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Creating Graph Partitions for Fast Optimum Route Planning
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Abstract: We investigatefastoptimumrouteplanningin large, real-world roadnetworks for carnavigationsys-
tems.Weshow how graphpartitioningcanbeusedto increasethespeedof planningoptimumroutes.Creatinga
graphpartitionwith futurerouteplanningin mind leadsto a non-standardgraphpartitioningproblem.In partic-
ular, thequality of a partition, indicatedby theobjective value,is assumedto representtheexecutiontime of the
routeplanningprocess.We presentanefficient approximationalgorithmfor creatinggraphpartitionssuitedfor
fastoptimumrouteplanning.Westudytherelationbetweentheobjectivevalueandthenumberof edgesevaluated
by the routeplanningalgorithm,which is anobjective measureof the routeplanningspeed.Experimentsshow
that the bestpartition accordingto the objective valuedoesnot leadto the fastestrouteplanningprocess.We
presenta new objective valueandshow thatbetterpartitionsresultin fasterrouteplanningfor our new objective
value.

Key-Words: Graphpartitioning,Approximationalgorithms,Routeplanning,Real-world roadnetworks,Carnavi-
gationsystems.

1 Introduction
An increasingnumberof carmanufacturersareoffer-
ing anavigationsystemasoneof thepossiblefeatures
of theircars.Thekey componentsof suchanavigation
systemarepositioning,guidanceandrouteplanning.
In thispaper, we focusontherouteplanningfunction-
ality of acarnavigationsystem.

Usersof suchsystemsarebecomingincreasingly
demanding:driversdo not wantto wait for their route
to beplanned,andthey expectthesystemto provide,
for example,theabsolutelyfastestroute.Furthermore,
the sizeof the available roadnetworks is increasing.
CDs or DVDs containingthe roadnetwork of entire
Europe are now becomingavailable. So optimum
routeshave to beplannedonvery largeroadnetworks,
in very little time.

Becauseof theincreasingsizeof availableroadnet-
worksandhigherdemandson routequality andplan-
ning speed,planningoptimumroutesin little time is
a continuingchallengefor companiesdevelopingcar
navigationsystems.

For a car navigation system,a Dijkstra-like route
planningalgorithm [2, 6] is not fast enoughto plan
optimumroutesin largereal-world roadnetworks.Be-
causeof the high demandson planning speed,the
route planningprocesshasto be speededup, which
can be doneby pre-processingthe roadgraph. Jung
and Pramanik[9] and Flinsenberg [4, 5] describea

graphpartitioningapproachto speedup the planning
process.They divide the roadgraphinto a numberof
disjunctsubgraphsthat areconnectedby a boundary
graph.

Flinsenberg [4] showedthata roadnetwork canbe
divided into several disjunctparts,calledcells, to in-
creasethe route planningspeedof a car navigation
system. This resultsin a graphpartitioningproblem
thatis differentfrom standardgraphpartitioningprob-
lems in literature. We focus on the graphpartition-
ing approachdescribedby Flinsenberg [4, 5]. Wegive
a graphpartitioning algorithm for her approachand
studythe relationshipbetweenthe graphpartitioning
problemandtheefficiency of herrouteplanningalgo-
rithm. Flinsenberg [4] aimsatminimizing thenumber
of edgesin the searchgraphbecausethis is expected
to representthespeedof therouteplanningalgorithm
usedfor planningan optimum route. The speedof
a route planning algorithm can be measuredin the
numberof evaluatededges,seeFlinsenberg [5]. So,
we do not want to minimize the numberof edgesin
the searchgraph,but the numberof evaluatededges
by the routeplanningalgorithm. Thesenumbersare
typically not thesame.Therefore,we studythenum-
berof evaluatededgesby therouteplanningalgorithm
of Flinsenberg [5], andcomparethis numberwith the
numberof edgesin thesearchgraph.Weshow thatthe
graphpartitionminimizing thenumberof edgesin the



searchgraphdoesnot leadto thefastestrouteplanning
algorithm.Wethenintroduceanew partitioningprob-
lem for which we show thatbetterpartitionsresultin
fasterrouteplanning.

Graphpartitioninghasbeenstudiedextensively, for
many differentapplications.Berry andGoldberg [1]
comparedifferentalgorithmsfor computinggraphpar-
titions. Falkneret al [3] studypartitioningthe nodes
of a graph into k disjoint subsetsof specifiedsizes
with theobjectiveof minimizingthetotalweightof the
edgesconnectingnodesin distinct subsetsof thepar-
tition. They presenta numericalstudyon the useof
eigenvalue-basedtechniquesto find upperand lower
boundsfor this problem,basedon graphsof several
thousandsof nodes. Huanget al [8] comparealter-
native graph clusteringsolutionsfor storing data in
squareblocksthatminimizethenumberof I/O opera-
tions. They comparespatial-partitionclustering,two-
way partitioningandapproximatetopologicalcluster-
ing. Krishnanet al [11] studygraphpartitioningfor
Internet-like structures. They require that the parti-
tionsareconnectedandshow this leadsto quitea dif-
ferentproblem.MonienandDiekmann[12] studybi-
sectiontechniquesfor minimizing thenumberof con-
nectionsbetweensubgraphs.Pothen[13] studiesthe
sameproblembut comparesseveraltechniques.Graph
partitioningis alsostudiedby Schloegel et al [15] and
Karypis andKumar [10]. Partitioning of flat terrain
into polygonsis studiedby RoweandAlexander[14].

All thesegraphpartitioning problemsare funda-
mentally different from our graphpartitioning prob-
lem. Thereare threeimportantdifferencesbetween
the problemsstudied in literature so far and ours.
First of all, our problemrequiresthe partitioning of
a graphinto anunknown numberof subgraphs,while
thenumberof subgraphsis assumedto beknown be-
forehandin otherpapers.Secondly, theobjectivevalue
of a graph partition is much more complicatedfor
our problem.Finally, thegraphpartitioningalgorithm
has to be applied to very large real-world road net-
works.Theseroadnetworkstypically containmillions
of nodesandedges.

This paperis organizedas follows. We introduce
cell-partitionsin Section2, and the algorithm used
for computingcell-partitionsin Section3. We dis-
cusstheimplementationof thisalgorithmin Section4.
In Section5 we discussthe comparisonof the num-
berof evaluatededgesandthenumberof edgesin the
searchgraph.It turnsout that thenumberof edgesin
the searchgraphis not an accurateestimationof the
numberof edgesevaluatedby therouteplanningalgo-
rithm. In Section6, we studya variantof thenumber
of edgesin the searchgraphasoptimizationcriterion
for our partitioningproblem. In Section7, we show
that this variantdoesaccuratelyrepresentthenumber
of evaluatededgesby therouteplanningalgorithmof
Flinsenberg [5]. Section8 presentstheconclusions.

2 Cell-Partitions
A road network can be representedas a graph, in
which theedgesrepresentthe roadsegments,andthe
nodesrepresentthe junctions. Sincetheremay exist
parallelandcircular roads,we do not excludeparal-
lel edgesor loops.Becauseone-way roadshave to be
modeledaswell, every edgein a roadnetwork is di-
rected. A roadnetwork canthusbe representedby a
directedmulti-graph. For an edgee from nodeu to
nodev, let δ1

�
e� denotestart nodeof the edge,and

δ2
�
e� the end nodeof the edge,i.e. δ1

�
e��� u and

δ2
�
e��� v . Formally, we definea roadgraph asa tu-

pleG � �
N � E � w� , whereN denotesthesetof nodes,E

thesetof edges,andw
�
e� thenon-negativecostassoci-

atedwith edgee. A routein a roadgraphis asequence
of adjacentedges,p � �

e1 ��������� ek � , whereei 	 E and
δ2
�
ei �
� δ1

�
ei � 1 � for i � 1 ��������� k  1. Thecostof route

p, the route-cost, is equal to c
�
p��� ∑k

i � 1w
�
ei � . A

routewith minimum cost from start nodes to desti-
nation noded is called a minimumcost route or an
optimumroutefrom s to d.

Let G � �
N � E � w� be a roadgraph,then a cell-

partition of G is a set � C1 ��������� Ck � where Ci ��
Ni � Ei � w� is a roadgraphinducedby the nodesetNi,

suchthatNi � Nj � /0, for every i �� j, and � k
i � 1Ni � N.

Seefor examplethecell-partitonin Figure1(a).A cell
is representedby thegraphcontainedin a block. The
edgesof a cell C arecalled internal edges, the nodes
thatonly have adjacentnodesin C arecalled internal
nodes, and nodesthat also have adjacentnodesout-
side cell C are called boundarynodes. Note that in
Figure1(a), theboundarynodesareblackandthe in-
ternal nodesare white. The boundarygraph B of a
cell-partition � C1 ��������� Ck � of graphG consistsof all
edgesconnectingdifferentcells.

After the roadgraphhas been partitioned into a
numberof cells, Flinsenberg [4] computesthe opti-
mumroutecostbetweeneverypairof boundarynodes
of a singlecell. The optimumroutesarerepresented
by edgesthatareaddedto theboundarygraph.These
edgesare called route edges. The boundarygraph
including all routeedgesof the cell-partition in Fig-
ure1(a) is given in Figure1(b). Specifically, Flinsen-
berg [4] addstwo directededgesbetweenevery pair
of boundarynodesof a singlecell. The setof route
edgesof a single cell thus forms a directedclique.
So n

�
n  1� routeedgesarecreatedfor a cell with n

boundarynodes. The searchgraph, denotedby GS,
consistsof the cells containingthe startanddestina-
tion node,all boundaryedgesandthe routeedgesof
all cells,exceptthecellscontainingthestartanddes-
tinationnode.Thesearchgraphof thecell-partitionin
Figure1(a) for startnodes anddestinationnoded is
givenin Figure1(c).

Using the notationin Table1, Flinsenberg [4] in-
troducesthe partitioningproblem(1), which aimsat
minimizing theaveragesizeof thesearchgraph.



(a)A cell-partition. (b) Boundary graph and route
edges.

s

d

(c) Searchgraph for start nodes
anddestinationd.

Figure1: Creatinga searchgraph.

k Numberof cellsin cell-partition � C1 ��������� Ck � .
n Numberof nodesof roadgraphG.
ni Numberof nodesin cellCi .
mi Numberof edgesin cellCi .
r i Numberof routeedgesof cellCi.
bi Numberof boundarynodesof cellCi .
mB Numberof boundaryedgesin thepartition.

Table1: Usednotation.

min
k

∑
i � 1

� ni

n

�
2  ni

n
� mi � �

1  ni

n
� 2r i ��� mB (1)

Becausea routeedgeis createdbetweeneachpair
of boundarynodes,we have r i � bi

�
bi  1� . Flinsen-

berg [5] shows that turn-restrictionscan be usedto
further increasethe route planningspeedby storing
theoptimumroutecostbetweenevery pair of bound-
ary nodesin only 2bi route edgesfor a cell Ci with
bi boundarynodes,insteadof creatingbi

�
bi  1� route

edges.As a result,thesizeof thesearchgraphthat is
usedfor planningtheoptimumroutechanges.There-
fore,alsotheoptimizationproblemfor creatingacell-
partition changes.Specifically, we have r i � 2bi in-
steadof r i � bi

�
bi  1� . We call the valueof (1) for

a particular cell-partition, the objectivevalue. The
partitioning problemsthus consistof finding a cell-
partitionwith minimumobjective value.

3 Merging-Algorithm
Thecell-partitioningproblem(1) with r i � bi

�
bi  1�

is NP-hard,seeFlinsenberg [4]. Similarly it can be
shown that the cell-partitioningproblemis also NP-
hardfor r i � 2bi . Thereforewedevelopanapproxima-
tion algorithmto solve theseproblems.Unlike other
partitioningproblemsin literature,thenumberof cells
in which the graphhasto be partitionedis unknown.
Therefore,theapproximationalgorithmalsohasto de-
terminethenumberof cellsof thecell-partition.

Our partitioning algorithm, called the Merging-
Algorithm, is agreedyalgorithmthatstartsby creating
n cellsthateachconsistof asinglenode.Thenin each
step,it repeatedlyselectstwo cells andmergesthese
two cells into a new cell. This processcontinuesuntil
only asinglecell remains,containingtheentiregraph.
This processis calleda run. During a singlerun the
bestfound cell-partition is stored. We have random-
ized theselectionof the two cells thataremergedto-
getherin eachstep,therebycoveringadifferentpartof
thestatespacewith eachrun. To find a goodpartition
theMerging-Algorithmconsistsof severalruns.

In order to creategood cell-partitionswe choose
the two cells to merge accordingto priority function
ρ. A goodcell-partitiontypically containsonly a few
boundarynodespercell. Wealsolike to keepthecells
roughly equal in size, so that the partition doesnot
containoneverylargecell andalot of verysmallcells.
This is convenientfor acarnavigationsystembecause
it meansthereis not too muchdifferencein handling
differentcells.

Define the priority of merging cellsCi andCj by
ρ
�
i � j � . Weuse:

ρ
�
i � j ��� mB

�
i � j � � 1 � bi � b j  bi j �

nin j
random

�
1 � 1 � 01���

with mB
�
i � j � the numberof boundaryedgesbetween

cellCi andCj , bi j thenumberof boundarynodesof the
mergedcell, andrandom

�
α � β � a random(real) num-

ber betweenα andβ. This priority function is based
on theobservationthatcellsthathave many edgesbe-
tweenthemshouldbemerged.Furthermore,if wecan
choosebetweenmerging two small cells with many
boundaryedgesbetweenthemandtwo largecells,we
shouldmerge the two small cells, becauserelatively
they have the most connectingboundaryedges. So,
wedivideby thenumberof nodesin eachcell to favor
smallcells.As a result,wearealsomorelikely to end
up with cells of approximatelyequalsizes. Further-
more,we multiply by the reductionin the numberof



boundarynodes(plus 1) to favor cell-partitionswith
only a few boundarynodes.Note that the numberof
boundarynodesof themergedcell canneverbelarger
thanthenumberof boundarynodesof cellsCi andCj
together. Sothepriority valuecannotbenegative. By
adding1, wepreventthepriority valuefrom becoming
zero(soρ

�
i � j ��� 0 for all cellsCi andCj ). Themulti-

plicationwith a randomnumberis doneto randomize
thealgorithmandachieveanefficient implementation.

4 Implementation
To makeapracticalanalysisof theobjectivevalue,we
implementedtheMerging-Algorithmusingafew stan-
darddatastructuresandtechniques,like: linked lists,
doublelinked lists, priority queues,referencecounts
andcalculatingthe changeof the objective valueaf-
ter eachmerge, insteadof calculatingit anew each
time. The detailsof the implementationare beyond
thescopeof this article,a detaileddescriptioncanbe
foundin vanderHorst’s master’s thesis[7].

It is possibleto implementtheMerging-Algorithm
with aworst-caserunningtimeof O

�
e � n � M � � B �

loge��� , wheree denotesthe numberof edgesin the
roadgraph,M the maximumnumberof neighboring
cellsacell hasduringa runandB themaximumnum-
berof boundarynodesa cell hasduringa run. There
aregraphsfor whichM andB equaln  1 andn respec-
tively, but whenpartitioningroadnetworks,M andB
aregenerallysmallcomparedto n.

To get an indicationof the runningtime, we used
the algorithm to partition the map of the Nether-
lands. This map consistsof roughly 800,000nodes
and1,100,000edges.A dualPentiumIII 1.4Ghzwith
2 Gbof workingmemorywasusedto runtheprogram
andpartitionthis graph.Theprogramrequired4 min-
utesof processingtime and400Mbof working mem-
ory to perform10 runsandfind a partitioncontaining
524 cells with an objective value(1) of 40,163using
r i � 2bi . Thispartitionis shown in Figure2.

5 Validation of the Objective Value
The objective value of a partition indicatesthe ex-
pectednumberof edgesin thesearchgraph.Thegoal
of partitioninga graphinto cellshowever, is to speed
up route planning. The speedof a route planning
algorithm can be measuredin the numberof evalu-
atededges(Flinsenberg [5]), also calledexpansions.
Thereforetheactualquality of a partition is indicated
by theaveragenumberof expansionsrequiredto plan
a route.

Thenumberof edgesin thesearchgraphis clearly
anupperboundfor thenumberof expansionsto plana
route.Sotheobjectivevaluedoessaysomethingabout
the quality of a partition, but it is unclearwhetherit
actuallycorrespondsto thequality.

Figure2: Cell-partition of theNetherlands.

Figure 3: Relationshipbetweenthe objectivevalue
andthenumberof expansions.

The relationshipbetweenthe quality and the ob-
jective value is examinedby planningrouteson the
roadnetwork of theNetherlands.First, theMerging-
Algorithm is usedto generatemultiplepartitions.This
is doneby creatingcategoriesrepresentedby theval-
ues40,000,40,500,41,000,. . . , 60,000.Thefirst par-
tition encounteredduring a run that fits a category is
saved. A partitionis saidto fit a category if thediffer-
encebetweenits objectivevalueandtherepresentative
valueof thecategory is lessthan50.

Subsequently, the A� algorithm[6] is usedto plan
2,000routesthrougheachof thegeneratedpartitions.
The averagenumberof expansionsis plotted in Fig-
ure3. Thefigurecontainstheplotsof partitionsgen-
eratedduring five runs. Eachrun is representedby
a differentcolor. The diamondsindicatethe average
numberof expansionsfor planningfastestroutes,(i.e.
routesminimizing thedriving time),while thesquares
indicatethe averagenumberof expansionsfor plan-
ningshortestroutes(i.e. routesminimizingthedriving
distance).



Figure3 clearly shows that the minimum average
numberof expansionsdoesnotcoincidewith themin-
imum objective value. The bestpartition according
to the objective value hasa value of approximately
40,500and requireson averagecirca 16,500expan-
sionsto plana route.But clearly thereis a betterpar-
tition with anobjective valueof about45,000that re-
quiresonly 14,500expansions.Theobjective valueis
thereforenot anappropriatemeasureof thequality of
apartition.

6 Weighted Objective Value
Thepartitionwith thehigherobjectivevaluefrom Fig-
ure3 requiresfewer expansionson averageto planan
optimumroutebecauseit hassmallercells. Whenthe
A� -algorithmstartsplanningin thestartcell it encoun-
tersedgeswith roughly thesamecost.But assoonas
thealgorithmreachestheedgeof thecell it suddenly
encounterstherouteedges,whichhave amuchhigher
cost thanthe edgesinsidethe cell. Thesehigh costs
combinedwith a comparetively low decreasein the
heuristicestimatorgenerallycausethe expectedcost
of a route via route edgesto be higher than the ex-
pectedcostof a routevia an internaledgeof thestart
cell. ThereforetheA� algorithmcontinuesexamining
edgesin the start cell, often until thereareno edges
left to beexamined.This causes,on average,60%of
all expansionsto occurinsidethestartcell.

Becausethe partition with the higher objective
value has smaller cells, the A� algorithm is able to
leave thestartcell fasterthanin thepartitionwith the
”optimum” value. This canbecorrectedby assigning
a lower weightto partsof theobjective valuefunction
thatdo not indicatethesizeof thecells. We call this
new functiontheweightedobjectivevalue:

min
k

∑
i � 1

� ni

n

�
2  ni

n
� mi � α

�
1  ni

n
� 2r i � � αmB � (2)

Notethatfor α � 1 theweightedobjectivevalue(or
w-value for short) is the sameas the objective value
(1). α indicatestheweightof theboundarygraphand
routeedgescomparedto thesizeof thecells.

Sincethe routeplanningalgorithmfrequentlyex-
aminesa large portion of the edgesin the start or
destinationcell the α shouldindicatethe fraction of
theboundarygraphandrouteedgesthatareevaluated
by the algorithm. This fraction canbe estimatedby
α � SEA

SM , whereSEA indicatesthesurfaceareaof the
expectedsearchareaandSM the surfaceareaof the
entiremap.

Theexpectedsearcharea(SEA) canbeseenasan
ellipsewith adistancebetweenthefoci equalto theav-
erageroutelength,andthesumof thedistancesfrom
any pointontheellipseto thefoci equalto theaverage
routelengthmultiplied by a detourfactor. This leads

Figure 4: Objectivevalue, w-valueand the average
numberof expansions

to SEA � 1
4 � π � ARL2 � c ��� c2  1 with ARL the

averageroutelengthandc thedetourfactor.

7 Validation of the W-Value
To validate the w-value a new experiment is con-
ducted. Samplepartitionsare generated,and routes
areplannedon thosesamplepartitions. To get a bet-
ter ideaof thewaytheobjectivevalue,w-valueandthe
numberof expansionsbehave,samplesweregenerated
from anentirerun.

Thevalueof α is calculatedasdescribedin thepre-
vioussection.The2,000routesusedfor planninghave
anaveragelengthof 122km. Thedetourfactoris set
to 1 � 3, basedontheexperienceof SiemensVDO. This
resultsin SEA � 12� 623 squarekilometers.The sur-
faceareaof theNetherlandsis 37,938squarekilome-
ters,soα  0 � 33.

Figure4 shows a part of the samplesand the ob-
jective value,w-valueandnumberof expansionsbe-
longingwith eachsample.Whenprojectingthemini-
mumof all threeseriesto thehorizontalaxis,thoseof
thew-valueandtheaveragenumberof expansionsare
clearlytheclosesttogether.

Experimentingwith the samplesshowed that for
0 � 28 ! α ! 0 � 40 the w-value leadsthe algorithm to
selectthe optimal partition from amongthe samples,
sotheα  0 � 33 is agoodchoice.Thisdoes,of course,
not meanthat thew-valueactuallyresultsin thealgo-
rithm selectingthe bestpartition encounteredduring
therun. To examinethis finer samplingmight benec-
essary.

However, the weightedobjective valueclearly re-
sults in a partition of better quality than the un-
weightedobjectivevalue.Evenif thepartitionwith the
minimumnumberof expansionsandthepartitionwith
theminimumw-valuearenot exactly thesame,there
is still little differencebetweenaveragenumberof ex-
pansionsrequiredto plana route.This canbeseenin
Figure4, becausethepartitionscloseto theoptimum
have a similar numberof expansionsasthe optimum
itself. Sowe canconcludethatpartitionswith a lower
w-valuerequirelessexpansions.



8 Conclusions
We have presentedthe Merging-Algorithm, which is
a polynomial-timeapproximationalgorithmfor creat-
ing cell-partitionsthatallow fastoptimumrouteplan-
ning. TheMerging-Algorithmis capableof partition-
ing a real-world roadnetwork with morethana mil-
lion edges(in an unknown numberof cells), in just a
few minutes. We have alsoshown that the bestcell-
partition according to the original cell-partitioning
problemof Flinsenberg [4] doesnot give the fastest
routeplanningresults.Therefore,wedevelopedanew
cell-partitioning criterion for which we have shown
that a partition that is betteraccordingto this crite-
rion, also leadsto fasterroute planning. This new
criterion is basedon informationon characteristicsof
the road network and the route planning algorithm.
TheMerging-Algorithmcanagainbeusedto createa
cell-partitionaccordingto our new criterion. We have
shown thatthis leadsto significantlyfasterrouteplan-
ning.

For our new criterion, better partitions result in
fasterrouteplanning. Therefore,increasingthequal-
ity of the found partitionsleadsto fasterroute plan-
ning. TheMerging-Algorithmis anapproximational-
gorithmwith unknown accuracy. To establishits accu-
racy, the valueof optimumcell-partitionsis an inter-
estingsubjectfor futher research.Differentapproxi-
mationalgorithmscanbestudiedaswell to determine
the quality of the results. The introductionof multi-
level partitioningcouldfurtherincreasetherouteplan-
ningspeed.Weintendto studytheinfluenceof thein-
troductionof multiple levels to our partitioningprob-
lem. Also differentrouteplanningalgorithmsmayin-
fluencenot only the routeplanningtime, but alsothe
relationbetweenournew partitioningcriterionandthe
numberof edgesevaluatedby therouteplanningalgo-
rithm. Currently, we are introducingtime-dependent
routeplanninginto ourmodelandworkingon its inte-
grationwith cell-partitions.
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