, although in many books on control science in particular, the semantical 
formalism is not formally defined. vVe believe the following systems form good 
representatives of the semantics used throughout literature. 

For all systems, we ttssume there is a total ordering on the time axis T. One of 
the rettsons for this is the common usc of intervals on T, which arc only defined if 
T is totally ordered (sec appendix A). Another, more important rettson, is that 
a total ordering supports notions like "pttst" and "future" of a system evolution. 
This is discussed further on in this section . 

• Timed Labeled Transition Systems, in which ¢ c:: (X x T) x 2; x (X x T) 
is a relation that models how a state J: E X at time t E T can evolve into 

j'l'he\vords "state~' and "memory~' are more or less synonymous) and used as such through
out this report. 
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another state J/ E X at time f E T due to an interaction (J E ~. Usuallv, 
(",t,u,,,',t') E ¢ is denoted (",t) ."; (,,',t'). Timed labeled transiti;n 
systems, in this particular or a similar form, are a common way of modeling 
systems in computer sciencc [BM02, BMOl, AD94, GP95, BK02]. An 
impression of a timed labeled transition system is given in figure 3. 

Figure 3: Example of a Timed Labelled Ttansition System, a transition rela
tion between states J: 1 ,J:2,J:(1,J:4,J:5 E X, at times 1,2,3,4 E T, labelled with 
interactions a, b, c E ~ 

• Behu'lYio'ural Systems, in which 9 ~ T H (X x ~) is a set of functions mod
eling the possible evolutions of state and interaction of a system through 
time. Behavioural systems form a particularly intuitive semantics to spec
ify the solutions of, for example, differential equations, and are used in 
control science mainly by those who seek for a meta-theoretic approach 
to control [PW98, Wei9l]. Although the structure allows for arbitrary 
partial functions p E 9, usually the domain of p is tkssUIned to be an 
interval. Usually, the (mathematically dubious) notation (J:,(J) is used 
instead of p, in which J: E T H X and (J E T H ~ denote functions 
representing the state and signal trajectories, such that for all t E Dom(p) 
we have PIt) = (,,(t), u(t)) and Dorn(,,) = Dorn(u) = Dorn(p). A drawn 
impression of a behavioural system is given in figure 4. 

XxI; 

T 

Figure 4: Example of a Behavioural System, a system consisting of a set of 
functions from time to interactions and states 
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• Sontag Machines, in which ¢ E (X x (T H:Ell H X is a diffeTCnt kind of 
(fuIlctional) transition relation with a labeling cOIlsisting of partial fUIlc
tioIls of time to interaction. The relation reflects in an operational way 
how certain partial signal trajectories let the system evolve from one state 
to another. A drawback of Sontag machines is that they do Ilot support 
nOll-determinism. The transition relation is fUIlctional, and hence every 
pair of state J: E X and interaction fUIlction (J E T H ~ evolves into at 
most one subsequent state;1/ = ¢(J.:,a). Due to this, Sontag machines can 
only be used thS solutioIls of differential equatioIls with unique solutioIls 
for a given interaction signal and initial state [Song8]. The labels of the 
transitioIls in Sontag machines are partial functions that have an interval 
domain. ft'Iore specifically, in Sontag machines we have for all interaction 
functions a that Dom(a) = [t .. f) for some t,f E T. The domains are 
so called left-closed right-open interaals. This is done to make sure that 
subsequent transitions do not overlap each other. Hence, the total signal 
trajectory as used in the behavioural context can be recovered from con
catenation of the transitions. There are some more constraints on Sontag 
machines that, for example, guarantee that also the state trajectory can 
be recovered. One of them is that from each state J; there is at lC(k'St one 
outgoing transition; i.e. there exists a a and J;I such that J;I = ¢(J;, a). 
In computerscience terms this is called absence of deadlock. Because the 
other constraints are not important for the definitions in this report, we 
d not go into detail about them here. A drawn impression of a Sontag 
machine is given in figure 5. 

Figure 5: Example of a Sontag ft'Iachine, a functional transition relation on states 
J;1 ,J>2, J;a, J;4 EX, labelled with partial functions from time to interactions space 

So far, we only addressed the semantics of clttssical theories, and also in the 
remainder of this report we restrict ourselves to sCInantical issues. However, in 
order to fill in figure 1 for the classical theories, we have to at lc(k'St mention 
an example of syntax here. For computer science, we use tiS an example the 
process algebraic description method, while control science is (k'SSociated with 
descriptions using differential equations. Furthermore, as an example of calcu
lation rules, consider the process algebra axioms with respect to bisimulation 
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equivakmce [GROl, Fok98, BW90j, and realise that Lyapunov developed useful 
calculation rules to establish the stability of systems (see for example [TSHOl]). 
In figure 6, we have depicted these examples once more. Note that we only 
depicted the behavioural systems CthSC of control science. The Ctk'SC for Sontag 
machines IS, except of course for the semantics, exactly the same. 

Diffcnmtial 
EquatioIls 

Lyapullov 
Theorems 

Process 
Terms 

A"AiOIIlS OIl 

Bisimuiatioll 

Figure 6: Examples in the rv'Iathcmatical rvIodclliIlg Scheme of Cltkssical Theories 

In the previous sectioIl, we mentioned that the commuting figure 2, canIlot be 
closed completely because we do Ilot have a hybrid s:yntax yet. FurthcrOIl; we 
make some thSSumptioIls OIl the kind of s:yntax that IS involved when we show 
that hybrid transition systems arc mq)I'c8sivc enough for our needs. Before we 
get into this, let us concentrate on the theoretical notions that play a role in 
cltk'SSical theory. 

4 Theoretical Notions on Systems 

From the description of the different systems in the previous section, one may 
already have guessed that an ever important notion on systems is that of c'Uo
l'ution. Ttansition systems and Sontag machines describe the evolution of one 
state of the system into another, while behavioural systems describe the com
plete evolution of a system over time. vVe do not attempt here to give a general 
formalisation of evolution, because this would lead us away too much from our 
main goal: a formalism for hybrid systems. The notion of evolution, however, is 
important because it allows us to specify certain intuitions we have about time 
and state . 

• Given the state of a system at a certain time, the future evolution of a 
system is independent of the ptkst. 

• During an evolution time may not run backwards. 
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In this section, we investigate the intuition behind the notion of evolution and 
other notions that are important in general for the theory of any kind of system. 

The intuition that evolutions of a system are independent of the past, given a 
certain state and time, can be etksily illustrated using behavioural systems. In 
behavioural systems, the evolutions are simply the elements of 9. To support 
the intuition, behavioural systems are required to have the property of state. 
This property wttS introduced in [PVV98], and describes how the concatenation 
of evolutions, at a certain state and time, forms new evolutions. 

Definition 2 (Property of State) A behavio'Ural system \ X, :E, T, ¢ ) has the 
property of state if for all evol'Utions ('" er), (,,', er') E ¢ and times t E T 'We find 

in 'Which 

(f '(' {fIT) (),g)T)= , 
geT) 

T < t, 
T » t. 

In [PvV98L it is shown that the behavioural systems that arise ttS solutions of 
differential equations and other system theoretic descriptions indeed have the 
property of state. 

The other intuition we have on evolutions, namely that time does not run back
wards, is best illustrated using the evolutions from computer science, called 
runs. 

Definition 3 (Run) A run of a timed labeled transition system \ X, :E, T, ¢ ), 
is a pair ('" T, er) of a state tra]eetor,ij " E N H X, a time tra]eetor,ij TEN H T, 
and an interaction trajector,1J a E N H :E s'uch that 

• Dom(:,;}, Dom(T), and Dom(a) are intervals in N; 

• Dom(T) = Dom(,,), and () E Dom(,,); 

• Dom(er) c:; Dom(,,) 1\ I/nEDom(x) 'II E Dom(er) =¢- n + 1 E Dom(,,); 

• I/nEDom(c) \,,(n), T(n)) c~) \,,(n + 1), T(n + 1)); 

We define the length of a run to be the cardinality of Dom(er). 

The intuition that time does not run backwards is modeled by an extra con
straint: 'VnEDomlo-) T(n) :::; T(n + 1) (note that multiple actions may take place 
after each other at the same time). From now on, we only consider the clttss of 
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timed transition systems that satisfy this constraint, i.e. those timed transition 
systems such that \'" I ) \ ,,' , I' ) (witlu, ,,' EX, a E :E and I, I' E T) implies 
t :::; f. For runs, the first intuition that future evolutions arc independent of the 
pthst, given a state and a time, is automatic. 

Other properties that arc bttsed on the evolution of systems arc notions from 
control science like 

• observability: one can know the state of the system by only observing the 
evolution of the interaction values; 

• controllability: one can steer the evolution of a system by forcing certain 
interaction values: 

• stability: the evolutions of a system arc all bounded: 

and notions from computer science like 

• deadlock: the system can evolve into a state from which there arc no 
future evolutions: 

• bisimulation equivalence: two systems cannot be distinguished from ob
serving and manipulating the evolution of interaction values only. 

Usually, part of the analysis of systems is focussed on ttssessing whether these 
properties hold or not. In section 9, we argue that these notions automatically 
obtain meaning in the hybrid semantics tiS soon tiS we have a proper notion 
of evolution for that semantics. In the next section, we combine the clttssical 
semantics we studied so far, into several examples of hybrid semantics. 

5 Hybrid Systems 

Recall that we have three classical semantical formalisms that we would like to 
incorporate into one hybrid formalism in such a way that at lettst the syntactical 
formalisms associated with them arc supported. In the cttse of computer science 
we would like to support a process algebra kind of s:yntax, in the cttse of control 
science we would like to support differential equations. Loosely speaking, the 
three semantical formalisms arc the following: 

• Timed Labeled Transition Systems: ¢ c: (X x T) x :E x (X x T); 

• Behavioural Systems: ¢ ~ T H (X x I:); 

• Sontag Machines: ¢ E (X x (T H :E)) H X. 
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Actually, Sontag machines arc in itself not even sufficient to support differential 
equations, because differential equations with multiple solutions for the same 
initial condition cannot be modeled. Nevertheless, enhancing these machines 
slightly to incorporate non-determinism might solve this problem. By mixing the 
definition of (non-deterministic) Sontag machines with timed transition systems 
we obtain the following definition. Note, that we divide the signal space into a 
continuous and discrete part for clarity of the definition only. It hth'S no formal 
consequences since the two parts need not be disjunct, but it clearly shows 
which part of the definition originates from computer science, and which part 
originates from system theory. Furthermore, we usc closed intevals for labelling 
instead of left-closed right-open intervals tiS wttS the C;1se with Sontag machines. 
This proves usefull lateron, in the proofs of expressivity of hybrid transition 
systems. Although we suspect that these proofs can still be given when left
closed right-open intervals arc used, it would unnecessarily complicate them. 

Definition 4 (Hybrid 'Transition System) A hybrid transition system is a 
t'uple \ X, :E, T, ¢) 'With T totally ordered by <:: and a signal space :E = :Ec U :E D 

divided in a contin'uo'us and discrete part. Furthermore, it has a hybrid transition 
relation 

¢ c:; (X xT) x ((TH :Ec)U:ED) x (X x T) 

We 'usc \J:,t) ."; \J:',t') to denote (J:,t,u,J:',t') E ¢, and 'We demand that the 
labels only carr,1J information abo'ut the d'uration of a transition, not abo'ut the 
precise timing. This means 'We restrict o'urselves to partial functions (J E T H 
:Ec that have a closed interval domain of the form Dom(u) = [(Lt' tj, 

Note that it is possible to write down this definition a little more concise, since 
the signals from ~D can also be regarded (1S continuous signals on a one clement 
domain, the interval [0 .. 0]. As with timed transition systems, we usually ttssume 
that every transition (J;, t) 4 (J;I, f ) is time incre(J,sing such that t :::; f. A 
graphical impression of a hybrid transition system is depicted in figure 7. 

Figure 7: Example of a Hybrid Ttansition System 
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From literature, we have two other possible semantics for hybrid systems that 
merge labeled transition systems with behavioural systems. The first one, hy
brid automata (as defined in [LSV99, LSVOl]), takes the union of the complete 
structures. Usually there are a few constraints (like the property of state) on 
the behavioural part of 9, but we do not elaborate on those technicalities here. 

Definition 5 (Hybrid Automaton) A hybrid automaton consists of a t'uple 
( X, 2;, T, ¢) with T totally ordered by <::, a signal space 2; = 2;c U 2; {) divided 
in a contin'uo'us and discrete part, and a struct'ure 

¢ c:; ((X x T) X 2;f) X (X x T)) U (T H (X x 2;c)) 

in which the partial!,unetions (J:, cr) E ¢ are again ass'umed to have an {arbitrary} 
interaal domain. 

A graphical impression of this is difficult because two different mathematical 
structures are used in 9. 

The second alternative for hybrid transition systems is hybrid behaviours. They 
are behavioural systems that e).-tend the time axis to be able to support multiple 
transitions at a single time instance, thS is the cttse with the runs defined in 
section 3. In [vdSSOOb, vdSSOOaj, the notion of time enrichment was introduced 
to this extend. Here we use a slightly different definition that htiS the same 
power ttS the time enrichment, bttsed on a Cartesian product of time and ordinal 
numbers (see for example [Kun88]). vVe denote the collection of ordinal numbers 
tiS n. 

Definition 6 (Hybrid Behavioural System) A hybrid behavioural system 
consists of a t'uple (X, 2;, T, ¢) with T totally ordered2 by <::, the signal space 
:E = :Ec U:ED div'ided into a contin'uo'us and a discrete part, and having the 
edended behavio'ural struct'ure 

The set (T x 0) is totally ordered by the relation :< s'ueh that 

(t,n):< (t',n') "" (t < t') V (t = t' 1\ n <:: n'). 

As before, the behavio'ural struct'ure is ass'umed to have the property of state. 
According to fvdSSOObj, the domain of (J:,cr) E ¢ is special. It is an interval 
'With respect to T, and locally 'With respect to n, b'ut it is not an interval 'With 
respect to :<. 

2'I'he natural ordering on the ordinal numbers n is also denoted by:::;) but since the type 
\vill always be clear from the context) no confusion should arise. 
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• abstract interval: 
V('!''!''ETVn,n''En t <:: t' <:: t" 1\ (t,n), (t",n") E Dorn(J:) ~ 3 n'En (t',n') E 
Dorn(J:); 

• local closed interval: 
Vn,n',n"EnV(ET n < n' < n" 1\ (t,n), (t,n") E Dorn(J:) ~ (t,n') E 
Dorn(J:) , 

The most important diffenmce between this definition and the definition of 
(normal) behavioural systems is that the time-elements have a s-uccessor. The 
s-uccessor of (t,n) simply is (t,n + 1). This means that one can speak of a 
sequence of multiple actions that occur at the same time t E T. The special 
domain restrictions then indicate that the domain of the evolutions is an interval 
with respect to T, but that those sequences of actions do not have to be of 
length n. A graphical representation of a hybrid behavioural system is depicted 
in figure 8. In this picture, the arrows depict discrete signals, while the arcs 
depict continuous signal evolutions. 

XxI: 

T 

Figure 8: Example of a Hybrid Behavioural System 

Note that actions in this model are all instantaneous. The actions (J;, t) ~ 
(J;I, f) from a timed transition system in which t :f. f are interpreted as an 
instantaneous action at time t followed by a delay until time f. This is a 
common viewpoint in hybrid systems theory. 

Since these three definitions of different hybrid semantical models are all ex
pressive enough for our needs (which we establish formally in the nm .. -t section 
for the one we choose), choosing one cannot be done on the bthsis of technical 
mathematical arguments. It merely becomes a matter of tttste. To our feeling, 
in hybrid automata the different clttssical theories are still too much separated. 
vVe feel that the union of two rather different structures gives a new structure 
that is not only slightly counterintuitive, but also mathematically awkward. As 
we mentioned in section 2, a sCInantical formalism should have a simple math
CInatical structure. To a certain e)..-tend, hybrid transition systems possess this 
same awkward union in the labeling of transitions. However, the model seems 
to evolve naturally from both the timed transition system point of view and the 
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Sontag machine point of view. The operational view supported by hybrid tran
sition systems provides us with a strong intuition about the model that complies 
with the intuitions on both clth'SSical theories. Furthermonl, in computer science 
there is already some experience with transition systems with two types of la
bels in the context of timing (for example [BM02, BB9l, Hen96, BK02, BMOl]). 
The third model, hybrid behavioural systems, is oriented on the complete evo
lutions of a system. This view leads to a focus on trace equivalence, rather than 
on bisimulation equivalenceH• Since our focus is on the latter, stronger notion, 
we decided that the hybrid transition system model forms the most suitable 
semantics for the development of a hybrid s:yntactical algebraic framework. It 
hth,) a clear operational and state-oriented view, and in our opinion is a more 
elegant structure than hybrid automata. Computer science notions like bisimu
lation equivalence on states can be defined in a natural way and will help us to 
abstract away from the precise contents of the states. The topological influence 
from control science will provide us with a notion of continuity and aid us to 
some e}.-tend in handling the deviations in the precise value of the state that 
occur in physical systems. However, we realise that also the view on complete 
evolutions is valuable, especially when considering for example notions like sta
bility, where the boundedness of the evolution cannot be simply reduced to the 
boundedness of single transitions. It will always be possible, of course, to define 
such a notion of evolution on hybrid transition systems. 

6 Translations 

From section 2, we know that, in order to be sure that a proposed hybrid 
semantics is indeed a suitable semantics for describing hybrid systems, we have 
to translate the clttssical semantics into the hybrid one. In this section, we do 
that for the chosen semantics of hybrid transition systems. 

The case of timed labeled transition systems is trivial. A timed labeled transi
tion system is a hybrid transition system. 

In the cttse of Sontag machines the translation is a little more difficult due to 
diffenmces in the handeling of the domain of the signals (J. The first difference 
is, that Sontag machines are labelled with functions on a left-closed right-open 
domain, while hybrid transition systems have labels with completely closed in
tervals tiS domain. The translation from Sontag machines to hybrid transition 
systems is possible if we can find a "lttst point" to close the domain of the Son
tag transition. Suppose we have a transition from (J;, t) into (J;I, f) using some 
label (J defined on a domain [t .. f). The property of Sontag machines that there 
is absence of deadlock (see also [Song8] and various lmmntts on the existence of 

:'INote that t he expressivity argument implies t hat defining bisimulation on behavioural 
systems must be possible. HO\vever; t hese defini ti ons become cumbersome due to t he evolut ion 
oriented structure. 
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solutions of differential and other behavioural equations), gives us the opportu
nity to create a non-empty set of "first points" of transitions starting in (;.r;I, tl). 
Any of those points will do to define u(t'). 

The second diffenmce between Sontag machines and hybrid transition systems 
is, that there is information on the timing in the labelling of Sontag machines. 
In our opinion, this is not a good choice because, tkS we sec furtheron, the 
labeling information shows what is visible to an e).-ternal observer. Our intuition 
(which is perhaps a little philosophical in nature) is that duration is visible to 
an observer, but the exact time of a system is not. Duration is the only quantity 
regarding time that can actually be mettsured. Therefore, every a label on a 
domain [t .. t l

) is translated into a label on the domain [O . .t l t]. Apart from this 
difference, every Sontag machine is a hybrid transition system. 

The cttse of behavioural systems deserves more attention, because without fur
ther restriction, behavioural systems cannot be translated into hybrid transition 
systems without loss of information! Nevertheless, we arc able to give necessary 
and sufficient conditions for the translatability, from which it becomes more 
dear which information exactly is lost. Furthermore, we argue that this in
formation is not considered to be of importance thus far in system theory or 
computer science, nor in the field of hybrid systems research. Therefore, at 
lettst for the time being, hybrid transition systems arc e).l)ressive enough for our 
needs. 

The translation we usc to turn a behaviour into a hybrid transition system is 
the following: 

if (J, u) E ¢ and t, t' E Dorn(J) and t -:: t' 

then (J(t),t) (C I"::.';'l)-' (Jl(t'),t'). 

In which we usc aiD to denote the restriction of the function a to the subdomain 
D c:; Dorn( u) and u f to denote the shifted function u such that u t (t' + t) = u( t') 
for all t l E Dom(a) and undefined elsewhere. 

In order to prove that no information is lost, we usc the translation back that 
states: 

if;.r; continuous, and for all t, t l E Dom(;.r;) such that t :::; t l 

we find(Jl(t),t) (CI"::.';'l)-' (Jl(t'),t'),then (Jl,U) E ¢'. 

In the remainder of this section, we focus on proving that ¢ = ¢I for a certain 
dttss of behaviours ¢, meaning that behavioural systems that fit in this dttss 
can be successfully translated. However, let us first look at an example of a 
behaviour that cannot be translated in this way. 
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Figure 9: Example of a behavioural system that canIlot be translated 

COIlsider the behaviour depicted in figure 9. The only relevant behaviour of 
this system IS the state behaviour, which cOIlsists of many "instable" evolutioIls, 
that "start" in minus infinity and "end" in plus infinity. Stated this way, the 
O-function is clearly Ilot part of this behaviour. 

Now, if we translate this behaviour into a hybrid transition system, by COIl

structing transitioIls between two states-time pairs if they arc cOIlIlected by a 
partial evolutioIl, this information about the O-function is lost. Obviously, the 
states (0, t) and (0, f) arc cOIlIlected by some evolution for all t :::; f. Therefore, 
there IS no way to decide from the transitioIls only, that the O-function is not in 
the behaviour of the system. 

Nm .. -t, we show that if the behaviour has the property that it is two-point refutable 
in its evolutions, meaning that every function that is not an evolution of the 
system, can be recognized on the bthsis of two points in time, then it can be 
translated without loss of information. 

Definition 7 (Two-point refutability) A behavio'ural system \ X, 2;, I, ¢ ) is 
two-pointrcfutablc, if for any (",(T) E Ie-; (X x:E) s'ueh that (",(T) <¢ ¢ there 
e"ist two points t, t' E Dom(,,) with t < t' s'ueh that for every (,,', (T') E ¢ either 
,,(t) Ie ,,'(t), ,,(t') Ie ,,'(t') or (TilLt'1 Ie (T'ilf.J'I' 

Theorem 1 A behavio'Ural system \ X, 2;, I, ¢) can be translated into a hybrid 
transition system witho'ut loss of information, if it is two-point refutable in the 
state e'Uol'utions. 

Proof U sing the translation and reverse translation above, it is trivial to 
see that cp ~ cpl, therefore we focus on the other cttse, to prove that cpl ~ cp and 
ttssume: (J":,(7) E cpl. 
Using the fact that there is only one rule in the reverse translation, we conclude: 

U ! (t' t) (cl,u'J)-' ! (t" t') Vt,f'EJ)om,lJ:) \J": ), ~ \J":), , 
and using the translation from behaviours to hybrid transition systems we get: 
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{ 

,,(t) = ,,'(t) 
V',t'EDom(x)3(x',e')E¢ ,,(t') = ,,'(t') 

ul[L.! '] = u'h, .I'] 
Using Dcrv'IorgaIl, we obtain: 

{ 

,,(t) Ie ,,'(t) 
~3t,f'EDom(x)V(x',e')E¢ ,,(t') Ie ,,'(t') 

U hL.f'] Ie u' I[L.!'] 

1\ 

1\ 

v 
v 

And using modus tollcIls OIl the property of two point refutability we find: 
(",u)E¢, 
which concludes the proof. 

rv'IorcovcI', for the translatioIls given above; two-point refutability of the state is 
even a necessary condition to avoid information 1088. 

Theorem 2 A beha'U'io'ural "y"tem (X,:E, T, ¢) can only be tran"lated into a 
hybrid transition system witho'ut los8 of information 'using the translations above, 
if it is two-point refutable in the "tate evolcution", 

Proof vVc proof this fact, by observing that the sct 4/ hth'S the property of 
two-point refutability of the state evolutioIls. This follows immediately out of 
its cOIlstruction from an arbitrary hybrid transition system. If a certain fUIlction 
(;r;) (T) is Ilot in 4/) then there are at leth'St two points t, f E Dom(;,;} such that 

I "( (t) ell" '] ( (t")' 'I I I 'I ' , TI t 1(1 tranSItIOn J: ~ J:) IS not m t 1(1 ly )n( tranSItIOn system. ' '1(1 

absence of that transition implies that none of the functions in 4/ are equal to 
the one under study at these two points. Therefore 4/ is two-point refutable. In 
conlcusion, since the result of the reverse translation is a two-point refutable sys
tem, the original system must have this property too in order to obtain cp = cpl. 
t'JJ 

Now, given the property of state on a behaviour, we can loosen the constraint 
of two-point refutability a bit. vVe can show that finite set refutability then is 
sufficient (and by definition necessary) to imply two-point refutability. 

Definition 8 (Finite set refutability) A behavio'ural "y"tem (X, :E, T, ¢) ,,, 
two-pointrcfutablc, if for any (",u) E Te-; (X x:E) ,,'ueh that (",u) '¢ ¢ there 
e"i"t" a finite "et D c:; [t .. t'] c:; Dom(,,) ,,'ueh that for every (,,', u') E ¢ either 

"ID Ie "'ID or ullt..t'] Ie u' ht..t']' 

Note that, (1S wttS the cttse with two-point refutability, the signals a and a l in the 
definition are still compared over the whole interval because they are completely 
visible on the transitions. Hence it is not necessary to restrict the comparison 
to a finite set of points. 
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Theorem 3 A beha'Uio'urnl system \ X, :E, T, ¢) that has property of state and 
is finite set refutable, is also two-point refutable in its state c'Uol'utions. 

Proof The proof of this IS by induction OIl the size of D. vVc derive a 
contradiction out of the statement that D with IDI > 2 hth'S no strict subset OIl 

the bth'Sis of which it IS still refutable. 

Suppose, for some (",,,) <¢ ¢ that 

31)c,;[f..t']c,;Dom(x),II)I~NV(x"c')E1> { 

and furthermore 

{
"II) = ,,'II) 

VI)' cD 3(x',c')EO _ 'I 
''If.J'] -" [f..t'] 

"II) ¥ ,,'II) 
"IL.!'] ¥ "'Ii, .t'] 

1\ 

v 

with IDI > 2. From this lthst thssumptioll we conclude that for every two points 
a, bED) forming a strict subset of D) there IS a trajectory that COIlIlects the 
two. 

{ 

"(0) = "'(0) 
Va,bEI)3(x',c')EO ,,(b) = ,,'(b) 

"If..t'] = ,,' lif..t'] 

1\ 

1\ 

vVc order the clements in D using an order preserving map 7 E N ~ D and 
conclude 

{ 

"(T(n)) = "'(T(n)) 
Vn <N3(x',C')E1> "(T(n + 1)) = ,,'(T(n + 1)) 1\ 

"If..t'] = ,,' llf.J'] 

1\ 

By applying this twice, we get 
1\ 

"(T(n + 1)) = ,,'(T(n + 1)) = ,,"(T(n + 2)) 1\ 

1 

"(T(n)) = "'(T(n)) 

Vn<N-1 3(X',C'),(x
U,cU

)EO ,,'(T(n + 2)) = ,,"(T(n + 2)) 1\ 

"If..t'] = ,,'llf.J'] 
And theIl, by property of state, we may concatenate (;[:1) (7

1) and (J;II, all) to 
conclude 

1\ 

"(T(n + 1)) = ,,'(T(n + 1)) = ,,"(T(n + 2)) 1\ 

1 
"(T(n)) = "'(T(n)) 

Vn<N-1 3 ,x, c')E" '( ( 2" "( ( 2" 
, ' . Y "Tn+ ))=" Tn+ )) 1\ 

"Iu'] = ,,' liu'] 
vVith induction we then mav conclude 

{ 
"(T(n)) ~ "'(T(n)) 1\ 

3l ;rl ,0-') EO'Vn<N _ II 
"Iu'] -" [u'] 

From which we derive 

{ 
,,(f) = ,,' (f) 

3(X',C')E1>VdEI) _ 'I 
"ILJ'] -" I' .!'] 

1\ 

And using different notation 

{
"II) = ,,'II) 

3l ;r'0-')EO I 

, "IL.!'] = " liL.!'] 

1\ 

vVhich is in contradiction with the fact that (J;, a) is refutable on the basis of 
D. Hence, if a behavioural system is finite set refutable and ht4" property of 
state, then it is two-point refutable, which concludes the proof. !2l 
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Intuitively, finite set refutability means that if a certain function can be in
tersected arbitrarily often by piecewise concatenations of evolutions, then this 
function is an evolution in itself. Note that this does not necessarily mean that 
the function can be approximated by concatenation of evolutions. Since there is 
no notion of methsure defined on evolutions here, appro}.imation is not an issue. 
An example of a behaviour that is not finite set refutable, is the one depicted in 
figure 10. The set of all possible sine waves, when closed under property of state, 
still does not contain the O-function, although it can be intersected arbitrarily 
often, by concatenation of sine waves that cross the a}.is. 

Figure 10: Impression of a non finite-set refutable set of evolutions 

Looking at it from a different perspective, we see that every crossing of evolu
tions can be regarded tiS a branching of the transition system. This means that 
if we translate a behavioural system without finite set refutability into a hybrid 
transition system, then we loose information about the continuous branching 
options of that system. vVe cannot conclude the diffenmce between a system 
that htts a certain branching at arbitrarily small finite times apart, and a system 
that branches continuously. 

This all, makes clear that hybrid transition systems are in a sense less e}.l)ressive 
than behavioural systems. vVhether this loss in e}.l)ressivity leads to problems 
is an entirely different matter. There are two rettsons for ttssuming that it does 
not. 

The first retison, is that the hybrid transition systems are intended as an under
lying model for a syntactical formalism, and the systems that are described 
currently in the separate worlds of computer science and system theory do 
not consider continuous branching. rv'Iore importantly, the topic of continu
ous branching htis not (;:1S far tiS we are aware) played a role in hybrid systems 
research yet. Therefore, we expect that the different system compositions that 
we are going to study in our model for hybrid systems, do not make use of 
the diffenmce between continuous branching and arbitrarily short finite-time 
branching. Thus, the difference between finite set refutable behaviours and be
haviours that do not have this property will not be visible through any of those 
compositions. 

The second reason, is that the theory will usually define behaviours through 
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the use of algebraic differential equations, and we conjecture that the sets of 
evolutions that can be constructed in this way are all finite set refutable. For 
algebraic equations, and for differential equations with unique solutions (Lips
chitz equations, [HS74]), this is trivial. For differential equations in general, we 
only conjecture that finite set refutability holds on the bthsis of some topological 
closure and compactness properties that the solution sets of those equations 
have [FiI88]. 

However, we Illust be carefull in accepting these arguments, since they both 
make ttssumptions on the syntax. They might not hold anymore, if certain 
extensions of the syntax are introduced. For the moment, however, hybrid 
transition systems seem expressive enough for our needs, and seem to be the 
most suitable model from other points of view that were already mentioned. vVe 
expect that it will be possible, should the need to change semantics ever arise, 
to change the smnantical model of a theory without disturbing the axioms and 
calculation rules on the syntax. Therefore, hybrid transition systems are the 
best model for the time being. 

7 Hybrid Evolutions 

Recall from section 3, that the notion of evolution is basic to theory on systems in 
general and in particular to both control and computer science. In that section, 
we have seen two ways in which evolutions are defined. Runs for transition 
systems, and functions of time for behavioural systems. Since a hybrid transition 
system is a transition system, the notion of run is most natural. 

Definition 9 (Hybrid Run) Given a hybrid transition system \ X, :E, T, ¢ ), 
a hybrid run of this system is a triple (J;, T, a) of seq'uences J; E N H X, 
TEN H T, and" E N H ((T H:Eel U :ED) s'ueh that 

• Dom(J;), Dom(T), and Dom(a) are intervals in N; 

• Dom(T) = Dom(,,) and () E Dom(,,); 

• Dom(,,) c:; Dom(,,) 1\ I/nEDom(x) n E Dom(,,) =¢- n + 1 E Dom(,,); 

• I/nEDom(c) \,,(n), T(n)) c~) \,,(n + 1), T(n + 1)). 

Notice that this definition has not fundamentally changed from the normal def
inition of run. 

The notion of run ttS evolution of a system htts one important drawback that 
manifests itself when runs become infinite in length. If there is a notion of 
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topology on the time axis and the state space of a system (think of T thS II«. 
and of X as an arbitrary vector space), the intuition on what evolutions of 
the system arc may change. In such a setting, there can exist runs for which 
the time-series docs not pttSS a certain point t E T. In such a C,1se, using the 
definitions we have so far, the evolution of the system simply stops at, or before, 
that time. This is rather strange, since it will never happen in a physical system 
that time simply stops. 

Usually, this phenomenon is caused by some abstraction made by the modeler. 
This docs not mean that the model is wrong, or that the modeler htts made a 
mistake! Abstract ion is a tool that is crucial to the understanding of systems. 
In this particular cttse one may argue whether or not the modeler should be 
forced to avoid this kind of unwanted behaviour by specifying models that do 
not display the phenomenon, or one may decide that the modeling formalism 
should take care of it. vVe choose the latter because we arc convinced that for 
example the assumption that certain actions do not take any time to execute is 
a natural abstraction. This ttssumption leads to the described phenomenon and 
therefore we should support this phenomenon in our modeling formalism. 

A typical occurrence of the accumulation of a time-series is usually referred to ttS 
Zeno-behaviour after the Elcatic philosopher (488 BC) who first described such 
phenomena in his famous example of Achilles and the Ttutle4 . In philosophy the 
accumulation of events in general is also referred to tiS s'uperirh5k [ZalOl, Nor99, 
Sal 70] . The state trajectory in such a cttse is crucial to the interpretation of 
the evolution of our system. Several attempts to deal with Zeno-behaviour 
in a hybrid systems context can be found in [JELS99, BPOO, CR,EOl, CR02]. 
Usually it is ttssumed that the evolution of the system can continue from the 
accumulation point of states onward, forcing time to continue. This gives rise 
to transfinite sequences of states and to the notion of transfinite run. 

A transfinite run is a run over ordinal numbers [Dug66, Eis74, Kun88] rather 
than natural numbers. The idea is that for limit ordinals the state-value of 
the run is one of the accumulation points of the preceding part of the run (if 
a sequence J: E n ~ X accumulates in U E X we denote this by J: --{) U, 
sec Definition 20 in appendix A). Also the timing should continue from the 
accumulation point of the previous timings. 

Definition 10 (Thansfinite Hybrid Run) Let n denote the ordinal Trumbers 
and let (X, I:, T, ¢) be a hybrid transition system with topologies on X and T, 
then a pair (J:, T, cr) of transfinite serruenees J: E n H X, TEn H T and 
cr E n H (I: U (T HI:)) is a transfinite hybrid run if 

4In a running contest bet\veen Achilles t he half-god and a turtle, the tUltle gets a litt le 
head sta1t . Zeno reasoned that every ti me Achilles comes at a point where t he tUItle,vas, t he 
tU11:le hM v'mlked just a little fUIther. Hence, Achilles cannot take over, and the turtle vdns 
the race. 
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• Dom(:,;), Dom(r), and Dom(a) arc intervals in n; 

• Dorn(T) = Dorn(,,) and () E Dorn(,,); 

• Dorn(u) c:; Dorn(,,) 1\ I/nEDom(x) 'II E Dorn(u) =¢> 'II + 1 E Dorn(,,); 

• I/nEDom(c) ("('II), T(n)) c~) ("('II + 1), T(n + 1)); 

• 'VnEDomv),n limit onlinal ;.r:hO .. n) --{) ;.r:(n) /\ rl[O .. n) --{) r(n). 

Again, the length of a run i8 the cardinality of Dorn(u). 

rv'Iost results that have been obtained for hybrid systems in literature t4%ume 
non- Zeno evolutions. This means that only normal runs arc considered in the 
proofs. The problem of supertasks is considered a modeling mistake and hence 
left for the modeler to solve. In the remainder of this report, we explicitly make 
a distinction between results for normal hybrid runs and transfinite hybrid runs 
for this 1'(1t4')011. 

8 Equivalence 

In sections 2 and 3 already the notion of equivalence was mentioned. Although 
not formally defined, the notion of bisimulation equivalence W(lS given tiS an 
example. 

;.r: 

Figure 11: Ttace Equivalent but not Bisimilar States 

On a smnanticallevel, the notion of equivalence on a system reflects which things 
an external observer can sec dm-"ing the evolution of a system. The first intuition 
we have about this equivalence, for systems in general, is that only the interac
tion space is observable. This intuition is firm, and all notions of equivalence 
from literature agree on it. The second intuition is motivated by the introduc
tion of non-determinism in a system. If a system displays non-determinism, then 
sometimes a choice between different evolutions is made without visible interac
tion. Sec for example figure 11. There, the observer cannot conclude from the 
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set of runs of the system that the two states marked J: arc different. Both sys
tems contain the interaction runs a followed by b and a followed by c. However, 
an observer can conclude diffenmce from the fact that, after a has occulTed, 
in one system there is still a choice between band c, while in the other sys
tem this choice hth" vanished. This diffenmce between observing complete runs 
and observing choices tiS well is only of interest for non-deterministic systems 
and therefore it is not surprising that the equivalence notions concerned with it 
stem from computer science rather than from control. If the outside observer 
cannot sec which choices a system makes, we study so-called trace eq'uivalence 
between systems. If the outside observer can observe the fact that a choice Ints 
been made, we study bisirrrulation eq'uivalence. Equivalence, furthermore, is a 
notion on the states of systems and, in timed systems, this notion may be time 
dependent. Therefore, the equivalence notions we handle here compare pairs of 
state and time. 

On a syntactical level, the chosen notion of equivalence influences greatly which 
calculation rules can be applied. Some axioms hold for one notion of equiva
lence, while they do not hold for a different notion. For example, with respect 
to trace equivalence we have that alternative composition (+) distributes over 
sequential composition (.), leading to the axiom o,. (b + c) = (a· lJ) + (a· c), 
for those who arc familiar with the process algebraic syntax. This is not true 
with respect to bisimulation equivalence! The choice of equivalence influences 
the analytical power of the theory greatly, because a notion of equivalence like 
bisimulation, that allows less axioms, htts a greater distinctive power between 
systems. Therefore, one can pose more fine-grained questions about systems in 
the theory (for example about the choices that have been made). However, the 
fact that there arc less a}.ioms also means that answering questions by means 
of a}.iomatic rettsoning becomes more difficult. So the questions that can be 
ettsily posed and answered for a less fine-grained equivalence, may turn out to 
be harder to answer for the fine-grained equivalence. This is why the choice of 
a proper notion of equivalence is of importance to the analyst. 

Definition 11 (Thace Equivalence) Given the hybrid transition systems M 
= (X" 'E" T" ¢, ) and N = (X" 'E" T,,¢,), 'using the same interaction space 
'E, = 'E" the state-time pairs ("0, to) E X, X T, and (110, so) E X, X T, are trace 
equivalent denoted ("0, to) -" (110, so), if for every hybrid run ('" t, (J) on M with 
,,(0) = "0 and teO) = to, there eJ:ists a hybrid run (11, s, (J) on N with 11(0) = 110 
and s(O) = So and vice versa. 

The notion of bisimulation equivalence docs not compare complete runs, but 
compares the states after every transition again in order to be able to dif
fenmtiate between the choices between transitions. It relics on the notion of 
bisimulation relation. 
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Definition 12 (Bisimulation Equivalence) Given hybrid transition systems 
M = (X1,'E1,T1,q)1) and N = (X"'E"T,,q),) with 'E 1 = 'E,. A relation 
n c:; (Xl X T1) X (X, x T,) i" a bisimulation relation iff 

• for every tran"ition (J:,t) .", (J:',t') of M and every "tate 11 E X, and 
time sET, ,,'ueh that (J:, t) n (11, s) there e",i"t" a tran"ition (11, s) .", 
(1/, s') of N ,,'ueh that (J:', t') n (1/, s'); 

• and for every tran"ition (11, s) .", (1/, s') of N and every "tate J: E Xl 

and time t E T1 ,,-ueh that (J:, t) n (11, s) there e",i"t" a tran"ition (J:, t) .", 
(J:', t') of M ,,'ueh that (J:', t') n (1/, s'). 

Two "tate-time pair" (J:, t) E Xl X T1 and (11, s) E X, X T, arc bi"imilar, denoted 
(J:, t) tl (11, s), iff there e",i"t" a bi"im:ulation relation n ,,'ueh that (J:, t) n (11, s). 
(Two systems are bisimilar if ever7J state in one system has a bisimilar state in 
the other "y"tem.) 

It is a known result from computer science [BPSOl] that bisimulation on states 
is a stronger equivalence than trace equivalence on states. 

Lemma 1 tl C :=;:. 

Proof Sec e.g. [vGOl]. 

Clearly, with topologies on the state spaces, e}.'iending the notion of trace equiv
alence is straightforward. Ttansfinite trace equivalence is concerned with trans
finite runs instead of normal runs. It is denoted by :=;:(X;. The bisimulation 
CthSe, however, is not that simple. The notion of bisimulation focusses on single 
transitions and is therefore not able to "see" beyond a countable number of tran
sitions. In [CR02], a notion of topological bisimulation wttS defined to include 
the accumulation points of runs. The following definition is a reformulation of 
this definition. 

Definition 13 (Topological Bisimulation) Let Al = (Xl, 'E 1 , T1, q)1) and 
N = (X" 'E" T" q),) be two hybrid tran"ition "y"tem" ,,'ueh that 'E 1 = 'E, and 
s'uch that Al and 1v have topologies on the state spaces Xl and X 2 and on the 
time a",e" Ti and T" the relation n c:; (Xl x T1) X (X, x T,) i" a topological 
bisimulation relation iff it is a {normal} bisiTlrulation relation that also relates 
acc'uTlrulation points of transfinite hybrid runs, i.e.: 

1. for every tran"finite hybrid run (J:, T, 0") in Al and "tate 110 E X, ,,'ueh that 
(J:(O), T(O))n(110, T(O)), there i" a tran"finite hybrid run (11, T, 0") in N with 
110 = 11(0) and (J:(n),r(n))n(lln, T(n)) for every n E Dom(J:). 
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2. for every transfinite hybrid run (11, T, u) in N and state "0 E X, s-ueh that 
("0, T(O))n(ll(O), T(O)), there is a transfinite hybrid run ('" T,U) in 11.[ with 
"0 = J:(O) and (J:(n) , T(n))n(lln, T(n)) for every n E Dom(ll)· 

A state-time pair (J:, t) E X , XI, is topologically bisimilar to a state (11, s) E X, X 
I" denoted (J:, t) tloc (11, s), if and only if there eJ:ist, a topological bisim:ulation 
relation n c: (X, x I,) X (X, x I,) .,-ueh that (J:,t) n (ll,S). 

As with normal bisimuiatioll and trace equivalence, topological bisimuiatioll is 
stronger than transfinite trace equivalence. 

Proof The proof of this is trivial, since the equivalence notioIl, for every 
transfinite hybrid run in the one system, guarantees the existence of a similarly 
labelled transfinite hybrid run in the other. !2J 

Now we have covered evolution and equality, the most important notioIls OIl 
systems from a smnantical point of view. In the next sectioIl, we look at control 
theory, and sketch the way in which standard control notioIls can be defined OIl 
hybrid transition systems. 

9 Control Notions 

The notion of evolution is the most important notion in order to support a 
general intuition on any type of system. Equivalence notions are invaluable if we 
want to consider hybrid transition systems as an algebraic structure. However, 
other notions are important from a practical point of view. In this section, we 
sketch the definitions of a few notions from control theory th'S an example of how 
this theory can be incorporated into the hybrid structure. It is not our intention 
yet to prove properties about those notions. This is left tiS future research. 

rv'Iost of the theoretical notions we are interested in depend in one way or another 
on the notions of evolution and equivalence. For example, the notion of time
invariance states that, given a certain notion of equivalence, the equivalence of 
two states is independent of time. In the remainder of this report, we write:!!::: to 
denote an arbitrary notion of equivalence that htis been chosen by the modeler. 
In place of :!!::: one may read any of the equivalences =, :;::, :;::w, tr, or trw as 
desired. 
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Definition 14 ("'-Time-invariance) We define that a hybrid transition sys
tem ( X) ~) T, ¢ ) is time-invariant 'With respect to a certain notion of eq'ui'Uulence 

'" iff 

Note that equivalence of stutes is here considered between the stutes of one single 
system (M and N are the same). For J: and 11 states from hybrid transition 
systems AI andN, we writeJ: '" 11 if (J:,t) '" (ll,S) for alit ands. 

The thS8umptioIl of timc-invariancc usually makes modeling and analysis of sys
tems c(h'Sicr. Also, many definitioIls from control theory th%umc a time-invariant 
system. \Vc therefore usc this notion c"A'iCIlsivciy in this section. In dthssical the
ories, timc-invariancc is usually guaranteed if one only uscs s:yntactical terms 
that do Ilot refer to time immediately. Of course, in future investigatioIls, we 
strive for a similar result for hybrid s:yntactical terms. 

Arguably, two of the most important notions from control theory are obseru
ability and controllability of the state of a system. Observability roughly means 
that one can know in which state the system is from observing the interactions 
that have taken place. Controllability means that it is possible to steer the 
system from any state into any other state, by applying the right interactions. 

Definition 15 ("'-Observability) Let \ X,:E, T, ¢) be a hybrid transition sys
tem that is time-irruariant 'With respect to eq'ui'Ualence then the state :tJ E X is 
observable from the interaetion seq'ucnee (J E n H ((T H :Eel U :ED) of length 
n if for every run (J:,T,(J) we find J:(n) "'11· 

This definition simply says that if we observe that the interaction (J hth'S occurred 
it is safe to conclude that the state after this observation is equivalent to :tJ. 
Plettse notice again that this notion depends on the chosen notion of equivalence. 
It maybe so that with respect to a weaker notion of equivalence a system is 
observable while it is not with respect to a stronger notion. This happens 
because the states that can be reached by the observed interaction are equal 
with respect to the weaker notion while they were not equal with respect to the 
stronger notion. In standard control theory this distinction is not made because 
the determinism ttssumed there makes that bisimulation and trace equivalence 
coincide, but from a computer science point of view, where non-determinism 
does playa role, it is important. Also important, is the so called congruence 
property of a notion with respect to a chosen equivalence. For example, suppose 
we have two equivalent systems Al ~ 1v, then we expect if a certain state J: is 
observable from (J in Al that there is an equivalent state :tJ ~ J: observable 
from (J in 1v. It is a subject of future investigation whether observability is a 
congruence for the notions of equivalence that have been given in the previous 
sections. 
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Controllability is a notion that expresses if a system can be steered from one 
state into another. 

Definition 16 p~,-Controllability) Let \ X, 2;, T, ¢) be a hybrid transition 
system that is time invariant 'With respect to then the state :tJ E X can be 
controlled into state 1/ E X by the interaction (J E n H ((T H 2;c) U 2; D) 'With 
re"peet to the eq'ui'Ualcnee "", if there eJ:i"t" a (tran"finite) hybrid run (J:, T, (J) 

,,'ueh that J:(O) = 11 and J:(n) "" 1/ for "orne 'II, 

For control scientists who usually work with deterministic systems, this notion 
works perfectly. "Vhen non-determinism comes into play, however, it may seem 
rather naive. The fact that there is a run from :tJ to ;1/ using a certain interaction 
is no guarantee that this particular path of states is indeed chosen when the 
particular interaction is applied. However, demanding a guarantee that after 
the interaction we indeed end up in ;1/ is similar to demanding a degree of 
determinism. On the other hand, it may be reth'Sonable to ttssume that after a 
failed attempt the controller will be able to try again. The assumption that ;1/ 
is eventually reached if there is always a run leading to it, is called fairness in 
computer science. 

It is clear that this notion of controllability is suitable for control theory, but 
does not cover the intuition an:ymore when applied to hybrid systems. Future 
research will have to come up with new definitions of controllability that fit the 
non-deterministic framework. 

Also for controllability, the aforementioned congruence property is important. 
In particular, we do not have the desired congruence if we consider for example 
the combination of transfinite hybrid runs and normal bisimulation. Ttivially, 
the (normal bisimulation) equivalence of systems Al and 1v does not guarantee 
that if, for example, every state in Al is (transfinitcly) controllable into every 
other, that also every state in 1v is controllable into every other. 

The lttst control notion that we want to address here is called stability of a 
system. Stability is a notion concerned with the desire to guarantee that the 
behaviour of a system remains within rettsonable bounds. In literature, many 
different notions of stability have been given. One example from this large pool 
of possibilities is the notion of a bounded state evolution. A system is stable if 
all the state evolutions stay within a certain bound. To be able to define this, 
the topology on the state space and signal space is (lssumed to be induced by a 
metric (see definition 21 in appendix A). In literature, many other notions of 
stability have been given, most of them have the same topological nature. 

Definition 17 (Stability) A hybrid tran"ition "y"tem 'With a metric on the 
"tate "pace X and "ignal "pace 2; i" "table if for every run (J:, T, (J) in 'Which (J 
i" bo'unded, 'We find that J: i" bo'unded ("ee definition 22 in appendiJ: A), 
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10 Concluding Remarks and Future Research 

vVc have provided a semantics for studying hybrid systems by introducing the 
modeling framework of hybrid transition systems thS a mix of Sontag machines 
and timed labeled transition systems. This framework wthS compared with the 
original frameworks from control [Song8, PVV98, TSHOl] and computer science 
[BMOl], as well as with hybrid automata [LSV99, LSVOl] and the notion of 
rich time in a behavioural setting [vdSSOOb]. vVc have shown how the notioIls 
from computer science and control science can be incorporated into the new 
framework by giving a few examples of definitioIls of such notioIls in terms of 
hybrid transition systems. Furthermore; we discussed the influence of topology 
OIl computer science notioIls and in particular the extension of clthssical notions 
of equivalence to overcome Zeno-behaviour, a typical hybrid problem induced 
by topology. 

Our arguments for choosing hybrid transition systems above hybrid automata 
or behavioural systems are bthsed on our feeling that hybrid automata have 
a mathematically awkward structure while hybrid behavioural systems are to 
much focussed on the complete evolutions of systems. vVe prefer an opera
tional, state-bttsed, view on systems because the possibility of non-determinism 
(in particular in computer science models) urges us to look beyond the evolution 
bttsed language equivalence of systems. The fact htts been recognized, that hy
brid transition systems are not expressive enough, compared with behavioural 
systems, to distinguish between continuous moments of choice and moments of 
choice that are at arbitrarily small times apart. This lack in e"Al)ressivity has 
been rejected tiS a potential cause of trouble because the information that is lost, 
is not used in any of the compositions that we have in mind on hybrid systems. 
Furthermore, most behavioural systems that are currently of interest, for exam
ple those defined by algebraic and differential equations, have the property of 
finite set refutability, which ensures that there is no problem in the translation 
to hybrid transition systems. 

Our hopes are that the proposed semantics will provide a sufficient basis for 
the development of an algebra, suitable for the analysis of hybrid systems, with 
respect to the notions mentioned in this report. The challenge will be to find 
a"Aioms and theorems on the notions we know so well from clttssical theory, 
in a hybrid context. The future development of theory should, apart from 
s:yntax, include theorems about the control notions that were mentioned. In 
particular, the congruence of those notions with respect to the different kinds of 
equivalence is important. From a semantical viewpoint, it would be nice if those 
control notions could be derived from the transition systems itself, rather than 
having definitions via the runs. This would add to the algebraic simplicity of 
the notions, and, through that, probably also to stronger s:yntactical theorems. 
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A Topological Notions and Notations 

In this section we give a very brief explanation of some of the topological notions 
and notations used in this report. For a more thorough e}.l)lanation we refer to 
[Dug66, Eis74]. 

\Ve start out with the notion of total ordering, and the derived notion of interval, 
which turn out to be useful notions on the time axis T of a system. 
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Definition 18 (Total ordering, Interval) Let T be a set and <:: c:; TxT a 
(birtar;lJ) relation on T. This relation is called a total ordering, and T is called 
totally ordered if 'We have for all 0, Ii, c E T: 

• rcfic'J:i'Uity: a :::; a; 

• anti"';tjmmctr,l.j: a :::; b /\ b:::; a ::::} a = b; 

• transitivity: a :::; b /\ b:::; c ::::} a:::; c; 

• totality: ° <:: Ii V Ii <:: 0; 

A s'ubset I c:; T of a totally ordered set is called an interval if for all J:, 11, z E T 

• interval: J:, z E I /\ J: :::; :tJ :::; z ::::} :tJ E I. 

A different kind of structuring OIl scts is through a topology. Roughly, a topology 
defines which points in a sct arc close to each other. A sct equipped with a 
topology is called a (topological) space. 

Definition 19 (Topology) Let X be a set, then T c:; P(X) is a topology on 
X if 

• 0 E T and X E T; 

• all 'Unions of clements of T are itself elements of T; 

• all finite intersections of T are itself elements of T 

The elements () E T arc called open scts. For a point J: EX, an open set 
containing J: is called a neighbourhood of J:. 

A trajectory through a topological space is said to accumulate at J: if every 
neighbourhood of J: is visited over and over again. I.e. the trajectory gets 
arbitrarily close to J:) but may get away from J: from time to time as well. 
Formally we define this tk'S follows. 

Definition 20 (Accumulation) Let A be a 8et totally orderer!' by <:: and X 
be a set 'With topolo,q:1j T, then a function f E A ~ X is accumulating at J: EX, 
denoted f ~ J:, if 

GIn the actual topological definitions) :::; is only required to be a directed pre-order) n01 
necessarily a total order. HO\vever going into details about t his difference is not necessary for 
the understanding of this repol1;. 
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Accumulation gives us an intuition about the limit points of sequences. A set 
in which every limit point is also a part of the set, is called topologically closed. 

A special way to induce a topology is through a metric. A metric is a function 
that defines the distance between two points. Naturally distance is one way of 
defining how close points are to each other. 

Definition 21 (Metric) Let X be a "et, then a metric on that "et i" a function 
II., ·11 E (X x X) ...., II< that i" 

• po"itive: V',YExllJ:,llll ::> 0; 

• di"tinetive: V',YExllJ:,llll = 0 "'" J: = 11; 

• "ymmetrie: V',YExllJ:,llll = 1111,J:11; 

• triang'ular: V',IJ.'ExllJ:,zll -:: 1IJ:,1111 + 1111,zll· 

Ever,ij metric ind'uee" a topology T c:; P( X) ,,'ueh that for all J: E X and dEli<: 

rv'Ietrics also induce a notion of boundedness, reflecting that a certain distance 
is never exceeded. 

Definition 22 (Bounded function) Let X be a "et 'With a metric on it. A 
function fEN H X i" bounded if 

Ilf(n),f(m)11 -:: d . 
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